WO2012029929A1 - Method for producing fluororesin organosol, fluororesin organosol, and coating composition - Google Patents

Method for producing fluororesin organosol, fluororesin organosol, and coating composition Download PDF

Info

Publication number
WO2012029929A1
WO2012029929A1 PCT/JP2011/069955 JP2011069955W WO2012029929A1 WO 2012029929 A1 WO2012029929 A1 WO 2012029929A1 JP 2011069955 W JP2011069955 W JP 2011069955W WO 2012029929 A1 WO2012029929 A1 WO 2012029929A1
Authority
WO
WIPO (PCT)
Prior art keywords
solvent
fluorine
group
containing copolymer
fluororesin organosol
Prior art date
Application number
PCT/JP2011/069955
Other languages
French (fr)
Japanese (ja)
Inventor
中野 貴志
代田 直子
Original Assignee
旭硝子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 旭硝子株式会社 filed Critical 旭硝子株式会社
Publication of WO2012029929A1 publication Critical patent/WO2012029929A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/02Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques
    • C08J3/09Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques in organic liquids
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D127/00Coating compositions based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Coating compositions based on derivatives of such polymers
    • C09D127/02Coating compositions based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Coating compositions based on derivatives of such polymers not modified by chemical after-treatment
    • C09D127/12Coating compositions based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Coating compositions based on derivatives of such polymers not modified by chemical after-treatment containing fluorine atoms
    • C09D127/18Homopolymers or copolymers of tetrafluoroethene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2323/00Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers
    • C08J2323/02Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers not modified by chemical after treatment
    • C08J2323/04Homopolymers or copolymers of ethene
    • C08J2323/08Copolymers of ethene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2327/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers
    • C08J2327/02Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers not modified by chemical after-treatment
    • C08J2327/12Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers not modified by chemical after-treatment containing fluorine atoms
    • C08J2327/18Homopolymers or copolymers of tetrafluoroethylene

Definitions

  • the present invention relates to a method for producing a fluororesin organosol, a fluororesin organosol obtained thereby, and a coating composition comprising this as a main component.
  • Fluororesin is excellent in solvent resistance, low dielectric properties, low surface energy, non-adhesiveness, weather resistance, etc., and is used in various applications that cannot be used with general-purpose plastics.
  • ethylene / tetrafluoroethylene copolymer (hereinafter also referred to as ETFE) is excellent in heat resistance, flame resistance, chemical resistance, weather resistance, low friction, low dielectric properties, transparency, and the like. It is used in a wide range of fields such as coating materials for electric wires, corrosion-resistant piping materials for chemical plants, vinylhouse materials for agriculture, and mold release films.
  • the ETFE molding method is extrusion molding, injection molding, powder, except for special cases such as the following patent documents.
  • the method is limited to a method in which ETFE is melted by heat, such as painting.
  • ETFE coating film on a substrate
  • Known methods for forming an ETFE coating film on a substrate include a rotary melt molding method of ETFE powder and an electrostatic powder coating method.
  • these methods require special equipment.
  • the present invention has been made in view of the above circumstances, and a fluorine-containing copolymer containing a repeating unit based on ethylene and a repeating unit based on tetrafluoroethylene is dispersed at a high concentration and uniformly in an organic medium. It is an object of the present invention to provide a method for producing a resin organosol at a relatively low temperature, a fluororesin organosol obtained by the method, and a coating composition comprising this as a main component.
  • the present invention provides a fluororesin organosol production method having the following constitution, a fluororesin organosol obtained by the method, and a coating composition using the fluororesin organosol.
  • a fluorine-containing copolymer having a repeating unit based on ethylene and a repeating unit based on tetrafluoroethylene is used as a dispersoid, and the fluorine-containing copolymer is dissolved at a temperature lower than the melting point of the fluorine-containing copolymer.
  • a method for producing a fluororesin organosol using a solvable solvent as a dispersion medium A dissolution step of dissolving the fluorine-containing copolymer in the solvent to form a solution; A precipitation step of precipitating the fluorine-containing copolymer as fine particles in the solvent in the solution; A crushing / dispersing step of uniformly dispersing fine particles of the fluorinated copolymer in the solvent by applying a high shear force to the mixture of the solvent and the fluorinated copolymer containing the fluorinated copolymer as fine particles.
  • a process for producing a fluororesin organosol comprising:
  • the high shear force is applied by at least one method selected from the group consisting of high-speed rotation, high-pressure injection, high-speed vibration, ultrasonic treatment, and high-pressure filtration. Of manufacturing fluororesin organosols.
  • the blending ratio of the fluorinated copolymer and the solvent in the dissolving step is 1.0: 99.0 to 70.0: 30.0 in a mass ratio represented by the fluorinated copolymer: solvent.
  • the average particle diameter of the fluorine-containing copolymer fine particles is in the range of 0.005 to 5 ⁇ m as the number average particle diameter measured by a dynamic light scattering method at 25 ° C. [1] to [6 ] The manufacturing method of the fluororesin organosol in any one of.
  • the fluorinated copolymer is a fluorinated copolymer having at least one selected from the group consisting of a carboxylic acid group, an acid anhydride group and a carboxylic acid halide group.
  • the manufacturing method of the fluororesin organosol in any one of.
  • a coating composition comprising as a main component a fluororesin organosol obtained by the production method according to any one of [1] to [11].
  • a fluororesin organosol in which a fluorine-containing copolymer containing a repeating unit based on ethylene and a repeating unit based on tetrafluoroethylene is uniformly dispersed in an organic medium at a high concentration can be produced at a relatively low temperature.
  • a uniform coating film can be formed by a simple method of applying and drying at a relatively low temperature.
  • FIG. 2 is a transmission electron microscope (TEM) photograph (100,000 times) of ETFE fine particles contained in the fluororesin organosol prepared in Example 1.
  • FIG. It is an optical microscope photograph (100 times) of the ETFE coating film surface obtained using the fluororesin organosol produced in Example 1.
  • the organosol refers to a substance in which solid fine particles are dispersed in an organic solvent.
  • the fluororesin organosol refers to one containing fluororesin fine particles as the solid fine particles.
  • Method for producing fluororesin organosol The present invention uses a fluorine-containing copolymer having a repeating unit based on ethylene and a repeating unit based on tetrafluoroethylene as a dispersoid, and dissolves the fluorine-containing copolymer at a temperature below the melting point of the fluorine-containing copolymer.
  • a method for producing a fluororesin organosol using a solvable solvent as a dispersion medium comprising the following (1) dissolution step, (2) precipitation step, and (3) pulverization / dispersion step.
  • the fluorine-containing A crushing / dispersing step of uniformly dispersing fine particles of the fluorinated copolymer in the solvent by applying a high shearing force to a mixture of the solvent and the fluorinated copolymer containing the copolymer as fine particles.
  • the fluororesin organosol obtained by the production method of the present invention is any other temperature and pressure as long as it exhibits the properties of the organosol under normal temperature (5 ° C. to 40 ° C.) and normal pressure (0.1 MPa) conditions.
  • the property under the conditions is not particularly limited. For example, it may be in a solution state at a temperature not lower than normal temperature and not higher than the melting point of the fluorine-containing copolymer.
  • the fluororesin organosol obtained by the production method of the present invention may contain other optional components as long as the fluoropolymer fine particles and the solvent, which are essential components, form an organosol. Good.
  • the dissolution step in the production method of the present invention comprises a fluorine-containing copolymer containing a repeating unit based on ethylene and a repeating unit based on tetrafluoroethylene, which becomes a dispersoid in the form of fine particles in the fluororesin organosol. Is dissolved in a solvent that functions as a dispersion medium in the fluororesin organosol and that can dissolve the fluorocopolymer at a temperature not higher than the melting point of the fluorocopolymer.
  • the fluorine-containing copolymer used in the method for producing the fluororesin organosol of the present invention is particularly limited as long as it is a fluorine-containing copolymer containing a repeating unit based on ethylene and a repeating unit based on tetrafluoroethylene.
  • ETFE may include a repeating unit based on a comonomer other than TFE and ethylene as a constituent unit of the copolymer, and the main component in the copolymer of TFE and ethylene. It is used as a general term for fluorine-containing copolymers having repeating units.
  • the molar ratio of the repeating unit based on TFE / the repeating unit based on ethylene is preferably 70/30 to 30/70, more preferably 65/35 to 40/60, and most preferably 65/35. To 45/55.
  • ETFE in the present invention may contain a repeating unit based on a comonomer (comonomer) other than TFE and ethylene in order to add various functions to the obtained copolymer.
  • OCF CF 2
  • easily perfluorovinyl ethers having a group convertible to a carboxylic acid group or a sulfonic acid group ; C3 olefins having 3 carbon atoms such as propylene, C4 olefins having 4 carbon atoms such as butylene and isobutylene, olefins such as 4-methyl-1-pentene, cyclohexene, styrene and ⁇ -methylstyrene (excluding ethylene) ); Vinyl esters such as vinyl acetate, vinyl lactate, vinyl butyrate, vinyl pivalate, vinyl benzoate; allyl esters such as allyl acetate; methyl vinyl ether, ethyl vinyl ether, butyl vinyl ether, isobutyl vinyl ether, ter
  • Cyano group-containing monomers dienes such as isoprene and 1,3-butadiene; chloroolefins such as vinyl chloride and vinylidene chloride; maleic anhydride, itaconic anhydride, citraconic anhydride, 5-norbornene-2, And vinyl compounds containing a carboxylic acid anhydride such as 3-dicarboxylic acid anhydride.
  • dienes such as isoprene and 1,3-butadiene
  • chloroolefins such as vinyl chloride and vinylidene chloride
  • maleic anhydride, itaconic anhydride, citraconic anhydride, 5-norbornene-2 and vinyl compounds containing a carboxylic acid anhydride such as 3-dicarboxylic acid anhydride.
  • vinyl compounds containing a carboxylic acid anhydride such as 3-dicarboxylic acid anhydride.
  • the content is preferably 0.1 to 50 mol% in all monomer repeating units of ETFE. More preferably, it is 1 to 30 mol%, most preferably 0.1 to 20 mol%, and still more preferably 0.1 to 10 mol%.
  • the content of the repeating unit based on a comonomer other than TFE and ethylene is within this range, the characteristics of ETFE composed only of TFE and ethylene are not impaired. , Functions such as high solubility, water repellency, oil repellency, crosslinkability, and adhesion to a substrate can be imparted.
  • ETFE used in the production method of the present invention may have a functional group having adhesion to the substrate in the molecular structure.
  • the functional group may be present either at the molecular end of ETFE or at the side chain or main chain. Further, one kind of the functional group may be used alone in ETFE, or two or more kinds may be used in combination.
  • the kind and content of the functional group having adhesiveness to the substrate are appropriately selected according to the required performance depending on the use in which the fluororesin organosol obtained by this production method is used. For example, when used as a coating composition, it is appropriately selected depending on the type, shape, application, required adhesiveness, adhesion method, functional group introduction method, and the like of the substrate on which the composition is applied.
  • the functional group having adhesiveness to the substrate include a carboxylic acid group, a residue obtained by dehydration condensation of two carboxyl groups in one molecule (hereinafter referred to as an acid anhydride group), a hydroxyl group, Consists of sulfonic acid group, epoxy group, cyano group, carbonate group, isocyanate group, ester group, amide group, aldehyde group, amino group, hydrolyzable silyl group, carbon-carbon double bond, ether group and carboxylic acid halide group There may be mentioned at least one selected from the group.
  • the carboxylic acid group is a carboxyl group and a salt thereof (—COOM 1 : M 1 is a metal atom or atomic group capable of forming a salt with a carboxylic acid), and the sulfonic acid group is a sulfo group and a salt thereof (—SOSO 3 M 2 : M 2 means a metal atom or atomic group capable of forming a salt with sulfonic acid.
  • M 1 is a metal atom or atomic group capable of forming a salt with a carboxylic acid
  • —SO 3 M 2 M 2 means a metal atom or atomic group capable of forming a salt with sulfonic acid.
  • M 2 means a metal atom or atomic group capable of forming a salt with sulfonic acid.
  • the above functional groups particularly selected from the group consisting of carboxylic acid groups, acid anhydride groups, hydroxyl groups, epoxy groups, carbonate groups, hydrolyzable silyl groups, carbon-carbon double
  • it is at least one selected from the group consisting of a carboxylic acid group, an acid anhydride group, and a carboxylic acid halide group.
  • Two or more different functional groups may exist in one molecule of the fluorine-containing copolymer, or two or more functional groups may exist in one molecule.
  • an adhesive functional group (hereinafter also referred to as “adhesive functional group”) into ETFE, (i) a copolymerizable monomer having an adhesive functional group at the time of polymerization of ETFE (Ii) a method of introducing an adhesive functional group into the molecular terminal of ETFE at the time of polymerization by a polymerization initiator having an adhesive functional group, a chain transfer agent, or the like (iii) ) A method of grafting a compound (graft compound) having an adhesive functional group and a functional group capable of grafting onto ETFE. These introduction methods can be used alone or in appropriate combination. In consideration of durability, ETFE produced by the above method (i) and / or (ii) is preferable. In addition to the adhesive functional group, functional groups having various functions introduced as necessary can be introduced into ETFE in the same manner as the adhesive functional group is introduced.
  • a commercially available product can also be used as the fluorine-containing copolymer having the repeating unit based on ethylene and the repeating unit based on TFE.
  • ETFE specifically, Asahi Glass Co., Ltd .: Fluon (registered trademark) ETFE Series, Fluon (registered trademark) LM-ETFE Series, Fluon (registered trademark) LM-ETFE AH Series, Daikin Industries, Ltd .: Neofron (registered trademark), Dyneon: Dyneon (registered trademark) ETFE, DuPont: Tefzel (registered trademark), and the like.
  • the melting point of the fluorinated copolymer in the present invention is preferably 130 to 275 ° C, more preferably 140 to 265 ° C, and most preferably 150 to 260 ° C. When it is in this range, the solubility in a solvent in the dissolution step is excellent, and the strength is also excellent.
  • the volume flow rate (hereinafter referred to as Q value) of the fluorinated copolymer used in the present invention is preferably 0.1 to 2000 mm 3 / sec.
  • the Q value is an index representing the melt fluidity of the fluorinated copolymer and is a measure of the molecular weight. A large Q value indicates a low molecular weight, and a small Q value indicates a high molecular weight.
  • the Q value in the present specification is a fluorine content when extruded into an orifice having a diameter of 2.1 mm and a length of 8 mm under a load of 7 kg at a temperature 50 ° C. higher than the melting point of the resin using a flow tester manufactured by Shimadzu Corporation.
  • the fluorocopolymer used in the present invention is more preferably 5 ⁇ 500 mm 3 / sec, and most preferably 10 ⁇ 200 mm 3 / sec. Within this range, the fluorine-containing copolymer is excellent in mechanical strength, and when used as a coating composition, the coating film does not crack and the coating film characteristics are excellent. In the production method of the present invention, one type of these fluorine-containing copolymers can be used alone, or two or more types can be used in combination.
  • the solvent used in the method for producing the fluororesin organosol of the present invention is a solvent that can dissolve the fluorocopolymer at a temperature not higher than the melting point of the fluorocopolymer. After the copolymer fine particles are precipitated and uniformly dispersed, the solvent functions as a dispersion medium for allowing the fine particles to exist in a dispersed state at least at normal temperature and pressure.
  • the solvent in the present invention various solvents can be mentioned as long as they meet the above conditions.
  • the polarity of the solvent is preferably within a specific range.
  • the following method is used, in which a solvent that satisfies the above conditions is selected as a solvent having a certain range of polarity based on Hansen solubility parameters (Hansen solubility parameters).
  • the Hansen solubility parameter is obtained by dividing the solubility parameter introduced by Hildebrand into three components: a dispersion term ⁇ d, a polar term ⁇ p, and a hydrogen bond term ⁇ h, and representing it in a three-dimensional space.
  • the dispersion term ⁇ d indicates the effect due to the dispersion force
  • the polar term ⁇ p indicates the effect due to the force between the dipoles
  • the hydrogen bond term ⁇ h indicates the effect due to the hydrogen bond force.
  • Hansen solubility parameters are described in Charles M. et al. Hansen, Hansen Solubility Parameters: A Users Handbook (CRC Press, 2007).
  • HSPiP Hansen Solubility Parameters in Practice
  • the Hansen solubility parameter can be easily estimated from the chemical structure of a medium whose literature values are not known.
  • HSPiP version 3 For the solvent in the present invention, use HSPiP version 3 to select the solvent to be used by using the value for the solvent registered in the database and the estimated value for the solvent not registered. did.
  • the Hansen solubility parameter for a particular polymer can be determined by a solubility test in which a sample of the polymer is dissolved in a number of different solvents for which the Hansen solubility parameter is established and the solubility is measured. Specifically, among the solvents used in the solubility test, all the three-dimensional points of the solvent in which the polymer is dissolved are encapsulated inside the sphere, and the non-dissolved solvent points are outside the sphere ( Solubility sphere) is found and the center coordinates of the sphere are taken as the Hansen solubility parameter of the polymer.
  • the point indicated by the coordinates is the solubility of the polymer. If encapsulated inside the sphere, the solvent is believed to dissolve the polymer. On the other hand, if the coordinate point is outside the solubility sphere of the polymer, it is considered that this solvent cannot dissolve the polymer.
  • the Hansen solubility parameter is used to dissolve the fluorine-containing copolymer contained in the fluororesin organosol at a temperature below its melting point, and the fluorine-containing copolymer is used as fine particles at room temperature.
  • a solvent group at a certain distance from the coordinates (15.7, 5.7, 4.3), which is the Hansen solubility parameter can be used as a preferred solvent.
  • R which is a value based on the Hansen solubility parameter represented by the following formula (1), was used as a solubility index for the fluorine-containing copolymer: ETFE.
  • R 4 ⁇ ( ⁇ d ⁇ 15.7) 2 + ( ⁇ p ⁇ 5.7) 2 + ( ⁇ h ⁇ 4.3) 2 (1)
  • ⁇ d, ⁇ p, and ⁇ h represent a dispersion term, a polar term, and a hydrogen bond term in the Hansen solubility parameter, respectively, and the unit is (MPa) 1/2 .
  • the solvent in the present invention preferably has a solubility index (R) calculated by the above formula (1) using Hansen solubility parameter coordinates ( ⁇ d, ⁇ p, ⁇ h) of the solvent of less than 25, preferably less than 16. More preferably, it is most preferably less than 9.
  • R solubility index
  • a solvent having a Hansen solubility parameter in which R represented by the above formula (1) falls within this range has high affinity with the fluorine-containing copolymer, and high solubility and fine particle dispersibility.
  • the solvent in the present invention may be a solvent composed of one compound or a mixed solvent of two or more compounds, and includes the value of R calculated based on the Hansen solubility parameter according to the above formula (1). It can be used as a solubility index of a fluorine copolymer.
  • a solubility index of a fluorine copolymer For example, when a mixed solvent is used, an average Hansen solubility parameter based on the mixing ratio (volume ratio) of the solvent to be used is obtained, and the solubility index (R) can be calculated using the Hansen solubility parameter.
  • the boiling point of the solvent in the present invention is preferably 210 ° C. or less, more preferably 200 ° C. or less, and most preferably 180 ° C. or less from the viewpoints of handleability and solvent removal after coating. Further, if the boiling point of the solvent is too low, for example, there is a problem that bubbles are likely to be generated at the time of evaporation removal (hereinafter also referred to as drying) of the solvent after coating the composition. More preferably, it is 80 ° C. or higher.
  • ketones having 3 to 10 carbon atoms, esters, carbonates, ethers and the like are preferable, and ketones and esters having 5 to 9 carbon atoms are more preferable.
  • Specific examples include methyl ethyl ketone, 2-pentanone, methyl isopropyl ketone, 2-hexanone, methyl isobutyl ketone, pinacholine, 2-heptanone, 4-heptanone, diisopyrrole ketone, isoamyl methyl ketone, 2-octanone, 2-nonanone.
  • the above solvents may be used alone or in admixture of two or more as long as they satisfy the above conditions of the present invention. Moreover, as long as the said conditions are satisfy
  • the solvent that can be used in the production method of the present invention in combination with the solvent that can be used alone is not particularly limited as long as the solvent satisfies the above conditions in a mixed solvent state.
  • Specific examples of such combinations include the above pinacholine (Hansen solubility parameters: 15.2, 5.7, 5.3, R: 2.0) and benzonitrile (Hansen solubility parameters: 18.8, 12).
  • the solubility index (R) calculated from the Hansen solubility parameter and volume ratio of each solvent constituting the mixed solvent is preferably less than 25, more preferably less than 16, and most preferably less than 9.
  • the said combination is an illustration, Comprising:
  • the mixed solvent which can be used for the manufacturing method of the fluororesin organosol of this invention is not limited to these combinations.
  • the fluorine-containing copolymer is dissolved in the solvent in the dissolving step to obtain a fluorine-containing copolymer solution.
  • the blending ratio of the fluorine-containing copolymer and the solvent used for the preparation of the fluorine-containing copolymer solution is 1.0: 99.0 to 70.0: 30.30 in a mass ratio represented by the fluorine-containing copolymer: solvent. 0 is preferable, and 2.0: 98.0 to 60.0: 40.0 is more preferable.
  • the blending ratio of the fluorinated copolymer and the solvent in the dissolution step is in agreement with the content ratio of the fluorinated copolymer fine particles and the dispersion medium in the obtained fluororesin organosol.
  • the fluororesin organosol is used as, for example, a coating composition
  • the blending ratio can be appropriately changed according to the film thickness of the target molded product.
  • the blending ratio of the fluorine-containing copolymer and the solvent in the fluororesin organosol is within this range, for example, when used as a coating composition, it has excellent handling properties such as viscosity, drying speed, and film uniformity, and contains A homogeneous coating film made of a fluorine copolymer can be formed.
  • the conditions such as temperature, pressure, and stirring in the dissolution step are not particularly limited as long as the fluorine-containing copolymer is dissolved in the solvent.
  • the temperature condition in the dissolving step is preferably a temperature not higher than the melting point of the fluorine-containing copolymer to be used. Since the melting point of the fluorine-containing copolymer in the present invention, that is, ETFE explained above is the highest at about 275 ° C., the temperature of the step of dissolving it in the solvent is about 275 ° C. or less. Preferably there is.
  • the temperature at which the fluorine-containing copolymer is dissolved in the solvent is more preferably 230 ° C. or less, and particularly preferably 200 ° C. or less.
  • the temperature of this melt dissolution process
  • 40 degreeC is preferable, 60 degreeC is more preferable, and 80 degreeC is further more preferable when operativity etc. are considered.
  • the temperature of the melting step is less than 40 ° C., a sufficient dissolved state may not be obtained, and when the temperature exceeds 275 ° C., it may not be easily performed when performing actual work.
  • conditions other than temperature are not particularly limited. Usually, it is preferable to dissolve under conditions of normal pressure to slight pressure of about 0.5 MPa.
  • the pressure at the time of dissolution depends on the type of the fluorine-containing copolymer and the solvent, and when the boiling point of the solvent is lower than the temperature of the dissolution process, etc., in the pressure vessel, it is at least lower than the spontaneously generated pressure, preferably 3 MPa or lower, More preferably, it is 2 MPa or less, More preferably, it is 1 MPa or less, Most preferably, it is below normal pressure. In general, it can be dissolved under a pressure of about 0.01 to 1 MPa.
  • the dissolution time depends on the content of the fluorinated copolymer in the fluororesin organosol obtained by the production method of the present invention, the shape of the fluorinated copolymer, and the like.
  • the shape of the fluorine-containing copolymer to be used is preferably a powder from the viewpoint of work efficiency for shortening the dissolution time.
  • the thing of other shapes, such as a pellet form, can also be used from availability.
  • the dissolution means in the dissolution step is not particularly limited, and a general method can be used.
  • Arbitrary components that are appropriately selected and blended according to the required performance depending on the intended use of the fluorocopolymer and the solvent, which are essential components of the fluororesin organosol, and the intended use of the fluororesin organosol obtained thereby. It is sufficient to weigh the added amount of and uniformly mix and dissolve.
  • the fluororesin organosol of the present invention in the process of producing the fluororesin organosol of the present invention, as an optional component to be added, for example, a thickener having a function of adjusting viscosity, a thickener, etc., an ultraviolet absorber having a function of preventing deterioration, a light stabilization Agents and the like.
  • the total compounding quantity of these arbitrary components which the fluororesin organosol obtained in the manufacturing method of this invention contains is 30 mass% or less with respect to the fluororesin organosol whole quantity, and it is 10 mass% or less. More preferred.
  • the total amount of the fluorine-containing copolymer and the solvent contained in the fluororesin organosol is preferably 70% by mass or more and more preferably 90% by mass or more based on the total amount of the fluororesin organosol.
  • optional components that function in using the fluororesin organosol can be added to the obtained fluororesin organosol after the following (3) crushing / dispersing step.
  • the mixing temperature of the fluorinated copolymer, the solvent and the optional component is preferably 40 ° C. or higher and the melting point of the fluorinated copolymer to be used. Specifically, 60 to 230 ° C. is more preferable, and 80 to 200 ° C. is most preferable.
  • mixing and heating of various raw material components may be performed simultaneously, or after mixing various raw material components, heating may be performed while stirring as necessary.
  • equipment such as an autoclave with a stirrer can be used.
  • a marine propeller blade, a paddle blade, an anchor blade, a turbine blade, or the like is used.
  • a magnetic stirrer or the like may be used.
  • Precipitation step The solution obtained by dissolving the above fluorinated copolymer in the above-mentioned (1) dissolution step under the condition that the fluorinated copolymer is precipitated as fine particles in the solvent.
  • a composition in which fine particles of the fluorine copolymer are precipitated in the solvent and the fine particles of the fluorine-containing copolymer are dispersed in the solvent is obtained.
  • the deposition condition normal temperature and normal pressure are preferable.
  • the fluorocopolymer fine particles are precipitated in the solvent by cooling the solution obtained in the dissolution step (1) to room temperature.
  • the cooling method is not particularly limited, and may be slow cooling or rapid cooling.
  • the composition refers to a mixture of a solvent and a fluorine-containing copolymer containing the fluorine-containing copolymer as fine particles.
  • the dispersion state of the fluorine-containing copolymer fine particles in the composition obtained in the precipitation step in addition to the case where the fine particles are uniformly dispersed in the solvent, a part or the whole of the solvent containing the fine particles is gelled. In some cases, the fine particles are unevenly distributed in the solvent and dispersed unevenly. The dispersion state like the latter appears more remarkably as the blending ratio of the fluorine-containing copolymer to the solvent is higher. In the case of such a non-uniform composition, the following crushing / dispersing steps are performed in order to obtain a fluororesin organosol having excellent handling properties in which the fine particles of the fluorine-containing copolymer are uniformly dispersed in the solvent. .
  • Crushing / dispersing step In the crushing / dispersing step, a high shear force is applied to the composition of the fluorine-containing copolymer obtained in the above (2) precipitation step with the fine particles to form a solvent. This is a step of dispersing the fine particles of the fluorinated copolymer more uniformly.
  • Specific examples of methods for applying a high shear force to the mixture include high-speed rotation, high-pressure injection, high-speed vibration, ultrasonic treatment, and high-pressure filtration. Among these, a method using high-speed rotation, high-pressure injection, or high-speed vibration (hereinafter collectively referred to as “stirring”) is preferable because it is a simple method. Moreover, the method of applying these high shear forces may be performed alone, or two or more methods, for example, stirring and ultrasonic treatment may be used in combination.
  • a stirring device usually used for stirring a liquid material while applying a high shearing force can be used without any particular limitation.
  • an agitator an agitator having an agitating blade having a large shearing force among normal agitating blades such as a turbine blade and an edged turbine blade can be used in the crushing / dispersing step.
  • (a) to (c) and (e) are stirring devices by high-speed rotation, and (d) is a dispersing device by high-pressure injection.
  • Specific examples of the number include 1000 to 30000 rotations / minute.
  • Stirring device Specific examples of the number of rotations when applying a high shear force include 1000 to 22000 rotations / minute.
  • a device for rotating the rotor at a high speed causing a mixture to be stirred from the inside of the rotor to the outside of the stator, and stirring the mixture in the gap between the rotor and the stator;
  • the tip speed of the stirring blade is 2 to 50 m / sec.
  • (D) Dispersing device typified by Menton Gaulin homogenizer (manufactured by Gorin), that is, pressurizing the processing liquid with a high pressure plunger pump, etc.
  • An apparatus that strikes and disperses at a high speed; specifically, the pressure when applying a high shearing force is 1 to 100 MPa.
  • a device that stirs by touching the tip of the stirrer Specific examples of the tip speed of the stirring blade when high shear force is applied include 2 to 50 m / sec.
  • a commercially available high pressure filtration device that allows a liquid to pass through pores such as a filter at high pressure can be applied without particular limitation.
  • specific conditions for example, pressure, filter pore diameter, treatment time, treatment temperature, etc. when applying a high shear force to the mixture of the solvent and the fluorinated copolymer using a high-pressure filtration device are as follows: It is appropriately selected depending on the state of the mixture and the apparatus used. More specifically, conditions such as a pressure of 0.1 to 2.0 Mpa and a filter pore size of 0.1 to 5 ⁇ m can be mentioned.
  • a commercially available ultrasonic cleaner, ultrasonic transmitter, or the like can be used.
  • specific conditions when applying a high shear force to the mixture of the solvent and the fluorinated copolymer such as frequency, treatment time, treatment temperature, etc., are appropriately selected depending on the state of the mixture and the apparatus used. Is done. More specifically, the oscillation frequency includes conditions such as 10 to 200 kHz.
  • a viscosity modifier also referred to as “thickening agent” is added to the (3) crushing / dispersing step of the production method of the present invention. It is preferable to carry out.
  • the viscosity modifier to be used is not particularly limited as long as it can reduce the viscosity of the mixture of the solvent and the fluorinated copolymer.
  • an alkyl group having 1 to 20 carbon atoms in which any —CH 2 — other than the bonding terminal, which may be substituted with a halogen group, may be substituted with an oxygen atom, an amino group, an amide
  • a compound having at least one functional group selected from the group consisting of a group, a sulfonamide group, an imidazole group, a hydroxyl group and a mercapto group may be substituted with an oxygen atom, an amino group, an amide
  • a compound having at least one functional group selected from the group consisting of a group, a sulfonamide group, an imidazole group, a hydroxyl group and a mercapto group may be substituted with an oxygen atom, an amino group, an amide
  • a compound having at least one functional group selected from the group consisting of a group, a sulfonamide group, an imidazole group, a hydroxyl group and a mercapto group
  • 3-butoxypropylamine, octylamine, nonylamine, decylamine, undecylamine, dodecylamine, tridecylamine, tetradecylamine, pentadecylamine, hexadecylamine, heptadecylamine, octadecylamine and the like are preferable. . These can be used alone or in combination of two or more.
  • the amount of the viscosity modifier used is preferably from 0.1 to 20% by mass, more preferably from 0.5 to 10% by mass, based on the fluorine-containing copolymer in the mixture.
  • the amount of the viscosity modifier is a total amount with other optional components, and is preferably 30% by mass or less, more preferably 15% by mass or less, based on the total amount of the fluororesin organosol.
  • the timing of adding the viscosity modifier is not particularly limited as long as it is before the (3) crushing / dispersing step. For example, you may add in said (1) melt
  • a viscosity modifier may exist uniformly in the mixture of the said solvent and a fluorine-containing copolymer.
  • coarse aggregated particles may remain.
  • a step of filtering the dispersion may be performed.
  • any method such as pressure filtration, vacuum suction filtration, and normal pressure natural filtration may be used.
  • pressure filtration is preferable, and as a filter medium, a stainless steel filter or a resin filter can be used.
  • the fine particles of the fluorocopolymer are uniformly dispersed in the dispersion medium using the solvent as a dispersion medium. It exists in a distributed state.
  • the average particle diameter of the fluorine-containing copolymer fine particles is preferably 0.005 to 5 ⁇ m as the number average particle diameter measured by a dynamic light scattering method at 25 ° C., 0.005 ⁇ 2 ⁇ m is more preferable, and 0.01 to 1 ⁇ m is most preferable.
  • the number average particle diameter is a particle diameter in which the ratio of the number of particles having a smaller particle diameter is equal to the number of particles having a larger particle diameter than the average particle diameter obtained.
  • the average particle size of the fluorine-containing copolymer fine particles is in the above range, for example, when this is used as a coating composition, it is homogeneous, transparent, flat, and adherent. A coating film excellent in properties can be formed.
  • the average particle diameter means the average primary particle diameter.
  • the coating composition of the present invention is a coating composition containing the fluororesin organosol of the present invention as a main component.
  • the coating composition of the present invention is a fluororesin organosol consisting of the fluorocopolymer fine particles and the solvent alone, or a fluororesin organosol containing the fluorocopolymer microparticles and the solvent and an optional component. . Moreover, what added arbitrary components to such a fluororesin organosol may be used.
  • the coating composition of the present invention contains, as an essential component, an organosol formed by the fine particles of the fluorine-containing copolymer and a solvent satisfying the above conditions.
  • other optional components can be contained as necessary within a range not impairing the effects of the present invention.
  • optional components include antioxidants, light stabilizers, ultraviolet absorbers, crosslinking agents, lubricants, plasticizers, thickeners, dispersion stabilizers, fillers, fillers, reinforcing agents, pigments, dyes And various additives such as flame retardants and antistatic agents.
  • content of an arbitrary component 30 mass% or less is preferable with respect to the coating composition whole quantity, and 10 mass% or less is more preferable.
  • the optional component may be added to the raw material component in the (1) dissolution step of the fluororesin organosol production process, or may be added to the fluororesin organosol consisting only of the fluorocopolymer fine particles and the solvent. .
  • some of the optional components are added to the raw material components in the above (1) dissolving step to produce a fluororesin organosol, and then the same or different types of fluororesin organosol are used.
  • Optional ingredients may be added.
  • Formation of the fluorine-containing copolymer coating film on the substrate by the coating composition of the present invention can be performed by the following coating film forming method.
  • the coating composition of the present invention is applied to a substrate to form a solvent-containing coating film, and the solvent removal step is performed to remove the solvent from the solvent-containing coating film to form a solvent-free coating film.
  • the coating film of a fluorine-containing copolymer can be obtained simply from the coating composition of this invention.
  • the means used for coating the coating composition on the substrate is not particularly limited, and generally used methods can be used.
  • the application method include gravure coating, dip coating, die coating, spray coating, electrostatic coating, brush coating, screen printing, roll coating, spin coating, and the like.
  • the coating composition of the present invention does not necessarily have to be applied in a state where the fluorine-containing copolymer is dissolved in the solvent.
  • the coating composition of the present invention is characterized in that the fluorine-containing copolymer is uniformly dispersed in the solvent even at a temperature below the temperature at which the fluorine-containing copolymer dispersed in the solvent dissolves. Therefore, in the coating step, the coating composition of the present invention is applied to the substrate at a temperature lower than the temperature at which the fluorine-containing copolymer is dissolved in the solvent, and the solvent is heated at a relatively low temperature described below. Can be removed (dried). Application in this way is preferable from the following viewpoints and workability.
  • a dense and flat coating film can be obtained by adjusting the coating temperature and the drying temperature to such a low temperature.
  • the coating temperature in the coating step varies depending on the coating composition to be used, but is preferably 0 to 210 ° C, more preferably 0 to 130 ° C, and most preferably 0 to 50 ° C. If the coating temperature is less than 0 ° C., the dispersion state of the fluorine-containing copolymer is not sufficient, and if it exceeds 210 ° C., the contained solvent tends to volatilize and bubbles may be generated, which is not preferable. .
  • the said solvent removal process is a process of removing a solvent from the solvent containing coating film obtained at the said application
  • the solvent removal temperature in the solvent removal step that is, the drying temperature is preferably 0 to 350 ° C, more preferably 10 to 270 ° C, and most preferably 20 to 240 ° C. If the temperature at the time of solvent removal (drying temperature) is less than 0 ° C, it takes too much time to remove the solvent, and if it exceeds 350 ° C, coloring or decomposition may occur, which is not preferable. It is also preferable to heat-treat at 40 to 350 ° C. after forming a coating film using the coating composition.
  • the heat treatment temperature is more preferably 70 to 270 ° C, and most preferably 100 to 250 ° C.
  • a coating film of a fluorinated copolymer using the coating composition of the present invention it is not necessary to apply and dry the coating composition at a high temperature. Therefore, a coating film can be formed even on materials having low heat resistance such as plastic, paper, and cloth without causing decomposition or deformation of the substrate.
  • the material and shape of the substrate coated with the fluorine-containing copolymer are not particularly limited, and metals such as iron, stainless steel, aluminum, titanium, copper, and silver, glass such as window glass, mirror, and synthetic quartz are used. , Silicon, polycarbonate (PC), polyethylene terephthalate (PET), polymethyl methacrylate (PMMA), glass fiber reinforced plastic (FRP), polyvinyl chloride (PVC), organic materials such as fluororesin, stone, wood, ceramics, Can be applied to cloth, paper, etc.
  • the base material is pretreated for the purpose of improving the adhesion between the base material and the coating film.
  • a silane coupling agent, polyethyleneimine, or the like can be applied to the substrate, the surface can be physically treated by sandblasting, or treatment by corona discharge or the like can be performed.
  • the coating composition mainly composed of the fluororesin organosol obtained by the production method of the present invention on the substrate in this way, the coating film of the fluorinated copolymer and the coating film Coated articles can be provided.
  • the coating film of the fluorine-containing copolymer obtained by the method for forming a coating film can be used as a film-like molded body by separating from the base material.
  • the thus obtained fluorine-containing copolymer, that is, the ETFE film is thinner and more uniform than an ETFE film obtained by general melt molding.
  • the thickness of the obtained coating film or film-like molded product can be freely selected according to the purpose. If a high concentration solution or dispersion is used, a thick film can be obtained, and if a low concentration solution or dispersion is used, a thin coating can be obtained. Moreover, a thicker film can be obtained by repeating the coating process a plurality of times.
  • the application of the coating composition mainly composed of the fluororesin organosol of the present invention includes an optical fiber clad material, a lens, an article for solar cell, an article for display panel / display, an optical disk, Semiconductors, hybrid ICs, liquid crystal cells, printed circuit boards, IC cards, photosensitive drums, film capacitors, glass windows, resin windows, various films, various sensors, antennas, covered wires, motors, power generation devices, etc.
  • Protective coating agent in the field water repellent coating agent, low reflection coating agent, electrically insulating coating material, charge retention layer, trains, buses, trucks, automobiles, ships, aircraft and other transportation equipment articles, outer walls, roofing materials, Sealant parts, building articles such as bridges and tunnels, syringes, pipettes, thermometers, beakers, shears , Medical cylinders, chemicals, other solder masks, solder resists, rubber, plastic protection, weather resistance, antifouling coating, fiber, fabric protective coating, sealant antifouling coating, IC sealing
  • the stopper include rust preventive paints, resin adhesion inhibitors, ink adhesion inhibitors, articles for separation membranes, primers for laminated steel sheets, various adhesives, and binders.
  • Examples of the solar cell article include a protective cover material made of glass or resin, a transparent conductive member, a protective coating agent such as a backsheet, a gas barrier layer, a thin glass support resin layer, and an adhesive layer.
  • Examples of the display panel / display article include liquid crystal display panels, plasma display panels, electrochromic display panels, electroluminescent display panels, protective coating agents for transparent members (glass substrates and resin substrates) used in touch panels, and antifouling coating agents. , Low reflection coating agents, thin glass support resins, and the like.
  • the separation membrane article include functional layers such as reverse osmosis membranes and nanofiltration membranes, functional layers of gas separation membranes that separate carbon dioxide, hydrogen, etc., adhesives in membrane module production, antifouling coating agents, and the like.
  • the coating composition of the present invention can be advantageously used as a material composition for producing an interlayer insulating film and a protective film in semiconductor elements and integrated circuit devices. If the coating composition mainly composed of the fluororesin organosol of the present invention is used for such applications, the response speed utilizing the characteristics such as low water absorption, low dielectric constant and high heat resistance of the fluorine-containing copolymer can be obtained. A semiconductor element integrated circuit device can be obtained quickly and with few malfunctions.
  • the coating composition of the present invention is advantageous for a protective coating agent for a condensing mirror used in concentrating solar power generation, an antifouling coating agent, a protective coating agent for a sealing part such as a backing resin of the condensing mirror, and the like. Can be used. If the coating composition mainly composed of the fluororesin organosol of the present invention is used for such applications, the power generation system that is highly durable and does not require maintenance due to the high heat resistance and low water absorption characteristics of the fluororesin. Can be obtained. Moreover, the fluororesin organosol of the present invention can be used for applications such as adhesives, binders, and toner additives in addition to coating applications.
  • the fine particle dispersions obtained in the examples and the coating film were evaluated for the following items by the following method.
  • (1) Number average particle diameter The number average particle diameter of the ETFE fine particles in the dispersion is measured by a dynamic light scattering method using a particle size distribution measuring device (Nanotrac manufactured by Microtrac) under a temperature condition of 25 ° C. did.
  • the primary particle diameter of the ETFE fine particles was observed with a transmission electron microscope (TEM) (JEM-1230 manufactured by JEOL Ltd.), and the results obtained by the dynamic light scattering method were confirmed. confirmed.
  • TEM transmission electron microscope
  • ETFE molar ratio of repeating units based on constituent monomers: repeating units based on tetrafluoroethylene / repeating
  • FIG. 1 shows a transmission electron microscope (TEM) photograph (100,000 times).
  • TEM photography since the solvent in the dispersion is removed at the time of sample preparation, in the resulting photograph, for example, the fluorine-containing copolymer particles form aggregated particles as shown in the photograph in FIG. it is conceivable that.
  • the aggregated particles are ETFE1 aggregated particles, and the individual particles constituting the aggregated particles are primary ETFE1 particles.
  • the observed number average particle size means that the primary particles of ETFE1 that have identified the photographic particles in this way are present alone in the dispersion or as secondary particles formed by collecting several primary particles.
  • the particle diameter of the particles corresponding to 50% of the total number of particles.
  • the dispersion was applied on a glass substrate (crown glass, thickness 1 mm) with a bar coater at room temperature and dried at room temperature. Heating was performed on a hot plate at 180 ° C. for 3 minutes to obtain a glass substrate having a ETFE1 thin film formed on the surface.
  • a glass substrate having a ETFE1 thin film formed on the surface.
  • FIG. 2 shows an optical micrograph (100 times) of the surface of the thin film made of ETFE1. Moreover, it was 3 micrometers when the film thickness was measured with the stylus type surface shape measuring device.
  • the adhesion of the obtained ETFE1 film was evaluated, no peeling was observed. That is, the evaluation of adhesion was ⁇ (excellent).
  • Example 2 The fluororesin organosol obtained in Example 1 was coated on a PET (polyethylene terephthalate) film (Cosmo Shine (registered trademark) A4300 manufactured by Toyobo Co., Ltd .; thickness: 100 ⁇ m) with a bar coater at room temperature and dried at room temperature. It heated for 3 minutes on a 100 degreeC hotplate, and the thin film of ETFE1 was formed on PET film. Moreover, it was 3 micrometers when the film thickness was measured with the stylus type surface shape measuring device. When the adhesion of the obtained ETFE1 film to the PET film was evaluated, no peeling was observed. That is, the evaluation of adhesion was ⁇ (excellent).
  • Example 3 The fluororesin organosol obtained in Example 1 was coated on an aluminum plate (thickness: 200 ⁇ m) with a bar coater at room temperature, dried, and then heated on a hot plate at 230 ° C. for 3 minutes to form ETFE1 on the aluminum plate. A thin film was formed. When the adhesion between the obtained ETFE1 film and the aluminum plate was evaluated, no peeling was observed. That is, the evaluation of adhesion was ⁇ (excellent).
  • Example 4 A uniform fluorine-containing copolymer gel (concentration of ETFE1 of 10% by mass) in the same manner as in Example 1 except that 1.60 g of ETFE1 and 14.4 g of diisopropyl ketone are used as the fluorine-containing copolymer. Got. To this gel was added dodecylamine (0.03 g) as a viscosity modifier, and the mixture was stirred for 10 minutes at 2000 rpm with a planetary ball mill (Shinky Corporation, Awatori Nertaro ARE-310).
  • the obtained slurry was stirred for 2 minutes at 30 m / sec using a TK film mix type 40-40 manufactured by Primics, to obtain a uniform dispersion (fluororesin organosol of the present invention).
  • a glass substrate having a ETFE1 thin film formed on the surface thereof was obtained in the same manner as in Example 1.
  • the obtained ETFE1 film was observed with an optical microscope, it was confirmed to be a uniform and smooth film. Moreover, it was 6 micrometers when the film thickness was measured with the stylus type surface shape measuring device.
  • the adhesion of the obtained ETFE1 film was evaluated, no peeling was observed. That is, the evaluation of adhesion was ⁇ (excellent).
  • Example 5 In the same manner as in Example 1, a uniform gel-like product of ETFE 1 (the concentration of ETFE 1 was 5% by mass) was obtained. This gel-like product was stirred for 5 minutes at 22,000 rpm using a Polytron PT10-35 type manufactured by KINEMATICA to obtain a uniform dispersion (fluororesin organosol of the present invention). A glass substrate having a ETFE 1 thin film formed on the surface of the dispersion was obtained in the same manner as in Example 1. When the surface of the obtained ETFE1 film was observed with an optical microscope, it was confirmed that the film was uniform and smooth.
  • Example 6 The aluminum substrate coated with ETFE1 obtained in Example 3 (aluminum substrate with protective coating) was immersed in 1N hydrochloric acid, and the change was observed. The results are shown in Table 1 together with the results obtained by similarly treating an aluminum substrate without a protective coat.
  • the chemical resistance of the aluminum plate could be remarkably improved by coating the fluororesin organosol of the present invention.
  • the fluororesin organosol of the present invention When used as a coating composition, it is easy to form an ETFE coating film by coating, and has heat resistance, flame resistance, chemical resistance, weather resistance, low friction, low dielectric constant. Suitable for applications such as surface treatment that require properties and transparency.
  • the entire contents of the specification, claims, and abstract of Japanese Patent Application No. 2010-198288 filed on September 3, 2010 are incorporated herein as the disclosure of the specification of the present invention. Is.

Abstract

Provided are: a method for producing a fluororesin organosol at a relatively low temperature wherein a fluorine-containing copolymer (ETFE) containing a repeat unit based on ethylene and a repeat unit based on tetrafluoroethylene is dispersed evenly and at a high concentration in an organic medium; a fluororesin organosol obtained by means of said method; and a coating composition having the fluororesin organosol as the primary component. The method for producing a fluororesin organosol has as a dispersing medium a solvent that can dissolve ETFE at a temperature that is no greater than the melting point of ETFE with ETFE as the dispersoid, and is characterized by having: a dissolution step for dissolving ETFE in the solvent to form a solution; a precipitation step for precipitating ETFE from the solution as microparticles in the solvent; and a cracking/dispersing step for evenly dispersing the ETFE microparticles in the solvent by applying a high shearing force to the mixture of ETFE and the solvent containing ETFE as microparticles.

Description

フッ素樹脂オルガノゾルの製造方法、フッ素樹脂オルガノゾルおよびコーティング用組成物Method for producing fluororesin organosol, fluororesin organosol and coating composition
 本発明は、フッ素樹脂オルガノゾルの製造方法、およびそれにより得られるフッ素樹脂オルガノゾル、ならびにこれを主成分とするコーティング用組成物に関する。 The present invention relates to a method for producing a fluororesin organosol, a fluororesin organosol obtained thereby, and a coating composition comprising this as a main component.
 フッ素樹脂は、耐溶剤性、低誘電性、低表面エネルギー性、非粘着性、耐候性等に優れていることから、汎用のプラスチックスでは使用できない種々の用途に用いられている。中でもエチレン/テトラフルオロエチレン共重合体(以下、ETFEともいう。)は、耐熱性、難燃性、耐薬品性、耐候性、低摩擦性、低誘電特性、透明性等に優れることから、耐熱電線用被覆材料、ケミカルプラント用耐食配管材料、農業用ビニルハウス用材料、金型用離型フィルム等の幅広い分野に用いられている。 Fluororesin is excellent in solvent resistance, low dielectric properties, low surface energy, non-adhesiveness, weather resistance, etc., and is used in various applications that cannot be used with general-purpose plastics. Among them, ethylene / tetrafluoroethylene copolymer (hereinafter also referred to as ETFE) is excellent in heat resistance, flame resistance, chemical resistance, weather resistance, low friction, low dielectric properties, transparency, and the like. It is used in a wide range of fields such as coating materials for electric wires, corrosion-resistant piping materials for chemical plants, vinylhouse materials for agriculture, and mold release films.
 しかし、ETFEは、一般に溶剤に不溶で溶液の塗布による塗膜形成ができないため、ETFEの成形方法としては、下記特許文献のような特殊な場合を除いては、押出成形、射出成形、粉体塗装等のように、ETFEを熱溶融して成形する方法に限られていた。 However, since ETFE is generally insoluble in a solvent and cannot form a coating film by applying a solution, the ETFE molding method is extrusion molding, injection molding, powder, except for special cases such as the following patent documents. The method is limited to a method in which ETFE is melted by heat, such as painting.
 基材上にETFE塗膜を形成する方法としては、ETFE粉末の回転溶融成形法や静電粉体塗装法などが知られている。しかし、これらの方法では、特殊な装置が必要とされる。
 さらに、基材に密着し、ピンホールのない十分な物性を持った塗膜を形成するには、上記のようにETFEを溶融して成形する、つまりETFEの融点以上への加熱が必要であった。そのため、ETFEの融点以下で変形する基材上にETFE塗膜を形成することは困難であった。
Known methods for forming an ETFE coating film on a substrate include a rotary melt molding method of ETFE powder and an electrostatic powder coating method. However, these methods require special equipment.
Furthermore, in order to form a coating film with sufficient physical properties that adheres closely to the substrate and does not have pinholes, it is necessary to melt and mold ETFE as described above, that is, to heat to a temperature higher than the melting point of ETFE. It was. Therefore, it has been difficult to form an ETFE coating film on a base material that deforms below the melting point of ETFE.
 一方、ETFEの溶液を得る試みが報告されている。例えば、特許文献1、特許文献2、特許文献3によれば、アジピン酸ジイソブチルのような高沸点の化合物とETFEとを230℃以上という高温で撹拌してETFEを溶解した後、さらに激しく撹拌しながら冷却することでETFE懸濁液を得る。ついで、ETFEをろ過により分離し、さらにケロセンとアジピン酸ジイソブチルの混合溶媒に分散してETFE分散液を得る。該分散液を銅線に塗布し、450℃という高温で塗膜を形成した旨の記載がある。しかし、この方法では、ETFE懸濁液の調製に煩雑な操作が必要であり、また、十分な物性を持ったETFE被覆電線を得るには高温処理の工程が必要である。 On the other hand, attempts to obtain ETFE solutions have been reported. For example, according to Patent Document 1, Patent Document 2, and Patent Document 3, a high boiling point compound such as diisobutyl adipate and ETFE are stirred at a high temperature of 230 ° C. or more to dissolve ETFE, and then stirred more vigorously. The ETFE suspension is obtained by cooling while cooling. Next, ETFE is separated by filtration, and further dispersed in a mixed solvent of kerosene and diisobutyl adipate to obtain an ETFE dispersion. There is a description that the dispersion was applied to a copper wire and a coating film was formed at a high temperature of 450 ° C. However, this method requires complicated operations for the preparation of the ETFE suspension, and a high-temperature treatment step is required to obtain an ETFE-coated electric wire having sufficient physical properties.
 その他に、低分子量のクロロトリフルオロエチレンオリゴマーのオイルを媒体としてETFE溶液を得る試みが報告されている(特許文献4を参照)。しかし、該オイルは沸点が高く、乾燥しにくいことから、ETFE塗膜の形成に用いるのは容易でない。さらに、該オイルを用いて得られたETFE分散液は、室温付近では流動性がなく、塗膜の形成には適用できない。 In addition, an attempt to obtain an ETFE solution using oil of a low molecular weight chlorotrifluoroethylene oligomer as a medium has been reported (see Patent Document 4). However, since the oil has a high boiling point and is difficult to dry, it is not easy to use for forming an ETFE coating film. Furthermore, the ETFE dispersion obtained using the oil does not have fluidity near room temperature and cannot be applied to the formation of a coating film.
 ところが、最近、特許文献5、6に開示されているように、ETFEが特定の媒体に対して、ETFEの融点よりも50℃以上も低い温度で溶解する例が報告されている。この方法を用いると比較的低い温度で、ETFEの溶液を得ることができ、これを冷却することによって、ETFE分散液を得ることができるが、ETFEの濃度を高くすると、ゲル化したり、均一な分散液が得られないなどの問題点があった。 However, recently, as disclosed in Patent Documents 5 and 6, there has been reported an example in which ETFE is dissolved in a specific medium at a temperature lower by 50 ° C. or more than the melting point of ETFE. When this method is used, a solution of ETFE can be obtained at a relatively low temperature, and by cooling this, an ETFE dispersion can be obtained. However, when the concentration of ETFE is increased, gelation or uniform There were problems such as the inability to obtain a dispersion.
米国特許第2,412,960号明細書US Pat. No. 2,412,960 米国特許第2,448,952号明細書US Pat. No. 2,448,952 米国特許第2,484,483号明細書US Pat. No. 2,484,483 米国特許第4,933,388号明細書U.S. Pat. No. 4,933,388 国際公開第2010/044421号明細書International Publication No. 2010/044421 Specification 国際公開第2010/044425号明細書International Publication No. 2010/044445 Specification
 本発明は、上記事情に鑑みてなされたものであり、エチレンに基づく繰り返し単位とテトラフルオロエチレンに基づく繰り返し単位とを含む含フッ素共重合体が有機媒体に高濃度でかつ均一に分散されたフッ素樹脂オルガノゾルを比較的低温で製造する方法およびその方法により得られるフッ素樹脂オルガノゾル、ならびにこれを主成分とするコーティング用組成物を提供することを目的とする。 The present invention has been made in view of the above circumstances, and a fluorine-containing copolymer containing a repeating unit based on ethylene and a repeating unit based on tetrafluoroethylene is dispersed at a high concentration and uniformly in an organic medium. It is an object of the present invention to provide a method for producing a resin organosol at a relatively low temperature, a fluororesin organosol obtained by the method, and a coating composition comprising this as a main component.
 本発明は、以下の構成を有する、フッ素樹脂オルガノゾルの製造方法およびその方法により得られるフッ素樹脂オルガノゾル、ならびに該フッ素樹脂オルガノゾルを用いたコーティング用組成物を提供する。
[1]エチレンに基づく繰り返し単位とテトラフルオロエチレンに基づく繰り返し単位とを有する含フッ素共重合体を分散質とし、前記含フッ素共重合体の融点以下の温度で該含フッ素共重合体を溶解しうる溶媒を分散媒とするフッ素樹脂オルガノゾルの製造方法であって、
 前記含フッ素共重合体を前記溶媒に溶解して溶液とする溶解工程と、
 前記溶液において前記溶媒中に前記含フッ素共重合体を微粒子として析出させる析出工程と、
 前記含フッ素共重合体を微粒子として含有する前記溶媒と含フッ素共重合体との混合物に高剪断力を加えて前記溶媒に該含フッ素共重合体の微粒子を均一に分散させる解砕・分散工程と、
 を有することを特徴とするフッ素樹脂オルガノゾルの製造方法。
The present invention provides a fluororesin organosol production method having the following constitution, a fluororesin organosol obtained by the method, and a coating composition using the fluororesin organosol.
[1] A fluorine-containing copolymer having a repeating unit based on ethylene and a repeating unit based on tetrafluoroethylene is used as a dispersoid, and the fluorine-containing copolymer is dissolved at a temperature lower than the melting point of the fluorine-containing copolymer. A method for producing a fluororesin organosol using a solvable solvent as a dispersion medium,
A dissolution step of dissolving the fluorine-containing copolymer in the solvent to form a solution;
A precipitation step of precipitating the fluorine-containing copolymer as fine particles in the solvent in the solution;
A crushing / dispersing step of uniformly dispersing fine particles of the fluorinated copolymer in the solvent by applying a high shear force to the mixture of the solvent and the fluorinated copolymer containing the fluorinated copolymer as fine particles. When,
A process for producing a fluororesin organosol, comprising:
[2]前記析出工程と解砕・分散工程を同時に行うことを特徴とする[1]に記載のフッ素樹脂オルガノゾルの製造方法。
[3]前記高剪断力を高速回転、高圧噴射、高速振動、超音波処理および高圧濾過よりなる群から選ばれる少なくとも1種の方法で加えることを特徴とする[1]または[2]に記載のフッ素樹脂オルガノゾルの製造方法。
[4]前記溶解を40℃以上前記含フッ素共重合体の融点以下の温度で行い、前記析出を冷却により行う[1]~[3]のいずれか1項に記載のフッ素樹脂オルガノゾルの製造方法。
[2] The method for producing a fluororesin organosol according to [1], wherein the precipitation step and the crushing / dispersing step are performed simultaneously.
[3] The high shear force is applied by at least one method selected from the group consisting of high-speed rotation, high-pressure injection, high-speed vibration, ultrasonic treatment, and high-pressure filtration. Of manufacturing fluororesin organosols.
[4] The method for producing a fluororesin organosol according to any one of [1] to [3], wherein the dissolution is performed at a temperature not lower than 40 ° C. and not higher than the melting point of the fluorine-containing copolymer, and the precipitation is performed by cooling. .
[5]前記溶解工程における含フッ素共重合体と溶媒の配合割合が、含フッ素共重合体:溶媒で示される質量比で、1.0:99.0~70.0:30.0である[1]~[4]のいずれかに記載のフッ素樹脂オルガノゾルの製造方法。
[6]前記溶媒における、下記式(1)で示されるハンセン溶解度パラメータに基づく前記含フッ素共重合体に対する溶解指標(R)が25未満である[1]~[5]のいずれかに記載のフッ素樹脂オルガノゾルの製造方法。
R=4×(δd-15.7)+(δp-5.7)+(δh-4.3)   …(1)
(式(1)中、δd、δpおよびδhは、ハンセン溶解度パラメータにおける、分散項、極性項および水素結合項をそれぞれ示す。)
[7]前記含フッ素共重合体の微粒子における平均粒子径が、25℃において、動的光散乱法で測定した個数平均粒子径として0.005~5μmの範囲にある、[1]~[6]のいずれかに記載のフッ素樹脂オルガノゾルの製造方法。
[5] The blending ratio of the fluorinated copolymer and the solvent in the dissolving step is 1.0: 99.0 to 70.0: 30.0 in a mass ratio represented by the fluorinated copolymer: solvent. [1] The method for producing a fluororesin organosol according to any one of [4].
[6] The solvent index according to any one of [1] to [5], wherein a solubility index (R) for the fluorinated copolymer based on a Hansen solubility parameter represented by the following formula (1) in the solvent is less than 25: A method for producing a fluororesin organosol.
R = 4 × (δd−15.7) 2 + (δp−5.7) 2 + (δh−4.3) 2 (1)
(In the formula (1), δd, δp, and δh respectively represent a dispersion term, a polar term, and a hydrogen bond term in the Hansen solubility parameter.)
[7] The average particle diameter of the fluorine-containing copolymer fine particles is in the range of 0.005 to 5 μm as the number average particle diameter measured by a dynamic light scattering method at 25 ° C. [1] to [6 ] The manufacturing method of the fluororesin organosol in any one of.
[8]前記高剪断力を粘度調整剤の存在下で加えることを特徴とする[1]~[7]のいずれかに記載のフッ素樹脂オルガノゾルの製造方法。
[9]前記粘度調整剤が、ハロゲン基で置換されていてもよく結合末端以外の任意の-CH-が酸素原子に置換されていてもよい炭素数1~20のアルキル基と、アミノ基、アミド基、スルホンアミド基、水酸基およびメルカプト基からなる群から選ばれる少なくとも1種の官能基と、を有する化合物である[1]~[8]のいずれかに記載のフッ素樹脂オルガノゾルの製造方法。
[10]前記含フッ素共重合体を構成するテトラフルオロエチレンおよびエチレン以外の共単量体に基づく繰り返し単位の割合が、0.1~50モル%である、[1]~[9]のいずれかに記載のフッ素樹脂オルガノゾルの製造方法。
[11]前記含フッ素共重合体が、カルボン酸基、酸無水物基およびカルボン酸ハライド基からなる群から選ばれる少なくとも1種を有する含フッ素共重合体である、[1]~[10]のいずれかに記載のフッ素樹脂オルガノゾルの製造方法。
[12][1]~[11]のいずれかに記載の製造方法により得られるフッ素樹脂オルガノゾル。
[13][1]~[11]のいずれかに記載の製造方法により得られるフッ素樹脂オルガノゾルを主成分とするコーティング用組成物。
[8] The method for producing a fluororesin organosol according to any one of [1] to [7], wherein the high shear force is applied in the presence of a viscosity modifier.
[9] In the viscosity modifier, an alkyl group having 1 to 20 carbon atoms, which may be substituted with a halogen group or any —CH 2 — other than a bond terminal may be substituted with an oxygen atom, and an amino group And a method for producing a fluororesin organosol according to any one of [1] to [8], which is a compound having at least one functional group selected from the group consisting of amide group, sulfonamide group, hydroxyl group and mercapto group .
[10] Any of [1] to [9], wherein the proportion of repeating units based on comonomer other than tetrafluoroethylene and ethylene constituting the fluorine-containing copolymer is 0.1 to 50 mol% A process for producing a fluororesin organosol as described above.
[11] The fluorinated copolymer is a fluorinated copolymer having at least one selected from the group consisting of a carboxylic acid group, an acid anhydride group and a carboxylic acid halide group. [1] to [10] The manufacturing method of the fluororesin organosol in any one of.
[12] A fluororesin organosol obtained by the production method according to any one of [1] to [11].
[13] A coating composition comprising as a main component a fluororesin organosol obtained by the production method according to any one of [1] to [11].
 本発明によれば、エチレンに基づく繰り返し単位とテトラフルオロエチレンに基づく繰り返し単位とを含む含フッ素共重合体が有機媒体に高濃度でかつ均一に分散されたフッ素樹脂オルガノゾルを比較的低温で製造できる。また、本発明のフッ素樹脂オルガノゾルならびにこれを主成分とするコーティング用組成物を用いれば、比較的低温で塗布、乾燥する簡便な方法で均質な塗膜を形成できる。 According to the present invention, a fluororesin organosol in which a fluorine-containing copolymer containing a repeating unit based on ethylene and a repeating unit based on tetrafluoroethylene is uniformly dispersed in an organic medium at a high concentration can be produced at a relatively low temperature. . In addition, when the fluororesin organosol of the present invention and the coating composition containing this as a main component are used, a uniform coating film can be formed by a simple method of applying and drying at a relatively low temperature.
実施例1で作製したフッ素樹脂オルガノゾルが含有するETFE微粒子の透過型電子顕微鏡(TEM)写真(10万倍)である。2 is a transmission electron microscope (TEM) photograph (100,000 times) of ETFE fine particles contained in the fluororesin organosol prepared in Example 1. FIG. 実施例1で作製したフッ素樹脂オルガノゾルを用いて得られたETFE塗膜表面の光学顕微鏡写真(100倍)である。It is an optical microscope photograph (100 times) of the ETFE coating film surface obtained using the fluororesin organosol produced in Example 1.
 以下、本発明の実施の形態を詳細に説明する。
 本明細書において、オルガノゾルとは、固体微粒子が有機溶媒に分散したものをいう。また、フッ素樹脂オルガノゾルとは、上記固体微粒子として、フッ素樹脂の微粒子を含むものをいう。
[フッ素樹脂オルガノゾルの製造方法]
 本発明は、エチレンに基づく繰り返し単位とテトラフルオロエチレンに基づく繰り返し単位とを有する含フッ素共重合体を分散質とし、前記含フッ素共重合体の融点以下の温度で該含フッ素共重合体を溶解しうる溶媒を分散媒とするフッ素樹脂オルガノゾルの製造方法であって、以下の(1)溶解工程、(2)析出工程、および(3)解砕・分散工程を有することを特徴とする。
(1)前記含フッ素共重合体を前記溶媒に溶解して溶液とする溶解工程
(2)前記溶液において前記溶媒中に前記含フッ素共重合体を微粒子として析出させる析出工程
(3)前記含フッ素共重合体を微粒子として含有する前記溶媒と含フッ素共重合体との混合物に高剪断力を加えて前記溶媒に該含フッ素共重合体の微粒子を均一に分散させる解砕・分散工程
Hereinafter, embodiments of the present invention will be described in detail.
In this specification, the organosol refers to a substance in which solid fine particles are dispersed in an organic solvent. The fluororesin organosol refers to one containing fluororesin fine particles as the solid fine particles.
[Method for producing fluororesin organosol]
The present invention uses a fluorine-containing copolymer having a repeating unit based on ethylene and a repeating unit based on tetrafluoroethylene as a dispersoid, and dissolves the fluorine-containing copolymer at a temperature below the melting point of the fluorine-containing copolymer. A method for producing a fluororesin organosol using a solvable solvent as a dispersion medium, comprising the following (1) dissolution step, (2) precipitation step, and (3) pulverization / dispersion step.
(1) Dissolution step of dissolving the fluorine-containing copolymer in the solvent to form a solution (2) Precipitation step of depositing the fluorine-containing copolymer as fine particles in the solvent in the solution (3) The fluorine-containing A crushing / dispersing step of uniformly dispersing fine particles of the fluorinated copolymer in the solvent by applying a high shearing force to a mixture of the solvent and the fluorinated copolymer containing the copolymer as fine particles.
 なお、本発明の製造方法により得られるフッ素樹脂オルガノゾルとは、常温(5℃~40℃)、常圧(0.1MPa)条件下でオルガノゾルの性状を示すものであれば、他の温度、圧力条件下での性状は特に制限されない。例えば、常温以上含フッ素共重合体の融点以下のある温度では溶液状態のものであってもよい。また、本発明の製造方法により得られるフッ素樹脂オルガノゾルは、必須成分である含フッ素共重合体の微粒子と溶媒とがオルガノゾルを形成している限りにおいて、これら以外の任意成分を含有していてもよい。 The fluororesin organosol obtained by the production method of the present invention is any other temperature and pressure as long as it exhibits the properties of the organosol under normal temperature (5 ° C. to 40 ° C.) and normal pressure (0.1 MPa) conditions. The property under the conditions is not particularly limited. For example, it may be in a solution state at a temperature not lower than normal temperature and not higher than the melting point of the fluorine-containing copolymer. Further, the fluororesin organosol obtained by the production method of the present invention may contain other optional components as long as the fluoropolymer fine particles and the solvent, which are essential components, form an organosol. Good.
(1)溶解工程
 本発明の製造方法における溶解工程は、フッ素樹脂オルガノゾルにおいて微粒子の形態で分散質となる、エチレンに基づく繰り返し単位とテトラフルオロエチレンに基づく繰り返し単位とを含有する含フッ素共重合体を、フッ素樹脂オルガノゾルにおいて分散媒として機能する、前記含フッ素共重合体の融点以下の温度で該含フッ素共重合体を溶解しうる溶媒に溶解する工程である。
(1) Dissolution Step The dissolution step in the production method of the present invention comprises a fluorine-containing copolymer containing a repeating unit based on ethylene and a repeating unit based on tetrafluoroethylene, which becomes a dispersoid in the form of fine particles in the fluororesin organosol. Is dissolved in a solvent that functions as a dispersion medium in the fluororesin organosol and that can dissolve the fluorocopolymer at a temperature not higher than the melting point of the fluorocopolymer.
(含フッ素共重合体)
 本発明のフッ素樹脂オルガノゾルの製造方法に用いる含フッ素共重合体としては、エチレンに基づく繰り返し単位と、テトラフルオロエチレンに基づく繰り返し単位とを含有する含フッ素共重合体であれば、他に特に限定されない。このような含フッ素共重合体の例として、具体的には、エチレンに基づく繰り返し単位とテトラフルオロエチレン(CF=CF:TFE)に基づく繰り返し単位とを共重合体中の主な繰り返し単位とするETFE等が挙げられる。ここで、本明細書において「ETFE」の用語は、TFEおよびエチレン以外の共単量体に基づく繰り返し単位を共重合体の構成単位として含んでもよい、TFEおよびエチレンを共重合体中の主な繰り返し単位とする含フッ素共重合体の総称として用いるものである。
(Fluorine-containing copolymer)
The fluorine-containing copolymer used in the method for producing the fluororesin organosol of the present invention is particularly limited as long as it is a fluorine-containing copolymer containing a repeating unit based on ethylene and a repeating unit based on tetrafluoroethylene. Not. As an example of such a fluorine-containing copolymer, specifically, a repeating unit based on ethylene and a repeating unit based on tetrafluoroethylene (CF 2 = CF 2 : TFE) are the main repeating units in the copolymer. ETFE and the like. Here, in this specification, the term “ETFE” may include a repeating unit based on a comonomer other than TFE and ethylene as a constituent unit of the copolymer, and the main component in the copolymer of TFE and ethylene. It is used as a general term for fluorine-containing copolymers having repeating units.
 本発明におけるETFEとしては、TFEに基づく繰り返し単位/エチレンに基づく繰り返し単位のモル比が、好ましくは70/30~30/70、より好ましくは65/35~40/60、最も好ましくは65/35~45/55のものが挙げられる。 As ETFE in the present invention, the molar ratio of the repeating unit based on TFE / the repeating unit based on ethylene is preferably 70/30 to 30/70, more preferably 65/35 to 40/60, and most preferably 65/35. To 45/55.
 また、本発明におけるETFEにおいては、得られる共重合体に各種機能を付加するために、TFEおよびエチレンの他に、これら以外の共単量体(コモノマー)に基づく繰り返し単位を含んでいることが好ましい。このような共単量体としては、CF=CFCl、CF=CH等のフルオロエチレン類(ただし、TFEを除く。);CF=CFCF、CF=CHCF、CH=CHCF等のフルオロプロピレン類;CFCFCH=CH、CFCFCFCFCH=CH、CFCFCFCFCF=CH、CFHCFCFCF=CH等の炭素数が2~12のフルオロアルキル基を有する(ポリフルオロアルキル)エチレン類;R(OCFXCFOCF=CF(式中Rは、炭素数1~6のペルフルオロアルキル基、Xは、フッ素原子またはトリフルオロメチル基、mは、0~5の整数を表す。)等のペルフルオロビニルエーテル類;CHOC(=O)CFCFCFOCF=CFやFSOCFCFOCF(CF)CFOCF=CF等の、容易にカルボン酸基やスルホン酸基に変換可能な基を有するペルフルオロビニルエーテル類;プロピレン等の炭素数3個のC3オレフィン、ブチレン、イソブチレン等の炭素数4個のC4オレフィン、4-メチル-1-ペンテン、シクロヘキセン、スチレン、α-メチルスチレン等のオレフィン(ただし、エチレンを除く。)類;酢酸ビニル、乳酸ビニル、酪酸ビニル、ピバリン酸ビニル、安息香酸ビニル等のビニルエステル類;酢酸アリル等のアリルエステル類;メチルビニルエーテル、エチルビニルエーテル、ブチルビニルエーテル、イソブチルビニルエーテル、tert-ブチルビニルエーテル、シクロヘキシルビニルエーテル、2-ヒドロキシエチルビニルエーテル、4-ヒドロキシブチルビニルエーテル、ポリオキシエチレンビニルエーテル、2-アミノエチルビニルエーテル、グリシジルビニルエーテル、2-(ビニルオキシ)テトラヒドロ-2H-ピラン等のビニルエーテル類;(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸n-ブチル、(メタ)アクリル酸イソブチル、(メタ)アクリル酸シクロヘキシル、(メタ)アクリル酸2-ヒドロキシエチル、(メタ)アクリル酸4-ヒドロキシブチル、(メタ)アクリル酸2-アミノエチル、(メタ)アクリル酸グリシジル、(メタ)アクリル酸2-イソシアナトエチル、(メタ)アクリル酸3-(トリメトキシシリル)プロピル、(メタ)アクリル酸3-(トリエトキシシリル)プロピル等の(メタ)アクリル酸エステル類;(メタ)アクリルアミド、N-メチル(メタ)アクリルアミド、N-イソプロピルアクリルアミド、N,N-ジメチル(メタ)アクリルアミド等の(メタ)アクリルアミド類;アクリロニトリル等のシアノ基含有単量体類;イソプレン、1,3-ブタジエン等のジエン類;塩化ビニル、塩化ビニリデン等のクロロオレフィン類;無水マレイン酸、無水イタコン酸、無水シトラコン酸、5-ノルボルネン-2,3-ジカルボン酸無水物等のカルボン酸無水物を含むビニル化合物などが挙げられる。
 これらの共単量体は、単独でまたは2種以上を組み合わせて使用してもよい。
In addition, ETFE in the present invention may contain a repeating unit based on a comonomer (comonomer) other than TFE and ethylene in order to add various functions to the obtained copolymer. preferable. Examples of such comonomer include fluoroethylenes such as CF 2 = CFCl and CF 2 = CH 2 (excluding TFE); CF 2 = CFCF 3 , CF 2 = CHCF 3 , CH 2 = CHCF hexafluoropropylene such as 3; CF 3 CF 2 CH = CH 2, CF 3 CF 2 CF 2 CF 2 CH = CH 2, CF 3 CF 2 CF 2 CF 2 CF = CH 2, CF 2 HCF 2 CF 2 CF = the number of carbon atoms of the CH 2 or the like having a fluoroalkyl group having 2 to 12 (polyfluoroalkyl) ethylenes; R f (OCFXCF 2) m OCF = CF 2 ( wherein R f is perfluoroalkyl of 1 to 6 carbon atoms group, X is a fluorine atom or a trifluoromethyl group, m represents an integer of 0-5) perfluorovinyl ethers such as;. CH 3 OC (= O ) F 2 CF 2 CF 2 OCF = CF 2 or FSO 2 CF 2 CF 2 OCF ( CF 3) CF 2 such OCF = CF 2, easily perfluorovinyl ethers having a group convertible to a carboxylic acid group or a sulfonic acid group ; C3 olefins having 3 carbon atoms such as propylene, C4 olefins having 4 carbon atoms such as butylene and isobutylene, olefins such as 4-methyl-1-pentene, cyclohexene, styrene and α-methylstyrene (excluding ethylene) ); Vinyl esters such as vinyl acetate, vinyl lactate, vinyl butyrate, vinyl pivalate, vinyl benzoate; allyl esters such as allyl acetate; methyl vinyl ether, ethyl vinyl ether, butyl vinyl ether, isobutyl vinyl ether, tert-butyl vinyl ether , Cyclohexylvini Ethers such as ether, 2-hydroxyethyl vinyl ether, 4-hydroxybutyl vinyl ether, polyoxyethylene vinyl ether, 2-aminoethyl vinyl ether, glycidyl vinyl ether, 2- (vinyloxy) tetrahydro-2H-pyran; methyl (meth) acrylate, Ethyl (meth) acrylate, n-butyl (meth) acrylate, isobutyl (meth) acrylate, cyclohexyl (meth) acrylate, 2-hydroxyethyl (meth) acrylate, 4-hydroxybutyl (meth) acrylate, 2-Aminoethyl (meth) acrylate, glycidyl (meth) acrylate, 2-isocyanatoethyl (meth) acrylate, 3- (trimethoxysilyl) propyl (meth) acrylate, 3- (meth) acrylic acid 3- ( Torie Toki (Meth) acrylic esters such as (silyl) propyl; (meth) acrylamides such as (meth) acrylamide, N-methyl (meth) acrylamide, N-isopropylacrylamide, N, N-dimethyl (meth) acrylamide; acrylonitrile, etc. Cyano group-containing monomers; dienes such as isoprene and 1,3-butadiene; chloroolefins such as vinyl chloride and vinylidene chloride; maleic anhydride, itaconic anhydride, citraconic anhydride, 5-norbornene-2, And vinyl compounds containing a carboxylic acid anhydride such as 3-dicarboxylic acid anhydride.
These comonomers may be used alone or in combination of two or more.
 上記ETFEがこれらのTFEおよびエチレン以外の共単量体に基づく繰り返し単位を含有する場合は、その含有割合は、ETFEの全単量体繰り返し単位において、0.1~50モル%が好ましく、0.1~30モル%がより好ましく、0.1~20モル%が最も好ましく、0.1~10モル%がさらに好ましい。本発明の製造方法に使用するETFEにおいて、TFEおよびエチレン以外の共単量体に基づく繰り返し単位の含有量がこの範囲にあると、TFEおよびエチレンのみで構成されるETFEが有する特性を損なうことなく、高い溶解性、撥水性、撥油性、架橋性、基材に対する接着性などの機能を付与できる。 When the ETFE contains a repeating unit based on a comonomer other than TFE and ethylene, the content is preferably 0.1 to 50 mol% in all monomer repeating units of ETFE. More preferably, it is 1 to 30 mol%, most preferably 0.1 to 20 mol%, and still more preferably 0.1 to 10 mol%. In the ETFE used in the production method of the present invention, if the content of the repeating unit based on a comonomer other than TFE and ethylene is within this range, the characteristics of ETFE composed only of TFE and ethylene are not impaired. , Functions such as high solubility, water repellency, oil repellency, crosslinkability, and adhesion to a substrate can be imparted.
 なお、基材に対する接着性の観点から、本発明の製造方法に用いるETFEは、基材に対して接着性を有する官能基を分子構造内に有していてもよい。該官能基は、ETFEの分子末端または側鎖または主鎖のいずれに有していてもよい。さらに、該官能基は、ETFE中に1種が単独で用いられていてもよく、また2種以上が併用されていてもよい。基材に対して接着性を有する官能基の種類、含有量は、この製造方法により得られるフッ素樹脂オルガノゾルが用いられる用途により、その求められる性能に応じて適宜選択される。例えば、コーティング用組成物として用いる場合には、これを塗布する基材の種類、形状、用途、要求される接着性、接着方法、官能基導入方法等により適宜選択される。 In addition, from the viewpoint of adhesion to the substrate, ETFE used in the production method of the present invention may have a functional group having adhesion to the substrate in the molecular structure. The functional group may be present either at the molecular end of ETFE or at the side chain or main chain. Further, one kind of the functional group may be used alone in ETFE, or two or more kinds may be used in combination. The kind and content of the functional group having adhesiveness to the substrate are appropriately selected according to the required performance depending on the use in which the fluororesin organosol obtained by this production method is used. For example, when used as a coating composition, it is appropriately selected depending on the type, shape, application, required adhesiveness, adhesion method, functional group introduction method, and the like of the substrate on which the composition is applied.
 上記基材に対して接着性を有する官能基として、具体的には、カルボン酸基、1分子中の2つのカルボキシル基が脱水縮合した残基(以下、酸無水物基という)、ヒドロキシル基、スルホン酸基、エポキシ基、シアノ基、カーボネート基、イソシアネート基、エステル基、アミド基、アルデヒド基、アミノ基、加水分解性シリル基、炭素-炭素二重結合、エーテル基およびカルボン酸ハライド基からなる群から選ばれる少なくとも1種が挙げられる。上記カルボン酸基とは、カルボキシル基とその塩(-COOM:Mはカルボン酸と塩を形成しうる金属原子または原子団)を、スルホン酸基とは、スルホ基とその塩(-SO:Mはスルホン酸と塩を形成しうる金属原子または原子団)を意味する。
 上記の官能基の中でも特に、カルボン酸基、酸無水物基、ヒドロキシル基、エポキシ基、カーボネート基、加水分解性シリル基、炭素-炭素二重結合、およびカルボン酸ハライド基からなる群から選ばれる少なくとも1種が好ましい。最も好ましくは、カルボン酸基、酸無水物基およびカルボン酸ハライド基からなる群から選ばれる少なくとも1種である。このような官能基は、含フッ素共重合体1分子中に異なる種類のものが2種以上存在していてもよく、また1分子中に2個以上存在していてもよい。
Specific examples of the functional group having adhesiveness to the substrate include a carboxylic acid group, a residue obtained by dehydration condensation of two carboxyl groups in one molecule (hereinafter referred to as an acid anhydride group), a hydroxyl group, Consists of sulfonic acid group, epoxy group, cyano group, carbonate group, isocyanate group, ester group, amide group, aldehyde group, amino group, hydrolyzable silyl group, carbon-carbon double bond, ether group and carboxylic acid halide group There may be mentioned at least one selected from the group. The carboxylic acid group is a carboxyl group and a salt thereof (—COOM 1 : M 1 is a metal atom or atomic group capable of forming a salt with a carboxylic acid), and the sulfonic acid group is a sulfo group and a salt thereof (—SOSO 3 M 2 : M 2 means a metal atom or atomic group capable of forming a salt with sulfonic acid.
Among the above functional groups, particularly selected from the group consisting of carboxylic acid groups, acid anhydride groups, hydroxyl groups, epoxy groups, carbonate groups, hydrolyzable silyl groups, carbon-carbon double bonds, and carboxylic acid halide groups. At least one is preferred. Most preferably, it is at least one selected from the group consisting of a carboxylic acid group, an acid anhydride group, and a carboxylic acid halide group. Two or more different functional groups may exist in one molecule of the fluorine-containing copolymer, or two or more functional groups may exist in one molecule.
 ETFEに、接着性を有する官能基(以下、「接着性官能基」ともいう。)を導入する方法としては、(i)ETFEの重合時に、接着性官能基を有する共重合可能な単量体を他の原料単量体とともに共重合する方法、(ii)接着性官能基を有する重合開始剤、連鎖移動剤等により、重合時にETFEの分子末端に接着性官能基を導入する方法、(iii)接着性官能基とグラフト化が可能な官能基とを有する化合物(グラフト化合物)をETFEにグラフトさせる方法等が挙げられる。これらの導入方法は単独で、あるいは適宜、組合せて使用できる。耐久性を考慮した場合、上記(i)および/または(ii)の方法で製造されるETFEが好ましい。
 なお、上記接着性官能基以外に必要に応じて導入される各種機能を有する官能基についても、上記接着性官能基を導入するのと同様の方法でETFEに導入できる。
As a method of introducing an adhesive functional group (hereinafter also referred to as “adhesive functional group”) into ETFE, (i) a copolymerizable monomer having an adhesive functional group at the time of polymerization of ETFE (Ii) a method of introducing an adhesive functional group into the molecular terminal of ETFE at the time of polymerization by a polymerization initiator having an adhesive functional group, a chain transfer agent, or the like (iii) ) A method of grafting a compound (graft compound) having an adhesive functional group and a functional group capable of grafting onto ETFE. These introduction methods can be used alone or in appropriate combination. In consideration of durability, ETFE produced by the above method (i) and / or (ii) is preferable.
In addition to the adhesive functional group, functional groups having various functions introduced as necessary can be introduced into ETFE in the same manner as the adhesive functional group is introduced.
 本発明の製造方法においては、上記エチレンに基づく繰り返し単位とTFEに基づく繰り返し単位とを有する含フッ素共重合体として、市販品を用いることもできる。このような含フッ素共重合体:ETFEの市販品として、具体的には、旭硝子社製:Fluon(登録商標)ETFE Series、Fluon(登録商標)LM-ETFE Series、Fluon(登録商標)LM-ETFE AH Series、ダイキン工業社製:ネオフロン(登録商標)、Dyneon社製:Dyneon(登録商標)ETFE、DuPont社製:Tefzel(登録商標)等が挙げられる。
 本発明における含フッ素共重合体の融点としては、130~275℃が好ましく、140~265℃がより好ましく、150~260℃が最も好ましい。この範囲にあると、溶解工程での溶媒への溶解性に優れ、強度にも優れる。
In the production method of the present invention, a commercially available product can also be used as the fluorine-containing copolymer having the repeating unit based on ethylene and the repeating unit based on TFE. As a commercial product of such a fluorine-containing copolymer: ETFE, specifically, Asahi Glass Co., Ltd .: Fluon (registered trademark) ETFE Series, Fluon (registered trademark) LM-ETFE Series, Fluon (registered trademark) LM-ETFE AH Series, Daikin Industries, Ltd .: Neofron (registered trademark), Dyneon: Dyneon (registered trademark) ETFE, DuPont: Tefzel (registered trademark), and the like.
The melting point of the fluorinated copolymer in the present invention is preferably 130 to 275 ° C, more preferably 140 to 265 ° C, and most preferably 150 to 260 ° C. When it is in this range, the solubility in a solvent in the dissolution step is excellent, and the strength is also excellent.
 本発明に用いる含フッ素共重合体の容量流速(以下、Q値という。)は、0.1~2000mm/秒が好ましい。Q値は、含フッ素共重合体の溶融流動性を表す指標であり、分子量の目安となる。Q値が大きいと分子量が低く、小さいと分子量が高いことを示す。本明細書におけるQ値とは、島津製作所製フローテスタを用いて、樹脂の融点より50℃高い温度において、荷重7kg下に直径2.1mm、長さ8mmのオリフィス中に押出すときの含フッ素共重合体の押出し速度である。Q値が小さすぎると溶解性が悪くなり、大きすぎると含フッ素共重合体の機械的強度が低下するとともに、塗膜にした場合にひび割れ等が発生しやすくなる。本発明に用いる含フッ素共重合体のQ値は、5~500mm/秒がより好ましく、10~200mm/秒が最も好ましい。この範囲にあると、含フッ素共重合体は機械的強度に優れ、コーティング用組成物として用いる場合には、塗膜にひび割れ等が発生せず、塗膜特性に優れる。
 本発明の製造方法には、これら含フッ素共重合体の1種を単独で用いることも、あるいは2種以上を併用できる。
The volume flow rate (hereinafter referred to as Q value) of the fluorinated copolymer used in the present invention is preferably 0.1 to 2000 mm 3 / sec. The Q value is an index representing the melt fluidity of the fluorinated copolymer and is a measure of the molecular weight. A large Q value indicates a low molecular weight, and a small Q value indicates a high molecular weight. The Q value in the present specification is a fluorine content when extruded into an orifice having a diameter of 2.1 mm and a length of 8 mm under a load of 7 kg at a temperature 50 ° C. higher than the melting point of the resin using a flow tester manufactured by Shimadzu Corporation. It is the extrusion rate of the copolymer. When the Q value is too small, the solubility is deteriorated. When the Q value is too large, the mechanical strength of the fluorinated copolymer is lowered, and cracks and the like are easily generated when the coating film is formed. Q value of the fluorocopolymer used in the present invention is more preferably 5 ~ 500 mm 3 / sec, and most preferably 10 ~ 200 mm 3 / sec. Within this range, the fluorine-containing copolymer is excellent in mechanical strength, and when used as a coating composition, the coating film does not crack and the coating film characteristics are excellent.
In the production method of the present invention, one type of these fluorine-containing copolymers can be used alone, or two or more types can be used in combination.
(溶媒)
 本発明のフッ素樹脂オルガノゾルの製造方法に用いる溶媒は、上記含フッ素共重合体の融点以下の温度で該含フッ素共重合体を溶解しうる溶媒であり、さらに以下の工程でこの溶液から含フッ素共重合体の微粒子を析出させ均一に分散させた後は、少なくとも常温常圧において、分散状態でこの微粒子を存在させる分散媒として機能する溶媒である。
(solvent)
The solvent used in the method for producing the fluororesin organosol of the present invention is a solvent that can dissolve the fluorocopolymer at a temperature not higher than the melting point of the fluorocopolymer. After the copolymer fine particles are precipitated and uniformly dispersed, the solvent functions as a dispersion medium for allowing the fine particles to exist in a dispersed state at least at normal temperature and pressure.
 本発明における溶媒としては、上記条件に適合する範囲で種々の溶媒が挙げられる。ここで、用いる溶媒が上記条件に適合するためには、その溶媒が有する極性はある特定の範囲にあることが好ましい。本発明においては、上記条件に適合する溶媒を、ハンセン溶解度パラメータ(Hansen solubility parameters)に基づいて、ある特定の範囲の極性を有する溶媒として選択する、以下の方法を用いた。 As the solvent in the present invention, various solvents can be mentioned as long as they meet the above conditions. Here, in order for the solvent to be used to meet the above conditions, the polarity of the solvent is preferably within a specific range. In the present invention, the following method is used, in which a solvent that satisfies the above conditions is selected as a solvent having a certain range of polarity based on Hansen solubility parameters (Hansen solubility parameters).
 ハンセン(Hansen)溶解度パラメータは、ヒルデブランド(Hildebrand)によって導入された溶解度パラメータを、分散項δd,極性項δp,水素結合項δhの3成分に分割し、3次元空間に表したものである。分散項δdは分散力のよる効果、極性項δpは双極子間力による効果、水素結合項δhは水素結合力の効果を示す。 The Hansen solubility parameter is obtained by dividing the solubility parameter introduced by Hildebrand into three components: a dispersion term δd, a polar term δp, and a hydrogen bond term δh, and representing it in a three-dimensional space. The dispersion term δd indicates the effect due to the dispersion force, the polar term δp indicates the effect due to the force between the dipoles, and the hydrogen bond term δh indicates the effect due to the hydrogen bond force.
 なお、ハンセン溶解度パラメータの定義と計算は、Charles M. Hansen著、Hansen Solubility Parameters: A Users Handbook (CRCプレス,2007年)に記載されている。 また、コンピュータソフトウエア Hansen Solubility Parameters in Practice(HSPiP)を用いることにより、文献値等が知られていない媒体に関しても、その化学構造から簡便にハンセン溶解度パラメータを推算できる。
 本発明における溶媒は、HSPiPバージョン3を用いて、データベースに登録されている溶媒に関しては、その値を、登録されていない溶媒に関しては、推算値を用いることにより、使用する溶媒を選定することとした。
The definition and calculation of Hansen solubility parameters are described in Charles M. et al. Hansen, Hansen Solubility Parameters: A Users Handbook (CRC Press, 2007). In addition, by using computer software Hansen Solubility Parameters in Practice (HSPiP), the Hansen solubility parameter can be easily estimated from the chemical structure of a medium whose literature values are not known.
For the solvent in the present invention, use HSPiP version 3 to select the solvent to be used by using the value for the solvent registered in the database and the estimated value for the solvent not registered. did.
 一般に、特定のポリマーのハンセン溶解度パラメータは、そのポリマーのサンプルをハンセン溶解度パラメータが確定している数多くの異なる溶媒に溶解させて溶解度を測る溶解度試験によって決定され得る。具体的には、上記溶解度試験に用いた溶媒のうちそのポリマーを溶解した溶媒の3次元上の点をすべて球の内側に内包し、溶解しない溶媒の点は球の外側になるような球(溶解度球)を探し出し、その球の中心座標をそのポリマーのハンセン溶解度パラメータとする。 In general, the Hansen solubility parameter for a particular polymer can be determined by a solubility test in which a sample of the polymer is dissolved in a number of different solvents for which the Hansen solubility parameter is established and the solubility is measured. Specifically, among the solvents used in the solubility test, all the three-dimensional points of the solvent in which the polymer is dissolved are encapsulated inside the sphere, and the non-dissolved solvent points are outside the sphere ( Solubility sphere) is found and the center coordinates of the sphere are taken as the Hansen solubility parameter of the polymer.
 ここで、例えば、上記ポリマーのハンセン溶解度パラメータの測定に用いられなかったある別の溶媒のハンセン溶解度パラメータが(δd,δp,δh)であった場合、その座標で示される点が上記ポリマーの溶解度球の内側に内包されれば、その溶媒は、上記ポリマーを溶解すると考えられる。一方、その座標点が上記ポリマーの溶解度球の外側にあれば、この溶媒は上記ポリマーを溶解することができないと考えられる。 Here, for example, when the Hansen solubility parameter of another solvent that has not been used for the measurement of the Hansen solubility parameter of the polymer is (δd, δp, δh), the point indicated by the coordinates is the solubility of the polymer. If encapsulated inside the sphere, the solvent is believed to dissolve the polymer. On the other hand, if the coordinate point is outside the solubility sphere of the polymer, it is considered that this solvent cannot dissolve the polymer.
 本発明においては、上記ハンセン溶解度パラメータを利用して、フッ素樹脂オルガノゾルが含有する含フッ素共重合体をその融点以下の温度で溶解しうる溶媒であり、室温において該含フッ素共重合体を微粒子として分散する最適な溶媒であるジイソプロピルケトンを基準として、そのハンセン溶解度パラメータである座標(15.7,5.7,4.3)から一定の距離にある溶媒群を好ましい溶媒として使用できる。 In the present invention, the Hansen solubility parameter is used to dissolve the fluorine-containing copolymer contained in the fluororesin organosol at a temperature below its melting point, and the fluorine-containing copolymer is used as fine particles at room temperature. With reference to diisopropyl ketone, which is the optimum solvent to be dispersed, a solvent group at a certain distance from the coordinates (15.7, 5.7, 4.3), which is the Hansen solubility parameter, can be used as a preferred solvent.
 すなわち、下記式(1)で示されるハンセン溶解度パラメータに基づく値であるRを上記含フッ素共重合体:ETFEに対する溶解指標とした。
R=4×(δd-15.7)+(δp-5.7)+(δh-4.3)   …(1)
(式(1)中、δd、δpおよびδhは、ハンセン溶解度パラメータにおける、分散項、極性項および水素結合項をそれぞれ示し、単位はいずれも(MPa)1/2である。)
That is, R, which is a value based on the Hansen solubility parameter represented by the following formula (1), was used as a solubility index for the fluorine-containing copolymer: ETFE.
R = 4 × (δd−15.7) 2 + (δp−5.7) 2 + (δh−4.3) 2 (1)
(In the formula (1), δd, δp, and δh represent a dispersion term, a polar term, and a hydrogen bond term in the Hansen solubility parameter, respectively, and the unit is (MPa) 1/2 .)
 本発明における溶媒は、その溶媒のハンセン溶解度パラメータ座標(δd,δp,δh)を用いて上記式(1)で算出される溶解指標(R)が25未満であることが好ましく、16未満であることがより好ましく、9未満であることが最も好ましい。上記式(1)で示されるRが、この範囲に入るハンセン溶解度パラメータを有する溶媒は、含フッ素共重合体との親和性が高く、溶解性および微粒子の分散性が高い。 The solvent in the present invention preferably has a solubility index (R) calculated by the above formula (1) using Hansen solubility parameter coordinates (δd, δp, δh) of the solvent of less than 25, preferably less than 16. More preferably, it is most preferably less than 9. A solvent having a Hansen solubility parameter in which R represented by the above formula (1) falls within this range has high affinity with the fluorine-containing copolymer, and high solubility and fine particle dispersibility.
 また、本発明における溶媒は、化合物1種からなる溶媒でも、化合物2種以上の混合溶媒であってもよく、上記式(1)によりハンセン溶解度パラメータに基づいて算出されるRの値を、含フッ素共重合体の溶解指標にできる。例えば、混合溶媒を用いる場合には、用いる溶媒の混合比(体積比)による平均のハンセン溶解度パラメータを求め、それをハンセン溶解度パラメータとして用いて上記溶解指標(R)を算出できる。 In addition, the solvent in the present invention may be a solvent composed of one compound or a mixed solvent of two or more compounds, and includes the value of R calculated based on the Hansen solubility parameter according to the above formula (1). It can be used as a solubility index of a fluorine copolymer. For example, when a mixed solvent is used, an average Hansen solubility parameter based on the mixing ratio (volume ratio) of the solvent to be used is obtained, and the solubility index (R) can be calculated using the Hansen solubility parameter.
 また、本発明における溶媒の沸点は、取扱い性および塗布後の溶媒除去性の観点から、210℃以下が好ましく、200℃以下がより好ましく、180℃以下が最も好ましい。また、溶媒の沸点が低すぎると、例えば、組成物をコーティングした後の溶媒の蒸発除去(以下、乾燥ともいう)時に気泡が発生しやすい等の問題があるため、40℃以上が好ましく、55℃以上がさらに好ましく、80℃以上が特に好ましい。 In addition, the boiling point of the solvent in the present invention is preferably 210 ° C. or less, more preferably 200 ° C. or less, and most preferably 180 ° C. or less from the viewpoints of handleability and solvent removal after coating. Further, if the boiling point of the solvent is too low, for example, there is a problem that bubbles are likely to be generated at the time of evaporation removal (hereinafter also referred to as drying) of the solvent after coating the composition. More preferably, it is 80 ° C. or higher.
 上記のような条件を満たす溶媒としては、炭素数3~10のケトン類、エステル類、カーボネート類、エーテル類などが好ましく挙げられ、炭素数5~9のケトン類、エステル類がさらに好ましく挙げられる。具体例としては、メチルエチルケトン、2-ペンタノン、メチルイソプロピルケトン、2-ヘキサノン、メチルイソブチルケトン、ピナコリン、2-ヘプタノン、4-ヘプタノン、ジイソピロピルケトン、イソアミルメチルケトン、2-オクタノン、2-ノナノン、ジイソブチルケトン、2-メチルシクロヘキサノン、3-メチルシクロヘキサノン、4-エチルシクロヘキサノン、2,6-ジメチルシクロヘキサノン、3,3,5-トリメチルシクロヘキサノン、イソホロン、(-)-フェンコン、ギ酸エチル、ギ酸プロピル、ギ酸イソプロピル、ギ酸ブチル、ギ酸イソブチル、ギ酸sec-ブチル、ギ酸t-ブチル、ギ酸アミル、ギ酸イソアミル、ギ酸ヘキシル、ギ酸シクロヘキシル、ギ酸ヘプチル、ギ酸オクチル、ギ酸2-エチルヘキシル、酢酸メチル、酢酸エチル、酢酸プロピル、酢酸イソプロピル、酢酸ブチル、酢酸イソブチル、酢酸sec-ブチル、酢酸t-ブチル、酢酸アミル、酢酸イソアミル、酢酸ヘキシル、酢酸シクロヘキシル、酢酸ヘプチル、酢酸オクチル、酢酸2-エチルヘキシル、酢酸2,2,2-トリフルオロエチル、酢酸2,2,3,3-テトラフルオロプロピル、酢酸1,1,1,3,3,3-ヘキサフルオロ-2-プロピル、酢酸2,2-ビス(トリフルオロメチル)プロピル、酢酸2,2,3,4,4,4-ヘキサフルオロブチル、酢酸2,2,3,3,4,4,5,5-オクタフルオロペンチル、酢酸3,3,4,4,5,5,6,6,6-ノナフルオロヘキシル、酢酸4,4,5,5,6,6,7,7,7-ノナフルオロヘプチル、酢酸7,7,8,8,8-ペンタフルオロオクチル、プロピオン酸メチル、プロピオン酸エチル、プロピオン酸プロピル、プロピオン酸イソプロピル、プロピオン酸ブチル、プロピオン酸イソブチル、プロピオン酸sec-ブチル、プロピオン酸t-ブチル、プロピオン酸アミル、プロピオン酸イソアミル、プロピオン酸ヘキシル、プロピオン酸シクロヘキシル、プロピオン酸ヘプチル、酪酸メチル、酪酸エチル、酪酸プロピル、酪酸イソプロピル、酪酸ブチル、酪酸イソブチル、酪酸sec-ブチル、酪酸t-ブチル、酪酸アミル、酪酸イソアミル、酪酸ヘキシル、酪酸シクロヘキシル、イソ酪酸メチル、イソ酪酸エチル、イソ酪酸プロピル、イソ酪酸イソプロピル、イソ酪酸ブチル、イソ酪酸イソブチル、イソ酪酸sec-ブチル、イソ酪酸t-ブチル、イソ酪酸アミル、イソ酪酸イソアミル、イソ酪酸ヘキシル、イソ酪酸シクロヘキシル、吉草酸メチル、吉草酸エチル、吉草酸プロピル、吉草酸イソプロピル、吉草酸ブチル、吉草酸イソブチル、吉草酸sec-ブチル、吉草酸t-ブチル、吉草酸アミル、吉草酸イソアミル、イソ吉草酸メチル、イソ吉草酸エチル、イソ吉草酸プロピル、イソ吉草酸イソプロピル、イソ吉草酸ブチル、イソ吉草酸イソブチル、イソ吉草酸sec-ブチル、イソ吉草酸t-ブチル、イソ吉草酸アミル、イソ吉草酸イソアミル、ヘキサン酸メチル、ヘキサン酸エチル、ヘキサン酸プロピル、ヘキサン酸イソプロピル、ヘキサン酸ブチル、ヘキサン酸イソブチル、ヘキサン酸sec-ブチル、ヘキサン酸t-ブチル、ヘプタン酸メチル、ヘプタン酸エチル、ヘプタン酸プロピル、ヘプタン酸イソプロピル、オクタン酸メチル、オクタン酸エチル、ノナン酸メチル、シクロヘキサンカルボン酸メチル、シクロヘキサンカルボン酸エチル、シクロヘキサンカルボン酸プロピル、シクロヘキサンカルボン酸イソプロピル、シクロヘキサンカルボン酸2,2,2-トリフルオロエチル、こはく酸ビス(2,2,2-トリフルオロエチル)、グルタル酸ビス(2,2,2-トリフルオロエチル)、トリフルオロ酢酸エチル、トリフルオロ酢酸プロピル、トリフルオロ酢酸イソプロピル、トリフルオロ酢酸ブチル、トリフルオロ酢酸イソブチル、トリフルオロ酢酸sec-ブチル、トリフルオロ酢酸t-ブチル、トリフルオロ酢酸アミル、トリフルオロ酢酸イソアミル、トリフルオロ酢酸ヘキシル、トリフルオロ酢酸ヘプチル、トリフルオロ酢酸オクチル、トリフルオロ酢酸2-エチルヘキシル、ジフルオロ酢酸メチル、ジフルオロ酢酸エチル、酢酸2-プロポキシエチル、酢酸2-ブトキシエチル、酢酸2-ペンチルオキシエチル、酢酸2-ヘキシルオキシエチル、1-エトキシ-2-アセトキシプロパン、1-プロポキシ-2-アセトキシプロパン、1-ブトキシ-2-アセトキシプロパン、1-ペンチルオキシ-2-アセトキシプロパン、酢酸3-メトキシブチル、酢酸3-エトキシブチル、酢酸3-プロポキシブチル、酢酸3-ブトキシブチル、酢酸3-メトキシ-3-メチルブチル、酢酸3-エトキシ-3-メチルブチル、酢酸3-プロポキシ-3-メチルブチル、酢酸4-メトキシブチル、酢酸4-エトキシブチル、酢酸4-プロポキシブチル、酢酸4-ブトキシブチル、ペンタフルオロ安息香酸メチル、ペンタフルオロ安息香酸エチル、3-(トリフルオロメチル)安息香酸メチル、3,5-ビス(トリフルオロメチル)安息香酸メチル、安息香酸2,2,2-トリフルオロエチル、安息香酸2,2,3,3-テトラフルオロプロピル、安息香酸2,2,3,3,3-ペンタフルオロプロピル、安息香酸1,1,1,3,3,3-ヘキサフルオロ-2-プロピル、安息香酸2,2-ビス(トリフルオロメチル)プロピル、安息香酸2,2,3,3,4,4,4-ヘプタフルオロブチル、安息香酸2,2,3,4,4,4-ヘキサフルオロブチル、安息香酸2,2,3,3,4,4,5,5,5-ノナフルオロペンチル、炭酸エチルメチル、炭酸ジエチル、炭酸ジプロピル、炭酸ジブチル、ビス(2,2,2-トリフルオロエチル)カーボネート、ビス(2,2,3,3-テトラフルオロプロピル)カーボネート、テトラヒドロフラン、ペンタフルオロアニソール、3,5-ビス(トリフルオロメチル)アニソールなどが挙げられる。なお、これらの溶媒はいずれも、上記式(1)から算出されるRが25未満の溶媒である。 As the solvent satisfying the above conditions, ketones having 3 to 10 carbon atoms, esters, carbonates, ethers and the like are preferable, and ketones and esters having 5 to 9 carbon atoms are more preferable. . Specific examples include methyl ethyl ketone, 2-pentanone, methyl isopropyl ketone, 2-hexanone, methyl isobutyl ketone, pinacholine, 2-heptanone, 4-heptanone, diisopyrrole ketone, isoamyl methyl ketone, 2-octanone, 2-nonanone. , Diisobutyl ketone, 2-methylcyclohexanone, 3-methylcyclohexanone, 4-ethylcyclohexanone, 2,6-dimethylcyclohexanone, 3,3,5-trimethylcyclohexanone, isophorone, (-)-fencon, ethyl formate, propyl formate, formic acid Isopropyl, butyl formate, isobutyl formate, sec-butyl formate, t-butyl formate, amyl formate, isoamyl formate, hexyl formate, cyclohexyl formate, heptyl formate, octyl formate, 2-ethylhexyl formate , Methyl acetate, ethyl acetate, propyl acetate, isopropyl acetate, butyl acetate, isobutyl acetate, sec-butyl acetate, t-butyl acetate, amyl acetate, isoamyl acetate, hexyl acetate, cyclohexyl acetate, heptyl acetate, octyl acetate, 2-acetate Ethylhexyl, 2,2,2-trifluoroethyl acetate, 2,2,3,3-tetrafluoropropyl acetate, 1,1,1,3,3,3-hexafluoro-2-propyl acetate, 2,2 acetate -Bis (trifluoromethyl) propyl, acetic acid 2,2,3,4,4,4-hexafluorobutyl, acetic acid 2,2,3,3,4,4,5,5-octafluoropentyl, acetic acid 3, 3,4,4,5,5,6,6,6-nonafluorohexyl, acetic acid 4,4,5,5,6,6,7,7,7-nonafluoroheptyl, acetic acid 7, , 8,8,8-pentafluorooctyl, methyl propionate, ethyl propionate, propyl propionate, isopropyl propionate, butyl propionate, isobutyl propionate, sec-butyl propionate, t-butyl propionate, amyl propionate , Isoamyl propionate, hexyl propionate, cyclohexyl propionate, heptyl propionate, methyl butyrate, ethyl butyrate, propyl butyrate, isopropyl butyrate, butyl butyrate, isobutyl butyrate, sec-butyl butyrate, t-butyl butyrate, amyl butyrate, isoamyl butyrate Hexyl butyrate, cyclohexyl butyrate, methyl isobutyrate, ethyl isobutyrate, propyl isobutyrate, isopropyl isobutyrate, butyl isobutyrate, isobutyl isobutyrate, sec-butyl isobutyrate, t-butyl isobutyrate Chill, amyl isobutyrate, isoamyl isobutyrate, hexyl isobutyrate, cyclohexyl isobutyrate, methyl valerate, ethyl valerate, propyl valerate, isopropyl valerate, butyl valerate, isobutyl valerate, sec-butyl valerate, valeric acid t-butyl, amyl valerate, isoamyl valerate, methyl isovalerate, ethyl isovalerate, propyl isovalerate, isopropyl isovalerate, butyl isovalerate, isobutyl isovalerate, sec-butyl isovalerate, iso T-butyl valerate, isoamyl valerate, isoamyl isovalerate, methyl hexanoate, ethyl hexanoate, propyl hexanoate, isopropyl hexanoate, butyl hexanoate, isobutyl hexanoate, sec-butyl hexanoate, t-hexanoic acid t- Butyl, methyl heptanoate, ethyl heptanoate, Propyl tanoate, isopropyl heptanoate, methyl octoate, ethyl octoate, methyl nonanoate, methyl cyclohexanecarboxylate, ethyl cyclohexanecarboxylate, propyl cyclohexane carboxylate, isopropyl cyclohexane carboxylate, cyclohexanecarboxylic acid 2,2,2-tri Fluoroethyl, bis (2,2,2-trifluoroethyl) succinate, bis (2,2,2-trifluoroethyl) glutarate, ethyl trifluoroacetate, propyl trifluoroacetate, isopropyl trifluoroacetate, trifluoro Butyl acetate, isobutyl trifluoroacetate, sec-butyl trifluoroacetate, t-butyl trifluoroacetate, amyl trifluoroacetate, isoamyl trifluoroacetate, hexyl trifluoroacetate, trifluoro Heptyl acid, octyl trifluoroacetate, 2-ethylhexyl trifluoroacetate, methyl difluoroacetate, ethyl difluoroacetate, 2-propoxyethyl acetate, 2-butoxyethyl acetate, 2-pentyloxyethyl acetate, 2-hexyloxyethyl acetate, 1 -Ethoxy-2-acetoxypropane, 1-propoxy-2-acetoxypropane, 1-butoxy-2-acetoxypropane, 1-pentyloxy-2-acetoxypropane, 3-methoxybutyl acetate, 3-ethoxybutyl acetate, acetic acid 3 -Propoxybutyl, 3-butoxybutyl acetate, 3-methoxy-3-methylbutyl acetate, 3-ethoxy-3-methylbutyl acetate, 3-propoxy-3-methylbutyl acetate, 4-methoxybutyl acetate, 4-ethoxybutyl acetate, acetic acid 4-propoxybuty , 4-butoxybutyl acetate, methyl pentafluorobenzoate, ethyl pentafluorobenzoate, methyl 3- (trifluoromethyl) benzoate, methyl 3,5-bis (trifluoromethyl) benzoate, 2,2 benzoic acid , 2-trifluoroethyl, benzoic acid 2,2,3,3-tetrafluoropropyl, benzoic acid 2,2,3,3,3-pentafluoropropyl, benzoic acid 1,1,1,3,3,3 Hexafluoro-2-propyl, 2,2-bis (trifluoromethyl) propyl benzoate, 2,2,3,3,4,4,4-heptafluorobutyl benzoate, 2,2,3, benzoic acid 4,4,4-hexafluorobutyl, benzoic acid 2,2,3,3,4,4,5,5,5-nonafluoropentyl, ethyl methyl carbonate, diethyl carbonate, dipropyl carbonate, dicarbonate Chill, bis (2,2,2-trifluoroethyl) carbonate, bis (2,2,3,3-tetrafluoropropyl) carbonate, tetrahydrofuran, pentafluoroanisole, 3,5-bis (trifluoromethyl) anisole, etc. Is mentioned. In addition, all of these solvents are solvents in which R calculated from the above formula (1) is less than 25.
 これらのうちでも、本発明に用いる溶媒としてより好ましい化合物として、具体的には、以下の化合物が例示できる。
 メチルエチルケトン、2-ペンタノン、メチルイソプロピルケトン、2-ヘキサノン、メチルイソブチルケトン、ピナコリン、2-ヘプタノン、4-ヘプタノン、ジイソピロピルケトン、イソアミルメチルケトン、2-オクタノン、2-ノナノン、ジイソブチルケトン、4-エチルシクロヘキサノン、3,3,5-トリメチルシクロヘキサノン、イソホロン、ギ酸イソプロピル、ギ酸イソブチル、ギ酸sec-ブチル、ギ酸t-ブチル、ギ酸アミル、ギ酸イソアミル、ギ酸ヘキシル、ギ酸ヘプチル、ギ酸オクチル、ギ酸2-エチルヘキシル、酢酸メチル、酢酸エチル、酢酸プロピル、酢酸ブチル、酢酸イソブチル、酢酸アミル、酢酸イソアミル、酢酸ヘキシル、酢酸シクロヘキシル、酢酸ヘプチル、酢酸オクチル、酢酸2-エチルヘキシル、酢酸2,2,2-トリフルオロエチル、酢酸2,2,3,3-テトラフルオロプロピル、酢酸1,1,1,3,3,3-ヘキサフルオロ-2-プロピル、酢酸2,2-ビス(トリフルオロメチル)プロピル、酢酸2,2,3,4,4,4-ヘキサフルオロブチル、プロピオン酸メチル、プロピオン酸エチル、プロピオン酸プロピル、プロピオン酸イソプロピル、プロピオン酸ブチル、プロピオン酸イソブチル、プロピオン酸sec-ブチル、プロピオン酸t-ブチル、プロピオン酸アミル、プロピオン酸イソアミル、プロピオン酸ヘキシル、プロピオン酸シクロヘキシル、プロピオン酸ヘプチル、酪酸メチル、酪酸エチル、酪酸プロピル、酪酸イソプロピル、酪酸ブチル、酪酸イソブチル、酪酸sec-ブチル、酪酸t-ブチル、酪酸アミル、酪酸イソアミル、酪酸ヘキシル、酪酸シクロヘキシル、イソ酪酸メチル、イソ酪酸エチル、イソ酪酸プロピル、イソ酪酸イソプロピル、イソ酪酸ブチル、イソ酪酸イソブチル、イソ酪酸sec-ブチル、イソ酪酸t-ブチル、イソ酪酸アミル、イソ酪酸イソアミル、イソ酪酸ヘキシル、イソ酪酸シクロヘキシル、吉草酸メチル、吉草酸エチル、吉草酸プロピル、吉草酸イソプロピル、吉草酸ブチル、吉草酸イソブチル、吉草酸sec-ブチル、吉草酸t-ブチル、吉草酸アミル、吉草酸イソアミル、イソ吉草酸メチル、イソ吉草酸エチル、イソ吉草酸プロピル、イソ吉草酸イソプロピル、イソ吉草酸ブチル、イソ吉草酸イソブチル、イソ吉草酸sec-ブチル、イソ吉草酸t-ブチル、イソ吉草酸アミル、イソ吉草酸イソアミル、ヘキサン酸メチル、ヘキサン酸エチル、ヘキサン酸プロピル、ヘキサン酸イソプロピル、ヘキサン酸ブチル、ヘキサン酸イソブチル、ヘキサン酸sec-ブチル、ヘキサン酸t-ブチル、ヘプタン酸メチル、ヘプタン酸エチル、ヘプタン酸プロピル、ヘプタン酸イソプロピル、オクタン酸メチル、オクタン酸エチル、ノナン酸メチル、シクロヘキサンカルボン酸メチル、シクロヘキサンカルボン酸エチル、シクロヘキサンカルボン酸プロピル、シクロヘキサンカルボン酸イソプロピル、シクロヘキサンカルボン酸2,2,2-トリフルオロエチル、こはく酸ビス(2,2,2-トリフルオロエチル)、グルタル酸ビス(2,2,2-トリフルオロエチル)、トリフルオロ酢酸エチル、トリフルオロ酢酸プロピル、トリフルオロ酢酸イソプロピル、トリフルオロ酢酸ブチル、トリフルオロ酢酸イソブチル、トリフルオロ酢酸sec-ブチル、トリフルオロ酢酸t-ブチル、トリフルオロ酢酸アミル、トリフルオロ酢酸イソアミル、トリフルオロ酢酸ヘキシル、トリフルオロ酢酸ヘプチル、トリフルオロ酢酸オクチル、トリフルオロ酢酸2-エチルヘキシル、ジフルオロ酢酸メチル、ジフルオロ酢酸エチル、酢酸2-プロポキシエチル、酢酸2-ブトキシエチル、酢酸2-ペンチルオキシエチル、酢酸2-ヘキシルオキシエチル、1-エトキシ-2-アセトキシプロパン、1-プロポキシ-2-アセトキシプロパン、1-ブトキシ-2-アセトキシプロパン、酢酸3-エトキシブチル、酢酸3-プロポキシブチル、酢酸3-メトキシ-3-メチルブチル、酢酸3-エトキシ-3-メチルブチル、酢酸4-メトキシブチル、酢酸4-エトキシブチル、酢酸4-プロポキシブチル、安息香酸2,2,3,3-テトラフルオロプロピル、安息香酸2,2,3,3,3-ペンタフルオロプロピル、安息香酸1,1,1,3,3,3-ヘキサフルオロ-2-プロピル、安息香酸2,2-ビス(トリフルオロメチル)プロピル、安息香酸2,2,3,3,4,4,4-ヘプタフルオロブチル、安息香酸2,2,3,4,4,4-ヘキサフルオロブチル、安息香酸2,2,3,3,4,4,5,5,5-ノナフルオロペンチル、炭酸エチルメチル、炭酸ジエチル、炭酸ジプロピル、炭酸ジブチル、ビス(2,2,2-トリフルオロエチル)カーボネート、ペンタフルオロアニソール、3,5-ビス(トリフルオロメチル)アニソール。なお、これらの溶媒はいずれも、上記式(1)から算出されるRが16未満の溶媒である。
Among these, the following compounds can be specifically exemplified as more preferable compounds as the solvent used in the present invention.
Methyl ethyl ketone, 2-pentanone, methyl isopropyl ketone, 2-hexanone, methyl isobutyl ketone, pinacholine, 2-heptanone, 4-heptanone, diisopyrrole ketone, isoamyl methyl ketone, 2-octanone, 2-nonanone, diisobutyl ketone, 4 -Ethylcyclohexanone, 3,3,5-trimethylcyclohexanone, isophorone, isopropyl formate, isobutyl formate, sec-butyl formate, t-butyl formate, amyl formate, isoamyl formate, hexyl formate, heptyl formate, octyl formate, 2-ethylhexyl formate , Methyl acetate, ethyl acetate, propyl acetate, butyl acetate, isobutyl acetate, amyl acetate, isoamyl acetate, hexyl acetate, cyclohexyl acetate, heptyl acetate, octyl acetate, 2-ethylhexyl acetate, Acid 2,2,2-trifluoroethyl, acetic acid 2,2,3,3-tetrafluoropropyl, acetic acid 1,1,1,3,3,3-hexafluoro-2-propyl, acetic acid 2,2-bis (Trifluoromethyl) propyl, 2,2,3,4,4,4-hexafluorobutyl acetate, methyl propionate, ethyl propionate, propyl propionate, isopropyl propionate, butyl propionate, isobutyl propionate, propionic acid sec-butyl, t-butyl propionate, amyl propionate, isoamyl propionate, hexyl propionate, cyclohexyl propionate, heptyl propionate, methyl butyrate, ethyl butyrate, propyl butyrate, isopropyl butyrate, butyl butyrate, isobutyl butyrate, sec sec -Butyl, t-butyl butyrate, amyl butyrate Isoamyl butyrate, hexyl butyrate, cyclohexyl butyrate, methyl isobutyrate, ethyl isobutyrate, propyl isobutyrate, isopropyl isobutyrate, butyl isobutyrate, isobutyl isobutyrate, sec-butyl isobutyrate, t-butyl isobutyrate, amyl isobutyrate, iso Isoamyl butyrate, hexyl isobutyrate, cyclohexyl isobutyrate, methyl valerate, ethyl valerate, propyl valerate, isopropyl valerate, butyl valerate, isobutyl valerate, sec-butyl valerate, t-butyl valerate, amyl valerate , Isoamyl valerate, methyl isovalerate, ethyl isovalerate, propyl isovalerate, isopropyl isovalerate, butyl isovalerate, isobutyl isovalerate, sec-butyl isovalerate, t-butyl isovalerate, iso Amyl valerate, isoamyl isovalerate, hexanoic acid Methyl, ethyl hexanoate, propyl hexanoate, isopropyl hexanoate, butyl hexanoate, isobutyl hexanoate, sec-butyl hexanoate, t-butyl hexanoate, methyl heptanoate, ethyl heptanoate, propyl heptanoate, isopropyl heptanoate, Methyl octoate, ethyl octoate, methyl nonanoate, methyl cyclohexane carboxylate, ethyl cyclohexane carboxylate, propyl cyclohexane carboxylate, isopropyl cyclohexane carboxylate, cyclohexanecarboxylate 2,2,2-trifluoroethyl, bis succinate (2 , 2,2-trifluoroethyl), bis (2,2,2-trifluoroethyl) glutarate, ethyl trifluoroacetate, propyl trifluoroacetate, isopropyl trifluoroacetate, trifluoro Butyl acetoacetate, isobutyl trifluoroacetate, sec-butyl trifluoroacetate, t-butyl trifluoroacetate, amyl trifluoroacetate, isoamyl trifluoroacetate, hexyl trifluoroacetate, heptyl trifluoroacetate, octyl trifluoroacetate, trifluoro 2-ethylhexyl acetate, methyl difluoroacetate, ethyl difluoroacetate, 2-propoxyethyl acetate, 2-butoxyethyl acetate, 2-pentyloxyethyl acetate, 2-hexyloxyethyl acetate, 1-ethoxy-2-acetoxypropane, 1- Propoxy-2-acetoxypropane, 1-butoxy-2-acetoxypropane, 3-ethoxybutyl acetate, 3-propoxybutyl acetate, 3-methoxy-3-methylbutyl acetate, 3-ethoxy-3-methylbutyl acetate, vinegar 4-methoxybutyl, 4-ethoxybutyl acetate, 4-propoxybutyl acetate, 2,2,3,3-tetrafluoropropyl benzoate, 2,2,3,3,3-pentafluoropropyl benzoate, benzoic acid 1 , 1,1,3,3,3-hexafluoro-2-propyl, 2,2-bis (trifluoromethyl) propyl benzoate, 2,2,3,3,4,4,4-heptafluorobenzoate Butyl, benzoic acid 2,2,3,4,4,4-hexafluorobutyl, benzoic acid 2,2,3,3,4,4,5,5,5-nonafluoropentyl, ethyl methyl carbonate, diethyl carbonate , Dipropyl carbonate, dibutyl carbonate, bis (2,2,2-trifluoroethyl) carbonate, pentafluoroanisole, 3,5-bis (trifluoromethyl) anisole. In addition, all of these solvents are solvents in which R calculated from the above formula (1) is less than 16.
 上記溶媒は、上記本発明の条件を満たす範囲であれば、単独で用いても、2種以上を混合して用いてもよい。また、上記条件を満たしていれば、上記溶媒に上記以外の溶媒を混合して用いてもよい。 The above solvents may be used alone or in admixture of two or more as long as they satisfy the above conditions of the present invention. Moreover, as long as the said conditions are satisfy | filled, you may mix and use solvents other than the above in the said solvent.
 本発明の製造方法に、上記単独で使用できる溶媒と組み合わせて用いることで使用可能な溶媒としては、混合溶媒の状態で上記条件を満たす溶媒であれば特に限定されない。このような組合せの具体例を挙げれば、上記ピナコリン(ハンセン溶解パラメータ:15.2、5.7、5.3、R:2.0)と、ベンゾニトリル(ハンセン溶解パラメータ:18.8、12.0、3.3、R:79.1)の体積比90:10の混合溶媒(ハンセン溶解度パラメータ:15.6、6.3、5.1、R:1.1)、ギ酸t-ブチル(ハンセン溶解パラメータ:14.8、5.4、7.4、R:12.9)と、アセトフェノン(ハンセン溶解パラメータ:18.8、9.0、4.0、R:49.4)の体積比71:29の混合溶媒(ハンセン溶解度パラメータ:16.0、6.4、6.4、R:5.3)、酢酸イソブチル(ハンセン溶解パラメータ:15.1、3.7、6.3、R:9.4)と、安息香酸メチル(ハンセン溶解パラメータ:18.9、8.2、4.7、R:47.4)の体積比74:26の混合溶媒(ハンセン溶解パラメータ:16.1、4.9、5.9、R:3.8)、ギ酸t-ブチル(ハンセン溶解パラメータ:14.8、5.4、7.4、R:12.9)と、1,3-ビス(トリフルオロメチル)ベンゼン(ハンセン溶解パラメータ:17.0、6.8、0.0、R:26.5)の体積比59:41の混合溶媒(ハンセン溶解度パラメータ:15.7、6.0、4.4、R:0.1)等の組合せが挙げられる。 The solvent that can be used in the production method of the present invention in combination with the solvent that can be used alone is not particularly limited as long as the solvent satisfies the above conditions in a mixed solvent state. Specific examples of such combinations include the above pinacholine (Hansen solubility parameters: 15.2, 5.7, 5.3, R: 2.0) and benzonitrile (Hansen solubility parameters: 18.8, 12). 0.0, 3.3, R: 79.1) in a 90:10 volume ratio (Hansen solubility parameter: 15.6, 6.3, 5.1, R: 1.1), t-butyl formate (Hansen solubility parameter: 14.8, 5.4, 7.4, R: 12.9) and acetophenone (Hansen solubility parameter: 18.8, 9.0, 4.0, R: 49.4) Mixed solvent having a volume ratio of 71:29 (hansen solubility parameters: 16.0, 6.4, 6.4, R: 5.3), isobutyl acetate (hansen solubility parameters: 15.1, 3.7, 6.3) , R: 9.4) and methyl benzoate (dissolved in Hansen) (18.9, 8.2, 4.7, R: 47.4) in a volume ratio of 74:26 (Hansen solubility parameter: 16.1, 4.9, 5.9, R: 3. 8), t-butyl formate (Hansen solubility parameter: 14.8, 5.4, 7.4, R: 12.9) and 1,3-bis (trifluoromethyl) benzene (Hansen solubility parameter: 17. 0, 6.8, 0.0, R: 26.5) in a volume ratio of 59:41 (Hansen solubility parameters: 15.7, 6.0, 4.4, R: 0.1), etc. Combinations are mentioned.
 このような混合溶媒において、混合溶媒を構成する各溶媒のハンセン溶解パラメータとその体積比から算出される溶解指標(R)は、25未満が好ましく、16未満がより好ましく、9未満が最も好ましい。なお、上記組合せは例示であって、本発明のフッ素樹脂オルガノゾルの製造方法に用いることが可能な混合溶媒がこれらの組合せに限定されるものではない。 In such a mixed solvent, the solubility index (R) calculated from the Hansen solubility parameter and volume ratio of each solvent constituting the mixed solvent is preferably less than 25, more preferably less than 16, and most preferably less than 9. In addition, the said combination is an illustration, Comprising: The mixed solvent which can be used for the manufacturing method of the fluororesin organosol of this invention is not limited to these combinations.
 また、本発明のフッ素樹脂オルガノゾルの製造方法においては、溶解工程で、上記含フッ素共重合体を上記溶媒に溶解させ含フッ素共重合体溶液を得る。含フッ素共重合体溶液の調製に用いる含フッ素共重合体と溶媒の配合割合は、含フッ素共重合体:溶媒で示される質量比で、1.0:99.0~70.0:30.0であることが好ましく、2.0:98.0~60.0:40.0であることがより好ましい。 In the method for producing a fluororesin organosol of the present invention, the fluorine-containing copolymer is dissolved in the solvent in the dissolving step to obtain a fluorine-containing copolymer solution. The blending ratio of the fluorine-containing copolymer and the solvent used for the preparation of the fluorine-containing copolymer solution is 1.0: 99.0 to 70.0: 30.30 in a mass ratio represented by the fluorine-containing copolymer: solvent. 0 is preferable, and 2.0: 98.0 to 60.0: 40.0 is more preferable.
 なお、溶解工程における含フッ素共重合体と溶媒の配合割合は、得られるフッ素樹脂オルガノゾルにおける含フッ素共重合体微粒子と分散媒の含有比と一致する。フッ素樹脂オルガノゾルを、例えば、コーティング用組成物として使用する場合には、目的とする成形物の膜厚に応じて上記配合割合を適宜変えることができる。フッ素樹脂オルガノゾルにおける含フッ素共重合体と溶媒の配合割合がこの範囲にあると、例えば、コーティング用組成物として用いた場合に、粘度、乾燥速度、膜の均一性等の取り扱い性に優れ、含フッ素共重合体からなる均質な塗膜を形成できる。 In addition, the blending ratio of the fluorinated copolymer and the solvent in the dissolution step is in agreement with the content ratio of the fluorinated copolymer fine particles and the dispersion medium in the obtained fluororesin organosol. When the fluororesin organosol is used as, for example, a coating composition, the blending ratio can be appropriately changed according to the film thickness of the target molded product. When the blending ratio of the fluorine-containing copolymer and the solvent in the fluororesin organosol is within this range, for example, when used as a coating composition, it has excellent handling properties such as viscosity, drying speed, and film uniformity, and contains A homogeneous coating film made of a fluorine copolymer can be formed.
 上記溶解工程における温度、圧力、撹拌等の条件としては、上記溶媒に上記含フッ素共重合体が溶解される条件であれば特に限定されない。該溶解工程における温度条件としては、用いる含フッ素共重合体の融点以下の温度であることが好ましい。本発明における含フッ素共重合体、すなわち上記で説明したETFEの融点は、最も高いもので概ね275℃であることから、上記溶媒にこれを溶解する工程の温度は、概ね275℃以下の温度であることが好ましい。前記含フッ素共重合体を前記溶媒に溶解する温度としては、230℃以下がより好ましく、200℃以下が特に好ましい。また、この溶解工程の温度の下限としては、40℃が好ましく、60℃がより好ましく、操作性等を考慮すると80℃がさらに好ましい。前記溶解工程の温度が40℃未満では、十分な溶解状態が得られない場合があり、275℃を超える温度では、実際作業を行う上で、容易に実行できないことがある。 The conditions such as temperature, pressure, and stirring in the dissolution step are not particularly limited as long as the fluorine-containing copolymer is dissolved in the solvent. The temperature condition in the dissolving step is preferably a temperature not higher than the melting point of the fluorine-containing copolymer to be used. Since the melting point of the fluorine-containing copolymer in the present invention, that is, ETFE explained above is the highest at about 275 ° C., the temperature of the step of dissolving it in the solvent is about 275 ° C. or less. Preferably there is. The temperature at which the fluorine-containing copolymer is dissolved in the solvent is more preferably 230 ° C. or less, and particularly preferably 200 ° C. or less. Moreover, as a minimum of the temperature of this melt | dissolution process, 40 degreeC is preferable, 60 degreeC is more preferable, and 80 degreeC is further more preferable when operativity etc. are considered. When the temperature of the melting step is less than 40 ° C., a sufficient dissolved state may not be obtained, and when the temperature exceeds 275 ° C., it may not be easily performed when performing actual work.
 本発明のフッ素樹脂オルガノゾルの製造方法が有する上記溶解工程において、温度以外の条件は特に限定されるものではない。通常は常圧~0.5MPa程度の微加圧の条件下に溶解することが好ましい。溶解時の圧力は、含フッ素共重合体や溶媒の種類によって、溶媒の沸点が溶解工程の温度より低い場合等には、耐圧容器中で、少なくとも自然発生圧力以下であり、好ましくは3MPa以下、より好ましくは2MPa以下、さらに好ましくは1MPa以下、最も好ましくは常圧以下である。一般的には、0.01~1MPa程度の圧力下に溶解できる。 In the above-described dissolution step of the method for producing a fluororesin organosol of the present invention, conditions other than temperature are not particularly limited. Usually, it is preferable to dissolve under conditions of normal pressure to slight pressure of about 0.5 MPa. The pressure at the time of dissolution depends on the type of the fluorine-containing copolymer and the solvent, and when the boiling point of the solvent is lower than the temperature of the dissolution process, etc., in the pressure vessel, it is at least lower than the spontaneously generated pressure, preferably 3 MPa or lower, More preferably, it is 2 MPa or less, More preferably, it is 1 MPa or less, Most preferably, it is below normal pressure. In general, it can be dissolved under a pressure of about 0.01 to 1 MPa.
 溶解時間は、本発明の製造方法で得られるフッ素樹脂オルガノゾルにおける上記含フッ素共重合体の含有量や該含フッ素共重合体の形状等に依存する。用いる含フッ素共重合体の形状は、溶解時間を短くする作業効率の点から、粉末状が好ましい。また、入手のし易さ等からペレット状等、その他の形状のものを用いることもできる。 The dissolution time depends on the content of the fluorinated copolymer in the fluororesin organosol obtained by the production method of the present invention, the shape of the fluorinated copolymer, and the like. The shape of the fluorine-containing copolymer to be used is preferably a powder from the viewpoint of work efficiency for shortening the dissolution time. Moreover, the thing of other shapes, such as a pellet form, can also be used from availability.
 上記溶解工程における溶解の手段は特に限定されるものではなく、一般的な方法を使用できる。フッ素樹脂オルガノゾルの必須構成成分である含フッ素共重合体と溶媒の所定量と、これにより得られるフッ素樹脂オルガノゾルが用いられる用途により、その求められる性能に応じて適宜選択されて配合される任意成分の添加量を秤量し、均一に混合、溶解させればよい。コーティング用組成物として用いる場合には、任意成分として以下に記載の各種成分を添加することが好ましい。 The dissolution means in the dissolution step is not particularly limited, and a general method can be used. Arbitrary components that are appropriately selected and blended according to the required performance depending on the intended use of the fluorocopolymer and the solvent, which are essential components of the fluororesin organosol, and the intended use of the fluororesin organosol obtained thereby. It is sufficient to weigh the added amount of and uniformly mix and dissolve. When used as a coating composition, it is preferable to add various components described below as optional components.
 また、本発明のフッ素樹脂オルガノゾルを製造する過程において、添加する任意成分としては、例えば、粘度調節の機能を有する増粘剤、減粘剤等、劣化防止の機能を有する紫外線吸収剤、光安定剤等が挙げられる。なお、本発明の製造方法において得られるフッ素樹脂オルガノゾルが含有するこれら任意成分の合計配合量は、フッ素樹脂オルガノゾル全量に対して30質量%以下であることが好ましく、10質量%以下であることがより好ましい。言い換えれば、フッ素樹脂オルガノゾルが含有する上記含フッ素共重合体と溶媒の合計量は、フッ素樹脂オルガノゾル全量に対して70質量%以上であることが好ましく、90質量%以上であることがより好ましい。
 さらに、フッ素樹脂オルガノゾルを使用する上で機能する任意成分については、以下の(3)解砕・分散工程後に、得られたフッ素樹脂オルガノゾルに添加できる。
In addition, in the process of producing the fluororesin organosol of the present invention, as an optional component to be added, for example, a thickener having a function of adjusting viscosity, a thickener, etc., an ultraviolet absorber having a function of preventing deterioration, a light stabilization Agents and the like. In addition, it is preferable that the total compounding quantity of these arbitrary components which the fluororesin organosol obtained in the manufacturing method of this invention contains is 30 mass% or less with respect to the fluororesin organosol whole quantity, and it is 10 mass% or less. More preferred. In other words, the total amount of the fluorine-containing copolymer and the solvent contained in the fluororesin organosol is preferably 70% by mass or more and more preferably 90% by mass or more based on the total amount of the fluororesin organosol.
Furthermore, optional components that function in using the fluororesin organosol can be added to the obtained fluororesin organosol after the following (3) crushing / dispersing step.
 含フッ素共重合体、溶媒及び任意成分の混合温度は、40℃以上、用いる含フッ素共重合体の融点以下の温度が好ましい。具体的には、60~230℃がより好ましく、80~200℃が最も好ましい。溶解工程において各種原料成分の混合と加熱は同時に行ってもよく、各種原料成分を混合した後、必要に応じて撹拌しながら加熱してもよい。 The mixing temperature of the fluorinated copolymer, the solvent and the optional component is preferably 40 ° C. or higher and the melting point of the fluorinated copolymer to be used. Specifically, 60 to 230 ° C. is more preferable, and 80 to 200 ° C. is most preferable. In the melting step, mixing and heating of various raw material components may be performed simultaneously, or after mixing various raw material components, heating may be performed while stirring as necessary.
 加圧下に溶解する場合には、撹拌機付きオートクレーブ等の装置を使用できる。撹拌翼の形状としては、マリンプロペラ翼、パドル翼、アンカー翼、タービン翼等が用いられる。小スケールで行う場合には、マグネティックスターラー等を用いてもよい。 When dissolving under pressure, equipment such as an autoclave with a stirrer can be used. As the shape of the stirring blade, a marine propeller blade, a paddle blade, an anchor blade, a turbine blade, or the like is used. When performing on a small scale, a magnetic stirrer or the like may be used.
(2)析出工程
 上記(1)溶解工程で得られた、上記含フッ素共重合体を上記溶媒に溶解した溶液を、該含フッ素共重合体が微粒子として上記溶媒中に析出する条件下、含フッ素共重合体の微粒子が上記溶媒中に析出し、含フッ素共重合体の微粒子が溶媒中に分散した組成物が得られる。該析出条件としては、常温常圧が好ましい。
 析出工程における具体的な操作の例としては、上記(1)溶解工程で得られる溶液を常温まで冷却することにより上記含フッ素共重合体の微粒子を上記溶媒中に析出させる。この場合、冷却の方法は、特に限定されず、徐冷でもよく、急冷であってもよい。
 ここで、組成物とは、含フッ素共重合体を微粒子として含有する、溶媒と含フッ素共重合体との混合物をいう。
(2) Precipitation step The solution obtained by dissolving the above fluorinated copolymer in the above-mentioned (1) dissolution step under the condition that the fluorinated copolymer is precipitated as fine particles in the solvent. A composition in which fine particles of the fluorine copolymer are precipitated in the solvent and the fine particles of the fluorine-containing copolymer are dispersed in the solvent is obtained. As the deposition condition, normal temperature and normal pressure are preferable.
As an example of a specific operation in the precipitation step, the fluorocopolymer fine particles are precipitated in the solvent by cooling the solution obtained in the dissolution step (1) to room temperature. In this case, the cooling method is not particularly limited, and may be slow cooling or rapid cooling.
Here, the composition refers to a mixture of a solvent and a fluorine-containing copolymer containing the fluorine-containing copolymer as fine particles.
 析出工程で得られる組成物における含フッ素共重合体の微粒子の分散状態としては、該微粒子が溶媒中に均一に分散している場合に加え、微粒子を含む溶媒の一部または全体がゲル化していたり、該微粒子が溶媒中に偏在して不均一に分散していたりする場合がある。後者のような分散状態は、溶媒に対する含フッ素共重合体の配合割合が高いほど顕著に現れる。このような不均一な組成物の場合には含フッ素共重合体の微粒子が溶媒中に均一に分散した、取り扱い性に優れたフッ素樹脂オルガノゾルとするために、以下の解砕・分散工程を行う。 As the dispersion state of the fluorine-containing copolymer fine particles in the composition obtained in the precipitation step, in addition to the case where the fine particles are uniformly dispersed in the solvent, a part or the whole of the solvent containing the fine particles is gelled. In some cases, the fine particles are unevenly distributed in the solvent and dispersed unevenly. The dispersion state like the latter appears more remarkably as the blending ratio of the fluorine-containing copolymer to the solvent is higher. In the case of such a non-uniform composition, the following crushing / dispersing steps are performed in order to obtain a fluororesin organosol having excellent handling properties in which the fine particles of the fluorine-containing copolymer are uniformly dispersed in the solvent. .
(3)解砕・分散工程
 解砕・分散工程は、上記(2)析出工程で得られた、上記含フッ素共重合体を微粒子との組成物に対して、高剪断力を加えて溶媒に該含フッ素共重合体の微粒子を、より均一に分散させる工程である。
 上記混合物に高剪断力を加える方法として、具体的には、高速回転、高圧噴射、高速振動、超音波処理、高圧濾過等の方法が挙げられる。なかでも簡便な方法であることから、高速回転、高圧噴射、または高速振動(以下、これらを総称して「撹拌」という)による方法が好ましい。また、これら高剪断力を加える方法は単独で行ってもよく、2種以上の方法、例えば、撹拌と超音波処理を併用してもよい。
(3) Crushing / dispersing step In the crushing / dispersing step, a high shear force is applied to the composition of the fluorine-containing copolymer obtained in the above (2) precipitation step with the fine particles to form a solvent. This is a step of dispersing the fine particles of the fluorinated copolymer more uniformly.
Specific examples of methods for applying a high shear force to the mixture include high-speed rotation, high-pressure injection, high-speed vibration, ultrasonic treatment, and high-pressure filtration. Among these, a method using high-speed rotation, high-pressure injection, or high-speed vibration (hereinafter collectively referred to as “stirring”) is preferable because it is a simple method. Moreover, the method of applying these high shear forces may be performed alone, or two or more methods, for example, stirring and ultrasonic treatment may be used in combination.
 撹拌により上記混合物に高剪断力を加える装置としては、高剪断力を加えながら液状物を撹拌するために通常用いられる撹拌装置が、特に制限なく使用可能できる。このような撹拌装置として、上記解砕・分散工程には、タービン翼やエッジドタービン翼など通常の撹拌翼の中でも剪断力が大きい撹拌翼を有する撹拌装置が使用できる。また、より高い剪断力が得られる以下の撹拌装置や分散装置を用いることが好ましい。高剪断力の撹拌装置を用いて、上記溶媒と含フッ素共重合体との混合物に、高剪断力を加える際の回転数、圧力、処理時間、処理温度等の条件は、混合物の状態や用いる装置により適宜選択される。以下(a)~(c)および(e)は高速回転による撹拌装置であり、(d)は高圧噴射による分散装置である。 As a device for applying a high shearing force to the mixture by stirring, a stirring device usually used for stirring a liquid material while applying a high shearing force can be used without any particular limitation. As such an agitator, an agitator having an agitating blade having a large shearing force among normal agitating blades such as a turbine blade and an edged turbine blade can be used in the crushing / dispersing step. Moreover, it is preferable to use the following stirring apparatus and dispersion apparatus which can obtain a higher shearing force. Conditions such as the number of revolutions, pressure, treatment time, treatment temperature, etc. when applying a high shear force to the mixture of the solvent and the fluorinated copolymer using a high shearing stirrer are determined depending on the state of the mixture and used. It is appropriately selected depending on the apparatus. Hereinafter, (a) to (c) and (e) are stirring devices by high-speed rotation, and (d) is a dispersing device by high-pressure injection.
(a)TKホモミクサー(プライミクス社製)、ウルトラタラックス(IKA社製)、ポリトロン(KINEMATICA社製)等に代表される撹拌装置、すなわち、撹拌翼の外周近傍に固定環を組み合わせた撹拌装置であって、該ローターを高速で回転させ、撹拌翼と固定環との微細な間隙で起こる強力な剪断効果、衝撃力を利用して、微粒化効果を高める装置;高剪断力を加える際の回転数として、具体的には、1000~30000回転/分等が挙げられる。
(b)クレアミックス(エム・テクニック社製)等に代表される撹拌装置、すなわち、高速で回転するローターとそれを取り囲むスクリーンに生じる剪断力、衝突力、圧力変動、キャビテーション及びポテンシャルコアの作用によって攪拌する装置;高剪断力を加える際の回転数として、具体的には、1000~22000回転/分等が挙げられる。
(c)キャビトロン(ユーロテック社製)、DRS2000(IKA社製)等に代表される撹拌装置、すなわち、同心上に配置された櫛歯形状の回転子および固定子を備えた攪拌装置であって、該回転子を高速で回転させ、その回転子内側から固定子外側に攪拌する混合液を流通させて、回転子と固定子との間隙で混合液を撹拌させる装置;高剪断力を加える際の撹拌翼先端速度として、具体的には、2~50m/秒等が挙げられる。
(A) A stirrer represented by a TK homomixer (manufactured by Primix), Ultra Thalax (manufactured by IKA), polytron (manufactured by KINEMATICA) or the like, that is, a stirrer in which a stationary ring is combined in the vicinity of the outer periphery of a stirring blade. A device that rotates the rotor at high speed and enhances the atomization effect by using the powerful shearing effect and impact force generated in the minute gap between the stirring blade and the stationary ring; rotation when applying high shearing force Specific examples of the number include 1000 to 30000 rotations / minute.
(B) Stirring devices represented by Claremix (made by M Technique Co., Ltd.), that is, shearing force, collision force, pressure fluctuation, cavitation and potential core generated on the rotor rotating at high speed and the surrounding screen. Stirring device: Specific examples of the number of rotations when applying a high shear force include 1000 to 22000 rotations / minute.
(C) A stirrer represented by Cavitron (manufactured by Eurotech), DRS2000 (manufactured by IKA) or the like, that is, a stirrer provided with a comb-shaped rotor and a stator arranged concentrically. , A device for rotating the rotor at a high speed, causing a mixture to be stirred from the inside of the rotor to the outside of the stator, and stirring the mixture in the gap between the rotor and the stator; Specifically, the tip speed of the stirring blade is 2 to 50 m / sec.
(d)マントン・ゴーリンホモジナイザー(ゴーリン社製)等に代表される分散装置、すなわち、高圧プランジャポンプなどで処理液を圧入し、排出部の特殊バルブの調整で高圧で噴射させ、出口の固定板に超高速で叩き付けて分散させる装置;高剪断力を加える際の圧力として、具体的には、1~100MPa等が挙げられる。
(e)TKフィルミックス(プライミクス社製)に代表される攪拌装置、すなわち、処理する混合液を遠心力によって分散槽側壁に押し付けて、液膜を形成し、該液膜に超高速で回転する撹拌具の先端が触れることによって攪拌する装置;高剪断力を加える際の撹拌翼先端速度として、具体的には、2~50m/秒が挙げられる。
(D) Dispersing device typified by Menton Gaulin homogenizer (manufactured by Gorin), that is, pressurizing the processing liquid with a high pressure plunger pump, etc. An apparatus that strikes and disperses at a high speed; specifically, the pressure when applying a high shearing force is 1 to 100 MPa.
(E) A stirrer typified by TK fill mix (manufactured by Primix), that is, the liquid mixture to be processed is pressed against the side wall of the dispersion tank by centrifugal force to form a liquid film, and the liquid film is rotated at an ultra high speed. A device that stirs by touching the tip of the stirrer; Specific examples of the tip speed of the stirring blade when high shear force is applied include 2 to 50 m / sec.
 高圧濾過により上記混合物に高剪断力を加えるには、高圧で液状物をフィルタ等の細孔に通過させる市販の高圧濾過装置が、特に制限なく適用できる。なお、高圧濾過装置を用いて、上記溶媒と含フッ素共重合体との混合物に、高剪断力を加える際の、具体的条件、例えば、圧力、フィルタの孔径、処理時間、処理温度等は、混合物の状態や用いる装置により適宜選択される。より具体的には、圧力0.1~2.0Mpa、フィルタの孔径0.1~5μm等の条件が挙げられる。 In order to apply a high shearing force to the above mixture by high pressure filtration, a commercially available high pressure filtration device that allows a liquid to pass through pores such as a filter at high pressure can be applied without particular limitation. In addition, specific conditions, for example, pressure, filter pore diameter, treatment time, treatment temperature, etc. when applying a high shear force to the mixture of the solvent and the fluorinated copolymer using a high-pressure filtration device are as follows: It is appropriately selected depending on the state of the mixture and the apparatus used. More specifically, conditions such as a pressure of 0.1 to 2.0 Mpa and a filter pore size of 0.1 to 5 μm can be mentioned.
 超音波処理により上記混合物に高剪断力を加えるには、市販の、超音波洗浄機や超音波発信器などを使用できる。この場合も、上記溶媒と含フッ素共重合体との混合物に、高剪断力を加える際の、具体的条件、例えば、周波数、処理時間、処理温度等は、混合物の状態や用いる装置により適宜選択される。より具体的には、発振周波数として、10~200kHz等の条件が挙げられる。
 なお、本発明の製造方法においては、必要に応じて上記(2)析出工程と、(3)解砕・分散工程を同時に行ってもよい。
In order to apply a high shear force to the mixture by ultrasonic treatment, a commercially available ultrasonic cleaner, ultrasonic transmitter, or the like can be used. Also in this case, specific conditions when applying a high shear force to the mixture of the solvent and the fluorinated copolymer, such as frequency, treatment time, treatment temperature, etc., are appropriately selected depending on the state of the mixture and the apparatus used. Is done. More specifically, the oscillation frequency includes conditions such as 10 to 200 kHz.
In addition, in the manufacturing method of this invention, you may perform said (2) precipitation process and (3) crushing and dispersion | distribution process simultaneously as needed.
 また、含フッ素共重合体の微粒子を溶媒中により均一に分散させるために、本発明の製造方法の(3)解砕・分散工程を粘度調整剤(「減粘剤」ともいう。)を添加して実施することが好ましい。
 用いる粘度調整剤としては、上記溶媒と含フッ素共重合体との混合物の粘度を低減できるものであれば、特に制限されない。具体的には、ハロゲン基で置換されていてもよく結合末端以外の任意の-CH-が酸素原子に置換されていてもよい炭素数1~20のアルキル基と、さらに、アミノ基、アミド基、スルホンアミド基、イミダゾール基、水酸基およびメルカプト基からなる群から選ばれる少なくとも1種の官能基と、を有する化合物が挙げられる。
Further, in order to disperse the fluorine-containing copolymer fine particles more uniformly in the solvent, a viscosity modifier (also referred to as “thickening agent”) is added to the (3) crushing / dispersing step of the production method of the present invention. It is preferable to carry out.
The viscosity modifier to be used is not particularly limited as long as it can reduce the viscosity of the mixture of the solvent and the fluorinated copolymer. Specifically, an alkyl group having 1 to 20 carbon atoms in which any —CH 2 — other than the bonding terminal, which may be substituted with a halogen group, may be substituted with an oxygen atom, an amino group, an amide And a compound having at least one functional group selected from the group consisting of a group, a sulfonamide group, an imidazole group, a hydroxyl group and a mercapto group.
 このような、粘度調整剤として、より具体的には、ブチルアミン、ペンチルアミン、ヘキシルアミン、ヘプチルアミン、オクチルアミン、ノニルアミン、デシルアミン、ウンデシルアミン、ドデシルアミン、トリデシルアミン、テトラデシルアミン、ペンタデシルアミン、ヘキサデシルアミン、ヘプタデシルアミン、オクタデシルアミン、ノナデシルアミン、イコシルアミン、2-エトキシエチルアミン、3-ブトキシプロピルアミン、2-(エチルアミノ)エタノール、4-エチルアミノ-1-ブタノール、2-(ブチルアミノ)エタノール、4-(ブチルアミノ)-1-ブタノール、オクタンアミド、ノナンアミド、デカンアミド、ドデカンアミド、トリデカンアミド、テトラデカンアミド、ペンタデカンアミド、ヘキサデカンアミド、ヘプタデカンアミド、オクタデカンアミド、1-オクタンスルホンアミド、1-ノナンスルホンアミド、1-デカンスルホンアミド、1-ウンデカンスルホンアミド、1-ドデカンスルホンアミド、1-トリデカンスルホンアミド、1-テトラデカンスルホンアミド、1-ペンタデカンスルホンアミド、1-ヘキサデカンスルホンアミド、1-ヘプタデカンスルホンアミド、1-オクタデカンスルホンアミド、2-ブチルイミダゾール、2-ペンチルイミダゾール、2-ヘキシルイミダゾール、2-ヘプチルイミダゾール、2-オクチルイミダゾール、2-ノニルイミダゾール、2-デシルイミダゾール、2-ウンデシルイミダゾール、2-ドデシルイミダゾール、2-トリデシルイミダゾール、2-テトラデシルイミダゾール、2-ペンタデシルイミダゾール、2-ヘキサデシルイミダゾール、2-ヘプタデシルイミダゾール、2-オクタデシルイミダゾール、1-オクタノール、1-ノナノール、1-デカノール、1-ウンデカノール、1-ドデカノール、1-トリデカノール、1-テトラデカノール、1-ペンタデカノール、1-ヘキサデカノール、1-ヘプタデカノール、1-オクタデカノール、1-オクタンチオール、1-ノナンチオール、1-デカンチオール、1-ウンデカンチオール、1-ドデカンチオール、1-トリデカンチオール、1-テトラデカンチオール、1-ペンタデカンチオール、1-ヘキサデカンチオール、1-ヘプタデカンチオール、1-オクタデカンチオール等が挙げられる。これらのうちでも、3-ブトキシプロピルアミン、オクチルアミン、ノニルアミン、デシルアミン、ウンデシルアミン、ドデシルアミン、トリデシルアミン、テトラデシルアミン、ペンタデシルアミン、ヘキサデシルアミン、ヘプタデシルアミン、オクタデシルアミン等が好ましい。これらは、1種を単独で用いることも、2種以上を併用できる。 More specifically, as such a viscosity modifier, butylamine, pentylamine, hexylamine, heptylamine, octylamine, nonylamine, decylamine, undecylamine, dodecylamine, tridecylamine, tetradecylamine, pentadecyl Amine, hexadecylamine, heptadecylamine, octadecylamine, nonadecylamine, icosylamine, 2-ethoxyethylamine, 3-butoxypropylamine, 2- (ethylamino) ethanol, 4-ethylamino-1-butanol, 2- (butylamino) ) Ethanol, 4- (butylamino) -1-butanol, octanamide, nonanamide, decanamide, dodecanamide, tridecanamide, tetradecanamide, pentadecanamide, hexadecanamide Heptadecanamide, octadecanamide, 1-octanesulfonamide, 1-nonanesulfonamide, 1-decanesulfonamide, 1-undecanesulfonamide, 1-dodecanesulfonamide, 1-tridecanesulfonamide, 1-tetradecanesulfonamide, 1-pentadecane sulfonamide, 1-hexadecane sulfonamide, 1-heptadecane sulfonamide, 1-octadecane sulfonamide, 2-butylimidazole, 2-pentylimidazole, 2-hexylimidazole, 2-heptylimidazole, 2-octylimidazole, 2-nonylimidazole, 2-decylimidazole, 2-undecylimidazole, 2-dodecylimidazole, 2-tridecylimidazole, 2-tetradecylimidazole, 2-pen Decylimidazole, 2-hexadecylimidazole, 2-heptadecylimidazole, 2-octadecylimidazole, 1-octanol, 1-nonanol, 1-decanol, 1-undecanol, 1-dodecanol, 1-tridecanol, 1-tetradecanol, 1-pentadecanol, 1-hexadecanol, 1-heptadecanol, 1-octadecanol, 1-octanethiol, 1-nonanethiol, 1-decanethiol, 1-undecanethiol, 1-dodecanethiol, 1 -Tridecanethiol, 1-tetradecanethiol, 1-pentadecanethiol, 1-hexadecanethiol, 1-heptadecanethiol, 1-octadecanethiol and the like. Among these, 3-butoxypropylamine, octylamine, nonylamine, decylamine, undecylamine, dodecylamine, tridecylamine, tetradecylamine, pentadecylamine, hexadecylamine, heptadecylamine, octadecylamine and the like are preferable. . These can be used alone or in combination of two or more.
 また、用いる粘度調整剤の量としては、上記混合物中の含フッ素共重合体に対して、0.1~20質量%の量が好ましく、0.5~10質量%の量がより好ましい。なお、粘度調整剤の量は、その他の任意成分との合計量で、フッ素樹脂オルガノゾルの全量に対して30質量%以下であることが好ましく、15質量%以下であることがより好ましい。また、粘度調整剤の添加の時期は、(3)解砕・分散工程の前であれば特に制限されない。例えば、上記(1)溶解工程で添加してもよいし、上記(2)析出工程後に添加してもよい。ただし、析出工程後に添加する場合、粘度調整剤が上記溶媒と含フッ素共重合体との混合物中に均一に存在するように、ボールミル等で十分な撹拌を行うことが好ましい。
 このようにして得られた含フッ素共重合体の分散液には、粗大な凝集粒子が残存している場合がある。このような凝集粒子を除去する目的で、上記分散液を濾過する工程を実施しても良い。濾過の方法としては、加圧濾過、減圧吸引濾過、常圧自然濾過などのいずれの方法でも良い。濾過の方法としては、加圧濾過が好ましく、濾材としては、ステンレス鋼製フィルター、樹脂製フィルターを使用できる。
 このようにして本発明の製造方法により、上記含フッ素共重合体の微粒子を分散質とし、上記溶媒を分散媒とする、上記含フッ素共重合体の微粒子が上記溶媒に均一に分散したフッ素樹脂オルガノゾルが得られる。
The amount of the viscosity modifier used is preferably from 0.1 to 20% by mass, more preferably from 0.5 to 10% by mass, based on the fluorine-containing copolymer in the mixture. The amount of the viscosity modifier is a total amount with other optional components, and is preferably 30% by mass or less, more preferably 15% by mass or less, based on the total amount of the fluororesin organosol. Further, the timing of adding the viscosity modifier is not particularly limited as long as it is before the (3) crushing / dispersing step. For example, you may add in said (1) melt | dissolution process, and may add after said (2) precipitation process. However, when adding after a precipitation process, it is preferable to perform sufficient stirring with a ball mill etc. so that a viscosity modifier may exist uniformly in the mixture of the said solvent and a fluorine-containing copolymer.
In the thus obtained dispersion of the fluorinated copolymer, coarse aggregated particles may remain. For the purpose of removing such agglomerated particles, a step of filtering the dispersion may be performed. As a filtration method, any method such as pressure filtration, vacuum suction filtration, and normal pressure natural filtration may be used. As a filtration method, pressure filtration is preferable, and as a filter medium, a stainless steel filter or a resin filter can be used.
Thus, by the production method of the present invention, a fluororesin in which the fine particles of the fluorine-containing copolymer are dispersed in the solvent, and the fine particles of the fluorine-containing copolymer are uniformly dispersed in the solvent. An organosol is obtained.
[フッ素樹脂オルガノゾル]
 上記本発明の製造方法により得られるフッ素樹脂オルガノゾル(以下、本発明のフッ素樹脂オルガノゾルという。)においては、上記含フッ素共重合体の微粒子は、上記溶媒を分散媒としてこの分散媒中に均一に分散した状態で存在する。本発明のフッ素樹脂オルガノゾルにおいて、含フッ素共重合体の微粒子の平均粒子径は、25℃において、動的光散乱法で測定した個数平均粒子径として、0.005~5μmが好ましく、0.005~2μmがより好ましく、0.01~1μmが最も好ましい。ここで、個数平均粒子径は、得られる平均粒子径から見て、それより粒子径が小さな粒子の数と、それより粒子径が大きな粒子の数の割合が同一になる粒子径である。
[Fluoro resin organosol]
In the fluororesin organosol obtained by the production method of the present invention (hereinafter referred to as the fluororesin organosol of the present invention), the fine particles of the fluorocopolymer are uniformly dispersed in the dispersion medium using the solvent as a dispersion medium. It exists in a distributed state. In the fluororesin organosol of the present invention, the average particle diameter of the fluorine-containing copolymer fine particles is preferably 0.005 to 5 μm as the number average particle diameter measured by a dynamic light scattering method at 25 ° C., 0.005 ˜2 μm is more preferable, and 0.01 to 1 μm is most preferable. Here, the number average particle diameter is a particle diameter in which the ratio of the number of particles having a smaller particle diameter is equal to the number of particles having a larger particle diameter than the average particle diameter obtained.
 本発明のフッ素樹脂オルガノゾルにおいて、含フッ素共重合体の微粒子の平均粒子径が、上記範囲にあれば、例えば、これをコーティング用組成物として用いた場合に、均質で透明性、平坦性、密着性に優れた塗膜を形成できる。なお、特に断りのない限り本明細書において、平均粒子径とは、平均1次粒子径をいう。 In the fluororesin organosol of the present invention, if the average particle size of the fluorine-containing copolymer fine particles is in the above range, for example, when this is used as a coating composition, it is homogeneous, transparent, flat, and adherent. A coating film excellent in properties can be formed. Unless otherwise specified, in this specification, the average particle diameter means the average primary particle diameter.
[コーティング用組成物]
 本発明のコーティング用組成物は、上記本発明のフッ素樹脂オルガノゾルを主成分として含有するコーティング用組成物である。本発明のコーティング用組成物は、上記含フッ素共重合体の微粒子と上記溶媒のみからなるフッ素樹脂オルガノゾル、または上記含フッ素共重合体の微粒子と上記溶媒にさらに任意成分を含むフッ素樹脂オルガノゾルである。また、このようなフッ素樹脂オルガノゾルに任意成分が添加されたものであってもよい。
[Coating composition]
The coating composition of the present invention is a coating composition containing the fluororesin organosol of the present invention as a main component. The coating composition of the present invention is a fluororesin organosol consisting of the fluorocopolymer fine particles and the solvent alone, or a fluororesin organosol containing the fluorocopolymer microparticles and the solvent and an optional component. . Moreover, what added arbitrary components to such a fluororesin organosol may be used.
 本発明のコーティング用組成物は、上記含フッ素共重合体の微粒子と上記条件を満たす溶媒とがオルガノゾルを形成したものを必須成分として含有する。さらに、必要に応じてその他任意成分を本発明の効果を損なわない範囲で含有できる。このような任意成分の例としては、酸化防止剤、光安定剤、紫外線吸収剤、架橋剤、滑剤、可塑剤、増粘剤、分散安定剤、充填剤(フィラー)、強化剤、顔料、染料、難燃剤、帯電防止剤等の各種添加剤が挙げられる。また、任意成分の含有量としては、コーティング用組成物全量に対して30質量%以下が好ましく、10質量%以下がより好ましい。
 また、本発明のコーティング用組成物を塗料として用いる際には、一般的なフッ素塗料で行われているように、非フッ素樹脂を混合してもよい。
The coating composition of the present invention contains, as an essential component, an organosol formed by the fine particles of the fluorine-containing copolymer and a solvent satisfying the above conditions. Furthermore, other optional components can be contained as necessary within a range not impairing the effects of the present invention. Examples of such optional components include antioxidants, light stabilizers, ultraviolet absorbers, crosslinking agents, lubricants, plasticizers, thickeners, dispersion stabilizers, fillers, fillers, reinforcing agents, pigments, dyes And various additives such as flame retardants and antistatic agents. Moreover, as content of an arbitrary component, 30 mass% or less is preferable with respect to the coating composition whole quantity, and 10 mass% or less is more preferable.
Moreover, when using the coating composition of this invention as a coating material, you may mix a non-fluororesin like it is performed with the general fluorine coating material.
 任意成分は、上記フッ素樹脂オルガノゾルの製造工程の(1)溶解工程において原料成分に添加してもよく、上記含フッ素共重合体の微粒子と上記溶媒のみからなるフッ素樹脂オルガノゾルに添加してもよい。また、複数の任意成分を添加する場合、任意成分のうちのいくつかを上記(1)溶解工程において原料成分に添加してフッ素樹脂オルガノゾルを製造した後、フッ素樹脂オルガノゾルに同じまたは別の種類の任意成分を添加してもよい。 The optional component may be added to the raw material component in the (1) dissolution step of the fluororesin organosol production process, or may be added to the fluororesin organosol consisting only of the fluorocopolymer fine particles and the solvent. . In addition, when a plurality of optional components are added, some of the optional components are added to the raw material components in the above (1) dissolving step to produce a fluororesin organosol, and then the same or different types of fluororesin organosol are used. Optional ingredients may be added.
 本発明のコーティング用組成物による基材上への含フッ素共重合体塗膜の形成は、以下の塗膜の形成方法により行うことができる。
 本発明のコーティング用組成物を基材に塗布して溶媒含有塗膜を形成する塗布工程、および、前記溶媒含有塗膜から溶媒を除去して溶媒を含有しない塗膜とする溶媒除去工程を経ることで、本発明のコーティング用組成物から含フッ素共重合体の塗膜を簡便に得ることができる。
Formation of the fluorine-containing copolymer coating film on the substrate by the coating composition of the present invention can be performed by the following coating film forming method.
The coating composition of the present invention is applied to a substrate to form a solvent-containing coating film, and the solvent removal step is performed to remove the solvent from the solvent-containing coating film to form a solvent-free coating film. Thereby, the coating film of a fluorine-containing copolymer can be obtained simply from the coating composition of this invention.
(塗布工程)
 本発明のコーティング用組成物を用いる塗膜形成方法の塗布工程において、基材へのコーティング用組成物の塗布に用いる手段は特に限定されるものではなく、一般的に用いられる方法を使用できる。塗布方法としては、例えば、グラビアコーティング、ディップコーティング、ダイコーティング、スプレーコーティング、静電塗装、刷毛塗り、スクリーン印刷、ロールコーティング、スピンコーティングなどが挙げられる。
(Coating process)
In the coating step of the coating film forming method using the coating composition of the present invention, the means used for coating the coating composition on the substrate is not particularly limited, and generally used methods can be used. Examples of the application method include gravure coating, dip coating, die coating, spray coating, electrostatic coating, brush coating, screen printing, roll coating, spin coating, and the like.
 上記塗布工程において、本発明のコーティング用組成物は、必ずしも含フッ素共重合体が前記溶媒に溶解した状態で塗布される必要はない。本発明のコーティング用組成物は、上記溶媒に分散した含フッ素共重合体が溶解する温度以下においても、含フッ素共重合体が上記溶媒に均一に分散した状態であることを特徴としている。したがって、上記塗布工程では、本発明のコーティング用組成物を、上記含フッ素共重合体が上記溶媒に溶解する温度未満の温度下で基材に塗布し、以下に説明する比較的低い温度で溶媒を除去(乾燥)できる。このように塗布を実施することが以下の点や作業性の観点から好ましい。本発明のコーティング用組成物を用いた塗膜の形成方法においては、塗布温度や乾燥温度をこのように低い温度に調整することで緻密で平坦な塗膜を得ることができる。 In the coating step, the coating composition of the present invention does not necessarily have to be applied in a state where the fluorine-containing copolymer is dissolved in the solvent. The coating composition of the present invention is characterized in that the fluorine-containing copolymer is uniformly dispersed in the solvent even at a temperature below the temperature at which the fluorine-containing copolymer dispersed in the solvent dissolves. Therefore, in the coating step, the coating composition of the present invention is applied to the substrate at a temperature lower than the temperature at which the fluorine-containing copolymer is dissolved in the solvent, and the solvent is heated at a relatively low temperature described below. Can be removed (dried). Application in this way is preferable from the following viewpoints and workability. In the method for forming a coating film using the coating composition of the present invention, a dense and flat coating film can be obtained by adjusting the coating temperature and the drying temperature to such a low temperature.
 上記塗布工程における塗布温度は、用いるコーティング用組成物によって変化するが、0~210℃がより好ましく、0~130℃がさらに好ましく、0~50℃が最も好ましい。上記塗布温度が0℃未満では含フッ素共重合体の分散状態が十分とはいえず、210℃を超えると含有される溶媒が揮発し易くなり、気泡等の発生する可能性があるので好ましくない。 The coating temperature in the coating step varies depending on the coating composition to be used, but is preferably 0 to 210 ° C, more preferably 0 to 130 ° C, and most preferably 0 to 50 ° C. If the coating temperature is less than 0 ° C., the dispersion state of the fluorine-containing copolymer is not sufficient, and if it exceeds 210 ° C., the contained solvent tends to volatilize and bubbles may be generated, which is not preferable. .
(溶媒除去工程)
 上記溶媒除去工程は、上記塗布工程で得られた溶媒含有塗膜から溶媒を除去して溶媒を含有しない塗膜とする工程である。
 上記溶媒除去工程における溶媒の除去温度、すなわち乾燥温度は、0~350℃が好ましく、10~270℃がさらに好ましく、20~240℃が最も好ましい。
 この溶媒除去時の温度(乾燥温度)が0℃未満では、溶媒の除去に時間がかかり過ぎ、350℃を超えると着色や分解等が発生する可能性があるので好ましくない。
 また、コーティング用組成物を用いて、塗膜を形成した後に、40~350℃で、熱処理することも好ましい。熱処理温度は、70~270℃がより好ましく、100~250℃が最も好ましい。熱処理を行うことにより塗膜がより緻密になり、基材との密着性を高めることができる。これにより、耐久性が向上し、基材をより効果的に保護できる。
(Solvent removal step)
The said solvent removal process is a process of removing a solvent from the solvent containing coating film obtained at the said application | coating process, and setting it as the coating film which does not contain a solvent.
The solvent removal temperature in the solvent removal step, that is, the drying temperature is preferably 0 to 350 ° C, more preferably 10 to 270 ° C, and most preferably 20 to 240 ° C.
If the temperature at the time of solvent removal (drying temperature) is less than 0 ° C, it takes too much time to remove the solvent, and if it exceeds 350 ° C, coloring or decomposition may occur, which is not preferable.
It is also preferable to heat-treat at 40 to 350 ° C. after forming a coating film using the coating composition. The heat treatment temperature is more preferably 70 to 270 ° C, and most preferably 100 to 250 ° C. By performing the heat treatment, the coating film becomes denser and the adhesion to the substrate can be enhanced. Thereby, durability improves and it can protect a base material more effectively.
 このように、本発明のコーティング用組成物を用いた含フッ素共重合体の塗膜の形成方法では、コーティング用組成物の塗布や乾燥を高温で行う必要がない。そのため、プラスチックや紙、布のような耐熱性の低い材料に対しても、基材の分解または変形を起こさずに塗膜を形成できる。 Thus, in the method for forming a coating film of a fluorinated copolymer using the coating composition of the present invention, it is not necessary to apply and dry the coating composition at a high temperature. Therefore, a coating film can be formed even on materials having low heat resistance such as plastic, paper, and cloth without causing decomposition or deformation of the substrate.
 なお、含フッ素共重合体によってコートされる基材の材質や形状は特に限定されず、鉄、ステンレス鋼、アルミニウム、チタン、銅、銀等の金属類、窓ガラス、鏡、合成石英等のガラス、シリコン、ポリカーボネート(PC)、ポリエチレンテレフタレート(PET)、ポリメチルメタアクリレート(PMMA)、ガラス繊維強化プラスチック(FRP)、ポリ塩化ビニル(PVC)、フッ素樹脂などの有機材料、石材、木材、セラミックス、布、紙などに塗布できる。 The material and shape of the substrate coated with the fluorine-containing copolymer are not particularly limited, and metals such as iron, stainless steel, aluminum, titanium, copper, and silver, glass such as window glass, mirror, and synthetic quartz are used. , Silicon, polycarbonate (PC), polyethylene terephthalate (PET), polymethyl methacrylate (PMMA), glass fiber reinforced plastic (FRP), polyvinyl chloride (PVC), organic materials such as fluororesin, stone, wood, ceramics, Can be applied to cloth, paper, etc.
 ここで、本発明のコーティング用組成物を用いた含フッ素共重合体の塗膜の形成方法においては、基材と塗膜の密着性の向上などを目的として、基材に前処理を行ってもよい。例えば、基材にシランカップリング剤やポリエチレンイミンなどを塗布したり、サンドブラスト等により表面を物理的に処理したり、コロナ放電等による処理などを行うことができる。 Here, in the method for forming a coating film of a fluorinated copolymer using the coating composition of the present invention, the base material is pretreated for the purpose of improving the adhesion between the base material and the coating film. Also good. For example, a silane coupling agent, polyethyleneimine, or the like can be applied to the substrate, the surface can be physically treated by sandblasting, or treatment by corona discharge or the like can be performed.
 上記本発明の製造方法により得られるフッ素樹脂オルガノゾルを主成分とするコーティング用組成物を、このようにして基材に塗工することによって、上記含フッ素共重合体の塗膜およびこの塗膜によってコートされた物品を提供できる。 By coating the coating composition mainly composed of the fluororesin organosol obtained by the production method of the present invention on the substrate in this way, the coating film of the fluorinated copolymer and the coating film Coated articles can be provided.
 また、上記塗膜の形成方法により得られる上記含フッ素共重合体の塗膜は、基材と分離することにより、フィルム状の成型体として使用することもできる。このようにして得られる上記含フッ素共重合体、すなわちETFEの膜は一般的な溶融成形で得られるETFEフィルムに比べて、薄くかつ均一である。 Also, the coating film of the fluorine-containing copolymer obtained by the method for forming a coating film can be used as a film-like molded body by separating from the base material. The thus obtained fluorine-containing copolymer, that is, the ETFE film, is thinner and more uniform than an ETFE film obtained by general melt molding.
 得られる塗膜、もしくは、フィルム状の成型体の厚みは目的に応じて自由に選択できる。濃度の高い溶液もしくは分散液を用いれば、厚みのある膜が得られ、濃度の低い溶液もしくは分散液を用いれば、薄い塗膜を得ることができる。また、塗布工程を複数回繰り返して行うことで、より厚みのある膜を得ることもできる。 The thickness of the obtained coating film or film-like molded product can be freely selected according to the purpose. If a high concentration solution or dispersion is used, a thick film can be obtained, and if a low concentration solution or dispersion is used, a thin coating can be obtained. Moreover, a thicker film can be obtained by repeating the coating process a plurality of times.
 上記のような特徴を有することから、本発明のフッ素樹脂オルガノゾルを主成分とするコーティング用組成物の用途としては、光ファイバークラッド材、レンズ、太陽電池用物品、表示パネル・ディスプレイ用物品、光ディスク、半導体素子、ハイブリッドIC、液晶セル、プリント基板、ICカード、感光ドラム、フィルムコンデンサ、ガラス窓、樹脂窓、各種フィルム、各種センサー、アンテナ、被覆電線、モータ、発電装置などの光学分野、電気、電子分野における保護コート剤、撥水コート剤、低反射コート剤、電気絶縁性の被覆材、電荷保持層、電車、バス、トラック、自動車、船舶、航空機等の輸送機器用物品、外壁、屋根材、シーラント部分、橋やトンネル等の建築用物品、注射器、ピペット、体温計、ビーカー類、シャーレ、メスシリンダーなどの医療分野、化学分野における物品、その他ソルダーマスク、ソルダーレジスト、ゴム、プラスチックの保護、耐候、防汚コート剤、繊維、布帛の保護コート剤、シーラントの防汚コート剤、IC封止剤として、防錆塗料、樹脂付着防止剤、インキ付着防止剤、分離膜用物品、ラミネート鋼板用プライマー、各種接着剤、結着剤などが挙げられる。 Since it has the above-mentioned features, the application of the coating composition mainly composed of the fluororesin organosol of the present invention includes an optical fiber clad material, a lens, an article for solar cell, an article for display panel / display, an optical disk, Semiconductors, hybrid ICs, liquid crystal cells, printed circuit boards, IC cards, photosensitive drums, film capacitors, glass windows, resin windows, various films, various sensors, antennas, covered wires, motors, power generation devices, etc. Protective coating agent in the field, water repellent coating agent, low reflection coating agent, electrically insulating coating material, charge retention layer, trains, buses, trucks, automobiles, ships, aircraft and other transportation equipment articles, outer walls, roofing materials, Sealant parts, building articles such as bridges and tunnels, syringes, pipettes, thermometers, beakers, shears , Medical cylinders, chemicals, other solder masks, solder resists, rubber, plastic protection, weather resistance, antifouling coating, fiber, fabric protective coating, sealant antifouling coating, IC sealing Examples of the stopper include rust preventive paints, resin adhesion inhibitors, ink adhesion inhibitors, articles for separation membranes, primers for laminated steel sheets, various adhesives, and binders.
 上記太陽電池用物品としては、ガラスまたは樹脂で構成された保護カバー材、透明導電部材、バックシートなどの保護コート剤、ガスバリア層、薄板ガラスのサポート樹脂層、接着層などが挙げられる。 Examples of the solar cell article include a protective cover material made of glass or resin, a transparent conductive member, a protective coating agent such as a backsheet, a gas barrier layer, a thin glass support resin layer, and an adhesive layer.
 上記表示パネル・ディスプレイ用物品としては、液晶表示パネル、プラズマディスプレイパネル、エレクトロクロミックディスプレイパネル、エレクトロルミネッセンスディスプレイパネル、タッチパネルに用いられる透明部材(ガラス基板および樹脂基板)の保護コート剤、防汚コート剤、低反射コート剤、薄板ガラスのサポート樹脂などが挙げられる。 Examples of the display panel / display article include liquid crystal display panels, plasma display panels, electrochromic display panels, electroluminescent display panels, protective coating agents for transparent members (glass substrates and resin substrates) used in touch panels, and antifouling coating agents. , Low reflection coating agents, thin glass support resins, and the like.
 上記輸送機器用物品としては、輸送機器に装着された表示機器表面材などの外装部材、計器盤表面材などの内装部材、ボディ、鏡などの保護コート剤、防汚コート剤、低反射コート剤、安全ガラス用積層材などが挙げられる。
 上記分離膜用物品としては、逆浸透膜、ナノ濾過膜などの機能層、二酸化炭素、水素等を分離するガス分離膜の機能層、膜モジュール製造における接着剤、防汚コート剤などが挙げられる。
As the above-mentioned articles for transport equipment, exterior members such as display device surface materials mounted on transport equipment, interior members such as instrument panel surface materials, protective coating agents such as bodies and mirrors, antifouling coating agents, and low reflection coating agents And laminated materials for safety glass.
Examples of the separation membrane article include functional layers such as reverse osmosis membranes and nanofiltration membranes, functional layers of gas separation membranes that separate carbon dioxide, hydrogen, etc., adhesives in membrane module production, antifouling coating agents, and the like. .
 また、本発明のコーティング用組成物は、半導体素子や集積回路装置における層間絶縁膜や保護膜を作製するための材料組成物として有利に使用できる。このような用途に本発明のフッ素樹脂オルガノゾルを主成分とするコーティング用組成物を用いれば、含フッ素共重合体のもつ低吸水性、低誘電率、高耐熱性といった特性を生かした応答速度が速く誤動作の少ない半導体素子集積回路装置を得ることができる。 Further, the coating composition of the present invention can be advantageously used as a material composition for producing an interlayer insulating film and a protective film in semiconductor elements and integrated circuit devices. If the coating composition mainly composed of the fluororesin organosol of the present invention is used for such applications, the response speed utilizing the characteristics such as low water absorption, low dielectric constant and high heat resistance of the fluorine-containing copolymer can be obtained. A semiconductor element integrated circuit device can be obtained quickly and with few malfunctions.
 さらに本発明のコーティング用組成物は、集光型太陽熱発電に用いられる集光用ミラーの保護コート剤、防汚コート剤、集光ミラーの裏打ち樹脂など封止部分の保護コート剤などに有利に使用できる。このような用途に本発明のフッ素樹脂オルガノゾルを主成分とするコーティング用組成物を用いれば、フッ素樹脂のもつ高耐熱性、低吸水性といった特性により、高耐久性でメンテナンスを必要としない発電システムを得ることができる。
 また、本発明のフッ素樹脂オルガノゾルは、コーティング用途以外にも、接着剤、結着剤、トナー用添加剤等の用途に利用できる。
Further, the coating composition of the present invention is advantageous for a protective coating agent for a condensing mirror used in concentrating solar power generation, an antifouling coating agent, a protective coating agent for a sealing part such as a backing resin of the condensing mirror, and the like. Can be used. If the coating composition mainly composed of the fluororesin organosol of the present invention is used for such applications, the power generation system that is highly durable and does not require maintenance due to the high heat resistance and low water absorption characteristics of the fluororesin. Can be obtained.
Moreover, the fluororesin organosol of the present invention can be used for applications such as adhesives, binders, and toner additives in addition to coating applications.
 以下に、本発明の実施例を説明するが、本発明はこれらに限定されるものではない。
(溶解手順)
 以下に示す実施例および比較例は、特に記載がない限り、次の方法で行われたものである。
 肉厚4mm、外径30mmの硼珪酸ガラス製耐圧反応容器に、含フッ素共重合体、溶媒および撹拌子を入れた。含フッ素共重合体と溶媒の相対的な量は、溶媒量に対する含フッ素共重合体の量として5~10質量%となるようにした。
 反応容器は、よく撹拌され温度制御されたオイルバスを用いて加熱された。
 含フッ素共重合体が溶解したかどうかは、目視で観察して決定した。試験管の内容物が透明で均一な溶液となっていれば溶解状態と判定した。
Examples of the present invention will be described below, but the present invention is not limited thereto.
(Dissolution procedure)
Examples and Comparative Examples shown below were carried out by the following methods unless otherwise specified.
A fluorine-containing copolymer, a solvent and a stirrer were placed in a pressure resistant reaction vessel made of borosilicate glass having a wall thickness of 4 mm and an outer diameter of 30 mm. The relative amount of the fluorinated copolymer and the solvent was set to 5 to 10% by mass as the amount of the fluorinated copolymer relative to the amount of the solvent.
The reaction vessel was heated using a well stirred and temperature controlled oil bath.
Whether or not the fluorine-containing copolymer was dissolved was determined by visual observation. If the content of the test tube was a transparent and uniform solution, it was determined as a dissolved state.
(微粒子分散液、塗膜評価方法)
 実施例で得られた微粒子分散液、および塗膜に対する評価を以下の項目について以下の方法で行った。
(1)個数平均粒子径
 分散液中のETFE微粒子の個数平均粒子径は、粒径分布測定装置(Microtrac社製Nanotrac)を用いて、25℃の温度条件下、動的光散乱法にて測定した。また、透過型電子顕微鏡(TEM)(日本電子社製JEM-1230)により、ETFE微粒子の1次粒子径を観察し、上記動的光散乱法で得られた結果が確かなものであることを確認した。
(Fine particle dispersion, coating film evaluation method)
The fine particle dispersions obtained in the examples and the coating film were evaluated for the following items by the following method.
(1) Number average particle diameter The number average particle diameter of the ETFE fine particles in the dispersion is measured by a dynamic light scattering method using a particle size distribution measuring device (Nanotrac manufactured by Microtrac) under a temperature condition of 25 ° C. did. In addition, the primary particle diameter of the ETFE fine particles was observed with a transmission electron microscope (TEM) (JEM-1230 manufactured by JEOL Ltd.), and the results obtained by the dynamic light scattering method were confirmed. confirmed.
(2)膜厚
 ポッティングおよびバーコーターで得られた塗膜については、触針式表面形状測定器(Sloan社製、DEKTAK 3ST)にて、前記以外の方法で得られた塗膜については、非接触光学式薄膜測定装置(フィルメトリクス社製、Filmetrics F-20)にて膜厚を測定した。
(2) Film thickness About the coating film obtained by potting and bar coater, the coating film obtained by a method other than the above using a stylus type surface shape measuring instrument (Sloan, DEKTAK 3ST) The film thickness was measured with a contact optical thin film measuring apparatus (Filmtrics F-20, manufactured by Filmetrics).
(3)密着性
 密着性の試験は、JIS-K-5600(1999年)に準拠して行われた。すなわち、基材上の含フッ素共重合体薄膜にカッターナイフを用いて2mm間隔の直行する11本の切傷を付け、100個の碁盤目を作り、この碁盤目上にセロファン粘着テープを強く圧着し、このテープの端を持ち、瞬間的に引き剥がし、表皮表面上に剥離せず残存している薄膜状態を観察した。5回の剥離試験の後の剥離の状態により評価した。91マス以上が接着していたものを○(優)、90~51マスが接着していたものを△(普通)、50~0マスが接着していたものを×(不良)とする。
(3) Adhesion The adhesion test was performed in accordance with JIS-K-5600 (1999). That is, 11 straight cuts with a 2 mm interval were made on the fluorine-containing copolymer thin film on the substrate using a cutter knife to make 100 grids, and cellophane adhesive tape was strongly pressure-bonded on the grids. The end of this tape was held and peeled off instantaneously, and the state of the thin film remaining without being peeled on the surface of the skin was observed. Evaluation was made based on the state of peeling after five peeling tests. The case where 91 squares or more are adhered is indicated by ○ (excellent), the case where 90-51 squares are adhered is indicated by △ (normal), and the case where 50-0 squares are adhered is indicated by × (defective).
[実施例1]
 30mLの硼珪酸ガラス製耐圧反応容器に、含フッ素共重合体として、ETFE(構成単量体に基づく繰り返し単位のモル比:テトラフルオロエチレンに基づく繰り返し単位/エチレンに基づく繰り返し単位/3,3,4,4,4-ペンタフルオロ-1-ブテンに基づく繰り返し単位/無水イタコン酸に基づく繰り返し単位=57.5/39.9/2.3/0.3、融点:240℃、以下、「ETFE1」という。)の0.80g、ジイソプロピルケトン(上記式(1)で算出されるR(以下、単に「R」と表す。)=0)の15.20gを入れ、撹拌しながら185℃に加熱したところ、均一で透明な溶液となった。
[Example 1]
In a 30 mL borosilicate glass pressure-resistant reaction vessel, as a fluorine-containing copolymer, ETFE (molar ratio of repeating units based on constituent monomers: repeating units based on tetrafluoroethylene / repeating units based on ethylene / 3, 3, 3, Repeating unit based on 4,4,4-pentafluoro-1-butene / repeating unit based on itaconic anhydride = 57.5 / 39.9 / 2.3 / 0.3, melting point: 240 ° C., hereinafter “ETFE1 ) And 0.85 g of diisopropyl ketone (R calculated by the above formula (1) (hereinafter simply referred to as “R”) = 0) and heated to 185 ° C. with stirring. As a result, a uniform and transparent solution was obtained.
 該試験管を徐々に室温まで冷却したところ、均一な含フッ素共重合体のゲル状物(ETFE1の濃度5質量%)が得られた。このゲル状物を、プライミクス社製、TKフィルミックス40-40型を用いて、30m/秒で2分間撹拌し、均一な分散液(本発明のフッ素樹脂オルガノゾル)を得た。含フッ素共重合体の微粒子の平均粒子径は、25℃において、動的光散乱法で測定した個数平均粒子径として58nmであった。 When the test tube was gradually cooled to room temperature, a uniform fluorine-containing copolymer gel (the concentration of ETFE 1 was 5% by mass) was obtained. This gel-like product was stirred for 2 minutes at 30 m / sec using a TK film mix type 40-40 manufactured by Primics to obtain a uniform dispersion (fluororesin organosol of the present invention). The average particle size of the fine particles of the fluorinated copolymer was 58 nm as the number average particle size measured by a dynamic light scattering method at 25 ° C.
 また、この分散液を0.05質量%に希釈して、透過型電子顕微鏡で観察したところ、1次粒子径は、40~50nmであることが確認できた。図1に透過型電子顕微鏡(TEM)写真(10万倍)を示す。
 TEM写真撮影においては、試料作製時に分散液中の溶媒は除去されるため、得られる写真では、例えば、図1の写真に示すように含フッ素共重合体の粒子は凝集粒子を形成していると考えられる。図1の写真を観察すると、写真内に大きな1個の塊状粒子が存在し、その塊状粒子はそれぞれそれより小さな粒子の多数が集まって形成されていることが分かる。この塊状粒子がETFE1の凝集粒子を示し、その塊状粒子を構成する個々の粒子がETFE1の1次粒子である。上記観察した個数平均粒子径とは、写真の粒子をこのように識別したETFE1の1次粒子が分散液中で単独で、あるいはいくつかの一次粒子が集まって形成する2次粒子として存在している考えた場合に、全体の粒子の個数の50%にあたる粒子の粒子径をいう。
Further, when this dispersion was diluted to 0.05% by mass and observed with a transmission electron microscope, it was confirmed that the primary particle diameter was 40 to 50 nm. FIG. 1 shows a transmission electron microscope (TEM) photograph (100,000 times).
In TEM photography, since the solvent in the dispersion is removed at the time of sample preparation, in the resulting photograph, for example, the fluorine-containing copolymer particles form aggregated particles as shown in the photograph in FIG. it is conceivable that. When the photograph of FIG. 1 is observed, it can be seen that there is one large aggregate particle in the photograph, and each of the aggregate particles is formed by a collection of many smaller particles. The aggregated particles are ETFE1 aggregated particles, and the individual particles constituting the aggregated particles are primary ETFE1 particles. The observed number average particle size means that the primary particles of ETFE1 that have identified the photographic particles in this way are present alone in the dispersion or as secondary particles formed by collecting several primary particles. The particle diameter of the particles corresponding to 50% of the total number of particles.
 この分散液をガラス基板(クラウンガラス、厚さ1mm)上に室温でバーコーターにより塗布し、室温で乾燥した。180℃のホットプレート上で3分間加熱して、表面にETFE1の薄膜が形成されたガラス基板を得た。得られた薄膜の表面を光学顕微鏡(100倍)で観察したところ、均一で平滑な膜であることを確認した。図2にこのETFE1からなる薄膜表面の光学顕微鏡写真(100倍)を示す。また、触針式表面形状測定器にて膜厚を測定したところ、3μmであった。得られたETFE1膜の密着性を評価したところ、全く剥離は見られなかった。すなわち密着性の評価は、○(優)であった。 The dispersion was applied on a glass substrate (crown glass, thickness 1 mm) with a bar coater at room temperature and dried at room temperature. Heating was performed on a hot plate at 180 ° C. for 3 minutes to obtain a glass substrate having a ETFE1 thin film formed on the surface. When the surface of the obtained thin film was observed with an optical microscope (100 times), it was confirmed to be a uniform and smooth film. FIG. 2 shows an optical micrograph (100 times) of the surface of the thin film made of ETFE1. Moreover, it was 3 micrometers when the film thickness was measured with the stylus type surface shape measuring device. When the adhesion of the obtained ETFE1 film was evaluated, no peeling was observed. That is, the evaluation of adhesion was ○ (excellent).
[実施例2]
 実施例1で得られたフッ素樹脂オルガノゾルを、PET(ポリエチレンテレフタレート)フィルム(東洋紡社製コスモシャイン(登録商標)A4300;厚さ100μm)上に室温でバーコーターにより塗布し、室温で乾燥した。100℃のホットプレート上で3分加熱して、PETフィルム上にETFE1の薄膜を形成した。また、触針式表面形状測定器にて膜厚を測定したところ、3μmであった。得られたETFE1膜のPETフィルムとの密着性を評価したところ、全く剥離は見られなかった。すなわち密着性の評価は、○(優)であった。
[Example 2]
The fluororesin organosol obtained in Example 1 was coated on a PET (polyethylene terephthalate) film (Cosmo Shine (registered trademark) A4300 manufactured by Toyobo Co., Ltd .; thickness: 100 μm) with a bar coater at room temperature and dried at room temperature. It heated for 3 minutes on a 100 degreeC hotplate, and the thin film of ETFE1 was formed on PET film. Moreover, it was 3 micrometers when the film thickness was measured with the stylus type surface shape measuring device. When the adhesion of the obtained ETFE1 film to the PET film was evaluated, no peeling was observed. That is, the evaluation of adhesion was ○ (excellent).
[実施例3]
 実施例1で得られたフッ素樹脂オルガノゾルを、アルミニウム板(厚さ200μm)上に室温でバーコーターにより塗布、乾燥後、230℃のホットプレート上で3分間加熱して、アルミニウム板上にETFE1の薄膜を形成した。得られたETFE1膜とアルミニウム板との密着性を評価したところ、全く剥離は見られなかった。すなわち密着性の評価は、○(優)であった。
[Example 3]
The fluororesin organosol obtained in Example 1 was coated on an aluminum plate (thickness: 200 μm) with a bar coater at room temperature, dried, and then heated on a hot plate at 230 ° C. for 3 minutes to form ETFE1 on the aluminum plate. A thin film was formed. When the adhesion between the obtained ETFE1 film and the aluminum plate was evaluated, no peeling was observed. That is, the evaluation of adhesion was ○ (excellent).
[実施例4]
 含フッ素共重合体として、ETFE1を1.60g、ジイソプロピルケトンを14.4g用いる以外は、実施例1と同様にして、均一な含フッ素共重合体のゲル状物(ETFE1の濃度10質量%)を得た。このゲル状物に粘度調整剤として、ドデシルアミン(0.03g)を加えて、遊星ボールミル(シンキー社製、あわとり練太郎ARE-310)を用いて、2000回転/分で10分間撹拌した。得られたスラリーを、プライミクス社製、TKフィルミックス40-40型を用いて、30m/秒で2分間撹拌し、均一な分散液(本発明のフッ素樹脂オルガノゾル)を得た。この分散液を用いて実施例1と同様にして表面にETFE1の薄膜が形成されたガラス基板を得た。得られたETFE1膜を光学顕微鏡で観察したところ、均一で平滑な膜であることを確認した。また、触針式表面形状測定器にて膜厚を測定したところ、6μmであった。得られたETFE1膜の密着性を評価したところ、全く剥離は見られなかった。すなわち密着性の評価は、○(優)であった。
[Example 4]
A uniform fluorine-containing copolymer gel (concentration of ETFE1 of 10% by mass) in the same manner as in Example 1 except that 1.60 g of ETFE1 and 14.4 g of diisopropyl ketone are used as the fluorine-containing copolymer. Got. To this gel was added dodecylamine (0.03 g) as a viscosity modifier, and the mixture was stirred for 10 minutes at 2000 rpm with a planetary ball mill (Shinky Corporation, Awatori Nertaro ARE-310). The obtained slurry was stirred for 2 minutes at 30 m / sec using a TK film mix type 40-40 manufactured by Primics, to obtain a uniform dispersion (fluororesin organosol of the present invention). Using this dispersion, a glass substrate having a ETFE1 thin film formed on the surface thereof was obtained in the same manner as in Example 1. When the obtained ETFE1 film was observed with an optical microscope, it was confirmed to be a uniform and smooth film. Moreover, it was 6 micrometers when the film thickness was measured with the stylus type surface shape measuring device. When the adhesion of the obtained ETFE1 film was evaluated, no peeling was observed. That is, the evaluation of adhesion was ○ (excellent).
[実施例5]
 実施例1と同様にして、ETFE1の均一なゲル状物(ETFE1の濃度5質量%)を得た。このゲル状物を、KINEMATICA社製ポリトロンPT10-35型を用いて、22000回転/分で5分間撹拌し、均一な分散液(本発明のフッ素樹脂オルガノゾル)を得た。
 この分散液を実施例1と同様にして表面にETFE1の薄膜が形成されたガラス基板を得た。得られたETFE1膜の表面を光学顕微鏡で観察したところ、均一で平滑な膜であることを確認した。
[Example 5]
In the same manner as in Example 1, a uniform gel-like product of ETFE 1 (the concentration of ETFE 1 was 5% by mass) was obtained. This gel-like product was stirred for 5 minutes at 22,000 rpm using a Polytron PT10-35 type manufactured by KINEMATICA to obtain a uniform dispersion (fluororesin organosol of the present invention).
A glass substrate having a ETFE 1 thin film formed on the surface of the dispersion was obtained in the same manner as in Example 1. When the surface of the obtained ETFE1 film was observed with an optical microscope, it was confirmed that the film was uniform and smooth.
(耐薬品性保護コーティング)
[実施例6]
 実施例3で得られたETFE1が塗布されたアルミ基板(保護コート付きアルミ基板)を1N塩酸に浸し、変化を観察した。結果を、保護コートなしのアルミ基板を同様に処理した結果とともに表1に示す。
(Chemical resistant protective coating)
[Example 6]
The aluminum substrate coated with ETFE1 obtained in Example 3 (aluminum substrate with protective coating) was immersed in 1N hydrochloric acid, and the change was observed. The results are shown in Table 1 together with the results obtained by similarly treating an aluminum substrate without a protective coat.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表1に示すように、本発明のフッ素樹脂オルガノゾルをコーティングすることにより、アルミ板の耐薬品性を著しく向上させることができた。 As shown in Table 1, the chemical resistance of the aluminum plate could be remarkably improved by coating the fluororesin organosol of the present invention.
 本発明のフッ素樹脂オルガノゾルは、コーティング用組成物として用いた場合に、塗布によりETFEの塗膜形成が容易であり、耐熱性、難燃性、耐薬品性、耐候性、低摩擦性、低誘電特性、透明性等を必要とする表面処理等の用途に適する。
 なお、2010年9月3日に出願された日本特許出願2010-198288号の明細書、特許請求の範囲、及び要約書の全内容をここに引用し、本発明の明細書の開示として、取り入れるものである。
When the fluororesin organosol of the present invention is used as a coating composition, it is easy to form an ETFE coating film by coating, and has heat resistance, flame resistance, chemical resistance, weather resistance, low friction, low dielectric constant. Suitable for applications such as surface treatment that require properties and transparency.
The entire contents of the specification, claims, and abstract of Japanese Patent Application No. 2010-198288 filed on September 3, 2010 are incorporated herein as the disclosure of the specification of the present invention. Is.

Claims (13)

  1.  エチレンに基づく繰り返し単位とテトラフルオロエチレンに基づく繰り返し単位とを有する含フッ素共重合体を分散質とし、前記含フッ素共重合体の融点以下の温度で該含フッ素共重合体を溶解しうる溶媒を分散媒とするフッ素樹脂オルガノゾルの製造方法であって、
     前記含フッ素共重合体を前記溶媒に溶解して溶液とする溶解工程と、
     前記溶液において前記溶媒中に前記含フッ素共重合体を微粒子として析出させる析出工程と、
     前記含フッ素共重合体を微粒子として含有する前記溶媒と含フッ素共重合体との混合物に高剪断力を加えて前記溶媒に該含フッ素共重合体の微粒子を均一に分散させる解砕・分散工程と
     を有することを特徴とするフッ素樹脂オルガノゾルの製造方法。
    A fluorine-containing copolymer having a repeating unit based on ethylene and a repeating unit based on tetrafluoroethylene is used as a dispersoid, and a solvent capable of dissolving the fluorine-containing copolymer at a temperature below the melting point of the fluorine-containing copolymer. A method for producing a fluororesin organosol as a dispersion medium,
    A dissolution step of dissolving the fluorine-containing copolymer in the solvent to form a solution;
    A precipitation step of precipitating the fluorine-containing copolymer as fine particles in the solvent in the solution;
    A crushing / dispersing step of uniformly dispersing fine particles of the fluorinated copolymer in the solvent by applying a high shear force to the mixture of the solvent and the fluorinated copolymer containing the fluorinated copolymer as fine particles. A process for producing a fluororesin organosol, comprising:
  2.  前記析出工程と解砕・分散工程を同時に行うことを特徴とする請求項1に記載のフッ素樹脂オルガノゾルの製造方法。 The method for producing a fluororesin organosol according to claim 1, wherein the precipitation step and the crushing / dispersing step are performed simultaneously.
  3.  前記高剪断力を高速回転、高圧噴射、高速振動、超音波処理および高圧濾過よりなる群から選ばれる少なくとも1種の方法で加えることを特徴とする請求項1または2に記載のフッ素樹脂オルガノゾルの製造方法。 The fluororesin organosol according to claim 1 or 2, wherein the high shear force is applied by at least one method selected from the group consisting of high-speed rotation, high-pressure jetting, high-speed vibration, ultrasonic treatment, and high-pressure filtration. Production method.
  4.  前記溶解を40℃以上前記含フッ素共重合体の融点以下の温度で行い、前記析出を冷却により行う請求項1~3のいずれか1項に記載のフッ素樹脂オルガノゾルの製造方法。 The method for producing a fluororesin organosol according to any one of claims 1 to 3, wherein the dissolution is performed at a temperature of 40 ° C or higher and below the melting point of the fluorine-containing copolymer, and the precipitation is performed by cooling.
  5.  前記溶解工程における含フッ素共重合体と溶媒の配合割合が、含フッ素共重合体:溶媒で示される質量比で、1.0:99.0~70.0:30.0である請求項1~4のいずれか1項に記載のフッ素樹脂オルガノゾルの製造方法。 2. The blending ratio of the fluorinated copolymer and the solvent in the dissolving step is 1.0: 99.0 to 70.0: 30.0 in a mass ratio represented by the fluorinated copolymer: solvent. 5. The method for producing a fluororesin organosol according to any one of items 1 to 4.
  6.  前記溶媒における、下記式(1)で示されるハンセン溶解度パラメータに基づく前記含フッ素共重合体に対する溶解指標(R)が25未満である請求項1~5のいずれか1項に記載のフッ素樹脂オルガノゾルの製造方法。
    R=4×(δd-15.7)+(δp-5.7)+(δh-4.3)   …(1)
    (式(1)中、δd、δpおよびδhは、ハンセン溶解度パラメータにおける、分散項、極性項および水素結合項をそれぞれ示す。)
    6. The fluororesin organosol according to claim 1, wherein a solubility index (R) for the fluorine-containing copolymer based on a Hansen solubility parameter represented by the following formula (1) in the solvent is less than 25. Manufacturing method.
    R = 4 × (δd−15.7) 2 + (δp−5.7) 2 + (δh−4.3) 2 (1)
    (In the formula (1), δd, δp, and δh respectively represent a dispersion term, a polar term, and a hydrogen bond term in the Hansen solubility parameter.)
  7.  前記含フッ素共重合体の微粒子における平均粒子径が、25℃において、動的光散乱法で測定した個数平均粒子径として0.005~5μmの範囲にある、請求項1~6のいずれか1項に記載のフッ素樹脂オルガノゾルの製造方法。 The average particle diameter of the fluorine-containing copolymer fine particles is in a range of 0.005 to 5 μm as a number average particle diameter measured by a dynamic light scattering method at 25 ° C. The manufacturing method of the fluororesin organosol as described in a term.
  8.  前記高剪断力を粘度調整剤の存在下で加えることを特徴とする請求項1~7のいずれか1項に記載のフッ素樹脂オルガノゾルの製造方法。 The method for producing a fluororesin organosol according to any one of claims 1 to 7, wherein the high shear force is applied in the presence of a viscosity modifier.
  9.  前記粘度調整剤が、ハロゲン基で置換されていてもよく結合末端以外の任意の-CH-が酸素原子に置換されていてもよい炭素数1~20のアルキル基と、アミノ基、アミド基、スルホンアミド基、水酸基およびメルカプト基からなる群から選ばれる少なくとも1種の官能基と、を有する化合物である請求項1~8のいずれか1項に記載のフッ素樹脂オルガノゾルの製造方法。 The viscosity modifier may be substituted with a halogen group, and an arbitrary —CH 2 — other than the bond terminal may be substituted with an oxygen atom, an amino group, an amide group The method for producing a fluororesin organosol according to any one of claims 1 to 8, which is a compound having at least one functional group selected from the group consisting of a sulfonamide group, a hydroxyl group and a mercapto group.
  10.  前記含フッ素共重合体を構成するテトラフルオロエチレンおよびエチレン以外の共単量体に基づく繰り返し単位の割合が、0.1~50モル%である、請求項1~9のいずれか1項に記載のフッ素樹脂オルガノゾルの製造方法。 The proportion of repeating units based on comonomer other than tetrafluoroethylene and ethylene constituting the fluorine-containing copolymer is 0.1 to 50 mol%, according to any one of claims 1 to 9. Of manufacturing fluororesin organosols.
  11.  前記含フッ素共重合体が、カルボン酸基、酸無水物基およびカルボン酸ハライド基からなる群から選ばれる少なくとも1種を有する含フッ素共重合体である、請求項1~10のいずれか1項に記載のフッ素樹脂オルガノゾルの製造方法。 11. The fluorine-containing copolymer according to claim 1, wherein the fluorine-containing copolymer is at least one selected from the group consisting of a carboxylic acid group, an acid anhydride group, and a carboxylic acid halide group. A method for producing a fluororesin organosol as described in 1.
  12.  請求項1~11のいずれか1項に記載の製造方法により得られるフッ素樹脂オルガノゾル。 A fluororesin organosol obtained by the production method according to any one of claims 1 to 11.
  13.  請求項1~11のいずれか1項に記載の製造方法により得られるフッ素樹脂オルガノゾルを主成分とするコーティング用組成物。 A coating composition comprising as a main component a fluororesin organosol obtained by the production method according to any one of claims 1 to 11.
PCT/JP2011/069955 2010-09-03 2011-09-01 Method for producing fluororesin organosol, fluororesin organosol, and coating composition WO2012029929A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-198288 2010-09-03
JP2010198288A JP2013234209A (en) 2010-09-03 2010-09-03 Method for producing fluororesin organosol, fluororesin organosol, and coating composition

Publications (1)

Publication Number Publication Date
WO2012029929A1 true WO2012029929A1 (en) 2012-03-08

Family

ID=45773004

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/069955 WO2012029929A1 (en) 2010-09-03 2011-09-01 Method for producing fluororesin organosol, fluororesin organosol, and coating composition

Country Status (3)

Country Link
JP (1) JP2013234209A (en)
TW (1) TW201215634A (en)
WO (1) WO2012029929A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012141155A1 (en) * 2011-04-13 2012-10-18 旭硝子株式会社 Reflecting mirror for solar heat collection and method for manufacturing same
CN108350123A (en) * 2015-11-13 2018-07-31 旭硝子株式会社 Copolymer and composition containing the copolymer
WO2019163525A1 (en) * 2018-02-23 2019-08-29 ダイキン工業株式会社 Non-aqueous dispersion
CN116217762A (en) * 2018-10-09 2023-06-06 东曹株式会社 Fluororesin, process for producing the same, and process for producing fluororesin particles

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7316022B2 (en) 2016-05-13 2023-07-27 住友化学株式会社 RESIST COMPOSITION AND RESIST PATTERN MANUFACTURING METHOD
TWI738775B (en) 2016-05-13 2021-09-11 日商住友化學股份有限公司 Photoresist composition and method for producing photoresist pattern
JP6969889B2 (en) 2016-05-13 2021-11-24 住友化学株式会社 Method for manufacturing resist composition and resist pattern
JP6907838B2 (en) * 2017-09-07 2021-07-21 Agc株式会社 Rubber molded body with coating and its manufacturing method
JP7225655B2 (en) * 2018-10-09 2023-02-21 東ソー株式会社 Method for producing fluororesin particles containing fluorine-containing alicyclic structure

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5130252A (en) * 1974-04-30 1976-03-15 Ugine Kuhlmann ORUGANOZORUSOSEIBUTSU
JP2006257292A (en) * 2005-03-17 2006-09-28 Du Pont Mitsui Fluorochem Co Ltd Method for producing fluororesin organosol, and fluororesin organosol
WO2010044421A1 (en) * 2008-10-16 2010-04-22 旭硝子株式会社 Fluorine-containing copolymer composition and process for production thereof

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5130252A (en) * 1974-04-30 1976-03-15 Ugine Kuhlmann ORUGANOZORUSOSEIBUTSU
JP2006257292A (en) * 2005-03-17 2006-09-28 Du Pont Mitsui Fluorochem Co Ltd Method for producing fluororesin organosol, and fluororesin organosol
WO2010044421A1 (en) * 2008-10-16 2010-04-22 旭硝子株式会社 Fluorine-containing copolymer composition and process for production thereof

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012141155A1 (en) * 2011-04-13 2012-10-18 旭硝子株式会社 Reflecting mirror for solar heat collection and method for manufacturing same
CN108350123A (en) * 2015-11-13 2018-07-31 旭硝子株式会社 Copolymer and composition containing the copolymer
CN108350123B (en) * 2015-11-13 2020-12-08 Agc株式会社 Copolymer and composition containing the same
WO2019163525A1 (en) * 2018-02-23 2019-08-29 ダイキン工業株式会社 Non-aqueous dispersion
US11787910B2 (en) 2018-02-23 2023-10-17 Daikin Industries, Ltd. Non-aqueous dispersion
CN116217762A (en) * 2018-10-09 2023-06-06 东曹株式会社 Fluororesin, process for producing the same, and process for producing fluororesin particles

Also Published As

Publication number Publication date
JP2013234209A (en) 2013-11-21
TW201215634A (en) 2012-04-16

Similar Documents

Publication Publication Date Title
WO2012029929A1 (en) Method for producing fluororesin organosol, fluororesin organosol, and coating composition
WO2011129032A1 (en) Coating composition and production method for same, and formation method for coating film using same
JP5176375B2 (en) Method for producing aqueous dispersion and aqueous dispersion
JPWO2011129407A1 (en) Method for producing fluorine-containing copolymer composition, coating composition, article having coating film, and molded article
JP6274200B2 (en) Polyphenylene sulfide fine particles
JP6283441B2 (en) Fluororesin-containing thermosetting resin composition and cured product thereof
WO2002055598A1 (en) Aqueous polyolefin resin dispersion
KR101734599B1 (en) Polyolefin-based composite resin spherical particles, coating composition and coated object
JP4033732B2 (en) Aqueous dispersions and adhesives
JP2017066327A (en) Non-aqueous dispersion of polytetrafluoroethylene micropowder
WO2013024886A1 (en) Fluorocopolymer composition, coating composition, article having film, and molded article
WO2014192607A1 (en) Ethylene-vinyl alcohol copolymer microparticles, dispersion liquid and resin composition including same, and method for producing said microparticles
WO1999057209A1 (en) Thermosetting powder coating composition
CN105837839B (en) Polytetrafluoroethylene oil-based solvent dispersion, polytetrafluoroethylene-containing epoxy resin composition, and cured product thereof
WO1999057208A1 (en) Thermosetting powder coating composition
TW202108688A (en) Non-aqueous dispersion of polytetrafluoroethylene
JP2013103172A (en) Coating method of metal plate and coated metal plate
WO1998048949A1 (en) Method for surface-coating synthetic resins
JP4270790B2 (en) Water-based adhesive for paper and laminate
JP2006002034A (en) Fluororesin powder coating composition
KR100972721B1 (en) Method for producing aqueous dispersion, aqueous dispersion, fluororesin coating composition and coated article
Li et al. Emulsion homopolymerization of chlorotrifluoroethylene toward new waterborne fluorocarbon coatings
JP2022125043A (en) Aqueous coating composition and coated article
TWI704163B (en) Synthesis method of graphene resin polymer and graphene resin coating
WO2022234365A1 (en) Fluoropolymer compositions comprising amorphous fluoropolymer and crystalline fluoropolymer suitable for copper and electronic telecommunications articles

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11821944

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11821944

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP