WO2012034362A1 - 具有面心立方结构的高纯度Ti(B,N)陶瓷粉末及其制备方法 - Google Patents

具有面心立方结构的高纯度Ti(B,N)陶瓷粉末及其制备方法 Download PDF

Info

Publication number
WO2012034362A1
WO2012034362A1 PCT/CN2011/001562 CN2011001562W WO2012034362A1 WO 2012034362 A1 WO2012034362 A1 WO 2012034362A1 CN 2011001562 W CN2011001562 W CN 2011001562W WO 2012034362 A1 WO2012034362 A1 WO 2012034362A1
Authority
WO
WIPO (PCT)
Prior art keywords
powder
compact
face
centered cubic
solid
Prior art date
Application number
PCT/CN2011/001562
Other languages
English (en)
French (fr)
Inventor
胡建东
董鲜峰
曹勇
陶思托
Original Assignee
吉林大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 吉林大学 filed Critical 吉林大学
Publication of WO2012034362A1 publication Critical patent/WO2012034362A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/58Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
    • C04B35/5805Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on borides
    • C04B35/58064Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on borides based on refractory borides
    • C04B35/58071Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on borides based on refractory borides based on titanium borides
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B35/00Boron; Compounds thereof
    • C01B35/02Boron; Borides
    • C01B35/04Metal borides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/58Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
    • C04B35/58007Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on refractory metal nitrides
    • C04B35/58014Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on refractory metal nitrides based on titanium nitrides, e.g. TiAlON
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • C04B35/65Reaction sintering of free metal- or free silicon-containing compositions
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/34Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3409Boron oxide, borates, boric acids, or oxide forming salts thereof, e.g. borax
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3817Carbides
    • C04B2235/3821Boron carbides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3817Carbides
    • C04B2235/3826Silicon carbides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/40Metallic constituents or additives not added as binding phase
    • C04B2235/405Iron group metals
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/42Non metallic elements added as constituents or additives, e.g. sulfur, phosphor, selenium or tellurium
    • C04B2235/422Carbon
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/44Metal salt constituents or additives chosen for the nature of the anions, e.g. hydrides or acetylacetonate
    • C04B2235/444Halide containing anions, e.g. bromide, iodate, chlorite
    • C04B2235/445Fluoride containing anions, e.g. fluosilicate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/604Pressing at temperatures other than sintering temperatures
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/608Green bodies or pre-forms with well-defined density
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/658Atmosphere during thermal treatment
    • C04B2235/6587Influencing the atmosphere by vaporising a solid material, e.g. by using a burying of sacrificial powder
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/72Products characterised by the absence or the low content of specific components, e.g. alkali metal free alumina ceramics
    • C04B2235/721Carbon content
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/72Products characterised by the absence or the low content of specific components, e.g. alkali metal free alumina ceramics
    • C04B2235/723Oxygen content
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/72Products characterised by the absence or the low content of specific components, e.g. alkali metal free alumina ceramics
    • C04B2235/724Halogenide content
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/72Products characterised by the absence or the low content of specific components, e.g. alkali metal free alumina ceramics
    • C04B2235/728Silicon content
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/76Crystal structural characteristics, e.g. symmetry
    • C04B2235/762Cubic symmetry, e.g. beta-SiC

Definitions

  • Ceramics are an important and special engineering material that has the characteristics of high temperature resistance, corrosion resistance, wear resistance and special functions, and is a material that must be used in special occasions. Ceramics are compounds formed from metallic and non-metallic elements. The compound generally formed by oxygen and metal is an oxide ceramic, and among them, A1 2 0 3 and Ce0 2 are common. Another type of ceramic is a ceramic formed of a metal and a non-oxygen element. Commonly used are SiC, SiN, MoSi 2 , TiN and TiC, etc., which are classified as non-oxide ceramics. These ceramics exhibit excellent performance in terms of high temperature resistance, corrosion resistance and wear resistance. Among them, the strength of silicon nitride SiN can reach 700MP; the hardness is 1800Kg/mm 2 .
  • the compound formed of the metal and boron element belongs to a non-oxide ceramic. They include titanium diboride ( ⁇ 2 ), iron boride (FeB), chromium boride (CrB), molybdenum boride (MoB), tantalum boride (TaB), zirconium boride (birconium boride) ZrB 2 ) and hafnium boride (Hffi 2 ), etc. These ceramics have high melting point and hardness and good wear resistance, but it is difficult to make pure powder materials. The forming cost of the parts is high.
  • the titanium-boron system compound theoretically has Ti 2 B, TiB, Ti 3 B 4 and TiB 2 and the like.
  • TiB 2 and TiB are given on the Ti-B phase diagram, and they are studied more.
  • TiB 2 has a hexagonal crystal structure; TiB has an orthorhombic crystal structure.
  • TiB 2 has a powder material, but TiB has no powder state material. Summary of the invention
  • TiB2 and TiB are two important compounds in the Ti-B system.
  • TiB2 has a hexagonal crystal structure, and TiB has an orthorhombic crystal structure.
  • TiB2 has a powder product, while TiB does not use a powder product. The latter is obtained in a composite material in an in-situ manner, and survives with the matrix material, which can significantly improve the properties of the material.
  • there is no reliable method for preparing orthogonal structure TiB and there is no report about the face-centered cubic structure Ti(B,N) powder material.
  • the object of the present invention is to provide a high-purity Ti(B,N) ceramic powder having a face-centered cubic structure different from the above and a preparation method thereof, to fill the gap of the Ti-B-N ceramic powder material, and to add a new variety to the functional ceramics market.
  • the high-purity Ti (B, N) ceramic powder having a NaCl-type face-centered cubic structure is a compound composed of Ti element and B and N elements, and B, N and C elements can be solid solution in TiB. Forms a Ti(B,N,C) compound, but still maintains a NaCl-type face-centered cubic structure.
  • the chemical formula is Ti (B, N) or Ti (B, N, C), the chemical composition is 20at% ⁇ 86at% Ti, 8at% ⁇ 98at% B element and 0at% ⁇ 60at% N, atomic ratio and chemical composition Same; below
  • Pressing the compact with a press First, the Ti powder is put into the mold, and then the powder is pressed to form a compact, and the density is 50% to 90% of the theoretical density;
  • Step two preparing a solid infiltrant
  • composition of the solid penetrant is 5 ⁇ 10% B4C, 20-80% SiC%, 5 ⁇ 8% KBF4, 8 ⁇ 12% Mn-iron-grass 0 ⁇ 30% charcoal; or Mn-iron replaced by boron iron.
  • borax for boron carbide B4C, a solid infiltrant prepared by the same distribution; Step 3, compacting the box
  • the material box Firstly use the solid infiltration agent prepared in step 2 to lay the bottom, place the green compact in the middle, fill the surrounding and above with a solid infiltrant, and place another quick compact on it. If multiple compacts are sintered at the same time, In the same way, the second compact is surrounded by a solid infiltrant, and the cover is covered with yellow mud to seal the gap for sintering, and the seal is not protected by the ammonia decomposition gas protection.
  • the ratio of the total weight of the solid penetrant to the compact used is about 7 ⁇ 10 : 1; the solid infiltrant is granular; or the Ti compact is replaced by the unpressed Ti powder as the raw material directly in the above manner;
  • the assembled material box is sintered in a resistance furnace, the sintering temperature is 700 ⁇ 1200C, the time is 2 ⁇ 6 hours, no protection atmosphere or ammonia decomposition gas protection;
  • the cover plate is opened, the sintered compact is taken out, and after being slightly compacted, a high-purity TiB ceramic powder having a face-centered cubic structure is obtained, and the particle size is substantially the same as that of the original Ti powder.
  • the purity can reach more than 95%.
  • TiB is usually formed in situ in a composite material or a relatively high purity bulk material produced by hot press sintering.
  • the preparation method of the orthogonal TiB material is as follows: 1.
  • the solid phase reaction synthesis method is that the Ti and TiB2 powders are used as raw materials, and after being mixed, they are pressed into a compact, and the compact is sintered.
  • the product usually contains residual Ti or ⁇ 2.
  • gas-solid reaction method which is reacted by hydrocarbon gas and Ti powder.
  • SHS self-propagating high-temperature burning combined into
  • SPS spark plasma sintering
  • its principle is the same as SHS, but the beginning of the reaction is ignited by the plasma.
  • Product ingredients are difficult to control.
  • the composite material produced by the above method usually contains residual titanium or lanthanum diboride, which reduces the material properties.
  • the currently synthesized composite material containing more TiB is a composite material containing 80% TiB and 20% titanium metal.
  • the invention prepares Ti(B,N) by using a solid infiltrant and Ti powder, and surrounds the Ti powder with a solid infiltrant in the material mixture. When heated at a high temperature, the solid infiltrant can generate active boron atoms, which are generated by the active boron atom and the Ti atom.
  • Chemical reaction to produce Ti(B,N) powder Its chemical reactions are:
  • B 4 C + 2KF + SiC + 40 2 [B] + BF 2 ⁇ + B 2 0 3 + K 2 Si0 3 + 2CO
  • the active boron atom can be obtained as follows:
  • the mechanism for producing a pure Ti(B,N) powder is that the active [B] atoms diffuse into the compact or Ti powder and combine with the Ti atoms to produce a compound. Since the Ti compact contains a large amount of pores, the [B] atom easily diffuses from the surface to the core. At the same time, N in the air or ammonia decomposition atmosphere is also involved in the reaction to produce Ti(B,N), which ensures that the entire compact is completely Ti(B,N) when the temperature is high enough and the holding time is long enough.
  • the basic principle of the method is that the active B and N atoms gradually diffuse into the Ti compact to form a Ti(B,N) powder block, which is an innovation different from other methods.
  • the final size of the ⁇ ( ⁇ , ⁇ ) powder particles depends on the original Ti powder size.
  • the B source is derived from solid permeation lj; the N source is an air or ammonia decomposition atmosphere, the C source is a solid infiltrant, and the O and F may exist as an impurity element in the compound.
  • Powder preparation was accomplished by the process route as shown in Figure 6.
  • the Ti(B,N) powder preparation process comprises five steps.
  • the first step is to prepare the powder material.
  • the tantalum powder used to prepare the TiB powder is a commercially available Ti powder having a particle size of -200 mesh or other specifications; a purity of more than 95% or more.
  • the second step is to press the Ti powder into a compact, and the compact density is 50% to 90% of the theoretical density.
  • the compact is prepared by conventional powder metallurgy methods.
  • the third step is to load the Ti powder compact into the magazine, and surround the compact material with a solid infiltrant in the cartridge (as shown in Figure 7).
  • the composition of the solid and osmotic agent is 5 ⁇ 10% B 4 C, 20-80% SiC%, 5 ⁇ 8% KBF 4 , 8 ⁇ 12% Mn-iron and 0 ⁇ 30% charcoal; or Mn substituted by borax - Iron, replacing boron carbide (B 4 C) with borax, a solid infiltrant prepared in the same manner.
  • the specific process is to first place the solid permeate (1) on the bottom of the cartridge (2), then place the compact (3) on the solid infiltrant, and then surround the compact material. They are separated by a solid infiltrant, a solid infiltrant is also added around the green compact, and an infiltrant is added to the upper portion of the compact to surround the compact in the solid infiltrant. Finally, the lid or cover (4) is placed on the magazine and sealed with yellow mud or graphite paper to prevent the reaction atmosphere inside the box from overflowing and the outside air from entering the box.
  • the fourth step is to place the assembled box in an unheated resistance furnace for heating.
  • the heating temperature is 700-1200C, holding time is 2-6 hours. .
  • the Ti green compact is in the form of a fluffy agglomerate after sintering, and is slightly pulverized to become a Ti(B,N) powder having the morphology shown in Fig. 3.
  • the fifth step is to pulverize the fluffy mass into a powder.
  • the Ti(B,N) powder prepared by the present invention is different from the existing orthogonal tantalum powder, but a novel Ti(B,N) ceramic powder having a face-centered cubic structure (f.c.c.). No reports were found in the search literature, and no similar products were seen in the market. The method used is simple, reliable, low cost and easy to implement, and the material performance is good. DRAWINGS
  • Fig. 2 X-ray diagram of Ti(B,N) powder, conforming to face-centered cubic structure (X-ray diffraction card No. 06-0641)
  • Fig. 3 Face-centered cubic Ti(B,N) SEM photo
  • Figure 4 TEM micrograph showing Ti(B,N) particle morphology with dimensions less than 100 nm.
  • Figure 7 shows the packing of the material.
  • the high-purity Ti (B, N) ceramic powder having a face-centered cubic structure of the present invention is a compound composed of Ti element and B, N element, and has a chemical formula of Ti (B, N).
  • the chemical composition is 20at% ⁇ 86at% Ti, 8at°/T98at% B element and 0at°/T60at%N, the atomic ratio and the chemical composition are the same; at the temperature below the melting point, it is in the state of solid powder, with NaCl type Face-centered cubic crystal structure, the atoms are arranged in a face-centered cubic lattice pattern, that is, the Ti (B, N) crystal is composed of a face-centered cubic unit cell, and the face-centered cubic unit cell is characterized in that when the atom is translated by the face center, The atoms in the same environment.
  • the Ti powder is press-formed in a mold by a conventional powder metallurgy method to obtain a compact, and the pressing force is about 100 MPa.
  • the weight of the compact is determined by the volume of the membrane cavity and its density is 50% to 90% of the theoretical density.
  • Preparation of solid infiltration agent its composition is 5 ⁇ 10% B 4 C, 20-80 % SiC%, 5 ⁇ 8% KBF 4 , 8 ⁇ 12% Mn-iron and mouth 0 ⁇ 30% charcoal; or replace Mn-iron with boron iron and boron carbide (B 4 C) with borax.
  • the compact is surrounded by a solid penetrant in the cartridge, and the weight ratio of the solid infiltrant to the compact is about 7 to 10:1.
  • the arrangement of the final Ti compact and solid infiltrant in the box is shown in Fig. 7. It should be noted that each compact must be separated by a solid infiltrant. Finally, seal the gap of the cover with yellow mud or graphite paper. The same effect can be obtained by substituting Ti powder for Ti powder compact.
  • the assembled cartridge was placed in an unheated resistance furnace for heating and sintering to obtain a Ti(B,N) sintered body.
  • the heating temperature is about 700-1200C and the time is 2 ⁇ 6 hours.
  • the compact is pressed by a press by first loading the Ti powder into a mold, and then pressing the powder to make a press.
  • our compact has a diameter of 6 cm, a height of 4 cm, a porosity of 50%, and a compact weight of 80 grams.
  • the second step is to prepare a solid infiltration agent.
  • the third step is to box
  • the box is 16. cm in diameter and 14 cm high and is welded from mild steel.
  • the solid infiltrant is used to lay the bottom, and the green compact is placed in the middle, and the solid infiltration agent is filled around and above.
  • An additional green compact is placed on top of it, and the second compact is surrounded by a solid infiltrant in the same manner. Cover the cover and seal the gap with yellow mud for sintering.
  • the ratio of the solid infiltrant used to the total weight of the compact is approximately 5:1.
  • the assembled material box is sintered in an electric resistance furnace, and the heating temperature is 850 C, and the temperature is kept for 2 hours without using a protective atmosphere.
  • the cover plate is opened, the sintered compact is taken out, and the Ti(B,N) powder material is obtained after slight rolling, and the particle size is substantially the same as that of the original Ti powder, and the purity can be achieved. above 95.
  • Figure 1 shows a synthetic faceted cubic Ti(B,N) powder. It can be seen from Fig. 1 that the face-centered cubic Ti(B,N) powder is a fine-grained powder material with a brown or brown color. 2, face centered cubic Ti (B, N) resistivity
  • the face-centered cubic TiB powder has a resistivity of 15 ⁇ 10-7 ⁇ ⁇ measured by the 4-terminal method, indicating that the face-centered cubic Ti(B,N) powder has good electrical conductivity and is a conductive ceramic material.
  • the TiB powder was pressed into a compact, sintered at 1200 C for 4 hours, and vacuum-protected to prepare a sheet sample having a diameter of 10 mm and a thickness of 1.3 mm.
  • Mg as the cathode
  • the cotton cloth immersed in the aqueous solution of NaCl as the electrolyte, and the Ti(B,N) sheet or other metal as the anode were tested.
  • the battery structure is:
  • Table 1 shows the experimental results. As can be seen from the data in the table, Ti(B,N) has the best conductivity. The effect on fuel cells needs to be further confirmed.
  • the test specimen has a diameter of 10 mm and a thickness of 1.3 mm. It is made by vacuum sintering at 1200C for 4 hours. The resistance characteristics were tested using a US-made kdthley, Model 2000 multimeter (precision 6 and a half). The resistance value of the sample at room temperature is 70 to 75 ohms, and the resistance value in liquid nitrogen is zero. This phenomenon indicates that Ti(B,N) may have low temperature superconducting properties. Its specific performance indicators are subject to further confirmation.
  • Figure 2 shows the X-ray diffraction pattern of the Ti(B,N) powder.
  • the calibration results of the diffraction pattern of Fig. 2 are shown in Table 2.
  • Table 2 Calibration results of X-ray diffraction peaks of face-centered cubic Ti(B,N) powder
  • Figure 3 is a scanning electron micrograph of a face-centered cubic Ti(B,N) material. It can be seen from the photo that the Ti(B,N) particles are bonded together to form a group, each group being loosely connected or isolated by pores.
  • the Ti(B,N) particles are in the form of flakes, and the edges of the flakes are irregular and preferentially protrude in a certain direction.
  • the Ti(B,N) particles preferentially grow in a crystallographic direction during nucleation and growth.
  • R represents the radius of the diffraction ring
  • d represents the lattice constant
  • Table 4 lists some of the physical and mechanical properties of face-centered cubic Ti(B,N) powders. Table 4 Physical and mechanical properties of face-centered cubic Ti(B,N) powders Melting point>2200°C
  • the Ti(B,N) powder has a face-centered cubic crystal structure.
  • the Ti(B,N) powder has a melting point of 2200 C, a hardness of Hv 1000, and a brown color. The purity is above 95%. It is dissolved in hydrofluoric acid and does not react substantially in sulfuric acid, hydrochloric acid and nitric acid.
  • Vacuum-coated conductive evaporation boats and high-temperature electric heating elements can be fabricated.
  • metal matrix composites in various metal substrates can be used as an important component of multi-component composite materials, and is made of ceramic composite materials such as TiC, tantalum, and SiC, and is used for various high-temperature parts and functional parts, such as high temperature concrete and engine parts. It can also be used to make armor protection materials.
  • It can be used as a metal surface cladding material to form a high temperature resistant and corrosion resistant coating on the metal surface.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Ceramic Products (AREA)
  • Powder Metallurgy (AREA)

Description

具有面心立方结构的高纯度 Ti(B,N)陶瓷粉末及其制备方法
技术领域 本发明涉及一种陶瓷粉末材料及其制备方法, 属于工程材料领域。 背景技术 陶瓷是一种重要而特殊的工程材料说, 具有耐高温、 耐腐蚀、 耐磨损和特殊功能等特点, 是特殊场合必须使用的材料。 陶瓷是由金属元素和非金属元素形成的化合物。 通常称氧和 金属形成的化合物为氧化物陶瓷, 其中常见的有 A1203和 Ce02等。 还有一类陶瓷是由金属 和非氧元素形成的陶瓷, 常见的有 SiC、 SiN, MoSi2、 TiN和 TiC等, 它们被归结为非氧化 物陶瓷。这类陶瓷在耐高温、 耐腐蚀和耐磨损方面表现出书非常优良的性能。其中氮化硅 SiN 的强度可达 700MP; 硬度 1800Kg/mm2
金属和硼元素形成的化合物属于非氧化物陶瓷。 它们包括二硼化钛 (ΉΒ 2 )、 一硼化铁 (FeB)、一硼化铬 (CrB)、一硼化钼 (MoB)、一硼化钽 (TaB)、 二硼化鏺 zirconium boride (ZrB 2 ) 和 二硼化铪 hafnium boride (Hffi 2 ) 等 . 这些陶瓷熔点和硬度高, 耐磨性好, 但是很难 制成纯粉末材料。 零件的成形成本高。 钛-硼体系化合物理论上有 Ti2B, TiB, Ti3B4 和 TiB2 等 。 但 在 Ti-B相图上给出的只有 TiB2 和 TiB , 对它们的研究较多。 TiB2 具有六方晶 体结构 ; TiB具有正交晶体结构。 TiB2 有粉末材料存在, 但 TiB尚无粉末状态材料。 发明内容
TiB2 和 TiB 是 Ti-B体系中二种重要化合物。 TiB2 具有六方晶体结构, TiB具有正交 晶体结构 。 TiB2 有粉末产品, 而 TiB还没用粉末产品。后者是以原位生成的方式在复合材 料中获得的, 与基体材料伴生存在, '可明显改善材料的性能。 目前尚无可靠方法制备正交结 构 TiB, 更没有关于面心立方结构 Ti(B,N)粉末材料的报道。 本发明的目的是提出与以上不 同的具有面心立方结构的高纯度 Ti(B,N) 陶瓷粉末及其制备方法, 填补 Ti-B-N 系陶瓷粉末 材料空白, 为功能陶瓷市场添加新品种。
本发明的上述目的通过以下技术方案实现, 结合附图说明如下:
本发明的一种具有 NaCl型面心立方结构的高纯度 Ti (B, N) 陶瓷粉末, 是由 Ti元素和 B、 N 元素组成的化合物,在 TiB中 B、 N和 C元素可以共同固溶, 形成 Ti(B,N,C)化合物, 但是仍然保持 NaCl 型面心立方结构。 化学式为 Ti (B, N)或 Ti(B,N,C), 化学组分为 20at%~86at% Ti , 8at%~98at% B元素和 0at%~60at%N, 原子比例和化学组分相同; 在低于
确 熔点温度时,它为固体粉末状态,具有晶体结构,原子按面心立方点阵方式排列,即 Ti (B, N) 晶体由面心立方晶胞组成, 面心立方晶胞的特征是当原子以面心平移时, 可以得到周围 环境完全相同的原子。
所述的一种具有面心立方结构的高纯度 Ti(B,N) 陶瓷粉末的制备方法, 具体步骤如下: 步骤一, 压制压坯
用压力机压制压坯: 先把 Ti粉装入模具里, 然后对粉末施压制成压坯, 密度为理论密 度的 50%~90%;
步骤二, 配制固体渗剂
固体渗剂的成分是 5~10%B4C, 20-80 % SiC%, 5〜8% KBF4, 8〜12% Mn-铁 禾卩 0~30% 木炭; 或者是以硼铁取代 Mn-铁, 以硼砂取代碳化硼 B4C, 按同样成分配制成的固体渗剂; 步骤三, 压坯装盒
准备好料盒, 先用按步骤二配制的固体渗剂铺底, 把压坯放在中间, 四周及上面充填 固体渗剂, 其上面放置另外一快压坯, 如果多个压坯同时烧结, 以同样方式用固体渗剂将 第二块压坯包围, 盖上盖板用黄泥封好缝隙等待烧结, 用氨分解气体保护保护时不用封盖。 使用的固体渗剂和压坯总重量的比例大约为 7〜10: 1; 固体渗剂为颗粒状; 或者是以未经压 制的 Ti粉取代 Ti 压坯作为原料直接按以上方式装盒";
步骤四, 烧结
把装好的料盒放在电阻炉内烧结, 烧结温度为 700〜1200C, 时间为 2~6小时, 不用保 护气氛或采用氨分解气体保护; .
步骤五, 制粉
待料盒充分冷却后, 打开盖板, 把烧结的压坯取出, 经轻微碾压后便获得了具有面心 立方结构的高纯度 TiB 陶瓷粉末, 其颗粒度和原始 Ti粉颗粒度基本相同, 纯度可以达到 95% 以上。
现有正交晶体结构 TiB通常在复合材料中原位生成, 或是通过热压烧结制成的纯度较 高的块体材料。 正交 TiB材料的制备方法有: 1, 固相反应合成法, 它是以 Ti 和 TiB2粉 末为原材料,经混合后压制成压坯,对压坯进行烧结获。产物通常含剩余 Ti 或 ΉΒ2 。 2, 气 -固反应法, 它是通过碳氢气体 ( hydrocarbon) 和 Ti 粉末反应 。 3, 自蔓延高温烧结合 成 (SHS ) , 它是一种典型通过自身放热达到高温实现固相合成工艺。 4, 火花等离子体烧 结 (SPS), 它的原理和 SHS相同只是反应的开始是通过等离子体来点燃的。 产物成分难控 制。
用以上方法制的复合材料通常含剩余钛或二硼化钕, 降低了材料性能。 目前合成的含 TiB 较多的复合材料是含有 80%TiB和 20%钛金属的复合材料。
本发明使用固体渗剂和 Ti 粉制备 Ti(B,N), 在料合内用固体渗剂包围 Ti 粉, 在高温加 热时固体渗剂可以产生活性硼原子,由活性硼原子和 Ti原子发生化学反应生产 Ti(B,N)粉末, 其化学反应有:
4BF3 + 3SiC + 402 = 2BF2 + B203 + 2SiF4 t +Si02 + 2CO t
B4C + 2KF + SiC + 402 = [B] + BF2† +B203 + K2Si03 + 2CO个
2B4C + 2BF3 + 502 = [B] + BF2† +B203 + 2C02
活性硼原子可以按下式获得:
3BF2 = [B] + 2BF3
B203 和 BF3 或 SiC 按下式反应生成活性 [B] 原子和 BF2 :
2B203 + 2BF3 = 3B202 + 2F2
3B202 = 2B203 + 2[B]
4B203 + 6SiC + 6BF3 = 11[B] + 3BF2 + 3Si02 + 3SiF4 + 6CO t
制成纯 Ti(B,N)粉末的机理是活性 [B] 原子向 Ή压坯或 Ti粉扩散, 与 Ti原子结合生产 化合物。 由于 Ti压坯含有大量孔隙, [B] 原子很容易从表面向心部扩散。于此同时空气或氨 分解气氛中的 N也参与反应生产 Ti(B,N), 在温度足够高和保温时间足够长时可以保证整个 Ή压坯完全变成 Ti(B,N)。 方法的基本原理是通过活性 B、 N原子逐渐向 Ti压坯扩散, 形成 Ti(B,N)粉末块体, 这是有别于其他方法的创新之处。
Ή(Β,Ν)粉末颗粒的最终尺寸取决于原始 Ti粉尺寸。
B源来自固体渗齐 lj; N源为空气或氨分解气氛, C源为固体渗剂, 而 O合 F可能作为杂质元素在 化合物中存在。
面心立方 Ή Β,Ν)粉末的制备方法
粉末制备是通过如图 6所示的工艺路线来完成的。
图 6 Ti(B,N) 粉末制备工艺路线
由图 6可见, Ti(B,N) 粉末制备工艺方法包括 5个步骤。
第一步是准备 粉末材料。用于制备 TiB 粉末的 Ή 粉为市场销售的 Ti 粉,粒度为 -200 目或其它规格; 纯度为大于 95% 或更纯。
第二步是把 Ti粉压制成压坯, 压坯密度为理论密度的 50%~90%。 压坯用常规粉末冶金 方法制备。
第三步是把 Ti粉末压坯装入料盒,在料盒内用固体渗剂把压坯材料包围起来 (如图 7所示)。固体、渗 剂的成分是 5〜10%B4C, 20-80 % SiC%, 5~8% KBF4, 8~12% Mn-铁 和 0〜30%木炭; 或者 是以硼铁取代 Mn-铁, 以硼砂取代碳化硼 (B4C), 按同样成分配制成的固体渗剂。
具体工艺方法(见图 7)是先把固体渗剂铺(1 )放在料盒(2 ) 的底部, 然后把压坯(3 ) 放在固体渗剂上, 随后把压坯材料包围起来, 它们之间用固体渗剂隔离, 在压坯材料周围也 添加固体渗剂, 在压坯上部也添加渗剂, 把压坯包围在固体渗剂之中。 最后把盒盖或称盖板 (4) 盖在料盒上, 用黄泥或石墨纸封严以避免盒内反应气氛外溢和外部空气进入盒内。
第四步是把装好的料盒放置在无保护气氛的电阻炉中进行加热, 加热温度是 700-1200C, 保温时间是 2-6小时。。
Ti压坯烧结后呈蓬松团块状, 轻微粉碎后成为 Ti(B,N) 粉末, 具有图 3所示的形貌。 第五步是把蓬松团块粉碎成粉末。
本发明的技术效果:
本发明制备的 Ti(B,N)粉末不同于现有正交 ΉΒ 粉末 , 而是一种具有面心立方结构 ( f.c.c. ) 的新型 Ti(B,N) 陶瓷粉末。 在检索文献中未见报道, 在市场也没有见到类似产品。 采用的方法简单、 可靠、 成本低和容易实现, 材料性能好。 附图说明
图 Ι Ή(Β,Ν)粉末照片。
图 2 Ti(B,N) 粉末的 X-射线图, 符合面心立方结构 (X-射线衍射卡 No. 06-0641 ) 图 3 面心立方 Ti(B,N) 扫描电镜照片
图 4 TEM 显微像, 显示 Ti(B,N) 颗粒形貌, 尺寸小于 100nm。
图 5 Ti(B,N) 颗粒的电子衍射图。
图 6 Ti(B,N) 粉末制备工艺路线。
图 7 材料装箱示意。
图中: 1.固体出渗剂 2.盒盖 3.料盒 4.压坯 具体实施方式 下面结合实例具体说明本发明的具有面心立方结构的高纯度 Ti(B,N) 陶瓷粉末及其制 备方法。
本发明说书的一种具有面心立方结构的高纯度 Ti (B, N)陶瓷粉末, 是由 Ti元素和 B、 N 元素组成的化合物, 化学式为 Ti (B,N)。 化学组分为 20at%〜86at% Ti , 8at°/T98at% B元素 和 0at°/T60at%N, 原子比例和化学组分相同; 在低于熔点温度时, 它为固体粉末状态, 具有 NaCl型面心立方晶体结构, 原子按面心立方点阵方式排列, 即 Ti (B, N)晶体由面心立方晶 胞组成, 面心立方晶胞的特征是当原子以面心平移时, 可以得到周围环境完全相同的原 子。
一种用于上述的具有面心立方结构的高纯度 Ti(B,N) 陶瓷粉末的制备方法,
具体步骤如下:
1、 压制压坯
用常规粉末冶金方法在模具里把 Ti粉压制成形, 获得压坯, 压制力为 lOOMPa左右。 压坯重量由膜腔体积决定, 其密度为理论密度的 50%~90%。
2、 配制固体渗剂
配制固体渗剂, 其成分为 5~10%B4C, 20-80 % SiC%, 5~8% KBF4, 8〜12% Mn-铁 禾口 0~30%木炭; 或者是以硼铁取代 Mn-铁, 以硼砂取代碳化硼 (B4C)。
3、 把压坯装进料盒
在料盒里把压坯用固体渗剂包围起来, 固体渗剂和压坯的重量比约为 7~10: 1。 最终 Ti压坯和固体渗剂在盒内的布置情况见图 7。 需要注意的是每个压坯必须用固体渗剂隔开。 最后用黄泥或石墨纸封住盖板的缝隙。 用 Ti粉取代 Ti 粉压坯也能获得同样效果。
4、 烧结
把装好的料盒放置在无保护气氛的电阻炉中进行加热烧结, 获得 Ti(B,N)烧结体。 加热 温度是 700-1200C左右, 时间是 2~6小时。
5、 制粉
把烧结体从盒中取出, 将其粉碎便获得 Ti(B,N)粉末。
以下是该方法的具体实施例:
第一步压制压坯
用压力机压制压坯, 具体方法是先把 Ti粉装入模具里, 然后对粉末施压制成压制。 在 这个例子里, 我们压坯的直径为 6厘米, 高 4厘米, 孔隙度为 50%, 压坯重量为 80克。
第二步配制固体渗剂 .
成分 20%渗碳剂, 5% B4C, 60% SiC, 5% KBF4和 10% Mn /。配制 100公斤固体渗剂。 配置方法为称量 20公斤渗碳剂; 5公斤 B4C: 60公斤 SiC: 5 公 KBF4和 10 公斤 Mn-铁。 以上原材料均为粉末状态, 颗粒度为 80〜200目。 把这些称量好的粉末装入混料机, 经 4~8 小时混合后取出备用。 其中渗碳剂的制备方法同上。 混料方式为干混。
第三步装盒
按图 7示意的情况装盒。 料盒直径为 16.厘米, 高 14厘米, 由低碳钢焊接而成。 先用 固体渗剂铺底, 把压坯放在中间, 四周及上面充填固体渗剂。 其上面放置另外一快压坯, 以同样方式用固体渗剂将第二块压坯包围。 盖上盖板用黄泥封好缝隙等待烧结。 使用的固 体渗剂和压坯总重量的比例大约是 5 : 1。
第四步烧结
把装好的料盒放在电阻炉内烧结, 加热温度为 850C, 保温 2小时, 不用保护气氛。 第五步制粉
待料盒充分冷却后, 打开盖板, 把烧结的压坯取出, 经轻微碾压后便获得了 Ti(B,N)粉 末材料, 其颗粒度和原始 Ti粉颗粒度基本相同, 纯度可以达到 95% 以上。
采用以上配方时, 以硼砂取代 B4C, 以硼铁取代 Mn铁, 即按 20%渗碳剂, 5% 硼砂, 60% SiC, 5% KBF4和 10%硼铁配制固体渗剂时也能获得同样的效果。
用以上方法制备的材料的性能如下-
1、 面心立方 Ti(B,N)粉末形貌
图 1显示合成的面立方 Ti(B,N)粉末。 由图 1 可见面心立方 Ti(B,N)粉末是颗粒度细小的粉末材料, 颜色为褐色或咖啡色。 2, 面心立方 Ti(B,N)电阻率
利用 4端子法测定的面心立方 TiB 粉末电阻率为 15χ 10-7Ωηι , 表明面心立方 Ti(B,N) 粉末具有良好的导电性, 是导电陶瓷材料。
3, 面心立方 Ti(B,N)的电极性能
把 TiB粉末压制成压坯, 在 1200C烧结 4 小时, 真空保护, 制成片状样品, 其尺寸是 直径 10 mm, 厚度 1.3 mm。 以 Mg为阴极, 以浸 NaCl 水溶液的棉布为电解质, 以 Ti(B,N) 片或其它金属作为阳极, 测试电池的输出电压和功率。 电池结构为:
Mg (阴极 )//浸 NaCl 水溶液的棉布 (电解质) // Ti(B,N) (阳极)
表 1显示实验结果。 由表中数据可见, Ti(B,N)具有最好的导电性。 在燃料电池方面的 效果有待进一步确认。
表 1 Ti(B,N)和其它阳极材料电性能测试数据
Figure imgf000008_0001
*以上数据的测试是在室温进行的。
4、 低温电阻
测试试样直径 10 毫米, 厚 1.3 毫米。 在 1200C 真空烧结 4 小时制成。 用 美国产 kdthley,2000型万用表 (精度 6位半) 测试电阻特性。 试样在室温的电阻值是 70〜75欧姆, 在液氮中的电阻值为零。 这一现象表明 Ti(B,N)可能存在低温超导特性。 其具体性能指标有 待进一步确认。
5、 X- 射线晶体结构测量
图 2 显示 Ti(B,N)粉末的 X-衍射图。 图 2衍射图的标定结果显示在表 2。 表 2 面心立方 Ti(B,N) 粉末 X-射线衍射峰的标定结果
Figure imgf000008_0002
由晶面指数可知, 合成 ΉΒ粉末材料的晶体结构为面心立方结构 (f.c.c. )。
6、 面心立方 Ti(B,N) 粉末形貌的扫描电子显微镜 (SEM) 观察
图 3 是面心立方 Ti(B,N)材料的扫描电子显微镜照片。由照片可见 Ti(B,N)颗粒粘结在一 起, 形成集团, 每个集团之间松散连接或者是被孔隙隔离。 Ti(B,N)颗粒呈片状, 片的边缘 不规则, 沿某个方向择优突出。 说明 Ti(B,N)颗粒在形核和长大时延某晶体学方向择优生长。
7、 透射电子显微镜 (TEM)晶体结构测量和 形貌观察
把 Ti(B,N)粉末放在酒精溶液中在超声波中震动 5分钟后, Ti(B,N)集团被粉碎成粉末, 由碳支持膜^ 1网把分散后的粉末捞起, 制成透射电子显微镜样品。 图 4 显示透射电镜观测 到的 Ti(B,N) 粉末形貌; 颗粒尺寸小于 100 nm, 形貌呈非等轴状。 图 5显示这些颗粒的电 子衍射图。 电子衍射图由一系列同心衍射成。
Fig.4 TEM 显微像, 显示 Ti(B,N) 颗粒形貌, 尺寸小于 lOOnm
Fig.5 Ti(B,N) 颗粒的电子衍射图
对这些衍射环进行了标定。 结果列于表 3。 电子衍射图的标定结果
Figure imgf000009_0002
表中 R 分别代表衍射环的半径; d 代表晶格常数; N# 为各晶面指数平方和, 即 N=h2+k2+12 。 由标定结果可见 Ti(B,N)粉末颗粒的晶体结构符合面心立方结构, 与 x-射 线 衍射测定的结果一致。
8、 其它性能
表 4列出了面心立方 Ti(B,N)粉末的一些物理和机械性能。 表 4 面心立方 Ti(B,N) 粉末的物理和机械性能
Figure imgf000009_0001
熔点 >2200°C
颜色 褐色
分子式 TiB或 Ti (Β,Ν) 或 Ti (Β,Ν,Ο
晶体结构 NaCl型面心立方 立方结构
活性 在氢氟酸溶解、 在硫酸、 盐酸和硝酸中不发
生反应
粉末颗粒尺寸 / nm 100-1500
硬度 /Hv >1000
电阻率 /Ωιη χΙΟ—7
X-射线衍射和电子衍射测定 Ti(B,N)粉末具有面心立方晶体结构。 Ti(B,N) 粉末的熔点 为 2200C, 硬度 Hv 1000, 颜色为褐色。 纯度在 95%以上。 在氢氟酸中溶解、 在硫酸、 盐酸 和硝酸基本不发生反应。
面心立方 Ti(B,N)粉末应用价值
主要应用有用:
1、 作为导电陶瓷材料。 可以制作真空镀膜导电蒸发舟和高温电热元件等。
2、 可用其制造陶瓷精加工刀具、 拉丝模、 挤压模、 喷砂嘴、 高温密封元件等。
3、 添加在各种金属基体中, 制备金属基复合材料。 可作为多元复合材料的重要组元, 与 TiC , ΤΪΝ , SiC 等材料制成陶瓷复合材料, 用于各种耐高温部件及功能部件, 如高 温坩埚、 引擎部件等。 也可用其制作装甲防护材料。
4、 可以作为铝电解槽阴极涂层材料。 使铝电解槽的耗电量降低, 电解槽寿命延长。
5、 可作为金属表面熔覆材料, 在金属表面制成耐高温、 抗腐蚀涂层。
6、 可以作为电池电极 (包括燃料电池) 和超导材料。

Claims

权 利 要 求 书
1、一种具有面心立方结构的高纯度 Ti (B, N)陶瓷粉末,其特征在于, 是由 Ti元素和 B、 N 元素组成的化合物, 化学式为 Ti (B, N), 化学组分为 20at%~86at% Ti, 8at°/T98at% B元 素和 0at%〜60at%N, 其中常含有 C、 0、 F和 Si等杂质元素, 杂质元素总含量为 2at%〜5at%, 当 C元素含量高吋 TiB可以表示为 Ti (Β, Ν, C) , 视其为合金元素, 原子比例和化学组分 相同; 在低于熔点温度时, 它为固体粉末状态, 具有晶体结构, 原子按氯化钠型面心立方 点阵方式排列, 空间群为 Fm3m, 晶格常数 a。= 0. 4200 〜 0. 4298 nm, 即 Ti (B, N)晶体由 氯化钠型面心立方晶胞组成, 此面心立方晶胞的特征是 Ti原子占据相当于晶格中 Na原 子的位置, B, N 占据相当于晶格中 C1原子位置, 当原子以面心平移时, 可以得到周 围环境完全相同的原子。
2、 用于权利要求 1所述的一种具有面心立方结构的高纯度 Ti(B,N) 陶瓷粉末, 其特征 在于,在 Ti(B,N)化合物中 B、N和 C元素可以同时存在,形成 B、 C和 N三元化合物 Ti(B.,N,C), 但是它们仍然具有氯化钠型面心立方晶体结构, 空间群为 Fm3m。
3、 用于权利要求 1所述的一种具有面心立方结构的高纯度 TiB 陶瓷粉末的制备方法, 其特征在于, 具体步骤如下:
步骤一, 压制压坯
用压力机压制压坯: 先把 Ti粉装入模具里, 然后对粉末施压制成压坯, 密度为理论密 度的 50%~90%;
步骤二, 配制固体渗剂
固体渗剂的成分是 5~10%B4C, 20-80 % SiC%, 5~8% KBF4, 8~12% Mn-铁 禾 Q 0-30% 木炭; 或者是以硼铁取代 Mn-铁, 以硼砂取代碳化硼 B4C, 按同样成分配制成的固体渗剂, 以上为重量百分数;
步骤三, 压坯装盒
准备好料盒, 先用按步骤二配制的固体渗剂铺底, 把压坯放在中间, 四周及上面充填 固体渗剂, 其上面放置另外一快压坯, 如果多个压坯同时烧结, 以同样方式用固体渗剂将 第二块压坯包围, 盖上盖板用黄泥封好缝隙等待烧结, 用氨分解气体保护保护时不用封盖, 使用的固体渗剂和压坯总重量的比例大约为 7〜10: 1; 固体渗剂为颗粒状; 或者是以未经压 制的 Ti粉取代 Ti 压坯作为原料直接按以上方式装盒";
步骤四, 烧结
把装好的料盒放在电阻炉内烧结, 烧结温度为 700〜1200C, 时间为 2~6小时, 不用保 护气氛或采用氨分解气体保护;
步骤五, 制粉
待料盒充分冷却后, 打开盖板, 把烧结的压坯取出, 经轻微碾压后便获得了具有面心 立方结构的高纯度 TiB 陶瓷粉末, 其颗粒度和原始 Ti粉颗粒度基本相同或大于原始颗粒, 纯度可以达到 95% 以上。
PCT/CN2011/001562 2010-09-15 2011-09-15 具有面心立方结构的高纯度Ti(B,N)陶瓷粉末及其制备方法 WO2012034362A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN 201010281267 CN101921114B (zh) 2010-09-15 2010-09-15 具有面心立方结构的高纯度TiB陶瓷粉末及其制备方法
CN201010281267.4 2010-09-15

Publications (1)

Publication Number Publication Date
WO2012034362A1 true WO2012034362A1 (zh) 2012-03-22

Family

ID=43336362

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2011/001562 WO2012034362A1 (zh) 2010-09-15 2011-09-15 具有面心立方结构的高纯度Ti(B,N)陶瓷粉末及其制备方法

Country Status (2)

Country Link
CN (1) CN101921114B (zh)
WO (1) WO2012034362A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101921114B (zh) * 2010-09-15 2013-04-10 胡建东 具有面心立方结构的高纯度TiB陶瓷粉末及其制备方法
CN102632261B (zh) * 2012-04-26 2013-10-23 株洲精工硬质合金有限公司 一种金属陶瓷刀具及其制备方法
CN103302266A (zh) * 2013-06-03 2013-09-18 江苏蓝日超硬钢材料有限公司 一种自蔓延合成TiB2颗粒增强铜基表面复合材料的制备方法及一种复合铜铸件
CN109704354B (zh) * 2019-03-07 2021-12-21 吉林大学 一种单一相纳米立方一硼化钛的高温高压制备方法
CN111377458B (zh) * 2020-04-18 2021-07-06 蒋央芳 一种超细硼化铁的制备方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1055533A (zh) * 1990-04-12 1991-10-23 北京有色金属研究总院 廉价硼化钛粉末的制备工艺方法
CN101921114A (zh) * 2010-09-15 2010-12-22 胡建东 具有面心立方结构的高纯度TiB陶瓷粉末及其制备方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4929328A (en) * 1989-03-07 1990-05-29 Martin Marietta Energy Systems, Inc. Titanium diboride ceramic fiber composites for Hall-Heroult cells
CN1176250C (zh) * 2002-10-15 2004-11-17 北京科技大学 硼化钛金属陶瓷复合材料涂层阴极碳块及其制备方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1055533A (zh) * 1990-04-12 1991-10-23 北京有色金属研究总院 廉价硼化钛粉末的制备工艺方法
CN101921114A (zh) * 2010-09-15 2010-12-22 胡建东 具有面心立方结构的高纯度TiB陶瓷粉末及其制备方法

Non-Patent Citations (8)

* Cited by examiner, † Cited by third party
Title
C. MITTERER ET AL.: "Sputter deposition of ultrahard coatings within the system Ti-B-C-N", SURFACE AND COATINGS TECHNOLOGY, vol. 41, 1990, pages 351 - 363 *
GUO, RUISONG: "Engineering Structural Ceramics", TIANJIN UNIVERSITY PRESS, 2ND EDITON, September 2002 (2002-09-01), pages 209 - 210 *
J.F. PIERSON ET AL.: "Reactively sputtered Ti-B-N nanocomposite films: correlation between structure and optical properties", THIN SOLID FILM, vol. 408, 2002, pages 26 - 32 *
J.F. PIERSON ET AL.: "Structural and electrical properties of sputtered titanium boronitride films", SURFACE AND COATINGS TECHNOLOGY, vol. 142-144, 2001, pages 906 - 910, XP002476495 *
M. TAMURA ET AL.: "Ti-B-N coatings deposited by magnetron arc evaporation", SURFACE AND COATINGS TECHNOLOGY, vol. 54/55, 1992, pages 255 - 260 *
NIU, JIANGANG ET AL.: "Calculations on optical properties of cubic TiBN", ACTA OPTICA SINIC, vol. 28, no. 2, February 2008 (2008-02-01), pages 398 - 402 *
P.H. MAYRHOFER ET AL.: "Age hardening of PACVD TiBN thin films", SCRIPTA MATERIALIA, vol. 53, 2005, pages 241 - 245 *
ZHANG, YUJUN ET AL.: "Structral Ceramics Materials and their applications", CHEMICAL INDUSTRY PRESS, 1ST EDITION, March 2005 (2005-03-01), pages 36 - 39 *

Also Published As

Publication number Publication date
CN101921114B (zh) 2013-04-10
CN101921114A (zh) 2010-12-22

Similar Documents

Publication Publication Date Title
Golla et al. Review on ultra-high temperature boride ceramics
Thimmappa et al. Phase stability, hardness and oxidation behaviour of spark plasma sintered ZrB2-SiC-Si3N4 composites
US4571331A (en) Ultrafine powder of silicon carbide, a method for the preparation thereof and a sintered body therefrom
Wang et al. Microstructure and mechanical behaviour of transient liquid phase spark plasma sintered B4C–SiC–TiB2 composites from a B4C–TiSi2 system
Qin et al. High-entropy silicide ceramics developed from (TiZrNbMoW) Si2 formulation doped with aluminum
US20090121197A1 (en) Sintered Material, Sinterable Powder Mixture, Method for Producing Said Material and Use Thereof
Mishra et al. Effect of Fe and Cr addition on the sintering behavior of ZrB2 produced by self‐propagating high‐temperature synthesis
WO2012034362A1 (zh) 具有面心立方结构的高纯度Ti(B,N)陶瓷粉末及其制备方法
Li et al. A dense and fine-grained SiC/Ti3Si (Al) C2 composite and its high-temperature oxidation behavior
Zhou et al. General fabrication of boride, carbide, and nitride nanocrystals via a metal-hydrolysis-assisted process
Chen et al. Synthesis and Characterization of Medium‐/High‐Entropy M2SnC (M= Ti/V/Nb/Zr/Hf) MAX Phases
Yu et al. Oxidation behaviors of compositionally complex MAX phases in air
Ma et al. Preparation and sintering of ultrafine TiB2 powders
Das et al. Synthesis and flash sintering of zirconium nitride powder
Wang et al. Ternary-layered Cr2AlB2 synthesized from Cr, Al, and B powders by a molten salt-assisted method
Liang et al. Catalytic Preparation of Si 3 N 4-Bonded SiC Refractories and Their High-Temperature Properties
Suri et al. Tailoring the relative Si3N4 and SiC contents in Si3N4/SiC nanopowders through carbothermic reduction and nitridation of silica fume
Dey et al. Synthesis of nanolayered ternary borides powders (MAB phases) by sustainable molten salt shielded synthesis/sintering (MS3) process
He et al. Interfacial reactions and mechanical properties of SiC fiber reinforced Ti3SiC2 and Ti3 (SiAl) C2 composites
Gao et al. Synthesis of Al8B4C7 ceramic powder from Al/B4C/C mixtures
Mohseni-Salehi et al. Effect of different precursors on the formation and physical properties of V2AlC MAX phase
CN101555136B (zh) 一种钛硅化碳/二硼化钛-碳化钛复合材料及其制备方法
JP5376273B2 (ja) ボロンドープダイヤモンド焼結体およびその製造方法
CN112142471A (zh) 一种碳化锆陶瓷前驱体及制备方法
Paksoy et al. Synthesis and capacitive performance of ZrB2 and its composites as supercapacitor electrodes

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11824433

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11824433

Country of ref document: EP

Kind code of ref document: A1