WO2012026571A1 - Fluid pressure hammering device - Google Patents

Fluid pressure hammering device Download PDF

Info

Publication number
WO2012026571A1
WO2012026571A1 PCT/JP2011/069267 JP2011069267W WO2012026571A1 WO 2012026571 A1 WO2012026571 A1 WO 2012026571A1 JP 2011069267 W JP2011069267 W JP 2011069267W WO 2012026571 A1 WO2012026571 A1 WO 2012026571A1
Authority
WO
WIPO (PCT)
Prior art keywords
fluid
chamber
pressure
stroke
piston
Prior art date
Application number
PCT/JP2011/069267
Other languages
French (fr)
Japanese (ja)
Inventor
矩男 弘瀬
Original Assignee
株式会社テイサク
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社テイサク filed Critical 株式会社テイサク
Publication of WO2012026571A1 publication Critical patent/WO2012026571A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25DPERCUSSIVE TOOLS
    • B25D9/00Portable percussive tools with fluid-pressure drive, i.e. driven directly by fluids, e.g. having several percussive tool bits operated simultaneously
    • B25D9/04Portable percussive tools with fluid-pressure drive, i.e. driven directly by fluids, e.g. having several percussive tool bits operated simultaneously of the hammer piston type, i.e. in which the tool bit or anvil is hit by an impulse member
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25DPERCUSSIVE TOOLS
    • B25D9/00Portable percussive tools with fluid-pressure drive, i.e. driven directly by fluids, e.g. having several percussive tool bits operated simultaneously
    • B25D9/06Means for driving the impulse member
    • B25D9/12Means for driving the impulse member comprising a built-in liquid motor, i.e. the tool being driven by hydraulic pressure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25DPERCUSSIVE TOOLS
    • B25D9/00Portable percussive tools with fluid-pressure drive, i.e. driven directly by fluids, e.g. having several percussive tool bits operated simultaneously
    • B25D9/14Control devices for the reciprocating piston
    • B25D9/16Valve arrangements therefor
    • B25D9/18Valve arrangements therefor involving a piston-type slide valve
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25DPERCUSSIVE TOOLS
    • B25D9/00Portable percussive tools with fluid-pressure drive, i.e. driven directly by fluids, e.g. having several percussive tool bits operated simultaneously
    • B25D9/14Control devices for the reciprocating piston
    • B25D9/16Valve arrangements therefor
    • B25D9/20Valve arrangements therefor involving a tubular-type slide valve
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25DPERCUSSIVE TOOLS
    • B25D9/00Portable percussive tools with fluid-pressure drive, i.e. driven directly by fluids, e.g. having several percussive tool bits operated simultaneously
    • B25D9/14Control devices for the reciprocating piston
    • B25D9/26Control devices for adjusting the stroke of the piston or the force or frequency of impact thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25DPERCUSSIVE TOOLS
    • B25D2209/00Details of portable percussive tools with fluid-pressure drive, i.e. driven directly by fluids, e.g. having several percussive tool bits operated simultaneously
    • B25D2209/007Details of portable percussive tools with fluid-pressure drive, i.e. driven directly by fluids, e.g. having several percussive tool bits operated simultaneously having a tubular-slide valve, which is not coaxial with the piston

Definitions

  • the present invention relates to a hydraulic-type hammering device such as a hydraulic type, and in particular, a hydraulic-type hammering device capable of automatically increasing a hammering force when a crushed material such as a rock is hard and does not break even when hit for a certain time. It is about.
  • the work of crushing the rock mass etc. using a hydraulic hitting device presses the tip of the chisel of the hitting device against the crushed material and continuously hits the rear end of the chisel by the reciprocating motion of the piston inserted in the hitting device. Is done.
  • a larger striking force can be obtained by reciprocating the piston with a longer stroke when the thrust for urging the piston forward is equal.
  • rocks There are various types of rocks, from soft rocks to hard rocks. When the rocks to be crushed are soft, the piston stroke is shortened.
  • the crushing operation can be efficiently performed by increasing the stroke of the piston and operating in a mode in which the number of hits is small but the hitting force is strong.
  • Patent Document 1 Furthermore, a method has been proposed in which the stroke is switched by utilizing the difference in pressure difference between the upper and lower chambers of the piston due to the difference in hardness of the crushed material.
  • Patent Document 2 proposes a method for automatically adjusting the stroke of the piston of the hydraulic hammering device according to the hardness of the rock mass.
  • the stroke is switched by detecting that the piston has advanced from a predetermined striking position.
  • the cylinder in which the piston is inserted is not spatially fixed, and is moved against the crushed material by a hydraulic excavator or the like. Moves forward from a predetermined striking position, but at the same time, the cylinder itself moves forward by the pressing force of a hydraulic excavator or the like, so the moving distance by which the piston moves forward from the predetermined striking position with respect to the cylinder becomes very delicate, and the chisel It was difficult to reliably detect the amount of biting into the crushed material, and it was difficult to perform accurate stroke control.
  • the pressure generated in each chamber at the time of striking is not only the hardness of the rock mass but also the oil temperature, viscosity, etc. Therefore, it is difficult to accurately detect the difference in generated pressure when striking hard rock and soft rock, and the change of stroke due to this difference is very unstable. It was. Therefore, the present invention provides a fluid pressure striking device that eliminates such a problem.
  • a striking piston having a striking pressure receiving surface and a returning pressure receiving surface is fitted in a cylinder so as to be able to reciprocate, and a high pressure fluid pressure is always applied to the returning pressure receiving surface.
  • the reversing chamber, which forms the pressure receiving surface for impact causes the piston to reciprocate by alternately applying a high pressure fluid pressure and a low pressure fluid pressure via the main switching valve, and the stroke of the piston switches the stroke.
  • the valve can be switched between a short stroke and a long stroke.
  • the stroke switching valve has a fluid chamber that stores fluid according to the number of times or time that high-pressure fluid is supplied to the reversing chamber, and operates according to the amount of fluid in the fluid chamber. For a short time, when the return pressure receiving surface of the piston returns to the position corresponding to the short pilot chamber, the main switching valve is switched to supply high pressure fluid to the reversing chamber, and the fluid volume in the fluid chamber is larger than the reference volume.
  • the hydraulic pressure striking device operates at a short stroke when the amount of fluid stored in the fluid chamber is small at the beginning of the crushing operation, and is not crushed even if continuously struck for a certain period of time.
  • the amount of fluid stored in the fluid chamber sometimes exceeds the reference amount, it automatically switches to a longer stroke with stronger force.
  • the hydraulic striking device is switched from a short stroke to a long stroke with the passage of time after the start of operation, so the piston stroke can be switched with high accuracy according to the hardness of the rock mass, efficiently. Crushing work can be performed.
  • the second invention of the present invention is the fluid pressure striking device according to the first invention, wherein when the fluid pressure in the reversing chamber is switched from a low pressure to a high pressure, the spool is operated to supply a predetermined amount of fluid to the fluid chamber.
  • a fluid discharge valve is provided.
  • the fluid discharge valve supplies the pulsed fluid to the fluid chamber. Accordingly, the amount of fluid in the fluid chamber can be proportional to the number of piston operations, and when the number of piston operations reaches a predetermined number, the piston can be automatically switched from a short stroke to a long stroke.
  • a third invention of the present invention is the fluid pressure striking device of the second invention, characterized in that the operation stroke of the spool in the fluid discharge valve is adjustable.
  • the operation stroke of the spool in the fluid discharge valve can be adjusted, the amount of fluid per one time supplied from the fluid discharge valve to the fluid chamber can be adjusted.
  • the speed at which the piston is switched from the short stroke to the long stroke can be adjusted by adjusting the increasing speed of the amount of fluid stored in the fluid chamber.
  • the fluid pressure type striking device according to the first aspect, wherein an inflow throttle is provided for extracting the high pressure fluid in the reversing chamber by a predetermined amount per unit time and supplying the fluid chamber to the fluid chamber. It is characterized by.
  • the fourth aspect of the present invention while high-pressure fluid is supplied to the reversing chamber, the fluid is stored in the fluid chamber at a constant speed via the inflow restrictor. Therefore, the amount of fluid in the fluid chamber can be proportional to the operation time of the hydraulic striking device, and when the operation time of the hydraulic striking device reaches a predetermined time, the piston is automatically changed from a short stroke to a long stroke. Can be switched to.
  • a fifth invention of the present invention is the fluid pressure type striking device according to any one of the first to fourth inventions, wherein a discharge restrictor for gradually discharging the stored fluid is connected to the fluid chamber.
  • the discharge restrictor is connected to the fluid chamber, and the fluid stored in the fluid chamber is gradually discharged. Therefore, the amount of fluid stored in the fluid chamber can be increased by adjusting the discharge amount. The speed can be adjusted.
  • a sixth aspect of the present invention is the fluid pressure striking device according to any one of the first to fifth aspects, wherein the stroke switching valve is communicated with the short pilot port communicated with the short pilot chamber and the long pilot chamber.
  • the stroke switching valve When the fluid volume in the fluid chamber is less than the reference amount, the short pilot port and the long pilot port are connected, and when the fluid amount in the fluid chamber exceeds the reference amount, the short pilot port and the long pilot port are connected.
  • the high-pressure fluid supplied to the return pressure receiving surface which is cut off from the pilot port and supplied through the short pilot chamber or long pilot chamber, is removed from the long pilot port and supplied to the pilot port of the main switching valve.
  • the high pressure fluid is supplied to the reversing chamber by switching the main switching valve.
  • the stroke switching valve switches between the short stroke and the long stroke by simply connecting and shutting off the short pilot port and the long pilot port according to the amount of fluid in the fluid chamber. Therefore, the configuration of the stroke switching valve can be simplified.
  • a seventh aspect of the present invention is the fluid pressure striking device according to the first to sixth aspects of the present invention, wherein a discharge valve for discharging the stored fluid is connected to the fluid chamber when the reciprocation of the piston is stopped. It is characterized by being.
  • the discharge valve since the discharge valve is connected to the fluid chamber, the fluid stored in the fluid chamber can be immediately discharged when the hydraulic striking device is stopped. For this reason, even when the hydraulic striking device is repeatedly operated and stopped in a short cycle, at the start of operation of the hydraulic striking device, the fluid can always be stored in the fluid chamber from the initial state. Regardless of the manner of operation, the accuracy of automatic switching from short stroke to long stroke can be improved.
  • FIG. 1 is a schematic view of a first embodiment of a hydraulic striking device according to the present invention. It is explanatory drawing at the time of piston raising (at the time of an operation
  • FIG. 1 shows an outline of a hydraulic striking device according to an embodiment of the present invention
  • FIGS. 2 to 8 sequentially show states of operation of the striking device of the present invention.
  • a piston 2 is inserted into a cylinder 1 so as to be capable of moving back and forth in the axial direction
  • a chisel 3 is mounted in front of the piston 2 (left side in the drawing)
  • a rear end portion of the piston 2 On the right side of the figure, there is provided a gas chamber 4 for energizing the piston 2 at the time of impact, for example, containing a gas such as nitrogen.
  • a main switching valve 20 for switching the forward / backward movement of the piston 2 a stroke switching valve 30 for switching the stroke of the piston 2, and a fluid pressure signal for operating the stroke switching valve to switch the stroke are generated.
  • a pressure control valve 43 that regulates the fluid pressure of the fluid flowing into the pilot port 33 of the stroke switching valve 30.
  • the piston 2 includes a small diameter portion 2a, a first large diameter portion 2b, an intermediate portion 2c, a second large diameter portion 2d having the same diameter as the first large diameter portion, and an intermediate diameter portion 2e in order from the right shown in FIG.
  • the diameter of the middle diameter part 2e is larger than the diameter of the small diameter part 2a and is smaller than the diameters of the large diameter parts 2b and 2d.
  • the right end surface of the first large diameter portion 2b is a ring-shaped impact pressure receiving surface 2u
  • the left end surface of the second large diameter portion 2d is a ring-shaped return pressure receiving surface 2v.
  • a reversing chamber 5, a constantly low pressure chamber 11, a long pilot chamber 12, a short pilot chamber 13, and a constantly high pressure chamber 7 are formed in a ring-shaped groove on the inner wall of the piston sliding portion of the cylinder 1 from the right side of the figure. Yes. Also, the arrangement positions of the constant high pressure chamber 7, the short pilot chamber 13, the long pilot chamber 12, and the constant low pressure chamber 11 are arranged to switch the main switching valve 20 in accordance with the operating state of the piston 2 described later. is there. That is, the high pressure chamber 7 is always in communication with or disconnected from the short pilot chamber 13 or the long pilot chamber 12 depending on the position of the piston 2 during reciprocating motion, and the low pressure chamber 11 is always in communication with or out of communication with the long pilot chamber 12. It is arranged to become.
  • the hydraulic pump 10 serving as a hydraulic source is connected to a switching valve 53 that is switched by a pedal 51.
  • the pedal 51 When the pedal 51 is depressed, the high-pressure pipe 55 is connected to the discharge side of the hydraulic pump 10 by the switching valve 53.
  • the high pressure pipe 55 When the high pressure chamber 7 is always in a high pressure state and the pedal 51 is not depressed, the high pressure pipe 55 is connected to the low pressure pipe 52 and becomes a low pressure side (see FIG. 1).
  • the oil tank 50 is always connected to the low-pressure chamber 11 via the low-pressure pipe 52 and can be switched between the state communicating with the reversing chamber 5 and the state shut off via the main switching valve 20. It is configured. That is, the main switching valve 20 is configured to be switched so that the reversing chamber 5 communicates with either the high pressure hydraulic pump 10 or the low pressure oil tank 50.
  • High pressure oil can be applied to one pilot port 20A of the main switching valve 20, and the other pilot port 20B is connected to the long pilot chamber 12.
  • the main switching valve 20 is switched by operating. That is, when high pressure oil acts on the pilot port 20B, the main selector valve 20 moves the spool of the main selector valve 20 to the right side in the figure so that the high pressure port 20b and the reverse port 20c communicate with each other.
  • the high pressure oil applied to the pilot port 20A is pushed back to the left in the figure so that the low pressure port 20a and the reverse port 20c communicate with each other.
  • the stroke switching valve 30 is composed of an inserted spool 31 and a spring, and a fluid chamber 32 is provided inside the stroke switching valve 30 at a position opposed to the spring that applies a pressing force to the spool 31. While the oil amount in the fluid chamber 32 is less than the reference amount, the spool 31 is pushed rightward in the figure by the force of the spring, and the long pilot port 30b and the short pilot port 30c communicate with each other. On the other hand, when the amount of oil in the fluid chamber 32 gradually increases, the spool moves in the left direction against the spring force, and the amount of oil in the fluid chamber 32 exceeds the reference amount, the long pilot port 30b and the short circuit are shorted. The pilot port 30c is blocked.
  • the stroke switching valve 30 is a spring type, but various types such as a hydraulic type and a gas type can be selected.
  • a stroke switching pilot hole 40 is provided in the reversing chamber 5, and the stroke switching pilot hole 40 is connected to a fluid discharge valve 41.
  • the fluid discharge valve 41 discharges a predetermined amount of oil when it receives a high pressure oil pressure from the stroke switching pilot hole 40, and the oil flows to the pressure control valve 43 to control the oil pressure. Since it flows into the fluid chamber 32 and is also connected to the oil tank 50 via the discharge variable throttle 45, the amount of oil accumulated in the fluid chamber 32 can be adjusted by the discharge variable throttle 45.
  • the fluid discharge valve 41 is provided with a check valve 42 that shuts off when the oil is discharged, and communicates and passes the oil when the oil is supplied to the fluid discharge valve 41.
  • a pilot port operation check valve 44 for returning to the state is provided (corresponding to a discharge valve in the present invention).
  • the pilot port operation check valve 44 is disconnected from the fluid chamber 32 and the low-pressure chamber 11 at all times when high-pressure oil is acting, and communicates when low-pressure oil acts.
  • the fluid chamber 32 is always communicated with the low pressure chamber 11 via the pilot port operation check valve 44, and the fluid chamber 32 is Since it is possible to communicate with the oil tank 50 via the discharge variable throttle 45, the spool 31 can be returned to the initial state (short stroke) more reliably by the discharge variable throttle 45.
  • FIG. 2 is a view at the start of operation, and the chisel 3 is pressed against the crushed material by a hydraulic excavator or the like through the cylinder 1. Further, the piston 2 inserted in the cylinder 1 is located at the forward end (striking point) by its own weight.
  • the spool of the main switching valve 20 moves to the left side in the figure, the low pressure port 20a and the reversing port 20c communicate, and the reversing chamber 5 Since it communicates with the oil tank 50, the pressure is low.
  • the high pressure oil always flows into the high pressure chamber 7 via the high pressure pipe 55 and acts on the pilot port of the pilot operated check valve 44 to block the pilot operated check valve 44.
  • the high pressure oil that has always flowed into the high pressure chamber 7 acts on the return pressure receiving surface 2v and generates an upward force (right direction in the figure), while the pressure in the reversing chamber 5 acting on the impact pressure receiving surface 2u is low.
  • the piston 2 starts to rise (right direction in the figure).
  • the high pressure oil in the high pressure chamber 7 always flows from the short pilot chamber 13 to the short pilot port 30c and the long pilot port 30b of the stroke switching valve 30.
  • the long pilot chamber 12 flows into the pilot port 20B of the main switching valve 20 via the piping and the piping 23, and the spool of the main switching valve 20 moves to the right side in the figure by the action of this high pressure oil.
  • the high pressure port 20b and the reversing port 20c of the main switching valve 20 communicate with each other, and the high pressure oil from the hydraulic pump 10 flows into the reversing chamber 5 through the reversing pipe 22, and the reversing chamber 5 becomes high pressure.
  • the low pressure chamber 11 and the long pilot chamber 12 are always communicated via the communication chamber 6, and the long pilot chamber 12 is connected to the pilot port of the main switching valve 20 via the pipe 23. Since it communicates with 20B, the pilot port 20B has a low pressure, and the spool of the main switching valve 20 moves to the left in the figure. For this reason, the low pressure port 20a and the reverse port 20c of the main switching valve 20 communicate with each other, and the reverse chamber 5 connected to the reverse port 20c via the reverse pipe 22 becomes low pressure, returning to the state of FIG. As described above, by repeating the operations of FIGS. 2 to 5, the piston 2 continuously strikes the chisel 3 with a short stroke (the return pressure receiving surface 2v is turned back at the position of the short pilot chamber 13).
  • the high pressure oil pushed out from the fluid discharge valve 41 is always blocked by the check valve 42 in the direction of the low pressure chamber 11 and does not flow, and the amount discharged from the discharge variable throttle 45 is adjusted, and the pressure control valve It flows into the fluid chamber 32 from the pilot port 33 of the stroke switching valve 30 via 43. At this time, high pressure is acting on the pilot port of the pilot operation check valve 44 inserted between the pilot port 33 of the stroke switching valve 30 and the low pressure chamber 11 at all times. The valve 44 is shut off. (Fig. 4)
  • the oil discharged from the fluid discharge valve 41 sequentially flows into the fluid chamber 32 of the stroke switching valve 30 in the stroke stroke of the piston 2, and the oil is always discharged from the low pressure chamber 11 in the return stroke.
  • oil is accumulated in the fluid chamber 32, and the stroke switching valve moves in accordance with the accumulated amount to switch from the short stroke to the long stroke.
  • the oil accumulated in the fluid chamber 32 resists a spring pushing the spool 31 inserted in the stroke switching valve 30 in the right direction in the figure, and the spool 31 sequentially moves in the left direction in the figure, and the short pilot chamber 13
  • the short pilot port 30c connected to the long pilot port 30b and the long pilot port 30b connected to the long pilot chamber 12 are blocked (FIG. 6).
  • the time until switching from the short stroke to the long stroke is adjusted by changing the discharge amount for each stroke by adjusting the operation stroke of the spool in the fluid discharge valve 41 or by adjusting the discharge variable throttle 45.
  • the amount flowing into the fluid chamber 32 can be changed by adjusting both.
  • the piston 2 causes the chisel 3 to move with a long stroke (the return pressure receiving surface 2v is folded back at the position of the long pilot chamber 12) while the spool 31 of the stroke switching valve 30 is located on the left side in the figure. Strike continuously.
  • the long stroke is repeated and the crushed material breaks, when the pedal 51 is stopped, the high pressure pipe 55 is connected to the low pressure pipe 52 by the switching valve 53, and the high pressure oil is supplied to the striking device. Is stopped and the driving of the striking device is stopped.
  • the spool 31 is moved to the right in the figure by the force of the spring, and the stroke switching valve 30 is reset to the initial state (the short pilot port 30c and the long pilot port 30b are in communication). Therefore, when the striking device is actuated by stepping on the pedal 51 at the start of the next operation, the striking device starts from the short stroke striking in the state shown in FIGS. 2 to 8, and is automatically converted into a long stroke for striking.
  • the discharge variable throttle 45 allows time adjustment from a short stroke to a long stroke by adjusting the flow rate into the fluid chamber 32, and also enables switching from a long stroke to a short stroke.
  • FIG. 9 and FIG. 10 show the unit 100 (FIG. 9) and the simple unit 100A (FIG. 10), and it is possible to easily use the hydraulic striking device according to the purpose of use. That is, FIG. 9 is the same as FIG. 1 and shows a unit 100 that can automatically convert a short stroke to a long stroke, and FIG. 10 shows a simple unit 100A when used as a long stroke.
  • the unit 100 shown in FIG. 9 includes the stroke switching valve 30, the fluid discharge valve 41, the check valve 42, the pressure control valve 43, the pilot operation check valve 44, piping, and the like shown in FIG. When connected, the hydraulic striking device can automatically convert from a short stroke to a long stroke.
  • the simple unit 100A shown in FIG. 10 does not include the stroke switching valve 30, the fluid discharge valve 41, the check valve 42, the pressure control valve 43, and the pilot operation check valve 44, and the stroke switching pilot.
  • the piping connected to the hole 40, the constant high pressure chamber 7, the constant low pressure chamber 11, the short pilot chamber 13, etc. is closed.
  • the hydrostatic striking device when the unit 100 is installed can automatically convert from a short stroke to a long stroke as already described above.
  • the high-pressure pipe 55 is connected to the discharge side of the hydraulic pump 10 via the pedal 51, and the high-pressure chamber 7 is always in a high-pressure state.
  • the reversing chamber 5 becomes high pressure via the main switching valve 20, and high pressure oil acts on both the impact pressure receiving surface 2u and the return pressure receiving surface 2v.
  • the pressure receiving area of the impact pressure receiving surface 2u is as follows.
  • the low pressure chamber 11 and the long pilot chamber 12 are always communicated via the communication chamber 6, and the long pilot chamber 12 is connected to the main switching valve 20 via the pipe 23. Since the pilot port 20B communicates with the pilot port 20B, the pilot port 20B has a low pressure, and the spool of the main switching valve 20 moves to the left side in the figure. For this reason, the low pressure port 20a of the main switching valve 20 and the reverse port 20c communicate with each other, the reverse chamber 5 connected to the reverse port 20c via the reverse pipe 22 becomes low pressure, and the piston 2 starts to rise again. .
  • the piston 2 repeats the long stroke operation in which the return pressure receiving surface 2v rises until it reaches the long pilot chamber 12, and then starts to descend.
  • the striking device can be automatically converted from a short stroke to a long stroke.
  • the simple unit 100A is provided, the striking device has a long stroke. Can easily cope with the situation.
  • FIG. 11 shows a second embodiment of the present invention.
  • the second embodiment is characterized in that an inflow variable throttle 46 and a check valve 47 are provided in series instead of the fluid discharge valve 41 in the first embodiment.
  • Other configurations in the second embodiment are the same as those in the first embodiment described above, and the same portions are denoted by the same reference numerals and the description thereof is omitted.
  • a certain amount of oil is supplied to the fluid chamber 32 when the fluid pressure in the reversing chamber 5 changes from low pressure to high pressure.
  • the high pressure oil of the inversion chamber 5 is extracted by predetermined amount per unit time, and is supplied to the fluid chamber 32.
  • FIG. The check valve 47 prevents oil from flowing back into the reversing chamber 5 via the check valve 42.
  • the oil is stored in the fluid chamber 32 at a constant speed via the inflow variable throttle 46 while the high-pressure oil is supplied to the reversing chamber 5.
  • the amount of oil in the fluid chamber 32 can be increased in proportion to the operation time of the fluid pressure striking device.
  • the operation time of the fluid pressure striking device reaches a predetermined time, the piston is moved from the short stroke to the long stroke. Can automatically switch to stroke.
  • FIG. 12 shows a third embodiment of the present invention.
  • the third embodiment is characterized in that the pilot operated check valve 44 in the first embodiment is deleted.
  • Other configurations in the third embodiment are the same as those in the first embodiment described above, and the same portions are denoted by the same reference numerals and the description thereof is omitted.
  • the pilot operation check valve 44 functions to discharge the oil stored in the fluid chamber 32 when the operation of the striking device is stopped.
  • the pilot operation check valve 44 performs this pilot operation. Since there is no check valve 44, the oil stored in the fluid chamber 32 is discharged through the discharge restrictor 45 when the operation of the striking device is stopped.
  • the oil discharge by the discharge variable throttle 45 requires a longer time than the case of using the pilot operated check valve 44, but the amount of oil remaining in the fluid chamber 32 when the operation of the striking device is resumed is equivalent to the initial state. So that the discharge time is adjusted. As a result, in the third embodiment, even if the pilot operation check valve 44 in the first embodiment is deleted, the same function as the striking device can be achieved.
  • discharge variable throttle 45 in each embodiment and the inflow variable throttle 46 in the second embodiment may be a simple throttle without a variable function.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Mechanical Engineering (AREA)
  • Automation & Control Theory (AREA)
  • Percussive Tools And Related Accessories (AREA)

Abstract

In this fluid pressure hammering device, which automatically switches/controls the stroke of a piston in accordance with the rock quality of a rock to be pulverized, control accuracy is increased. A strike-switching pilot hole (40) for removing high-pressure oil during hammering is provided to a reversal chamber (5). By means of a fluid ejection valve (41) that operates by incurring the hydraulic pressure from the stroke-switching pilot hole (40), oil is successively collected in a fluid chamber (32) provided to a stroke switching valve (30), and when the amount of oil in the fluid chamber (32) exceeds a baseline amount, short strokes are switched to long strokes by means of the switching of the stroke switching valve (30).

Description

流体圧式打撃装置Fluid pressure hammer
 本発明は、油圧式等の流体圧式打撃装置に関するものであり、特に岩盤等の破砕物が硬くて一定時間打撃しても割れないときに打撃力を自動で増大することのできる流体圧式打撃装置に関するものである。 The present invention relates to a hydraulic-type hammering device such as a hydraulic type, and in particular, a hydraulic-type hammering device capable of automatically increasing a hammering force when a crushed material such as a rock is hard and does not break even when hit for a certain time. It is about.
 油圧式等の打撃装置を用いて岩盤等を破砕する作業は、打撃装置のチゼルの先端を破砕物に押し当て、打撃装置に内挿されたピストンの往復運動によりチゼルの後端を連続打撃することにより行われる。
 ピストンがチゼルを打撃するときの打撃力は、ピストンを前進加勢する推力が等しい場合、より長いストロークでピストンを往復運動させることにより、より大きな打撃力を得ることができる。
 岩盤には軟らかい岩盤から硬い岩盤までさまざまなものがあり、破砕する岩盤等が軟らかいときはピストンのストロークを短くして、打撃力は弱いが打撃数の多いモードで作動させ、岩盤等が硬いときには、ピストンのストロークを長くして、打撃数は少ないが打撃力の強いモードで作動させることにより、効率よく破砕作業を行なうことができる。
The work of crushing the rock mass etc. using a hydraulic hitting device presses the tip of the chisel of the hitting device against the crushed material and continuously hits the rear end of the chisel by the reciprocating motion of the piston inserted in the hitting device. Is done.
As for the striking force when the piston strikes the chisel, a larger striking force can be obtained by reciprocating the piston with a longer stroke when the thrust for urging the piston forward is equal.
There are various types of rocks, from soft rocks to hard rocks. When the rocks to be crushed are soft, the piston stroke is shortened. The crushing operation can be efficiently performed by increasing the stroke of the piston and operating in a mode in which the number of hits is small but the hitting force is strong.
 従来、流体圧式打撃装置のピストンのストロークを岩盤の硬さに応じて自動的に調整する方法として、チゼルの岩盤への食い込み量を、打撃によるピストンの前進量により検知してピストンのストロークを切り換える方法が提案されている。(特許文献1)
 さらに、破砕物の硬さの違いによって、ピストンの上下の部屋の圧力差に違いが生じることを利用してストロークを切り換える方法が提案されている。(特許文献2)
Conventionally, as a method for automatically adjusting the stroke of the piston of the hydraulic hammering device according to the hardness of the rock mass, the amount of biting into the rock mass of the chisel is detected by the amount of advancement of the piston due to the hammering, and the piston stroke is switched. A method has been proposed. (Patent Document 1)
Furthermore, a method has been proposed in which the stroke is switched by utilizing the difference in pressure difference between the upper and lower chambers of the piston due to the difference in hardness of the crushed material. (Patent Document 2)
特開2003-311651号公報JP2003-311651 特開2005-177899号公報JP 2005-177899 A
 前記特許文献1に開示の打撃装置では、ピストンが所定の打撃位置より前進したことを検知することによりストロークを切り換える。しかし、実際の打撃装置による破砕作業ではピストンを内挿するシリンダは空間的に固定されているわけではなく、油圧ショベル等により破砕物に押しつけられて移動するため、破砕物が割れ始めたときピストンは所定の打撃位置より前進するが、同時にシリンダ自体も油圧ショベル等による押し付け力によって前進するため、シリンダに対してピストンが所定の打撃位置より前進する移動距離は非常に微妙なものとなり、チゼルが破砕物に食い込んでいく量の確実な検知は難しく、的確なストローク制御を行なうことは困難であった。 In the striking device disclosed in Patent Document 1, the stroke is switched by detecting that the piston has advanced from a predetermined striking position. However, in a crushing operation using an actual striking device, the cylinder in which the piston is inserted is not spatially fixed, and is moved against the crushed material by a hydraulic excavator or the like. Moves forward from a predetermined striking position, but at the same time, the cylinder itself moves forward by the pressing force of a hydraulic excavator or the like, so the moving distance by which the piston moves forward from the predetermined striking position with respect to the cylinder becomes very delicate, and the chisel It was difficult to reliably detect the amount of biting into the crushed material, and it was difficult to perform accurate stroke control.
 また、前記特許文献2に開示の、ピストンの上下の部屋の圧力差に基づいてストロークを切換える方法では、打撃時に各室に生じる圧力は、岩盤の硬さに加え、油温や粘性等にも影響されるため、硬い岩盤と軟らかい岩盤を打撃したときのそれぞれの発生圧力の違いを的確に検知するのは困難であり、この違いによるストロークの切換えは、非常に不安定となる問題点があった。
 そこで、本発明では、かかる課題を解消する流体圧式打撃装置を提供するものである。
Further, in the method of switching the stroke based on the pressure difference between the upper and lower chambers of the piston disclosed in Patent Document 2, the pressure generated in each chamber at the time of striking is not only the hardness of the rock mass but also the oil temperature, viscosity, etc. Therefore, it is difficult to accurately detect the difference in generated pressure when striking hard rock and soft rock, and the change of stroke due to this difference is very unstable. It was.
Therefore, the present invention provides a fluid pressure striking device that eliminates such a problem.
 本発明の第1発明の流体圧式打撃装置は、シリンダ内に打撃用受圧面と戻り用受圧面を有する打撃用ピストンを往復動可能に嵌挿し、戻り用受圧面には常に高圧の流体圧を作用させ、打撃用受圧面を形成する反転室にはメイン切換弁を介して高圧の流体圧と低圧の流体圧を交互に作用させることによりピストンを往復動させ、かつ、ピストンのストロークがストローク切換弁によってショートストロークとロングストロークに切換可能に構成されている。
 また、シリンダのピストン摺動部分の内壁には、ピストンのショートストロークを規定するショートパイロット室と、ロングストロークを規定するロングパイロット室とが、それぞれ溝状に形成され、
 ストローク切換弁は、反転室に高圧の流体が供給される回数、若しくは時間に応じて流体を蓄える流体室を備え、流体室の流体量に応じて作動し、流体室の流体量が基準量より少ない間は、ピストンの戻り用受圧面がショートパイロット室に対応する位置まで戻ったところで、メイン切換弁を切り換え作動させて反転室に高圧流体を供給し、流体室の流体量が基準量より多くなると、ピストンの戻り用受圧面がロングパイロット室に対応する位置まで戻ったところで、メイン切換弁を切り換え作動させて反転室に高圧流体を供給することを特徴とする。
 本発明の第1発明によれば、流体圧式打撃装置は、破砕作業当初、流体室に蓄えられた流体量が少ない間は、ピストンがショートストロークで作動し、一定時間連続打撃しても破砕されないときに流体室に蓄えられた流体量が基準量より多くなると、自動でより力の強いロングストロークに切り換わる。このように流体圧式打撃装置を作動開始後の時間の経過に応じてショートストロークからロングストロークに切り換えるため、岩盤の硬さに応じて精度良くピストンのストロークの切換を行うことができ、効率的に破砕作業を行なうことができる。
In the fluid pressure striking device according to the first aspect of the present invention, a striking piston having a striking pressure receiving surface and a returning pressure receiving surface is fitted in a cylinder so as to be able to reciprocate, and a high pressure fluid pressure is always applied to the returning pressure receiving surface. The reversing chamber, which forms the pressure receiving surface for impact, causes the piston to reciprocate by alternately applying a high pressure fluid pressure and a low pressure fluid pressure via the main switching valve, and the stroke of the piston switches the stroke. The valve can be switched between a short stroke and a long stroke.
Further, on the inner wall of the piston sliding portion of the cylinder, a short pilot chamber that defines a short stroke of the piston and a long pilot chamber that defines a long stroke are formed in a groove shape,
The stroke switching valve has a fluid chamber that stores fluid according to the number of times or time that high-pressure fluid is supplied to the reversing chamber, and operates according to the amount of fluid in the fluid chamber. For a short time, when the return pressure receiving surface of the piston returns to the position corresponding to the short pilot chamber, the main switching valve is switched to supply high pressure fluid to the reversing chamber, and the fluid volume in the fluid chamber is larger than the reference volume. In this case, when the return pressure receiving surface of the piston returns to the position corresponding to the long pilot chamber, the main switching valve is switched to supply high pressure fluid to the reversing chamber.
According to the first invention of the present invention, the hydraulic pressure striking device operates at a short stroke when the amount of fluid stored in the fluid chamber is small at the beginning of the crushing operation, and is not crushed even if continuously struck for a certain period of time. When the amount of fluid stored in the fluid chamber sometimes exceeds the reference amount, it automatically switches to a longer stroke with stronger force. In this way, the hydraulic striking device is switched from a short stroke to a long stroke with the passage of time after the start of operation, so the piston stroke can be switched with high accuracy according to the hardness of the rock mass, efficiently. Crushing work can be performed.
 本発明の第2発明は、上記第1発明の流体圧式打撃装置であって、反転室の流体圧が低圧から高圧に切り換わったとき、スプールが作動して所定量の流体を流体室に供給する流体吐出弁が設けられていることを特徴とする。
 本発明の第2発明によれば、反転室の流体圧が低圧から高圧に切り換えられる毎に、流体吐出弁によりパルス状の流体を流体室に供給する。従って、流体室の流体量はピストンの作動回数に比例させることができ、ピストンの作動回数が予め決められた回数に達したとき、ピストンをショートストロークからロングストロークに自動的に切り換えることができる。
The second invention of the present invention is the fluid pressure striking device according to the first invention, wherein when the fluid pressure in the reversing chamber is switched from a low pressure to a high pressure, the spool is operated to supply a predetermined amount of fluid to the fluid chamber. A fluid discharge valve is provided.
According to the second aspect of the present invention, every time the fluid pressure in the reversing chamber is switched from the low pressure to the high pressure, the fluid discharge valve supplies the pulsed fluid to the fluid chamber. Accordingly, the amount of fluid in the fluid chamber can be proportional to the number of piston operations, and when the number of piston operations reaches a predetermined number, the piston can be automatically switched from a short stroke to a long stroke.
 本発明の第3発明は、上記第2発明の流体圧式打撃装置であって、流体吐出弁内のスプールの作動ストロークは調整可能であることを特徴とする。
 本発明の第3発明によれば、流体吐出弁内のスプールの作動ストロークを調整可能としたため、流体吐出弁から流体室に供給される1回当たりの流体量を調整することができ、ピストンの作動中、流体室に蓄えられる流体量の増加速度を調整して、ピストンがショートストロークからロングストロークに切り換えられるタイミングを調整することができる。
A third invention of the present invention is the fluid pressure striking device of the second invention, characterized in that the operation stroke of the spool in the fluid discharge valve is adjustable.
According to the third aspect of the present invention, since the operation stroke of the spool in the fluid discharge valve can be adjusted, the amount of fluid per one time supplied from the fluid discharge valve to the fluid chamber can be adjusted. During operation, the speed at which the piston is switched from the short stroke to the long stroke can be adjusted by adjusting the increasing speed of the amount of fluid stored in the fluid chamber.
 本発明の第4発明は、上記第1発明の流体圧式打撃装置であって、反転室の高圧流体を単位時間当たり所定量づつ抽出して流体室に供給する流入用絞りが設けられていることを特徴とする。
 本発明の第4発明によれば、反転室に高圧の流体が供給されている間に、流入用絞りを介して一定速度で流体室に流体が蓄えられる。従って、流体室の流体量は流体圧式打撃装置の作動時間に比例させることができ、流体圧式打撃装置の作動時間が予め決められた時間に達したとき、ピストンをショートストロークからロングストロークに自動的に切り換えることができる。
According to a fourth aspect of the present invention, there is provided the fluid pressure type striking device according to the first aspect, wherein an inflow throttle is provided for extracting the high pressure fluid in the reversing chamber by a predetermined amount per unit time and supplying the fluid chamber to the fluid chamber. It is characterized by.
According to the fourth aspect of the present invention, while high-pressure fluid is supplied to the reversing chamber, the fluid is stored in the fluid chamber at a constant speed via the inflow restrictor. Therefore, the amount of fluid in the fluid chamber can be proportional to the operation time of the hydraulic striking device, and when the operation time of the hydraulic striking device reaches a predetermined time, the piston is automatically changed from a short stroke to a long stroke. Can be switched to.
 本発明の第5発明は、上記第1乃至第4発明のいずれかの流体圧式打撃装置であって、流体室には、蓄えた流体を徐々に排出する排出用絞りが接続されていることを特徴とする。
 本発明の第5発明によれば、流体室に排出用絞りが接続され、流体室に蓄えられる流体を徐々に排出するため、この排出量を調整することにより、流体室に蓄えられる流体の増加速度を調整することができる。
A fifth invention of the present invention is the fluid pressure type striking device according to any one of the first to fourth inventions, wherein a discharge restrictor for gradually discharging the stored fluid is connected to the fluid chamber. Features.
According to the fifth aspect of the present invention, the discharge restrictor is connected to the fluid chamber, and the fluid stored in the fluid chamber is gradually discharged. Therefore, the amount of fluid stored in the fluid chamber can be increased by adjusting the discharge amount. The speed can be adjusted.
 本発明の第6発明は、上記第1乃至第5発明のいずれかの流体圧式打撃装置であって、ストローク切換弁は、ショートパイロット室に連通されたショートパイロットポートと、ロングパイロット室に連通されたロングパイロットポートとを備え、流体室の流体量が基準量より少ない間は、ショートパイロットポートとロングパイロットポートとを連通させ、流体室の流体量が基準量より多くなると、ショートパイロットポートとロングパイロットポートとの連通を遮断し、ショートパイロット室若しくはロングパイロット室を介して供給される、戻り用受圧面に供給される高圧流体を、ロングパイロットポートから取り出してメイン切換弁のパイロットポートに供給して、メイン切換弁を切換作動して反転室に高圧流体を供給することを特徴とする。
 本発明の第6発明によれば、ストローク切換弁は、そのショートパイロットポートとロングパイロットポートとを流体室の流体量に応じて連通、遮断するのみの構成により、ショートストロークとロングストロークとを切り換えることができるので、ストローク切換弁の構成を簡略化することができる。
A sixth aspect of the present invention is the fluid pressure striking device according to any one of the first to fifth aspects, wherein the stroke switching valve is communicated with the short pilot port communicated with the short pilot chamber and the long pilot chamber. When the fluid volume in the fluid chamber is less than the reference amount, the short pilot port and the long pilot port are connected, and when the fluid amount in the fluid chamber exceeds the reference amount, the short pilot port and the long pilot port are connected. The high-pressure fluid supplied to the return pressure receiving surface, which is cut off from the pilot port and supplied through the short pilot chamber or long pilot chamber, is removed from the long pilot port and supplied to the pilot port of the main switching valve. The high pressure fluid is supplied to the reversing chamber by switching the main switching valve. To.
According to the sixth aspect of the present invention, the stroke switching valve switches between the short stroke and the long stroke by simply connecting and shutting off the short pilot port and the long pilot port according to the amount of fluid in the fluid chamber. Therefore, the configuration of the stroke switching valve can be simplified.
 本発明の第7発明は、上記第1乃至第6発明の流体圧式打撃装置であって、流体室には、ピストンの往復動を停止させるとき、蓄えた流体を排出させる排出弁が接続されていることを特徴とする。
 本発明の第7発明によれば、流体室には排出弁が接続されているため、流体圧式打撃装置が作動停止されると、直ちに流体室に蓄えられた流体を排出させることができる。このため、流体圧式打撃装置が短い周期で作動、停止を繰り返したときにも、流体圧式打撃装置の作動開始時には、常に初期状態から流体室へ流体を蓄え始めることができ、流体圧式打撃装置の作動の仕方に係らずショートストロークからロングストロークへの自動切換の精度を良くすることができる。
A seventh aspect of the present invention is the fluid pressure striking device according to the first to sixth aspects of the present invention, wherein a discharge valve for discharging the stored fluid is connected to the fluid chamber when the reciprocation of the piston is stopped. It is characterized by being.
According to the seventh aspect of the present invention, since the discharge valve is connected to the fluid chamber, the fluid stored in the fluid chamber can be immediately discharged when the hydraulic striking device is stopped. For this reason, even when the hydraulic striking device is repeatedly operated and stopped in a short cycle, at the start of operation of the hydraulic striking device, the fluid can always be stored in the fluid chamber from the initial state. Regardless of the manner of operation, the accuracy of automatic switching from short stroke to long stroke can be improved.
本発明に係る流体圧式打撃装置の第1の実施形態の概略図である。1 is a schematic view of a first embodiment of a hydraulic striking device according to the present invention. 上記実施形態におけるピストン上昇時(作動開始時)の説明図である。It is explanatory drawing at the time of piston raising (at the time of an operation | movement start) in the said embodiment. 上記実施形態におけるショートストローク時のピストン下降開始時の説明図である。It is explanatory drawing at the time of the piston fall start at the time of the short stroke in the said embodiment. 上記実施形態におけるショートストローク時のピストン下降中の説明図である。It is explanatory drawing under the piston fall at the time of the short stroke in the said embodiment. 上記実施形態におけるショートストローク時のピストン上昇中の説明図である。It is explanatory drawing under the piston raising at the time of the short stroke in the said embodiment. 上記実施形態におけるロングストロークに切り換わり後のピストン下降中の説明図である。It is explanatory drawing in the piston descending after switching to the long stroke in the said embodiment. 上記実施形態におけるロングストローク時のピストン上昇中の説明図である。It is explanatory drawing during the piston raising at the time of the long stroke in the said embodiment. 上記実施形態におけるロングストローク時のピストン下降開始時の説明図である。It is explanatory drawing at the time of the piston fall start at the time of the long stroke in the said embodiment. 上記実施形態における主要部をユニット化した例を示す。The example which united the principal part in the said embodiment is shown. 図9におけるユニットを簡易ユニットに置き換えた例を示す。The example which replaced the unit in FIG. 9 with the simple unit is shown. 本発明に係る流体圧式打撃装置の第2の実施形態の概略図である。It is the schematic of 2nd Embodiment of the hydraulic-type impact apparatus which concerns on this invention. 本発明に係る流体圧式打撃装置の第3の実施形態の概略図である。It is the schematic of 3rd Embodiment of the hydraulic striking device which concerns on this invention.
<第1の実施形態>
 以下、本発明における第1の実施形態を図面に基づいて説明する。
図1は本発明の実施の形態を示す流体圧式打撃装置の概略を示し、図2~図8は本発明の打撃装置の作動の状態を順次示している。
 本発明の流体圧式打撃装置は、シリンダ1内にピストン2が軸方向に進退動可能に内挿され、ピストン2の前方(図示左)にはチゼル3が装着され、ピストン2の後端部(図示右側)には打撃時にピストン2を加勢する、例えば、窒素などのガスが封入されたガス室4を備えている。
<First Embodiment>
Hereinafter, a first embodiment of the present invention will be described with reference to the drawings.
FIG. 1 shows an outline of a hydraulic striking device according to an embodiment of the present invention, and FIGS. 2 to 8 sequentially show states of operation of the striking device of the present invention.
In the hydraulic striking device of the present invention, a piston 2 is inserted into a cylinder 1 so as to be capable of moving back and forth in the axial direction, a chisel 3 is mounted in front of the piston 2 (left side in the drawing), and a rear end portion of the piston 2 ( On the right side of the figure, there is provided a gas chamber 4 for energizing the piston 2 at the time of impact, for example, containing a gas such as nitrogen.
 また、この打撃装置にはピストン2の進退動を切換えるメイン切換弁20とピストン2のストロークを切換えるストローク切換弁30、および該ストローク切換弁に作用してストロークを切換えるための流体圧信号を発生させるための流体吐出弁41とストローク切換弁30のパイロットポート33に流入する流体の流体圧を規制する圧力制御弁43とが備えられている。
 前記ピストン2には、図1に示す右から順に小径部2a、第1大径部2b、中間部2c、第1大径部と同じ径の第2大径部2d、および中径部2eを備えており、中径部2eの径は小径部2aの径より大きく、大径部2b、2dの径より小さくなるように形成されている。また、第1大径部2bの右端面がリング状の打撃用受圧面2uであり、第2大径部2dの左端面がリング状の戻り用受圧面2vである。
Further, in this striking device, a main switching valve 20 for switching the forward / backward movement of the piston 2, a stroke switching valve 30 for switching the stroke of the piston 2, and a fluid pressure signal for operating the stroke switching valve to switch the stroke are generated. And a pressure control valve 43 that regulates the fluid pressure of the fluid flowing into the pilot port 33 of the stroke switching valve 30.
The piston 2 includes a small diameter portion 2a, a first large diameter portion 2b, an intermediate portion 2c, a second large diameter portion 2d having the same diameter as the first large diameter portion, and an intermediate diameter portion 2e in order from the right shown in FIG. The diameter of the middle diameter part 2e is larger than the diameter of the small diameter part 2a and is smaller than the diameters of the large diameter parts 2b and 2d. The right end surface of the first large diameter portion 2b is a ring-shaped impact pressure receiving surface 2u, and the left end surface of the second large diameter portion 2d is a ring-shaped return pressure receiving surface 2v.
 シリンダ1のピストン摺動部分の内壁には、図示右側から反転室5、常時低圧室11、ロングパイロット室12、ショートパイロット室13、および常時高圧室7がそれぞれリング状の溝状に形成されている。また、常時高圧室7、ショートパイロット室13、ロングパイロット室12、常時低圧室11の各室の配置位置は、後述するピストン2の動作状態に応じてメイン切換弁20を切換えるために配置してある。即ち、ピストン2の往復運動時の位置によって常時高圧室7がショートパイロット室13又はロングパイロット室12と連通または不通となるように、また、常時低圧室11がロングパイロット室12と連通または不通となるように配設されている。 A reversing chamber 5, a constantly low pressure chamber 11, a long pilot chamber 12, a short pilot chamber 13, and a constantly high pressure chamber 7 are formed in a ring-shaped groove on the inner wall of the piston sliding portion of the cylinder 1 from the right side of the figure. Yes. Also, the arrangement positions of the constant high pressure chamber 7, the short pilot chamber 13, the long pilot chamber 12, and the constant low pressure chamber 11 are arranged to switch the main switching valve 20 in accordance with the operating state of the piston 2 described later. is there. That is, the high pressure chamber 7 is always in communication with or disconnected from the short pilot chamber 13 or the long pilot chamber 12 depending on the position of the piston 2 during reciprocating motion, and the low pressure chamber 11 is always in communication with or out of communication with the long pilot chamber 12. It is arranged to become.
 油圧源となる油圧ポンプ10は、ペダル51によって切り換わる切換弁53に接続してあり、ペダル51を踏んでいると、切換弁53によって、高圧配管55は前記油圧ポンプ10の吐出側に接続されて常時高圧室7を高圧状態にする一方、ペダル51を踏まない状態にすると、高圧配管55は低圧配管52に接続されて低圧側になる(図1参照)。
 又、同様に、油タンク50は低圧配管52で常時低圧室11に接続されているとともにメイン切換弁20を介して反転室5と連通する状態と遮断する状態とのいずれかに切り換えられるように構成されている。即ち、メイン切換弁20は、反転室5が高圧の油圧ポンプ10、又は低圧の油タンク50のいずれか一方と連通するように切り換えられるように構成してある。
The hydraulic pump 10 serving as a hydraulic source is connected to a switching valve 53 that is switched by a pedal 51. When the pedal 51 is depressed, the high-pressure pipe 55 is connected to the discharge side of the hydraulic pump 10 by the switching valve 53. When the high pressure chamber 7 is always in a high pressure state and the pedal 51 is not depressed, the high pressure pipe 55 is connected to the low pressure pipe 52 and becomes a low pressure side (see FIG. 1).
Similarly, the oil tank 50 is always connected to the low-pressure chamber 11 via the low-pressure pipe 52 and can be switched between the state communicating with the reversing chamber 5 and the state shut off via the main switching valve 20. It is configured. That is, the main switching valve 20 is configured to be switched so that the reversing chamber 5 communicates with either the high pressure hydraulic pump 10 or the low pressure oil tank 50.
 前記メイン切換弁20の一方のパイロットポート20Aには、高圧油を作用させることができ、もう一方のパイロットポート20Bはロングパイロット室12に接続してあり、ロングパイロット室12の高圧油又は低圧油を作用させることにより、メイン切換弁20は切換えられる。
 即ち、メイン切換弁20は、パイロットポート20Bに高圧油が作用すると、該メイン切換弁20のスプールは図示右側に移動して高圧ポート20bと反転ポート20cが連通し、低圧油が作用するとスプールはパイロットポート20Aにかかる高圧油によって図示左側に押し戻され、低圧ポート20aと反転ポート20cが連通するように構成してある。
High pressure oil can be applied to one pilot port 20A of the main switching valve 20, and the other pilot port 20B is connected to the long pilot chamber 12. The main switching valve 20 is switched by operating.
That is, when high pressure oil acts on the pilot port 20B, the main selector valve 20 moves the spool of the main selector valve 20 to the right side in the figure so that the high pressure port 20b and the reverse port 20c communicate with each other. The high pressure oil applied to the pilot port 20A is pushed back to the left in the figure so that the low pressure port 20a and the reverse port 20c communicate with each other.
 また、ストローク切換弁30は、内挿されたスプール31とバネにより構成され、該ストローク切換弁30の内部にはスプール31に押力を与えるバネの対抗位置に流体室32が設けられている。該流体室32の油量が基準量より少ない間は、スプール31はバネの力により図示右方向に押されて、ロングパイロットポート30bとショートパイロットポート30cは連通する。一方、流体室32内の油量が徐々に増加し、バネ力に抗してスプールが図示左方向に移動し、流体室32内の油量が基準量より多くなると、ロングパイロットポート30bとショートパイロットポート30cは遮断される。尚、前記ストローク切換弁30はバネ式であるが、油圧式、ガス式等,その形式は種々選択可能である。 The stroke switching valve 30 is composed of an inserted spool 31 and a spring, and a fluid chamber 32 is provided inside the stroke switching valve 30 at a position opposed to the spring that applies a pressing force to the spool 31. While the oil amount in the fluid chamber 32 is less than the reference amount, the spool 31 is pushed rightward in the figure by the force of the spring, and the long pilot port 30b and the short pilot port 30c communicate with each other. On the other hand, when the amount of oil in the fluid chamber 32 gradually increases, the spool moves in the left direction against the spring force, and the amount of oil in the fluid chamber 32 exceeds the reference amount, the long pilot port 30b and the short circuit are shorted. The pilot port 30c is blocked. The stroke switching valve 30 is a spring type, but various types such as a hydraulic type and a gas type can be selected.
 さらに、ストローク切換用のパイロット信号を取り出すために、ストローク切換用パイロット孔40が反転室5に設けられていて、該ストローク切換用パイロット孔40は流体吐出弁41と接続されている。また、この流体吐出弁41は、ストローク切換用パイロット孔40からの高圧の油圧を受けると所定量の油を吐出し、その油は圧力制御弁43に流れて油圧が制御され、パイロットポート33の流体室32に流れると共に排出用可変絞り45を経て油タンク50にも接続されているので、前記排出用可変絞り45により、前記流体室32に蓄積する油量を調整することができる。即ち、この排出用可変絞り45の調節によって、流体室32に蓄積される油量の調整ができるので、後述する、ショートストロークからロングストロークへの切換時間を調整できる。
 なお、前記流体吐出弁41が油を吐出するときは遮断し、該流体吐出弁41に油を供給する時には連通して油を通過させる逆止弁42を備えている。
Further, in order to take out a pilot signal for stroke switching, a stroke switching pilot hole 40 is provided in the reversing chamber 5, and the stroke switching pilot hole 40 is connected to a fluid discharge valve 41. The fluid discharge valve 41 discharges a predetermined amount of oil when it receives a high pressure oil pressure from the stroke switching pilot hole 40, and the oil flows to the pressure control valve 43 to control the oil pressure. Since it flows into the fluid chamber 32 and is also connected to the oil tank 50 via the discharge variable throttle 45, the amount of oil accumulated in the fluid chamber 32 can be adjusted by the discharge variable throttle 45. That is, since the amount of oil accumulated in the fluid chamber 32 can be adjusted by adjusting the variable discharge throttle 45, the switching time from a short stroke to a long stroke, which will be described later, can be adjusted.
The fluid discharge valve 41 is provided with a check valve 42 that shuts off when the oil is discharged, and communicates and passes the oil when the oil is supplied to the fluid discharge valve 41.
 さらに、本打撃装置が作動中のときに、流体室32に蓄えられた油を保持するとともに、作動が停止した時に開放して流体室32を常時低圧室11と連通させることによりスプール31を初期状態に戻すためのパイロットポート操作逆止弁44を(本発明における排出弁に相当)備えている。
 なお、このパイロットポート操作逆止弁44は、高圧油が作用しているときには、流体室32と常時低圧室11とは遮断され、低圧油が作用すると連通する。
 従って、スプール31を初期状態(ショートストローク)に戻すためには、流体室32を、パイロットポート操作逆止弁44を介して常時低圧室11と連通させることによって行われると共に、前記流体室32は排出用可変絞り45を経て油タンク50とも連通可能であるので、この排出用可変絞り45によって、より確実にスプール31を初期状態(ショートストローク)に戻すことができる。
Further, when the striking device is in operation, the oil stored in the fluid chamber 32 is retained, and when the operation is stopped, the oil is stored and the fluid chamber 32 is always in communication with the low-pressure chamber 11 so that the spool 31 is initialized. A pilot port operation check valve 44 for returning to the state is provided (corresponding to a discharge valve in the present invention).
The pilot port operation check valve 44 is disconnected from the fluid chamber 32 and the low-pressure chamber 11 at all times when high-pressure oil is acting, and communicates when low-pressure oil acts.
Therefore, in order to return the spool 31 to the initial state (short stroke), the fluid chamber 32 is always communicated with the low pressure chamber 11 via the pilot port operation check valve 44, and the fluid chamber 32 is Since it is possible to communicate with the oil tank 50 via the discharge variable throttle 45, the spool 31 can be returned to the initial state (short stroke) more reliably by the discharge variable throttle 45.
 次に図2~図8を参照して、本発明による流体圧式打撃装置が打撃開始時のショートストロークでの作動から破砕物が硬くて一定時間打撃しても破砕しないときに自動的により打撃力の大きなロングストロークでの作動に切換わる打撃動作について説明する。
 図2は、作動開始時の図であって、チゼル3はシリンダ1を介して油圧ショベル等により破砕物に押しつけられている。また、シリンダ1に内挿されたピストン2は自重により前進端(打点)の位置にある。
Next, referring to FIG. 2 to FIG. 8, when the hydraulic pressure striking device according to the present invention operates with a short stroke at the start of striking and the crushed material is hard and does not crush even if struck for a certain period of time, the striking force is automatically A striking operation that switches to an operation with a large long stroke will be described.
FIG. 2 is a view at the start of operation, and the chisel 3 is pressed against the crushed material by a hydraulic excavator or the like through the cylinder 1. Further, the piston 2 inserted in the cylinder 1 is located at the forward end (striking point) by its own weight.
 ストローク切換弁30に内挿されているスプール31は、バネの力により図示右側に移動しているため、ショートパイロットポート30c及びロングパイロットポート30bを介してショートパイロット室13とロングパイロット室12は連通している。
 また、反転室5に設けられたストローク切換用パイロット孔40に接続されている流体吐出弁41のスプールは、バネの力により図示上方に押されている。
 油圧ポンプ10を駆動して、ペダル51を踏み続けると、切換弁53によって、油圧ポンプ10から吐出された高圧油はメイン切換弁20のパイロットポート20Aに流入する一方、該メイン切換弁20のパイロットポート20Bはロングパイロット室12を経て常時低圧室11と連通して低圧であるので、メイン切換弁20のスプールは図示左側に移動し、低圧ポート20aと反転ポート20cが連通し、反転室5は油タンク50と連通するため低圧となる。
Since the spool 31 inserted in the stroke switching valve 30 moves to the right side of the figure by the force of the spring, the short pilot chamber 13 and the long pilot chamber 12 communicate with each other via the short pilot port 30c and the long pilot port 30b. is doing.
The spool of the fluid discharge valve 41 connected to the stroke switching pilot hole 40 provided in the reversing chamber 5 is pushed upward in the figure by the force of the spring.
When the hydraulic pump 10 is driven and the pedal 51 is continuously depressed, the high pressure oil discharged from the hydraulic pump 10 flows into the pilot port 20A of the main switching valve 20 by the switching valve 53, while the pilot of the main switching valve 20 is driven. Since the port 20B is always in the low pressure chamber 11 through the long pilot chamber 12 and is in a low pressure, the spool of the main switching valve 20 moves to the left side in the figure, the low pressure port 20a and the reversing port 20c communicate, and the reversing chamber 5 Since it communicates with the oil tank 50, the pressure is low.
 さらに、前記高圧油は、高圧配管55を経て常時高圧室7に流入すると共に、パイロット操作逆止弁44のパイロットポートに作用し、該パイロット操作逆止弁44を遮断する。
 常時高圧室7に流入した高圧油は、戻り用受圧面2vに作用し、上向きの力(図示右方向)を発生させる一方、打撃用受圧面2uに作用する反転室5の圧力は低圧のため、ピストン2は上昇(図示右方向)を始める。
Further, the high pressure oil always flows into the high pressure chamber 7 via the high pressure pipe 55 and acts on the pilot port of the pilot operated check valve 44 to block the pilot operated check valve 44.
The high pressure oil that has always flowed into the high pressure chamber 7 acts on the return pressure receiving surface 2v and generates an upward force (right direction in the figure), while the pressure in the reversing chamber 5 acting on the impact pressure receiving surface 2u is low. The piston 2 starts to rise (right direction in the figure).
 ピストン2が上昇し、戻り用受圧面2vがショートパイロット室13の位置に達すると、常時高圧室7の高圧油は、ショートパイロット室13からストローク切換弁30のショートパイロットポート30c、ロングパイロットポート30b、ロングパイロット室12に連通の配管及び配管23を経て、メイン切換弁20のパイロットポート20Bに流入し、この高圧油の作用により、メイン切換弁20のスプールは、図示右側に移動する。
 このため、該メイン切換弁20の高圧ポート20bと反転ポート20cが連通し、油圧ポンプ10からの高圧油が反転配管22を経て反転室5に流入し、反転室5は高圧となる。(図3)
 このため打撃用受圧面2uと戻り用受圧面2vの双方に高圧油が作用することになるが、打撃用受圧面2uの受圧面積は戻り用受圧面2vの受圧面積より大きく形成されているため、ピストン2を下方(図示左方向)に動かす力が大となり、さらにピストン2の後方に配置したガス室4に封入された窒素ガス等の圧力に加勢されてピストン2は下降(図示左方向)を始め、徐々に加速してチゼル3を打撃する。
When the piston 2 rises and the return pressure receiving surface 2v reaches the position of the short pilot chamber 13, the high pressure oil in the high pressure chamber 7 always flows from the short pilot chamber 13 to the short pilot port 30c and the long pilot port 30b of the stroke switching valve 30. The long pilot chamber 12 flows into the pilot port 20B of the main switching valve 20 via the piping and the piping 23, and the spool of the main switching valve 20 moves to the right side in the figure by the action of this high pressure oil.
For this reason, the high pressure port 20b and the reversing port 20c of the main switching valve 20 communicate with each other, and the high pressure oil from the hydraulic pump 10 flows into the reversing chamber 5 through the reversing pipe 22, and the reversing chamber 5 becomes high pressure. (Figure 3)
For this reason, high pressure oil acts on both the pressure receiving surface 2u for impact and the pressure receiving surface 2v for return, but the pressure receiving area of the pressure receiving surface 2u for impact is formed larger than the pressure receiving area of the pressure receiving surface 2v for return. The force to move the piston 2 downward (leftward in the figure) becomes large, and the piston 2 is lowered (leftward in the figure) by being energized by the pressure of nitrogen gas or the like enclosed in the gas chamber 4 disposed behind the piston 2. And gradually accelerate and hit the chisel 3.
 ピストン2がチゼル3を打撃する位置(打点)では、常時低圧室11とロングパイロット室12が連通室6を介して連通し、ロングパイロット室12は配管23を介してメイン切換弁20のパイロットポート20Bに連通しているため、該パイロットポート20Bは低圧となり、メイン切換弁20のスプールは図示左側に移動する。
 このため、該メイン切換弁20の低圧ポート20aと反転ポート20cが連通し、該反転ポート20cと反転配管22を介して接続されている反転室5が低圧となり、図2の状態に戻る。
 以上のように、図2~図5の動作を繰り返すことにより、ピストン2は、ショートストローク(戻り用受圧面2vがショートパイロット室13の位置で折り返す)でチゼル3を連続打撃する。
At the position where the piston 2 strikes the chisel 3 (at the point of hitting), the low pressure chamber 11 and the long pilot chamber 12 are always communicated via the communication chamber 6, and the long pilot chamber 12 is connected to the pilot port of the main switching valve 20 via the pipe 23. Since it communicates with 20B, the pilot port 20B has a low pressure, and the spool of the main switching valve 20 moves to the left in the figure.
For this reason, the low pressure port 20a and the reverse port 20c of the main switching valve 20 communicate with each other, and the reverse chamber 5 connected to the reverse port 20c via the reverse pipe 22 becomes low pressure, returning to the state of FIG.
As described above, by repeating the operations of FIGS. 2 to 5, the piston 2 continuously strikes the chisel 3 with a short stroke (the return pressure receiving surface 2v is turned back at the position of the short pilot chamber 13).
 次に、前記のショートストロークの連続打撃を一定時間繰り返した後に、ピストン2のストロークが自動的にロングストロークに切換わる原理について以下説明する。
 ピストン2の打撃行程(図示左方向への移動)時、反転室5内に流入した高圧油はストローク切換用パイロット孔40を経て流体吐出弁41に流入する。
 この高圧油が流体吐出弁41のスプールに作用すると、スプールは図示下方に移動し、内部に溜まっていた油を高圧で押し出す。この流体吐出弁41より押し出された高圧油は、逆止弁42により常時低圧室11の方向へは遮断されていて流れず、排出用可変絞り45から排出する量が調節されて、圧力制御弁43を経てストローク切換弁30のパイロットポート33より流体室32に流入する。
 また、このとき、ストローク切換弁30のパイロットポート33と常時低圧室11の間に挿入されているパイロット操作逆止弁44のパイロットポートには、高圧が作用しているため、該パイロット操作逆止弁44は遮断されている。(図4)
Next, the principle that the stroke of the piston 2 is automatically switched to the long stroke after the above-described continuous short stroke is repeated for a certain time will be described below.
During the stroke of the piston 2 (movement in the left direction in the figure), the high pressure oil that has flowed into the reversing chamber 5 flows into the fluid discharge valve 41 through the stroke switching pilot hole 40.
When this high-pressure oil acts on the spool of the fluid discharge valve 41, the spool moves downward in the figure and pushes out the oil accumulated in the inside at a high pressure. The high pressure oil pushed out from the fluid discharge valve 41 is always blocked by the check valve 42 in the direction of the low pressure chamber 11 and does not flow, and the amount discharged from the discharge variable throttle 45 is adjusted, and the pressure control valve It flows into the fluid chamber 32 from the pilot port 33 of the stroke switching valve 30 via 43.
At this time, high pressure is acting on the pilot port of the pilot operation check valve 44 inserted between the pilot port 33 of the stroke switching valve 30 and the low pressure chamber 11 at all times. The valve 44 is shut off. (Fig. 4)
 ピストン2がチゼル3を打撃した後、戻り行程(図示右方向への移動)になると、反転室5は低圧となるため、反転室5と接続されている流体吐出弁41のスプールは、バネによって押し戻されるとともに、常時低圧室11から逆止弁42を経て前記流体吐出弁41内に油が供給される。
 このピストンの戻り行程時には常時低圧室11の圧力は若干上昇するが、このときに発生する流体圧がストローク切換弁30のパイロットポート33に作用しないように圧力制御弁43が調整されている(図5)。
After the piston 2 hits the chisel 3, when the return stroke (moving in the right direction in the figure) is reached, the reversing chamber 5 becomes low pressure, so the spool of the fluid discharge valve 41 connected to the reversing chamber 5 is While being pushed back, oil is always supplied from the low pressure chamber 11 through the check valve 42 into the fluid discharge valve 41.
During the return stroke of the piston, the pressure in the low pressure chamber 11 always increases slightly, but the pressure control valve 43 is adjusted so that the fluid pressure generated at this time does not act on the pilot port 33 of the stroke switching valve 30 (see FIG. 5).
 以上述べたように、ピストン2の打撃行程では、流体吐出弁41より吐出した油が、順次、ストローク切換弁30の流体室32に流入し、戻り行程では常時低圧室11より油が流体吐出弁41に供給されるという動作を繰り返すことにより、流体室32には油が蓄積され、その蓄積量に従ってストローク切換弁が移動してショートストロークからロングストロークに切り換わる。即ち、流体室32に蓄積される油によって、ストローク切換弁30に内挿のスプール31を図示右方向に押しているバネに抗して、スプール31は図示左方向に順次移動し、ショートパイロット室13と接続されているショートパイロットポート30cとロングパイロット室12と接続のロングパイロットポート30b(メイン切換弁20のパイロットポート20B)は遮断される(図6)。
 なお、ショートストロークからロングストロークに切換るまでの時間調整は、流体吐出弁41内のスプールの作動ストロークの調整により1打撃ごとの吐出量を変えるか、又は、排出用可変絞り45の調整により、或いは、双方の調整により、流体室32に流入する量を変更して行うことができる。
As described above, the oil discharged from the fluid discharge valve 41 sequentially flows into the fluid chamber 32 of the stroke switching valve 30 in the stroke stroke of the piston 2, and the oil is always discharged from the low pressure chamber 11 in the return stroke. By repeating the operation of being supplied to 41, oil is accumulated in the fluid chamber 32, and the stroke switching valve moves in accordance with the accumulated amount to switch from the short stroke to the long stroke. That is, the oil accumulated in the fluid chamber 32 resists a spring pushing the spool 31 inserted in the stroke switching valve 30 in the right direction in the figure, and the spool 31 sequentially moves in the left direction in the figure, and the short pilot chamber 13 The short pilot port 30c connected to the long pilot port 30b and the long pilot port 30b connected to the long pilot chamber 12 (the pilot port 20B of the main switching valve 20) are blocked (FIG. 6).
The time until switching from the short stroke to the long stroke is adjusted by changing the discharge amount for each stroke by adjusting the operation stroke of the spool in the fluid discharge valve 41 or by adjusting the discharge variable throttle 45. Alternatively, the amount flowing into the fluid chamber 32 can be changed by adjusting both.
 そして、打撃直後のピストン2は、反転室5が低圧となって打撃用受圧面2uにかかる圧力が低圧であるため、上昇(図示右方向)を開始する。このとき、ピストン2の上昇過程で、戻り用受圧面2vがショートパイロット室13の位置に達しても、ストローク切換弁30のショートパイロットポート30cとロングパイロットポート30bは遮断状態で、ロングパイロット室12(ロングパイロットポート30b)に配管23を介して連通しているパイロットポート20Bの圧力は変わらないので、メイン切換弁20は切換わらず、ピストン2の戻り用受圧面2vはショートパイロット室13の位置を通過してさらに上昇(図示右方向)を続ける(図7)。
 そして、戻り用受圧面2vがロングパイロット室12の位置に達すると、常時高圧室7に流入している高圧油は、ロングパイロット室12から配管23を介してメイン切換弁20のパイロットポート20Bに流入し、パイロットポート20Bは高圧になり、メイン切換弁20のスプールは切り換わって図示右側に移動する。
 このため、メイン切換弁20の高圧ポート20bと反転ポート20cが連通し、油圧ポンプ10から吐出される高圧油が反転配管22を経て反転室5に流入し、反転室5は高圧となる(図8)。
The piston 2 immediately after striking starts to rise (rightward in the drawing) because the reversing chamber 5 is at a low pressure and the pressure applied to the striking pressure receiving surface 2u is low. At this time, even if the return pressure receiving surface 2v reaches the position of the short pilot chamber 13 during the ascending process of the piston 2, the short pilot port 30c and the long pilot port 30b of the stroke switching valve 30 are in a disconnected state, and the long pilot chamber 12 Since the pressure of the pilot port 20B communicating with the (long pilot port 30b) via the pipe 23 does not change, the main switching valve 20 is not switched, and the return pressure receiving surface 2v of the piston 2 is positioned at the position of the short pilot chamber 13. And continue to rise (right direction in the figure) (FIG. 7).
When the return pressure receiving surface 2v reaches the position of the long pilot chamber 12, the high pressure oil always flowing into the high pressure chamber 7 flows from the long pilot chamber 12 to the pilot port 20B of the main switching valve 20 via the pipe 23. The pilot port 20B becomes high pressure, the spool of the main switching valve 20 is switched, and moves to the right side in the figure.
For this reason, the high pressure port 20b and the reversing port 20c of the main switching valve 20 communicate with each other, and the high pressure oil discharged from the hydraulic pump 10 flows into the reversing chamber 5 through the reversing pipe 22, and the reversing chamber 5 becomes high pressure (FIG. 8).
 打撃用受圧面2uには高圧が作用し、ピストン2は下降(図示左方向)を始め、さらに、ガス室4に封入された窒素ガス等にも加勢されて徐々に加速してチゼル3を打撃する。
 ピストン2がチゼル3を打撃する位置(打点)では、常時低圧室11とロングパイロット室12は連通室6を介して連通していると共に、ロングパイロット室12はメイン切換弁20のパイロットポート20Bに連通するため、該パイロットポート20Bは低圧となり、メイン切換弁20のスプールは図示左側に移動する。このため、該切換弁の低圧ポート20aと反転ポート20cが連通し、該反転ポートと反転配管22を介して接続されている反転室5が低圧となり、再びピストン2は上昇を開始する。
High pressure is applied to the pressure receiving surface 2u for impact, and the piston 2 starts to descend (in the left direction in the figure), and is further urged by nitrogen gas or the like enclosed in the gas chamber 4 to gradually accelerate and strike the chisel 3 To do.
At the position where the piston 2 strikes the chisel 3 (spot), the low pressure chamber 11 and the long pilot chamber 12 are always in communication with each other via the communication chamber 6, and the long pilot chamber 12 is connected to the pilot port 20 </ b> B of the main switching valve 20. Because of the communication, the pilot port 20B has a low pressure, and the spool of the main switching valve 20 moves to the left side in the figure. For this reason, the low pressure port 20a and the reverse port 20c of the switching valve communicate with each other, the reverse chamber 5 connected to the reverse port via the reverse pipe 22 becomes low pressure, and the piston 2 starts to rise again.
 以上の動作を繰り返すことにより、ピストン2はストローク切換弁30のスプール31が図示左側に位置している間、ロングストローク(戻り用受圧面2vがロングパイロット室12の位置で折り返す)でチゼル3を連続打撃する。
 そして、前記ロングストロークを繰り返していて、破砕物が割れるなどしたとき、ペダル51を踏むのを止めると、切換弁53によって高圧配管55は低圧配管52に接続され、打撃装置への高圧油の供給がストップされて打撃装置の駆動が停止される。このとき、パイロット操作逆止弁44のパイロットポートへの高圧油の供給も停止するため、該パイロット操作逆止弁44は開放状態となり、ストローク切換弁30の流体室32の油は該パイロット操作逆止弁44を経て常時低圧室11へ流出するか、又は、排出用可変絞り45を介して油タンク50に逃がされるか、或いは双方に流出される。
By repeating the above operation, the piston 2 causes the chisel 3 to move with a long stroke (the return pressure receiving surface 2v is folded back at the position of the long pilot chamber 12) while the spool 31 of the stroke switching valve 30 is located on the left side in the figure. Strike continuously.
When the long stroke is repeated and the crushed material breaks, when the pedal 51 is stopped, the high pressure pipe 55 is connected to the low pressure pipe 52 by the switching valve 53, and the high pressure oil is supplied to the striking device. Is stopped and the driving of the striking device is stopped. At this time, the supply of high-pressure oil to the pilot port of the pilot operation check valve 44 is also stopped, so that the pilot operation check valve 44 is opened, and the oil in the fluid chamber 32 of the stroke switching valve 30 is returned to the pilot operation reverse valve. It always flows out to the low-pressure chamber 11 through the stop valve 44, or escapes to the oil tank 50 through the discharge restrictor 45, or flows out to both.
 このため、スプール31は、バネの力により図示右側に移動し、ストローク切換弁30は初期状態(ショートパイロットポート30cとロングパイロットポート30bが連通状態)にリセットされる。
 そのため、次回作動開始時に、ペダル51を踏んで打撃装置を作動させると、図2~図8に示す状態のショートストロークの打撃から開始し、ロングストロークに自動変換して打撃を行う。
 なお、前記排出用可変絞り45は、前記流体室32内への流量調整によって、ショートストロークからロングストロークへの時間調整を可能にすると共に、ロングストロークからショートストロークに確実に切り換えを可能にする。
For this reason, the spool 31 is moved to the right in the figure by the force of the spring, and the stroke switching valve 30 is reset to the initial state (the short pilot port 30c and the long pilot port 30b are in communication).
Therefore, when the striking device is actuated by stepping on the pedal 51 at the start of the next operation, the striking device starts from the short stroke striking in the state shown in FIGS. 2 to 8, and is automatically converted into a long stroke for striking.
The discharge variable throttle 45 allows time adjustment from a short stroke to a long stroke by adjusting the flow rate into the fluid chamber 32, and also enables switching from a long stroke to a short stroke.
 以上述べたように破砕物が一定時間以内で破砕される場合は、打撃数の多いショートストロークでの打撃を行ない、一定時間連続打撃しても破砕されない場合は、自動的により力の強いロングストロークに切換えることで、より効率的な破砕作業を行なうことができる。 As described above, when the crushed material is crushed within a certain time, the long stroke with a large number of strikes is performed. By switching to, more efficient crushing work can be performed.
 次に、図9及び図10は、ユニット100(図9)と、簡易ユニット100A(図10)を示すものであり、流体圧式打撃装置を使用目的によって、簡便に使い分けることを可能にする。
 即ち、図9は前記図1と同じであり、ショートストロークからロングストロークに自動変換できるユニット100であり、図10はロングストロークとして使用する場合の簡易ユニット100Aである。
 図9に示すユニット100は、図1に示すストローク切換弁30、流体吐出弁41、逆止弁42、圧力制御弁43、パイロット操作逆止弁44及び配管等を備えていて、このユニット100を接続すると、流体圧式打撃装置はショートストロークからロングストロークに自動変換できる。
Next, FIG. 9 and FIG. 10 show the unit 100 (FIG. 9) and the simple unit 100A (FIG. 10), and it is possible to easily use the hydraulic striking device according to the purpose of use.
That is, FIG. 9 is the same as FIG. 1 and shows a unit 100 that can automatically convert a short stroke to a long stroke, and FIG. 10 shows a simple unit 100A when used as a long stroke.
The unit 100 shown in FIG. 9 includes the stroke switching valve 30, the fluid discharge valve 41, the check valve 42, the pressure control valve 43, the pilot operation check valve 44, piping, and the like shown in FIG. When connected, the hydraulic striking device can automatically convert from a short stroke to a long stroke.
 一方、図10に示す簡易ユニット100Aは、ストローク切換弁30、流体吐出弁41、逆止弁42、圧力制御弁43、パイロット操作逆止弁44を備えていなくて、且つ、前記ストローク切換用パイロット孔40、常時高圧室7、常時低圧室11、ショートパイロット室13等と接続する配管は閉鎖してある。 On the other hand, the simple unit 100A shown in FIG. 10 does not include the stroke switching valve 30, the fluid discharge valve 41, the check valve 42, the pressure control valve 43, and the pilot operation check valve 44, and the stroke switching pilot. The piping connected to the hole 40, the constant high pressure chamber 7, the constant low pressure chamber 11, the short pilot chamber 13, etc. is closed.
 前記ユニット100を設置したときの流体圧式打撃装置は、既に前記で説明したようにショートストロークからロングストロークに自動変換できる。
 一方、簡易ユニット100Aを設置したときには、ペダル51を介して高圧配管55は油圧ポンプ10の吐出側に接続され、常時高圧室7を高圧状態にする。また、反転室5はメイン切換弁20を介して高圧になり、打撃用受圧面2uと戻り用受圧面2vの双方に高圧油が作用することになるが、打撃用受圧面2uの受圧面積は戻り用受圧面2vの受圧面積より大きく形成されているため、ピストン2を下方(図示左方向)に動かす力が大となり、さらにピストン2の後方に配置したガス室4に封入された窒素ガス等の圧力に加勢されてピストン2は下降(図示左方向)を始め、徐々に加速してチゼル3を打撃する。
The hydrostatic striking device when the unit 100 is installed can automatically convert from a short stroke to a long stroke as already described above.
On the other hand, when the simple unit 100A is installed, the high-pressure pipe 55 is connected to the discharge side of the hydraulic pump 10 via the pedal 51, and the high-pressure chamber 7 is always in a high-pressure state. Further, the reversing chamber 5 becomes high pressure via the main switching valve 20, and high pressure oil acts on both the impact pressure receiving surface 2u and the return pressure receiving surface 2v. However, the pressure receiving area of the impact pressure receiving surface 2u is as follows. Since it is formed larger than the pressure receiving area of the return pressure receiving surface 2v, the force for moving the piston 2 downward (to the left in the figure) becomes large, and further nitrogen gas sealed in the gas chamber 4 disposed behind the piston 2 or the like. The piston 2 starts to descend (in the left direction in the figure) and is gradually accelerated to strike the chisel 3.
 また、ピストン2がチゼル3を打撃する位置(打点)では、常時低圧室11とロングパイロット室12が連通室6を介して連通し、ロングパイロット室12は配管23を介してメイン切換弁20のパイロットポート20Bに連通しているため、該パイロットポート20Bは低圧となり、メイン切換弁20のスプールは図示左側に移動する。このため、該メイン切換弁20の低圧ポート20aと反転ポート20cが連通し、該反転ポート20cと反転配管22を介して接続されている反転室5が低圧となり、再びピストン2は上昇を開始する。
 そして、ピストン2は、戻り用受圧面2vがロングパイロット室12に到るまで上昇し、その後、下降を開始するという、ロングストロークの操作を繰り返す。
 以上のように、流体圧式打撃装置にユニット100をセットするとショートストロークからロングストロークに自動変換できる打撃装置となるし、簡易ユニット100Aを備えるとロングストロークの打撃となるので、この流体圧式打撃装置は容易に状況に対応することができる。
Further, at the position where the piston 2 strikes the chisel 3 (at the point of hitting), the low pressure chamber 11 and the long pilot chamber 12 are always communicated via the communication chamber 6, and the long pilot chamber 12 is connected to the main switching valve 20 via the pipe 23. Since the pilot port 20B communicates with the pilot port 20B, the pilot port 20B has a low pressure, and the spool of the main switching valve 20 moves to the left side in the figure. For this reason, the low pressure port 20a of the main switching valve 20 and the reverse port 20c communicate with each other, the reverse chamber 5 connected to the reverse port 20c via the reverse pipe 22 becomes low pressure, and the piston 2 starts to rise again. .
The piston 2 repeats the long stroke operation in which the return pressure receiving surface 2v rises until it reaches the long pilot chamber 12, and then starts to descend.
As described above, when the unit 100 is set in the fluid pressure striking device, the striking device can be automatically converted from a short stroke to a long stroke. When the simple unit 100A is provided, the striking device has a long stroke. Can easily cope with the situation.
<第2の実施形態>
 図11は本発明の第2の実施形態を示す。この第2の実施形態は、上述の第1の実施形態における流体吐出弁41に代えて、流入用可変絞り46及び逆止弁47を直列接続して設けたことを特徴とする。第2の実施形態におけるそれ以外の構成は、上述の第1の実施形態と同一であり、同一部分には同一符号を付して再度の説明は割愛する。
 第1の実施形態の流体吐出弁41では、反転室5内の流体圧が低圧から高圧に変化したとき、一定量の油を流体室32に供給している。これに対し、第2の実施形態の流入用可変絞り46では、反転室5の高圧油を単位時間当たり所定量づつ抽出して流体室32に供給している。なお、逆止弁47は、逆止弁42を介して反転室5に油が逆流しないようにしている。
 この結果、反転室5に高圧油が供給されている間に、流入用可変絞り46を介して一定速度で流体室32に油が蓄えられる。従って、流体室32の油量は流体圧式打撃装置の作動時間に比例して上昇させることができ、流体圧式打撃装置の作動時間が予め決められた時間に達したとき、ピストンをショートストロークからロングストロークに自動的に切り換えることができる。
<Second Embodiment>
FIG. 11 shows a second embodiment of the present invention. The second embodiment is characterized in that an inflow variable throttle 46 and a check valve 47 are provided in series instead of the fluid discharge valve 41 in the first embodiment. Other configurations in the second embodiment are the same as those in the first embodiment described above, and the same portions are denoted by the same reference numerals and the description thereof is omitted.
In the fluid discharge valve 41 of the first embodiment, a certain amount of oil is supplied to the fluid chamber 32 when the fluid pressure in the reversing chamber 5 changes from low pressure to high pressure. On the other hand, in the variable throttle 46 for inflow of 2nd Embodiment, the high pressure oil of the inversion chamber 5 is extracted by predetermined amount per unit time, and is supplied to the fluid chamber 32. FIG. The check valve 47 prevents oil from flowing back into the reversing chamber 5 via the check valve 42.
As a result, the oil is stored in the fluid chamber 32 at a constant speed via the inflow variable throttle 46 while the high-pressure oil is supplied to the reversing chamber 5. Accordingly, the amount of oil in the fluid chamber 32 can be increased in proportion to the operation time of the fluid pressure striking device. When the operation time of the fluid pressure striking device reaches a predetermined time, the piston is moved from the short stroke to the long stroke. Can automatically switch to stroke.
<第3の実施形態>
 図12は本発明の第3の実施形態を示す。この第3の実施形態は、上述の第1の実施形態におけるパイロット操作逆止弁44を削除したことを特徴とする。第3の実施形態におけるそれ以外の構成は、上述の第1の実施形態と同一であり、同一部分には同一符号を付して再度の説明は割愛する。
 第1の実施形態においてパイロット操作逆止弁44は打撃装置の操作を停止したときに流体室32に蓄えられていた油を排出する機能を果たしているが、第3の実施形態では、このパイロット操作逆止弁44がないため、打撃装置の操作を停止したときに排出用可変絞り45を介して流体室32に蓄えられていた油を排出することになる。排出用可変絞り45による油の排出は、パイロット操作逆止弁44による場合に比べて長時間を要するが、打撃装置の作動再開時に流体室32に残される油の量が初期状態と同等となるように排出時間が調整される。
 この結果、第3の実施形態では、第1の実施形態におけるパイロット操作逆止弁44を削除しても、打撃装置として遜色のない機能を果たさせることができる。
<Third Embodiment>
FIG. 12 shows a third embodiment of the present invention. The third embodiment is characterized in that the pilot operated check valve 44 in the first embodiment is deleted. Other configurations in the third embodiment are the same as those in the first embodiment described above, and the same portions are denoted by the same reference numerals and the description thereof is omitted.
In the first embodiment, the pilot operation check valve 44 functions to discharge the oil stored in the fluid chamber 32 when the operation of the striking device is stopped. In the third embodiment, the pilot operation check valve 44 performs this pilot operation. Since there is no check valve 44, the oil stored in the fluid chamber 32 is discharged through the discharge restrictor 45 when the operation of the striking device is stopped. The oil discharge by the discharge variable throttle 45 requires a longer time than the case of using the pilot operated check valve 44, but the amount of oil remaining in the fluid chamber 32 when the operation of the striking device is resumed is equivalent to the initial state. So that the discharge time is adjusted.
As a result, in the third embodiment, even if the pilot operation check valve 44 in the first embodiment is deleted, the same function as the striking device can be achieved.
 本発明は、上記実施形態で説明した外観、構成に限定されず、本発明の要旨を変更しない範囲で種々の変更、追加、削除が可能である。例えば、各実施形態における排出用可変絞り45、及び第2の実施形態における流入用可変絞り46は、可変機能のない単なる絞りとしても良い。 The present invention is not limited to the appearance and configuration described in the above embodiment, and various modifications, additions, and deletions are possible without departing from the spirit of the present invention. For example, the discharge variable throttle 45 in each embodiment and the inflow variable throttle 46 in the second embodiment may be a simple throttle without a variable function.
1 シリンダ
2 ピストン
2a 小径部
2b 第1大径部
2c 中間部
2d 第2大径部
2e 中径部
2u 打撃用受圧面
2v 戻り用受圧面
3 チゼル
4 ガス室
5 反転室
6 連通室
7 常時高圧室
10 油圧ポンプ
11 常時低圧室
12 ロングパイロット室
13 ショートパイロット室
20 メイン切換弁
20A パイロットポート(常時高圧)
20B パイロットポート(反転)
20a 低圧ポート
20b 高圧ポート
20c 反転ポート
22 反転配管
30 ストローク切換弁
30a 低圧ポート
30b ロングパイロットポート
30c ショートパイロットポート
31 スプール
32 流体室
33 パイロットポート
40 ストローク切換用パイロット孔
41 流体吐出弁
42 逆止弁
43 圧力制御弁
44 パイロット操作逆止弁(排出弁)
45 排出用可変絞り(排出用絞り)
46 流入用可変絞り(流入用絞り)
47 逆止弁
                                                                                
DESCRIPTION OF SYMBOLS 1 Cylinder 2 Piston 2a Small diameter part 2b 1st large diameter part 2c Intermediate | middle part 2d 2nd large diameter part 2e Medium diameter part 2u Impact pressure receiving surface 2v Return pressure receiving surface 3 Chisel 4 Gas chamber 5 Reversing chamber 6 Communication chamber 7 Always high pressure Chamber 10 Hydraulic pump 11 Normal low pressure chamber 12 Long pilot chamber 13 Short pilot chamber 20 Main switching valve 20A Pilot port (always high pressure)
20B Pilot port (reverse)
20a Low pressure port 20b High pressure port 20c Reverse port 22 Reverse pipe 30 Stroke switching valve 30a Low pressure port 30b Long pilot port 30c Short pilot port 31 Spool 32 Fluid chamber 33 Pilot port 40 Pilot hole 41 for stroke switching Fluid discharge valve 42 Check valve 43 Pressure control valve 44 Pilot operated check valve (discharge valve)
45 Variable aperture for discharge (throttle for discharge)
46 Variable throttle for inflow (throttle for inflow)
47 Check valve

Claims (7)

  1.  シリンダ内に打撃用受圧面と戻り用受圧面を有する打撃用ピストンを往復動可能に嵌挿し、戻り用受圧面には常に高圧の流体圧を作用させ、打撃用受圧面を形成する反転室にはメイン切換弁を介して高圧の流体圧と低圧の流体圧を交互に作用させることにより前記ピストンを往復動させ、かつ、ピストンのストロークがストローク切換弁によってショートストロークとロングストロークに切換可能に構成された流体圧式打撃装置であって、
     前記シリンダのピストン摺動部分の内壁には、ピストンのショートストロークを規定するショートパイロット室と、ロングストロークを規定するロングパイロット室とが、それぞれ溝状に形成され、
     前記ストローク切換弁は、前記反転室に高圧の流体が供給される回数、若しくは時間に応じて流体を蓄える流体室を備え、流体室の流体量に応じて作動し、流体室の流体量が基準量より少ない間は、ピストンの戻り用受圧面がショートパイロット室に対応する位置まで戻ったところで、メイン切換弁を切り換え作動させて反転室に高圧流体を供給し、流体室の流体量が基準量より多くなると、ピストンの戻り用受圧面がロングパイロット室に対応する位置まで戻ったところで、メイン切換弁を切り換え作動させて反転室に高圧流体を供給する
     ことを特徴とする流体圧式打撃装置。
    A striking piston having a striking pressure receiving surface and a return pressure receiving surface is fitted in the cylinder so as to be able to reciprocate, and a high pressure fluid pressure is always applied to the return pressure receiving surface to form a reversing chamber that forms the striking pressure receiving surface. Is configured to reciprocate the piston by alternately applying high and low fluid pressures via the main switching valve, and the stroke of the piston can be switched between short stroke and long stroke by the stroke switching valve. A hydraulic striking device, comprising:
    On the inner wall of the piston sliding portion of the cylinder, a short pilot chamber that defines a short stroke of the piston and a long pilot chamber that defines a long stroke are each formed in a groove shape,
    The stroke switching valve includes a fluid chamber that stores fluid according to the number of times or time when a high-pressure fluid is supplied to the reversing chamber, and operates according to the amount of fluid in the fluid chamber. When the return pressure receiving surface of the piston returns to the position corresponding to the short pilot chamber, the main switching valve is switched to supply high-pressure fluid to the reversing chamber. When the number is increased, the fluid pressure type striking device is characterized in that when the return pressure receiving surface of the piston returns to the position corresponding to the long pilot chamber, the high pressure fluid is supplied to the reversing chamber by switching the main switching valve.
  2.  請求項1に記載の流体圧式打撃装置であって、
     反転室の流体圧が低圧から高圧に切り換わったとき、スプールが作動して所定量の流体を流体室に供給する流体吐出弁が設けられていることを特徴とする流体圧式打撃装置。
    The hydraulic striking device according to claim 1,
    A fluid pressure striking device, wherein a fluid discharge valve is provided to supply a predetermined amount of fluid to the fluid chamber by operating the spool when the fluid pressure in the reversing chamber is switched from low pressure to high pressure.
  3.  請求項2に記載の流体圧式打撃装置であって、
     前記流体吐出弁内のスプールの作動ストロークを調整可能であることを特徴とする流体圧式打撃装置。
    The hydraulic striking device according to claim 2,
    A hydraulic striking device characterized in that an operating stroke of a spool in the fluid discharge valve can be adjusted.
  4.  請求項1に記載の流体圧式打撃装置であって、
     反転室の高圧流体を単位時間当たり所定量づつ抽出して流体室に供給する流入用絞りが設けられていることを特徴とする流体圧式打撃装置。
    The hydraulic striking device according to claim 1,
    A fluid pressure type striking device, characterized in that an inflow restrictor is provided for extracting a predetermined amount of high-pressure fluid in a reversing chamber per unit time and supplying it to the fluid chamber.
  5.  請求項1乃至4のいずれかに記載の流体圧式打撃装置であって、
     前記流体室には、蓄えた流体を徐々に排出する排出用絞りが接続されていることを特徴とする流体圧式打撃装置。
    A hydraulic pressure striking device according to any one of claims 1 to 4,
    The fluid pressure striking device is characterized in that a discharge throttle for gradually discharging the stored fluid is connected to the fluid chamber.
  6.  請求項1乃至5のいずれかに記載の流体圧式打撃装置であって、
     前記ストローク切換弁は、前記ショートパイロット室に連通されたショートパイロットポートと、前記ロングパイロット室に連通されたロングパイロットポートとを備え、
     前記流体室の流体量が基準量より少ない間は、ショートパイロットポートとロングパイロットポートとを連通させ、前記流体室の流体量が基準量より多くなると、ショートパイロットポートとロングパイロットポートとの連通を遮断し、ショートパイロット室若しくはロングパイロット室を介して供給される、戻り用受圧面に供給される高圧流体を、ロングパイロットポートから取り出してメイン切換弁のパイロットポートに供給して、メイン切換弁を切換作動して前記反転室に高圧流体を供給することを特徴とする流体圧式打撃装置。
    A hydraulic striking device according to any one of claims 1 to 5,
    The stroke switching valve includes a short pilot port communicated with the short pilot chamber, and a long pilot port communicated with the long pilot chamber,
    When the fluid volume in the fluid chamber is less than the reference amount, the short pilot port and the long pilot port are communicated. When the fluid amount in the fluid chamber is greater than the reference amount, the short pilot port and the long pilot port are communicated. The high-pressure fluid supplied to the return pressure receiving surface that is shut off and supplied through the short pilot chamber or the long pilot chamber is taken out from the long pilot port and supplied to the pilot port of the main switching valve. A fluid pressure striking device characterized in that a high pressure fluid is supplied to the reversing chamber by switching operation.
  7.  請求項1乃至6のいずれかに記載の流体圧式打撃装置であって、
     前記流体室には、ピストンの往復動を停止させるとき、蓄えた流体を排出させる排出弁が接続されていることを特徴とする流体圧式打撃装置。
                                                                                    
    A fluid pressure striking device according to any one of claims 1 to 6,
    The fluid pressure striking device is characterized in that the fluid chamber is connected with a discharge valve for discharging the stored fluid when the reciprocation of the piston is stopped.
PCT/JP2011/069267 2010-08-27 2011-08-26 Fluid pressure hammering device WO2012026571A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-190618 2010-08-27
JP2010190618A JP2013233595A (en) 2010-08-27 2010-08-27 Fluid pressure hammering device

Publications (1)

Publication Number Publication Date
WO2012026571A1 true WO2012026571A1 (en) 2012-03-01

Family

ID=45723560

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/069267 WO2012026571A1 (en) 2010-08-27 2011-08-26 Fluid pressure hammering device

Country Status (2)

Country Link
JP (1) JP2013233595A (en)
WO (1) WO2012026571A1 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013083903A1 (en) * 2011-12-09 2013-06-13 Montabert Method for switching between striking stroke lengths of a percussive tool striking piston
ITMI20131315A1 (en) * 2013-08-02 2015-02-03 Antonio Ferraro LOCKING DEVICE FOR TOOLS
WO2015092875A1 (en) * 2013-12-18 2015-06-25 日本ニューマチック工業株式会社 Impact-driven tool
JPWO2015115105A1 (en) * 2014-01-30 2017-03-23 古河ロックドリル株式会社 Hydraulic striking device
CN109057790A (en) * 2018-10-22 2018-12-21 温州大学瓯江学院 A kind of mining machinery people
CN111219375A (en) * 2020-03-03 2020-06-02 马鞍山市卡迈特液压机械制造有限公司 Hydraulic breaking hammer reversing valve
EP3659752A4 (en) * 2017-07-24 2020-07-29 Furukawa Rock Drill Co., Ltd. Hydraulic hammering device
CN111699076A (en) * 2018-02-14 2020-09-22 蒙塔博特公司 Method for adjusting the impact stroke of an impact piston of a percussion device and percussion device for implementing said method
EP3885076A4 (en) * 2018-11-22 2022-08-10 Teisaku Corporation Fluid pressure striking device
JP7204256B1 (en) 2021-11-30 2023-01-16 油機エンジニアリング株式会社 Soil improvement device

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101592445B1 (en) * 2014-07-15 2016-02-11 대모 엔지니어링 주식회사 3 step variable auto stroke hydraulic breaker
KR101550899B1 (en) * 2015-07-23 2015-09-08 대모 엔지니어링 주식회사 2 step auto stroke hydraulic breaker
JP6713778B2 (en) * 2016-01-19 2020-06-24 古河ロックドリル株式会社 Hydraulic hammering device
KR101799576B1 (en) * 2016-07-27 2017-11-21 재단법인 건설기계부품연구원 Intelligent hydraulic breaker equipped with proximity sensor and construction equipment having the same
KR101709673B1 (en) * 2016-12-13 2017-03-09 대모 엔지니어링 주식회사 2 step auto stroke type hydraulic breaker
KR101918837B1 (en) * 2017-02-10 2018-11-16 대모 엔지니어링 주식회사 A hydraulic breaker, hydraulic fluid monitoring system and hydraulic fluid monitoring method
KR101919708B1 (en) * 2017-09-01 2019-02-11 대모 엔지니어링 주식회사 Hydraulic percussion device and construction equiqment having the same

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0493185A (en) * 1990-08-06 1992-03-25 Teisaku:Kk Converter for strike number in hydraulic braker
DE19812510A1 (en) * 1998-03-21 1999-09-23 Guenter Klemm Hydro percussive jackhammer with pressure and return lines
JP2003159667A (en) * 2001-11-20 2003-06-03 Furukawa Co Ltd Hydraulic striker stroke adjusting mechanism
JP2004082257A (en) * 2002-08-27 2004-03-18 Nippon Pneumatic Mfg Co Ltd Striking speed-variable impact tool
DE10237407A1 (en) * 2002-08-16 2004-04-22 Eurodrill Gmbh Hydraulically operated hammer, comprising additional control edge for opening fluid duct in case of excess motion of piston
KR20040095121A (en) * 2003-05-06 2004-11-12 이일재 Hydraulic percussion device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0493185A (en) * 1990-08-06 1992-03-25 Teisaku:Kk Converter for strike number in hydraulic braker
DE19812510A1 (en) * 1998-03-21 1999-09-23 Guenter Klemm Hydro percussive jackhammer with pressure and return lines
JP2003159667A (en) * 2001-11-20 2003-06-03 Furukawa Co Ltd Hydraulic striker stroke adjusting mechanism
DE10237407A1 (en) * 2002-08-16 2004-04-22 Eurodrill Gmbh Hydraulically operated hammer, comprising additional control edge for opening fluid duct in case of excess motion of piston
JP2004082257A (en) * 2002-08-27 2004-03-18 Nippon Pneumatic Mfg Co Ltd Striking speed-variable impact tool
KR20040095121A (en) * 2003-05-06 2004-11-12 이일재 Hydraulic percussion device

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9981371B2 (en) 2011-12-09 2018-05-29 Montabert Method for switching the striking stroke of a striking piston of a percussion device
FR2983760A1 (en) * 2011-12-09 2013-06-14 Montabert Roger METHOD FOR SWITCHING THE STROKE STROKE OF A STRIPPER PISTON OF A PERCUSSION APPARATUS
WO2013083903A1 (en) * 2011-12-09 2013-06-13 Montabert Method for switching between striking stroke lengths of a percussive tool striking piston
ITMI20131315A1 (en) * 2013-08-02 2015-02-03 Antonio Ferraro LOCKING DEVICE FOR TOOLS
EP2839910A3 (en) * 2013-08-02 2015-05-13 Antonio Ferraro Chuck locking device for spindles of machine tools
KR102069042B1 (en) 2013-12-18 2020-02-11 니폰 뉴매틱 고교 가부시키가이샤 Impact-driven tool
WO2015092875A1 (en) * 2013-12-18 2015-06-25 日本ニューマチック工業株式会社 Impact-driven tool
KR20160098229A (en) * 2013-12-18 2016-08-18 니폰 뉴매틱 고교 가부시키가이샤 Impact-driven tool
US10343272B2 (en) 2013-12-18 2019-07-09 Nippon Pneumatic Mfg. Co., Ltd. Impact-driven tool
JPWO2015115105A1 (en) * 2014-01-30 2017-03-23 古河ロックドリル株式会社 Hydraulic striking device
EP3659752A4 (en) * 2017-07-24 2020-07-29 Furukawa Rock Drill Co., Ltd. Hydraulic hammering device
US11590642B2 (en) 2017-07-24 2023-02-28 Furukawa Rock Drill Co., Ltd. Hydraulic hammering device
US12070844B2 (en) 2017-07-24 2024-08-27 Furukawa Rock Drill Co., Ltd. Hydraulic hammering device
CN111699076A (en) * 2018-02-14 2020-09-22 蒙塔博特公司 Method for adjusting the impact stroke of an impact piston of a percussion device and percussion device for implementing said method
CN109057790A (en) * 2018-10-22 2018-12-21 温州大学瓯江学院 A kind of mining machinery people
CN109057790B (en) * 2018-10-22 2024-10-15 温州理工学院 Mining robot
EP3885076A4 (en) * 2018-11-22 2022-08-10 Teisaku Corporation Fluid pressure striking device
US11850717B2 (en) 2018-11-22 2023-12-26 Teisaku Corporation Fluid pressure striking device
CN111219375A (en) * 2020-03-03 2020-06-02 马鞍山市卡迈特液压机械制造有限公司 Hydraulic breaking hammer reversing valve
JP7204256B1 (en) 2021-11-30 2023-01-16 油機エンジニアリング株式会社 Soil improvement device
JP2023080415A (en) * 2021-11-30 2023-06-09 油機エンジニアリング株式会社 Soil improving device

Also Published As

Publication number Publication date
JP2013233595A (en) 2013-11-21

Similar Documents

Publication Publication Date Title
WO2012026571A1 (en) Fluid pressure hammering device
US4899836A (en) Hydraulic percussion instrument and method of operating same
KR100436242B1 (en) Hydraulic shock hammer
JPH04289083A (en) Method and device for adjusting operating characteristic of striker for adaptability to hardness of material to be crushed
US6877569B2 (en) Method for controlling operating cycle of impact device, and impact device
JP2010513041A (en) Striking device
JP5396275B2 (en) Rock drilling method and rock drilling apparatus
AU2002253203A1 (en) Method for controlling operating cycle of impact device, and impact device
JP5830223B2 (en) Rock drill and method related to the rock drill
JP4838123B2 (en) Impact device and method for generating stress pulse in the device
JPH08216051A (en) Method and device to change blow stroke of blow device whichis operated by compressed incompressible fluid
JP5854536B2 (en) Pneumatic down-the-hole drill
JP2014513221A (en) Apparatus and method for machine excavation of rock and concrete
JP3986803B2 (en) Stroke adjustment mechanism of hydraulic striking device
EP1861228B1 (en) Percussion device
JP4488694B2 (en) Hydraulic striking device
JP2834744B2 (en) Automatic control device for impact force and number of impacts
US8739896B2 (en) Percussion device
JP7171035B2 (en) hydraulic percussion device
JP2759497B2 (en) Impact tool
JP2000271878A (en) Stroke adjustment device for hydraulic stroke device
KR20190101386A (en) Hydraulic blower
JP2007196293A (en) Hammering device
JP2018138321A (en) Hydraulic hammering device
JP2004082257A (en) Striking speed-variable impact tool

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11820031

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11820031

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP