WO2012032848A1 - 超音波診断装置および方法 - Google Patents

超音波診断装置および方法 Download PDF

Info

Publication number
WO2012032848A1
WO2012032848A1 PCT/JP2011/065943 JP2011065943W WO2012032848A1 WO 2012032848 A1 WO2012032848 A1 WO 2012032848A1 JP 2011065943 W JP2011065943 W JP 2011065943W WO 2012032848 A1 WO2012032848 A1 WO 2012032848A1
Authority
WO
WIPO (PCT)
Prior art keywords
ultrasonic
region
line group
interest
measurement
Prior art date
Application number
PCT/JP2011/065943
Other languages
English (en)
French (fr)
Inventor
雄二 大嶋
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Priority to US13/821,934 priority Critical patent/US20140163378A1/en
Priority to EP11823327.9A priority patent/EP2614774A1/en
Priority to CN2011800432870A priority patent/CN103096807A/zh
Publication of WO2012032848A1 publication Critical patent/WO2012032848A1/ja

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/44Constructional features of the ultrasonic, sonic or infrasonic diagnostic device
    • A61B8/4483Constructional features of the ultrasonic, sonic or infrasonic diagnostic device characterised by features of the ultrasound transducer
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/54Control of the diagnostic device
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/13Tomography
    • A61B8/14Echo-tomography
    • A61B8/145Echo-tomography characterised by scanning multiple planes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/44Constructional features of the ultrasonic, sonic or infrasonic diagnostic device
    • A61B8/4444Constructional features of the ultrasonic, sonic or infrasonic diagnostic device related to the probe
    • A61B8/4472Wireless probes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/46Ultrasonic, sonic or infrasonic diagnostic devices with special arrangements for interfacing with the operator or the patient
    • A61B8/467Ultrasonic, sonic or infrasonic diagnostic devices with special arrangements for interfacing with the operator or the patient characterised by special input means
    • A61B8/469Ultrasonic, sonic or infrasonic diagnostic devices with special arrangements for interfacing with the operator or the patient characterised by special input means for selection of a region of interest
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/52Devices using data or image processing specially adapted for diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/5207Devices using data or image processing specially adapted for diagnosis using ultrasonic, sonic or infrasonic waves involving processing of raw data to produce diagnostic data, e.g. for generating an image
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/56Details of data transmission or power supply

Definitions

  • the present invention relates to an ultrasonic diagnostic apparatus and method, and more particularly to power saving of an ultrasonic diagnostic apparatus that performs diagnosis based on an ultrasonic image generated by transmitting and receiving ultrasonic waves from a transducer array of an ultrasonic probe. About.
  • this type of ultrasonic diagnostic apparatus has an ultrasonic probe with a built-in transducer array and an apparatus main body connected to the ultrasonic probe, and ultrasonic waves are directed toward the subject from the ultrasonic probe. , The ultrasonic echo from the subject is received by the ultrasonic probe, and the received signal is electrically processed by the apparatus main body to generate an ultrasonic image.
  • a transmission / reception circuit related to transmission of ultrasonic waves from a transducer and reception of ultrasonic echoes in a small probe.
  • Significant power saving is required for the circuit.
  • 50 to 100 V is used as the driving voltage of the vibrator, whereas in the above wireless probe or the like, the driving voltage of the vibrator is suppressed to a low level due to the mounting space limitation.
  • the S / N of the receiving circuit is related to its power consumption, and it is difficult to reduce the power consumption of the receiving circuit in order to obtain a high S / N.
  • Patent Document 1 discloses an apparatus that stops the bias of a buffer amplifier of a channel that is not involved in reception.
  • Patent Document 2 proposes an ultrasonic diagnostic apparatus that increases the density of the measurement line only for the region of interest while maintaining the number of measurement lines, and decreases the density of the measurement line for other ranges.
  • Patent Document 1 distinguishes between used channels and unused channels and stops the bias of the buffer amplifiers of unused channels, there is a problem that image quality deteriorates when trying to save power. .
  • the apparatus of Patent Document 2 since the spatial resolution of the region of interest is maintained by changing the density of the measurement lines while maintaining the number of measurement lines of one frame, the image quality is improved with respect to the direction orthogonal to the measurement lines. There is a problem that the length of the region of interest in this direction is limited due to non-uniformity.
  • the present invention has been made to solve such a conventional problem, and an ultrasonic diagnosis capable of improving the image quality and power saving of the region of interest without being limited by the size of the region of interest.
  • An object is to provide an apparatus and method.
  • the ultrasonic diagnostic apparatus transmits an ultrasonic beam from a transducer array of an ultrasonic probe toward a subject based on a drive signal supplied from a transmission drive unit, and transmits an ultrasonic echo from the subject.
  • An ultrasonic diagnostic apparatus that processes a reception signal output from a transducer array of a received ultrasonic probe by a reception signal processing unit and generates an ultrasonic image by an image generation unit based on the processed reception signal, Control means for controlling the reception signal processing unit so as to operate in a power saving mode in which processing of the reception signal output from the transducer array is selectively stopped according to the measurement depth is provided.
  • the control means divides the plurality of measurement lines into a first line group and a second line group, and the measurement lines of the first line group are separated from the transducer array regardless of the measurement depth.
  • the reception signal processing unit is controlled to operate in the high image quality mode in which the output reception signal is processed, and to operate in the power saving mode for the measurement lines of the second line group.
  • the measurement lines of the first line group and the measurement lines of the second line group can be alternately arranged.
  • the first line group is composed of measurement lines arranged at the center of the plurality of measurement lines
  • the second line group is composed of measurement lines arranged on both sides of the first line group. You may comprise.
  • the control unit performs processing of the reception signal output from the transducer array for the region of interest, and performs processing of the reception signal output from the transducer array for the other region. It can also be stopped.
  • the region of interest may be manually set, and may further include a region of interest selection unit that automatically selects the region of interest based on the luminance from the ultrasonic image generated by the image generation unit. It is also possible to set the region of interest in a peripheral region around a focus point for transmitting / receiving ultrasonic waves.
  • the control means selectively receives the signal according to the frame, and operates the received signal processing unit to switch between the high image quality mode and the power saving mode in which the received signal output from the transducer array is processed regardless of the measurement depth. May be controlled.
  • an ultrasonic beam is transmitted from a transducer array of an ultrasonic probe toward a subject based on a drive signal supplied from a transmission drive unit, and an ultrasonic echo by the subject is transmitted.
  • An ultrasonic diagnostic method in which a reception signal output from a transducer array of a received ultrasonic probe is processed by a reception signal processing unit, and an ultrasonic image is generated by an image generation unit based on the processed reception signal,
  • the reception signal processing unit is controlled to operate in a power saving mode in which processing of reception signals output from the transducer array is selectively stopped according to the measurement depth.
  • the plurality of measurement lines are divided into a first line group and a second line group, and the measurement lines of the first line group are received from the transducer array regardless of the measurement depth.
  • the reception signal processing unit is controlled to operate in the high image quality mode in which signal processing is performed and to operate in the power saving mode for the measurement lines of the second line group.
  • the measurement lines of the first line group and the measurement lines of the second line group can be alternately arranged.
  • the first line group is composed of measurement lines arranged at the center of the plurality of measurement lines
  • the second line group is composed of measurement lines arranged on both sides of the first line group. You may comprise.
  • processing of the reception signal output from the transducer array is performed for the region of interest, and processing of the reception signal output from the transducer array is stopped for other regions.
  • the region of interest may be set manually, or the region of interest may be automatically selected based on the luminance from the ultrasonic image generated by the image generation unit, and the region of interest is preset. It can also be set in the area around the focus point for transmitting and receiving ultrasound.
  • the received signal processing unit is controlled to switch between the high-quality mode and the power-saving mode in which the received signal output from the transducer array is processed regardless of the measurement depth. May be.
  • the received signal processing unit is controlled to operate in the power saving mode in which the processing of the received signal output from the transducer array is selectively stopped according to the measurement depth. It is possible to achieve high image quality and power saving in the region of interest without being limited by this.
  • FIG. 1 is a block diagram showing a configuration of an ultrasonic diagnostic apparatus according to Embodiment 1 of the present invention. It is a timing chart which shows the operation of the drive signal and received signal processing part in the high image quality mode. It is a figure which shows typically the mode of the received signal process on each measurement line in high image quality mode.
  • 3 is a timing chart illustrating operations of a drive signal and a reception signal processing unit in the first embodiment.
  • FIG. 6 is a diagram schematically showing a state of reception signal processing on each measurement line in the first embodiment.
  • FIG. 10 is a diagram schematically showing a state of reception signal processing on each measurement line in the second embodiment. It is a figure which shows typically the mode of the received signal process on each measurement line in the modification of Embodiment 2.
  • FIG. 10 is a diagram showing a method of setting a region of interest in the third embodiment.
  • FIG. 10 is a diagram schematically showing a state of reception signal processing on each measurement line in the third embodiment.
  • FIG. 10 schematically shows a state of reception signal processing on each measurement line in Embodiment 4, where (A) shows an odd frame and (B) shows an even frame.
  • FIG. 10 schematically shows a state of reception signal processing on each measurement line in a modification of the fourth embodiment, where (A) shows an odd frame and (B) shows an even frame.
  • FIG. 10 schematically shows a state of reception signal processing on each measurement line in another modification of the fourth embodiment, where (A) shows an odd frame and (B) shows an even frame.
  • FIG. 10 schematically shows a state of reception signal processing on each measurement line in another modification of the fourth embodiment, where (A) shows an odd frame and (B) shows an even frame.
  • FIG. 10 is a block diagram illustrating a configuration of an ultrasonic diagnostic apparatus according to a fifth embodiment.
  • FIG. 10 is a diagram illustrating a method of determining a region of interest in a fifth embodiment.
  • FIG. 10 is a diagram illustrating a method of setting a region of interest in a sixth embodiment.
  • FIG. 1 shows the configuration of an ultrasonic diagnostic apparatus according to Embodiment 1 of the present invention.
  • the ultrasonic diagnostic apparatus includes an ultrasonic probe 1 and a diagnostic apparatus main body 2 connected to the ultrasonic probe 1 by wireless communication.
  • the ultrasonic probe 1 has a plurality of ultrasonic transducers 3 constituting a one-dimensional or two-dimensional transducer array, and a reception signal processing unit 4 is connected to each of the transducers 3. 4 is connected to a wireless communication unit 6 via a parallel / serial conversion unit 5. Further, a transmission control unit 8 is connected to the plurality of transducers 3 via the transmission drive unit 7, a reception control unit 9 is connected to the plurality of reception signal processing units 4, and a communication control unit 10 is connected to the wireless communication unit 6. ing. A probe controller 11 is connected to the parallel / serial converter 5, the transmission controller 8, the reception controller 9, and the communication controller 10.
  • Each of the plurality of transducers 3 forms a transducer, transmits an ultrasonic wave according to the drive signal supplied from the transmission drive unit 7, receives an ultrasonic echo from the subject, and outputs a reception signal.
  • Each transducer 3 is, for example, a vibration in which electrodes are formed on both ends of a piezoelectric body made of a piezoelectric ceramic represented by PZT (lead zirconate titanate) or a polymer piezoelectric element represented by PVDF (polyvinylidene fluoride). Consists of children.
  • each transducer When a pulsed or continuous wave voltage is applied to the electrodes of such a vibrator, the piezoelectric body expands and contracts, and pulsed or continuous wave ultrasonic waves are generated from the respective vibrators, and the synthesis of those ultrasonic waves. As a result, an ultrasonic beam is formed.
  • each transducer generates an electric signal by expanding and contracting by receiving propagating ultrasonic waves, and these electric signals are output as ultrasonic reception signals.
  • the transmission drive unit 7 includes, for example, a plurality of pulsers, and ultrasonic waves transmitted from the plurality of transducers 3 pass through the tissue area in the subject based on the transmission delay pattern selected by the transmission control unit 8.
  • the delay amount of each drive signal is adjusted so as to form a wide ultrasonic beam to be covered and supplied to the plurality of transducers 3.
  • the reception signal processing unit 4 of each channel generates a complex baseband signal by performing orthogonal detection processing or orthogonal sampling processing on the reception signal output from the corresponding transducer 3 under the control of the reception control unit 9. Then, by sampling the complex baseband signal, sample data including information on the tissue area is generated, and the sample data is supplied to the parallel / serial converter 5.
  • the reception signal processing unit 4 may generate sample data by performing data compression processing for high-efficiency encoding on data obtained by sampling a complex baseband signal.
  • the parallel / serial conversion unit 5 converts the parallel sample data generated by the reception signal processing unit 4 of a plurality of channels into serial sample data.
  • the wireless communication unit 6 modulates a carrier based on serial sample data to generate a transmission signal, supplies the transmission signal to the antenna, and transmits radio waves from the antenna, thereby transmitting serial sample data.
  • ASK Amplitude Shift Keying
  • PSK Phase Shift Keying
  • QPSK Quadrature Phase Shift Keying
  • 16QAM 16 Quadrature Amplitude Modulation
  • the wireless communication unit 6 performs wireless communication with the diagnostic apparatus main body 2 to transmit sample data to the diagnostic apparatus main body 2 and to receive various control signals from the diagnostic apparatus main body 2.
  • a control signal is output to the communication control unit 10.
  • the communication control unit 10 controls the wireless communication unit 6 so that the sample data is transmitted with the transmission radio wave intensity set by the probe control unit 11, and also performs probe control on various control signals received by the wireless communication unit 6. To the unit 11.
  • the probe control unit 11 controls each unit of the ultrasonic probe 1 based on various control signals transmitted from the diagnostic apparatus main body 2.
  • the ultrasonic probe 1 includes a battery (not shown), and power is supplied from the battery to each circuit in the ultrasonic probe 1.
  • the ultrasonic probe 1 may be an external probe such as a linear scan method, a convex scan method, a sector scan method, or an ultrasonic endoscope probe such as a radial scan method.
  • the diagnostic apparatus body 2 has a wireless communication unit 13, a data storage unit 15 is connected to the wireless communication unit 13 via a serial / parallel conversion unit 14, and an image generation unit 16 is connected to the data storage unit 15.
  • a display unit 18 is connected to the image generation unit 16 via the display control unit 17.
  • a communication control unit 19 is connected to the wireless communication unit 13, and a main body control unit 20 is connected to the serial / parallel conversion unit 14, the image generation unit 16, the display control unit 17, and the communication control unit 19.
  • an operation unit 21 for an operator to perform an input operation and a storage unit 22 for storing an operation program are connected to the main body control unit 20, respectively.
  • the wireless communication unit 13 transmits various control signals to the ultrasonic probe 1 by performing wireless communication with the ultrasonic probe 1.
  • the wireless communication unit 13 also outputs serial sample data by demodulating the signal received by the antenna.
  • the communication control unit 19 controls the wireless communication unit 13 so that various control signals are transmitted with the transmission radio wave intensity set by the main body control unit 20.
  • the serial / parallel converter 14 converts the serial sample data output from the wireless communication unit 13 into parallel sample data.
  • the data storage unit 15 is configured by a memory, a hard disk, or the like, and stores at least one frame of sample data converted by the serial / parallel conversion unit 14.
  • the image generation unit 16 performs reception focus processing on the sample data for each frame read from the data storage unit 15 to generate an image signal representing an ultrasound diagnostic image.
  • the image generation unit 16 includes a phasing addition unit 23 and an image processing unit 24.
  • the phasing / adding unit 23 selects one reception delay pattern from a plurality of reception delay patterns stored in advance according to the reception direction set in the main body control unit 20, and sets the selected reception delay pattern to the selected reception delay pattern. Based on this, the reception focus process is performed by adding a delay to each of the plurality of complex baseband signals represented by the sample data.
  • a baseband signal sound ray signal
  • the image processing unit 24 generates a B-mode image signal that is tomographic image information related to the tissue in the subject based on the sound ray signal generated by the phasing addition unit 23.
  • the image processing unit 24 includes an STC (sensitivity time control) unit and a DSC (digital scan converter).
  • the STC unit corrects the attenuation due to the distance according to the depth of the reflection position of the ultrasonic wave on the sound ray signal.
  • the DSC converts the sound ray signal corrected by the STC unit into an image signal according to a normal television signal scanning method (raster conversion), and performs necessary image processing such as gradation processing to thereby obtain a B-mode image signal. Is generated.
  • the display control unit 17 causes the display unit 18 to display an ultrasound diagnostic image based on the image signal generated by the image generation unit 16.
  • the display unit 18 includes a display device such as an LCD, for example, and displays an ultrasound diagnostic image under the control of the display control unit 17.
  • the main body control unit 20 operates in a power saving mode in which the reception signal processing unit 4 of the ultrasonic probe 1 is selectively stopped according to the measurement depth based on the measurement depth of the region of interest input from the operation unit 21 by the operator. Control to do. That is, the main body control unit 20 is in an ON state with respect to the measurement depth of the region of interest input from the operation unit 21 and is in an OFF state with respect to other measurement depths.
  • the received signal processing unit 4 is controlled.
  • the serial / parallel conversion unit 14 the image generation unit 16, the display control unit 17, the communication control unit 19, and the main body control unit 20 are used for causing the CPU and the CPU to perform various processes. Although composed of operation programs, they may be composed of digital circuits.
  • the operation program is stored in the storage unit 22.
  • a recording medium in the storage unit 22 in addition to the built-in hard disk, a flexible disk, MO, MT, RAM, CD-ROM, DVD-ROM, or the like can be used.
  • the power saving mode will be described, but before that, a high image quality mode in which power saving is not achieved will be described.
  • the high image quality mode as shown in FIG. 2, when a drive signal is supplied from the transmission drive unit 7 to the transducers 3 constituting the transducer array with a period ⁇ Ta, the deepest part of the examination region of the subject is The reception signal processing unit 4 is turned on for a time ⁇ Tb sufficient to receive the ultrasonic echo. For example, when a drive signal is supplied to the transducer 3 at time t1, the corresponding reception signal processing unit 4 is turned on at the same time, and the ON state of the reception signal processing unit 4 is maintained over time ⁇ Tb.
  • reception signal processing unit 4 is turned off assuming that reception of an ultrasonic echo effective for inspection is completed. Thereafter, at time t3 when the period ⁇ Ta has elapsed from time t1, the next drive signal is supplied to the transducer 3 and the received signal processing unit 4 is turned on again. Thereafter, the same operation is repeated.
  • the received signal processing unit 4 processes the received signal for all measurement lines for a time ⁇ Tb sufficient to receive an ultrasonic echo from the deepest part of the inspection region. Therefore, a high-quality image can be obtained.
  • the operation unit 21 when a drive signal is supplied from the transmission drive unit 7 to the transducers 3 constituting the transducer array with a period ⁇ Ta, the operation unit 21 The received signal processing unit 4 is turned on only during the time corresponding to the input specific measurement depth of the region of interest, and the received signal processing unit 4 is turned off at other times. For example, even if a drive signal is supplied to the transducer 3 at time t1, the reception signal processing unit 4 is not yet turned on, and is turned on at time t4 when the time ⁇ Tc has elapsed from time t1.
  • This time ⁇ Tc is a time required from the transmission of the ultrasonic wave to the start of reception of the ultrasonic echo from the region of interest. That is, the reception signal processing unit 4 is turned on at time t4 when reception of the ultrasonic echo from the region of interest is started, and is received for a time ⁇ Td until time t5 when reception of the ultrasonic echo from the region of interest ends. The ON state of the signal processing unit 4 is maintained. Then, the reception signal processing unit 4 is turned off because reception of ultrasonic echoes from the entire region of interest is completed at time t5, and then the next drive signal is transmitted at time t3 when the period ⁇ Ta has elapsed from time t1. 3 is supplied. Thereafter, the same operation is repeated.
  • the received signal processing unit 4 processes the received signal only for the time ⁇ Td necessary for receiving the ultrasonic echoes from the region of interest for all measurement lines. During this time, processing of the received signal is stopped. As a result, power saving can be achieved.
  • the measurement depth of the region of interest of the subject is input from the operation unit 21 by the operator.
  • the depth from the body surface of the subject can be roughly grasped according to the examination site and the like, and the measurement depth of the region of interest can be estimated and input based on this depth.
  • the measurement depth of the region of interest input from the operation unit 21 is transmitted from the main body control unit 20 of the diagnostic apparatus main body 2 to the probe control unit 11 of the ultrasonic probe 1 by wireless communication.
  • ultrasonic waves are transmitted from the plurality of transducers 3 constituting the transducer array in accordance with the drive signal supplied from the transmission drive unit 7 under the control of the probe control unit 11 and the transmission control unit 8.
  • the reception signals output from the transducers 3 that have received the ultrasonic echoes from the subject are supplied to the corresponding reception signal processing units 4.
  • the probe control unit 11 passes through the reception control unit 9.
  • the reception signal processing unit 4 is controlled so that the measurement depth of the region of interest is in the ON state and the other measurement depths are in the OFF state.
  • sample data is generated by the received signal processing unit 4 only for the measurement depth of the region of interest, serialized by the parallel / serial conversion unit 5, and then wirelessly transmitted from the wireless communication unit 6 to the diagnostic apparatus body 2.
  • Sample data received by the wireless communication unit 13 of the diagnostic apparatus main body 2 is converted into parallel data by the serial / parallel conversion unit 14 and stored in the data storage unit 15. Further, sample data for each frame is read from the data storage unit 15, an image signal is generated by the image generation unit 16, and an ultrasonic diagnostic image is displayed on the display unit 18 by the display control unit 17 based on this image signal. Is done.
  • the received signal processing unit 4 of the ultrasonic probe 1 is operated in the power saving mode, and it is possible to save power while displaying an image of the region of interest with high image quality.
  • the number of measurement lines is not limited, and the reception signal processing unit 4 is turned off only for measurement depths that are not related to the region of interest. Therefore, the size of the region of interest is not limited by the size of the region of interest. Both image quality and power saving can be achieved.
  • Embodiment 2 In the first embodiment, for all the measurement lines, the reception signal processing unit 4 processes the reception signal only for the time ⁇ Td corresponding to the measurement depth of the region of interest, and the reception signal processing is stopped at other times.
  • the present invention is not limited to this, and the measurement line is divided into a first line group and a second line group, and the received signal is processed for the measurement lines of the first line group regardless of the measurement depth.
  • the received signal processing unit 4 is controlled so as to operate in the power saving mode in which the received signal is processed only for the measurement depth of the region of interest for the measurement line of the second line group. You can also
  • the odd lines are defined as the first line group L1
  • the even lines are defined as the second line group L2
  • the measurement lines of the first line group L1 The measurement lines of the two line groups L2 are set to be alternately arranged. Then, the received signal processing unit 4 is controlled to operate in the high image quality mode for the measurement lines of the first line group L1 and in the power saving mode for the measurement lines of the second line group L2. .
  • the received signal is processed for a time ⁇ Tb sufficient to receive the ultrasonic echo from the deepest part of the examination region of the subject, and the measurement line of the second line group L2 Then, the received signal is processed only for the time ⁇ Td necessary to receive the ultrasonic echo from the region of interest.
  • the received signal processing unit 4 may be controlled so that the even lines are operated in the high image quality mode as the first line group L1 and the odd lines are operated in the power saving mode as the second line group L2. Further, instead of dividing the measurement line into the first line group L1 and the second line group L2, the first line group L1 and the second line group L2 are divided into several measurement lines. It may be divided.
  • a plurality of measurement lines arranged in the center of the plurality of measurement lines operate as the first line group L1 in the high image quality mode, and both side portions of the first line group L1.
  • the received signal processing unit 4 can also be controlled so that the plurality of measurement lines arranged in the second line group L2 operate in the power saving mode. This makes it possible to display an image with high image quality only at the measurement depth of the central portion and the region of interest while saving power.
  • Embodiment 3 In Embodiments 1 and 2 described above, received signal processing is performed on all measurement lines for the measurement depth of the region of interest. However, as illustrated in FIG. 8, not only the measurement depth of the region of interest R, If the operator manually inputs and sets the shape of the region of interest R from the display panel of the display unit 18 or the operation unit 21 or the like, as shown in FIG. Can be processed. That is, the received signal processing is performed on the measurement line where the region of interest R exists and the measurement depth where the region of interest R exists, and the received signal processing is stopped for the other regions. By doing in this way, power saving can be achieved more effectively.
  • the reception signal processing unit 4 is controlled without changing depending on the frame.
  • the received signal processing unit 4 can also be controlled to operate by switching the power mode. For example, in the odd frame, as shown in FIG. 10A, the received signal is processed for all measurement lines regardless of the measurement depth, and in the even frame, the operation is performed in FIG. As shown in B), for all measurement lines, the received signal is processed only for the time ⁇ Td necessary to receive the ultrasonic echo from the region of interest, and the received signal processing is stopped at other times.
  • the reception signal processing unit 4 is controlled as described above.
  • the received signal processing unit 4 may be controlled so that even frames are operated in the high image quality mode and odd frames are operated in the power saving mode. Further, instead of switching the high image quality mode and the power saving mode every frame, the high image quality mode and the power saving mode may be switched every several frames.
  • the operation is performed in the high image quality mode in which the received signal is processed regardless of the measurement depth for all the measurement lines.
  • the plurality of measurement lines arranged at the center are operated in the high image quality mode, and the plurality of measurement lines arranged on both sides are operated in the power saving mode.
  • the received signal processing unit 4 can be controlled.
  • the frame operates in a high image quality mode in which the received signal is processed regardless of the measurement depth for all measurement lines.
  • the received signal processing unit 4 may be controlled to process the received signal only for the region of interest R.
  • FIG. 13 shows the configuration of the diagnostic apparatus main body 31 used in the ultrasonic diagnostic apparatus according to the fifth embodiment.
  • the region of interest selection unit 32 is connected to the image generation unit 16, and the main body control unit 20 is connected to the region of interest selection unit 32. It is a thing.
  • the region-of-interest selection unit 32 automatically selects the region of interest R of the subject based on the luminance from the ultrasonic image generated by the image generation unit 16, as shown in FIG.
  • the region of interest R is automatically selected from the ultrasonic image generated by the image generation unit 16 based on the luminance.
  • the main body control unit 20 processes the received signal only for the region of interest R as in the above-described third embodiment, and sets other regions.
  • the reception signal processing unit 4 of the ultrasonic probe 1 is controlled by wireless communication so that the processing of the reception signal is stopped.
  • the main body control unit 20 operates in the high image quality mode and processes the received signal only for the region of interest R according to the frame.
  • the received signal processing unit 4 may be controlled so as to switch the operation at.
  • Embodiment 6 In the diagnostic apparatus main body 2 according to Embodiment 1 shown in FIG. 1, the main body control unit 20 can also automatically select a region around the focus point F for transmitting / receiving ultrasonic waves as a region of interest R. Based on the region of interest R thus automatically selected, the main body control unit 20 controls the reception signal processing unit 4 as described in the first to fourth embodiments.
  • the ultrasonic probe 1 and the diagnostic apparatus main body 2 or 31 are connected to each other by wireless communication.
  • the present invention is not limited to this, and the ultrasonic probe is connected via a connection cable. 1 may be connected to the diagnostic apparatus main body 2 or 31.
  • the wireless communication unit 6 and the communication control unit 10 of the ultrasonic probe 1 and the wireless communication unit 13 and the communication control unit 19 of the diagnostic apparatus main body 2 or 31 are unnecessary.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Medical Informatics (AREA)
  • Surgery (AREA)
  • Pathology (AREA)
  • Radiology & Medical Imaging (AREA)
  • Biophysics (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Physics & Mathematics (AREA)
  • Molecular Biology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Gynecology & Obstetrics (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Ultra Sonic Daignosis Equipment (AREA)

Abstract

 関心領域の大きさに制限を受けることなく関心領域の高画質化と省電力化を図ることができる超音波診断装置を提供する。 時刻t1に振動子アレイを構成する各トランスデューサに駆動信号が供給されても、受信信号処理部はOFF状態のままON状態とならず、関心領域の測定深度に応じて、時刻t4に関心領域からの超音波エコーの受信が開始された後、時刻t5に関心領域からの超音波エコーの受信が終了するまでの間のみ受信信号処理部がON状態とされ、その後、受信信号処理部は再びOFF状態となる。

Description

超音波診断装置および方法
 この発明は、超音波診断装置および方法に係り、特に、超音波プローブの振動子アレイから超音波を送受信することにより生成された超音波画像に基づいて診断を行う超音波診断装置の省電力化に関する。
 従来から、医療分野において、超音波画像を利用した超音波診断装置が実用化されている。一般に、この種の超音波診断装置は、振動子アレイを内蔵した超音波プローブと、この超音波プローブに接続された装置本体とを有しており、超音波プローブから被検体に向けて超音波を送信し、被検体からの超音波エコーを超音波プローブで受信して、その受信信号を装置本体で電気的に処理することにより超音波画像が生成される。
 近年、ベッドサイドや救急医療現場等に搬送して使用することができるポータブル型の超音波診断装置が開発されているが、このような超音波診断装置では、その電源にバッテリが用いられており、装置の消費電力が連続使用時間に大きな影響を及ぼすこととなる。また、消費電力が大きいと、装置内の発熱量も大きくなるので、放熱対策のために装置サイズの大型化を余儀なくされ、ポータブル型という利便性が損なわれてしまう。
 特に、超音波プローブと装置本体とを無線接続するワイヤレスプローブ等では、振動子からの超音波の送信および超音波エコーの受信に関わる送受信回路を小さなプローブ内に配置する必要があるため、これらの回路の大幅な省電力化が要求される。
 ところが、通常の超音波診断装置では、振動子の駆動電圧として50~100Vが用いられるのに対して、上記のワイヤレスプローブ等では、実装空間制限から振動子の駆動電圧は低く抑えられているので、高画質を得るために受信回路のS/Nを上げる必要がある。一般に、受信回路のS/Nはその消費電力と関係があり、高S/Nを得るためには受信回路の消費電力を低減することは難しいのが現状である。
 超音波診断装置における省電力化については、例えば特許文献1に、受信に関与しないチャンネルのバッファアンプのバイアスを停止するようにした装置が示されている。また、特許文献2には、測定ラインの本数を維持しつつ関心領域のみについて測定ラインの密度を上げ、それ以外の範囲については測定ラインの密度を低下させる超音波診断装置が提案されている。
特開平6-296610号公報 特開平9-192130号公報
 しかしながら、特許文献1の装置は、使用するチャンネルと使用しないチャンネルとを区別し、使用しないチャンネルのバッファアンプのバイアスを停止するので、省電力化を図ろうとすると、画質が低下するという問題がある。
 また、特許文献2の装置では、1フレームの測定ライン数を維持しながらも、測定ラインの粗密を変化させて関心領域の空間分解能を維持しようとするため、測定ラインに直交する方向に関して画質が不均一となり、この方向における関心領域の長さが制限されてしまうという問題がある。
 この発明は、このような従来の問題点を解消するためになされたもので、関心領域の大きさに制限を受けることなく関心領域の高画質化と省電力化を図ることができる超音波診断装置および方法を提供することを目的とする。
 この発明に係る超音波診断装置は、送信駆動部から供給された駆動信号に基づいて超音波プローブの振動子アレイから被検体に向けて超音波ビームが送信されると共に被検体による超音波エコーを受信した超音波プローブの振動子アレイから出力される受信信号を受信信号処理部で処理し、処理された受信信号に基づいて画像生成部で超音波画像を生成する超音波診断装置であって、振動子アレイから出力される受信信号の処理が測定深度に応じて選択的に停止される省電力モードで動作するように受信信号処理部を制御する制御手段を備えたものである。
 好ましくは、制御手段は、複数の測定ラインを第1のライン群と第2のライン群とに分割し、第1のライン群の測定ラインに対しては測定深度に関わらずに振動子アレイから出力された受信信号の処理が行われる高画質モードで動作し、第2のライン群の測定ラインに対しては省電力モードで動作するように受信信号処理部を制御する。
 この場合、第1のライン群の測定ラインと第2のライン群の測定ラインは、交互に配列することができる。あるいは、第1のライン群は、複数の測定ラインのうち中央部に配列された測定ラインからなり、第2のライン群は、第1のライン群の両側部に配列された測定ラインからなるように構成してもよい。
 また、制御手段は、省電力モードにおいて、関心領域に対しては振動子アレイから出力される受信信号の処理を行い、他の領域に対しては振動子アレイから出力される受信信号の処理を停止することもできる。
 この場合、関心領域を手動により設定してもよく、また、画像生成部で生成された超音波画像から輝度に基づいて関心領域を自動選択する関心領域選択部をさらに備えてもよく、さらに、関心領域を予め設定された超音波の送受信のフォーカス点の周辺領域に設定することもできる。
 制御手段は、フレームに応じて選択的に、測定深度に関わらずに振動子アレイから出力された受信信号の処理が行われる高画質モードと省電力モードを切り替えて動作するように受信信号処理部を制御してもよい。
 この発明に係る超音波診断方法は、送信駆動部から供給された駆動信号に基づいて超音波プローブの振動子アレイから被検体に向けて超音波ビームが送信されると共に被検体による超音波エコーを受信した超音波プローブの振動子アレイから出力される受信信号を受信信号処理部で処理し、処理された受信信号に基づいて画像生成部で超音波画像を生成する超音波診断方法であって、振動子アレイから出力される受信信号の処理が測定深度に応じて選択的に停止される省電力モードで動作するように受信信号処理部を制御する方法である。
 好ましくは、複数の測定ラインを第1のライン群と第2のライン群とに分割し、第1のライン群の測定ラインに対しては測定深度に関わらずに振動子アレイから出力された受信信号の処理が行われる高画質モードで動作し、第2のライン群の測定ラインに対しては省電力モードで動作するように受信信号処理部を制御する。
 この場合、第1のライン群の測定ラインと第2のライン群の測定ラインは、交互に配列することができる。あるいは、第1のライン群は、複数の測定ラインのうち中央部に配列された測定ラインからなり、第2のライン群は、第1のライン群の両側部に配列された測定ラインからなるように構成してもよい。
 また、省電力モードにおいて、関心領域に対しては振動子アレイから出力される受信信号の処理を行い、他の領域に対しては振動子アレイから出力される受信信号の処理を停止することもできる。
 この場合、関心領域を手動により設定してもよく、また、画像生成部で生成された超音波画像から輝度に基づいて関心領域を自動選択してもよく、さらに、関心領域を予め設定された超音波の送受信のフォーカス点の周辺領域に設定することもできる。
 また、フレームに応じて選択的に、測定深度に関わらずに振動子アレイから出力された受信信号の処理が行われる高画質モードと省電力モードを切り替えて動作するように受信信号処理部を制御してもよい。
 この発明によれば、振動子アレイから出力される受信信号の処理が測定深度に応じて選択的に停止される省電力モードで動作するように受信信号処理部を制御するので、関心領域の大きさに制限を受けることなく関心領域の高画質化と省電力化を図ることが可能となる。
この発明の実施の形態1に係る超音波診断装置の構成を示すブロック図である。 高画質モードにおける駆動信号と受信信号処理部の動作を示すタイミングチャートである。 高画質モードにおける各測定ライン上の受信信号処理の様子を模式的に示す図である。 実施の形態1における駆動信号と受信信号処理部の動作を示すタイミングチャートである。 実施の形態1における各測定ライン上の受信信号処理の様子を模式的に示す図である。 実施の形態2における各測定ライン上の受信信号処理の様子を模式的に示す図である。 実施の形態2の変形例における各測定ライン上の受信信号処理の様子を模式的に示す図である。 実施の形態3における関心領域の設定方法を示す図である。 実施の形態3における各測定ライン上の受信信号処理の様子を模式的に示す図である。 実施の形態4における各測定ライン上の受信信号処理の様子を模式的に示し、(A)は奇数フレーム、(B)は偶数フレームを示す図である。 実施の形態4の変形例における各測定ライン上の受信信号処理の様子を模式的に示し、(A)は奇数フレーム、(B)は偶数フレームを示す図である。 実施の形態4の他の変形例における各測定ライン上の受信信号処理の様子を模式的に示し、(A)は奇数フレーム、(B)は偶数フレームを示す図である。 実施の形態5に係る超音波診断装置の構成を示すブロック図である。 実施の形態5における関心領域の判別方法を示す図である。 実施の形態6における関心領域の設定方法を示す図である。
 以下、この発明の実施の形態を添付図面に基づいて説明する。
実施の形態1
 図1に、この発明の実施の形態1に係る超音波診断装置の構成を示す。超音波診断装置は、超音波プローブ1と、この超音波プローブ1と無線通信により接続された診断装置本体2とを備えている。
 超音波プローブ1は、1次元又は2次元の振動子アレイを構成する複数の超音波トランスデューサ3を有し、これらトランスデューサ3にそれぞれ対応して受信信号処理部4が接続され、さらに受信信号処理部4にパラレル/シリアル変換部5を介して無線通信部6が接続されている。また、複数のトランスデューサ3に送信駆動部7を介して送信制御部8が接続され、複数の受信信号処理部4に受信制御部9が接続され、無線通信部6に通信制御部10が接続されている。そして、パラレル/シリアル変換部5、送信制御部8、受信制御部9および通信制御部10にプローブ制御部11が接続されている。
 複数のトランスデューサ3は、それぞれ振動子を形成するもので、送信駆動部7から供給される駆動信号に従って超音波を送信すると共に被検体からの超音波エコーを受信して受信信号を出力する。各トランスデューサ3は、例えば、PZT(チタン酸ジルコン酸鉛)に代表される圧電セラミックや、PVDF(ポリフッ化ビニリデン)に代表される高分子圧電素子等からなる圧電体の両端に電極を形成した振動子によって構成される。
 そのような振動子の電極に、パルス状又は連続波の電圧を印加すると、圧電体が伸縮し、それぞれの振動子からパルス状又は連続波の超音波が発生して、それらの超音波の合成により超音波ビームが形成される。また、それぞれの振動子は、伝搬する超音波を受信することにより伸縮して電気信号を発生し、それらの電気信号は、超音波の受信信号として出力される。
 送信駆動部7は、例えば、複数のパルサを含んでおり、送信制御部8によって選択された送信遅延パターンに基づいて、複数のトランスデューサ3から送信される超音波が被検体内の組織のエリアをカバーする幅広の超音波ビームを形成するようにそれぞれの駆動信号の遅延量を調節して複数のトランスデューサ3に供給する。
 各チャンネルの受信信号処理部4は、受信制御部9の制御の下で、対応するトランスデューサ3から出力される受信信号に対して直交検波処理又は直交サンプリング処理を施すことにより複素ベースバンド信号を生成し、複素ベースバンド信号をサンプリングすることにより、組織のエリアの情報を含むサンプルデータを生成して、サンプルデータをパラレル/シリアル変換部5に供給する。受信信号処理部4は、複素ベースバンド信号をサンプリングして得られるデータに高能率符号化のためのデータ圧縮処理を施すことによりサンプルデータを生成してもよい。
 パラレル/シリアル変換部5は、複数チャンネルの受信信号処理部4によって生成されたパラレルのサンプルデータを、シリアルのサンプルデータに変換する。
 無線通信部6は、シリアルのサンプルデータに基づいてキャリアを変調して伝送信号を生成し、伝送信号をアンテナに供給してアンテナから電波を送信することにより、シリアルのサンプルデータを送信する。変調方式としては、例えば、ASK(Amplitude Shift Keying)、PSK(Phase Shift Keying)、QPSK(Quadrature Phase Shift Keying)、16QAM(16 Quadrature Amplitude Modulation)等が用いられる。
 無線通信部6は、診断装置本体2との間で無線通信を行うことにより、サンプルデータを診断装置本体2に送信すると共に、診断装置本体2から各種の制御信号を受信して、受信された制御信号を通信制御部10に出力する。通信制御部10は、プローブ制御部11によって設定された送信電波強度でサンプルデータの送信が行われるように無線通信部6を制御すると共に、無線通信部6が受信した各種の制御信号をプローブ制御部11に出力する。
 プローブ制御部11は、診断装置本体2から送信される各種の制御信号に基づいて、超音波プローブ1の各部の制御を行う。
 超音波プローブ1には、図示しないバッテリが内蔵され、このバッテリから超音波プローブ1内の各回路に電源供給が行われる。
 なお、超音波プローブ1は、リニアスキャン方式、コンベックススキャン方式、セクタスキャン方式等の体外式プローブでもよいし、ラジアルスキャン方式等の超音波内視鏡用プローブでもよい。
 一方、診断装置本体2は、無線通信部13を有し、この無線通信部13にシリアル/パラレル変換部14を介してデータ格納部15が接続され、データ格納部15に画像生成部16が接続されている。さらに、画像生成部16に表示制御部17を介して表示部18が接続されている。また、無線通信部13に通信制御部19が接続され、シリアル/パラレル変換部14、画像生成部16、表示制御部17および通信制御部19に本体制御部20が接続されている。さらに、本体制御部20には、操作者が入力操作を行うための操作部21と、動作プログラムを格納する格納部22がそれぞれ接続されている。
 無線通信部13は、超音波プローブ1との間で無線通信を行うことにより、各種の制御信号を超音波プローブ1に送信する。また、無線通信部13は、アンテナによって受信される信号を復調することにより、シリアルのサンプルデータを出力する。
 通信制御部19は、本体制御部20によって設定された送信電波強度で各種の制御信号の送信が行われるように無線通信部13を制御する。
 シリアル/パラレル変換部14は、無線通信部13から出力されるシリアルのサンプルデータを、パラレルのサンプルデータに変換する。データ格納部15は、メモリまたはハードディスク等によって構成され、シリアル/パラレル変換部14によって変換された少なくとも1フレーム分のサンプルデータを格納する。
 画像生成部16は、データ格納部15から読み出される1フレーム毎のサンプルデータに受信フォーカス処理を施して、超音波診断画像を表す画像信号を生成する。画像生成部16は、整相加算部23と画像処理部24とを含んでいる。
 整相加算部23は、本体制御部20において設定された受信方向に応じて、予め記憶されている複数の受信遅延パターンの中から1つの受信遅延パターンを選択し、選択された受信遅延パターンに基づいて、サンプルデータによって表される複数の複素ベースバンド信号にそれぞれの遅延を与えて加算することにより、受信フォーカス処理を行う。この受信フォーカス処理により、超音波エコーの焦点が絞り込まれたベースバンド信号(音線信号)が生成される。
 画像処理部24は、整相加算部23によって生成される音線信号に基づいて、被検体内の組織に関する断層画像情報であるBモード画像信号を生成する。画像処理部24は、STC(sensitivity time control)部と、DSC(digital scan converter:デジタル・スキャン・コンバータ)とを含んでいる。STC部は、音線信号に対して、超音波の反射位置の深度に応じて、距離による減衰の補正を施す。DSCは、STC部によって補正された音線信号を通常のテレビジョン信号の走査方式に従う画像信号に変換(ラスター変換)し、階調処理等の必要な画像処理を施すことにより、Bモード画像信号を生成する。
 表示制御部17は、画像生成部16によって生成される画像信号に基づいて、表示部18に超音波診断画像を表示させる。表示部18は、例えば、LCD等のディスプレイ装置を含んでおり、表示制御部17の制御の下で、超音波診断画像を表示する。
 本体制御部20は、操作者により操作部21から入力された関心領域の測定深度に基づき、超音波プローブ1の受信信号処理部4を測定深度に応じて選択的に停止する省電力モードで動作するように制御する。すなわち、本体制御部20は、操作部21から入力された関心領域の測定深度に対してはON状態となり、その他の測定深度に対してはOFF状態となるように、無線通信により超音波プローブ1の受信信号処理部4を制御する。
 このような診断装置本体2において、シリアル/パラレル変換部14、画像生成部16、表示制御部17、通信制御部19および本体制御部20は、CPUと、CPUに各種の処理を行わせるための動作プログラムから構成されるが、それらをデジタル回路で構成してもよい。上記の動作プログラムは、格納部22に格納される。格納部22における記録媒体としては、内蔵のハードディスクの他に、フレキシブルディスク、MO、MT、RAM、CD-ROMまたはDVD-ROM等を用いることができる。
 ここで、省電力モードについて説明するが、その前に、省電力化を図らない高画質モードについて説明する。
 高画質モードにおいては、図2に示されるように、振動子アレイを構成する各トランスデューサ3に送信駆動部7から周期ΔTaで駆動信号が供給される場合に、被検体の検査領域の最深部からの超音波エコーを受信するに十分な時間ΔTbだけ受信信号処理部4がON状態とされる。例えば、時刻t1にトランスデューサ3に駆動信号が供給されると、これと同時に対応する受信信号処理部4がON状態とされ、時間ΔTbにわたって受信信号処理部4のON状態が維持され、時刻t1から時間ΔTbが経過した時刻t2に検査に有効な超音波エコーの受信が完了したとして受信信号処理部4がOFF状態にされる。その後、時刻t1から周期ΔTaが経過した時刻t3に次の駆動信号がトランスデューサ3に供給されると共に再び受信信号処理部4がON状態とされる。以降、同様の動作が繰り返される。
 これにより、図3に示されるように、全ての測定ラインに対して、検査領域の最深部からの超音波エコーを受信するに十分な時間ΔTbにわたって受信信号処理部4で受信信号の処理が行われ、高画質の画像を得ることができる。
 これに対して、省電力モードにおいては、図4に示されるように、振動子アレイを構成する各トランスデューサ3に送信駆動部7から周期ΔTaで駆動信号が供給される場合に、操作部21から入力された関心領域の特定の測定深度に対応する時間のみ受信信号処理部4がON状態とされ、他の時間は受信信号処理部4がOFF状態にされる。例えば、時刻t1にトランスデューサ3に駆動信号が供給されても、受信信号処理部4はまだON状態とされず、時刻t1から時間ΔTcが経過した時刻t4にON状態とされる。この時間ΔTcは、超音波を送信してから関心領域からの超音波エコーの受信が開始されるまでに要する時間である。すなわち、受信信号処理部4は、関心領域からの超音波エコーの受信が開始される時刻t4にON状態とされ、関心領域からの超音波エコーの受信が終了する時刻t5までの時間ΔTdにわたって受信信号処理部4のON状態が維持される。そして、時刻t5に関心領域の全域からの超音波エコーの受信が完了したとして受信信号処理部4がOFF状態にされ、その後、時刻t1から周期ΔTaが経過した時刻t3に次の駆動信号がトランスデューサ3に供給される。以降、同様の動作が繰り返される。
 これにより、図5に示されるように、全ての測定ラインに対して、関心領域からの超音波エコーを受信するに必要な時間ΔTdのみ受信信号処理部4で受信信号の処理が行われ、他の時間は受信信号の処理が停止される。その結果、省電力化を図ることができる。
 次に、実施の形態1の動作について説明する。
 まず、操作者により操作部21から被検体の関心領域の測定深度が入力される。例えば、検査部位等に応じて被検体の体表からの深さを概ね把握することができ、この深さに基づいて関心領域の測定深度を推定し、入力することができる。なお、操作部21から入力された関心領域の測定深度は、無線通信により診断装置本体2の本体制御部20から超音波プローブ1のプローブ制御部11へ伝送される。
 超音波診断が開始されると、プローブ制御部11および送信制御部8の制御の下で送信駆動部7から供給される駆動信号に従って振動子アレイを構成する複数のトランスデューサ3から超音波が送信される。被検体からの超音波エコーを受信した各トランスデューサ3から出力された受信信号がそれぞれ対応する受信信号処理部4に供給されるが、このとき、プローブ制御部11は、受信制御部9を介して、関心領域の測定深度に対してはON状態となり、その他の測定深度に対してはOFF状態となるように受信信号処理部4を制御する。
 これにより、関心領域の測定深度に対してのみ受信信号処理部4でサンプルデータが生成され、パラレル/シリアル変換部5でシリアル化された後に無線通信部6から診断装置本体2へ無線伝送される。診断装置本体2の無線通信部13で受信されたサンプルデータは、シリアル/パラレル変換部14でパラレルのデータに変換され、データ格納部15に格納される。さらに、データ格納部15から1フレーム毎のサンプルデータが読み出され、画像生成部16で画像信号が生成され、この画像信号に基づいて表示制御部17により超音波診断画像が表示部18に表示される。
 このようにして、超音波プローブ1の受信信号処理部4が省電力モードで動作され、関心領域を高画質で画像表示しながらも省電力化を図ることが可能となる。
 なお、測定ラインの本数は制限されず、関心領域に関わらない測定深度に対してのみ受信信号処理部4をOFF状態とするので、関心領域の大きさに制限を受けることなく、関心領域の高画質化と省電力化を両立させることができる。
実施の形態2
 実施の形態1では、全ての測定ラインに対して、関心領域の測定深度に対応する時間ΔTdのみ受信信号処理部4で受信信号の処理を行い、他の時間は受信信号の処理を停止したが、これに限るものではなく、測定ラインを第1のライン群と第2のライン群とに分割し、第1のライン群の測定ラインに対しては測定深度に関わらずに受信信号の処理を行う高画質モードで動作し、第2のライン群の測定ラインに対しては関心領域の測定深度に対してのみ受信信号の処理を行う省電力モードで動作するように受信信号処理部4を制御することもできる。
 例えば、図6に示されるように、複数の測定ラインのうち、奇数ラインを第1のライン群L1とし、偶数ラインを第2のライン群L2として、第1のライン群L1の測定ラインと第2のライン群L2の測定ラインが交互に配列されるように設定する。そして、第1のライン群L1の測定ラインに対しては高画質モードで、第2のライン群L2の測定ラインに対しては省電力モードで動作するように受信信号処理部4が制御される。すなわち、第1のライン群L1の測定ラインでは、被検体の検査領域の最深部からの超音波エコーを受信するに十分な時間ΔTbにわたって受信信号が処理され、第2のライン群L2の測定ラインでは、関心領域からの超音波エコーを受信するに必要な時間ΔTdのみ受信信号が処理される。
 このようにすれば、画面の全領域にわたる超音波画像を得ることができると共に関心領域の測定深度のみを高画質で画像表示することが可能となる。
 なお、偶数ラインを第1のライン群L1として高画質モードで動作し、奇数ラインを第2のライン群L2として省電力モードで動作するように、受信信号処理部4を制御してもよい。
 また、測定ライン1本毎に第1のライン群L1と第2のライン群L2とに分けるのではなく、数本の測定ライン毎に第1のライン群L1と第2のライン群L2とに分割してもよい。
 さらに、図7に示されるように、複数の測定ラインのうち中央部に配列された複数の測定ラインを第1のライン群L1として高画質モードで動作し、第1のライン群L1の両側部に配列された複数の測定ラインを第2のライン群L2として省電力モードで動作するように、受信信号処理部4を制御することもできる。
 これにより、省電力化を図りながらも、中央部と関心領域の測定深度のみを高画質で画像表示することが可能となる。
実施の形態3
 上記の実施の形態1および2では、関心領域の測定深度について全ての測定ラインに対して受信信号の処理を行ったが、図8に示されるように、関心領域Rの測定深度だけでなく、関心領域Rの形状をも、操作者により表示部18の表示パネルあるいは操作部21等から手動で入力設定するようにすれば、図9に示されるように、関心領域Rのみに対して受信信号の処理を行うことができる。すなわち、関心領域Rが存在する測定ラインで且つ関心領域Rが存在する測定深度に対して受信信号の処理を行い、その他の領域に対しては受信信号の処理が停止される。
 このようにすることにより、さらに効果的に省電力化を図ることができる。
実施の形態4
 上記の実施の形態1~3では、フレームによって変化することなく、受信信号処理部4の制御が行われたが、これに限るものではなく、フレームに応じて選択的に、高画質モードと省電力モードを切り替えて動作するように受信信号処理部4を制御することもできる。
 例えば、奇数フレームでは、図10(A)に示されるように、全ての測定ラインに対して測定深度に関わらずに受信信号が処理される高画質モードで動作し、偶数フレームでは、図10(B)に示されるように、全ての測定ラインに対して、関心領域からの超音波エコーを受信するに必要な時間ΔTdのみ受信信号の処理が行われ、他の時間は受信信号の処理が停止されるように、受信信号処理部4を制御する。
 このようにすれば、1フレーム毎に画面の全領域にわたる超音波画像を得ることができると共に関心領域の測定深度のみを高画質で画像表示することが可能となる。
 なお、偶数フレームを高画質モードで動作させ、奇数フレームを省電力モードで動作させるように、受信信号処理部4を制御してもよい。
 また、1フレーム毎に高画質モードと省電力モードを切り替えるのではなく、数フレーム毎に高画質モードと省電力モードを切り替えてもよい。
 また、奇数フレームでは、図11(A)に示されるように、全ての測定ラインに対して測定深度に関わらずに受信信号が処理される高画質モードで動作し、偶数フレームでは、図11(B)に示されるように、複数の測定ラインのうち中央部に配列された複数の測定ラインを高画質モードで動作し、両側部に配列された複数の測定ラインを省電力モードで動作するように、受信信号処理部4を制御することもできる。
 さらに、実施の形態3と同様に、関心領域Rの測定深度だけでなく、関心領域Rの形状をも、操作者により表示部18の表示パネルあるいは操作部21等から手動で入力設定し、奇数フレームでは、図12(A)に示されるように、全ての測定ラインに対して測定深度に関わらずに受信信号が処理される高画質モードで動作し、偶数フレームでは、図12(B)に示されるように、関心領域Rのみに対して受信信号の処理を行うように、受信信号処理部4を制御してもよい。
実施の形態5
 図13に、実施の形態5に係る超音波診断装置に用いられた診断装置本体31の構成を示す。この診断装置本体31は、図1に示した実施の形態1における診断装置本体2において、画像生成部16に関心領域選択部32が接続され、この関心領域選択部32に本体制御部20を接続したものである。関心領域選択部32は、図14に示されるように、画像生成部16で生成された超音波画像から輝度に基づいて被検体の関心領域Rを自動選択する。
 このような関心領域選択部32を備えることにより、画像生成部16で生成された超音波画像から輝度に基づいて関心領域Rが自動選択される。本体制御部20は、関心領域選択部32で自動選択された関心領域Rに基づき、上述した実施の形態3と同様に、関心領域Rのみに対して受信信号の処理を行い、その他の領域に対しては受信信号の処理が停止されるように、無線通信により超音波プローブ1の受信信号処理部4を制御する。
 また、本体制御部20は、図12に示した実施の形態4のように、フレームに応じて、高画質モードでの動作と、関心領域Rのみに対して受信信号の処理を行う省電力モードでの動作を切り替えるように、受信信号処理部4を制御してもよい。
実施の形態6
 図1に示した実施の形態1における診断装置本体2において、本体制御部20が、予め設定された超音波の送受信のフォーカス点Fの周辺領域を関心領域Rとして自動選択することもできる。このようにして自動選択された関心領域Rに基づき、本体制御部20は、実施の形態1~4に記載したように受信信号処理部4を制御する。
 なお、上述した実施の形態1~6では、超音波プローブ1と診断装置本体2または31とが互いに無線通信により接続されていたが、これに限るものではなく、接続ケーブルを介して超音波プローブ1が診断装置本体2または31に接続されていてもよい。この場合には、超音波プローブ1の無線通信部6および通信制御部10、診断装置本体2または31の無線通信部13および通信制御部19等は不要となる。
 1 超音波プローブ、2,31 診断装置本体、3 トランスデューサ、4 受信信号処理部、5 パラレル/シリアル変換部、6 無線通信部、7 送信駆動部、8 送信制御部、9 受信制御部、10 通信制御部、11 プローブ制御部、13 無線通信部、14 シリアル/パラレル変換部、15 データ格納部、16 画像生成部、17 表示制御部、18 表示部、19 通信制御部、20 本体制御部、21 操作部、22 格納部、23 整相加算部、24 画像処理部、32 関心領域選択部、L1 第1のライン群、L2 第2のライン群、R 関心領域、F フォーカス点。

Claims (18)

  1.  送信駆動部から供給された駆動信号に基づいて超音波プローブの振動子アレイから被検体に向けて超音波ビームが送信されると共に被検体による超音波エコーを受信した前記超音波プローブの振動子アレイから出力される受信信号を受信信号処理部で処理し、処理された受信信号に基づいて画像生成部で超音波画像を生成する超音波診断装置であって、
     前記振動子アレイから出力される受信信号の処理が測定深度に応じて選択的に停止される省電力モードで動作するように前記受信信号処理部を制御する制御手段を備えたことを特徴とする超音波診断装置。
  2.  前記制御手段は、複数の測定ラインを第1のライン群と第2のライン群とに分割し、第1のライン群の測定ラインに対しては測定深度に関わらずに前記振動子アレイから出力された受信信号の処理が行われる高画質モードで動作し、第2のライン群の測定ラインに対しては前記省電力モードで動作するように前記受信信号処理部を制御する請求項1に記載の超音波診断装置。
  3.  第1のライン群の測定ラインと第2のライン群の測定ラインは、交互に配列されている請求項2に記載の超音波診断装置。
  4.  第1のライン群は、前記複数の測定ラインのうち中央部に配列された測定ラインからなり、第2のライン群は、第1のライン群の両側部に配列された測定ラインからなる請求項2に記載の超音波診断装置。
  5.  前記制御手段は、前記省電力モードにおいて、関心領域に対しては前記振動子アレイから出力される受信信号の処理を行い、他の領域に対しては前記振動子アレイから出力される受信信号の処理を停止する請求項1に記載の超音波診断装置。
  6.  前記関心領域は、手動により設定される請求項5に記載の超音波診断装置。
  7.  前記画像生成部で生成された超音波画像から輝度に基づいて前記関心領域を自動選択する関心領域選択部をさらに備えた請求項5に記載の超音波診断装置。
  8.  前記関心領域は、予め設定された超音波の送受信のフォーカス点の周辺領域である請求項5に記載の超音波診断装置。
  9.  前記制御手段は、フレームに応じて選択的に、測定深度に関わらずに前記振動子アレイから出力された受信信号の処理が行われる高画質モードと前記省電力モードを切り替えて動作するように前記受信信号処理部を制御する請求項1~8のいずれか一項に記載の超音波診断装置。
  10.  送信駆動部から供給された駆動信号に基づいて超音波プローブの振動子アレイから被検体に向けて超音波ビームが送信されると共に被検体による超音波エコーを受信した前記超音波プローブの振動子アレイから出力される受信信号を受信信号処理部で処理し、処理された受信信号に基づいて画像生成部で超音波画像を生成する超音波診断方法であって、
     前記振動子アレイから出力される受信信号の処理が測定深度に応じて選択的に停止される省電力モードで動作するように前記受信信号処理部を制御することを特徴とする超音波診断方法。
  11.  複数の測定ラインを第1のライン群と第2のライン群とに分割し、第1のライン群の測定ラインに対しては測定深度に関わらずに前記振動子アレイから出力された受信信号の処理が行われる高画質モードで動作し、第2のライン群の測定ラインに対しては前記省電力モードで動作するように前記受信信号処理部を制御する請求項10に記載の超音波診断方法。
  12.  第1のライン群の測定ラインと第2のライン群の測定ラインは、交互に配列されている請求項11に記載の超音波診断方法。
  13.  第1のライン群は、前記複数の測定ラインのうち中央部に配列された測定ラインからなり、第2のライン群は、第1のライン群の両側部に配列された測定ラインからなる請求項11に記載の超音波診断方法。
  14.  前記省電力モードにおいて、関心領域に対しては前記振動子アレイから出力される受信信号の処理を行い、他の領域に対しては前記振動子アレイから出力される受信信号の処理を停止する請求項10に記載の超音波診断方法。
  15.  前記関心領域は、手動により設定される請求項14に記載の超音波診断方法。
  16.  前記画像生成部で生成された超音波画像から輝度に基づいて前記関心領域が自動選択される請求項14に記載の超音波診断方法。
  17.  前記関心領域は、予め設定された超音波の送受信のフォーカス点の周辺領域である請求項14に記載の超音波診断方法。
  18.  フレームに応じて選択的に、測定深度に関わらずに前記振動子アレイから出力された受信信号の処理が行われる高画質モードと前記省電力モードを切り替えて動作するように前記受信信号処理部を制御する請求項10~17のいずれか一項に記載の超音波診断方法。
PCT/JP2011/065943 2010-09-10 2011-07-13 超音波診断装置および方法 WO2012032848A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US13/821,934 US20140163378A1 (en) 2010-09-10 2011-07-13 Ultrasound diagnostic device and method
EP11823327.9A EP2614774A1 (en) 2010-09-10 2011-07-13 Ultrasound diagnostic device and method
CN2011800432870A CN103096807A (zh) 2010-09-10 2011-07-13 超声波诊断设备和方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010203073A JP5443309B2 (ja) 2010-09-10 2010-09-10 超音波診断装置および方法
JP2010-203073 2010-09-10

Publications (1)

Publication Number Publication Date
WO2012032848A1 true WO2012032848A1 (ja) 2012-03-15

Family

ID=45810452

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/065943 WO2012032848A1 (ja) 2010-09-10 2011-07-13 超音波診断装置および方法

Country Status (5)

Country Link
US (1) US20140163378A1 (ja)
EP (1) EP2614774A1 (ja)
JP (1) JP5443309B2 (ja)
CN (1) CN103096807A (ja)
WO (1) WO2012032848A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160367224A1 (en) * 2014-03-26 2016-12-22 Fujifilm Corporation Acoustic wave processing apparatus, signal processing method, and program for acoustic wave processing apparatus

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5254390B2 (ja) * 2011-03-18 2013-08-07 富士フイルム株式会社 超音波診断装置および超音波画像生成方法
US9775585B2 (en) * 2011-06-15 2017-10-03 Toshiba Medical Systems Corporation Variable power saving processing scheme for ultrasound beamformer functionality
JP6321980B2 (ja) * 2013-03-09 2018-05-09 キヤノン株式会社 検出回路、駆動方法、プローブ、及び被検体情報取得装置
KR102192005B1 (ko) * 2014-02-28 2020-12-16 삼성전자주식회사 초음파 진단 장치 및 그 동작방법
KR101611443B1 (ko) * 2014-02-28 2016-04-11 삼성메디슨 주식회사 초음파 영상 장치의 제어 방법 및 그 초음파 영상 장치
KR101496167B1 (ko) * 2014-07-08 2015-02-26 주식회사 힐세리온 휴대용 초음파 진단장치 및 그것에서의 전력 효율 개선 방법
JP6507896B2 (ja) * 2015-07-09 2019-05-08 株式会社ソシオネクスト 超音波画像生成システム
CN113367722A (zh) * 2017-01-16 2021-09-10 深圳迈瑞生物医疗电子股份有限公司 基于超声图像的参数测量方法和超声成像系统
CN108309354B (zh) * 2017-01-16 2021-04-02 深圳迈瑞生物医疗电子股份有限公司 超声盆底检测引导方法和超声成像系统
JP7078487B2 (ja) * 2018-08-02 2022-05-31 富士フイルムヘルスケア株式会社 超音波診断装置及び超音波画像処理方法
WO2020082229A1 (zh) * 2018-10-23 2020-04-30 深圳迈瑞生物医疗电子股份有限公司 一种检查模式的确定方法及超声设备

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6249837A (ja) * 1985-08-28 1987-03-04 株式会社東芝 超音波診断装置
JPH06296610A (ja) 1993-04-15 1994-10-25 Toshiba Corp 超音波診断装置
JPH09192130A (ja) 1996-01-12 1997-07-29 Aloka Co Ltd 超音波診断装置
JP2006280768A (ja) * 2005-04-04 2006-10-19 Ge Medical Systems Global Technology Co Llc 超音波診断装置
JP2009273517A (ja) * 2008-05-12 2009-11-26 Toshiba Corp 携帯型超音波診断装置
JP2010082350A (ja) * 2008-10-02 2010-04-15 Toshiba Corp 超音波診断装置

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003175035A (ja) * 2003-01-07 2003-06-24 Aloka Co Ltd 超音波診断装置
JP5672159B2 (ja) * 2011-06-07 2015-02-18 コニカミノルタ株式会社 超音波探触子

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6249837A (ja) * 1985-08-28 1987-03-04 株式会社東芝 超音波診断装置
JPH06296610A (ja) 1993-04-15 1994-10-25 Toshiba Corp 超音波診断装置
JPH09192130A (ja) 1996-01-12 1997-07-29 Aloka Co Ltd 超音波診断装置
JP2006280768A (ja) * 2005-04-04 2006-10-19 Ge Medical Systems Global Technology Co Llc 超音波診断装置
JP2009273517A (ja) * 2008-05-12 2009-11-26 Toshiba Corp 携帯型超音波診断装置
JP2010082350A (ja) * 2008-10-02 2010-04-15 Toshiba Corp 超音波診断装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160367224A1 (en) * 2014-03-26 2016-12-22 Fujifilm Corporation Acoustic wave processing apparatus, signal processing method, and program for acoustic wave processing apparatus
US10980515B2 (en) * 2014-03-26 2021-04-20 Fujifilm Corporation Acoustic wave processing apparatus, signal processing method, and program for acoustic wave processing apparatus

Also Published As

Publication number Publication date
JP5443309B2 (ja) 2014-03-19
CN103096807A (zh) 2013-05-08
JP2012055559A (ja) 2012-03-22
US20140163378A1 (en) 2014-06-12
EP2614774A1 (en) 2013-07-17

Similar Documents

Publication Publication Date Title
JP5443309B2 (ja) 超音波診断装置および方法
JP5250064B2 (ja) 超音波診断装置および超音波画像生成方法
JP5518790B2 (ja) 超音波診断装置および超音波画像生成方法
JP5656520B2 (ja) 超音波診断装置
JP2012050603A (ja) 超音波診断装置および方法
JP2012161562A (ja) 超音波診断装置および超音波画像生成方法
JP2012165893A (ja) 超音波診断装置および超音波画像生成方法
JP2012161555A (ja) 超音波診断装置および方法
JP2012228424A (ja) 超音波診断装置
JP2012157567A (ja) 超音波診断装置および超音波画像生成方法
US20210015459A1 (en) Ultrasound system and method for controlling ultrasound system
JP5274615B2 (ja) 超音波診断装置および超音波画像生成方法
JP5476002B2 (ja) 超音波診断装置
JP5346641B2 (ja) 超音波プローブ及び超音波診断装置
JP2013090827A (ja) 超音波診断装置および超音波画像生成方法
JP2012217618A (ja) 超音波診断装置
JP5526009B2 (ja) 超音波診断装置
JP5579102B2 (ja) 超音波診断装置および超音波画像生成方法
JP2013063157A (ja) 超音波診断装置および超音波画像生成方法
JP5669631B2 (ja) 超音波診断装置および超音波診断装置の作動方法
JP2012228425A (ja) 超音波診断装置
JP7058727B2 (ja) 超音波システムおよび超音波システムの制御方法
JP2012183103A (ja) 超音波診断装置および超音波画像生成方法
WO2021020039A1 (ja) 超音波診断装置および超音波診断装置の制御方法
JP2019180934A (ja) 超音波プローブ、超音波プローブの制御方法および超音波システム

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180043287.0

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11823327

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2011823327

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2011823327

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 13821934

Country of ref document: US