WO2012034311A1 - 卫星定位信号处理方法、装置和移动终端 - Google Patents
卫星定位信号处理方法、装置和移动终端 Download PDFInfo
- Publication number
- WO2012034311A1 WO2012034311A1 PCT/CN2010/078885 CN2010078885W WO2012034311A1 WO 2012034311 A1 WO2012034311 A1 WO 2012034311A1 CN 2010078885 W CN2010078885 W CN 2010078885W WO 2012034311 A1 WO2012034311 A1 WO 2012034311A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- satellite positioning
- positioning signal
- pass filter
- frequency
- signal
- Prior art date
Links
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S19/00—Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
- G01S19/01—Satellite radio beacon positioning systems transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
- G01S19/13—Receivers
Definitions
- Satellite positioning signal processing method device and mobile terminal
- the present invention relates to the field of communications, and in particular, to a satellite positioning signal processing method, apparatus, and mobile terminal. Background technique
- the mobile terminal also integrates applications such as wireless mobile networks, wireless broadband, Bluetooth and FM radio transponders. These applications cover tens of megabytes to several gigabytes of frequency space and are inevitably coupled to satellites through various paths. Positioning the signal in the path. Since the satellite positioning signal is mostly a weak signal below -130 dbm in most cases, if the positioning is performed while using the mobile terminal, it is highly susceptible to interference from the mobile terminal signal, making the satellite positioning signal difficult to demodulate.
- FIG. 1 is a schematic structural diagram of a conventional satellite positioning signal processing device.
- the satellite positioning signal received by the receiving circuit 10 is shown.
- the initial filtering is performed by the pre-stage surface acoustic filter 20, which mainly filters out the large out-of-band interference to prevent the low-level amplifier 30 of the next stage from being saturated, and then amplified by the low-noise amplifier 30 and then passed through a post-stage surface acoustic filter. 40 to obtain a better signal to noise ratio, and finally the demodulation circuit 50 demodulates the satellite positioning signal to obtain the current location information.
- the above solution has a defect: Since the front-end surface acoustic filter 20 has a large insertion loss, it is generally above 1.3 dB, and a large front-end insertion loss directly affects and reduces the receiving sensitivity of the satellite positioning signal. Summary of the invention
- the main object of the present invention is to provide a satellite positioning signal processing method, device and mobile terminal, which can solve the problem of large front end insertion loss during satellite positioning signal reception and improve the receiving sensitivity of the satellite positioning signal.
- the invention provides a satellite positioning signal processing method, which comprises:
- the satellite positioning signal After receiving the satellite positioning signal, comparing the frequency of the local transmitting signal and the satellite positioning signal; according to the comparison result, outputting the satellite positioning signal to a corresponding high-pass filter or low-pass filter; the high-pass filter or low-pass filter pair receiving The satellite positioning signal is filtered.
- the satellite positioning signal is outputted to a corresponding high-pass filter or a pass-through filter for filtering:
- the satellite positioning signal is output to the high-pass filter, and the cutoff frequency of the high-pass filter is lower than the frequency of the satellite positioning signal, and higher than the frequency of the local transmitting signal;
- the satellite positioning signal is output to the low-pass filter, and the cutoff frequency of the low-pass filter is higher than the frequency of the satellite positioning signal, and lower than the frequency of the local transmitting signal.
- the transmission signal comprises a wireless mobile network, a wireless broadband, a Bluetooth and/or a frequency modulated signal.
- the method further comprises: amplifying, filtering and demodulating the filtered satellite positioning signal.
- the present invention further provides a satellite positioning signal processing apparatus, comprising: a selection circuit, and a receiving circuit, a decider, at least one high pass filter, and at least one low pass filter respectively connected to the selection circuit; wherein
- the receiving circuit is configured to receive a satellite positioning signal
- the determiner is configured to compare frequencies of the local transmitting signal and the satellite positioning signal;
- the selection circuit is configured to output a satellite positioning signal to a corresponding high pass filter or a low pass filter according to the comparison result;
- the high pass filter or low pass filter is used to filter the received satellite positioning signal.
- the selection circuit outputs a satellite positioning signal to the corresponding high pass filter or low pass filter according to the comparison result:
- the satellite positioning signal is output to the high-pass filter, and the cutoff frequency of the high-pass filter is lower than the frequency of the satellite positioning signal, and higher than the frequency of the local transmitting signal;
- the satellite positioning signal is output to the low-pass filter, and the cutoff frequency of the low-pass filter is higher than the frequency of the satellite positioning signal, and lower than the frequency of the local transmitting signal.
- the transmission signal comprises a wireless mobile network, a wireless broadband, a Bluetooth and/or a frequency modulated signal.
- the satellite positioning signal processing device further comprises processing circuitry for amplifying, filtering and demodulating the satellite positioning signal filtered by the high pass filter or the low pass filter.
- the present invention also provides a mobile terminal, comprising: a signal transmitter, further comprising a satellite positioning signal processing device connected to the signal transmitter, the satellite positioning signal processing device comprising a selection circuit, and respectively connected to the selection circuit a receiving circuit, a decider, at least one high pass filter, and at least one low pass filter; wherein
- the receiving circuit is configured to receive a satellite positioning signal
- the determiner is configured to compare a frequency of the local transmitting signal and the satellite positioning signal; the selecting circuit is configured to output a satellite positioning signal to a corresponding high-pass filter or a low-pass filter according to the comparison result;
- the high pass filter or low pass filter is used to filter the received satellite positioning signal.
- the selection circuit outputs a satellite positioning signal to a corresponding height according to the comparison result.
- the pass filter or low pass filter is:
- the satellite positioning signal is output to the high-pass filter, and the cutoff frequency of the high-pass filter is lower than the frequency of the satellite positioning signal, and higher than the frequency of the local transmitting signal;
- the satellite positioning signal is output to the low pass filter, and the cutoff frequency of the low pass filter is higher than the frequency of the satellite positioning signal and lower than the frequency of the local transmitting signal.
- the satellite positioning signal processing method, device and mobile terminal provided by the invention use at least one high-pass filter or at least one low-pass filter instead of the acoustic surface filter for initial filtering, which solves the problem that the front end insertion loss is large during the satellite positioning signal receiving process.
- the problem is to improve the receiving sensitivity of the satellite positioning signal.
- FIG. 1 is a schematic structural view of a conventional satellite positioning signal processing device
- FIG. 2 is a schematic flow chart of a method for processing a satellite positioning signal according to an embodiment of the present invention
- FIG. 3 is a schematic flowchart of another embodiment of a method for processing a satellite positioning signal according to the present invention
- FIG. 5 is a schematic structural diagram of still another embodiment of a processing apparatus for satellite positioning signals according to the present invention
- FIG. 6 is a schematic structural diagram of an embodiment of a mobile terminal according to the present invention.
- the satellite positioning signal processing method, device and mobile terminal provided by the invention use at least one high-pass filter or at least one low-pass filter instead of the surface acoustic filter for initial filtering, when the local transmitting signal frequency is lower than the satellite positioning signal frequency , use the high-pass filter for the initial filtering, otherwise use the low-pass filter for the initial filtering.
- FIG. 2 is a schematic flow chart of an embodiment of a method for processing a satellite positioning signal according to the present invention, and a reference diagram thereof 2, the method includes:
- Step S101 Receive a satellite positioning signal.
- the mobile terminal receives the satellite positioning signal through the antenna.
- Step S102 Compare the frequencies of the local transmitting signal and the satellite positioning signal.
- the mobile terminal compares the frequency of the local transmitting signal and the satellite positioning signal, and the local transmitting signal includes but is not limited to Global System for Mobile Communications (GSM), Code Division Multiple Access (CDMA), and broadband. Wideband Code Division Multiple Access (WCDMA), Time Division-Synchronous Code Division Multiple Access (TD-SCDMA), Wireless Broadband (WiFi), FM Transponder, etc. Band signal.
- GSM Global System for Mobile Communications
- CDMA Code Division Multiple Access
- WCDMA Wideband Code Division Multiple Access
- TD-SCDMA Time Division-Synchronous Code Division Multiple Access
- WiFi Wireless Broadband
- FM Transponder etc. Band signal.
- Step S103 according to the comparison result, output a satellite positioning signal to a corresponding high pass filter or low pass filter.
- the low-pass filter When the operating frequency of the signal transmitter of the mobile terminal (the frequency of the local transmitting signal) is higher than the frequency of the satellite positioning signal, the low-pass filter is turned on, and the satellite positioning signal is output to the low-pass filter to filter out the coupling to the satellite positioning.
- High-frequency interference in the signal when the operating frequency of the signal transmitter of the mobile terminal is lower than the frequency of the satellite positioning signal, the high-pass filter is turned on, and the satellite positioning signal is output to the high-pass filter to filter out the coupling into the satellite positioning signal.
- Low frequency interference when the operating frequency of the signal transmitter of the mobile terminal is higher than the frequency of the satellite positioning signal.
- the above high-pass filter can be realized by discrete, dielectric filtering or IC integration.
- the cutoff frequency must be lower than the satellite positioning signal frequency and higher than the local transmitting signal frequency, and the insertion loss is expected to be as small as possible.
- the above low-pass filter can be implemented by discrete, dielectric filtering or IC integration.
- the cutoff frequency must be higher than the satellite positioning signal frequency and lower than the local transmitting signal frequency. It is expected that the insertion loss may be as small as possible.
- a 1.65 GHz discrete fifth-order elliptical low-pass filter can achieve more than 30 dB suppression for frequencies below 900 MHz and above 1.85 GHz, and the in-band insertion loss can easily be no higher than 0.4 dB.
- the insertion loss of the selection circuit of the front end of the unilateral filter is generally about 0.3 dB
- the total insertion loss of the front end of the method is less than 0.8 dB.
- the front end insertion loss of the single side filter is selected to be reduced by 0.5 dB or more.
- Step S104 the high-pass filter or the low-pass filter filters the satellite positioning signal.
- the turned-on high-pass filter filters the low-frequency interference or the low-pass filter filters the high-frequency interference.
- the satellite positioning signal processing method proposed by the invention uses at least one high-pass filter or at least one low-pass filter to replace the acoustic surface filter for initial filtering, thereby solving the problem that the front-end insertion loss is large during the satellite positioning signal receiving process, and avoiding The mobile terminal transmits signal interference while improving the receiving sensitivity of the satellite positioning signal.
- step S103 may include:
- the satellite positioning signal is output to the high-pass filter, and the cut-off frequency of the high-pass filter is lower than the frequency of the satellite positioning signal, and higher than the frequency of the local transmitting signal;
- the satellite positioning signal is output to the low pass filter, and the cutoff frequency of the low pass filter is higher than the frequency of the satellite positioning signal and lower than the frequency of the local transmitting signal.
- the low-pass filter When the signal frequency of the mobile terminal's signal transmitter is higher than the satellite positioning signal frequency, the low-pass filter is turned on, and the satellite positioning signal is output to the low-pass filter to filter out high-frequency interference coupled to the satellite positioning signal.
- the high-pass filter When the operating frequency of the signal transmitter of the mobile terminal is lower than the satellite positioning signal frequency, the high-pass filter is turned on, and the satellite positioning signal is output to the high-pass filter to filter out low-frequency interference coupled to the satellite positioning signal.
- the above high-pass filter can be realized by discrete, dielectric filtering or IC integration, cutoff frequency
- the rate must be lower than the satellite positioning signal frequency and higher than the local transmitting signal frequency, and the insertion loss is expected to be as small as possible.
- the above low-pass filter can be implemented by discrete, dielectric filtering or IC integration.
- the cutoff frequency must be higher than the satellite positioning signal frequency and lower than the local transmitting signal frequency. It is expected that the insertion loss may be as small as possible.
- the transmit signal comprises a wireless mobile network, a wireless broadband, a Bluetooth, and/or a frequency modulated signal. It includes frequency bands such as GSM, CDMA, WCDMA, TD-SCDMA, WiFi, and FM Transponder.
- Step S105 filtering the The satellite positioning signal is amplified, filtered and demodulated.
- the unilateral filter After filtering the satellite positioning signal of the coupled interference, the unilateral filter is amplified by the low noise amplifier and then filtered again by the acoustic surface filter of the next stage to remove other out-of-band clutter and some residual interference signals, and then to the satellite.
- the positioning signal is demodulated to obtain current position information.
- the satellite positioning signal processing method proposed by the invention uses at least one high-pass filter or at least one low-pass filter to replace the acoustic surface filter for initial filtering, thereby solving the problem that the front-end insertion loss is large during the satellite positioning signal receiving process, and avoiding The mobile terminal transmits signal interference while improving the receiving sensitivity of the satellite positioning signal. Further, the satellite positioning signal after the initial filtering of the high-pass filter or the low-pass filter is processed again to obtain current position information.
- the satellite positioning signal processing apparatus 100 of the present embodiment includes a selection circuit 70, and a receiving circuit 10 respectively connected to the selection circuit 70. a determiner 60, at least one high pass filter 80 and at least one low pass filter 90; wherein
- a receiving circuit 10 configured to receive a satellite positioning signal
- the selection circuit 70 is configured to output a satellite positioning signal to the corresponding high pass filter 80 or low pass filter 90 according to the comparison result;
- a high pass filter 80 or a low pass filter 90 is used to filter the satellite positioning signal.
- the process of processing the satellite positioning signal by the device is:
- Receiving circuit 10 receives a satellite positioning signal
- the determiner 60 compares the frequency of the local transmitting signal and the satellite positioning signal, and the local transmitting signal includes but is not limited to the Global System for Mobile Communications (GSM), Code Division Multiple Access (CDMA), Wideband Code Division Multiple Access (WCDMA), Time Division-Synchronous Code Division Multiple Access (TD-SCDMA), Wireless Local Area Network (WiFi), and FM Transponder Equal band signal;
- GSM Global System for Mobile Communications
- CDMA Code Division Multiple Access
- WCDMA Wideband Code Division Multiple Access
- TD-SCDMA Time Division-Synchronous Code Division Multiple Access
- WiFi Wireless Local Area Network
- FM Transponder Equal band signal FM Transponder Equal band signal
- the selection circuit 70 When the operating frequency of the signal transmitter of the mobile terminal is higher than the satellite positioning signal frequency, the selection circuit 70 turns on the low pass filter 90, and outputs the satellite positioning signal to the low pass filter 90 to filter out the coupling into the satellite positioning signal. High frequency interference; when the operating frequency of the signal transmitter of the mobile terminal is lower than the satellite positioning signal frequency, the selection circuit 70 turns on the high pass filter 80, and outputs the satellite positioning signal to the high pass filter 80 to filter out the coupling to the satellite positioning. Low frequency interference in the signal.
- the high-pass filter 80 described above can be implemented by discrete, dielectric filtering or IC integration.
- the cutoff frequency must be lower than the satellite positioning signal frequency and higher than the local transmitting signal frequency, and the insertion loss is expected to be as small as possible.
- the low-pass filter 90 described above can be implemented by discrete, dielectric filtering or IC integration, and the cutoff frequency must be higher than the satellite positioning signal frequency and lower than the local transmitting signal frequency. It is expected that the insertion loss may be as small as possible.
- a discrete third-order elliptical high-pass filter 80 with a cutoff frequency of 1.5 GHz and a discrete fifth-order elliptical low-pass filter 90 with a cutoff frequency of 1.65 GHz can be used for respectively below 900 MHz.
- the frequency band above 1.85 GHz achieves a suppression of more than 3 OdB, and the in-band insertion loss can easily be achieved not higher than 0.4 dB.
- the insertion loss of the selection circuit of the front end of the unilateral filter is generally about 0.3 dB, the total insertion loss of the front end of the method is less than 0.8 dB.
- the front end insertion loss of the single side filter is selected to be reduced by 0.5 dB or more.
- the turned-on high-pass filter 80 filters the low-frequency interference or the low-pass filter 90 filters the high-frequency interference.
- the satellite positioning signal processing device 100 of the present invention uses at least one high-pass filter 80 or at least one low-pass filter 90 instead of the surface acoustic filter for initial filtering, thereby solving the problem of large front-end insertion loss during satellite positioning signal reception. , improve the receiving sensitivity of the satellite positioning signal.
- the selecting circuit 70 may be specifically configured to: when the local transmitting signal frequency is lower than the satellite positioning signal frequency, output the satellite positioning signal to the high pass filter 80, the high pass filter 80 The cutoff frequency is lower than the frequency of the satellite positioning signal and higher than the frequency of the local transmitting signal;
- the satellite positioning signal is output to the low pass filter 90, and the cutoff frequency of the low pass filter 90 is higher than the frequency of the satellite positioning signal, and lower than the frequency of the local transmitting signal.
- the low pass filter 90 When the operating frequency of the signal transmitter of the mobile terminal is higher than the satellite positioning signal frequency, the low pass filter 90 is turned on, and the satellite positioning signal is output to the low pass filter 90 to filter out the high frequency coupled into the satellite positioning signal. Interference; when the operating frequency of the signal transmitter of the mobile terminal is lower than the satellite positioning signal frequency, the high-pass filter 80 is turned on, and the satellite positioning signal is output to the high-pass filter 80 to filter out the low-frequency interference coupled to the satellite positioning signal. .
- the high-pass filter 80 can be implemented by discrete, dielectric filtering or IC integration.
- the cutoff frequency must be lower than the satellite positioning signal frequency and higher than the local transmitting signal frequency, and the insertion loss is expected to be as small as possible.
- the low-pass filter 90 can be implemented by discrete, dielectric filtering or IC integration.
- the cutoff frequency must be higher than the satellite positioning signal frequency and lower than the local transmitting signal frequency. Expect the insertion loss to be as small as possible.
- the transmission signal includes a wireless mobile network, a wireless broadband, a Bluetooth, and/or a frequency modulated signal. Specifically, it includes band signals such as GSM, CDMA, WCDMA, TD-SCDMA, WiFi, and FM transponders.
- band signals such as GSM, CDMA, WCDMA, TD-SCDMA, WiFi, and FM transponders.
- the satellite positioning signal processing apparatus 100 of the present embodiment further includes a processing circuit 81.
- the filtered satellite positioning signal is amplified, filtered and demodulated.
- the processing circuit 81 After the high-pass filter 80 or the low-pass filter 90 filters out the satellite positioning signals coupled to the interference, the processing circuit 81 amplifies and filters again to remove other out-of-band clutter and some residual interfering signals. The satellite positioning signal is then demodulated to obtain the current position information.
- the satellite positioning signal processing device 100 of the present invention uses at least one high-pass filter 80 or at least one low-pass filter 90 instead of the surface acoustic filter for initial filtering, thereby solving the problem of large front-end insertion loss during satellite positioning signal reception.
- the receiving sensitivity of the satellite positioning signal is improved.
- the satellite positioning signal after the initial filtering of the high pass filter 80 or the low pass filter 90 is processed again to obtain the current position information.
- the mobile terminal includes a signal transmitter 11 in the embodiment, and further includes a satellite positioning signal processing device 100 connected to the signal transmitter, and the satellite positioning signal processing device 100 includes a selection circuit 70, and a receiving circuit 10 connected to the selection circuit 70, a determiner 60, at least one high-pass filter 80, and at least one low-pass filter 90;
- a receiving circuit 10 configured to receive a satellite positioning signal
- the selection circuit 70 is configured to output a satellite positioning signal to the corresponding high pass filter 80 or low pass filter 90 according to the comparison result;
- a high pass filter 80 or a low pass filter 90 is used to filter the satellite positioning signal.
- the structure and working principle of the satellite positioning signal processing apparatus 100 of the present embodiment are the same as those of the satellite positioning signal processing apparatus 100 shown in FIG. 4, and details are not described herein again.
- the mobile terminal provided by the present invention uses at least one high-pass filter 80 or at least one low-pass filter 90 instead of the acoustic surface filter for initial filtering, which solves the problem that the front end insertion loss is large during the satellite positioning signal receiving process, and avoids moving. While the terminal transmits signal interference, the receiving sensitivity of the satellite positioning signal is improved.
- the selection circuit 70 can be specifically configured to:
- the satellite positioning signal is output to the high-pass filter 80, and the cut-off frequency of the high-pass filter 80 is lower than the frequency of the satellite positioning signal, and higher than the frequency of the local transmitting signal;
- the satellite positioning signal is output to the low pass filter 90, and the cutoff frequency of the low pass filter 90 is higher than the frequency of the satellite positioning signal, and lower than the frequency of the local transmitting signal.
Landscapes
- Engineering & Computer Science (AREA)
- Radar, Positioning & Navigation (AREA)
- Remote Sensing (AREA)
- Computer Networks & Wireless Communication (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Position Fixing By Use Of Radio Waves (AREA)
- Transceivers (AREA)
Abstract
本发明公开了一种卫星定位信号处理方法,接收卫星定位信号后,比较本端发射信号与卫星定位信号的频率;根据比较结果,输出卫星定位信号到对应的高通滤波器或低通滤波器;所述高通滤波器或低通滤波器对接收的卫星定位信号进行滤波。本发明还相应地公开了一种卫星定位信号处理装置及移动终端。本发明利用至少一个高通滤波器或至少一个低通滤波器替代声表面滤波器进行初次滤波,解决了卫星定位信号接收过程中前端插损较大的问题,提高了卫星定位信号的接收灵敏度。
Description
卫星定位信号处理方法、 装置和移动终端 技术领域
本发明涉及到通信领域, 特别涉及到一种卫星定位信号处理方法、 装 置和移动终端。 背景技术
目前, 利用卫星信号进行定位已经成为手机等移动终端的重要功能。 而移动终端中同时还集成了无线移动网络、 无线宽带、 蓝牙和调频收音机 转发器等应用, 这些应用覆盖了数十兆到数 G的频率空间, 无可避免的会通 过各种路径耦合到卫星定位信号的通路中。 由于卫星定位信号在大多情况 下都是低于 -130dbm的极弱信号, 如果在使用移动终端的同时进行定位, 极 易受移动终端信号的干扰, 使卫星定位信号将很难解调出来。
目前解决上述问题的方法主要是对卫星定位信号滤波、 放大、 再滤波 的处理过程, 图 1为现有卫星定位信号处理装置的结构示意图, 参照图 1 , 将接收电路 10接收到的卫星定位信号用前级声表面滤波器 20进行初次滤 波, 主要滤除较大的带外干扰以防止下一级的低噪声放大器 30饱和, 然后 经过低噪声放大器 30放大后再通过一个后级声表面滤波器 40以获得更好的 信噪比, 最后由解调电路 50对卫星定位信号进行解调, 获得当前所在位置 信息。
但上述的解决方法存在一个缺陷: 由于前级声表面滤波器 20插损较大, 一般都在 1.3dB以上, 较大的前端插损直接影响并降低卫星定位信号的接收 灵敏度。
发明内容
本发明的主要目的为提供一种卫星定位信号处理方法、 装置和移动终 端, 能够解决卫星定位信号接收过程中前端插损较大的问题, 提高卫星定 位信号的接收灵敏度。
本发明提出一种卫星定位信号处理方法, 包括:
接收卫星定位信号后, 比较本端发射信号与卫星定位信号的频率; 根据比较结果, 输出卫星定位信号到对应的高通滤波器或低通滤波器; 所述高通滤波器或低通滤波器对接收的卫星定位信号进行滤波。
优选地, 所述根据比较结果, 输出卫星定位信号到对应的高通滤波器 或氐通滤波器进行滤波为:
当本端发射信号频率低于卫星定位信号频率时, 将卫星定位信号输出 到高通滤波器, 所述高通滤波器的截止频率低于卫星定位信号的频率, 且 高于本端发射信号频率;
当本端发射信号频率高于卫星定位信号频率时, 将卫星定位信号输出 到低通滤波器, 所述低通滤波器的截止频率高于卫星定位信号的频率, 且 低于本端发射信号频率。
优选地, 所述发射信号包括无线移动网络、 无线宽带、 蓝牙和 /或调频 信号。
优选地, 在执行所述高通滤波器或低通滤波器对卫星定位信号进行滤 波之后, 该方法还包括: 对滤波后的卫星定位信号进行放大、 滤波和解调。
本发明还提出一种卫星定位信号处理装置, 该装置包括选择电路, 以 及分别和选择电路连接的接收电路、 判决器、 至少一高通滤波器和至少一 低通滤波器; 其中,
所述接收电路, 用于接收卫星定位信号;
所述判决器, 用于比较本端发射信号与卫星定位信号的频率;
所述选择电路, 用于根据比较结果, 输出卫星定位信号到对应的高通 滤波器或低通滤波器;
所述高通滤波器或低通滤波器, 用于对接收的卫星定位信号进行滤波。 优选地, 所述选择电路根据比较结果, 输出卫星定位信号到对应的高 通滤波器或低通滤波器为:
当本端发射信号频率低于卫星定位信号频率时, 将卫星定位信号输出 到高通滤波器, 所述高通滤波器的截止频率低于卫星定位信号的频率, 且 高于本端发射信号频率;
当本端发射信号频率高于卫星定位信号频率时, 将卫星定位信号输出 到低通滤波器, 所述低通滤波器的截止频率高于卫星定位信号的频率, 且 低于本端发射信号频率。
优选地, 所述发射信号包括无线移动网络、 无线宽带、 蓝牙和 /或调频 信号。
优选地, 所述卫星定位信号处理装置还包括处理电路, 用于对高通滤 波器或低通滤波器滤波后的卫星定位信号进行放大、 滤波和解调。
本发明还提出一种移动终端, 该移动终端包括信号发射机, 还包括与 所述信号发射机连接的卫星定位信号处理装置, 所述卫星定位信号处理装 置包括选择电路, 以及分别和选择电路连接的接收电路、 判决器、 至少一 高通滤波器和至少一低通滤波器; 其中,
所述接收电路, 用于接收卫星定位信号;
所述判决器, 用于比较本端发射信号与卫星定位信号的频率; 所述选择电路, 用于根据比较结果, 输出卫星定位信号到对应的高通 滤波器或低通滤波器;
所述高通滤波器或低通滤波器, 用于对接收的卫星定位信号进行滤波。 优选地, 所述选择电路根据比较结果, 输出卫星定位信号到对应的高
通滤波器或低通滤波器为:
当本端发射信号频率低于卫星定位信号频率时, 将卫星定位信号输出 到高通滤波器, 所述高通滤波器的截止频率低于卫星定位信号的频率, 且 高于本端发射信号频率;
当本端发射信号频率大于卫星定位信号频率时, 将卫星定位信号输出 到低通滤波器, 所述低通滤波器的截止频率高于卫星定位信号的频率, 且 低于本端发射信号频率。
本发明提出的卫星定位信号处理方法、 装置和移动终端, 利用至少一 个高通滤波器或至少一个低通滤波器替代声表面滤波器进行初次滤波, 解 决了卫星定位信号接收过程中前端插损较大的问题, 提高了卫星定位信号 的接收灵敏度。 附图说明
图 1为现有卫星定位信号处理装置的结构示意图;
图 2为本发明卫星定位信号的处理方法一实施例的流程示意图; 图 3为本发明卫星定位信号的处理方法又一实施例的流程示意图; 图 4为本发明卫星定位信号的处理装置一实施例的结构示意图; 图 5为本发明卫星定位信号的处理装置又一实施例的结构示意图; 图 6为本发明移动终端一实施例的结构示意图。 具体实施方式
本发明提出的卫星定位信号处理方法、 装置和移动终端, 利用至少一 个高通滤波器或至少一个低通滤波器替代声表面滤波器进行初次滤波, 当 本端发射信号频率低于卫星定位信号频率时, 使用高通滤波器进行初次滤 波, 否则使用低通滤波器进行初次滤波。
图 2为本发明卫星定位信号的处理方法一实施例的流程示意图, 参照图
2, 该方法包括:
步骤 S101 , 接收卫星定位信号。
一般的, 移动终端通过天线接收到卫星定位信号。
步骤 S102, 比较本端发射信号与卫星定位信号的频率。
移动终端比较本端发射信号与卫星定位信号的频率, 本端发射信号包 括但不仅限于全球移动通讯系 统 ( Global System for Mobile Communications , GSM )、 码分多址 ( Code Division Multiple Access , CDMA )、 宽带码分多址 (Wideband Code Division Multiple Access , WCDMA )、 时分同步码分多址 ( Time Division-Synchronous Code Division Multiple Access, TD-SCDMA )、 无线宽带 ( Wireless Local Area Network, WiFi ) 以及 FM转发器等频段信号。
步骤 S103 , 根据比较结果, 输出卫星定位信号到对应的高通滤波器或 低通滤波器。
当移动终端的信号发射机的工作频率 (本端发射信号频率) 高于卫星 定位信号频率, 则导通低通滤波器, 将卫星定位信号输出到低通滤波器, 以滤除耦合到卫星定位信号中的高频干扰; 当移动终端的信号发射机的工 作频率低于卫星定位信号频率, 则导通高通滤波器, 将卫星定位信号输出 到高通滤波器, 以滤除耦合到卫星定位信号中的低频干扰。
上述高通滤波器可以通过离散、 介质滤波或 IC集成方式实现, 截止频 率必须低于卫星定位信号频率, 且高于本端发射信号频率, 期望插损尽可 能小。
上述低通滤波器可以通过离散、 介质滤波或 IC集成方式实现, 截止频 率必须高于卫星定位信号频率, 且低于本端发射信号频率。 期望插损尽可 能小。
以截止频率为 1.5GHz的离散三阶椭圓高通滤波器和截止频率为
1.65GHz的离散的五阶椭圓低通滤波器为例 , 可以分别对 900MHz以下和 1.85GHz以上的频率实现 30dB以上的抑制,而带内插损可以容易地做到不高 于 0.4dB。考虑到单边滤波器前端的选择电路的插损一般在 0.3dB左右,本方 法的前端插损总量低于 0.8dB。相对于现有技术的 1.3dB以上的普通声表面滤 波器, 选择单边滤波器的前端插损减少 0.5dB以上。
步骤 S104, 高通滤波器或低通滤波器对卫星定位信号进行滤波。
经导通后的高通滤波器对低频干扰进行滤波或低通滤波器对高频干扰 进行滤波。
本发明提出的卫星定位信号处理方法, 利用至少一个高通滤波器或至 少一个低通滤波器替代声表面滤波器进行初次滤波, 解决了卫星定位信号 接收过程中前端插损较大的问题, 在避免移动终端发射信号干扰的同时, 提高了卫星定位信号的接收灵敏度。
在一实施例中, 步骤 S103可包括:
当本端发射信号频率低于卫星定位信号频率时, 将卫星定位信号输出 到高通滤波器, 高通滤波器的截止频率低于卫星定位信号的频率, 且高于 本端发射信号频率;
当本端发射信号频率高于卫星定位信号频率时, 将卫星定位信号输出 到低通滤波器, 低通滤波器的截止频率高于卫星定位信号的频率, 且低于 本端发射信号频率。
当移动终端的信号发射机的工作频率高于卫星定位信号频率, 则导通 低通滤波器, 将卫星定位信号输出到低通滤波器, 以滤除耦合到卫星定位 信号中的高频干扰。 当移动终端的信号发射机的工作频率低于卫星定位信 号频率, 则导通高通滤波器, 将卫星定位信号输出到高通滤波器, 以滤除 耦合到卫星定位信号中的低频干扰。
上述高通滤波器可以通过离散、 介质滤波或 IC集成方式实现, 截止频
率必须低于卫星定位信号频率, 且高于本端发射信号频率, 期望插损尽可 能小。
上述低通滤波器可以通过离散、 介质滤波或 IC集成方式实现, 截止频 率必须高于卫星定位信号频率, 且低于本端发射信号频率。 期望插损尽可 能小。
在一实施例中, 发射信号包括无线移动网络、 无线宽带、 蓝牙和 /或调 频信号。 具体包括 GSM、 CDMA, WCDMA、 TD-SCDMA、 WiFi以及 FM转 发器等频段信号。
图 3为本发明卫星定位信号的处理方法又一实施例的流程示意图, 参照 图 3 , 在基于上一实施例中, 本实施例在执行步骤 S104之后, 还包括: 步骤 S105 , 对滤波后的卫星定位信号进行放大、 滤波和解调。
单边滤波器滤除了耦合干扰的卫星定位信号后, 由低噪声放大器放大 后在下一级的声表面滤波器进行再次滤波, 以除去其他带外杂波和一些残 留的干扰信号, 然后再对卫星定位信号进行解调, 获取当前位置信息。
本发明提出的卫星定位信号处理方法, 利用至少一个高通滤波器或至 少一个低通滤波器替代声表面滤波器进行初次滤波, 解决了卫星定位信号 接收过程中前端插损较大的问题, 在避免移动终端发射信号干扰的同时, 提高了卫星定位信号的接收灵敏度。 进一步地, 对高通滤波器或低通滤波 器初次滤波后的卫星定位信号作再次处理, 以获取当前位置信息。
图 4为本发明卫星定位信号的处理装置一实施例的结构示意图, 参照图 4, 本实施例中卫星定位信号处理装置 100, 包括选择电路 70, 以及分别和 选择电路 70连接的接收电路 10、 判决器 60、 至少一高通滤波器 80和至少一 低通滤波器 90; 其中,
接收电路 10, 用于接收卫星定位信号;
判决器 60, 用于比较本端发射信号与卫星定位信号的频率;
选择电路 70, 用于根据比较结果, 输出卫星定位信号到对应的高通滤 波器 80或低通滤波器 90;
高通滤波器 80或低通滤波器 90, 用于对卫星定位信号进行滤波。
该装置处理卫星定位信号的流程为:
接收电路 10接收到卫星定位信号;
判决器 60比较本端发射信号与卫星定位信号的频率, 本端发射信号包 括但不仅限于全球移动通讯系 统 ( Global System for Mobile Communications , GSM )、 码分多址 ( Code Division Multiple Access , CDMA )、 宽带码分多址 (Wideband Code Division Multiple Access , WCDMA )、 时分同步码分多址 ( Time Division-Synchronous Code Division Multiple Access, TD-SCDMA )、 无线宽带 ( Wireless Local Area Network, WiFi ) 以及 FM转发器等频段信号;
当移动终端的信号发射机的工作频率高于卫星定位信号频率, 选择电 路 70导通低通滤波器 90, 将卫星定位信号输出到低通滤波器 90, 以滤除耦 合到卫星定位信号中的高频干扰; 当移动终端的信号发射机的工作频率低 于卫星定位信号频率, 选择电路 70则导通高通滤波器 80, 将卫星定位信号 输出到高通滤波器 80, 以滤除耦合到卫星定位信号中的低频干扰。
上述高通滤波器 80可以通过离散、 介质滤波或 IC集成方式实现, 截止 频率必须低于卫星定位信号频率, 且高于本端发射信号频率, 期望插损尽 可能小。
上述低通滤波器 90可以通过离散、 介质滤波或 IC集成方式实现, 截止 频率必须高于卫星定位信号频率, 且低于本端发射信号频率。 期望插损尽 可能小。
以截止频率为 1.5GHz的离散三阶椭圓高通滤波器 80和截止频率为 1.65GHz的离散的五阶椭圓低通滤波器 90为例, 可以分别对 900MHz以下和
1.85GHz以上的频率带实现 3 OdB以上的抑制,而带内插损可以容易地做到不 高于 0.4dB。考虑到单边滤波器前端的选择电路的插损一般在 0.3dB左右,本 方法的前端插损总量低于 0.8dB。相对于现有技术的 1.3dB以上的普通声表面 滤波器, 选择单边滤波器的前端插损减少 0.5dB以上。
经导通后的高通滤波器 80对低频干扰进行滤波或低通滤波器 90对高频 干扰进行滤波。
本发明提出的卫星定位信号处理装置 100, 利用至少一个高通滤波器 80 或至少一个低通滤波器 90替代声表面滤波器进行初次滤波, 解决了卫星定 位信号接收过程中前端插损较大的问题, 提高了卫星定位信号的接收灵敏 度。
在一实施例的卫星定位信号处理装置 100中, 选择电路 70可具体用于: 当本端发射信号频率低于卫星定位信号频率时, 将卫星定位信号输出 到高通滤波器 80, 高通滤波器 80的截止频率低于卫星定位信号的频率, 且 高于本端发射信号频率;
当本端发射信号频率高于卫星定位信号频率时, 将卫星定位信号输出 到低通滤波器 90, 低通滤波器 90的截止频率高于卫星定位信号的频率, 且 低于本端发射信号频率。
当移动终端的信号发射机的工作频率高于卫星定位信号频率, 则导通 低通滤波器 90, 将卫星定位信号输出到低通滤波器 90, 以滤除耦合到卫星 定位信号中的高频干扰; 当移动终端的信号发射机的工作频率低于卫星定 位信号频率, 则导通高通滤波器 80, 将卫星定位信号输出到高通滤波器 80, 以滤除耦合到卫星定位信号中的低频干扰。
上述高通滤波器 80可以通过离散、 介质滤波或 IC集成方式实现, 截止 频率必须低于卫星定位信号频率, 且高于本端发射信号频率, 期望插损尽 可能小。
上述低通滤波器 90可以通过离散、 介质滤波或 IC集成方式实现, 截止 频率必须高于卫星定位信号频率, 且低于本端发射信号频率。 期望插损尽 可能小。
在一实施例的卫星定位信号处理装置 100中, 发射信号包括无线移动网 络、 无线宽带、 蓝牙和 /或调频信号。 具体包括 GSM、 CDMA, WCDMA、 TD-SCDMA、 WiFi以及 FM转发器等频段信号。
图 5为本发明卫星定位信号的处理装置又一实施例的结构示意图, 参照 图 5 , 在上一实施例的基础上, 本实施例的卫星定位信号处理装置 100中还 包括处理电路 81 , 用于对滤波后的卫星定位信号进行放大、 滤波和解调。
高通滤波器 80或低通滤波器 90滤除了耦合干扰的卫星定位信号后, 处 理电路 81放大后再次滤波, 以除去其他带外杂波和一些残留的干扰信号。 然后再对卫星定位信号进行解调, 获取当前位置信息。
本发明提出的卫星定位信号处理装置 100, 利用至少一个高通滤波器 80 或至少一个低通滤波器 90替代声表面滤波器进行初次滤波, 解决了卫星定 位信号接收过程中前端插损较大的问题, 在避免移动终端发射信号干扰的 同时, 提高了卫星定位信号的接收灵敏度。 进一步地, 对高通滤波器 80或 低通滤波器 90初次滤波后的卫星定位信号作再次处理, 以获取当前位置信 息。
图 6为本发明移动终端一实施例的结构示意图, 参照图 6, 该实施例中 移动终端包括信号发射机 11 , 还包括与信号发射机连接的卫星定位信号处 理装置 100, 该卫星定位信号处理装置 100包括选择电路 70, 以及分别和选 择电路 70连接的接收电路 10、 判决器 60、 至少一高通滤波器 80和至少一低 通滤波器 90; 其中,
接收电路 10, 用于接收卫星定位信号;
判决器 60, 用于比较本端发射信号与卫星定位信号的频率;
选择电路 70, 用于根据比较结果, 输出卫星定位信号到对应的高通滤 波器 80或低通滤波器 90;
高通滤波器 80或低通滤波器 90, 用于对卫星定位信号进行滤波。
本实施例所述卫星定位信号处理装置 100, 其结构和工作原理与图 4所 示的卫星定位信号处理装置 100相同, 此处不再赘述。
本发明提出的移动终端, 利用至少一个高通滤波器 80或至少一个低通 滤波器 90替代声表面滤波器进行初次滤波, 解决了卫星定位信号接收过程 中前端插损较大的问题, 在避免移动终端发射信号干扰的同时, 提高了卫 星定位信号的接收灵敏度。
在一实施例中, 选择电路 70可具体用于:
当本端发射信号频率低于卫星定位信号频率时, 将卫星定位信号输出 到高通滤波器 80, 高通滤波器 80的截止频率低于卫星定位信号的频率, 且 高于本端发射信号频率;
当本端发射信号频率高于卫星定位信号频率时, 将卫星定位信号输出 到低通滤波器 90, 低通滤波器 90的截止频率高于卫星定位信号的频率, 且 低于本端发射信号频率。
以上所述仅为本发明的优选实施例, 并非因此限制本发明的专利范围, 凡是利用本发明说明书及附图内容所作的等效结构或等效流程变换, 或直 接或间接运用在其他相关的技术领域, 均同理包括在本发明的专利保护范 围内。
Claims
1、 一种卫星定位信号处理方法, 其特征在于, 该方法包括:
接收卫星定位信号后, 比较本端发射信号与卫星定位信号的频率; 根据比较结果, 输出卫星定位信号到对应的高通滤波器或低通滤波器; 所述高通滤波器或低通滤波器对接收的卫星定位信号进行滤波。
2、 如权利要求 1所述的卫星定位信号处理方法, 其特征在于, 所述根 据比较结果, 输出卫星定位信号到对应的高通滤波器或低通滤波器进行滤 波为:
当本端发射信号频率低于卫星定位信号频率时, 将卫星定位信号输出 到高通滤波器, 所述高通滤波器的截止频率低于卫星定位信号的频率, 且 高于本端发射信号频率;
当本端发射信号频率高于卫星定位信号频率时, 将卫星定位信号输出 到低通滤波器, 所述低通滤波器的截止频率高于卫星定位信号的频率, 且 低于本端发射信号频率。
3、 如权利要求 1或 2所述的卫星定位信号处理方法, 其特征在于, 所述 发射信号包括无线移动网络、 无线宽带、 蓝牙和 /或调频信号。
4、 如权利要求 1或 2所述的卫星定位信号处理方法, 其特征在于, 在执 行所述高通滤波器或低通滤波器对卫星定位信号进行滤波之后, 该方法还 包括: 对滤波后的卫星定位信号进行放大、 滤波和解调。
5、 一种卫星定位信号处理装置, 其特征在于, 该装置包括: 选择电路, 以及分别和选择电路连接的接收电路、 判决器、 至少一高通滤波器和至少 一低通滤波器; 其中,
所述接收电路, 用于接收卫星定位信号;
所述判决器, 用于比较本端发射信号与卫星定位信号的频率; 所述选择电路, 用于根据比较结果, 输出卫星定位信号到对应的高通 滤波器或低通滤波器;
所述高通滤波器或低通滤波器, 用于对接收的卫星定位信号进行滤波。
6、 如权利要求 5所述的卫星定位信号处理装置, 其特征在于, 所述选 择电路根据比较结果, 输出卫星定位信号到对应的高通滤波器或低通滤波 器为:
当本端发射信号频率低于卫星定位信号频率时, 将卫星定位信号输出 到高通滤波器, 所述高通滤波器的截止频率低于卫星定位信号的频率, 且 高于本端发射信号频率;
当本端发射信号频率高于卫星定位信号频率时, 将卫星定位信号输出 到低通滤波器, 所述低通滤波器的截止频率高于卫星定位信号的频率, 且 低于本端发射信号频率。
7、 如权利要求 5或 6所述的卫星定位信号处理装置, 其特征在于, 所述 发射信号包括无线移动网络、 无线宽带、 蓝牙和 /或调频信号。
8、 如权利要求 5或 6所述的卫星定位信号处理装置, 其特征在于, 该装 置还包括处理电路, 用于对高通滤波器或低通滤波器滤波后的卫星定位信 号进行放大、 滤波和解调。
9、 一种移动终端, 包括信号发射机, 其特征在于, 该移动终端还包括 与所述信号发射机连接的卫星定位信号处理装置, 所述卫星定位信号处理 装置包括选择电路, 以及分别和选择电路连接的接收电路、 判决器、 至少 一高通滤波器和至少一低通滤波器; 其中,
所述接收电路, 用于接收卫星定位信号;
所述判决器, 用于比较本端发射信号与卫星定位信号的频率; 所述选择电路, 用于根据比较结果, 输出卫星定位信号到对应的高通 滤波器或低通滤波器;
所述高通滤波器或低通滤波器, 用于对接收的卫星定位信号进行滤波。
10、 如权利要求 9所述的移动终端, 其特征在于, 所述选择电路根据比 较结果, 输出卫星定位信号到对应的高通滤波器或低通滤波器为:
当本端发射信号频率低于卫星定位信号频率时, 将卫星定位信号输出 到高通滤波器, 所述高通滤波器的截止频率低于卫星定位信号的频率, 且 高于本端发射信号频率;
当本端发射信号频率大于卫星定位信号频率时, 将卫星定位信号输出 到低通滤波器, 所述低通滤波器的截止频率高于卫星定位信号的频率, 且 低于本端发射信号频率。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201010284262.7 | 2010-09-15 | ||
CN2010102842627A CN101968540A (zh) | 2010-09-15 | 2010-09-15 | 卫星定位信号处理方法、装置和移动终端 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2012034311A1 true WO2012034311A1 (zh) | 2012-03-22 |
Family
ID=43547723
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2010/078885 WO2012034311A1 (zh) | 2010-09-15 | 2010-11-18 | 卫星定位信号处理方法、装置和移动终端 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN101968540A (zh) |
WO (1) | WO2012034311A1 (zh) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103761055B (zh) * | 2014-01-13 | 2017-01-11 | 联想(北京)有限公司 | 一种信息处理的方法及电子设备 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1912647A (zh) * | 2005-06-28 | 2007-02-14 | 精工爱普生株式会社 | 复合用信号生成装置、ic芯片、gps接收机及便携式电话 |
CN101202558A (zh) * | 2006-12-13 | 2008-06-18 | 精工爱普生株式会社 | 接收电路、电子设备及信号处理方法 |
CN101273540A (zh) * | 2005-09-26 | 2008-09-24 | 格罗纳乌有限公司 | 多级谐振放大器系统和方法 |
CN201278522Y (zh) * | 2008-08-07 | 2009-07-22 | 中兴通讯股份有限公司 | 一种移动终端系统的射频前端电路 |
-
2010
- 2010-09-15 CN CN2010102842627A patent/CN101968540A/zh active Pending
- 2010-11-18 WO PCT/CN2010/078885 patent/WO2012034311A1/zh active Application Filing
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1912647A (zh) * | 2005-06-28 | 2007-02-14 | 精工爱普生株式会社 | 复合用信号生成装置、ic芯片、gps接收机及便携式电话 |
CN101273540A (zh) * | 2005-09-26 | 2008-09-24 | 格罗纳乌有限公司 | 多级谐振放大器系统和方法 |
CN101202558A (zh) * | 2006-12-13 | 2008-06-18 | 精工爱普生株式会社 | 接收电路、电子设备及信号处理方法 |
CN201278522Y (zh) * | 2008-08-07 | 2009-07-22 | 中兴通讯股份有限公司 | 一种移动终端系统的射频前端电路 |
Also Published As
Publication number | Publication date |
---|---|
CN101968540A (zh) | 2011-02-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9374056B2 (en) | Multiband RF device | |
CN102832959B (zh) | 高中频超外差+零中频结构的射频前端 | |
US6298224B1 (en) | Multiple frequency band receiver | |
US8644786B2 (en) | Receiver apparatus having filters implemented using frequency translation techniques | |
JP4287488B2 (ja) | 受信回路 | |
US8489051B2 (en) | Low-power and noise-cancelling wideband receiver front-end | |
US7796950B2 (en) | Dual mode GSM and WLAN mobile communication device | |
CN103166654A (zh) | 宽带rf前端 | |
JP2007221758A (ja) | 電話信号除去回路、デジタル放送受信回路及び携帯用デジタル放送受信器 | |
CN104035105A (zh) | 低噪声放大器及gnss系统接收机前端的射频系统 | |
JP2007513558A (ja) | 無線通信用受信機 | |
CN108988890A (zh) | 一种基于ad9371的宽带无线射频电路 | |
KR20030016747A (ko) | 이동통신 단말기의 광대역 수신장치 | |
US20190036508A1 (en) | Variable frequency filter, radio frequency front-end circuit, and communication terminal | |
CN110011672A (zh) | 宽带通信系统的射频架构 | |
KR20060082444A (ko) | 무선 송수신기에서 노이즈를 제거하는 장치 및 방법 | |
JP2001244842A (ja) | 無線システム結合装置および方法 | |
US7081862B2 (en) | Integrated active satellite antenna module | |
CN208675206U (zh) | 宽带通信系统的射频架构 | |
WO2012034311A1 (zh) | 卫星定位信号处理方法、装置和移动终端 | |
JPH09275356A (ja) | 複数モード移動無線装置 | |
US9160387B2 (en) | Method and apparatus for noise canceling | |
US20110039511A1 (en) | Receiver front end | |
JP3746209B2 (ja) | 無線送受信機 | |
CN109286407A (zh) | 干扰信号抑制装置及对强干扰信号进行抑制的方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 10857167 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 10857167 Country of ref document: EP Kind code of ref document: A1 |