WO2012032824A1 - Β-sialon, light-emitting device and β-sialon production method - Google Patents

Β-sialon, light-emitting device and β-sialon production method Download PDF

Info

Publication number
WO2012032824A1
WO2012032824A1 PCT/JP2011/063832 JP2011063832W WO2012032824A1 WO 2012032824 A1 WO2012032824 A1 WO 2012032824A1 JP 2011063832 W JP2011063832 W JP 2011063832W WO 2012032824 A1 WO2012032824 A1 WO 2012032824A1
Authority
WO
WIPO (PCT)
Prior art keywords
sialon
less
sintered body
light
emitting device
Prior art date
Application number
PCT/JP2011/063832
Other languages
French (fr)
Japanese (ja)
Inventor
久之 橋本
秀幸 江本
山田 鈴弥
Original Assignee
電気化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 電気化学工業株式会社 filed Critical 電気化学工業株式会社
Publication of WO2012032824A1 publication Critical patent/WO2012032824A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/77Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals
    • C09K11/7728Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals containing europium
    • C09K11/77348Silicon Aluminium Nitrides or Silicon Aluminium Oxynitrides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/50Wavelength conversion elements
    • H01L33/501Wavelength conversion elements characterised by the materials, e.g. binder

Definitions

  • the ⁇ -sialon of the present invention has a high emission peak intensity. Since the light emitting device of the present invention uses a phosphor having a high emission peak intensity, it has brighter luminance. Moreover, it is possible to obtain ⁇ -sialon having an efficient and high emission peak intensity by the production method of the present invention.
  • ⁇ -sialon is a ⁇ -sialon crystal represented by the general formula: Si 6-z Al z O z N 8-z (0 ⁇ z ⁇ 4.2) containing Eu 2+ as the emission center And Eu 2+ , which is the emission center, transitions from the ground state to the excited state by the excitation light, and emits fluorescence when returning to the ground state again.
  • the characteristic X-ray intensity distribution of Al is an energy dispersive X-ray analyzer (JEOL JED-2300 type) attached to a field emission scanning electron microscope (FE-SEM, JSM-7001F type). Can be measured under the following conditions.
  • the firing temperature is preferably in the temperature range of 1800 ° C. or higher and 2200 ° C. or lower. If the heating temperature is high, Eu can enter the ⁇ -type sialon crystal. Although the heating time depends on the heating temperature, it is preferable to perform a heat treatment for 10 hours or more.
  • the characteristic X-ray intensity distribution of Al is further examined, and a production lot having a CV value of 26% or less is selected to obtain a ⁇ -sialon having a low emission peak intensity. Without inclusion, ⁇ -sialon having an emission peak intensity exceeding 200% can be efficiently obtained.
  • the light-emitting device is configured by using at least one light-emitting light source and ⁇ -sialon having a CV value of 26% or less as a phosphor.
  • the light emitting device may be configured by covering at least one light emitting light source with a resin in which a phosphor is dispersed. It is preferable to use an ultraviolet LED or a blue LED that emits light with a wavelength of 350 nm or more and 500 nm or less, particularly a blue LED that emits light with a wavelength of 440 nm or more and 480 nm or less, and these light emitting elements include GaN and InGaN. There are nitride semiconductors.
  • a light emitting device in addition to a method of using a ⁇ -sialon phosphor having a CV value of 26% or less alone, a light emitting device that emits a desired color is formed by using in combination with a phosphor having other light emission characteristics. You can also.
  • a blue LED is used as an excitation source, combining the ⁇ -sialon of this embodiment with a yellow phosphor having an emission peak in a region of 575 nm or more and 590 nm or less enables white light emission with a wide color temperature.
  • An example of a yellow phosphor is ⁇ -sialon in which Eu is dissolved.
  • Example 2 The ⁇ -sialon of Example 2 was manufactured under the same conditions as in Example 1 except that the O / Al ratio in the raw material mixture was 1.08, and the emission peak intensity was 235%. The CV value was 25.1%.

Abstract

Provided are β-sialon capable of achieving high emission peak intensity, a light-emitting device and β-sialon production method. The β-sialon is obtained by solid solution of Eu in β-sialon represented by Si6-zAlzOzN8-z, and the variation coefficient of the characteristic X-ray intensity distribution for Al is 26% or less. The method comprises a baking process of blending an oxide with silicon nitride and aluminum nitride, then adding a europium compound and heating under a nitrogen atmosphere; a grinding process of grinding the baked product obtained; an annealing process of heating the ground baked product in a noble gas atmosphere or in a vacuum; an acid treatment process of treating the annealed, ground, baked product with acid; and an elutriation process of removing fine powder; to produce β-sialon with a variation coefficient of the characteristic X-ray intensity distribution for Al of 26% or less.

Description

β型サイアロン、発光装置及びβ型サイアロンの製造方法β-type sialon, light emitting device, and method for producing β-type sialon
 本発明は、Euを固溶したβ型サイアロン(以下、β型サイアロンという。)とこのβ型サイアロンを用いた発光装置、並びにβ型サイアロンの製造方法に関する。 The present invention relates to β-sialon (hereinafter referred to as β-sialon) in which Eu is dissolved, a light-emitting device using the β-sialon, and a method for producing β-sialon.
 β型サイアロンは、例えば窒化ケイ素(Si)と、窒化アルミニウム(AlN)と、酸化ユーロピウム(Eu)とを混合して窒素雰囲気中約2000℃で焼成し、得られた焼成物を粉砕して得られる粉末である。特許文献1及び2には、β型サイアロンの発光ピーク強度を高くするために、焼成物の粉末を窒素以外の不活性ガス雰囲気中で再加熱し、再加熱後にさらに酸処理することにより結晶性を向上させることが開示されている。 The β-type sialon is obtained by mixing, for example, silicon nitride (Si 3 N 4 ), aluminum nitride (AlN), and europium oxide (Eu 2 O 3 ), and firing in a nitrogen atmosphere at about 2000 ° C. It is a powder obtained by pulverizing a product. In Patent Documents 1 and 2, in order to increase the emission peak intensity of β-sialon, the fired powder is reheated in an inert gas atmosphere other than nitrogen, and further crystallized by acid treatment after reheating. Is disclosed.
特開2005-255885公報JP-A-2005-255858 特開2005-255895公報JP 2005-255895 A
 しかし、上述した製造方法では、十分な発光ピーク強度を備えたβ型サイアロンは再現性良く得られていなかった。
 本発明は、高い発光ピーク強度を有するβ型サイアロンとこれを利用した発光装置、そしてβ型サイアロンの製造法を提供することを目的とする。
However, in the manufacturing method described above, β-sialon having sufficient emission peak intensity has not been obtained with good reproducibility.
An object of the present invention is to provide β-sialon having a high emission peak intensity, a light-emitting device using the β-sialon, and a method for producing β-sialon.
 本発明のβ型サイアロンは、一般式:Si6-zAl8-zで示されるβ型サイアロンにEuを固溶してなり、アルミニウム(以下、Alと表記する。)の特性X線強度分布における変動係数が26%以下となるものである。 The β-type sialon of the present invention is obtained by dissolving Eu in a β-type sialon represented by the general formula: Si 6-z Al z O z N 8-z , and has characteristics of aluminum (hereinafter referred to as Al). The coefficient of variation in the X-ray intensity distribution is 26% or less.
 本発明の発光装置は、Alの特性X線強度分布における変動係数が26%以下であるβ型サイアロンを蛍光体として用いたものである。 The light-emitting device of the present invention uses β-sialon having a coefficient of variation of 26% or less in the characteristic X-ray intensity distribution of Al as a phosphor.
 本発明のβ型サイアロンの製造方法は、Si6-zAl8-zで示されるβ型サイアロンのz値が0を超え4.2以下となるように、且つO/Alが1以上1.5未満になるように、酸化アルミニウム及び酸化ケイ素から選ばれる1種以上の酸化物と、窒化ケイ素と、窒化アルミニウムと、ユーロピウム化合物とを含有する配合物を、窒素雰囲気下で加熱する焼成工程と、得られた焼結体を粉砕する粉砕工程と、を含む製造方法である。
 この製造方法では、粉砕工程で得られた粉砕焼結体から微粉を除去するのがよい。
 本発明のβ型サイアロンの他の製造方法は、上述のβ型サイアロンを製造する際に、Si6-zAl8-zで示されるβ型サイアロンのz値が0を超え4.2以下となるように、且つO/Alが1以上1.5未満になるように、酸化アルミニウム及び酸化ケイ素から選ばれる1種以上の酸化物と、窒化ケイ素と、窒化アルミニウムとを配合し、さらにユーロピウム化合物を加えて、窒素雰囲気下で加熱する焼成工程と、得られた焼結体を粉砕する粉砕工程と、粉砕した焼結体を希ガス雰囲気又は真空中で加熱するアニール工程と、アニール処理した粉砕焼結体を酸処理する酸処理工程と、微粉を除去する水簸工程と、を含む製造方法である。
The method for producing β-sialon of the present invention is such that the z-value of β-sialon represented by Si 6-z Al z O z N 8-z exceeds 0 and is 4.2 or less, and O / Al is A compound containing one or more oxides selected from aluminum oxide and silicon oxide, silicon nitride, aluminum nitride, and a europium compound is heated in a nitrogen atmosphere so as to be 1 or more and less than 1.5 And a pulverizing step of pulverizing the obtained sintered body.
In this manufacturing method, it is preferable to remove fine powder from the pulverized sintered body obtained in the pulverization step.
In another production method of β-sialon according to the present invention, when the β-sialon described above is produced, the z-value of β-sialon represented by Si 6-z Al z O z N 8-z exceeds 0. .2 or less, and O / Al is 1 or more and less than 1.5, and one or more oxides selected from aluminum oxide and silicon oxide, silicon nitride, and aluminum nitride are blended. Further, a firing step of adding a europium compound and heating in a nitrogen atmosphere, a pulverization step of pulverizing the obtained sintered body, an annealing step of heating the pulverized sintered body in a rare gas atmosphere or vacuum, It is a manufacturing method including an acid treatment process for acid-treating the annealed pulverized sintered body and a water tank process for removing fine powder.
 本発明のβ型サイアロンは、高い発光ピーク強度を有する。本発明の発光装置は高い発光ピーク強度の蛍光体を用いるため、より明るい輝度を有する。また、本発明の製造方法により、効率的で高い発光ピーク強度を有するβ型サイアロンを得ることが可能である。 The β-sialon of the present invention has a high emission peak intensity. Since the light emitting device of the present invention uses a phosphor having a high emission peak intensity, it has brighter luminance. Moreover, it is possible to obtain β-sialon having an efficient and high emission peak intensity by the production method of the present invention.
 以下、本発明の実施の形態を詳細に説明する。
 β型サイアロンは、一般式:Si6-zAl8-z(0<z≦4.2)で示されるβ型サイアロンの結晶中に、発光中心としてEu2+を含有させたものであり、発光中心であるEu2+が励起光によって基底状態から励起状態に遷移し、再び基底状態に戻る際に蛍光を発する。
Hereinafter, embodiments of the present invention will be described in detail.
β-sialon is a β-sialon crystal represented by the general formula: Si 6-z Al z O z N 8-z (0 <z ≦ 4.2) containing Eu 2+ as the emission center And Eu 2+ , which is the emission center, transitions from the ground state to the excited state by the excitation light, and emits fluorescence when returning to the ground state again.
 本発明者がβ型サイアロンの発光ピーク強度について調べたところ、β型サイアロンのAl原子分布が発光ピーク強度に影響するとの知見を得た。特に、β型サイアロン結晶中のAlの分布状態を示す変動係数(以下、CV値という。)が26%を境に発光ピーク強度が大きく変化することが判明した。
 CV値は、Alの特性X線強度分布を測定したときの中央値と標準偏差σとから、CV(%)=(σ/中央値)×100として求めた値である。
When the present inventor examined the emission peak intensity of β-sialon, it was found that the Al atom distribution of β-sialon affects the emission peak intensity. In particular, it has been found that the emission peak intensity changes greatly with a variation coefficient (hereinafter referred to as CV value) indicating the distribution state of Al in the β-type sialon crystal at 26%.
The CV value is a value obtained as CV (%) = (σ / median) × 100 from the median when the characteristic X-ray intensity distribution of Al is measured and the standard deviation σ.
 Alの特性X線強度分布は、電界放射型走査電子顕微鏡(FE-SEM、日本電子株式会社JSM-7001F型)に付属する、エネルギー分散型X線分析装置(日本電子株式会社JED-2300型)を用いて以下の条件で測定することができる。 The characteristic X-ray intensity distribution of Al is an energy dispersive X-ray analyzer (JEOL JED-2300 type) attached to a field emission scanning electron microscope (FE-SEM, JSM-7001F type). Can be measured under the following conditions.
   加速電圧:15kV
   作動距離:15mm
   試料傾斜角度:70°
   測定領域:80μm×200μm
   ステップ幅:0.2μm
   測定時間:50msec/ステップ
   データポイント数:約400,000(40万)ポイント
Acceleration voltage: 15 kV
Working distance: 15mm
Sample tilt angle: 70 °
Measurement area: 80 μm × 200 μm
Step width: 0.2 μm
Measurement time: 50 msec / step Number of data points: Approximately 400,000 (400,000) points
 CV値が26%より大きい場合、発光ピーク強度は200%を超えることが無いが、26%以下の場合、発光ピーク強度は200%を超える。これは、Al原子がβ型サイアロン結晶中に均一に固溶していないと、ホスト結晶中に欠陥が生じることによって発光ピーク強度が低減するものと考えられ、CV値が26%以下になるとAl原子分布の均一性が良くなるため、発光ピーク強度が高くなっているものと考えられる。
 すなわち、本発明のβ型サイアロンは、一般式:Si6-zAl8-zで示され、CV値が26%以下のものである。
When the CV value is larger than 26%, the emission peak intensity does not exceed 200%, but when it is 26% or less, the emission peak intensity exceeds 200%. This is thought to be because if the Al atoms are not uniformly dissolved in the β-type sialon crystal, the emission peak intensity is reduced due to the occurrence of defects in the host crystal. When the CV value is 26% or less, Al It is considered that the emission peak intensity is high because the uniformity of atomic distribution is improved.
That is, the β-sialon of the present invention is represented by the general formula: Si 6-z Al z O z N 8-z and has a CV value of 26% or less.
 本発明のβ型サイアロンの製造方法は、上述のように、Alの特性X線強度分布における変動係数が26%以下のβ型サイアロンを製造する際に、Si6-zAl8-zで示されるβ型サイアロンのz値が0を超え4.2以下となるように、且つ酸素/アルミニウム比(以下、O/Al比と記載する。)が1以上1.5未満になるように、酸化アルミニウム及び酸化ケイ素から選ばれる1種以上の酸化物と、窒化ケイ素と、窒化アルミニウムとを配合し、さらにユーロピウム化合物を加えて、窒素雰囲気下で加熱する焼成工程と、得られた焼結体を粉砕する粉砕工程と、粉砕焼結体を希ガス雰囲気又は真空中で加熱するアニール工程と、アニール処理した粉砕焼結体を酸処理する酸処理工程と、微粉を除去する水簸工程と、を経て当該β型サイアロンを製造するものである。 As described above, the method for producing β-sialon according to the present invention provides Si 6-z Al z O z N 8 when producing β-sialon having a coefficient of variation of 26% or less in the characteristic X-ray intensity distribution of Al. The z-value of β-sialon represented by −z exceeds 0 and is 4.2 or less, and the oxygen / aluminum ratio (hereinafter referred to as O / Al ratio) is 1 or more and less than 1.5. Thus, there was obtained a firing step of blending one or more oxides selected from aluminum oxide and silicon oxide, silicon nitride, and aluminum nitride, adding a europium compound, and heating in a nitrogen atmosphere. A pulverization step for pulverizing the sintered body, an annealing step for heating the pulverized sintered body in a rare gas atmosphere or a vacuum, an acid treatment step for acid-treating the annealed pulverized sintered body, and a water tank for removing fine powder. Through the process The β type sialon is produced.
 窒化ケイ素、窒化アルミニウム、酸化アルミニウム又は酸化ケイ素としては、例えば窒化ケイ素(Si)と窒化アルミニウム(AlN)と酸化ケイ素(SiO)及び/又は酸化アルミニウム(Al)がある。Eu化合物は、Euの金属、酸化物、炭酸塩、窒化物又は酸窒化物から選ばれる化合物を用いることができる。 Examples of silicon nitride, aluminum nitride, aluminum oxide, or silicon oxide include silicon nitride (Si 3 N 4 ), aluminum nitride (AlN), silicon oxide (SiO 2 ), and / or aluminum oxide (Al 2 O 3 ). As the Eu compound, a compound selected from a metal, oxide, carbonate, nitride, or oxynitride of Eu can be used.
 β型サイアロンのO/Al比は、1であることが理想である。しかし、焼成工程ではO/Al比を1以上1.5未満とし、1より大きくすることができる。Alに対して酸素が少し過剰に存在する方が、焼成中に十分な量の液相が発生して粒成長が進み、Alが均一に固溶することができるので好ましい。過剰な酸素は焼成中に揮発して排出されるので、最終的に得られるβ型サイアロンではO/Al比は1ではないが1に近づく。すなわち、Eu化合物を除いたO/Al比が大きいと粒成長が進みやすく、発光ピーク強度が向上するので好ましい。O/Al比が過剰に多くなると短径の短いアスペクト比の大きな粒子が合成され、吸収率が低下することによって発光ピーク強度が低下するので好ましくない。 Ideally, the O / Al ratio of β-type sialon is 1. However, in the firing step, the O / Al ratio can be 1 or more and less than 1.5 and can be greater than 1. It is preferable that oxygen is present in a slight excess relative to Al, since a sufficient amount of liquid phase is generated during firing, grain growth proceeds, and Al can be uniformly solid-solved. Since excess oxygen is volatilized and discharged during firing, the finally obtained β-sialon does not have an O / Al ratio of 1, but approaches 1. That is, it is preferable that the O / Al ratio excluding the Eu compound is large because the grain growth is easy to proceed and the emission peak intensity is improved. If the O / Al ratio is excessively large, particles having a short axis and a large aspect ratio are synthesized, and the absorptance is lowered, whereby the emission peak intensity is lowered, which is not preferable.
 O/Al比は酸素のモル数をアルミニウムのモル数で除した値である。酸素のモル数は酸素分析装置で測定した酸素量から求めることができ、アルミニウムのモル数はICP発光分析法(Inductively Coupled Plasma Atomic Emission Spectroscopy)で測定したアルミニウム量から求めることができる。製造されるβ型サイアロンのO/Al比の制御は、焼成工程での加熱温度、加熱時間などによって行うことができる。 The O / Al ratio is a value obtained by dividing the number of moles of oxygen by the number of moles of aluminum. The number of moles of oxygen can be determined from the amount of oxygen measured by an oxygen analyzer, and the number of moles of aluminum can be determined from the amount of aluminum measured by ICP emission analysis (Inductively-Coupled-Plasma-Atomic-Emission-Spectroscopy). Control of the O / Al ratio of the produced β-sialon can be performed by the heating temperature, heating time, etc. in the firing step.
 Eu含有量は混合粉末中、0.1質量%以上3質量%以下の範囲であることが好ましい。また、発光ピーク強度の観点から、ホスト結晶の組成に関し、Si6-zAl8-zで示される一般式において、zを0より大きく4.2以下の範囲に設定する。 The Eu content is preferably in the range of 0.1% by mass to 3% by mass in the mixed powder. From the viewpoint of the emission peak intensity, regarding the composition of the host crystal, in the general formula represented by Si 6-z Al z O z N 8-z , z is set in the range of greater than 0 and less than or equal to 4.2.
 原料混合は、乾式混合する方法のほか、原料各成分と実質的に反応しない不活性溶媒中で湿式混合した後に溶媒を除去する方法がある。混合装置としては、V型混合機、ロッキングミキサー、ボールミル、振動ミル等が用いられ得る。 In addition to the dry mixing method, raw material mixing includes wet mixing in an inert solvent that does not substantially react with the raw material components, and then removing the solvent. As the mixing device, a V-type mixer, a rocking mixer, a ball mill, a vibration mill, or the like can be used.
 焼成工程は、混合した原料粉末を窒化ホウ素製容器内に充填し、窒素雰囲気中で焼成して原料粉末の固溶反応を促進させ、β型サイアロンの焼結体を得る工程である。原料粉末の容器内への充填は、焼成中の粒子間の焼結を抑制する観点から、嵩密度0.8g/cm以下が好ましい。 The firing step is a step of filling the mixed raw material powder in a boron nitride container and firing in a nitrogen atmosphere to promote a solid solution reaction of the raw material powder to obtain a β-sialon sintered body. The filling of the raw material powder into the container preferably has a bulk density of 0.8 g / cm 3 or less from the viewpoint of suppressing sintering between particles during firing.
 焼成温度は、1800℃以上2200℃以下の温度範囲とすることが好ましい。加熱温度が高ければEuがβ型サイアロン結晶中に入り込むことができる。加熱時間は加熱温度にもよるが、10時間以上の加熱処理を行うことが好ましい。 The firing temperature is preferably in the temperature range of 1800 ° C. or higher and 2200 ° C. or lower. If the heating temperature is high, Eu can enter the β-type sialon crystal. Although the heating time depends on the heating temperature, it is preferable to perform a heat treatment for 10 hours or more.
 焼結体を粉砕する粉砕工程は、例えば、目開き45μm程度の篩で分級処理したり、或いはボールミルや振動ミル、ジェットミル等の粉砕機を使用して粉砕して粉砕焼結体とする工程である。
 焼結体を粉砕することで、焼結体の一次粒子間に偏析したAlや不可避不純物などを微粉としてβ型サイアロン結晶から分離できる。微粉は粉砕工程又は後工程で除去する。
The pulverization process for pulverizing the sintered body is, for example, a process of classifying with a sieve having an opening of about 45 μm, or pulverizing using a pulverizer such as a ball mill, a vibration mill, or a jet mill to obtain a pulverized sintered body. It is.
By crushing the sintered body, Al segregated between primary particles of the sintered body, inevitable impurities, and the like can be separated from the β-type sialon crystal as fine powder. The fine powder is removed in the pulverization process or in a subsequent process.
 アニール工程は、粉砕工程後のβ型サイアロンの粉砕焼結体を、希ガス雰囲気又は真空中で加熱してアニール処理した粉砕焼結体を得る工程であり、窒素以外のガスを主成分とする不活性雰囲気中1300℃以上1600℃以下で熱処理することによって、更に発光ピーク強度を上げる工程である。 The annealing step is a step of obtaining a pulverized sintered body obtained by annealing the pulverized sintered body of β-sialon after the pulverizing step in a rare gas atmosphere or vacuum, and has a gas other than nitrogen as a main component. This is a step of further increasing the emission peak intensity by heat treatment at 1300 ° C. or higher and 1600 ° C. or lower in an inert atmosphere.
 アニール処理した粉砕焼結体を酸処理する酸処理工程は、β型サイアロンの熱分解により生成したSiを、溶解除去する工程である。特に、フッ化水素酸と硝酸の混合物による処理は、効率的にSiを除去できるので好ましい。
 水簸工程は、粒径の小さい微粉を除去する工程である。
The acid treatment step of acid-treating the annealed pulverized sintered body is a step of dissolving and removing Si generated by thermal decomposition of β-sialon. In particular, treatment with a mixture of hydrofluoric acid and nitric acid is preferable because Si can be efficiently removed.
The elutriation process is a process for removing fine powder having a small particle diameter.
 上述した製造方法によって得られたβ型サイアロンについて、さらに、Alの特性X線強度分布を調べ、CV値が26%以下である製造ロットを選択することにより、発光ピーク強度が低いβ型サイアロンを含むことなく、発光ピーク強度が200%を超えるβ型サイアロンを効率的に得ることができる。 For the β-sialon obtained by the above-described production method, the characteristic X-ray intensity distribution of Al is further examined, and a production lot having a CV value of 26% or less is selected to obtain a β-sialon having a low emission peak intensity. Without inclusion, β-sialon having an emission peak intensity exceeding 200% can be efficiently obtained.
 <発光装置>
 次に、本発明の発光装置について説明する。
 発光装置は、少なくとも一つの発光光源とCV値が26%以下のβ型サイアロンを蛍光体に用いることで構成される。例えば発光装置は、少なくとも一つの発光光源を、蛍光体が分散した樹脂により被覆して構成してもよい。発光光源は350nm以上500nm以下の波長の光を発する紫外LED又は青色LED、特に440nm以上480nm以下の波長の光を発する青色LEDを用いることが好ましく、これらの発光素子としては、GaNやInGaNなどの窒化物半導体がある。
<Light emitting device>
Next, the light emitting device of the present invention will be described.
The light-emitting device is configured by using at least one light-emitting light source and β-sialon having a CV value of 26% or less as a phosphor. For example, the light emitting device may be configured by covering at least one light emitting light source with a resin in which a phosphor is dispersed. It is preferable to use an ultraviolet LED or a blue LED that emits light with a wavelength of 350 nm or more and 500 nm or less, particularly a blue LED that emits light with a wavelength of 440 nm or more and 480 nm or less, and these light emitting elements include GaN and InGaN. There are nitride semiconductors.
 発光装置において、CV値が26%以下のβ型サイアロン蛍光体を単独で使用する方法以外に、他の発光特性を持つ蛍光体と併用することによって、所望の色を発する発光装置を構成することもできる。特に青色LEDを励起源とした場合、本実施形態のβ型サイアロンと575nm以上590nm以下の領域に発光ピークを有する黄色蛍光体とを組み合わせると、幅広い色温度の白色発光が可能となる。黄色蛍光体として、例えばEuが固溶したα型サイアロンがある。更に、発光波長のピークが600nm以上700nm以下である赤色の蛍光体、例えば、CaAlSiN:Eu等を組み合わせることにより、赤色の強調性が増し、室内外の照明、液晶表示装置のバックライト光源で要求される光を発光させることができる。
 以下、実施例を示して本発明をさらに説明する。
In the light emitting device, in addition to a method of using a β-sialon phosphor having a CV value of 26% or less alone, a light emitting device that emits a desired color is formed by using in combination with a phosphor having other light emission characteristics. You can also. In particular, when a blue LED is used as an excitation source, combining the β-sialon of this embodiment with a yellow phosphor having an emission peak in a region of 575 nm or more and 590 nm or less enables white light emission with a wide color temperature. An example of a yellow phosphor is α-sialon in which Eu is dissolved. Further, by combining a red phosphor having an emission wavelength peak of 600 nm or more and 700 nm or less, such as CaAlSiN 3 : Eu, red emphasis is enhanced, and it can be used for indoor / outdoor illumination and a backlight light source of a liquid crystal display device. The required light can be emitted.
Hereinafter, the present invention will be further described with reference to examples.
 [β型サイアロンの製造]
 宇部興産社製α型窒化ケイ素粉末(SN-E10グレード、酸素含有量1.2質量%、β相含有量4.5質量%)、トクヤマ社製窒化アルミニウム粉末(Fグレード、酸素含有量0.9質量%)、大明化学社製酸化アルミニウム粉末(TM-DARグレード)及び信越化学工業社製酸化ユーロピウム粉末(RUグレード)を原料として用いた。
 酸化ユーロピウム粉末の配合量を0.8質量%とし、原料粉中のAl量から計算したz値が0.25、酸化ユーロピウム粉末を除いた原料混合物中のO/Al比が1.2となるよう、窒化ケイ素粉末、窒化アルミニウム粉末、酸化アルミニウム粉末、酸化ユーロピウム粉末を配合した。
[Manufacture of β-type sialon]
Α-type silicon nitride powder (SN-E10 grade, oxygen content 1.2% by mass, β-phase content 4.5% by mass) manufactured by Ube Industries, Ltd., aluminum nitride powder (F grade, oxygen content 0. 9% by mass), aluminum oxide powder (TM-DAR grade) manufactured by Daimei Chemical Co., Ltd. and europium oxide powder (RU grade) manufactured by Shin-Etsu Chemical Co., Ltd. were used as raw materials.
The compounding amount of the europium oxide powder is 0.8% by mass, the z value calculated from the amount of Al in the raw material powder is 0.25, and the O / Al ratio in the raw material mixture excluding the europium oxide powder is 1.2. Thus, silicon nitride powder, aluminum nitride powder, aluminum oxide powder, and europium oxide powder were blended.
 配合物はロッキングミキサー(愛知電機社製RM-10)を用いて60分間乾式混合し、更に目開き150μmのステンレス製篩を全通させ、蛍光体合成用の原料粉末を得た。 The blend was dry-mixed for 60 minutes using a rocking mixer (RM-10, manufactured by Aichi Electric Co., Ltd.) and further passed through a stainless steel sieve having an opening of 150 μm to obtain a raw material powder for phosphor synthesis.
 得られた原料粉末を内寸直径10cm×高さ10cmの円筒型窒化ホウ素製容器(電気化学工業社製、N-1グレード)に160g充填し、カーボンヒーターの電気炉で0.9MPaの加圧窒素雰囲気中、2000℃で15時間の加熱処理を行った。得られた生成物は、緩く凝集した塊状の焼結体であり、この焼結体の解砕を行った後、目開き45μmの篩を通した。これらの操作によって、80gの粉砕焼結体を得た。 160 g of the obtained raw material powder is filled into a cylindrical boron nitride container (N-1 grade, manufactured by Denki Kagaku Kogyo Co., Ltd.) having an internal diameter of 10 cm and a height of 10 cm, and 0.9 MPa is applied in an electric furnace of a carbon heater. Heat treatment was performed at 2000 ° C. for 15 hours in a nitrogen atmosphere. The obtained product was a loosely agglomerated massive sintered body, which was crushed and then passed through a sieve having an opening of 45 μm. By these operations, 80 g of a pulverized sintered body was obtained.
 80gの粉砕焼結体を超音速ジェット粉砕機(日本ニューマチック工業社、PJM―80型)により空気圧力0.2MPa、フィード速度50g/分の条件で粉砕を行った。 80 g of the pulverized sintered body was pulverized with a supersonic jet pulverizer (Nippon Pneumatic Kogyo Co., Ltd., PJM-80 type) under the conditions of air pressure 0.2 MPa and feed rate 50 g / min.
 粉砕して得られた粉砕焼結体20gを直径60mm×高さ40mmの円筒型窒化ホウ素製容器(電気化学工業社製N-1グレード)に充填し、カーボンヒーターの電気炉でAr雰囲気中、1450℃、大気圧で8時間加熱してアニール処理を行った。 20 g of the pulverized sintered body obtained by pulverization was filled into a cylindrical boron nitride container (N-1 grade, manufactured by Denki Kagaku Kogyo Co., Ltd.) having a diameter of 60 mm and a height of 40 mm, and an Ar furnace in an electric furnace of a carbon heater. Annealing was performed by heating at 1450 ° C. and atmospheric pressure for 8 hours.
 アニール処理した粉砕焼結体は、焼結に伴う収縮がなく、加熱前とほとんど同じ性状であり、目開き45μmの篩を全て通過した。また、XRD測定の結果、微量のSiが検出された。
 アニール処理した粉砕焼結体を50%フッ化水素酸と70%硝酸の1:1混酸溶液中に浸してから水洗した後、湿式沈降法によって10μm以下の微粉を除去し、乾燥を行って実施例1の蛍光体を作製した。XRD測定の結果、β型サイアロン以外の回折ピークは検出されなかった。
The annealed pulverized sintered body had no shrinkage due to sintering, had almost the same properties as before heating, and passed through all sieves having an opening of 45 μm. As a result of XRD measurement, a small amount of Si was detected.
The annealed pulverized sintered body was dipped in a 1: 1 mixed acid solution of 50% hydrofluoric acid and 70% nitric acid, washed with water, then fine powders of 10 μm or less were removed by wet sedimentation, and dried. The phosphor of Example 1 was produced. As a result of XRD measurement, no diffraction peaks other than β-sialon were detected.
 実施例1のβ型サイアロンの蛍光スペクトルを、分光蛍光光度計(日立ハイテクノロジーズ社製、F4500)を用いて測定したところ、発光ピーク強度は228%であった。測定にあたっては、455nmの青色光を励起光としたときの蛍光スペクトルのピーク波長高を測定し、同条件にて測定した化成オプト社製YAG:Ce:蛍光体(P46-Y3)のピーク波長の高さに対する相対値を発光ピーク強度として求めた。励起光には、分光したキセノンランプ光源を使用した。 The fluorescence spectrum of β-sialon of Example 1 was measured using a spectrofluorometer (manufactured by Hitachi High-Technologies Corporation, F4500), and the emission peak intensity was 228%. In the measurement, the peak wavelength height of the fluorescence spectrum when blue light of 455 nm was used as excitation light was measured, and the peak wavelength of YAG: Ce: phosphor (P46-Y3) manufactured by Kasei Opto Co., Ltd. was measured under the same conditions. The relative value to the height was determined as the emission peak intensity. A spectral xenon lamp light source was used as the excitation light.
 実施例1のβ型サイアロンのAlの分布状態を、以下に示す手順で調べた。
[特性X線強度分布の測定]
 蛍光体をエポキシ樹脂に包埋し、機械研麿とAr+イオン研磨とにより断面を露出させた。次に、電界放射型走査電子顕微鏡(FE-SEM、日本電子株式会社JSM-7001F型)に付属する、エネルギー分散型X線分析装置(日本電子株式会社JED-2300型)を用い、蛍光体粒子断面におけるAlの特性X線の強度分布を測定した。
The distribution state of Al in the β-type sialon of Example 1 was examined by the following procedure.
[Measurement of characteristic X-ray intensity distribution]
The phosphor was embedded in an epoxy resin, and the cross section was exposed by mechanical polishing and Ar + ion polishing. Next, phosphor particles using an energy dispersive X-ray analyzer (JEOL JED-2300) attached to a field emission scanning electron microscope (FE-SEM, JSM-7001F) The intensity distribution of characteristic X-rays of Al in the cross section was measured.
 以下に、Al元素に対応する特性X線強度分布の測定条件を示す。
    加速電圧:15kV
    作動距離:15mm
    試料傾斜角度:70°
    測定領域:80μm×200μm
    ステップ幅:0.2μm
    測定時間:50msec/ステップ
    データポイント数:約400,000(40万)ポイント
The measurement conditions for the characteristic X-ray intensity distribution corresponding to the Al element are shown below.
Acceleration voltage: 15 kV
Working distance: 15mm
Sample tilt angle: 70 °
Measurement area: 80 μm × 200 μm
Step width: 0.2 μm
Measurement time: 50 msec / step Number of data points: Approximately 400,000 (400,000) points
 Alの特性X線強度の中央値と標準偏差σを算出し、CV(%)=(σ/中央値)×100で求めたところ、実施例1のβ型サイアロンのCV値は24%であった。 The median value and standard deviation σ of the characteristic X-ray intensity of Al were calculated and calculated by CV (%) = (σ / median) × 100. As a result, the CV value of β-sialon of Example 1 was 24%. It was.
 実施例2のβ型サイアロンは、原料混合物中のO/Al比が1.08であることを除けば、実施例1と同じ条件で製造したものであり、その発光ピーク強度は235%であり、CV値は25.1%であった。 The β-sialon of Example 2 was manufactured under the same conditions as in Example 1 except that the O / Al ratio in the raw material mixture was 1.08, and the emission peak intensity was 235%. The CV value was 25.1%.
(比較例1及び2)
 比較例1及び2のβ型サイアロンは、原料混合物中のO/Al比を、それぞれ0.84、0.76とした以外、実施例1と同じ条件で製造したものである。
(Comparative Examples 1 and 2)
The β-sialons of Comparative Examples 1 and 2 were produced under the same conditions as in Example 1 except that the O / Al ratio in the raw material mixture was 0.84 and 0.76, respectively.
 比較例1及び2に対し、実施例1と同じ条件で評価したところ、発光ピーク強度はそれぞれ195%、190%であり、CV値は、それぞれ26.9%、31.1%であった。 Comparative Examples 1 and 2 were evaluated under the same conditions as in Example 1. As a result, the emission peak intensities were 195% and 190%, respectively, and the CV values were 26.9% and 31.1%, respectively.
 実施例1及び2並びに比較例1及び2の評価結果を表1に示す。
Figure JPOXMLDOC01-appb-T000001
The evaluation results of Examples 1 and 2 and Comparative Examples 1 and 2 are shown in Table 1.
Figure JPOXMLDOC01-appb-T000001
 表1から、実施例1及び2のCV値は比較例1及び2のCV値に比べて小さく、26%を境に発光ピーク強度が高くなっていることがわかる。 From Table 1, it can be seen that the CV values of Examples 1 and 2 are smaller than the CV values of Comparative Examples 1 and 2, and the emission peak intensity is high at 26%.
 実施例2のβ型サイアロンとCa0.66Eu0.04Si9.9Al2.10.7
15.3の組成を持つCa-α型サイアロン:Eu蛍光体(発光ピーク波長:585nm、450nm励起での発光ピーク強度:60%)をそれぞれシランカップリング剤(信越シリコーン社製KBE402)で処理した。処理後の二種類の蛍光体を種々の比率で適量、エポキシ樹脂(サンユレック社製NLD-SL-2101)に混練し、発光波長450nmの青色LED素子の上にポッティングして、真空脱気、加熱硬化し、実施例3の発光装置として表面実装型LEDを作製した。
 比較例3として、実施例2のβ型サイアロンの代わりに、比較例2のβ型サイアロンを用いて白色光の発光装置を作製した。
Β-sialon of Example 2 and Ca 0.66 Eu 0.04 Si 9.9 Al 2.1 O 0.7
N- 5.3 Ca-α-type sialon: Eu phosphor (emission peak wavelength: 585 nm, emission peak intensity at 450 nm excitation: 60%) was treated with a silane coupling agent (KBE402 manufactured by Shin-Etsu Silicone), respectively. did. Appropriate amounts of the two types of phosphors after treatment in various ratios are kneaded with epoxy resin (NLD-SL-2101 manufactured by Sanyu Rec Co., Ltd.), potted on a blue LED element with an emission wavelength of 450 nm, vacuum degassed and heated After curing, a surface-mounted LED was produced as the light-emitting device of Example 3.
As Comparative Example 3, a white light emitting device was fabricated using the β-sialon of Comparative Example 2 instead of the β-sialon of Example 2.
 2つの発光装置を同一通電条件で発光させ、輝度計により同一条件下での中心照度及び色度(CIE1931)を測定した。色度座標(x、y)が(0.31、0.32)の白色発光装置で中心照度を比較したところ、実施例3の発光装置は、比較例3の発光装置に対して14%高い中心照度であった。 The two light emitting devices were allowed to emit light under the same energization conditions, and the central illuminance and chromaticity (CIE 1931) under the same conditions were measured with a luminance meter. When the central illuminance was compared with a white light emitting device with chromaticity coordinates (x, y) of (0.31, 0.32), the light emitting device of Example 3 was 14% higher than the light emitting device of Comparative Example 3. It was the central illuminance.
 本発明のβ型サイアロンは、緑色発光を示す蛍光体であり、青色又は紫外光を光源とする白色LED用の蛍光体として使用できる。
 本発明の発光装置は、照明器具、画像表示装置などの照明及び表示の分野などに使用できる。
 本発明のβ型サイアロンの製造方法は、LED用の蛍光体を製造する方法として有用である。
The β-sialon of the present invention is a phosphor that emits green light, and can be used as a phosphor for white LEDs that use blue or ultraviolet light as a light source.
The light-emitting device of the present invention can be used in the field of illumination and display such as lighting fixtures and image display devices.
The method for producing β-sialon of the present invention is useful as a method for producing a phosphor for LED.

Claims (5)

  1.  一般式:Si6-zAl8-zで示されるβ型サイアロンにEuを固溶してなり、Alの特性X線強度分布における変動係数が26%以下である、β型サイアロン。 Β-type sialon, which is obtained by dissolving Eu in β-type sialon represented by the general formula: Si 6-z Al z O z N 8-z , and having a variation coefficient in the characteristic X-ray intensity distribution of Al of 26% or less. .
  2.  請求項1記載のβ型サイアロンを用いた発光装置。 A light-emitting device using the β-sialon according to claim 1.
  3.  請求項1記載のβ型サイアロンを製造する方法であって、前記一般式におけるz値が0を超え4.2以下となるように、且つO/Alが1以上1.5未満になるように、酸化アルミニウム及び酸化ケイ素から選ばれる1種以上の酸化物と、窒化ケイ素と、窒化アルミニウムとを配合し、さらにユーロピウム化合物を加えて、窒素雰囲気下で加熱する焼成工程と、得られた焼結体を粉砕する粉砕工程と、粉砕焼結体を希ガス雰囲気又は真空中で加熱するアニール工程と、アニール処理した粉砕焼結体を酸処理する酸処理工程と、微粉を除去する水簸工程と、を含むβ型サイアロンの製造方法。 The method for producing β-sialon according to claim 1, wherein the z value in the general formula exceeds 0 and is 4.2 or less, and O / Al is 1 or more and less than 1.5. A sintering step in which one or more oxides selected from aluminum oxide and silicon oxide, silicon nitride, and aluminum nitride are blended, a europium compound is added, and the mixture is heated in a nitrogen atmosphere, and the obtained sintering A pulverizing step for pulverizing the body, an annealing step for heating the pulverized sintered body in a rare gas atmosphere or vacuum, an acid treatment step for acid-treating the annealed pulverized sintered body, and a water tank step for removing fine powders. A method for producing β-sialon, comprising:
  4.  請求項1記載のβ型サイアロンを製造する方法であって、前記一般式におけるz値が0を超え4.2以下となるように、且つO/Alが1以上1.5未満になるように、酸化アルミニウム及び酸化ケイ素から選ばれる1種以上の酸化物と、窒化ケイ素と、窒化アルミニウムと、ユーロピウム化合物とを含有する配合物を、窒素雰囲気下で加熱する焼成工程と、得られた焼結体を粉砕する粉砕工程と、を含むβ型サイアロンの製造方法。 The method for producing β-sialon according to claim 1, wherein the z value in the general formula exceeds 0 and is 4.2 or less, and O / Al is 1 or more and less than 1.5. A firing step of heating a compound containing one or more oxides selected from aluminum oxide and silicon oxide, silicon nitride, aluminum nitride, and a europium compound in a nitrogen atmosphere, and obtained sintering And a pulverizing step for pulverizing the body.
  5.  前記粉砕工程で得られた粉砕焼結体から微粉を除去する、請求項4に記載のβ型サイアロンの製造方法。 The method for producing β-sialon according to claim 4, wherein fine powder is removed from the pulverized sintered body obtained in the pulverization step.
PCT/JP2011/063832 2010-09-09 2011-06-16 Β-sialon, light-emitting device and β-sialon production method WO2012032824A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010202510A JP2013237713A (en) 2010-09-09 2010-09-09 β TYPE SIALON, LIGHT-EMITTING DEVICE, AND METHOD OF MANUFACTURING β TYPE SIALON
JP2010-202510 2010-09-09

Publications (1)

Publication Number Publication Date
WO2012032824A1 true WO2012032824A1 (en) 2012-03-15

Family

ID=45810429

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/063832 WO2012032824A1 (en) 2010-09-09 2011-06-16 Β-sialon, light-emitting device and β-sialon production method

Country Status (3)

Country Link
JP (1) JP2013237713A (en)
TW (1) TW201211210A (en)
WO (1) WO2012032824A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6024849B1 (en) * 2015-06-05 2016-11-16 日亜化学工業株式会社 Method for producing β-sialon phosphor

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6546583B2 (en) * 2014-04-02 2019-07-17 デンカ株式会社 Hydrophobized phosphor and light emitting device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007145919A (en) * 2005-11-25 2007-06-14 Denki Kagaku Kogyo Kk Method for producing sialon phosphor and lighting utensil using phosphor obtained thereby
WO2008062781A1 (en) * 2006-11-20 2008-05-29 Denki Kagaku Kogyo Kabushiki Kaisha Fluorescent substance and production method thereof, and light emitting device
JP2008303331A (en) * 2007-06-08 2008-12-18 Sharp Corp Phosphor, light-emitting apparatus and image display apparatus

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007145919A (en) * 2005-11-25 2007-06-14 Denki Kagaku Kogyo Kk Method for producing sialon phosphor and lighting utensil using phosphor obtained thereby
WO2008062781A1 (en) * 2006-11-20 2008-05-29 Denki Kagaku Kogyo Kabushiki Kaisha Fluorescent substance and production method thereof, and light emitting device
JP2008303331A (en) * 2007-06-08 2008-12-18 Sharp Corp Phosphor, light-emitting apparatus and image display apparatus

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6024849B1 (en) * 2015-06-05 2016-11-16 日亜化学工業株式会社 Method for producing β-sialon phosphor
JP2017002278A (en) * 2015-06-05 2017-01-05 日亜化学工業株式会社 MANUFACTURING METHOD OF β SIALON PHOSPHOR

Also Published As

Publication number Publication date
TW201211210A (en) 2012-03-16
JP2013237713A (en) 2013-11-28

Similar Documents

Publication Publication Date Title
JP5737693B2 (en) β-type sialon, manufacturing method thereof, and light emitting device using the same
JP4891336B2 (en) Phosphor, method for manufacturing the same, and light emitting device
JP6572373B1 (en) Method for producing β-sialon phosphor
EP2365047B1 (en) ß-SIALON PHOSPHOR, USE THEREOF AND METHOD FOR PRODUCING SAME
KR20150084867A (en) Phosphor, light-emitting element and lighting device
WO2014030637A1 (en) METHOD FOR PRODUCING β-SIALON, β-SIALON, AND LIGHT-EMITTING DEVICE
KR101740756B1 (en) Process for producing -sialon fluorescent material
WO2012011444A1 (en) β-TYPE SIALON, PROCESS FOR PRODUCTION OF β-TYPE SIALON, AND LIGHT-EMITTING DEVICE
JP2009096882A (en) Phosphor and method for producing the same
KR102441616B1 (en) β-sialon fluorescent material, Method of producing thereof, Light-emitting member and Light-emitting device
WO2018092696A1 (en) Red-emitting phosphor, light-emitting member, and light-emitting device
KR20150067259A (en) Method for producing phosphor
KR101725857B1 (en) Process for production of -sialon
WO2012035893A1 (en) β-TYPE SIALON AND PRODUCTION METHOD THEREFOR AND LIGHT-EMITTING DEVICE
WO2013111411A1 (en) Phosphor, method for producing same, and use of same
WO2012032824A1 (en) Β-sialon, light-emitting device and β-sialon production method
JP5718580B2 (en) Red phosphor, method for producing the same, and light emitting device
CN113166644B (en) Beta-sialon phosphor and light-emitting device
WO2017155111A1 (en) Phosphor, light-emitting element, and light-emitting device
JP2020084177A (en) β-TYPE SIALON PHOSPHOR AND LIGHT-EMITTING DEVICE
WO2018003605A1 (en) Process for producing red fluorescent substance
JP7282757B2 (en) Red phosphor and light-emitting device
TWI443868B (en) Method for manufacturing β type sialon
WO2012032838A1 (en) METHOD FOR PRODUCING β TYPE SIALON
JP2018150487A (en) Production method of phosphor, phosphor, light-emitting element and light-emitting device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11823303

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11823303

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP