WO2012029417A1 - 超音波診断装置及び評価算出方法 - Google Patents

超音波診断装置及び評価算出方法 Download PDF

Info

Publication number
WO2012029417A1
WO2012029417A1 PCT/JP2011/066176 JP2011066176W WO2012029417A1 WO 2012029417 A1 WO2012029417 A1 WO 2012029417A1 JP 2011066176 W JP2011066176 W JP 2011066176W WO 2012029417 A1 WO2012029417 A1 WO 2012029417A1
Authority
WO
WIPO (PCT)
Prior art keywords
elastic
volume
quality
data
frame data
Prior art date
Application number
PCT/JP2011/066176
Other languages
English (en)
French (fr)
Inventor
康治 脇
Original Assignee
株式会社 日立メディコ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社 日立メディコ filed Critical 株式会社 日立メディコ
Priority to JP2012531736A priority Critical patent/JPWO2012029417A1/ja
Priority to US13/817,742 priority patent/US20130158900A1/en
Priority to EP11821435.2A priority patent/EP2612599A1/en
Priority to CN2011800416149A priority patent/CN103079473A/zh
Publication of WO2012029417A1 publication Critical patent/WO2012029417A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F17/00Digital computing or data processing equipment or methods, specially adapted for specific functions
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/13Tomography
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/46Ultrasonic, sonic or infrasonic diagnostic devices with special arrangements for interfacing with the operator or the patient
    • A61B8/461Displaying means of special interest
    • A61B8/466Displaying means of special interest adapted to display 3D data
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/48Diagnostic techniques
    • A61B8/485Diagnostic techniques involving measuring strain or elastic properties
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/52Devices using data or image processing specially adapted for diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/5215Devices using data or image processing specially adapted for diagnosis using ultrasonic, sonic or infrasonic waves involving processing of medical diagnostic data
    • A61B8/5223Devices using data or image processing specially adapted for diagnosis using ultrasonic, sonic or infrasonic waves involving processing of medical diagnostic data for extracting a diagnostic or physiological parameter from medical diagnostic data
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/04Analysing solids
    • G01N29/06Visualisation of the interior, e.g. acoustic microscopy
    • G01N29/0654Imaging
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S15/00Systems using the reflection or reradiation of acoustic waves, e.g. sonar systems
    • G01S15/88Sonar systems specially adapted for specific applications
    • G01S15/89Sonar systems specially adapted for specific applications for mapping or imaging
    • G01S15/8906Short-range imaging systems; Acoustic microscope systems using pulse-echo techniques
    • G01S15/8993Three dimensional imaging systems
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/52Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S15/00
    • G01S7/52017Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S15/00 particularly adapted to short-range imaging
    • G01S7/52023Details of receivers
    • G01S7/52036Details of receivers using analysis of echo signal for target characterisation
    • G01S7/52042Details of receivers using analysis of echo signal for target characterisation determining elastic properties of the propagation medium or of the reflective target
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16HHEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
    • G16H50/00ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics
    • G16H50/30ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics for calculating health indices; for individual health risk assessment
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/46Ultrasonic, sonic or infrasonic diagnostic devices with special arrangements for interfacing with the operator or the patient
    • A61B8/461Displaying means of special interest
    • A61B8/463Displaying means of special interest characterised by displaying multiple images or images and diagnostic data on one display
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/46Ultrasonic, sonic or infrasonic diagnostic devices with special arrangements for interfacing with the operator or the patient
    • A61B8/467Ultrasonic, sonic or infrasonic diagnostic devices with special arrangements for interfacing with the operator or the patient characterised by special input means
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/48Diagnostic techniques
    • A61B8/483Diagnostic techniques involving the acquisition of a 3D volume of data
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/52Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S15/00
    • G01S7/52017Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S15/00 particularly adapted to short-range imaging
    • G01S7/52053Display arrangements
    • G01S7/52057Cathode ray tube displays
    • G01S7/52071Multicolour displays; using colour coding; Optimising colour or information content in displays, e.g. parametric imaging

Definitions

  • the present invention relates to an ultrasonic diagnostic apparatus and an evaluation calculation method for displaying a three-dimensional elastic image indicating the hardness or softness of a biological tissue of a subject using ultrasonic waves.
  • the ultrasonic diagnostic apparatus transmits an ultrasonic wave to a subject, receives a reflected echo signal from a living tissue inside the subject, and, for example, an ultrasonic wave such as a three-dimensional elastic image showing the hardness or softness of the living tissue
  • an ultrasonic wave such as a three-dimensional elastic image showing the hardness or softness of the living tissue
  • An image is generated and displayed on a monitor for diagnosis.
  • a three-dimensional ultrasonic image such as a three-dimensional tomographic image or a three-dimensional elastic image is generated and displayed.
  • it is required to improve the image quality of an ultrasonic image, such as improving the resolution of an image and reducing noise.
  • Patent Document 1 proposes to construct a three-dimensional elastic image by synthesizing elastic image sections of the same displacement or pressure when constructing a three-dimensional elastic image by volume rendering of elastic volume data.
  • a three-dimensional bullet image is constructed by synthesizing an elastic image with an elastic frame having a high correlation coefficient.
  • elastic volume data is composed of 2D elastic frame data with the same compression amount (displacement) from a plurality of 2D elastic frame data acquired continuously.
  • 3D elastic images are constructed by volume rendering.
  • desired elastic frame data is selected from the elastic volume data to synthesize the elastic volume data, but it is not considered to evaluate the quality of the entire acquired elastic volume data.
  • noise for example, a streak-like noise image
  • the problem to be solved by the present invention is to establish a method for evaluating the quality of elastic volume data and improve the quality of three-dimensional elastic images.
  • the present invention collects a plurality of elastic frame data, and an elastic calculation unit that calculates elastic frame data representing an elastic distribution measured by three-dimensionally scanning an ultrasonic wave on a subject.
  • An elastic volume generation unit that generates elastic volume data
  • a three-dimensional elastic image configuration unit that forms a three-dimensional elastic image by volume rendering the elastic volume data
  • a display unit that displays the three-dimensional elastic image
  • the ultrasonic diagnostic apparatus includes a quality calculation unit that calculates a volume evaluation value indicating the quality of the elastic volume data based on a frame evaluation value indicating the quality of the elastic frame data.
  • volume evaluation value indicating the quality obtained as described above it is desirable to display the volume evaluation value indicating the quality obtained as described above on the display unit in association with the three-dimensional elasticity image. Thereby, it is possible to determine how high the quality of the displayed three-dimensional elasticity image is.
  • the volume evaluation value indicating quality can be identified at a glance. Can contribute.
  • the present invention is not limited to a three-dimensional elasticity image, but is a cross-sectional elasticity image that displays an orthogonal three-section elasticity image configured based on elasticity volume data or a multi-section elasticity image sliced with a plurality of parallel slices on the display unit.
  • a configuration unit may be provided, and a display surface quality calculation unit may be configured to calculate a volume evaluation value indicating the quality of each cross-sectional elasticity image by the quality calculation unit and display the volume evaluation value on the display unit.
  • the examiner can easily select the three-dimensional elastic image.
  • high-quality 3D elastic images can be reconstructed and displayed, enabling high-level diagnostic support.
  • the quality of the three-dimensional elastic image can be improved.
  • FIG. 1 is a block configuration diagram showing the entire ultrasonic diagnostic apparatus according to Embodiment 1 of the present invention.
  • Block configuration diagram of the quality calculation unit of the first embodiment The figure explaining the process sequence of the characteristic part of Example 1.
  • the figure explaining the process sequence of the characteristic part of Example 2 of this invention The figure explaining the process sequence of the characteristic part of Example 3 of this invention
  • the figure explaining the process sequence of the modification of Example 3 of this invention The figure explaining the example of a display of the section elasticity picture of Example 4 of the present invention
  • Block configuration diagram of the main part that realizes the display of the cross-sectional elasticity image of Example 4 of the present invention The figure which shows an example of the display method of the volume evaluation value which shows the quality of elastic volume data
  • the ultrasonic diagnostic apparatus 100 includes an ultrasonic probe 102 that is used in contact with the subject 101, and a predetermined time interval between the subject 101 and the ultrasonic probe 102.
  • the transmission unit 105 that repeatedly transmits ultrasonic waves
  • the reception unit 106 that receives a reflected echo signal from the inside of the subject 101
  • the transmission / reception control unit 107 that controls the transmission unit 105 and the reception unit 106
  • the reception unit 106 And a phasing addition unit 108 for phasing and adding the reflected echoes.
  • the ultrasonic probe 102 has a function of transmitting / receiving ultrasonic waves to / from the subject 101 via a vibrator.
  • the ultrasound probe 102 is formed by arranging a plurality of transducers having a rectangular shape or a sector shape, and the ultrasound probe is arranged in a direction (minor axis direction) orthogonal to the arrangement direction (major axis direction) of the plurality of transducers. It is configured so that 102 can be mechanically shaken and ultrasonic waves can be used for 3D scanning.
  • the ultrasonic three-dimensional scan is not limited to mechanically swinging the ultrasonic probe 102 in the short axis direction, but uses, for example, an ultrasonic probe 102 in which a plurality of transducers are two-dimensionally arranged.
  • the ultrasonic wave may be electronically scanned in the minor axis direction.
  • the transmission unit 105 generates a transmission pulse for driving the transducer of the ultrasonic probe 102 to generate ultrasonic waves.
  • the transmission unit 105 has a function of setting a convergence point of transmitted ultrasonic waves to an arbitrary depth.
  • the receiving unit 106 amplifies the reflected echo signal received by the ultrasonic probe 102 with a predetermined gain to generate an RF signal, that is, a received signal.
  • the ultrasonic transmission / reception control unit 107 is for controlling the transmission unit 105 and the reception unit 106.
  • the phasing / adding unit 108 generates RF signal frame data by controlling the phase of the RF signal amplified by the receiving unit 106 to form an ultrasonic beam corresponding to one or a plurality of convergence points.
  • the RF signal frame data generated by the phasing addition unit 108 is stored in the data storage unit 109.
  • the two-dimensional tomographic image construction unit 113 constructs a two-dimensional tomographic image based on the RF signal frame data stored in the data storage unit 109.
  • the tomographic volume data generation unit 114 generates tomographic volume data by performing three-dimensional coordinate conversion on the two-dimensional tomographic image formed by the two-dimensional tomographic image construction unit 113 based on the acquisition position.
  • the three-dimensional tomographic image construction unit 115 constructs a three-dimensional tomographic image by performing volume rendering based on the luminance and opacity of the tomographic volume data.
  • the plurality of RF signal frame data stored in the data storage unit 109 is appropriately fetched by the two-dimensional elasticity image construction unit 116 to form a two-dimensional elasticity image.
  • the two-dimensional elasticity image formed by the two-dimensional elasticity image construction unit 116 is taken into the elasticity volume data generation unit 117, and three-dimensional coordinate transformation is performed based on the acquisition position of the two-dimensional elasticity image to generate elasticity volume data.
  • the three-dimensional elasticity image construction unit 118 performs volume rendering based on the elasticity value and the opacity of the elasticity volume data to constitute a three-dimensional elasticity image.
  • the synthesis processing unit 119 synthesizes a two-dimensional tomographic image and a two-dimensional elastic image, or synthesizes a three-dimensional tomographic image and a three-dimensional elastic image.
  • the display unit 120 displays the composite image synthesized by the synthesis processing unit 119 and the ultrasonic image of the two-dimensional tomographic image.
  • the ultrasonic diagnostic apparatus 100 includes a control unit 103 that controls each of the above-described components, and an operation unit 104 that performs various inputs to the control unit 103.
  • the operation unit 104 includes a keyboard, a trackball, and the like. Yes.
  • the two-dimensional tomographic image construction unit 113 captures the RF signal frame data output from the data storage unit 109 based on the setting conditions in the control unit 103, and performs gain correction, log compression, detection, contour enhancement, filter processing, etc. Signal processing is performed to construct a two-dimensional tomographic image.
  • the ultrasonic probe 102 measures the transmission / reception direction ( ⁇ , ⁇ ) simultaneously with the transmission / reception of the ultrasonic wave.
  • is the scan angle in the major axis direction
  • is the scan (swing) angle in the minor axis direction.
  • the tomographic volume data generation unit 114 generates tomographic volume data by performing three-dimensional conversion on a plurality of two-dimensional tomographic images based on the transmission / reception direction ( ⁇ , ⁇ ) corresponding to the acquisition position of the two-dimensional tomographic image.
  • the 3D tomographic image construction unit 115 performs volume rendering using the following equations (1) to (3) that compose a 3D tomographic image from the tomographic volume data.
  • a (i) Opacity [C (i)]-(3)
  • C (i) is the luminance value of the i-th voxel on the line of sight when a 3D tomographic image is viewed from a certain point on the created 2D projection plane.
  • Cout (i) is an output pixel value.
  • Cout (i-1) indicates the integrated value up to the i-1th.
  • a (i) is the opacity of the i-th luminance value existing on the line of sight, and is a tomographic opacity table (fault opacity table) that takes values from 0 to 1.0 as shown in equation (3). .
  • the tomographic opacity table determines the contribution rate on the output two-dimensional projection plane (three-dimensional tomographic image) by referring to the opacity from the luminance value.
  • S (i) is a weight component for shading calculated from the luminance C (i) and the gradient obtained from the surrounding pixel values.
  • the normal of the surface centered on the light source and voxel i matches. In this case, 1.0 is given for the strongest reflection, and 0.0 is given when the light source and the normal line are orthogonal to each other.
  • Aout (i) is accumulated and converges to 1.0 each time it passes through the voxel. Therefore, as shown in Expression (1), when the integrated value Aout (i-1) of the opacity up to the (i-1) th is approximately 1.0, the luminance value C (i) after the ith is the output image. It is not reflected in.
  • the two-dimensional elasticity image construction unit 116 measures displacement from a plurality of RF signal frame data stored in the data storage unit 109.
  • the two-dimensional elasticity image construction unit 116 has an elasticity calculation unit that calculates elasticity frame data representing an elasticity distribution measured by three-dimensionally scanning ultrasound on the subject 101. Then, the two-dimensional elasticity image construction unit 116 computes an elasticity value based on the measured displacement to construct a two-dimensional elasticity image.
  • the elastic value is any elastic information such as strain, elastic modulus, displacement, viscosity, and strain ratio.
  • the elastic volume data generation unit 117 performs three-dimensional conversion on a plurality of two-dimensional elastic images based on the transmission / reception direction ( ⁇ , ⁇ ) corresponding to the acquisition position of the two-dimensional elastic image, and generates elastic volume data.
  • the three-dimensional elastic image construction unit 118 separates the elastic volume data into a plurality of pieces based on the elastic value, performs volume rendering on the separated elastic volume data, and forms a three-dimensional elastic image.
  • FIG. 2 shows a block configuration diagram of the quality calculation unit 121.
  • the quality calculation unit 121 basically detects the quality of the compression information or the quality of the three-dimensional elastic image, calculates the quality of the elastic volume data, and evaluates the quality.
  • the quality to be detected autocorrelation, displacement, distortion, S / N ratio of distortion, etc. of a pair of tomographic frame data when calculating a two-dimensional elasticity image can be used. It is also possible to use the correlation of elastic frame data at the same position between a plurality of elastic volume data having different acquisition times.
  • the quality calculation unit 121 includes a frame correlation processing unit 201, a frame displacement / distortion processing unit 203, a volume processing unit 205, and a quality calculation unit 207.
  • the frame correlation processing unit 201 stores the autocorrelation between the pair of tomographic frame data used when the elastic frame data is calculated by the two-dimensional elastic image construction unit 116, and indicates the quality of the elastic frame data in units of frames. A frame evaluation value is calculated.
  • the frame displacement / strain processing unit 203 stores the elasticity value (strain, elastic modulus, displacement, viscosity, strain ratio) and pressure calculated by the two-dimensional elasticity image construction unit 116 in association with the elasticity frame data, A frame evaluation value indicating the quality of the elastic frame data for each frame is calculated.
  • the volume processing unit 205 obtains a volume evaluation value indicating the quality of the elastic volume data by, for example, averaging the frame evaluation values calculated in units of frames in the frame correlation processing unit 201 and the frame displacement / distortion processing unit 203.
  • a volume evaluation value is sufficient, but a plurality of volume evaluation values can also be obtained.
  • the three-dimensional scan includes a plurality of operations for measuring tomographic frame data by performing an electronic scan in the major axis direction ( ⁇ ) while sliding the scan section in the minor axis direction ( ⁇ ).
  • the tomographic frame data Fr.0-Fr.n of the frame is acquired.
  • a mechanical scan or an electronic scan may be applied as the scan in the minor axis direction ( ⁇ ).
  • the motor can be controlled at a low speed or a high speed.
  • the two-dimensional elastic image construction unit 116 estimates the displacement distribution of the living tissue by performing an autocorrelation calculation between a pair of adjacent tomographic frame data Fr.0 and Fr.1, for example.
  • the tomographic volume data generation unit 114 in FIG. It is also possible to estimate the displacement distribution of the living tissue by performing an autocorrelation operation between the frame data Fr.0 and the tomographic frame data Fr.0 acquired in the past at the same position.
  • the autocorrelation value obtained between the pair of tomographic frame data becomes a frame evaluation value indicating the quality of the elastic frame data calculated from the pair of tomographic frame data.
  • a high autocorrelation value between a pair of tomographic frames means that the degree of coincidence of waveforms of a plurality of RF signals constituting the tomographic frame data is high, and the quality of the elastic frame data obtained thereby is high. There is a tendency.
  • the frame correlation processing unit 201 takes in the autocorrelation value between each pair of tomographic frames from the two-dimensional elastic image construction unit 116, and as shown in FIGS. 3 (a) and 3 (b), for each elastic frame data pixel
  • the frame average value Cave of the autocorrelation value is obtained in units.
  • a three-dimensional elastic image obtained by volume rendering of the elastic volume data has little collapse.
  • the three-dimensional elastic image in this case has a lot of noise and is an image lacking sharpness, for example, a circular image that is originally deformed and displayed.
  • the quality of the elastic volume data can be evaluated by obtaining the volume evaluation value indicating the quality for each elastic volume data.
  • a detailed example of the frame displacement / distortion calculation unit 203 will be described later.
  • the two-dimensional elastic image construction unit 116 and the quality calculation unit 121 will be described.
  • the second embodiment is different from the first embodiment in the processing procedures of the two-dimensional elastic image construction unit 116 and the frame correlation processing unit 201, and the other points are the same as those in the first embodiment, and thus the description thereof is omitted.
  • the two-dimensional elasticity image construction unit 116 performs an autocorrelation operation between a pair of adjacent tomographic frame data to estimate the displacement distribution of the living tissue.
  • the two-dimensional elastic image construction unit 116 performs the autocorrelation calculation with the tomographic frame data for the past several frames with respect to the current (real-time) tomographic frame data, and thereby the displacement distribution of the living tissue Is estimated.
  • the tomographic frame data having the highest autocorrelation value with the past several frames is selected, and the displacement distribution of the living tissue is estimated to generate elastic frame data. That is, autocorrelation values and displacement distribution data for one frame are calculated by a plurality of three-dimensional scans. Subsequent processing is the same as that in the first embodiment, and the evaluation results shown in FIGS. 4C and 4D are displayed.
  • elastic frame data having a high autocorrelation value can be selected by a plurality of three-dimensional scans, it is possible to finally generate high-quality elastic volume data, and the quality of the three-dimensional elastic image. Can be increased.
  • the quality calculation unit 121 according to the third embodiment of the present invention will be described.
  • the difference of the third embodiment from the first and second embodiments is that instead of the autocorrelation value of the pair of tomographic frame data when the elastic frame data is calculated, the elastic value (displacement, strain, strain ratio, The evaluation value of the quality of the elastic frame data constituting the elastic volume data is calculated based on at least one of the average of viscosity, elastic modulus), S / N ratio, and deviation information.
  • two-dimensional scanning is repeated in the minor axis direction to obtain a plurality (n) of elastic (displacement) frame data detected from the inter-frame autocorrelation.
  • three-dimensional elastic volume data is created as an aggregate of two-dimensional elastic frame data as shown in FIG.
  • an average of the displacements of the elastic frame data is obtained and used as a volume evaluation value indicating the quality of the elastic volume data.
  • the variance of the addition average of the displacements of the respective frames it is possible to detect image variations.
  • Variance Save of the addition average of each frame is calculated by Equation (4).
  • the elastic volume data average Svol of the variance Save of all the elastic frame data constituting the elastic volume data is obtained by the equation (5), and used as a volume evaluation value indicating the quality of the elastic volume data.
  • W is the width of the image
  • H is the height of the image
  • d (i, j) is the displacement
  • d * is the average of the displacement.
  • FIG. 6 shows a modification of the present embodiment, in which the quality of elastic volume data is evaluated based on strain frame data instead of displacement frame data.
  • elastic volume data is composed of a plurality (n) frames of distorted frame data.
  • FIG. 6 (b) shows that there is no negative strain if pressure is applied to living tissue. Therefore, as shown in FIG. 6 (b), if negative distortion is mixed in one distortion frame data, the average distortion becomes small. Therefore, the average of the distortion of each frame is calculated for each distortion frame data in the ⁇ direction to obtain a volume evaluation value indicating the quality of the elastic volume data.
  • the one with the higher evaluation is displayed as “Quality ⁇ High ”, and when the evaluation is low, the display is“ Quality Low ”as shown in FIG. 6 (d). .
  • FIG. 7 shows examples of various display images configured using the elastic volume data obtained by each embodiment of the present invention.
  • a volume evaluation value indicating quality is displayed on each displayed cross-sectional image.
  • volume evaluation values indicating quality are displayed on each of the axial plane A, theta plane T, coronal plane C, and 3D elastic image Render of any three orthogonal cross sections.
  • FIG. 7 (b) also in the case of a so-called multi-slice cross-sectional image, a volume evaluation value indicating quality can be displayed on each of the display of a plurality of cross-sectional images.
  • the elastic volume data generation unit 117 and the quality calculation unit 121 are configured as shown in FIG. That is, the autocorrelation value calculated by the two-dimensional elastic image forming unit 116 in the elastic volume generation unit 117 is stored in the autocorrelation value volume holding unit 802 or the displacement / distortion volume holding unit 804 in the elastic volume generation unit 117. Is done.
  • This data is the data of the ultrasonic RF array data music coordinate (RT ⁇ ) dimension, and is converted into orthogonal coordinate data by the orthogonal coordinate conversion unit 806.
  • a display surface quality calculation unit 808 calculates a volume evaluation value indicating the quality of each cross section with respect to a coordinate surface referred for display.
  • FIG. 9 shows a volume evaluation value in which time is plotted on the horizontal axis and quality is plotted on the vertical axis, and the volume evaluation values of a plurality of elastic volume data V0-Vn obtained continuously can be seen at a glance. Further, the same mark as in FIG. 3 is displayed in association with the elastic volume data with the highest volume evaluation value and the elastic volume data with the lowest volume evaluation value.
  • FIG. 10 shows marks, bar charts, pie charts, and other modified examples representing volume evaluation values indicating the quality of the elastic volume data or the three-dimensional elastic image.
  • FIG. 10 (a) is an example in which the level of the volume evaluation value can be identified at a glance by changing the display color of the circular mark in association with the volume evaluation value.
  • FIG. 6B is the same as the mark shown in the first embodiment, and is an example showing the level of the volume evaluation value according to the degree of perfect circle of the circular mark.
  • FIG. 4C is an example showing the level of the volume evaluation value according to the ratio in the bar chart gauge.
  • FIG. 4D is an example showing the level of the volume evaluation value according to the ratio of the pie chart.
  • FIG. 5E shows an example in which a plurality of small circles are arranged and the ratio of the small circle display mode is varied according to the volume evaluation value.
  • a display form and storage form of a three-dimensional elastic image configured using elastic volume data obtained by each embodiment of the present invention will be described.
  • the display unit 120 Based on the volume evaluation value indicating the quality of the elastic volume data calculated by the quality calculation unit 121, the display unit 120 displays a three-dimensional elasticity image.
  • the control unit 103 instructs to display a 3D elasticity image, and the display unit 120 displays a 3D elasticity image whose volume evaluation value is higher than the display reference value.
  • the control unit 103 instructs not to display the 3D elasticity image, and the display unit 120 does not display the 3D elasticity image whose volume evaluation value is lower than the display reference value. .
  • the display standard value is, for example, 0.95. Further, the operator can set a display reference value with the operation unit 104.
  • the display unit 120 when the volume evaluation value indicating the quality of the elastic volume data is higher than the display reference value, the display unit 120 displays a three-dimensional elastic image. That is, the display unit 120 can display only a three-dimensional elasticity image whose volume evaluation value indicating the quality of the elasticity volume data is higher than the display reference value.
  • the storage unit (not shown) stores a three-dimensional elastic image.
  • the control unit 103 instructs to store the three-dimensional elasticity image in the storage unit, and the storage unit selects the three-dimensional elasticity image whose volume evaluation value is higher than the storage reference value.
  • the control unit 103 instructs not to store the three-dimensional elasticity image in the storage unit, and the storage unit displays the three-dimensional elasticity image whose volume evaluation value is lower than the storage reference value. I don't remember.
  • the storage unit when the volume evaluation value indicating the quality of the elastic volume data is higher than the storage reference value, the storage unit is provided for storing the three-dimensional elastic image. That is, the storage unit can store only a three-dimensional elastic image whose volume evaluation value indicating the quality of the elastic volume data is higher than the storage reference value.
  • the storage reference value can be set in the same manner as the display reference value, and the operator can set the storage reference value using the operation unit 104.
  • the display reference value and the storage reference value can be the same.
  • the elastic volume generator 117 that generates elastic volume data by collecting a plurality of elastic frame data representing the elastic distribution measured by three-dimensionally scanning the subject with ultrasonic waves, and elastic volume data Evaluation of the quality of the elastic frame data in an ultrasonic diagnostic apparatus comprising a 3D elastic image construction unit 118 for constructing a 3D elastic image by volume rendering and a display unit 120 for displaying a 3D elastic image
  • a quality calculation unit 121 is provided that calculates a volume evaluation value indicating the quality of the elastic volume data based on the value.
  • An evaluation calculation including a step of configuring, a step of displaying the three-dimensional elasticity image, and a step of calculating a volume evaluation value indicating the quality of the elastic volume data based on a frame evaluation value indicating the quality of the elastic frame data Is the method.
  • the present invention obtains a frame evaluation value for evaluating the quality of the elastic frame data, and further indicates the quality of the elastic volume data based on the frame evaluation value indicating a plurality of elastic frame data constituting the elastic volume data.
  • the volume evaluation value was obtained and evaluated.
  • the quality of the elastic frame data or the quality evaluation value means that the elastic frame data was measured in a stable and appropriate compressed state.
  • the quality or quality evaluation value of elastic volume data means a collection of elastic frame data having a high quality or quality evaluation value. Therefore, a high quality or a high quality evaluation value can generate a three-dimensional elastic image with less noise as a result.
  • the frame evaluation value indicating the quality of the elastic frame data can be obtained by a quality evaluation method.
  • a high autocorrelation value between a pair of tomographic frame data that is the basis for calculating elastic frame data means that the degree of coincidence between the pair of tomographic frame data is high, and the pair of tomographic frame data is measured stably. It was measured in the state.
  • the autocorrelation value of the pair of tomographic frame data that is the basis for calculating the elastic frame data can be used as a frame evaluation value, and based on this, a volume evaluation value indicating the quality of the elastic volume data can be obtained and evaluated.
  • the frame evaluation value according to the present invention is not limited to the autocorrelation value of a pair of tomographic frame data.
  • the quality calculation unit 121 uses the autocorrelation value between the pair of tomographic frame data as a frame evaluation value indicating the quality of the elastic frame data, and adds the frame evaluation values of all the elastic frame data constituting the elastic volume data.
  • the volume evaluation value indicating the quality of the elastic volume data can be obtained based on the value or the average value.
  • the autocorrelation value between the pair of tomographic frame data the autocorrelation value of a pair of tomographic frame data adjacent in time in the three-dimensional scan can be used.
  • the scan plane position is the same among the plurality of elastic frame data respectively constituting the plurality of elastic volume data repeatedly generated by the elastic volume generation unit.
  • the autocorrelation value of the pair of tomographic frame data used as the basis for calculating the elastic frame data can be used.
  • the autocorrelation value between a pair of tomographic frame data the autocorrelation value of a pair of tomographic frame data having the maximum autocorrelation value obtained between the current tomographic frame data and a plurality of past tomographic frame data is used. Can do. According to this, since the elastic volume data can be constructed by selecting elastic frame data with high quality, the volume evaluation value can be further increased. That is, elastic volume data is generated by collecting elastic frame data calculated based on a pair of tomographic frame data having the maximum autocorrelation value. As described above, the present invention is not limited to obtaining the frame evaluation value based on the autocorrelation value of the pair of tomographic frame data that is the basis of the elastic frame data calculation.
  • a frame evaluation value indicating the quality of each elastic frame data can be calculated based on the average, deviation, or S / N ratio of the elastic value distribution of the elastic frame data. For example, if the S / N ratio of the elastic value is large, it can be evaluated that the quality of the elastic frame data is high.
  • the elastic value any one of displacement, strain, strain ratio, viscosity, and elastic modulus can be used.
  • volume evaluation value indicating the quality obtained as described above it is desirable to display the volume evaluation value indicating the quality obtained as described above on the display unit 120 in association with the three-dimensional elasticity image. Thereby, it is possible to determine how high the quality of the displayed three-dimensional elasticity image is.
  • the volume evaluation value indicating quality can be identified at a glance. Can contribute.
  • the present invention is not limited to a three-dimensional elasticity image, but is a cross-sectional elasticity image that displays an orthogonal three-section elasticity image configured based on elasticity volume data or a multi-section elasticity image sliced with a plurality of parallel slices on the display unit.
  • a configuration unit may be provided, and a display surface quality calculation unit may be configured to calculate a volume evaluation value indicating the quality of each cross-sectional elasticity image by the quality calculation unit and display the volume evaluation value on the display unit.
  • the examiner can easily select the three-dimensional elastic image.
  • high-quality 3D elastic images can be reconstructed and displayed, enabling high-level diagnostic support.
  • ultrasonic diagnostic apparatus 102 ultrasonic probe, 103 control unit, 104 operation unit, 105 transmission unit, 106 reception unit, 107 transmission / reception control unit, 108 phasing addition unit, 109 data storage unit, 113 2D tomographic image Configuration unit, 114 tomographic volume data generation unit, 115 3D tomographic image configuration unit, 116 2D elastic image configuration unit, 117 elastic volume data generation unit, 118 3D elastic image configuration unit, 119 synthesis processing unit, 120 display unit, 121 Quality calculator

Landscapes

  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • General Health & Medical Sciences (AREA)
  • Pathology (AREA)
  • Medical Informatics (AREA)
  • Public Health (AREA)
  • Biomedical Technology (AREA)
  • Surgery (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Biophysics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Radiology & Medical Imaging (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Molecular Biology (AREA)
  • Remote Sensing (AREA)
  • Animal Behavior & Ethology (AREA)
  • Veterinary Medicine (AREA)
  • General Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • General Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Data Mining & Analysis (AREA)
  • Databases & Information Systems (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Physiology (AREA)
  • Computer Graphics (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • Immunology (AREA)
  • Mathematical Physics (AREA)
  • Software Systems (AREA)
  • Primary Health Care (AREA)
  • Epidemiology (AREA)
  • Ultra Sonic Daignosis Equipment (AREA)

Abstract

 弾性ボリュームデータのクオリティを評価する手法を確立して、3次元弾性画像のクオリティを向上させるために、被検体に超音波を3次元スキャンして計測される弾性分布を表す弾性フレームデータを算出する2次元弾性画像構成部116と、弾性フレームデータを複数収集して弾性ボリュームデータを生成する弾性ボリュームデータ生成部117と、弾性ボリュームデータをボリュームレンダリングして3次元弾性画像を構成する3次元弾性画像構成部118と、弾性フレームデータ算出の基となった一対の断層フレームデータ間の自己相関値と、弾性フレームデータのクオリティを示すフレーム評価値に基づいて、弾性ボリュームデータのクオリティを示すボリューム評価値を算出するクオリティ算出部121を備えたことを特徴とする超音波診断装置。

Description

超音波診断装置及び評価算出方法
 本発明は、超音波を利用して被検体の生体組織の硬さ又は軟らかさを示す3次元弾性画像を表示する超音波診断装置と評価算出方法に関する。
 超音波診断装置は、被検体に超音波を送信し、被検体内部の生体組織からの反射エコー信号を受信し、例えば、生体組織の硬さ又は軟らかさを示す3次元弾性画像などの超音波画像を生成してモニタに表示して診断に供するものである。また、被検体内部の形態を分かり易く表示して診断に寄与するために、3次元断層画像や3次元弾性画像の3次元超音波画像を生成して表示することが行われている。一方で、診断精度の向上のため、画像の分解能の向上、ノイズの低減、等々、超音波画像の画質を改善することが要請されている。
 例えば、特許文献1には、弾性ボリュームデータをボリュームレンダリングして3次元弾性画像を構築する際に、同じ変位もしくは圧力の弾性画像区間を合成して3次元弾性画像を構築することが提案されている。さらに、同文献には、相関係数が高い弾性フレームで弾性画像を合成して、3次元弾画像を構築することが提案されている。つまり、3次元弾性画像を構成する際に、連続して取得した複数の2次元弾性フレームデータから、圧迫量(変位)が同じ2次元弾性フレームデータにより弾性ボリュームデータを構成し、その弾性ボリュームデータをボリュームレンダリングすることにより、3次元弾性画像を構築するようにしている。
特開2008-259555号公報
 ところで、特許文献では、弾性ボリュームデータの中から所望の弾性フレームデータを選択して弾性ボリュームデータを合成しているが、取得した弾性ボリュームデータ全体についてのクオリティを評価することは考慮されていない。その結果、ボリュームレンダリングにより構築した3次元弾性画像にノイズ(例えば、スジ状のノイズ画像)が表れる可能性がある。
 本発明が解決しようとする課題は、弾性ボリュームデータのクオリティを評価する手法を確立して、3次元弾性画像のクオリティを向上させることにある。
 上記の課題を解決するため、本発明は、被検体に超音波を3次元スキャンして計測される弾性分布を表す弾性フレームデータを算出する弾性演算部と、前記弾性フレームデータを複数収集して弾性ボリュームデータを生成する弾性ボリューム生成部と、前記弾性ボリュームデータをボリュームレンダリングして3次元弾性画像を構成する3次元弾性画像構成部と、前記3次元弾性画像を表示する表示部とを備えた超音波診断装置において、前記弾性フレームデータのクオリティを示すフレーム評価値基づいて、前記弾性ボリュームデータのクオリティを示すボリューム評価値を算出するクオリティ算出部を備えたことを特徴とする。
 以上のようにして求めたクオリティを示すボリューム評価値を、3次元弾性画像に対応付けて表示部に表示することが望ましい。これにより、表示された3次元弾性画像のクオリティがどの程度高いか否かを判断することができる。また、クオリティを示すボリューム評価値に対応して表示態様が異なるマーク、バーチャート又は円グラフを表示部に表示することにより、一目でクオリティを示すボリューム評価値を識別できるから、診断の精度向上に寄与することができる。
 さらに、本発明は、3次元弾性画像に限らず、弾性ボリュームデータに基づいて構成した直交3断面弾性画像又は平行な複数の断面でスライスしたマルチ断面弾性画像を前記表示部に表示する断面弾性画像構成部を備えて構成し、クオリティ算出部により各断面弾性画像のクオリティを示すボリューム評価値を算出して表示部に表示する表示面クオリティ算出部を備えて構成することができる。
 以上説明したように、本発明によれば、3次元弾性画像のクオリティを表示することができるから、検査者が3次元弾性画像の選択を簡便に行うことができる。また、クオリティの高い3次元弾性像を再構成して表示することもでき、高レベルな診断サポートが可能となる。
 本発明によれば、弾性ボリュームデータのクオリティを評価する手法を確立できるから、3次元弾性画像のクオリティを向上させることができる。
本発明の実施例1の超音波診断装置の全体を示すブロック構成図 実施例1のクオリティ算出部のブロック構成図 実施例1の特徴部の処理手順を説明する図 本発明の実施例2の特徴部の処理手順を説明する図 本発明の実施例3の特徴部の処理手順を説明する図 本発明の実施例3の変形例の処理手順を説明する図 本発明の実施例4の断面弾性画像の表示例を説明する図 本発明の実施例4の断面弾性画像の表示を実現する主要部のブロック構成図 弾性ボリュームデータのクオリティを示すボリューム評価値の表示方法の一例を示す図 弾性ボリュームデータのクオリティを示すボリューム評価値の表示方法の他の例を示す図
 各図を用いて実施例について説明する。
 本発明を適用した一実施例の超音波診断装置100について、図1を用いて説明する。
図示のように、超音波診断装置100には、被検体101に当接させて用いる超音波探触子102と、超音波探触子102を介して被検体101に一定の時間間隔をおいて超音波を繰り返し送信させる送信部105と、被検体101の内部からの反射エコー信号を受信する受信部106と、送信部105と受信部106を制御する送受信制御部107と、受信部106で受信された反射エコーを整相加算する整相加算部108とが備えられている。
 超音波探触子102は、被検体101に振動子を介して超音波を送受信する機能を有している。超音波探触子102は、矩形又は扇形をなす複数の振動子を配列してなり、複数の振動子の配列方向(長軸方向)と直交する方向(短軸方向)に超音波探触子102を機械的に振り、超音波を3次元スキャンに可能に構成されている。なお、超音波の3次元スキャンは、超音波探触子102を機械的に短軸方向に振るものに限らず、例えば、複数の振動子を2次元に配列した超音波探触子102を用い、超音波を短軸方向に電子的にスキャンするものでもよい。
 送信部105は、超音波探触子102の振動子を駆動して超音波を発生させるための送波パルスを生成する。送信部105は、送信される超音波の収束点を任意の深さに設定する機能を有している。また、受信部106は、超音波探触子102で受信した反射エコー信号を所定のゲインで増幅してRF信号、すなわち受信信号を生成する。超音波送受信制御部107は、送信部105や受信部106を制御するためのものである。整相加算部108は、受信部106で増幅されたRF信号の位相を制御して、1点又は複数の収束点に対応する超音波ビームを形成することにより、RF信号フレームデータを生成する。
 整相加算部108で生成されたRF信号フレームデータはデータ記憶部109に記憶される。2次元断層画像構成部113は、データ記憶部109に記憶されたRF信号フレームデータに基づいて2次元断層画像を構成する。断層ボリュームデータ生成部114は、2次元断層画像構成部113で構成された2次元断層画像を取得位置に基づいて3次元座標変換を行なって断層ボリュームデータを生成する。3次元断層画像構成部115は、断層ボリュームデータの輝度と不透明度に基づいてボリュームレンダリングを行なって3次元断層画像を構成する。
 データ記憶部109に記憶された複数のRF信号フレームデータは、2次元弾性画像構成部116に適宜取り込まれ、2次元弾性画像が構成される。2次元弾性画像構成部116で構成された2次元弾性画像は、弾性ボリュームデータ生成部117に取り込まれ、2次元弾性画像の取得位置に基づいて3次元座標変換を行なって弾性ボリュームデータが生成される。3次元弾性画像構成部118は、弾性ボリュームデータの弾性値と不透明度に基づいてボリュームレンダリングを行って3次元弾性画像を構成する。合成処理部119は、2次元断層画像と2次元弾性画像を合成したり、3次元断層画像と3次元弾性画像を合成するようになっている。表示部120は、合成処理部119で合成された合成画像や2次元断層画像の超音波画像を表示するようになっている。また、超音波診断装置100には、上述した各構成要素を制御する制御部103と、制御部103に各種入力を行なう操作部104を備え、操作部104は、キーボードやトラックボール等を備えている。
 以下、図1の主要部の詳細構成について説明する。2次元断層画像構成部113は、制御部103における設定条件に基づいて、データ記憶部109から出力されるRF信号フレームデータを取り込んで、ゲイン補正、ログ圧縮、検波、輪郭強調、フィルタ処理等の信号処理を行なって2次元断層画像を構成する。このとき、超音波探触子102は、超音波の送受信と同時に送受信方向(θ、φ)を計測する。ここで、θは長軸方向のスキャン角度、φは短軸方向のスキャン(スイング)角度である。断層ボリュームデータ生成部114は、2次元断層画像の取得位置に相当する送受信方向(θ、φ)に基づいて、複数の2次元断層画像について3次元変換を行なって断層ボリュームデータを生成する。
 3次元断層画像構成部115は、断層ボリュームデータから3次元断層画像を構成する次式(1)~(3)を用いて、ボリュームレンダリングを行なう。
  Cout(i) = Cout(i-1)+(1-Aout(i-1))・A(i)・C(i)・S(i)  -(1)
  Aout(i) = Aout(i-1)+(1-Aout(i-1))・A(i)        -(2)
  A(i) = Opacity[C(i)]                  -(3)
 ここで、C(i)は作成される2次元投影面上のある点から3次元断層画像を見た場合、視線上i番目に存在するボクセルの輝度値である。Cout(i)は、出力されるピクセル値である。例えば、視線上にNボクセルの輝度値が並んだとき、i =0~N-1までを積算した輝度値Cout(N-1)が最終的に出力されるピクセル値となる。Cout(i-1)はi-1番目までの積算値を示す。
 また、A(i)は視線上i番目に存在する輝度値の不透明度であり、式(3)に示すとおり、0~1.0の値をとる断層不透明度テーブル(断層オパシティテーブル)である。断層不透明度テーブルは、輝度値から不透明度を参照することによって、出力する2次元投影面(3次元断層画像)上への寄与率を決定する。
 S(i)は、輝度C(i)とその周辺の画素値より求めた勾配より算定される陰影付けのための重み成分で、たとえば、光源とボクセルiを中心とした面の法線が一致する場合、もっとも強く反射するため1.0が与えられ、光源と法線が直交する場合には0.0が与えられるなどの強調効果を指し示す。
 Cout(i)Aout(i)は、共に0を初期値としている。式(2)に示されるように、Aout(i)はボクセルを通過するたびに積算され1.0に収束される。よって、式(1)に示されるようにi-1番目までの不透明度の積算値Aout(i-1)およそ1.0となった場合、i番目以降の輝度値C(i)は出力画像に反映されない。
 2次元弾性画像構成部116は、データ記憶部109に記憶された複数のRF信号フレームデータから変位を計測する。2次元弾性画像構成部116は被検体101に超音波を3次元スキャンして計測される弾性分布を表す弾性フレームデータを算出する弾性演算部を有している。そして、2次元弾性画像構成部116は、計測した変位に基づいて弾性値を演算し、2次元弾性画像を構成する。弾性値とは、歪み、弾性率、変位、粘性、歪み比等の弾性情報のいずれかである。弾性ボリュームデータ生成部117は、2次元弾性画像の取得位置に相当する送受信方向(θ、φ)に基づいて、複数の2次元弾性画像について3次元変換を行ない、弾性ボリュームデータを生成する。3次元弾性画像構成部118は、弾性値に基づいて弾性ボリュームデータを複数に分離し、分離された弾性ボリュームデータについてボリュームレンダリングを行ない、3次元弾性画像を構成する。
 以下、本発明の特徴部であるクオリティ算出部121について説明する。図2に、クオリティ算出部121のブロック構成図を示す。クオリティ算出部121は、基本的に、圧迫の情報もしくは3次元弾性画像の質であるクオリティ(Quality)を検出し、弾性ボリュームデータの質を演算して良し悪しを評価するものである。ここで、検出するクオリティとしては、2次元弾性画像を算出した際の一対の断層フレームデータの自己相関、変位、歪み、歪みのS/N比、等々を用いることができる。また、取得時間が異なる複数の弾性ボリュームデータ間の同一位置の弾性フレームデータの相関を用いることもできる。
 クオリティ算出部121は、フレーム相関処理部201、フレーム変位・歪み処理部203、ボリューム処理部205、クオリティ算出部207により構成される。フレーム相関処理部201は、2次元弾性画像構成部116で弾性フレームデータを算出した際に用いた一対の断層フレームデータ間の自己相関を保存しておき、フレーム単位の弾性フレームデータのクオリティを示すフレーム評価値を算出するようになっている。
 また、フレーム変位・歪み処理部203は、2次元弾性画像構成部116で算出された弾性値(歪み、弾性率、変位、粘性、歪み比)と圧力を弾性フレームデータに対応付けて保存し、フレーム単位の弾性フレームデータのクオリティを示すフレーム評価値を算出するようになっている。
 ボリューム処理部205は、フレーム相関処理部201、フレーム変位・歪み処理部203において、フレーム単位で算出されたフレーム評価値を加算平均等により、弾性ボリュームデータのクオリティを示すボリューム評価値を求める。ここで、ボリューム評価値は1つあればよいが、複数のボリューム評価値を求めることもできる。
 図3を参照して、本実施例1の詳細な処理手順について説明する。図3(a)に示すように、3次元スキャンは、長軸方向(θ)に電子スキャンを行って断層フレームデータを計測する操作を、短軸方向(φ)にスキャン断面をスライドさせながら複数(n)フレームの断層フレームデータFr.0―Fr.nを取得する。短軸方向(φ)のスキャンは、機械的なスキャン又は電子的なスキャンのいずれを適用してもよい。例えば、モータにより超音波探触子102を遥動させてスキャンする場合は、モータを低速又は高速に速度制御可能にする。
 3次元スキャンにおいて2次元弾性画像構成部116は、例えば、隣り合う一対の断層フレームデータFr.0、Fr.1間の自己相関演算を行って生体組織の変位分布を推定する。なお、図示していないが、図1の断層ボリュームデータ生成部114に記憶されている異なる時間に取得された同一部位の複数の断層ボリュームデータを参照して、現在(リアルタイム)取得された例えば断層フレームデータFr.0と、同一位置において過去に取得された断層フレームデータFr.0との間で自己相関演算を行って生体組織の変位分布を推定することもできる。このように、一対の断層フレームデータ間で求められた自己相関値が、その一対の断層フレームデータにより算出された弾性フレームデータのクオリティを示すフレーム評価値となる。なお、一対の断層フレーム間の自己相関値が高いということは、断層フレームデータを構成する複数本のRF信号の波形の一致度が高いことになり、これにより得られる弾性フレームデータのクオリティは高い傾向にある。
 そこで、フレーム相関処理部201は、2次元弾性画像構成部116から各対の断層フレーム間の自己相関値を取り込み、図3(a)、(b)に示すように、各弾性フレームデータについて画素単位で自己相関値のフレーム平均値Caveを求める。次いで、弾性ボリュームデータを構成する全部の弾性フレームデータに対応する自己相関値をフレーム評価値とし、その加算平均又は加算値を求めて、弾性ボリュームデータのクオリティを示すボリューム評価値を求める。例えば、自己相関値の弾性ボリュームの加算平均Cvol=0.95であればクオリティを示すボリューム評価値が高いとして、図3(c)のように「Quality High」が表示部120に表示される。また、その弾性ボリュームデータをボリュームレンダリングして得られる3次元弾性像画像は、崩れが少ないものとなる。一方、図3(d)のように自己相関値の加算平均Cvol=0.74であれば「Quality Low」が表示部120に表示される。この場合の3次元弾性像画像は、ノイズが多く、例えば本来なら円形の画像が変形して表示されるなどの先鋭さに欠ける画像となる。このようにして、弾性ボリュームデータごとにクオリティを示すボリューム評価値を求めることにより、弾性ボリュームデータのクオリティを評価することが可能である。なお、フレーム変位・歪み算出部203の詳細な実施例は、後述する。
 図4を参照して、本発明の実施例2の2次元弾性画像構成部116とクオリティ算出部121の詳細な処理手順について説明する。本実施例2が実施例1と異なる点は、2次元弾性画像構成部116とフレーム相関処理部201の処理手順にあり、その他の点は実施例1と同様であることから説明を省略する。実施例1においては、2次元弾性画像構成部116は隣り合う一対の断層フレームデータ間の自己相関演算を行って生体組織の変位分布を推定していた。これに対し、本実施例2では、2次元弾性画像構成部116は現在(リアルタイム)の断層フレームデータに対する過去数フレーム分の断層フレームデータとの間で自己相関演算を行って生体組織の変位分布を推定する。特に、過去数フレーム分との間の自己相関値が最も高い断層フレームデータを選択して、生体組織の変位分布を推定して弾性フレームデータを作成する。つまり、複数回の3次元スキャンで1フレーム分の自己相関値と変位分布データが算出される。その後の処理は、実施例1と同様であり、図4(c)、(d)に示す評価結果が表示される。
 本実施例2によれば、複数回の3次元スキャンで自己相関値が高い弾性フレームデータを選択できることから、最終的に質の高い弾性ボリュームデータを生成することができ、3次元弾性画像のクオリティを高めることができる。
 図5を参照して、本発明の実施例3のクオリティ算出部121の詳細な処理手順について説明する。本実施例3が実施例1,2と異なる点は、弾性フレームデータを算出した際の一対の断層フレームデータの自己相関値に代えて、弾性フレームデータの弾性値(変位、歪み、歪み比、粘性、弾性率)の平均、S/N比、偏差情報の少なくとも1つに基づいて、弾性ボリュームデータを構成する弾性フレームデータのクオリティの評価値を算出するようにしたことにある。
 図5(a)に示すように、短軸方向に2次元スキャンを繰り返して、フレーム間自己相関から検出された弾性(変位)フレームデータを複数(n)フレーム取得する。これにより、同図(b)に示すような2次元の弾性フレームデータの集合体として、3次元の弾性ボリュームデータが作成される。各弾性フレームデータの変位の例えば加算平均を求めて、弾性ボリュームデータのクオリティを示すボリューム評価値とする。また、各フレームの変位の加算平均の分散を用いることにより、画像のバラつきを検出できる。各フレームの加算平均の分散Saveは、式(4)により算出する。さらに、式(5)により、弾性ボリュームデータを構成する全ての弾性フレームデータの分散Saveの弾性ボリュームデータ平均Svolを求めて、弾性ボリュームデータのクオリティを示すボリューム評価値とする。
Figure JPOXMLDOC01-appb-I000001
 ここで、Wは画像の横幅、Hは画像の高さ、d(i,j)は変位、d*は変位の平均である。
Figure JPOXMLDOC01-appb-I000002
 本実施例によれば、バラつきが少ない方がノイズは少ないから、図5(c)に示すように、Svol=0.001のように小さな値の方が評価が高いボリューム評価値「Quality High」と表示され、3次元弾性画像としても引き締まった画像となる。一方、ノイズの多い画像においては、バラつきが大きくなり、図5(d)に示すように、Svol=0.02のように大きな値の方が評価が低いボリューム評価値「Quality Low」と表示され、画像も先鋭さを欠ける画像となる。
 図6は、本実施例の変形例であり、変位フレームデータに代えて、歪みフレームデータに基づいて弾性ボリュームデータのクオリティを評価するようにした例である。図6(a)に示すように、複数(n)フレームの歪みフレームデータにより弾性ボリュームデータが構成される。一般に、生体組織に圧迫が加えられていれば、負の歪みは存在しえない。したがって、図6(b)に示すように、一の歪みフレームデータ中に負の歪みが混在していると、歪みの平均が小さくなる。そこで、各フレームの歪みの平均をφ方向の各歪みフレームデータについて加算平均を求めて、弾性ボリュームデータのクオリティを示すボリューム評価値とする。これによれば、図6(c)に示すように評価が高い方が「Quality High」の表示になり、評価が低い場合は図6(d)に示すように「Quality Low」の表示になる。
 図7に、本発明の各実施例により求めた弾性ボリュームデータを用いて構成される各種の表示画像の例を示す。図7の例では、弾性ボリュームデータを用いて任意の断面における断面画像を表示する場合において、表示された各断面画像にそれぞれクオリティを示すボリューム評価値を表示するようにしている。具体的には、図7(a)に示すように、任意の直交3断面のアキシャル面A、シータ面T,コロナル面C、3次元弾性画像Renderのそれぞれに、クオリティを示すボリューム評価値を表示する。また、図7(b)に示すように、いわゆるマルチスライス断面画像の場合も、複数断面画像の表示にそれぞれに、クオリティを示すボリューム評価値を表示することができる。
 図7の画像表示例を実現するには、弾性ボリュームデータ生成部117とクオリティ算出部121を図8のように構成する。つまり、弾性ボリューム生成部117にて、2次元弾性像構成部116で算出された自己相関値は、弾性ボリューム生成部117において、自己相関値ボリューム保持部802又は変位・歪みボリューム保持部804に格納される。このデータは、超音波のRF配列データ曲座標(RTΦ)次元のデータであり、直交座標変換部806にて直交座標のデータに変換される。制御部103において、表示用に参照される座標面に対して表示面クオリティ算出部808で各断面のクオリティを示すボリューム評価値を算出する。
 図9及び図10を参照して、各実施例で評価した弾性ボリュームデータを示すボリューム評価値の表示方法の実施例について説明する。図9は、横軸が時間、縦軸がクオリティを示すボリューム評価値を示しており、連続的に取得した複数の弾性ボリュームデータV0-Vnのボリューム評価値が一目でわかる。また、最もボリューム評価値が高い弾性ボリュームデータと、最もボリューム評価値が低い弾性ボリュームデータに対応付けて、図3と同様のマークを表示する。
 図10は、弾性ボリュームデータ又は3次元弾性画像のクオリティを示すボリューム評価値を表すマーク、バーチャート、円グラフ、その他の変形例を示している。図10(a)は、円形のマークの表示色をボリューム評価値に対応付けて変えることにより、一目でボリューム評価値の高低を識別可能にした例である。同図(b)は、実施例1等で示したマークと同じであり、円形のマークの真円度合いに応じてボリューム評価値の高低を表した例である。同図(c)は、バーチャートのゲージ内の比率に応じてボリューム評価値の高低を表した例である。同図(d)は、円グラフの比率に応じてボリューム評価値の高低を表した例である。同図(e)は、複数の小円を並べてボリューム評価値に応じて、小円の表示態様の比率を異ならせた例である。
 本発明の各実施例により求めた弾性ボリュームデータを用いて構成される3次元弾性画像の表示形態と記憶形態を説明する。
 クオリティ算出部121によって算出された弾性ボリュームデータのクオリティを示すボリューム評価値に基づいて、表示部120は3次元弾性画像を表示する。ボリューム評価値が表示基準値よりも高い場合、制御部103は3次元弾性画像を表示するように指示を行い、表示部120はボリューム評価値が表示基準値よりも高い3次元弾性画像を表示する。ボリューム評価値が表示基準値よりも低い場合、制御部103は3次元弾性画像を表示しないように指示を行い、表示部120はボリューム評価値が表示基準値よりも低い3次元弾性画像を表示しない。
 表示基準値は、例えば、0.95とする。また、操作者は操作部104で表示基準値を設定することができる。
 本実施例によれば、弾性ボリュームデータのクオリティを示すボリューム評価値が表示基準値よりも高い場合、表示部120は3次元弾性画像を表示する。つまり、表示部120は弾性ボリュームデータのクオリティを示すボリューム評価値が表示基準値よりも高い3次元弾性画像のみを表示することができる。
 また、クオリティ算出部121によって算出された弾性ボリュームデータのクオリティを示すボリューム評価値に基づいて、記憶部(図示しない。)は3次元弾性画像を記憶する。ボリューム評価値が記憶基準値よりも高い場合、制御部103は3次元弾性画像を記憶部に記憶するように指示を行い、記憶部はボリューム評価値が記憶基準値よりも高い3次元弾性画像を記憶する。ボリューム評価値が記憶基準値よりも低い場合、制御部103は3次元弾性画像を記憶部に記憶しないように指示を行い、記憶部はボリューム評価値が記憶基準値よりも低い3次元弾性画像を記憶しない。
 本実施例によれば、弾性ボリュームデータのクオリティを示すボリューム評価値が記憶基準値よりも高い場合、3次元弾性画像を記憶する記憶部を備える。つまり、記憶部は弾性ボリュームデータのクオリティを示すボリューム評価値が記憶基準値よりも高い3次元弾性画像のみを記憶することができる。
 記憶基準値は、表示基準値と同様に設定することができ、操作者は操作部104で記憶基準値を設定することができる。表示基準値と記憶基準値を同一にすることもできる。
 以上、本発明によれば、被検体に超音波を3次元スキャンして計測される弾性分布を表す弾性フレームデータを複数収集して弾性ボリュームデータを生成する弾性ボリューム生成部117と、弾性ボリュームデータをボリュームレンダリングして3次元弾性画像を構成する3次元弾性画像構成部118と、3次元弾性画像を表示する表示部120とを備えた超音波診断装置において、弾性フレームデータのクオリティを示すフレーム評価値基づいて、弾性ボリュームデータのクオリティを示すボリューム評価値を算出するクオリティ算出部121を備えたことを特徴とする。また、被検体に超音波を3次元スキャンして計測される弾性分布を表す弾性フレームデータを複数収集して弾性ボリュームデータを生成するステップと、弾性ボリュームデータをボリュームレンダリングして3次元弾性画像を構成するステップと、前記3次元弾性画像を表示するステップと、前記弾性フレームデータのクオリティを示すフレーム評価値に基づいて、前記弾性ボリュームデータのクオリティを示すボリューム評価値を算出するステップを含む評価算出方法である。
 すなわち、弾性フレームデータのクオリティを示すフレーム評価値が高いことは、安定した計測状態で弾性フレームデータが算出されたことになる。これに鑑み、本発明は、弾性フレームデータのクオリティを評価するフレーム評価値を求め、さらに弾性ボリュームデータを構成する複数の弾性フレームデータを示すフレーム評価値に基づいて、弾性ボリュームデータのクオリティを示すボリューム評価値を求めて評価するようにしたのである。このように、弾性ボリュームデータのクオリティを評価する手法が確立されたことから、クオリティを示すボリューム評価値が高い弾性ボリュームデータを取得又は選択することにより、容易に3次元弾性画像のクオリティを向上させることができる。
 ここで、弾性フレームデータのクオリティあるいはクオリティ評価値とは、安定した適切な圧迫状態において弾性フレームデータが計測されたことを意味する。同様に、弾性ボリュームデータのクオリティあるいはクオリティ評価値とは、クオリティあるいはクオリティ評価値が高い弾性フレームデータの集合であることを意味する。したがって、クオリティあるいはクオリティ評価値が高いことは、結果としてノイズの少ない3次元弾性画像を生成することができる。
 ところで、弾性フレームデータのクオリティを示すフレーム評価値は、クオリティ評価方法により求めることができる。例えば、弾性フレームデータ算出の基となった一対の断層フレームデータ間の自己相関値が高いと、一対の断層フレームデータの一致度が高いことを意味し、その一対の断層フレームデータが安定した計測状態で計測されたことになる。そこで、弾性フレームデータ算出の基となった一対の断層フレームデータの自己相関値をフレーム評価値とし、これに基づいて弾性ボリュームデータのクオリティを示すボリューム評価値を求めて評価することができる。しかし、本発明に係るフレーム評価値は、後述するように、一対の断層フレームデータの自己相関値に限られるものではない。
 本発明において、クオリティ算出部121は、一対の断層フレームデータ間の自己相関値を弾性フレームデータのクオリティを示すフレーム評価値とし、弾性ボリュームデータを構成する全ての弾性フレームデータのフレーム評価値の加算値又は加算平均値に基づいて、弾性ボリュームデータのクオリティを示すボリューム評価値を求めるようにすることができる。この場合、一対の断層フレームデータ間の自己相関値として、3次元スキャンにおける時間的に隣り合う一対の断層フレームデータの自己相関値を用いることができる。また、これに代えて、一対の断層フレームデータ間の自己相関値として、弾性ボリューム生成部で繰り返し生成される複数の弾性ボリュームデータをそれぞれ構成する複数の弾性フレームデータのうち、スキャン面位置が同一の前記弾性フレームデータ算出の基となった前記一対の断層フレームデータの自己相関値を用いることができる。
 さらに、一対の断層フレームデータ間の自己相関値として、現在の断層フレームデータと過去の複数の断層フレームデータと間で求めた自己相関値が最大の一対の断層フレームデータの自己相関値を用いることができる。これによれば、クオリティの高い弾性フレームデータを選択して弾性ボリュームデータを構成できることから、一層、ボリューム評価値を高めることができる。つまり、自己相関値が最大の一対の断層フレームデータに基づいて算出された弾性フレームデータを収集して弾性ボリュームデータが生成される。なお、前述したように、本発明は、弾性フレームデータ算出の基となった一対の断層フレームデータの自己相関値に基づいてフレーム評価値を求めるものに限られない。これに代えて、弾性フレームデータの弾性値の分布の平均、偏差、又はS/N比に基づいて、各弾性フレームデータのクオリティを示すフレーム評価値を算出することができる。例えば、弾性値のS/N比が大きければ弾性フレームデータのクオリティが高いと評価することができる。また、弾性値としては、変位、歪み、歪み比、粘性、弾性率のいずれか1つを用いることができる。
 以上のようにして求めたクオリティを示すボリューム評価値を、3次元弾性画像に対応付けて表示部120に表示することが望ましい。これにより、表示された3次元弾性画像のクオリティがどの程度高いか否かを判断することができる。また、クオリティを示すボリューム評価値に対応して表示態様が異なるマーク、バーチャート又は円グラフを表示部に表示することにより、一目でクオリティを示すボリューム評価値を識別できるから、診断の精度向上に寄与することができる。
 さらに、本発明は、3次元弾性画像に限らず、弾性ボリュームデータに基づいて構成した直交3断面弾性画像又は平行な複数の断面でスライスしたマルチ断面弾性画像を前記表示部に表示する断面弾性画像構成部を備えて構成し、クオリティ算出部により各断面弾性画像のクオリティを示すボリューム評価値を算出して表示部に表示する表示面クオリティ算出部を備えて構成することができる。
 以上説明したように、本発明によれば、3次元弾性画像のクオリティを表示することができるから、検査者が3次元弾性画像の選択を簡便に行うことができる。また、クオリティの高い3次元弾性像を再構成して表示することもでき、高レベルな診断サポートが可能となる。
 100 超音波診断装置、102 超音波探触子、103 制御部、104 操作部 、105 送信部、106 受信部、107 送受信制御部、108 整相加算部、109 データ記憶部、113 2次元断層画像構成部、114 断層ボリュームデータ生成部、115 3次元断層画像構成部、116 2次元弾性画像構成部、117 弾性ボリュームデータ生成部、118 3次元弾性画像構成部、119 合成処理部、120 表示部、121 クオリティ算出部

Claims (14)

  1.  被検体に超音波を3次元スキャンして計測される弾性分布を表す弾性フレームデータを複数収集して弾性ボリュームデータを生成する弾性ボリューム生成部と、前記弾性ボリュームデータをボリュームレンダリングして3次元弾性画像を構成する3次元弾性画像構成部と、前記3次元弾性画像を表示する表示部とを備えた超音波診断装置において、
     前記弾性フレームデータのクオリティを示すフレーム評価値に基づいて、前記弾性ボリュームデータのクオリティを示すボリューム評価値を算出するクオリティ算出部を備えたことを特徴とする超音波診断装置。
  2.  請求項1に記載の超音波診断装置において、
     前記クオリティ算出部は、前記弾性フレームデータ算出の基となった一対の断層フレームデータ間の自己相関値を前記弾性フレームデータのクオリティを示すフレーム評価値とし、前記弾性ボリュームデータを構成する全ての前記弾性フレームデータの前記フレーム評価値の加算値又は加算平均値に基づいて、前記弾性ボリュームデータのクオリティを示すボリューム評価値を求めることを特徴とする超音波診断装置。
  3.  請求項2に記載の超音波診断装置において、
     前記クオリティ算出部は、前記一対の断層フレームデータ間の自己相関値として、前記3次元スキャンにおける時間的に隣り合う一対の断層フレームデータの自己相関値を用いることを特徴とする超音波診断装置。
  4.  請求項2に記載の超音波診断装置において、
     前記クオリティ算出部は、前記一対の断層フレームデータ間の自己相関値として、前記弾性ボリューム生成部で繰り返し生成される複数の弾性ボリュームデータをそれぞれ構成する複数の前記弾性フレームデータのうち、スキャン面位置が同一の前記弾性フレームデータ算出の基となった前記一対の断層フレームデータの自己相関値を用いることを特徴とする超音波診断装置。
  5.  請求項2に記載の超音波診断装置において、
     前記クオリティ算出部は、前記一対の断層フレームデータ間の自己相関値として、現在の断層フレームデータと過去の複数の断層フレームデータと間で求めた前記自己相関値が最大の一対の断層フレームデータの自己相関値を用いることを特徴とする超音波診断装置。
  6.  請求項5に記載の超音波診断装置において、
     前記自己相関値が最大の一対の断層フレームデータに基づいて算出された前記弾性フレームデータが収集され前記弾性ボリュームデータが生成されることを特徴とする超音波診断装置。
  7.  請求項1に記載の超音波診断装置において、
     前記クオリティ算出部は、前記弾性フレームデータの弾性値の分布の平均、偏差、又はS/N比に基づいて、各弾性フレームデータのクオリティを示すフレーム評価値を算出し、該算出したフレーム評価値を前記弾性ボリュームデータ単位で加算平均することにより前記弾性ボリュームデータのクオリティを示すボリューム評価値を算出することを特徴とする超音波診断装置。
  8.  請求項7に記載の超音波診断装置において、
     前記弾性値は、変位、歪み、歪み比、粘性、弾性率のいずれか1つであることを特徴とする超音波診断装置。
  9.  請求項1に記載の超音波診断装置において、
     前記クオリティを示すボリューム評価値を前記3次元弾性画像に対応付けて前記表示部に表示することを特徴とする超音波診断装置。
  10.  請求項9に記載の超音波診断装置において、
     前記クオリティを示すボリューム評価値を、該ボリューム評価値に対応して表示態様が異なるマーク、バーチャート又は円グラフで前記表示部に表示することを特徴とする超音波診断装置。
  11.  請求項1に記載の超音波診断装置において、
     前記弾性ボリュームデータ生成部は、前記弾性ボリュームデータに基づいて構成した直交3断面弾性画像又は平行な複数の断面でスライスしたマルチ断面弾性画像を前記表示部に表示する断面弾性画像構成部を備え、
     前記クオリティ算出部は、前記各断面弾性画像のクオリティを示すボリューム評価値を算出して前記表示部に表示する表示面クオリティ算出部を備えてなることを特徴とする超音波診断装置。
  12.  請求項1に記載の超音波診断装置において、
     前記弾性ボリュームデータのクオリティを示す前記ボリューム評価値が表示基準値よりも高い場合、前記表示部は前記3次元弾性画像を表示することを特徴とする超音波診断装置。
  13.  請求項1に記載の超音波診断装置において、
     前記弾性ボリュームデータのクオリティを示すボリューム評価値が記憶基準値よりも高い場合、前記3次元弾性画像を記憶する記憶部を備えることを特徴とする超音波診断装置。
  14.  被検体に超音波を3次元スキャンして計測される弾性分布を表す弾性フレームデータを複数収集して弾性ボリュームデータを生成するステップと、弾性ボリュームデータをボリュームレンダリングして3次元弾性画像を構成するステップと、前記3次元弾性画像を表示するステップと、前記弾性フレームデータのクオリティを示すフレーム評価値に基づいて、前記弾性ボリュームデータのクオリティを示すボリューム評価値を算出するステップを含む評価算出方法。
PCT/JP2011/066176 2010-08-31 2011-07-15 超音波診断装置及び評価算出方法 WO2012029417A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2012531736A JPWO2012029417A1 (ja) 2010-08-31 2011-07-15 超音波診断装置及び評価算出方法
US13/817,742 US20130158900A1 (en) 2010-08-31 2011-07-15 Ultrasonic diagnostic apparatus and evaluation calculation method
EP11821435.2A EP2612599A1 (en) 2010-08-31 2011-07-15 Ultrasound diagnostic device and evaluation calculation method
CN2011800416149A CN103079473A (zh) 2010-08-31 2011-07-15 超声波诊断装置以及评价算出方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-194180 2010-08-31
JP2010194180 2010-08-31

Publications (1)

Publication Number Publication Date
WO2012029417A1 true WO2012029417A1 (ja) 2012-03-08

Family

ID=45772528

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/066176 WO2012029417A1 (ja) 2010-08-31 2011-07-15 超音波診断装置及び評価算出方法

Country Status (5)

Country Link
US (1) US20130158900A1 (ja)
EP (1) EP2612599A1 (ja)
JP (1) JPWO2012029417A1 (ja)
CN (1) CN103079473A (ja)
WO (1) WO2012029417A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014082482A1 (zh) * 2012-11-28 2014-06-05 深圳迈瑞生物医疗电子股份有限公司 一种超声弹性成像系统和方法
WO2015141460A1 (ja) * 2014-03-19 2015-09-24 日立アロカメディカル株式会社 超音波診断装置
EP2910191A4 (en) * 2012-10-18 2016-06-29 Hitachi Aloka Medical Ltd ULTRASONIC DIAGNOSTIC DEVICE AND IMAGE DISPLAY METHOD
JP2019503748A (ja) * 2015-12-21 2019-02-14 コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. 被験者のボリュームを検査する超音波撮像装置及び超音波撮像方法

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5997861B1 (ja) * 2016-04-18 2016-09-28 株式会社日立パワーソリューションズ 超音波映像装置および超音波映像装置の画像生成方法。
CN107833218B (zh) * 2017-11-22 2021-01-26 深圳中科乐普医疗技术有限公司 一种生物组织剪切波弹性图像质量评估显示方法
CN108175440A (zh) * 2017-12-21 2018-06-19 飞依诺科技(苏州)有限公司 一种用于超声扫描设备的弹性成像方法和装置
US20200245970A1 (en) 2019-01-31 2020-08-06 Bay Labs, Inc. Prescriptive guidance for ultrasound diagnostics

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6558324B1 (en) * 2000-11-22 2003-05-06 Siemens Medical Solutions, Inc., Usa System and method for strain image display
WO2007083745A1 (ja) * 2006-01-20 2007-07-26 Hitachi Medical Corporation 弾性画像表示方法及び弾性画像表示装置
WO2008010500A1 (fr) * 2006-07-18 2008-01-24 Hitachi Medical Corporation Dispositif de diagnostic à ultrasons
JP2008259555A (ja) 2007-04-10 2008-10-30 Hitachi Medical Corp 超音波診断装置
JP2010012311A (ja) * 2009-10-19 2010-01-21 Hitachi Medical Corp 超音波診断装置
JP2010082308A (ja) * 2008-10-01 2010-04-15 Ge Medical Systems Global Technology Co Llc 超音波診断装置
JP2010119630A (ja) * 2008-11-20 2010-06-03 Ge Medical Systems Global Technology Co Llc 超音波診断装置

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4258015B2 (ja) * 2002-07-31 2009-04-30 毅 椎名 超音波診断システム、歪み分布表示方法及び弾性係数分布表示方法
JP5537171B2 (ja) * 2009-02-27 2014-07-02 株式会社東芝 超音波撮影装置、画像処理装置、画像処理方法及び画像処理プログラム
CN101669830B (zh) * 2009-09-29 2012-05-30 汕头市超声仪器研究所有限公司 一种超声弹性成像方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6558324B1 (en) * 2000-11-22 2003-05-06 Siemens Medical Solutions, Inc., Usa System and method for strain image display
WO2007083745A1 (ja) * 2006-01-20 2007-07-26 Hitachi Medical Corporation 弾性画像表示方法及び弾性画像表示装置
WO2008010500A1 (fr) * 2006-07-18 2008-01-24 Hitachi Medical Corporation Dispositif de diagnostic à ultrasons
JP2008259555A (ja) 2007-04-10 2008-10-30 Hitachi Medical Corp 超音波診断装置
JP2010082308A (ja) * 2008-10-01 2010-04-15 Ge Medical Systems Global Technology Co Llc 超音波診断装置
JP2010119630A (ja) * 2008-11-20 2010-06-03 Ge Medical Systems Global Technology Co Llc 超音波診断装置
JP2010012311A (ja) * 2009-10-19 2010-01-21 Hitachi Medical Corp 超音波診断装置

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2910191A4 (en) * 2012-10-18 2016-06-29 Hitachi Aloka Medical Ltd ULTRASONIC DIAGNOSTIC DEVICE AND IMAGE DISPLAY METHOD
WO2014082482A1 (zh) * 2012-11-28 2014-06-05 深圳迈瑞生物医疗电子股份有限公司 一种超声弹性成像系统和方法
CN103845074A (zh) * 2012-11-28 2014-06-11 深圳迈瑞生物医疗电子股份有限公司 一种超声弹性成像系统和方法
WO2015141460A1 (ja) * 2014-03-19 2015-09-24 日立アロカメディカル株式会社 超音波診断装置
JP2015177883A (ja) * 2014-03-19 2015-10-08 日立アロカメディカル株式会社 超音波診断装置
JP2019503748A (ja) * 2015-12-21 2019-02-14 コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. 被験者のボリュームを検査する超音波撮像装置及び超音波撮像方法

Also Published As

Publication number Publication date
US20130158900A1 (en) 2013-06-20
JPWO2012029417A1 (ja) 2013-10-28
CN103079473A (zh) 2013-05-01
EP2612599A1 (en) 2013-07-10

Similar Documents

Publication Publication Date Title
WO2012029417A1 (ja) 超音波診断装置及び評価算出方法
JP5688369B2 (ja) 超音波診断装置及び弾性画像表示方法
JP5890311B2 (ja) 3次元弾性画像生成方法及び超音波診断装置
JP5689073B2 (ja) 超音波診断装置、及び3次元弾性比算出方法
US8784318B1 (en) Aberration correction using channel data in ultrasound imaging system
JP5730196B2 (ja) 超音波診断装置、超音波画像処理装置、超音波画像生成方法
JP5647990B2 (ja) 超音波診断装置及び画像構成方法
JP6039220B2 (ja) 被検体情報取得装置
CN102711625B (zh) 超声波诊断装置以及超声波图像显示方法
JP4843432B2 (ja) 超音波診断装置
JPWO2008075740A1 (ja) 超音波診断装置
JP5770175B2 (ja) 超音波診断装置及び超音波送受信方法
KR101593719B1 (ko) 초음파 진단 장치
JP2015136449A (ja) 超音波診断装置及びビームフォーミング方法
JP5753719B2 (ja) 超音波診断装置
JP5331313B2 (ja) 超音波診断装置
WO2011096556A1 (ja) 超音波診断装置、及び血流画像生成方法
JP5190248B2 (ja) 超音波診断装置
JP4789243B2 (ja) 超音波診断装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180041614.9

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11821435

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012531736

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 13817742

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2011821435

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE