WO2012026254A1 - System for supplying raw material, method for supplying raw material, and apparatus and method for manufacturing glass plate - Google Patents

System for supplying raw material, method for supplying raw material, and apparatus and method for manufacturing glass plate Download PDF

Info

Publication number
WO2012026254A1
WO2012026254A1 PCT/JP2011/066730 JP2011066730W WO2012026254A1 WO 2012026254 A1 WO2012026254 A1 WO 2012026254A1 JP 2011066730 W JP2011066730 W JP 2011066730W WO 2012026254 A1 WO2012026254 A1 WO 2012026254A1
Authority
WO
WIPO (PCT)
Prior art keywords
raw material
glass
pan
transport pan
transport
Prior art date
Application number
PCT/JP2011/066730
Other languages
French (fr)
Japanese (ja)
Inventor
伸也 森山
克也 末續
道人 佐々木
整 長野
英樹 櫛谷
Original Assignee
旭硝子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 旭硝子株式会社 filed Critical 旭硝子株式会社
Priority to CN201180041629.5A priority Critical patent/CN103097309B/en
Priority to JP2012530592A priority patent/JP5817729B2/en
Priority to KR1020137004922A priority patent/KR101791293B1/en
Publication of WO2012026254A1 publication Critical patent/WO2012026254A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B3/00Charging the melting furnaces
    • C03B3/02Charging the melting furnaces combined with preheating, premelting or pretreating the glass-making ingredients, pellets or cullet
    • C03B3/026Charging the melting furnaces combined with preheating, premelting or pretreating the glass-making ingredients, pellets or cullet by charging the ingredients into a flame, through a burner or equivalent heating means used to heat the melting furnace
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B3/00Charging the melting furnaces
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B5/00Melting in furnaces; Furnaces so far as specially adapted for glass manufacture
    • C03B5/04Melting in furnaces; Furnaces so far as specially adapted for glass manufacture in tank furnaces
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B7/00Distributors for the molten glass; Means for taking-off charges of molten glass; Producing the gob, e.g. controlling the gob shape, weight or delivery tact
    • C03B7/02Forehearths, i.e. feeder channels
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B7/00Distributors for the molten glass; Means for taking-off charges of molten glass; Producing the gob, e.g. controlling the gob shape, weight or delivery tact
    • C03B7/08Feeder spouts, e.g. gob feeders
    • C03B7/084Tube mechanisms
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/083Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound
    • C03C3/085Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound containing an oxide of a divalent metal
    • C03C3/087Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound containing an oxide of a divalent metal containing calcium oxide, e.g. common sheet or container glass
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/089Glass compositions containing silica with 40% to 90% silica, by weight containing boron
    • C03C3/091Glass compositions containing silica with 40% to 90% silica, by weight containing boron containing aluminium

Definitions

  • the present invention relates to a raw material supply apparatus and a raw material supply method for feeding a glass raw material into a glass melting tank, and a glass plate manufacturing apparatus and manufacturing method.
  • the glass material 1 in the hopper 2 is dropped (sent out) onto the transport pan 3 from the gap between the transport pan 3 and the hopper 2. Moreover, in this apparatus, the glass raw material 1 on the conveyance pan 3 is thrown into the glass melting tank 6 as the conveyance pan 3 moves backward.
  • the conveyance pan 3 is heated by the radiant heat from the glass melting tank 6 or the like, the glass raw material 1 on the conveyance pan 3 is denatured and the fluidity is lowered. It may be difficult to stably add a certain amount into the dissolution tank 6 at a time.
  • the glass raw material 1 on the conveyance pan 3 is input to the glass melting tank 6 as one raw material pile, it takes time until the input raw material is melted. When this time becomes long, the glass raw material 1 is often prepared by mixing a plurality of types of materials having different melting points, so that the composition of the molten glass tends to be non-uniform.
  • the present invention has been made in view of the above-mentioned problems, and it is possible to stably add a certain amount of glass raw material on a transport pan to a glass melting tank, and to dissolve the glass raw material in the glass melting tank.
  • An object of the present invention is to provide a raw material supply apparatus and raw material supply method capable of shortening the time and obtaining highly homogeneous glass, and a glass plate manufacturing apparatus and manufacturing method.
  • the raw material supply apparatus of the present invention comprises: A raw material supply apparatus having a hopper for storing glass raw material, a transport pan for transporting the glass raw material dropped from the hopper toward the glass melting tank, and an advancing / retreating mechanism for moving the transport pan toward and behind the glass melting tank
  • a cutter movable between the insertion position into the glass raw material on the transport pan and the standby position above the glass raw material on the transport pan; and an insertion member inserted into the glass raw material on the transport pan;
  • Have The insertion member relatively scrapes the glass raw material on the transport pan as the transport pan advances, and creates a plurality of raw material piles arranged in the width direction of the transport pan,
  • the raw material supply device in which the cutter at the insertion position pushes at least a part of each raw material pile on the transport pan relative to the transport pan and puts it into the glass melting tank as the transport pan moves backward. It is.
  • the raw material supply method of the present invention comprises: In the raw material supply method of dropping the glass raw material from the hopper onto the conveyance pan and moving the conveyance pan toward the glass dissolution vessel so that the glass raw material on the conveyance pan is put into the glass dissolution vessel,
  • the insertion member inserted into the glass raw material on the transport pan relatively scrapes the glass raw material on the transport pan as the transport pan advances, and a plurality of raw material stacks arranged in the width direction of the transport pan.
  • Make The cutter inserted into the glass raw material on the transport pan pushes out at least a part of each raw material pile on the transport pan relative to the transport pan as the transport pan moves backward, and the glass melting tank It is a raw material supply method thrown in to.
  • the apparatus for producing a glass plate of the present invention comprises: The raw material supply apparatus of the present invention, a glass melting apparatus for producing a molten glass by melting a glass raw material supplied by the raw material supply apparatus, and a molding apparatus for forming the molten glass produced by the glass melting apparatus into a plate shape The manufacturing apparatus of the glass plate which has these.
  • the method for producing the glass plate of the present invention comprises: It is the manufacturing method of the glass plate which manufactures a glass plate using the manufacturing apparatus of the glass plate of this invention.
  • the glass raw material on the transport pan can be stably fed into the glass melting tank in a fixed amount, and the melting time of the glass raw material in the glass melting tank can be shortened.
  • the raw material supply method and raw material supply apparatus which can obtain high glass, and the glass plate manufacturing apparatus and manufacturing method can be provided.
  • FIG. 1 It is a schematic sectional drawing which shows the conventional raw material supply apparatus. It is a schematic sectional drawing of the manufacturing apparatus of the glass plate by one Embodiment of this invention. It is side surface sectional drawing (1) for demonstrating operation
  • FIG. 4 is a top sectional view taken along line AA in FIG. 3.
  • FIG. 6 is a top sectional view taken along line AA in FIG. 5.
  • FIG. 8 is a top sectional view taken along line AA in FIG. 7.
  • FIG. 4 is a front sectional view taken along line BB in FIG. 3.
  • FIG. 2 is a schematic cross-sectional view of a glass plate manufacturing apparatus according to an embodiment of the present invention.
  • the glass plate manufacturing apparatus includes a raw material supply apparatus 100, a glass melting apparatus 200, and a forming apparatus 300.
  • the raw material supply apparatus 100 is an apparatus that supplies the powdery or granular glass raw material 10 to the glass melting apparatus 200.
  • the glass raw material 10 is prepared by mixing a plurality of types of materials according to the use of the product. For example, when manufacturing a glass substrate for display, the glass raw material 10 is often prepared by mixing a boron compound.
  • the boron compound include boric acid (H 3 BO 3 ). This boric acid is a hydrate and releases water of hydration when heated.
  • One or more raw material supply apparatuses 100 are provided.
  • the raw material supply apparatuses 100 are arranged side by side in the width direction of the glass melting apparatus 200.
  • the glass melting apparatus 200 is an apparatus for producing the molten glass 14 by melting the glass raw material 10 supplied by the raw material supply apparatus 100.
  • the glass melting apparatus 200 may be a general one and includes a raw material inlet 202 and a glass melting tank 204.
  • the glass raw material 10 charged into the glass melting tank 204 from the raw material charging port 202 is heated by flame heat from a burner or the like and gradually melts into the molten glass 14 accommodated in the glass melting tank 204.
  • a dustproof plate 206 for preventing the glass raw material 10 from scattering when the raw material is supplied is provided above the raw material inlet 202.
  • the forming apparatus 300 is an apparatus for forming the molten glass 14 produced by the glass melting apparatus 200 into a plate shape.
  • the molding apparatus 300 may be a general one, for example, a float molding apparatus or a fusion molding apparatus.
  • the float forming apparatus is an apparatus that continuously supplies molten glass to a molten tin bath surface in a bathtub to form a strip shape.
  • molten glass is continuously supplied into the inside of a bowl having a substantially V-shaped cross section, and the molten glass overflowing from the bowl to the left and right sides is merged at the lower edge of the bowl to form a strip.
  • Device In the fusion molding apparatus, molten glass is continuously supplied into the inside of a bowl having a substantially V-shaped cross section, and the molten glass overflowing from the bowl to the left and right sides is merged at the lower edge of the bowl to form a strip.
  • the formed glass formed by the forming apparatus 300 is gradually cooled and then cut into a predetermined dimension to become a product glass plate.
  • FIG. 3 to 7 are side sectional views for explaining the operation of the main part of the raw material supply apparatus 100.
  • FIG. FIG. 8 is a top sectional view taken along line AA in FIG.
  • FIG. 9 is a top sectional view taken along line AA in FIG. 5 and 9, the state when the transport pan 120 is at the retracted position is indicated by a dotted line, and the state when the transport pan 120 is at the forward position is indicated by a solid line.
  • FIG. 10 is a top cross-sectional view along the line AA in FIG.
  • FIG. 11 is a front sectional view taken along the line BB of FIG.
  • the raw material supply apparatus 100 includes a hopper 110 that stores the glass raw material 10, a transport pan 120 that transports the glass raw material 10 dropped from the hopper 110 toward the glass melting tank 204, and a transport pan 120 that faces the glass melting tank 204. And an advancing / retreating mechanism 130 for advancing / retreating.
  • the advance / retreat mechanism 130 advances and retracts the transport pan 120 toward the glass melting tank 204 as shown in FIGS. 3 to 7 under the control of a control device including a CPU.
  • the glass raw material 10 in the hopper 110 is dropped onto the transport pan 120 from the gap between the transport pan 120 and the hopper 110 as the transport pan 120 advances. (Sent out). Further, as the transport pan 120 moves backward, the glass material 10 on the transport pan 120 is put into the glass melting tank 204.
  • the hopper 110 is a tank that stores the glass raw material 10.
  • the hopper 110 is fixed apart from the glass melting tank 204.
  • the hopper 110 is formed of, for example, a steel material (for example, SS material) or the like, and has a cylindrical shape that tapers downward.
  • a mixer (not shown) for preparing a glass raw material 10 by weighing and mixing a plurality of types of raw materials is installed above the hopper 110.
  • the glass raw material 10 prepared by the mixer is dropped into the hopper 110 and stored.
  • a small amount of raw material used for a clarifying agent or the like is mixed with a relatively large amount of dolomite, silica sand, or the like, a small amount of the raw material can be prevented from being biased in the mixer. Therefore, it is preferable.
  • the trace amount of raw material fluorite, ammonium chloride, strontium chloride, calcium dihydrate sulfate and the like are preferable.
  • the glass raw material prepared by the mixer is conveyed to the upper part of the hopper 110 continuously by belt conveyance or at regular intervals by bucket conveyance.
  • the glass raw material may be dropped into the hopper 110.
  • the belt conveyance is preferably configured so as to be able to reversely rotate. This is because, for example, when there is a facility trouble at the belt conveyance destination, a spare facility provided on the opposite side of the belt conveyance destination can be used.
  • a conveyance pan 120 is installed below the hopper 110. As the transport pan 120 advances, the glass material 10 in the hopper 110 is dropped (sent out) on the transport pan 120 from the gap between the transport pan 120 and the hopper 110.
  • the dropped amount is adjusted by the size of the gap between the transport pan 120 and the hopper 110, the inclination angle ⁇ of the transport surface 122 of the transport pan 120 with respect to the horizontal plane (see FIG. 3), the angle of repose of the glass raw material 10, and the like. Is possible.
  • the tilt angle ⁇ is appropriately set according to the type of the glass raw material 10 and the like, but is preferably 8 ° to 15 °, for example, and more preferably 10 ° to 12 °.
  • the repose angle of the glass raw material 10 is appropriately set according to the type of the glass raw material 10 and the like, but is preferably 30 ° to 45 °, and more preferably 35 ° to 40 °.
  • the angle of repose is measured by the method described in JIS R 9301-2-2 “Alumina powder—Part 2: Physical property measurement method-2: Angle of repose”. More specifically, the angle of repose is determined by passing the specimen (glass raw material 10 before being stored in the hopper 110) through a sieve having a diameter of 80 mm and an aperture of 710 ⁇ m while vibrating, and then having a height of 160 mm on the horizontal plane. When it is gently dropped from a funnel onto a table with a diameter of 80 mm, it is defined by measuring the angle formed by the generatrix of the cone formed by the test body and the horizontal plane. Here, the amount of powder falling is assumed to drop until the angle of repose is substantially stabilized.
  • the conveyance pan 120 conveys the glass raw material 10 dropped from the hopper 110 toward the glass melting tank 204. Since the glass raw material 10 spreads thinly on the conveyance pan 120, the glass raw material 10 can be thrown into the glass melting tank 204 widely and thinly.
  • the transport pan 120 is formed of a steel material (for example, SS material).
  • the transport pan 120 has a flat transport pan main body 121 (see FIG. 2), and the upper surface of the transport pan main body 121 serves as a transport surface 122 on which the glass raw material 10 is placed.
  • the conveyance surface 122 is inclined so as to go downward as it goes from the hopper 110 side to the glass melting tank 204 side.
  • a pair of side plates 124 project from both ends of the conveyance surface 122 in the width direction in order to prevent the glass material 10 from sliding off.
  • the conveyance pan 120 can reciprocate between a forward position approaching the glass melting tank 204 and a retracted position moving away from the glass melting tank 204.
  • the conveyance pan 120 has a plurality of wheels 128 (see FIG. 2) and can reciprocate on the guide rail 140 held with respect to the glass melting tank 204.
  • the one-way movement distance L (see FIG. 5) of the transport pan 120 is appropriately set according to the amount of the glass raw material 10 charged, but is preferably 80 mm to 150 mm, and more preferably 100 mm to 120 mm. .
  • the width W1 (see FIG. 8) of the conveyance surface 122 of the conveyance pan 120 is appropriately set according to the input amount of the glass raw material 10 and the width of the raw material input port 202, but may be 1000 mm to 3000 mm.
  • the front end portion 125 of the transfer pan 120 is always inserted into the raw material input port 202 so that the glass raw material 10 on the transfer surface 122 is charged into the glass melting tank 204 even if it slides down due to the inclination of the transfer surface 122.
  • the advance / retreat mechanism 130 is a mechanism for advancing and retracting the transport pan 120 toward the glass melting tank 204.
  • the advance / retreat mechanism 130 includes a motor 132, a rotating disk 134, a rod 136, and the like.
  • the motor 132 is fixed to the guide rail 140.
  • the motor 132 is a drive source for rotating the rotary disk 134.
  • a rotating disk 134 is attached to the rotating shaft of the motor 132.
  • the rod 136 is provided between the rotating disc 134 and the transport pan 120 and converts the rotational motion of the rotating disc 134 into the linear motion of the transport pan 120.
  • One end of the rod 136 is rotatably connected to the eccentric position of the rotating disk 134, and the other end of the rod 136 is rotatably connected to the transport pan 120.
  • the advance / retreat mechanism 130 when the motor 132 rotates the rotating disk 134 in one direction under the control of the control device, the rod 136 pushes and pulls the transport pan 120, and the transport pan 120 moves on the guide rail 140. Move back and forth. In this way, the advance / retreat mechanism 130 advances and retracts the transport pan 120 toward the glass melting tank 204.
  • the raw material supply apparatus 100 may include an adjustment mechanism 150 that adjusts the relative position between the guide rail 140 and the glass melting tank 204 in addition to the advance / retreat mechanism 130.
  • the adjustment mechanism 150 includes a movable carriage 151 and a lifting device 152.
  • the movable carriage 151 is a device that can move in a direction in which the guide rail 140 approaches and separates from the glass melting tank 204.
  • the lifting device 152 is mounted on the movable carriage 151 and is a device that supports the guide rail 140 so that it can be lifted and lowered with respect to the glass melting tank 204.
  • the elevating device 152 is composed of, for example, a hydraulic jack.
  • the raw material supply apparatus 100 moves between the insertion position of the glass raw material 10 on the transport pan 120 and the standby position above the glass raw material 10 on the transport pan 120. It further includes a possible cutter 160 and a moving mechanism 170 that moves the cutter 160 between the insertion position and the standby position.
  • the moving mechanism 170 moves the cutter 160 between the insertion position and the standby position according to the position of the transport pan 120 and the like as shown in FIGS. 3 to 7 under the control of a control device including a CPU.
  • the cutter 160 is formed of a steel material (for example, SS material) or the like.
  • the cutter 160 is formed in a plate shape and is disposed substantially vertically.
  • a sharp blade portion may be provided at the lower end portion of the cutter 160.
  • the cutter 160 is movable between a standby position above the glass raw material 10 on the conveyance pan 120 and a insertion position of the glass raw material 10 on the conveyance pan 120.
  • the cutter 160 in the standby position is not in contact with the glass raw material 10 on the transport pan 120 as shown in FIG.
  • the standby position is appropriately set according to the thickness of the glass raw material 10 on the transport pan 120 and the like.
  • the cutter 160 at the insertion position may come into contact with the conveyance surface 122 of the conveyance pan 120, but in order to prevent abrasion with the conveyance surface 122, as shown in FIG. It is desirable to form a slight gap.
  • the cutter 160 at the insertion position forms a slight gap between the pair of side plates 124 of the transport pan 120 as shown in FIG.
  • the cutter 160 in the insertion position relatively pushes at least a part of the glass material 10 on the transport pan 120 from the transport pan 120 as the transport pan 120 moves backward. , Put into the glass melting tank 204.
  • the glass raw material 10 can be stably fed into the glass melting tank 204 by a certain amount. This effect is remarkable when the glass raw material 10 contains a hydrate (for example, boric acid (H 3 BO 3 )). This is because when the hydrate is heated by radiant heat from the glass melting apparatus 200 and hydrated water is released, the fluidity of the glass raw material 10 is lowered.
  • a hydrate for example, boric acid (H 3 BO 3 )
  • the moving mechanism 170 is a mechanism for moving the cutter 160 between the insertion position and the standby position.
  • the moving mechanism 170 includes an actuator 172, a first link 174, a second link 176, and the like.
  • the actuator 172 has a configuration that can be expanded and contracted, for example, an air cylinder or a hydraulic cylinder. An upper end portion of the actuator 172 is rotatably connected to the hopper 110. On the other hand, the lower end portion of the actuator 172 is rotatably connected to one end portion of the first link 174.
  • the first link 174 is configured to rotate forward and backward according to the expansion / contraction operation of the actuator 172.
  • the first link 174 is pinned to the hopper 110 at the center, and can rotate around the pin.
  • the other end of the first link 174 is rotatably connected to the upper end of the second link 176.
  • the second link 176 is configured to move up and down in conjunction with forward and reverse rotation of the first link 174.
  • the lower end of the second link 176 is connected to the upper surface of the cutter 160.
  • the second link 176 can enter and leave the opening of the dustproof plate 206.
  • a bellows-like elastic cover 208 is provided between the dustproof plate 206 and the first link 174 so as to surround the upper end of the second link 176. .
  • this moving mechanism 170 when the actuator 172 expands and contracts under the control of the control device, the first link 174 rotates forward and backward. Accordingly, the second link 176 moves up and down, and the cutter 160 moves up and down. In this way, the moving mechanism 170 moves the cutter 160 between the insertion position and the standby position.
  • the raw material supply apparatus 100 of this embodiment further includes an insertion member 180 that is inserted into the glass raw material 10 on the transport pan 120 as shown in FIG.
  • the insertion member 180 is formed of a steel material (for example, SS material) or the like.
  • the insertion member 180 is formed in a rod shape and is arranged substantially vertically. The lower surface of the insertion member 180 may be in contact with the conveyance surface 122 of the conveyance pan 120, but a slight gap may be formed between the insertion member 180 and the conveyance surface 122 in order to prevent abrasion with the conveyance surface 122. desirable.
  • the insertion member 180 may be provided between the cutter 160 and the raw material inlet 202, but in order to suppress deterioration of the insertion member 180 due to radiant heat from the raw material inlet 202 or the like, as shown in FIG. It is desirable to provide between 160 and the hopper 110.
  • the insertion member 180 relatively scrapes the glass material 10 on the conveyance pan 120 as shown in FIG. 13 is produced.
  • the surface area (heat receiving area) of the glass material 10 can be increased, and the melting time of the glass material 10 can be shortened.
  • the plurality of raw material mountains 11 to 13 on the transport pan 120 may be connected in the width direction of the transport pan 120 or may be separated in the valley. Further, the widths of the plurality of raw material peaks 11 to 13 on the transport pan 120 may be the same or different.
  • the plurality of raw material piles 11 to 13 on the transport pan 120 are formed so as to be separated from each other when they are put into the glass melting tank 204 as shown in FIG. 10 in order to further shorten the melting time of the glass raw material 10. It is desirable.
  • the rear portion of the insertion member 180 (that is, the portion on the hopper 110 side) has a tapered cross section (for example, a triangle). Accordingly, the insertion member 180 can be easily separated into the glass raw material 10 as the conveyance pan 120 advances.
  • the cross-sectional shape of the front portion (the portion on the dissolution tank 204 side) of the insertion member 180 is not particularly limited.
  • the width of the insertion member 180 (the length in the direction parallel to the width direction of the transport pan 120) W2 (see FIG. 8) is appropriately set according to, for example, the width W1 of the transport surface 122 of the transport pan 120. It is preferably ⁇ 150 mm, more preferably 90 to 110 mm. By setting the width W2 to 75 mm or more, the surface area (heat receiving area) of the glass raw material 10 can be set sufficiently large. On the other hand, when the width W2 exceeds 150 mm, the supply amount of the glass raw material 10 to the glass melting tank 204 becomes too small, which is not preferable.
  • the number of installed insertion members 180 is appropriately set according to, for example, the width W1 of the conveyance surface 122 of the conveyance pan 120, but may be 1 to 4, for example, and preferably 2 to 3.
  • the raw material supply apparatus 100 of the present embodiment preferably further includes an adjustment member 190 for adjusting the thickness by dividing the glass raw material 10 on the transport pan 120 into a plurality of regions in the width direction.
  • the adjustment member 190 is engaged with a bolt or the like so as to be slidable in the vertical direction on the front side (glass melting tank 204 side) of the hopper 110.
  • the preparation member 190 includes a plurality of movable members 191 to 193 as shown in FIG. 11, for example.
  • the plurality of movable members 191 to 193 are arranged side by side in the width direction of the transport pan 120, and the gap between the transport pan 120 and each of the movable members 191 to 193 can be adjusted independently. Therefore, by adjusting the gap between each movable member 191 to 193 and the transport pan 120 manually or automatically, the glass raw material 10 on the transport pan 120 is divided into a plurality of regions in the width direction, and the thickness is adjusted. can do.
  • the thickness of the glass raw material 10 in each region is appropriately set according to, for example, the number of the raw material supply devices 100 installed, the temperature distribution in the width direction in the glass melting tank 204, and the like. Thereby, the melting time of the glass raw material 10 in the glass melting tank 204 can be further shortened.
  • the adjusting member 190 is preferably configured to be able to independently adjust the height of the plurality of raw material peaks 11 to 13 on the transport pan 120.
  • first to fourth steps described later are repeatedly executed at predetermined intervals (for example, cycles of 1 minute to 10 minutes) under the control of the control device.
  • the cutter 160 rises from the insertion position (see FIG. 3) to the standby position (see FIG. 4) with the transport pan 120 stopped at the retracted position. In a state where the cutter 160 is stopped at the standby position, the cutter 160 is not in contact with the glass raw material 10 on the transport pan 120.
  • the transport pan 120 advances from the retracted position (see FIG. 4) to the advanced position (see FIG. 5) with the cutter 160 stopped at the standby position.
  • the glass raw material 10 in the hopper 110 is dropped onto the transport pan 120 and sent out from the gap between the adjustment member 190 and the transport pan 120.
  • the transport pan 120 moves forward, the glass material 10 on the transport pan 120 is stably placed on the transport pan 120 by friction.
  • the front end portion 125 of the conveyance pan 120 pushes the glass raw material 10 floating on the molten glass 14 near the raw material charging port 202 to the downstream side. Move. Thereby, the space for throwing in the new glass raw material 10 is securable. In addition, since the glass raw material 10 floating on the molten glass 14 is moved from the low temperature raw material inlet 202 to the high temperature downstream side, melting of the glass raw material 10 can be promoted.
  • the insertion member 180 relatively scrapes the glass raw material 10 on the conveyance pan 120, and a plurality of them are arranged in the width direction of the conveyance pan 120.
  • the raw material piles 11 to 13 are prepared.
  • the cutter 160 is lowered from the standby position (see FIG. 5) to the insertion position (see FIG. 6) with the transport pan 120 stopped at the forward position.
  • the lower surface of the cutter 160 is in contact with the transport surface 122 or slightly above the transport surface 122.
  • the transport pan 120 moves backward from the forward position (see FIG. 6) to the backward position (see FIG. 7) with the cutter 160 stopped at the insertion position.
  • the cutter 160 at the insertion position pushes out at least a part of each of the raw material piles 11 to 13 on the transport pan from the transport pan 120 and drops them into the glass melting tank 204.
  • the cutter 160 relatively pushes at least a part of the glass material 10 on the transport pan 120 from the transport pan 120 and puts it into the glass melting tank 204 as the transport pan 120 moves backward. 10 can be stably fed into the glass melting tank 204 in a fixed amount. This effect is remarkable when the glass raw material 10 contains a hydrate. This is because when the hydrate is heated by radiant heat from the glass melting apparatus 200 and hydrated water is released, the fluidity of the glass raw material 10 is lowered.
  • the insertion member 180 relatively scrapes the glass material 10 on the transport pan 120 as the transport pan 120 advances, and a plurality of raw material peaks 11 to 13 arranged in the width direction of the transport pan 120 are produced. Therefore, the surface area of the glass raw material 10 can be increased. Therefore, the heat receiving area of the glass raw material 10 can be increased, and the melting time of the glass raw material 10 in the glass melting tank 204 can be shortened. As a result, highly homogenous glass is obtained.
  • the glass raw material 10 is not specifically limited, According to this embodiment, since melting
  • the alkali-free glass material is preferable. That is, the present invention is particularly effective for a non-alkali glass raw material.
  • the alkali-free glass is, for example, expressed in terms of mass percentage based on oxide, SiO 2 : 50 to 66%, Al 2 O 3 : 10.5 to 24%, B 2 O 3 : 0 to 12%, MgO: 0 to 8%, CaO: 0 to 14.5%, SrO: 0 to 24%, BaO: 0 to 13.5%, MgO + CaO + SrO + BaO: 9 to 29.5%.
  • the alkali-free glass is expressed in terms of mass percentage on the basis of oxide, SiO 2 : 58 to 66%, Al 2 O 3 : 15 to 22%, B 2 O 3 : 5 to 12%, MgO: 0 to 8%, CaO: 0 to 9%, SrO: 3 to 12.5%, BaO: 0 to 2%, MgO + CaO + SrO + BaO: 9 to 18%.
  • the obtained non-alkali glass is applied particularly to a plate glass for a display (preferably for a liquid crystal display).
  • the transport pan 120 is advanced from the retracted position to the advanced position while the cutter 160 is stopped at the standby position, but the present invention is not limited to this.
  • the transport pan 120 may advance from the retracted position to the advanced position while the cutter 160 rises from the insertion position to the standby position.
  • the transport pan 120 is retracted from the advance position to the retract position with the cutter 160 stopped at the insertion position, but the present invention is not limited to this.
  • the transport pan 120 may be retracted from the advance position to the retract position while the cutter 160 is lowered from the standby position to the insertion position.
  • the insertion member 180 of the present embodiment is always inserted into the glass raw material 10 on the conveyance pan 120, but depending on the position of the conveyance pan 120 as long as a plurality of raw material peaks 11 to 13 can be produced. It may be moved to a standby position above the glass raw material 10.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Glass Compositions (AREA)
  • Glass Melting And Manufacturing (AREA)

Abstract

The present invention relates to a system for supplying raw materials which includes a hopper for storing raw glass material; a transfer pan for transferring, to a glass melting bath, the raw glass material dropped from the hopper; and a reciprocating mechanism for reciprocating the transfer pan to and from the glass melting bath. The system is adapted to include a cutter movable between a cutting position in the raw glass material on the transfer pan and a standby position above the raw glass material on the transfer pan; and an insertion member to be inserted into the raw glass material on the transfer pan. The system is further adapted such that as the transfer pan is moved forward, the insertion member relatively divides the raw glass material on the transfer pan into a plurality of groups of the raw material which are arranged in the direction of width of the transfer pan; and as the transfer pan is moved backward, the cutter at the cutting position causes at least part of each group of the raw material on the transfer pan to be relatively pushed from the transfer pan and thereby charged into the glass melting bath.

Description

原料供給装置および原料供給方法、ならびにガラス板の製造装置および製造方法Raw material supply apparatus and raw material supply method, and glass plate manufacturing apparatus and manufacturing method
 本発明は、ガラス原料をガラス溶解槽へ投入する原料供給装置および原料供給方法、ならびにガラス板の製造装置および製造方法に関する。 The present invention relates to a raw material supply apparatus and a raw material supply method for feeding a glass raw material into a glass melting tank, and a glass plate manufacturing apparatus and manufacturing method.
 ガラス原料をガラス溶解槽へ投入する原料供給装置として、図1に示すように、粉状または粒状のガラス原料1をホッパー2から搬送パン3に投下し、搬送パン3上のガラス原料1をガラス溶解槽6へ投入するように、ガラス溶解槽6に向けて搬送パン3を進退させる装置が知られている(例えば、非特許文献1参照)。 As a raw material supply device for feeding glass raw material into a glass melting tank, as shown in FIG. 1, powdery or granular glass raw material 1 is dropped from hopper 2 onto conveying pan 3, and glass raw material 1 on conveying pan 3 is made of glass. An apparatus for moving the transfer pan 3 forward and backward toward the glass melting tank 6 so as to be put into the melting tank 6 is known (see, for example, Non-Patent Document 1).
 この装置では、搬送パン3の前進に伴って、搬送パン3とホッパー2との間の隙間から、ホッパー2内のガラス原料1が搬送パン3上に投下される(送り出される)。また、この装置では、搬送パン3の後退に伴って、搬送パン3上のガラス原料1がガラス溶解槽6へ投入される。 In this apparatus, as the transport pan 3 moves forward, the glass material 1 in the hopper 2 is dropped (sent out) onto the transport pan 3 from the gap between the transport pan 3 and the hopper 2. Moreover, in this apparatus, the glass raw material 1 on the conveyance pan 3 is thrown into the glass melting tank 6 as the conveyance pan 3 moves backward.
 しかしながら、従来の原料供給装置では、ガラス溶解槽6などからの輻射熱によって搬送パン3が加熱されるので、搬送パン3上のガラス原料1が変質して流動性が低下し、ガラス原料1をガラス溶解槽6内へ安定的に一定量ずつ投入することが難しいことがある。 However, in the conventional raw material supply apparatus, since the conveyance pan 3 is heated by the radiant heat from the glass melting tank 6 or the like, the glass raw material 1 on the conveyance pan 3 is denatured and the fluidity is lowered. It may be difficult to stably add a certain amount into the dissolution tank 6 at a time.
 また、従来の原料供給装置では、搬送パン3上のガラス原料1を1つの原料山としてガラス溶解槽6へ投入するので、投入された原料が溶解するまで時間を要する。この時間が長くなると、ガラス原料1は融点の異なる複数種類の材料を混ぜて調製されることが多いので、溶融ガラスの組成が不均一になりやすい。 Moreover, in the conventional raw material supply apparatus, since the glass raw material 1 on the conveyance pan 3 is input to the glass melting tank 6 as one raw material pile, it takes time until the input raw material is melted. When this time becomes long, the glass raw material 1 is often prepared by mixing a plurality of types of materials having different melting points, so that the composition of the molten glass tends to be non-uniform.
 本発明は、上記課題に鑑みてなされたものであって、搬送パン上のガラス原料をガラス溶解槽へ安定的に一定量ずつ投入することができ、且つ、ガラス溶解槽でのガラス原料の溶解時間を短くすることができ、均質性の高いガラスが得られる原料供給装置および原料供給方法、ならびにガラス板の製造装置および製造方法を提供することを目的とする。 The present invention has been made in view of the above-mentioned problems, and it is possible to stably add a certain amount of glass raw material on a transport pan to a glass melting tank, and to dissolve the glass raw material in the glass melting tank. An object of the present invention is to provide a raw material supply apparatus and raw material supply method capable of shortening the time and obtaining highly homogeneous glass, and a glass plate manufacturing apparatus and manufacturing method.
 上記目的を解決するため、本発明の原料供給装置は、
 ガラス原料を貯蔵するホッパーと、該ホッパーから投下されるガラス原料をガラス溶解槽に向けて搬送する搬送パンと、該搬送パンを該ガラス溶解槽に向けて進退させる進退機構とを有する原料供給装置において、
 前記搬送パン上のガラス原料への刺入位置と前記搬送パン上のガラス原料よりも上方の待機位置との間で移動可能なカッターと、前記搬送パン上のガラス原料に挿入される挿入部材とを有し、
 前記挿入部材が、前記搬送パンの前進に伴って、前記搬送パン上のガラス原料を相対的に掻き分けて、前記搬送パンの幅方向に並ぶ複数の原料山を作製し、
 前記刺入位置にあるカッターが、前記搬送パンの後退に伴って、前記搬送パン上の各原料山の少なくとも一部分を前記搬送パンから相対的に押し出して、前記ガラス溶解槽に投入する原料供給装置である。
In order to solve the above object, the raw material supply apparatus of the present invention comprises:
A raw material supply apparatus having a hopper for storing glass raw material, a transport pan for transporting the glass raw material dropped from the hopper toward the glass melting tank, and an advancing / retreating mechanism for moving the transport pan toward and behind the glass melting tank In
A cutter movable between the insertion position into the glass raw material on the transport pan and the standby position above the glass raw material on the transport pan; and an insertion member inserted into the glass raw material on the transport pan; Have
The insertion member relatively scrapes the glass raw material on the transport pan as the transport pan advances, and creates a plurality of raw material piles arranged in the width direction of the transport pan,
The raw material supply device in which the cutter at the insertion position pushes at least a part of each raw material pile on the transport pan relative to the transport pan and puts it into the glass melting tank as the transport pan moves backward. It is.
 また、本発明の原料供給方法は、
 ガラス原料をホッパーから搬送パンに投下し、該搬送パン上のガラス原料をガラス溶解槽へ投入するように、該搬送パンを該ガラス溶解槽に向けて進退させる原料供給方法において、
 前記搬送パン上のガラス原料に挿入された挿入部材が、前記搬送パンの前進に伴って、前記搬送パン上のガラス原料を相対的に掻き分けて、前記搬送パンの幅方向に並ぶ複数の原料山を作製し、
 前記搬送パン上のガラス原料に刺入されたカッターが、前記搬送パンの後退に伴って、前記搬送パン上の各原料山の少なくとも一部分を前記搬送パンから相対的に押し出して、前記ガラス溶解槽に投入する原料供給方法である。
Moreover, the raw material supply method of the present invention comprises:
In the raw material supply method of dropping the glass raw material from the hopper onto the conveyance pan and moving the conveyance pan toward the glass dissolution vessel so that the glass raw material on the conveyance pan is put into the glass dissolution vessel,
The insertion member inserted into the glass raw material on the transport pan relatively scrapes the glass raw material on the transport pan as the transport pan advances, and a plurality of raw material stacks arranged in the width direction of the transport pan. Make
The cutter inserted into the glass raw material on the transport pan pushes out at least a part of each raw material pile on the transport pan relative to the transport pan as the transport pan moves backward, and the glass melting tank It is a raw material supply method thrown in to.
 本発明のガラス板の製造装置は、
 本発明の原料供給装置と、該原料供給装置によって供給されるガラス原料を溶解して溶融ガラスを作製するガラス溶融装置と、該ガラス溶融装置によって作製された溶融ガラスを板状に成形する成形装置とを有するガラス板の製造装置である。
The apparatus for producing a glass plate of the present invention comprises:
The raw material supply apparatus of the present invention, a glass melting apparatus for producing a molten glass by melting a glass raw material supplied by the raw material supply apparatus, and a molding apparatus for forming the molten glass produced by the glass melting apparatus into a plate shape The manufacturing apparatus of the glass plate which has these.
 本発明のガラス板の製造方法は、
 本発明のガラス板の製造装置を用いて、ガラス板を製造するガラス板の製造方法である。
The method for producing the glass plate of the present invention comprises:
It is the manufacturing method of the glass plate which manufactures a glass plate using the manufacturing apparatus of the glass plate of this invention.
 本発明によれば、搬送パン上のガラス原料をガラス溶解槽へ安定的に一定量ずつ投入することができ、且つ、ガラス溶解槽でのガラス原料の溶解時間を短くすることができ、均質性の高いガラスが得られる原料供給方法および原料供給装置、ならびにガラス板の製造装置および製造方法を提供することができる。 According to the present invention, the glass raw material on the transport pan can be stably fed into the glass melting tank in a fixed amount, and the melting time of the glass raw material in the glass melting tank can be shortened. The raw material supply method and raw material supply apparatus which can obtain high glass, and the glass plate manufacturing apparatus and manufacturing method can be provided.
従来の原料供給装置を示す概略断面図である。It is a schematic sectional drawing which shows the conventional raw material supply apparatus. 本発明の一実施形態によるガラス板の製造装置の概略断面図である。It is a schematic sectional drawing of the manufacturing apparatus of the glass plate by one Embodiment of this invention. 原料供給装置100の主要部の動作を説明するための側面断面図(1)である。It is side surface sectional drawing (1) for demonstrating operation | movement of the principal part of the raw material supply apparatus 100. FIG. 原料供給装置100の主要部の動作を説明するための側面断面図(2)である。It is side surface sectional drawing (2) for demonstrating operation | movement of the principal part of the raw material supply apparatus 100. FIG. 原料供給装置100の主要部の動作を説明するための側面断面図(3)である。It is side surface sectional drawing (3) for demonstrating operation | movement of the principal part of the raw material supply apparatus 100. FIG. 原料供給装置100の主要部の動作を説明するための側面断面図(4)である。It is side surface sectional drawing (4) for demonstrating operation | movement of the principal part of the raw material supply apparatus 100. FIG. 原料供給装置100の主要部の動作を説明するための側面断面図(5)である。It is side surface sectional drawing (5) for demonstrating operation | movement of the principal part of the raw material supply apparatus 100. FIG. 図3のA-A線に沿った上面断面図である。FIG. 4 is a top sectional view taken along line AA in FIG. 3. 図5のA-A線に沿った上面断面図である。FIG. 6 is a top sectional view taken along line AA in FIG. 5. 図7のA-A線に沿った上面断面図である。FIG. 8 is a top sectional view taken along line AA in FIG. 7. 図3のB-B線に沿った正面断面図である。FIG. 4 is a front sectional view taken along line BB in FIG. 3.
 以下、図面を参照し、本発明を実施するための形態について説明する。 Hereinafter, embodiments for carrying out the present invention will be described with reference to the drawings.
 図2は、本発明の一実施形態によるガラス板の製造装置の概略断面図である。図2に示すように、ガラス板の製造装置は、原料供給装置100、ガラス溶融装置200、および成形装置300を有する。 FIG. 2 is a schematic cross-sectional view of a glass plate manufacturing apparatus according to an embodiment of the present invention. As shown in FIG. 2, the glass plate manufacturing apparatus includes a raw material supply apparatus 100, a glass melting apparatus 200, and a forming apparatus 300.
 原料供給装置100は、粉状又は粒状のガラス原料10をガラス溶融装置200に供給する装置である。ガラス原料10は、製品の用途に応じた複数種類の材料を混ぜて調製される。例えば、ディスプレイ用ガラス基板を製造する場合、ガラス原料10は、ホウ素化合物を混ぜて調製されることが多い。ホウ素化合物としては、ホウ酸(HBO)などがある。このホウ酸は、水和物であり、加熱すると水和水を放出する。 The raw material supply apparatus 100 is an apparatus that supplies the powdery or granular glass raw material 10 to the glass melting apparatus 200. The glass raw material 10 is prepared by mixing a plurality of types of materials according to the use of the product. For example, when manufacturing a glass substrate for display, the glass raw material 10 is often prepared by mixing a boron compound. Examples of the boron compound include boric acid (H 3 BO 3 ). This boric acid is a hydrate and releases water of hydration when heated.
 原料供給装置100は、1つまたは複数設けられる。複数設けられる場合、原料供給装置100は、ガラス溶融装置200の幅方向に並んで配置される。 One or more raw material supply apparatuses 100 are provided. In the case where a plurality of raw material supply apparatuses 100 are provided, the raw material supply apparatuses 100 are arranged side by side in the width direction of the glass melting apparatus 200.
 ガラス溶融装置200は、原料供給装置100によって供給されるガラス原料10を溶解して、溶融ガラス14を作製する装置である。ガラス溶融装置200は、一般的なものであって良く、原料投入口202およびガラス溶解槽204を備える。原料投入口202からガラス溶解槽204へ投入されたガラス原料10は、バーナーからの火炎熱などによって加熱され、ガラス溶解槽204内に収容される溶融ガラス14に徐々に融け込む。原料投入口202の上方には、原料供給時のガラス原料10の飛散を防止するための防塵板206が設けてある。 The glass melting apparatus 200 is an apparatus for producing the molten glass 14 by melting the glass raw material 10 supplied by the raw material supply apparatus 100. The glass melting apparatus 200 may be a general one and includes a raw material inlet 202 and a glass melting tank 204. The glass raw material 10 charged into the glass melting tank 204 from the raw material charging port 202 is heated by flame heat from a burner or the like and gradually melts into the molten glass 14 accommodated in the glass melting tank 204. A dustproof plate 206 for preventing the glass raw material 10 from scattering when the raw material is supplied is provided above the raw material inlet 202.
 成形装置300は、ガラス溶融装置200で作製された溶融ガラス14を板状に成形する装置である。成形装置300は、一般的なものであって良く、例えばフロート成形装置やフュージョン成形装置などであって良い。フロート成形装置は、浴槽内の溶融錫の浴面に溶融ガラスを連続的に供給して、帯板状に成形する装置である。フュージョン成形装置では、断面略V字状の樋の内部に溶融ガラスを連続的に供給し、樋から左右両側に溢れ出た溶融ガラスを、樋の下縁で合流させて帯板状に成形する装置である。 The forming apparatus 300 is an apparatus for forming the molten glass 14 produced by the glass melting apparatus 200 into a plate shape. The molding apparatus 300 may be a general one, for example, a float molding apparatus or a fusion molding apparatus. The float forming apparatus is an apparatus that continuously supplies molten glass to a molten tin bath surface in a bathtub to form a strip shape. In the fusion molding apparatus, molten glass is continuously supplied into the inside of a bowl having a substantially V-shaped cross section, and the molten glass overflowing from the bowl to the left and right sides is merged at the lower edge of the bowl to form a strip. Device.
 成形装置300で成形された成形ガラスは、徐冷された後、所定寸法に切断され、製品であるガラス板となる。 The formed glass formed by the forming apparatus 300 is gradually cooled and then cut into a predetermined dimension to become a product glass plate.
 図3~図7は、原料供給装置100の主要部の動作を説明するための側面断面図である。図8は、図3のA-A線に沿った上面断面図である。図9は、図5のA-A線に沿った上面断面図である。図5および図9において、搬送パン120が後退位置にあるときの状態を点線で示し、搬送パン120が前進位置にあるときの状態を実線で示す。図10は、図7のA-A線に沿った上面断面図である。図11は、図3のB-B線に沿った正面断面図である。 3 to 7 are side sectional views for explaining the operation of the main part of the raw material supply apparatus 100. FIG. FIG. 8 is a top sectional view taken along line AA in FIG. FIG. 9 is a top sectional view taken along line AA in FIG. 5 and 9, the state when the transport pan 120 is at the retracted position is indicated by a dotted line, and the state when the transport pan 120 is at the forward position is indicated by a solid line. FIG. 10 is a top cross-sectional view along the line AA in FIG. FIG. 11 is a front sectional view taken along the line BB of FIG.
 原料供給装置100は、ガラス原料10を貯蔵するホッパー110、ホッパー110から投下されたガラス原料10をガラス溶解槽204に向けて搬送する搬送パン120、および、搬送パン120をガラス溶解槽204に向けて進退させる進退機構130を有する。進退機構130は、CPUなどを含む制御装置による制御下で、図3~図7に示すように、搬送パン120をガラス溶解槽204に向けて進退させる。 The raw material supply apparatus 100 includes a hopper 110 that stores the glass raw material 10, a transport pan 120 that transports the glass raw material 10 dropped from the hopper 110 toward the glass melting tank 204, and a transport pan 120 that faces the glass melting tank 204. And an advancing / retreating mechanism 130 for advancing / retreating. The advance / retreat mechanism 130 advances and retracts the transport pan 120 toward the glass melting tank 204 as shown in FIGS. 3 to 7 under the control of a control device including a CPU.
 この原料供給装置100では、詳しくは後述するが、搬送パン120の前進に伴って、搬送パン120とホッパー110との間の隙間から、ホッパー110内のガラス原料10が搬送パン120上に投下される(送り出される)。また、搬送パン120の後退に伴って、搬送パン120上のガラス原料10がガラス溶解槽204へ投入される。 In the raw material supply apparatus 100, as will be described in detail later, the glass raw material 10 in the hopper 110 is dropped onto the transport pan 120 from the gap between the transport pan 120 and the hopper 110 as the transport pan 120 advances. (Sent out). Further, as the transport pan 120 moves backward, the glass material 10 on the transport pan 120 is put into the glass melting tank 204.
 ホッパー110は、ガラス原料10を貯蔵するタンクである。ホッパー110は、ガラス溶解槽204に対して離間して固定されている。ホッパー110は、例えば鋼材(例えば、SS材)などで形成され、下方に向けて先細りの筒形状になっている。 The hopper 110 is a tank that stores the glass raw material 10. The hopper 110 is fixed apart from the glass melting tank 204. The hopper 110 is formed of, for example, a steel material (for example, SS material) or the like, and has a cylindrical shape that tapers downward.
 ホッパー110の上方には、複数種類の原料を秤量、混合して、ガラス原料10を調製する混合機(図示せず)が設置してある。混合機で調製されたガラス原料10は、ホッパー110内へ投下され、貯蔵される。前記混合機で原料を調製する前に、清澄剤等に用いる微量な原料を比較的混合量が多いドロマイトや珪砂等と混合しておくと、微量な原料が前記混合機内で偏るのが抑えられるため好ましい。前記微量な原料としては、蛍石、塩化アンモニウム、塩化ストロンチウム、二水硫酸カルシウムなどが好ましい。なお、混合機がホッパー110から離れた場所に設置してある場合は、混合機で調製したガラス原料をベルト搬送で連続的に、またはバケット搬送で一定の間隔で、ホッパー110上方まで搬送して、ホッパー110内へガラス原料を投下してもよい。前記ベルト搬送は、逆転できる構成であると好ましい。例えばベルト搬送先に設備トラブル等があった場合に、ベルト搬送先とは逆側に設けられた予備設備等で対応できるからである。 Above the hopper 110, a mixer (not shown) for preparing a glass raw material 10 by weighing and mixing a plurality of types of raw materials is installed. The glass raw material 10 prepared by the mixer is dropped into the hopper 110 and stored. Before the raw material is prepared by the mixer, if a small amount of raw material used for a clarifying agent or the like is mixed with a relatively large amount of dolomite, silica sand, or the like, a small amount of the raw material can be prevented from being biased in the mixer. Therefore, it is preferable. As the trace amount of raw material, fluorite, ammonium chloride, strontium chloride, calcium dihydrate sulfate and the like are preferable. In addition, when the mixer is installed in a place away from the hopper 110, the glass raw material prepared by the mixer is conveyed to the upper part of the hopper 110 continuously by belt conveyance or at regular intervals by bucket conveyance. The glass raw material may be dropped into the hopper 110. The belt conveyance is preferably configured so as to be able to reversely rotate. This is because, for example, when there is a facility trouble at the belt conveyance destination, a spare facility provided on the opposite side of the belt conveyance destination can be used.
 ホッパー110の下方には、搬送パン120が設置してある。搬送パン120の前進に伴って、搬送パン120とホッパー110との間の隙間から、ホッパー110内のガラス原料10が搬送パン120上に投下される(送り出される)。 A conveyance pan 120 is installed below the hopper 110. As the transport pan 120 advances, the glass material 10 in the hopper 110 is dropped (sent out) on the transport pan 120 from the gap between the transport pan 120 and the hopper 110.
 その投下量は、搬送パン120とホッパー110との間の隙間の大きさの他、搬送パン120の搬送面122の水平面に対する傾斜角θ(図3参照)、ガラス原料10の安息角などによって調節することが可能である。 The dropped amount is adjusted by the size of the gap between the transport pan 120 and the hopper 110, the inclination angle θ of the transport surface 122 of the transport pan 120 with respect to the horizontal plane (see FIG. 3), the angle of repose of the glass raw material 10, and the like. Is possible.
 傾斜角θは、ガラス原料10の種類などに応じて適宜設定されるが、例えば8°~15°であることが好ましく、10°~12°であることがより好ましい。 The tilt angle θ is appropriately set according to the type of the glass raw material 10 and the like, but is preferably 8 ° to 15 °, for example, and more preferably 10 ° to 12 °.
 ガラス原料10の安息角は、ガラス原料10の種類などに応じて適宜設定されるが、例えば30°~45°であることが好ましく、35°~40°であることがより好ましい。 The repose angle of the glass raw material 10 is appropriately set according to the type of the glass raw material 10 and the like, but is preferably 30 ° to 45 °, and more preferably 35 ° to 40 °.
 ここで、安息角は、JIS R 9301-2-2「アルミナ粉末-第2部:物性測定方法-2:安息角」に記載されているような方法で測定される。より詳細には、安息角は、試験体(ホッパー110内に貯蔵される前のガラス原料10)を直径80mm、目開き710μmの篩を振動させながら通過させた後、水平面に160mmの高さの漏斗から直径80mmのテーブルに静かに落下させた時に、試験体によって形成された円錐体の母線と水平面のなす角を測定することで規定され、流動性の良い粉体ほど小さい値となる。ここで、粉体の落下量は安息角が実質的に安定するまで落下させるものとする。 Here, the angle of repose is measured by the method described in JIS R 9301-2-2 “Alumina powder—Part 2: Physical property measurement method-2: Angle of repose”. More specifically, the angle of repose is determined by passing the specimen (glass raw material 10 before being stored in the hopper 110) through a sieve having a diameter of 80 mm and an aperture of 710 μm while vibrating, and then having a height of 160 mm on the horizontal plane. When it is gently dropped from a funnel onto a table with a diameter of 80 mm, it is defined by measuring the angle formed by the generatrix of the cone formed by the test body and the horizontal plane. Here, the amount of powder falling is assumed to drop until the angle of repose is substantially stabilized.
 搬送パン120は、ホッパー110から投下されるガラス原料10をガラス溶解槽204に向けて搬送する。ガラス原料10は、搬送パン120上において薄く広がるので、ガラス原料10をガラス溶解槽204へ幅広く、且つ、薄く投入することができる。 The conveyance pan 120 conveys the glass raw material 10 dropped from the hopper 110 toward the glass melting tank 204. Since the glass raw material 10 spreads thinly on the conveyance pan 120, the glass raw material 10 can be thrown into the glass melting tank 204 widely and thinly.
 搬送パン120は、鋼材(例えば、SS材)などで形成される。搬送パン120は、平板状の搬送パン本体121(図2参照)を有しており、搬送パン本体121の上面がガラス原料10を載せる搬送面122となる。搬送面122は、ホッパー110側からガラス溶解槽204側に行くほど下方に向かうように傾斜面となっている。搬送面122の幅方向両端部には、ガラス原料10の滑落を防止するため、一対の側板124が突設してある。 The transport pan 120 is formed of a steel material (for example, SS material). The transport pan 120 has a flat transport pan main body 121 (see FIG. 2), and the upper surface of the transport pan main body 121 serves as a transport surface 122 on which the glass raw material 10 is placed. The conveyance surface 122 is inclined so as to go downward as it goes from the hopper 110 side to the glass melting tank 204 side. A pair of side plates 124 project from both ends of the conveyance surface 122 in the width direction in order to prevent the glass material 10 from sliding off.
 搬送パン120は、ガラス溶解槽204に近づく前進位置と、ガラス溶解槽204から遠ざかる後退位置との間で往復移動可能となっている。例えば、搬送パン120は、複数の車輪128(図2参照)を有しており、ガラス溶解槽204に対して保持されるガイドレール140上を往復移動可能となっている。 The conveyance pan 120 can reciprocate between a forward position approaching the glass melting tank 204 and a retracted position moving away from the glass melting tank 204. For example, the conveyance pan 120 has a plurality of wheels 128 (see FIG. 2) and can reciprocate on the guide rail 140 held with respect to the glass melting tank 204.
 搬送パン120の片道の移動距離L(図5参照)は、ガラス原料10の投入量などに応じて適宜設定されるが、80mm~150mmであることが好ましく、100mm~120mmであることがより好ましい。 The one-way movement distance L (see FIG. 5) of the transport pan 120 is appropriately set according to the amount of the glass raw material 10 charged, but is preferably 80 mm to 150 mm, and more preferably 100 mm to 120 mm. .
 搬送パン120の搬送面122の幅W1(図8参照)は、ガラス原料10の投入量や原料投入口202の幅などに応じて適宜設定されるが、1000mm~3000mmであって良い。 The width W1 (see FIG. 8) of the conveyance surface 122 of the conveyance pan 120 is appropriately set according to the input amount of the glass raw material 10 and the width of the raw material input port 202, but may be 1000 mm to 3000 mm.
 搬送パン120の前端部125は、搬送面122上のガラス原料10が搬送面122の傾斜によって滑落してもガラス溶解槽204へ投入されるように、原料投入口202に常に挿入されている。 The front end portion 125 of the transfer pan 120 is always inserted into the raw material input port 202 so that the glass raw material 10 on the transfer surface 122 is charged into the glass melting tank 204 even if it slides down due to the inclination of the transfer surface 122.
 進退機構130は、搬送パン120をガラス溶解槽204に向けて進退させる機構である。進退機構130は、例えば図2に示すように、モータ132、回転円板134、およびロッド136などで構成される。 The advance / retreat mechanism 130 is a mechanism for advancing and retracting the transport pan 120 toward the glass melting tank 204. For example, as shown in FIG. 2, the advance / retreat mechanism 130 includes a motor 132, a rotating disk 134, a rod 136, and the like.
 モータ132は、ガイドレール140に対して固定されている。モータ132は、回転円板134を回転駆動させるための駆動源である。モータ132の回転軸には、回転円板134が取付けられている。 The motor 132 is fixed to the guide rail 140. The motor 132 is a drive source for rotating the rotary disk 134. A rotating disk 134 is attached to the rotating shaft of the motor 132.
 ロッド136は、回転円板134と搬送パン120との間に設けられ、回転円板134の回転運動を搬送パン120の直線運動に変換する。ロッド136の一端部は回転円板134の偏心位置に回動可能に連結されており、ロッド136の他端部は搬送パン120に回動可能に連結されている。 The rod 136 is provided between the rotating disc 134 and the transport pan 120 and converts the rotational motion of the rotating disc 134 into the linear motion of the transport pan 120. One end of the rod 136 is rotatably connected to the eccentric position of the rotating disk 134, and the other end of the rod 136 is rotatably connected to the transport pan 120.
 この進退機構130では、モータ132が、制御装置の制御下で、回転円板134を一方向に回転させると、ロッド136が搬送パン120を押し引きして、搬送パン120がガイドレール140上を往復移動する。このようにして、進退機構130は、搬送パン120をガラス溶解槽204に向けて進退させる。 In the advance / retreat mechanism 130, when the motor 132 rotates the rotating disk 134 in one direction under the control of the control device, the rod 136 pushes and pulls the transport pan 120, and the transport pan 120 moves on the guide rail 140. Move back and forth. In this way, the advance / retreat mechanism 130 advances and retracts the transport pan 120 toward the glass melting tank 204.
 原料供給装置100は、進退機構130の他に、ガイドレール140とガラス溶解槽204との相対位置を調節する調節機構150を有しても良い。調節機構150は、例えば図2に示すように、移動台車151、および昇降装置152などで構成される。移動台車151は、ガラス溶解槽204に対してガイドレール140を接近、離間する方向に移動可能な装置である。昇降装置152は、移動台車151に搭載されており、ガラス溶解槽204に対してガイドレール140を昇降可能に支持する装置である。昇降装置152は、例えば油圧ジャッキなどで構成される。 The raw material supply apparatus 100 may include an adjustment mechanism 150 that adjusts the relative position between the guide rail 140 and the glass melting tank 204 in addition to the advance / retreat mechanism 130. For example, as shown in FIG. 2, the adjustment mechanism 150 includes a movable carriage 151 and a lifting device 152. The movable carriage 151 is a device that can move in a direction in which the guide rail 140 approaches and separates from the glass melting tank 204. The lifting device 152 is mounted on the movable carriage 151 and is a device that supports the guide rail 140 so that it can be lifted and lowered with respect to the glass melting tank 204. The elevating device 152 is composed of, for example, a hydraulic jack.
 本実施形態の原料供給装置100は、図2に示すように、搬送パン120上のガラス原料10への刺入位置と搬送パン120上のガラス原料10よりも上方の待機位置との間で移動可能なカッター160、および、カッター160を刺入位置と待機位置との間で移動させる移動機構170をさらに有している。移動機構170は、CPUなどを含む制御装置による制御下で、図3~図7に示すように、搬送パン120の位置などに応じて、カッター160を刺入位置と待機位置との間で移動させる。 As shown in FIG. 2, the raw material supply apparatus 100 according to the present embodiment moves between the insertion position of the glass raw material 10 on the transport pan 120 and the standby position above the glass raw material 10 on the transport pan 120. It further includes a possible cutter 160 and a moving mechanism 170 that moves the cutter 160 between the insertion position and the standby position. The moving mechanism 170 moves the cutter 160 between the insertion position and the standby position according to the position of the transport pan 120 and the like as shown in FIGS. 3 to 7 under the control of a control device including a CPU. Let
 カッター160は、鋼材(例えば、SS材)などで形成される。カッター160は、板状に形成され、略鉛直に配置されている。カッター160の下端部には、尖鋭状の刃部が設けられていても良い。 The cutter 160 is formed of a steel material (for example, SS material) or the like. The cutter 160 is formed in a plate shape and is disposed substantially vertically. A sharp blade portion may be provided at the lower end portion of the cutter 160.
 カッター160は、搬送パン120上のガラス原料10よりも上方の待機位置と、搬送パン120上のガラス原料10への刺入位置との間を移動可能となっている。 The cutter 160 is movable between a standby position above the glass raw material 10 on the conveyance pan 120 and a insertion position of the glass raw material 10 on the conveyance pan 120.
 待機位置にあるカッター160は、図4などに示すように、搬送パン120上のガラス原料10に接触していない。待機位置は、搬送パン120上のガラス原料10の厚さなどに応じて適宜設定される。 The cutter 160 in the standby position is not in contact with the glass raw material 10 on the transport pan 120 as shown in FIG. The standby position is appropriately set according to the thickness of the glass raw material 10 on the transport pan 120 and the like.
 刺入位置にあるカッター160は、搬送パン120の搬送面122と接触しても良いが、搬送面122との摩耗を防止するため、図3などに示すように、搬送面122との間に僅かな隙間を形成していることが望ましい。また、刺入位置にあるカッター160は、図8などに示すように、搬送パン120の一対の側板124との間に僅かな隙間を形成している。 The cutter 160 at the insertion position may come into contact with the conveyance surface 122 of the conveyance pan 120, but in order to prevent abrasion with the conveyance surface 122, as shown in FIG. It is desirable to form a slight gap. The cutter 160 at the insertion position forms a slight gap between the pair of side plates 124 of the transport pan 120 as shown in FIG.
 刺入位置にあるカッター160は、図7および図10に示すように、搬送パン120の後退に伴って、搬送パン120上のガラス原料10の少なくとも一部を搬送パン120から相対的に押し出して、ガラス溶解槽204へ投入する。これによって、ガラス原料10をガラス溶解槽204へ安定的に一定量ずつ投入することができる。この効果は、ガラス原料10が水和物(例えば、ホウ酸(HBO))を含んでいる場合に顕著である。水和物がガラス溶融装置200からの輻射熱によって加熱され水和水を放出すると、ガラス原料10の流動性が低下するからである。 As shown in FIGS. 7 and 10, the cutter 160 in the insertion position relatively pushes at least a part of the glass material 10 on the transport pan 120 from the transport pan 120 as the transport pan 120 moves backward. , Put into the glass melting tank 204. As a result, the glass raw material 10 can be stably fed into the glass melting tank 204 by a certain amount. This effect is remarkable when the glass raw material 10 contains a hydrate (for example, boric acid (H 3 BO 3 )). This is because when the hydrate is heated by radiant heat from the glass melting apparatus 200 and hydrated water is released, the fluidity of the glass raw material 10 is lowered.
 移動機構170は、カッター160を刺入位置と待機位置との間で移動させる機構である。移動機構170は、例えば図2に示すように、アクチュエータ172、第1リンク174、および第2リンク176などで構成される。 The moving mechanism 170 is a mechanism for moving the cutter 160 between the insertion position and the standby position. For example, as shown in FIG. 2, the moving mechanism 170 includes an actuator 172, a first link 174, a second link 176, and the like.
 アクチュエータ172は、伸縮可能な構成となっており、例えばエアシリンダや油圧シリンダなどで構成される。アクチュエータ172の上端部は、ホッパー110に回動可能に連結してある。一方、アクチュエータ172の下端部は、第1リンク174の一端部に回動可能に連結してある。 The actuator 172 has a configuration that can be expanded and contracted, for example, an air cylinder or a hydraulic cylinder. An upper end portion of the actuator 172 is rotatably connected to the hopper 110. On the other hand, the lower end portion of the actuator 172 is rotatably connected to one end portion of the first link 174.
 第1リンク174は、アクチュエータ172の伸縮動作に応じて正逆回動するように構成されている。第1リンク174は、中央部でホッパー110にピン止めされており、ピンの周りに回動することが可能である。第1リンク174の他端部は、第2リンク176の上端部に回転可能に連結してある。 The first link 174 is configured to rotate forward and backward according to the expansion / contraction operation of the actuator 172. The first link 174 is pinned to the hopper 110 at the center, and can rotate around the pin. The other end of the first link 174 is rotatably connected to the upper end of the second link 176.
 第2リンク176は、第1リンク174の正逆回動に連動して上下移動するように構成されている。第2リンク176の下端部は、カッター160の上面に連結してある。 The second link 176 is configured to move up and down in conjunction with forward and reverse rotation of the first link 174. The lower end of the second link 176 is connected to the upper surface of the cutter 160.
 ちなみに、第2リンク176は、防塵板206の開口部に出入り可能となっている。この開口部からのガラス原料10の飛散を抑えるため、防塵板206と第1リンク174との間には、第2リンク176の上端部を囲むように、蛇腹状の伸縮カバー208が設けてある。 Incidentally, the second link 176 can enter and leave the opening of the dustproof plate 206. In order to suppress the scattering of the glass raw material 10 from the opening, a bellows-like elastic cover 208 is provided between the dustproof plate 206 and the first link 174 so as to surround the upper end of the second link 176. .
 この移動機構170では、アクチュエータ172が、制御装置の制御下で、伸縮すると、第1のリンク174が正逆回動する。これに伴い、第2リンク176が上下移動し、カッター160が上下移動する。このようにして、移動機構170は、カッター160を刺入位置と待機位置との間で移動させる。 In this moving mechanism 170, when the actuator 172 expands and contracts under the control of the control device, the first link 174 rotates forward and backward. Accordingly, the second link 176 moves up and down, and the cutter 160 moves up and down. In this way, the moving mechanism 170 moves the cutter 160 between the insertion position and the standby position.
 本実施形態の原料供給装置100は、図2に示すように、搬送パン120上のガラス原料10に挿入される挿入部材180をさらに有する。挿入部材180は、鋼材(例えば、SS材)などで形成される。挿入部材180は、棒状に形成され、略鉛直に配置されている。挿入部材180の下面は、搬送パン120の搬送面122と接触しても良いが、搬送面122との摩耗を防止するため、搬送面122との間に僅かな隙間を形成していることが望ましい。 The raw material supply apparatus 100 of this embodiment further includes an insertion member 180 that is inserted into the glass raw material 10 on the transport pan 120 as shown in FIG. The insertion member 180 is formed of a steel material (for example, SS material) or the like. The insertion member 180 is formed in a rod shape and is arranged substantially vertically. The lower surface of the insertion member 180 may be in contact with the conveyance surface 122 of the conveyance pan 120, but a slight gap may be formed between the insertion member 180 and the conveyance surface 122 in order to prevent abrasion with the conveyance surface 122. desirable.
 挿入部材180は、カッター160と原料投入口202との間に設けてあっても良いが、原料投入口202などからの輻射熱による挿入部材180の劣化を抑えるため、図2に示すように、カッター160とホッパー110との間に設けてあることが望ましい。 The insertion member 180 may be provided between the cutter 160 and the raw material inlet 202, but in order to suppress deterioration of the insertion member 180 due to radiant heat from the raw material inlet 202 or the like, as shown in FIG. It is desirable to provide between 160 and the hopper 110.
 挿入部材180は、搬送パン120の前進に伴って、図9に示すように、搬送パン120上のガラス原料10を相対的に掻き分けて、搬送パン120の幅方向に並ぶ複数の原料山11~13を作製する。これによって、詳しくは後述するが、ガラス原料10の表面積(受熱面積)を増やすことができ、ガラス原料10の溶解時間を短くすることができる。 As the conveyance pan 120 advances, the insertion member 180 relatively scrapes the glass material 10 on the conveyance pan 120 as shown in FIG. 13 is produced. As described later in detail, the surface area (heat receiving area) of the glass material 10 can be increased, and the melting time of the glass material 10 can be shortened.
 搬送パン120上における複数の原料山11~13は、谷間において、搬送パン120の幅方向につながっていても良いし、離れていても良い。また、搬送パン120上における複数の原料山11~13の幅は、同一であっても良いし、異なっても良い。 The plurality of raw material mountains 11 to 13 on the transport pan 120 may be connected in the width direction of the transport pan 120 or may be separated in the valley. Further, the widths of the plurality of raw material peaks 11 to 13 on the transport pan 120 may be the same or different.
 搬送パン120上における複数の原料山11~13は、ガラス原料10の溶解時間のさらなる短縮のため、図10に示すように、ガラス溶解槽204に投入された際に互いに分離するように形成されることが望ましい。 The plurality of raw material piles 11 to 13 on the transport pan 120 are formed so as to be separated from each other when they are put into the glass melting tank 204 as shown in FIG. 10 in order to further shorten the melting time of the glass raw material 10. It is desirable.
 挿入部材180の後側部分(即ち、ホッパー110側の部分)は、先細り形状(例えば、三角形)の断面形状を有すると好ましい。これによって、搬送パン120の前進に伴って、挿入部材180がガラス原料10に容易に分け入ることができる。 It is preferable that the rear portion of the insertion member 180 (that is, the portion on the hopper 110 side) has a tapered cross section (for example, a triangle). Accordingly, the insertion member 180 can be easily separated into the glass raw material 10 as the conveyance pan 120 advances.
 なお、挿入部材180の前側部分(溶解槽204側の部分)の断面形状は、特に限定はない。 In addition, the cross-sectional shape of the front portion (the portion on the dissolution tank 204 side) of the insertion member 180 is not particularly limited.
 挿入部材180の幅(搬送パン120の幅方向と平行な方向の長さ)W2(図8参照)は、例えば搬送パン120の搬送面122の幅W1などに応じて適宜設定されるが、75~150mmであることが好ましく、90~110mmであることがより好ましい。幅W2を75mm以上とすることで、ガラス原料10の表面積(受熱面積)を十分に大きく設定することができる。一方、幅W2が150mmを超えると、ガラス溶解槽204へのガラス原料10の供給量が少なくなり過ぎるので、好ましくない。 The width of the insertion member 180 (the length in the direction parallel to the width direction of the transport pan 120) W2 (see FIG. 8) is appropriately set according to, for example, the width W1 of the transport surface 122 of the transport pan 120. It is preferably ˜150 mm, more preferably 90 to 110 mm. By setting the width W2 to 75 mm or more, the surface area (heat receiving area) of the glass raw material 10 can be set sufficiently large. On the other hand, when the width W2 exceeds 150 mm, the supply amount of the glass raw material 10 to the glass melting tank 204 becomes too small, which is not preferable.
 挿入部材180の設置数は、例えば搬送パン120の搬送面122の幅W1などに応じて適宜設定されるが、例えば1~4個であって良く、2~3個であることが好ましい。 The number of installed insertion members 180 is appropriately set according to, for example, the width W1 of the conveyance surface 122 of the conveyance pan 120, but may be 1 to 4, for example, and preferably 2 to 3.
 本実施形態の原料供給装置100は、図2に示すように、搬送パン120上のガラス原料10を幅方向に複数の領域に分割して厚さ調整するための調整部材190をさらに有すると好ましい。調整部材190は、例えば図2に示すように、ホッパー110の前側(ガラス溶解槽204側)において、上下方向にスライド可能にボルトなどで係合されている。 As shown in FIG. 2, the raw material supply apparatus 100 of the present embodiment preferably further includes an adjustment member 190 for adjusting the thickness by dividing the glass raw material 10 on the transport pan 120 into a plurality of regions in the width direction. . For example, as shown in FIG. 2, the adjustment member 190 is engaged with a bolt or the like so as to be slidable in the vertical direction on the front side (glass melting tank 204 side) of the hopper 110.
 調製部材190は、例えば図11に示すように、複数の可動部材191~193で構成される。複数の可動部材191~193は、搬送パン120の幅方向に並んで配置されており、それぞれ、搬送パン120との間の隙間を独立に調節可能となっている。よって、手動または自動で、各可動部材191~193と搬送パン120との間の隙間を調節することで、搬送パン120上のガラス原料10を幅方向に複数の領域に分割して厚さ調整することができる。 The preparation member 190 includes a plurality of movable members 191 to 193 as shown in FIG. 11, for example. The plurality of movable members 191 to 193 are arranged side by side in the width direction of the transport pan 120, and the gap between the transport pan 120 and each of the movable members 191 to 193 can be adjusted independently. Therefore, by adjusting the gap between each movable member 191 to 193 and the transport pan 120 manually or automatically, the glass raw material 10 on the transport pan 120 is divided into a plurality of regions in the width direction, and the thickness is adjusted. can do.
 各領域におけるガラス原料10の厚さは、例えば原料供給装置100の設置数やガラス溶解槽204内の幅方向の温度分布などに応じて適宜設定される。これによって、ガラス溶解槽204でのガラス原料10の溶解時間をさらに短くすることができる。 The thickness of the glass raw material 10 in each region is appropriately set according to, for example, the number of the raw material supply devices 100 installed, the temperature distribution in the width direction in the glass melting tank 204, and the like. Thereby, the melting time of the glass raw material 10 in the glass melting tank 204 can be further shortened.
 なお、調整部材190は、搬送パン120上の複数の原料山11~13の高さを独立に調整可能な構成となっていると好ましい。 The adjusting member 190 is preferably configured to be able to independently adjust the height of the plurality of raw material peaks 11 to 13 on the transport pan 120.
 次に、上記構成とした原料供給装置100を用いた原料供給方法について、図3~図10を参照して説明する。なお、後述の第1~第4工程は、制御装置の制御下で、所定の周期(例えば、1分~10分の周期)毎に繰り返し実行される。 Next, a raw material supply method using the raw material supply apparatus 100 configured as described above will be described with reference to FIGS. Note that first to fourth steps described later are repeatedly executed at predetermined intervals (for example, cycles of 1 minute to 10 minutes) under the control of the control device.
 第1工程では、搬送パン120が後退位置で停止した状態で、カッター160が刺入位置(図3参照)から待機位置(図4参照)へ上昇する。カッター160が待機位置で停止した状態では、カッター160が搬送パン120上のガラス原料10に接触していない。 In the first step, the cutter 160 rises from the insertion position (see FIG. 3) to the standby position (see FIG. 4) with the transport pan 120 stopped at the retracted position. In a state where the cutter 160 is stopped at the standby position, the cutter 160 is not in contact with the glass raw material 10 on the transport pan 120.
 第2工程では、カッター160が待機位置で停止した状態で、搬送パン120が後退位置(図4参照)から前進位置(図5参照)へ前進する。これに伴い、ホッパー110内のガラス原料10が、調整部材190と搬送パン120との間の隙間から、搬送パン120上に投下され、送り出される。搬送パン120が前進する間、搬送パン120上のガラス原料10は、摩擦によって搬送パン120上に安定的に載っている。 In the second step, the transport pan 120 advances from the retracted position (see FIG. 4) to the advanced position (see FIG. 5) with the cutter 160 stopped at the standby position. Along with this, the glass raw material 10 in the hopper 110 is dropped onto the transport pan 120 and sent out from the gap between the adjustment member 190 and the transport pan 120. While the transport pan 120 moves forward, the glass material 10 on the transport pan 120 is stably placed on the transport pan 120 by friction.
 また、第2工程では、図5に示すように、搬送パン120の前進に伴い、搬送パン120の前端部125が、原料投入口202付近の溶融ガラス14に浮かぶガラス原料10を下流側へ押して移動させる。これにより、新たなガラス原料10を投入するためのスペースを確保することができる。加えて、溶融ガラス14に浮かぶガラス原料10を低温の原料投入口202から高温の下流側に移動させるので、ガラス原料10の溶融を促進することができる。 Further, in the second step, as shown in FIG. 5, as the conveyance pan 120 advances, the front end portion 125 of the conveyance pan 120 pushes the glass raw material 10 floating on the molten glass 14 near the raw material charging port 202 to the downstream side. Move. Thereby, the space for throwing in the new glass raw material 10 is securable. In addition, since the glass raw material 10 floating on the molten glass 14 is moved from the low temperature raw material inlet 202 to the high temperature downstream side, melting of the glass raw material 10 can be promoted.
 さらに、第2工程では、図9に示すように、搬送パン120の前進に伴い、挿入部材180が搬送パン120上のガラス原料10を相対的に掻き分けて、搬送パン120の幅方向に並ぶ複数の原料山11~13を作製する。 Furthermore, in the second step, as shown in FIG. 9, as the conveyance pan 120 moves forward, the insertion member 180 relatively scrapes the glass raw material 10 on the conveyance pan 120, and a plurality of them are arranged in the width direction of the conveyance pan 120. The raw material piles 11 to 13 are prepared.
 第3工程では、搬送パン120が前進位置で停止した状態で、カッター160が待機位置(図5参照)から刺入位置(図6参照)へ下降する。カッター160が刺入位置で停止した状態では、カッター160の下面が搬送面122と接触するか、搬送面122よりも僅かに上方に位置する。 In the third step, the cutter 160 is lowered from the standby position (see FIG. 5) to the insertion position (see FIG. 6) with the transport pan 120 stopped at the forward position. When the cutter 160 is stopped at the insertion position, the lower surface of the cutter 160 is in contact with the transport surface 122 or slightly above the transport surface 122.
 第4工程では、カッター160が刺入位置で停止した状態で、搬送パン120が前進位置(図6参照)から後退位置(図7参照)へ後退する。この搬送パン120の後退に伴い、刺入位置にあるカッター160が、搬送パン上の各原料山11~13の少なくとも一部分を搬送パン120から相対的に押し出し、ガラス溶解槽204へ投下する。 In the fourth step, the transport pan 120 moves backward from the forward position (see FIG. 6) to the backward position (see FIG. 7) with the cutter 160 stopped at the insertion position. As the transport pan 120 moves backward, the cutter 160 at the insertion position pushes out at least a part of each of the raw material piles 11 to 13 on the transport pan from the transport pan 120 and drops them into the glass melting tank 204.
 このように、本実施形態では、搬送パン120の後退に伴いカッター160が搬送パン上のガラス原料10の少なくとも一部分を搬送パン120から相対的に押し出してガラス溶解槽204へ投入するので、ガラス原料10をガラス溶解槽204へ安定的に一定量ずつ投入することができる。この効果は、ガラス原料10が水和物を含んでいる場合に顕著である。水和物がガラス溶融装置200からの輻射熱によって加熱され水和水を放出すると、ガラス原料10の流動性が低下するからである。 As described above, in this embodiment, the cutter 160 relatively pushes at least a part of the glass material 10 on the transport pan 120 from the transport pan 120 and puts it into the glass melting tank 204 as the transport pan 120 moves backward. 10 can be stably fed into the glass melting tank 204 in a fixed amount. This effect is remarkable when the glass raw material 10 contains a hydrate. This is because when the hydrate is heated by radiant heat from the glass melting apparatus 200 and hydrated water is released, the fluidity of the glass raw material 10 is lowered.
 また、本実施形態では、搬送パン120の前進に伴い挿入部材180が搬送パン120上のガラス原料10を相対的に掻き分けて、搬送パン120の幅方向に並ぶ複数の原料山11~13を作製するので、ガラス原料10の表面積を増加することができる。よって、ガラス原料10の受熱面積を増加することができ、ガラス溶解槽204でのガラス原料10の溶解時間を短くすることができる。その結果、均質性の高いガラスが得られる。 Further, in this embodiment, the insertion member 180 relatively scrapes the glass material 10 on the transport pan 120 as the transport pan 120 advances, and a plurality of raw material peaks 11 to 13 arranged in the width direction of the transport pan 120 are produced. Therefore, the surface area of the glass raw material 10 can be increased. Therefore, the heat receiving area of the glass raw material 10 can be increased, and the melting time of the glass raw material 10 in the glass melting tank 204 can be shortened. As a result, highly homogenous glass is obtained.
 なお、ガラス原料10は、特に限定されないが、本実施形態によれば、ガラス溶解槽204でのガラス原料10の溶解が容易になるため、ソーダライムガラスの原料よりも溶解温度が100℃以上高い、無アルカリガラスの原料であることが好ましい。すなわち本発明は無アルカリガラスの原料に対して、特に有効である。無アルカリガラスは、例えば、酸化物基準の質量百分率表示で、SiO:50~66%、Al:10.5~24%、B:0~12%、MgO:0~8%、CaO:0~14.5%、SrO:0~24%、BaO:0~13.5%、MgO+CaO+SrO+BaO:9~29.5%の組成を有する。より好ましくは、無アルカリガラスは、酸化物基準の質量百分率表示で、SiO:58~66%、Al:15~22%、B:5~12%、MgO:0~8%、CaO:0~9%、SrO:3~12.5%、BaO:0~2%、MgO+CaO+SrO+BaO:9~18%の組成を有する。また、本実施形態によれば、均質性の高いガラスが得られるため、得られた無アルカリガラスは、特にディスプレイ用(好ましくは液晶ディスプレイ用)の板ガラスに適用されることが好ましい。 In addition, although the glass raw material 10 is not specifically limited, According to this embodiment, since melting | dissolving of the glass raw material 10 in the glass melting tank 204 becomes easy, melting | fusing temperature is 100 degreeC or more higher than the raw material of soda-lime glass. The alkali-free glass material is preferable. That is, the present invention is particularly effective for a non-alkali glass raw material. The alkali-free glass is, for example, expressed in terms of mass percentage based on oxide, SiO 2 : 50 to 66%, Al 2 O 3 : 10.5 to 24%, B 2 O 3 : 0 to 12%, MgO: 0 to 8%, CaO: 0 to 14.5%, SrO: 0 to 24%, BaO: 0 to 13.5%, MgO + CaO + SrO + BaO: 9 to 29.5%. More preferably, the alkali-free glass is expressed in terms of mass percentage on the basis of oxide, SiO 2 : 58 to 66%, Al 2 O 3 : 15 to 22%, B 2 O 3 : 5 to 12%, MgO: 0 to 8%, CaO: 0 to 9%, SrO: 3 to 12.5%, BaO: 0 to 2%, MgO + CaO + SrO + BaO: 9 to 18%. Moreover, according to this embodiment, since glass with high homogeneity is obtained, it is preferable that the obtained non-alkali glass is applied particularly to a plate glass for a display (preferably for a liquid crystal display).
 以上、本発明の一実施形態について説明したが、本発明は、上述の実施形態に制限されることはなく、本発明の範囲を逸脱することなく、上述の実施形態に種々の変形および置換を加えることができる。 Although one embodiment of the present invention has been described above, the present invention is not limited to the above-described embodiment, and various modifications and substitutions can be made to the above-described embodiment without departing from the scope of the present invention. Can be added.
 例えば、本実施形態の第2工程では、カッター160が待機位置で停止した状態で、搬送パン120が後退位置から前進位置へ前進するとしたが、本発明はこれに限定されない。例えば、カッター160が刺入位置から待機位置へ上昇しながら、搬送パン120が後退位置から前進位置へ前進するとしても良い。 For example, in the second step of the present embodiment, the transport pan 120 is advanced from the retracted position to the advanced position while the cutter 160 is stopped at the standby position, but the present invention is not limited to this. For example, the transport pan 120 may advance from the retracted position to the advanced position while the cutter 160 rises from the insertion position to the standby position.
 また、本実施形態の第4工程では、カッター160が刺入位置で停止した状態で、搬送パン120が前進位置から後退位置へ後退するとしたが、本発明はこれに限定されない。例えば、カッター160が待機位置から刺入位置へ下降しながら、搬送パン120が前進位置から後退位置へ後退するとしても良い。 In the fourth step of the present embodiment, the transport pan 120 is retracted from the advance position to the retract position with the cutter 160 stopped at the insertion position, but the present invention is not limited to this. For example, the transport pan 120 may be retracted from the advance position to the retract position while the cutter 160 is lowered from the standby position to the insertion position.
 また、本実施形態の挿入部材180は、搬送パン120上のガラス原料10に常に挿入されているが、複数の原料山11~13を作製することができる限り、搬送パン120の位置に応じてガラス原料10よりも上方の待機位置に移動されても良い。
In addition, the insertion member 180 of the present embodiment is always inserted into the glass raw material 10 on the conveyance pan 120, but depending on the position of the conveyance pan 120 as long as a plurality of raw material peaks 11 to 13 can be produced. It may be moved to a standby position above the glass raw material 10.
 本発明を詳細に、また特定の実施態様を参照して説明したが、本発明の範囲と精神を逸脱することなく、様々な修正や変更を加えることができることは、当業者にとって明らかである。 本出願は、2010年8月27日出願の日本特許出願2010-191417に基づくものであり、その内容はここに参照として取り込まれる。 Although the present invention has been described in detail and with reference to specific embodiments, it will be apparent to those skilled in the art that various modifications and changes can be made without departing from the scope and spirit of the invention. This application is based on Japanese Patent Application 2010-191417 filed on August 27, 2010, the contents of which are incorporated herein by reference.
10  ガラス原料
11~13 原料山
14  溶融ガラス
100 原料供給装置
110 ホッパー
120 搬送パン
130 進退機構
160 カッター
180 挿入部材
190 調整部材
200 ガラス溶融装置
202 原料投入口
204 ガラス溶解槽
300 成形装置
DESCRIPTION OF SYMBOLS 10 Glass raw material 11-13 Raw material pile 14 Molten glass 100 Raw material supply apparatus 110 Hopper 120 Carrying pan 130 Advance / retreat mechanism 160 Cutter 180 Inserting member 190 Adjustment member 200 Glass melting apparatus 202 Raw material inlet 204 Glass melting tank 300 Molding apparatus

Claims (14)

  1.  ガラス原料を貯蔵するホッパーと、該ホッパーから投下されるガラス原料をガラス溶解槽に向けて搬送する搬送パンと、該搬送パンを該ガラス溶解槽に向けて進退させる進退機構とを有する原料供給装置において、
     前記搬送パン上のガラス原料への刺入位置と前記搬送パン上のガラス原料よりも上方の待機位置との間で移動可能なカッターと、前記搬送パン上のガラス原料に挿入される挿入部材とを有し、
     前記挿入部材が、前記搬送パンの前進に伴って、前記搬送パン上のガラス原料を相対的に掻き分けて、前記搬送パンの幅方向に並ぶ複数の原料山を作製し、
     前記刺入位置にあるカッターが、前記搬送パンの後退に伴って、前記搬送パン上の各原料山の少なくとも一部分を前記搬送パンから相対的に押し出して、前記ガラス溶解槽に投入する原料供給装置。
    A raw material supply apparatus having a hopper for storing glass raw material, a transport pan for transporting the glass raw material dropped from the hopper toward the glass melting tank, and an advancing / retreating mechanism for moving the transport pan toward and behind the glass melting tank In
    A cutter movable between the insertion position into the glass raw material on the transport pan and the standby position above the glass raw material on the transport pan; and an insertion member inserted into the glass raw material on the transport pan; Have
    The insertion member relatively scrapes the glass raw material on the transport pan as the transport pan advances, and creates a plurality of raw material piles arranged in the width direction of the transport pan,
    The raw material supply device in which the cutter at the insertion position pushes at least a part of each raw material pile on the transport pan relative to the transport pan and puts it into the glass melting tank as the transport pan moves backward. .
  2.  前記挿入部材の後側部分は、先細りの断面形状を有する請求項1記載の原料供給装置。 The raw material supply apparatus according to claim 1, wherein a rear portion of the insertion member has a tapered cross-sectional shape.
  3.  前記挿入部材の幅は、75~150mmである請求項1または2に記載の原料供給装置。 The raw material supply apparatus according to claim 1 or 2, wherein the width of the insertion member is 75 to 150 mm.
  4.  前記搬送パン上のガラス原料を幅方向に複数の領域に分割して厚さ調整するための調整部材をさらに有する請求項1~3のいずれか1項に記載の原料供給装置。 The raw material supply apparatus according to any one of claims 1 to 3, further comprising an adjusting member for adjusting the thickness by dividing the glass raw material on the transport pan into a plurality of regions in the width direction.
  5.  前記ガラス原料は、無アルカリガラスの原料であって、
     該無アルカリガラスは、酸化物基準の質量百分率表示で、SiO:50~66%、Al:10.5~24%、B:0~12%、MgO:0~8%、CaO:0~14.5%、SrO:0~24%、BaO:0~13.5%、MgO+CaO+SrO+BaO:9~29.5の組成を有する請求項1~4のいずれか1項に記載の原料供給装置。
    The glass material is a non-alkali glass material,
    The alkali-free glass is expressed in terms of mass percentage on the basis of oxide, SiO 2 : 50 to 66%, Al 2 O 3 : 10.5 to 24%, B 2 O 3 : 0 to 12%, MgO: 0 to 8 %, CaO: 0 to 14.5%, SrO: 0 to 24%, BaO: 0 to 13.5%, MgO + CaO + SrO + BaO: 9 to 29.5. Raw material supply equipment.
  6.  前記無アルカリガラスは、酸化物基準の質量百分率表示で、SiO:58~66%、Al:15~22%、B:5~12%、MgO:0~8%、CaO:0~9%、SrO:3~12.5%、BaO:0~2%、MgO+CaO+SrO+BaO:9~18%の組成を有する請求項5に記載の原料供給装置。 The alkali-free glass is expressed in terms of mass percentage based on oxide, SiO 2 : 58 to 66%, Al 2 O 3 : 15 to 22%, B 2 O 3 : 5 to 12%, MgO: 0 to 8%, 6. The raw material supply apparatus according to claim 5, having a composition of CaO: 0 to 9%, SrO: 3 to 12.5%, BaO: 0 to 2%, MgO + CaO + SrO + BaO: 9 to 18%.
  7.  ガラス原料をホッパーから搬送パンに投下し、該搬送パン上のガラス原料をガラス溶解槽へ投入するように、該搬送パンを該ガラス溶解槽に向けて進退させる原料供給方法において、
     前記搬送パン上のガラス原料に挿入された挿入部材が、前記搬送パンの前進に伴って、前記搬送パン上のガラス原料を相対的に掻き分けて、前記搬送パンの幅方向に並ぶ複数の原料山を作製し、
     前記搬送パン上のガラス原料に刺入されたカッターが、前記搬送パンの後退に伴って、前記搬送パン上の各原料山の少なくとも一部分を前記搬送パンから相対的に押し出して、前記ガラス溶解槽に投入する原料供給方法。
    In the raw material supply method of dropping the glass raw material from the hopper onto the conveyance pan and moving the conveyance pan toward the glass dissolution vessel so that the glass raw material on the conveyance pan is put into the glass dissolution vessel,
    The insertion member inserted into the glass raw material on the transport pan relatively scrapes the glass raw material on the transport pan as the transport pan advances, and a plurality of raw material stacks arranged in the width direction of the transport pan. Make
    The cutter inserted into the glass raw material on the transport pan pushes out at least a part of each raw material pile on the transport pan relative to the transport pan as the transport pan moves backward, and the glass melting tank Raw material supply method
  8.  前記挿入部材の後側部分は、先細りの断面形状を有する請求項7記載の原料供給方法。 The material supply method according to claim 7, wherein a rear portion of the insertion member has a tapered cross-sectional shape.
  9.  前記挿入部材の幅は、75~150mmである請求項7または8に記載の原料供給方法。 The raw material supply method according to claim 7 or 8, wherein the width of the insertion member is 75 to 150 mm.
  10.  前記搬送パン上のガラス原料を幅方向に複数の領域に分割して厚さ調整する請求項7~9のいずれか1項に記載の原料供給方法。 10. The raw material supply method according to claim 7, wherein the thickness of the glass raw material on the conveyance pan is adjusted by dividing the glass raw material into a plurality of regions in the width direction.
  11.  前記ガラス原料は、無アルカリガラスの原料であって、
     該無アルカリガラスは、酸化物基準の質量百分率表示で、SiO:50~66%、Al:10.5~24%、B:0~12%、MgO:0~8%、CaO:0~14.5%、SrO:0~24%、BaO:0~13.5%、MgO+CaO+SrO+BaO:9~29.5の組成を有する請求項7~10のいずれか1項に記載の原料供給方法。
    The glass material is a non-alkali glass material,
    The alkali-free glass is expressed in terms of mass percentage on the basis of oxide, SiO 2 : 50 to 66%, Al 2 O 3 : 10.5 to 24%, B 2 O 3 : 0 to 12%, MgO: 0 to 8 11. The composition according to any one of claims 7 to 10, having a composition of:%, CaO: 0 to 14.5%, SrO: 0 to 24%, BaO: 0 to 13.5%, MgO + CaO + SrO + BaO: 9 to 29.5. Raw material supply method.
  12.  前記無アルカリガラスは、酸化物基準の質量百分率表示で、SiO:58~66%、Al:15~22%、B:5~12%、MgO:0~8%、CaO:0~9%、SrO:3~12.5%、BaO:0~2%、MgO+CaO+SrO+BaO:9~18%の組成を有する請求項11に記載の原料供給方法。 The alkali-free glass is expressed in terms of mass percentage based on oxide, SiO 2 : 58 to 66%, Al 2 O 3 : 15 to 22%, B 2 O 3 : 5 to 12%, MgO: 0 to 8%, The raw material supply method according to claim 11, which has a composition of CaO: 0 to 9%, SrO: 3 to 12.5%, BaO: 0 to 2%, MgO + CaO + SrO + BaO: 9 to 18%.
  13.  請求項1~6のいずれか1項に記載の原料供給装置と、該原料供給装置によって供給されるガラス原料を溶解して溶融ガラスを作製するガラス溶融装置と、該ガラス溶融装置によって作製された溶融ガラスを板状に成形する成形装置とを有するガラス板の製造装置。 The raw material supply apparatus according to any one of claims 1 to 6, a glass melting apparatus that melts a glass raw material supplied by the raw material supply apparatus to produce a molten glass, and the glass melting apparatus. An apparatus for producing a glass plate, comprising: a molding device for forming molten glass into a plate shape.
  14.  請求項13に記載のガラス板の製造装置を用いて、ガラス板を製造するガラス板の製造方法。 A method for manufacturing a glass plate, wherein the glass plate is manufactured using the glass plate manufacturing apparatus according to claim 13.
PCT/JP2011/066730 2010-08-27 2011-07-22 System for supplying raw material, method for supplying raw material, and apparatus and method for manufacturing glass plate WO2012026254A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201180041629.5A CN103097309B (en) 2010-08-27 2011-07-22 The manufacturing installation of raw material feed device and raw material supplying method and sheet glass and manufacture method
JP2012530592A JP5817729B2 (en) 2010-08-27 2011-07-22 Raw material supply apparatus and raw material supply method, and glass plate manufacturing apparatus and manufacturing method
KR1020137004922A KR101791293B1 (en) 2010-08-27 2011-07-22 System for supplying raw material, method for supplying raw material, and apparatus and method for manufacturing glass plate

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010191417 2010-08-27
JP2010-191417 2010-08-27

Publications (1)

Publication Number Publication Date
WO2012026254A1 true WO2012026254A1 (en) 2012-03-01

Family

ID=45723262

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/066730 WO2012026254A1 (en) 2010-08-27 2011-07-22 System for supplying raw material, method for supplying raw material, and apparatus and method for manufacturing glass plate

Country Status (5)

Country Link
JP (1) JP5817729B2 (en)
KR (1) KR101791293B1 (en)
CN (1) CN103097309B (en)
TW (1) TWI532695B (en)
WO (1) WO2012026254A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017202956A (en) * 2016-05-12 2017-11-16 日本電気硝子株式会社 Raw material feeding device and glass manufacturing apparatus
CN110746089A (en) * 2019-11-27 2020-02-04 蚌埠凯盛工程技术有限公司 Glass raw material feeder
CN113165929A (en) * 2018-09-27 2021-07-23 康宁公司 Modular molten glass delivery apparatus
US12017944B2 (en) 2019-09-20 2024-06-25 Corning Incorporated Glass forming apparatuses comprising modular glass fining systems

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102487675B1 (en) * 2017-02-15 2023-01-11 에이지씨 가부시키가이샤 Molding method of molten glass, molding apparatus, and manufacturing method of glass products

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5094011A (en) * 1973-12-18 1975-07-26
JPS6340730A (en) * 1986-08-04 1988-02-22 Nippon Sheet Glass Co Ltd Device for feeding raw material to melting tank for glass
WO2010150586A1 (en) * 2009-06-22 2010-12-29 旭硝子株式会社 Material feeding method, material feeding apparatus, and glass plate manufacturing apparatus and method

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201317720Y (en) * 2008-11-28 2009-09-30 陕西彩虹电子玻璃有限公司 Feeding device of glass furnace
CN201447410U (en) * 2009-06-23 2010-05-05 珠海彩珠实业有限公司 Batch feeding device of glass material with low melting point

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5094011A (en) * 1973-12-18 1975-07-26
JPS6340730A (en) * 1986-08-04 1988-02-22 Nippon Sheet Glass Co Ltd Device for feeding raw material to melting tank for glass
WO2010150586A1 (en) * 2009-06-22 2010-12-29 旭硝子株式会社 Material feeding method, material feeding apparatus, and glass plate manufacturing apparatus and method

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017202956A (en) * 2016-05-12 2017-11-16 日本電気硝子株式会社 Raw material feeding device and glass manufacturing apparatus
CN113165929A (en) * 2018-09-27 2021-07-23 康宁公司 Modular molten glass delivery apparatus
US11919800B2 (en) 2018-09-27 2024-03-05 Corning Incorporated Modular molten glass delivery apparatus
CN113165929B (en) * 2018-09-27 2024-05-31 康宁公司 Modular molten glass delivery device
US12017944B2 (en) 2019-09-20 2024-06-25 Corning Incorporated Glass forming apparatuses comprising modular glass fining systems
CN110746089A (en) * 2019-11-27 2020-02-04 蚌埠凯盛工程技术有限公司 Glass raw material feeder

Also Published As

Publication number Publication date
CN103097309A (en) 2013-05-08
KR101791293B1 (en) 2017-10-27
TW201209001A (en) 2012-03-01
CN103097309B (en) 2016-03-02
TWI532695B (en) 2016-05-11
JP5817729B2 (en) 2015-11-18
JPWO2012026254A1 (en) 2013-10-28
KR20130111535A (en) 2013-10-10

Similar Documents

Publication Publication Date Title
JP5614403B2 (en) Raw material supply method and raw material supply apparatus, and glass plate manufacturing apparatus and manufacturing method
JP5817729B2 (en) Raw material supply apparatus and raw material supply method, and glass plate manufacturing apparatus and manufacturing method
WO2012090766A1 (en) Glass plate manufacturing method and glass plate manufacturing device
KR102487675B1 (en) Molding method of molten glass, molding apparatus, and manufacturing method of glass products
JP5532047B2 (en) Raw material supply method and raw material supply apparatus, and glass plate manufacturing apparatus and manufacturing method
TWI605022B (en) Glass substrate for display
JP2009040675A (en) Method for manufacturing silicate glass, mixed raw material for silicate glass melting and glass article for electronic material
TWI482747B (en) Creep-resistant zircon article and method of manufacturing same
CN203513479U (en) Manufacturing apparatus of glass plates
JP2016069225A (en) Manufacturing method for glass substrate and manufacturing apparatus for glass substrate
RU2708290C1 (en) Device for mixing charge and cullet on conveyor (versions) and method of its application
JP2022046095A (en) Glass raw material supply device
RU2374188C1 (en) Method of controlling loading charge into glass-melting furnace
JP2019094245A (en) Float glass production method and float glass
CN203128398U (en) Glass plate manufacturing device
JP2016190754A (en) Glass plate manufacturing method, and glass plate manufacturing apparatus
JP2022063638A (en) Glass manufacturing apparatus and glass manufacturing method
US20220009815A1 (en) Apparatus and method for manufacturing silica glass crucible
RU2250198C2 (en) Glass melting in bath furnace
CN205686904U (en) A kind of movable glass frame
JP2016069226A (en) Manufacturing method for glass substrate and manufacturing apparatus for glass substrate
CN114459240A (en) Smelting furnace for precision-grade high-purity fused quartz
JP2010105872A (en) Method for producing glass

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180041629.5

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11819722

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012530592

Country of ref document: JP

ENP Entry into the national phase

Ref document number: 20137004922

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11819722

Country of ref document: EP

Kind code of ref document: A1