WO2012026195A1 - 無線通信装置、無線通信システム、無線通信方法、およびプログラム - Google Patents

無線通信装置、無線通信システム、無線通信方法、およびプログラム Download PDF

Info

Publication number
WO2012026195A1
WO2012026195A1 PCT/JP2011/064218 JP2011064218W WO2012026195A1 WO 2012026195 A1 WO2012026195 A1 WO 2012026195A1 JP 2011064218 W JP2011064218 W JP 2011064218W WO 2012026195 A1 WO2012026195 A1 WO 2012026195A1
Authority
WO
WIPO (PCT)
Prior art keywords
reference signal
transmission
wireless communication
transmission weight
mimo
Prior art date
Application number
PCT/JP2011/064218
Other languages
English (en)
French (fr)
Inventor
高野 裕昭
Original Assignee
ソニー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to KR1020157023159A priority Critical patent/KR101850593B1/ko
Priority to CA2804589A priority patent/CA2804589A1/en
Application filed by ソニー株式会社 filed Critical ソニー株式会社
Priority to EP11819667.4A priority patent/EP2611052B1/en
Priority to RU2013106890/07A priority patent/RU2569934C2/ru
Priority to CN201180039971.1A priority patent/CN103081387B/zh
Priority to KR1020137003780A priority patent/KR20130098998A/ko
Priority to US13/704,254 priority patent/US9648622B2/en
Priority to ES11819667.4T priority patent/ES2655903T3/es
Priority to BR112013003745A priority patent/BR112013003745A2/pt
Priority to MX2013001927A priority patent/MX2013001927A/es
Priority to MYPI2013700268A priority patent/MY185247A/en
Priority to KR1020187032655A priority patent/KR102053565B1/ko
Priority to AU2011294574A priority patent/AU2011294574B2/en
Publication of WO2012026195A1 publication Critical patent/WO2012026195A1/ja
Priority to ZA2013/00428A priority patent/ZA201300428B/en
Priority to US14/700,783 priority patent/US9622219B2/en
Priority to US14/700,726 priority patent/US10009074B2/en
Priority to US15/972,716 priority patent/US10693534B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0619Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
    • H04B7/0636Feedback format
    • H04B7/0645Variable feedback
    • H04B7/065Variable contents, e.g. long-term or short-short
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • H04B7/0417Feedback systems
    • H04B7/0421Feedback systems utilizing implicit feedback, e.g. steered pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0619Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0665Feed forward of transmit weights to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/03Shaping networks in transmitter or receiver, e.g. adaptive shaping networks
    • H04L25/03891Spatial equalizers
    • H04L25/03898Spatial equalizers codebook-based design
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • H04L5/005Allocation of pilot signals, i.e. of signals known to the receiver of common pilots, i.e. pilots destined for multiple users or terminals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/24Cell structures
    • H04W16/28Cell structures using beam steering
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/10Scheduling measurement reports ; Arrangements for measurement reports
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0453Resources in frequency domain, e.g. a carrier in FDMA
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/046Wireless resource allocation based on the type of the allocated resource the resource being in the space domain, e.g. beams
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • H04B7/0452Multi-user MIMO systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0619Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
    • H04B7/0621Feedback content
    • H04B7/0626Channel coefficients, e.g. channel state information [CSI]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0686Hybrid systems, i.e. switching and simultaneous transmission
    • H04B7/0689Hybrid systems, i.e. switching and simultaneous transmission using different transmission schemes, at least one of them being a diversity transmission scheme

Definitions

  • the present disclosure relates to a wireless communication device, a wireless communication system, a wireless communication method, and a program.
  • CoMP is a technology in which a plurality of base stations cooperate to transmit and receive data in order to improve high data rate coverage.
  • MU-MIMO is a technique for improving system throughput by using a plurality of users using spatially multiplexed resource blocks of the same frequency and the same time.
  • 4G Long Term Evolution-Advanced
  • MU-MIMO will be described in more detail.
  • MU-MIMO and SU-MIMO Single User MIMO
  • SU-MIMO is a technique in which, as described in Patent Document 1, for example, UEs (User Equipment) do not spatially multiplex, but one UE uses a plurality of channels by spatial multiplexing.
  • MU-MIMO is a technique in which each UE uses resource blocks having the same frequency and the same time by spatial multiplexing (UEs are spatially multiplexed).
  • UEs are spatially multiplexed.
  • MU-MIMO has been realized in 3.9G, each UE can not only handle a single channel.
  • 4G intends to realize MU-MIMO that allows each UE to handle multiple channels.
  • the base station uses two types of transmission weights (V1 and V2).
  • V1 is a transmission weight for realizing directivity
  • V2 is a non-directional transmission weight whose main purpose is to adjust the phase.
  • V1 and V2 can be determined in the UE, for example. More specifically, the UE receives the reference signal transmitted from the base station, acquires the channel matrix H from the reception result of the reference signal, and determines the optimum V1 and V2 for the channel matrix H.
  • the present disclosure proposes a new and improved wireless communication device, wireless communication system, wireless communication method, and program capable of suppressing the calculation load on the communication partner for determining the transmission weight.
  • a communication unit that transmits a reference signal, a first multiplication unit that multiplies a first transmission weight determined based on reception of the reference signal by a communication partner, and the communication A second multiplier that multiplies the second transmission weight determined based on reception of the reference signal by the other party, and the communication unit determines the first transmission weight after determining the first transmission weight. transmits a signal and the first reference signal with the resulting weight by multiplying the transmission weights, the wireless communication device is provided.
  • the wireless communication apparatus may further include a reference signal management unit that manages resources for transmitting the weighted reference signal.
  • the reference signal management unit may allocate a resource for transmitting the weighted reference signal and a resource for transmitting the reference signal after determining the first transmission weight.
  • the reference signal management unit from the transmission of the weighted reference signal may allocate more resources for transmission.
  • the reference signal management unit may allocate resources so that the transmission frequency of the reference signal on the time axis is higher than the transmission frequency of the weighted reference signal on the time axis.
  • the reference signal management unit may allocate resources so that the density on the frequency axis of the resource for transmission of the reference signal is higher than the density on the frequency axis of the resource for transmission of the weighted reference signal.
  • the wireless communication apparatus further includes a scheduler that allocates resources for communication according to the first scheme or the second scheme to each communication partner, and the scheduler allocates resources within a first frequency range to the first scheme. And resources within the second frequency range may be allocated for communication according to the second scheme.
  • the first frequency range may be a frequency range to which the weighted reference signal transmission resource is allocated
  • the second frequency range may be a frequency range to which the reference signal transmission resource is allocated.
  • the first method may be MU-MIMO (Multi User Multi Input Multi Output), and the second method may be SU-MIMO (Single User Multi Input Multi Output).
  • MU-MIMO Multi User Multi Input Multi Output
  • SU-MIMO Single User Multi Input Multi Output
  • the wireless communication apparatus further includes a scheduler that allocates resources for communication according to the first scheme or the second scheme to each communication partner, and the scheduler has a frequency range in which resources for transmission of the weighted reference signal are allocated. Are allocated for communication according to the first scheme, and resources within a frequency range to which the reference signal transmission resource is allocated are allocated for communication according to the first scheme or the second scheme. Also good.
  • Update frequency of the second transmission weight may be higher than the update frequency of the first transmission weight.
  • the first transmission weight may be a weight for forming directivity
  • the second transmission weight may be a non-directional weight for adjusting the phase.
  • the computer multiplies a communication unit that transmits a reference signal by a first transmission weight determined based on reception of the reference signal by a communication partner.
  • a multiplication unit and a second multiplication unit that multiplies a second transmission weight determined based on reception of the reference signal by the communication partner, wherein the communication unit includes the first transmission weight.
  • transmitting a reference signal multiplying the reference signal by a first transmission weight determined based on reception of the reference signal by a communication partner, Transmitting a weighted reference signal obtained by multiplying the reference signal and the first transmission weight.
  • a first wireless communication device a communication unit that transmits a reference signal, and a first determined based on reception of the reference signal by the first wireless communication device A first multiplier for multiplying a transmission weight; and a second multiplier for multiplying a second transmission weight determined based on reception of the reference signal by the first wireless communication device.
  • the communication unit transmits a weighted reference signal obtained by multiplying the reference signal and the first transmission weight after the determination of the first transmission weight; and A wireless communication system is provided.
  • a communication unit that receives a reference signal from a communication partner, a first transmission weight, and a second transmission weight according to a reception result of the reference signal by the communication unit
  • a weight determination unit that determines a weight, and when the weighted reference signal obtained by multiplication of the reference signal and the first transmission weight is received by the communication unit, the weight determination unit
  • a wireless communication apparatus is provided that determines the second transmission weight from a reception result of a reference signal.
  • a scheduler that allocates resources for communication according to the first scheme or the second scheme to each communication partner is provided, and the scheduler allocates resources within the first frequency range.
  • a wireless communication apparatus is provided that allocates for communication according to the first scheme and allocates resources within a second frequency range for communication according to the second scheme.
  • the first method may be MU-MIMO (Multi User Multi Input Multi Output), and the second method may be SU-MIMO (Single User Multi Input Multi Output).
  • MU-MIMO Multi User Multi Input Multi Output
  • SU-MIMO Single User Multi Input Multi Output
  • FIG. 1 is an explanatory diagram illustrating a configuration of a wireless communication system according to an embodiment of the present disclosure.
  • FIG. It is explanatory drawing which showed an example of the multiplication order of the weight for transmission. It is explanatory drawing which showed the relationship between V1 and V2. It is explanatory drawing which showed the determination method by the comparative example of transmission weight V1 and V2_MU. It is explanatory drawing which showed the determination method by the comparative example of the weight for transmission in case MU-MIMO and SU-MIMO coexist. It is explanatory drawing which showed the structure of the base station by embodiment of this indication. It is explanatory drawing which showed the structure of the weight multiplication part. It is explanatory drawing which showed the structure of the weight multiplication part by a modification.
  • a plurality of constituent elements having substantially the same functional configuration may be distinguished by adding different alphabets after the same reference numeral.
  • a plurality of configurations having substantially the same functional configuration are distinguished as mobile stations 20A, 20B, and 20C as necessary.
  • mobile stations 20A, 20B, and 20C when there is no particular need to distinguish between a plurality of structural elements having the same function and structure are denoted with the same reference numeral only.
  • mobile stations 20A, 20B, and 20C they are simply referred to as the mobile station 20.
  • FIG. 1 is an explanatory diagram illustrating a configuration of a wireless communication system 1 according to an embodiment of the present disclosure.
  • the wireless communication system 1 includes a base station 10 and a plurality of mobile stations 20.
  • the base station 10 may be a wireless communication device such as an eNodeB in 4G, a relay node, or a Home eNodeB that is a small home base station.
  • the mobile station 20 may be a 4G relay node or a radio communication device such as a UE.
  • the base station 10 controls communication with the mobile station 20 in the cell.
  • the base station 10 is operated in three sectors so that each sector has an angle of 120 degrees.
  • the base station 10 includes a plurality of antennas, and multiplies transmission signals from the antennas by a transmission weight V1, which will be described later, in a plurality of directions in each sector (four directions in the example shown in FIG. 1). Directivity can be formed.
  • the base station 10 can spatially separate and multiplex the mobile stations 20A and 20B existing in different directions when viewed from the base station 10. That is, the base station 10 can communicate with a plurality of mobile stations 20 by MU-MIMO. Note that the base station 10 can also communicate with the mobile station 20 by SU-MIMO.
  • the mobile station 20 is a wireless communication device that communicates with the base station 10 by MU-MIMO or SU-MIMO.
  • the mobile station 20 moves as the user or a vehicle such as a vehicle moves.
  • the mobile station 20 will be described as an example of a wireless communication device that wirelessly communicates with the base station 10, but the present embodiment can also be applied to a wireless communication device that is fixedly installed.
  • V1 and V2 Transmission weight (V1 and V2)]
  • V1 is a transmission weight that realizes directivity as described above. This V1 has characteristics such as covering a wide frequency range and having a lower update frequency than V2.
  • V2 is a non-directional transmission weight whose main purpose is to adjust the phase. More specifically, V2 is used to maximize the received power by adjusting the phase of each path between the mobile station 20 and the base station 10 antenna. Further, this V2 has characteristics such as covering a narrow frequency region and having a higher update frequency than V1.
  • the base station 10 implements MU-MIMO by multiplying transmission data by such transmission weights V1 and V2.
  • the base station 10 may multiply the transmission data by transmission weights in the order of V2 and V1 as shown in FIG. 2, or may multiply the transmission data by transmission weights in the order of V1 and V2. .
  • FIG. 3 is an explanatory diagram showing the relationship between V1 and V2. As shown in FIG. 3, when the base station 10 has eight antennas, these antennas operate as linear array antennas 4A and 4B composed of two sets of four elements. Each linear array antenna 4A and 4B operates as an array antenna having the same directivity as shown in FIG.
  • V2 acts to distribute the two codewords of the transmission data to the two sets of linear array antennas 4A and 4B while changing the phase. That is, V2 acts to change the phase of the transmission signal supplied to the linear array antennas 4A and 4B that transmit in the same direction.
  • V1 is applied to each antenna as shown in FIG. 3, and the linear array antennas 4A and 4B act so as to form directivity.
  • Equation 1 d indicates the distance from the reference antenna
  • indicates the wavelength
  • indicates the beam direction
  • i indicates the antenna number.
  • H in Formula 2 representing V2 represents a channel matrix.
  • V2 is a transmission weight represented by plus / minus 1 or plus / minus j.
  • J represents an imaginary number. Therefore, the load for multiplying a specific matrix by V2 is small.
  • V1 is a transmission weight described by a directional vector, it is not a matrix represented by plus / minus 1 or plus / minus j. For this reason, the calculation load increases in the calculation using V1.
  • the transmission data of the base station 10 is S and the reception data of the mobile station 20 is R
  • the reception data R of the mobile station 20 is expressed as in the following Equation 3 or Equation 4.
  • Implicit Feedback As a MIMO feedback method for determining the transmission weights V1 and V2, there are three possible methods: Implicit Feedback, Explicit Feedback, and SRS-based Feedback. In 4G, it is decided to use Implicit Feedback as a MIMO feedback method for determining the transmission weights V1 and V2 because the load on the feedback line is small.
  • Implicit Feedback As a MIMO feedback method for determining the transmission weights V1 and V2 because the load on the feedback line is small.
  • LTE 3.9G
  • the base station prepares 16 kinds of transmission weights (V1) to (V16) (pre coding) in a pre-designed bookbook.
  • the mobile station that has received the reference signal from the base station acquires a channel matrix H between the base station and the mobile station. Then, the mobile station tentatively determines which of the HV (1), HV (2),..., HV (16) has the highest received power. Thereafter, the mobile station feeds back an index number indicating V that maximizes received power to the base station.
  • the base station transmits data using V corresponding to the fed back index.
  • the mobile station that has transmitted the reference signal from the base station and has received the reference signal from the base station acquires the channel matrix H between the base station and the mobile station, as in the case of Implicit Feedback. Then, the mobile station feeds back the channel matrix H to the base station as it is.
  • the base station calculates and creates a desired transmission weight from the downlink channel matrix H fed back from the mobile station. Then, the base station transmits data using the created transmission weight.
  • this explicit feedback since the channel matrix H is transmitted as it is at the time of feedback, there is a problem that the resources consumed for feedback are larger than the implicit feedback.
  • the base station that has transmitted the reference signal from the mobile station and has received the reference signal from the mobile station acquires an uplink channel matrix between the mobile station and the base station.
  • the base station can create a virtual downlink channel matrix from this channel matrix.
  • a method for creating a virtual downlink channel matrix in this way is SRS-based Feedback.
  • the reversibility of the uplink and downlink channels is required unless calibration is performed to correct the variation of the analog circuit of the base station. There is a problem that does not hold.
  • V2_MU V2 for MU-MIMO
  • V2_SU a weight for SU-MIMO
  • transmission weights V1 and V2_MU are determined by Implicit Feedback.
  • a determination method according to a comparative example of the transmission weights V1 and V2_MU will be described with reference to FIG.
  • FIG. 4 is an explanatory diagram showing a method of determining the transmission weights V1 and V2_MU according to a comparative example.
  • the horizontal axis indicates time.
  • CSI is CSI_RS (Channel State Information Reference Signal).
  • the base station transmits CSI_RS (step 1), and the mobile station acquires a channel matrix H from CSI_RS received from the base station. Then, the mobile station evaluates which V1 is optimal from the four types of V1 candidates for the acquired channel matrix H. For example, the mobile station selects V1 that maximizes received power from among four types of V1 candidates. Further, the mobile station evaluates and selects an optimal V2_MU. Thereafter, the mobile station feeds back Index_V1 indicating the selected V1 and Index_V2 indicating V2_MU to the base station (step 2). The base station determines V1 and V2_MU based on feedback from the mobile station.
  • the base station and the mobile station determine V1 and V2_MU, they update only V2_MU multiple times (step 3), and then update V1 and V2_MU (step 4).
  • the update frequency of V2_MU is higher than the update frequency of V1.
  • the mobile station performs calculations using a plurality of types of V1 when selecting V1. As described in “1-2. Transmission weights (V1 and V2)”, the calculation using V1 is heavier than the calculation using V2_MU, so the load on the mobile station when selecting V1 is growing.
  • FIG. 5 is an explanatory diagram showing a determination method according to a comparative example of transmission weights when MU-MIMO and SU-MIMO are mixed.
  • the base station and the mobile station update V2_SU for all CSI_RSs in addition to V1 and V2_MU. For this reason, the calculation load in the mobile station further increases as V2_SU is updated.
  • V2_SU is updated.
  • the transmission weight determination method according to the comparative example described above is summarized as follows.
  • (1) The calculation load on the mobile station is high Reason: As described with reference to FIG. (2) If dynamic switching between MU-MIMO and SU-MIMO is to be realized, the computational load on the mobile station further increases.
  • Reason As described with reference to FIG. 5, both V2_MU and V2_SU are always evaluated.
  • the base station 10 is A: a communication unit (antenna 110, analog processing unit 120, etc.) that transmits a reference signal (CSI_RS); B: a first multiplier (V1 multiplier 154) that multiplies a first transmission weight (V1) determined based on reception of a reference signal by a communication partner (mobile station 20); C: a second multiplier (V2_MU multiplier 156) for multiplying a second transmission weight (V2_MU) determined based on reception of the reference signal by the communication partner; Is provided. Further, D: After determining the first transmission weight, the communication unit transmits a weighted reference signal (V1 * CSI_RS) obtained by multiplying the reference signal and the first transmission weight.
  • V1 * CSI_RS weighted reference signal
  • FIG. 6 is an explanatory diagram showing a configuration of the base station 10 according to the embodiment of the present disclosure.
  • the base station 10 according to the embodiment of the present disclosure includes a plurality of antennas 110, a switch SW 116, an analog processing unit 120, an AD / DA conversion unit 124, a demodulation processing unit 128, A layer signal processing unit 132, a scheduler 136, a modulation processing unit 140, and a weight multiplication unit 150 are provided.
  • the antennas 110A to 110N convert a radio signal transmitted from the mobile station 20 into an electrical reception signal and supply it to the analog processing unit 120, and a transmission signal supplied from the analog processing unit 120 to the radio signal It functions as a transmission unit that converts the data into the mobile station 20 and converts it into Note that the number of antennas 110 is not particularly limited, and may be, for example, eight or sixteen.
  • the switch SW 116 is a switch for switching between transmission operation and reception operation by the base station 10.
  • the base station 10 When connected to the transmission circuit of the analog processing unit 120 via the switch SW116, the base station 10 performs a transmission operation, and the antennas 110A to 110N receive the circuit of the analog processing unit 120 via the switch SW116.
  • the base station 10 When connected to the base station 10, the base station 10 performs a receiving operation.
  • the analog processing unit 120 includes a transmission circuit that performs analog processing on a transmission signal and a reception circuit that performs analog processing on a reception signal.
  • a transmission circuit for example, up-conversion, filtering, gain control, and the like of an analog transmission signal supplied from the AD / DA conversion unit 124 are performed.
  • the reception circuit for example, down-conversion and filtering of the reception signal supplied from the antenna 110 via the switch SW116 are performed.
  • the AD / DA conversion unit 124 performs AD (Analogue Digital) conversion of the received signal supplied from the analog processing unit 120 and DA (Digital Analogue) conversion of the transmission signal supplied from the weight multiplication unit 150.
  • the demodulation processing unit 128 performs demodulation processing on the received signal supplied from the AD / DA conversion unit 124.
  • the demodulation processing performed by the demodulation processing unit 128 may include OFDM demodulation processing, MIMO demodulation processing, error correction, and the like.
  • the upper layer signal processing unit 132 performs processing for inputting / outputting transmission data and reception data to / from the upper layer, control processing for the scheduler 136, the modulation processing unit 140, and the weight multiplication unit 150, and from the mobile station 20. Each transmission weight is determined based on the feedback information.
  • the base station 10 determines the transmission weight V1 based on feedback information from the mobile station 20, and then adds CSI_RS and V1 to CSI_RS (reference signal).
  • V1 * CSI_RS weighted reference signal obtained by multiplication is transmitted.
  • Upper layer signal processing section 132 includes a function as a reference signal management section that manages resources for transmitting CSI_RS and V1 * CSI_RS. Then, upper layer signal processing section 132 controls weight multiplication section 150 so that CSI_RS or V1 * CSI_RS is transmitted in the allocated resource.
  • the scheduler 136 allocates resources for data communication to each mobile station 20.
  • the resource allocated by the scheduler 136 is notified to each mobile station 20 through the control channel, and each mobile station 20 performs uplink or downlink data communication using the notified resource.
  • Modulation processing unit 140 to the transmission data supplied from a higher layer signal processing unit 132 performs modulation processing such as mapping based on constellation.
  • the transmission signal modulated by the modulation processing unit 140 is supplied to the weight multiplication unit 150.
  • the weight multiplying unit 150 multiplies the transmission signal supplied from the modulation processing unit 140 by the transmission weights V1 and V2_MU determined by the higher layer signal processing unit 132 when MU-MIMO is executed.
  • the weight multiplication unit 150 multiplies the transmission signal supplied from the modulation processing unit 140 by the transmission weight V2_SU determined by the higher layer signal processing unit 132 when performing SU-MIMO.
  • the weight multiplier 150 multiplies CSI_RS by V1 in the resource allocated to transmit V1 * CSI_RS (* is complex multiplication) by the higher layer signal processor 132.
  • the configuration of the weight multiplication unit 150 will be described in more detail with reference to FIG.
  • FIG. 7 is an explanatory diagram showing the configuration of the weight multiplication unit 150.
  • the weight multiplication unit 150 includes selectors 151, 157, and 158, a V2_SU multiplication unit 152, a V1 multiplication unit 154, and a V2_MU multiplication unit 156.
  • the selector 151 supplies the transmission signal supplied from the modulation processing unit 140 to the V2_MU multiplication unit 156 or the V2_SU multiplication unit 152. More specifically, the selector 151 supplies the transmission signal to the V2_MU multiplier 156 when the MIMO setting is MU-MIMO, and the transmission signal V2_SU multiplication when the MIMO setting is SU-MIMO. To the unit 152.
  • the V2_SU multiplier 152 multiplies the transmission signal supplied from the selector 151 by V2_SU determined by the upper layer signal processor 132.
  • V2_MU multiplier 156 multiplies the transmission signal supplied from the selector 151 by V2_MU determined by the upper layer signal processor 132. Further, the V1 multiplier 154 multiplies the transmission signal multiplied by V2_MU by V1.
  • the selector 157 selectively outputs the multiplication result by the V1 multiplication unit 154 or the multiplication result by the V2_SU multiplication unit 152. More specifically, the selector 157 outputs the multiplication result by the V1 multiplier 154 when the MIMO setting is MU-MIMO, and the V2_SU multiplier 152 when the MIMO setting is SU-MIMO. Outputs the multiplication result.
  • the selector 158 supplies CSI_RS to the front stage or the rear stage of the V1 multiplier 154. More specifically, the selector 158 supplies CSI_RS to the subsequent stage of the V1 multiplier 154 in the resources allocated for transmission of CSI_RS. In this case, the base station 10 transmits CSI_RS that is not multiplied by V1.
  • the selector 158 supplies CSI_RS to the preceding stage of the V1 multiplier 154 in the resources allocated for transmission of V1 * CSI_RS.
  • base station 10 transmits V1 * CSI_RS.
  • FIG. 7 shows an example in which the V1 multiplier 154 is arranged after the V2 multiplier 156
  • the configuration of the weight multiplier 150 is not limited to this example.
  • the V1 multiplier 154 can be arranged before the V2 multiplier 156.
  • FIG. 8 is an explanatory diagram showing a configuration of a weight multiplication unit 150 'according to a modification.
  • the weight multiplication unit 150 ′ according to the modification includes selectors 151, 155, 157 and 159, a V2_SU multiplication unit 152, a V1 multiplication unit 154, and a V2_MU multiplication unit 156.
  • the V1 multiplication unit 154 is arranged in front of the V2_MU multiplication unit 156.
  • the selector 159 supplies CSI_RS to the preceding stage of the V1 multiplication unit 154 or the subsequent stage of the V2_MU multiplication unit 156.
  • the selector 159 supplies CSI_RS to the subsequent stage of the V2_MU multiplier 156 in the resources allocated for transmission of CSI_RS.
  • the base station 10 transmits CSI_RS that is not multiplied by V1.
  • the selector 159 supplies CSI_RS to the preceding stage of the V1 multiplier 154 in the resources allocated for transmission of V1 * CSI_RS.
  • CSI_RS is multiplied by V1 in the V1 multiplier 154, and V1 * CSI_RS as a multiplication result is supplied from the selector 155 to the selector 157 so as to bypass the V2_MU multiplier 156.
  • the base station 10 transmits V1 * CSI_RS.
  • the base station 10 starts transmission of V1 * CSI_RS after determining the transmission weight V1.
  • V1 * CSI_RS After determining the transmission weight V1.
  • FIG. 9 is an explanatory diagram showing the configuration of the mobile station 20 according to the present embodiment.
  • the mobile station 20 according to the present embodiment includes a plurality of antennas 210, a switch SW216, an analog processing unit 220, an AD / DA conversion unit 224, a demodulation processing unit 228, and an upper layer.
  • a signal processing unit 232, a modulation processing unit 240, a channel matrix acquisition unit 244, and a weight determination unit 248 are provided.
  • Antennas 210A and 210B convert a radio signal transmitted from base station 10 into an electrical reception signal and supply it to analog processing unit 220, and a transmission signal supplied from analog processing unit 220 as a radio signal It functions as a transmission unit that converts the signal into the base station 10 and transmits it to the base station 10.
  • the number of antennas 210 is not particularly limited, and may be four or eight, for example.
  • the switch SW216 is a switch for switching between transmission operation and reception operation by the mobile station 20.
  • the mobile station 20 performs transmission operation, and the antennas 210A and 210B receive the circuit of the analog processing unit 220 via the switch SW216.
  • Mobile station 20 performs a receiving operation.
  • the analog processing unit 220 includes a transmission circuit that performs analog processing on a transmission signal and a reception circuit that performs analog processing on a reception signal.
  • a transmission circuit for example, up-conversion, filtering, gain control, and the like of an analog transmission signal supplied from the AD / DA conversion unit 224 are performed.
  • the receiving circuit for example, down-conversion and filtering of the received signal supplied from the antenna 210 via the switch SW216 are performed.
  • the AD / DA conversion unit 224 performs AD conversion of the reception signal supplied from the analog processing unit 220 and DA conversion of the transmission signal supplied from the modulation processing unit 240.
  • the demodulation processing unit 228 performs demodulation processing on the received signal supplied from the AD / DA conversion unit 224.
  • the demodulation processing performed by the demodulation processing unit 228 may include OFDM demodulation processing, MIMO demodulation processing, error correction, and the like.
  • the upper layer signal processing unit 232 performs processing for inputting / outputting transmission data and reception data to / from the upper layer. Further, the upper layer signal processing section 232 supplies feedback information indicating the transmission weight determined by the weight determination section 248 to the modulation processing section 240 as transmission data.
  • the modulation processing unit 240 performs modulation processing such as mapping based on constellation on the transmission data supplied from the upper layer signal processing unit 232.
  • the transmission signal modulated by the modulation processing unit 240 is supplied to the AD / DA conversion unit 224.
  • the channel matrix acquisition unit 244 acquires the channel matrix H between the base station 10 and the mobile station 20.
  • the weight determination unit 248 determines transmission weights such as V1, V2_MU, and V2_SU based on the channel matrix H acquired by the channel matrix acquisition unit 244.
  • the mobile station according to the comparative example multiplies the channel matrix H by the determined V1.
  • V2_MU is evaluated for the channel matrix H multiplied by V1. For this reason, in the mobile station according to the comparative example, calculation using V1 is performed even when V2_MU is updated.
  • V1 * CSI_RS that is CSI_RS multiplied by V1 is received from the base station 10.
  • the channel matrix H acquired by the channel matrix acquisition unit 244 from this V1 * CSI_RS has already been multiplied by V1. Therefore, the weight determination unit 248 can update V2_MU without performing an operation using V1 based on the channel matrix H acquired from V1 * CSI_RS. As a result, it is possible to significantly reduce the calculation load on the mobile station 20 for updating V2_MU.
  • FIG. 10 is an explanatory diagram illustrating the first embodiment of the present disclosure.
  • the base station 10 transmits V1 * CSI_RS for updating (determination) of V2_MU.
  • the mobile station 20 that has received V1 * CSI_RS can evaluate the optimum V2_MU without performing an operation using V1.
  • the base station 10 transmits CSI_RS for the update of V1, after transmitting V1 * CSI_RS several times. Thereafter, the base station 10 transmits V1 * CSI_RS for updating V2_MU.
  • FIG. 10 shows an example in which the update frequency of V2 is about 4 to 5 times the update frequency of V1, but the relationship between the update frequencies is not limited to this example. Actually, it is assumed that the update frequency of V1 exceeds 10 times the update frequency of V2.
  • the upper layer signal processing section 132 of the base station 10 allocates resources for transmitting V1 * CSI_RS for V2_MU update (determination), and allocates resources for transmitting CSI_RS to V2_SU. Assign for update (decision).
  • the operation of the base station 10 according to the second embodiment will be specifically described with reference to FIG.
  • FIG. 11 is an explanatory diagram showing a second embodiment of the present disclosure.
  • the base station 10 after determining V1, the base station 10 according to the second embodiment transmits V1 * CSI_RS for updating V2_MU and transmits CSI_RS for updating (determination) of V2_SU.
  • V2_MU is obtained based on V1 * CSI_RS
  • V2_SU is obtained based on CSI_RS, so that dynamic switching between MU-MIMO and SU-MIMO can be realized.
  • the mobile station 20 can determine whether the radio signal received from the base station 10 is CSI_RS or V1 * CSI_RS by, for example, the following method. (1) The base station 10 notifies the mobile station 20 of the timing or order of transmitting CSI_RS or V1 * CSI_RS in advance via RRC signaling. (2) The base station 10 notifies the mobile station 20 of the timing or order of transmitting CSI_RS or V1 * CSI_RS by broadcasting system information. (3) The base station 10 transmits CSI_RS and V1 * CSI_RS with identification information indicating whether it is CSI_RS or V1 * CSI_RS.
  • SU-MIMO transmits, for example, eight independent streams by MIMO.
  • MU-MIMO transmits two independent streams to each of four different mobile stations 20, for example. Therefore, V2_SU is for 8 streams, whereas V2_MU is for 2 streams.
  • the upper layer signal processing section 132 of the base station 10 transmits CSI_RS for updating (determining) V2_SU rather than transmitting V1 * CSI_RS for updating (determining) V2_MU. Allocate more resources to The operation of the base station 10 according to the third embodiment will be specifically described with reference to FIG.
  • FIG. 12 is an explanatory diagram showing a third embodiment of the present disclosure.
  • the base station 10 after determining V1, sets CSI_RS for updating (determining) V2_SU rather than V1 * CSI_RS for updating (determining) V2_MU. Sends frequently in the time direction.
  • V2_SU sets CSI_RS for updating (determining) V2_SU rather than V1 * CSI_RS for updating (determining) V2_MU.
  • FIG. 13 is an explanatory diagram showing an example of V1 * CSI_RS and CSI_RS resource allocation according to the fourth embodiment.
  • the upper layer signal processing section 132 of the base station 10 according to the fourth embodiment arranges CSI_RSs more densely in the frequency direction than V1 * CSI_RS.
  • the calculation load on the mobile station 20 at the time of updating V2_MU is suppressed, and a high load is achieved. It becomes possible to acquire accurate V2_SU.
  • FIG. 14 is an explanatory diagram showing a specific example of resource allocation according to the fifth embodiment.
  • the horizontal axis in FIG. 14 indicates time, and the vertical axis indicates frequency.
  • the time width of the rectangular block in FIG. 14 may be one resource block or one subframe.
  • the frequency width of the square block may be one resource block (for 12 subcarriers) or may be another bandwidth.
  • the mobile station 20 when the base station 10 first transmits CSI_RS, the mobile station 20 acquires V1, V2_MU, and V2_SU for each frequency based on reception of the CSI_RS. Then, the mobile station 20 feeds back V1, V2_MU, and V2_SU to the base station 10.
  • the scheduler 136 of the base station 10 uses the bottom four resource blocks included in the frequency range B for MU-MIMO (first scheme) with the mobile stations 20A to 20C. assign.
  • the scheduler 136 of the base station 10 allocates the top two resource blocks included in the frequency range A for SU-MIMO (second scheme) with the mobile station 20D.
  • the scheduler 136 keeps the resource blocks included in the frequency range B as a region for MU-MIMO, and keeps the resource blocks included in the frequency range A as a region for SU-MIMO.
  • the scheduler 136 for example, when dynamically switching the MIMO setting of the mobile station 20C from MU-MIMO to SU-MIMO, as shown in FIG. 14, is a resource block to be allocated to the mobile station 20C. Are moved to resource blocks included in the frequency range A.
  • MU-MIMO and SU-MIMO dynamic switching can be realized by moving the resource block of the mobile station 20 in the frequency direction.
  • FIG. 15 is an explanatory diagram showing a specific example of resource allocation according to the sixth embodiment.
  • the upper layer signal processing section 132 according to the sixth embodiment, after determining V1, determines the resource blocks included in the frequency range B for MU-MIMO described in the fifth embodiment. Assign for transmission of V1 * CSI_RS. Further, the upper layer signal processing section 132 allocates resource blocks included in the SU-MIMO frequency range A described in the fifth embodiment for transmission of CSI_RS.
  • V2_MU can be updated in the frequency range A while the V2_MU is updated while suppressing the amount of calculation in the mobile station 20 in the frequency range B. Therefore, the frequency range B can be used for communication by MU-MIMO, and the frequency range A can be used for communication by SU-MIMO.
  • FIG. 16 is an explanatory diagram showing a specific example of resource allocation according to the seventh embodiment. As shown in FIG. 16, it is assumed that resource blocks in frequency range Z and frequency range X are allocated for transmission of CSI_RS at time t1, and resource blocks in frequency range Y are allocated for transmission of V1 * CSI_RS. .
  • V1, V2_MU, and V2_SU can be acquired at the frequency at which CSI_RS is transmitted.
  • V2_MU can be acquired, but it is difficult to acquire V2_SU. That is, the frequency at which V1 * CSI_RS is transmitted can be used for MU-MIMO, and the frequency at which CSI_RS is transmitted can be used for either MU-MIMO or SU-MIMO.
  • the scheduler 136 handles the resource blocks in the frequency range X and the frequency range Z in which CSI_RS is transmitted as a switchable region for SU-MIMO and MU-MIMO.
  • the scheduler 136 treats resource blocks in the frequency range Y in which V1 * CSI_RS is transmitted as a MU-MIMO dedicated area.
  • the scheduler 136 allocates resource blocks in the frequency range X for communication by SU-MIMO at time t2, and allocates resource blocks in the frequency range Y and frequency Z by MU-MIMO. Assign for communication. After that, the scheduler 136 switches the resource block in the frequency range Z from MU-MIMO to SU-MIMO and switches the resource block in the frequency range X from SU-MIMO to MU-MIMO at time t3. Is possible.
  • FIG. 17 is a flowchart showing the operation of the base station 10 according to the embodiment of the present disclosure.
  • FIG. 17 particularly corresponds to the operation of the base station 10 according to the seventh embodiment.
  • the base station 10 first determines the update frequency in the time direction of V1 and V2_MU (S304). Subsequently, the base station 10 determines the update frequency in the time direction of V2_SU (S308).
  • the base station 10 determines the resource for MU-MIMO and the density of the resource for SU-MIMO in the frequency direction (S312). Further, the base station 10 determines the ratio in the frequency direction between the MU-MIMO dedicated area and the dynamic switching possible area shown in FIG. 16 (S316). In the example shown in FIG. 16, the ratio of the MU-MIMO dedicated area and the dynamic switching possible area in the frequency direction is 1: 2, and the resource for MU-MIMO and the resource for SU-MIMO The density ratio in the frequency direction is 2: 1.
  • the base station 10 allocates resources for transmitting CSI_RS and resources for transmitting V1 * CSI_RS (S320). More specifically, the base station 10 allocates the frequency resource determined as the MU-MIMO dedicated area in S316 for transmission of V1 * CSI_RS, and allocates the frequency resource determined as the dynamic switchable area for transmission of the CSI_RS. Assign for. Also, the base station 10 allocates resources in the time direction to V1 * CSI_RS and CSI_RS based on the determination results of S304 and S308. And the base station 10 transmits CSI_RS and V1 * CSI_RS according to the determined resource.
  • FIG. 18 is a flowchart showing the operation of the mobile station 20 according to the present embodiment.
  • the mobile station 20 receives a radio signal from the base station 10 (S404), when this radio signal is CSI_RS (S408), the mobile station 20 acquires a channel matrix H from the reception result of CSI_RS ( S412). Then, the mobile station 20 determines transmission weights such as V1, V2_MU, and V2_SU based on the channel matrix H acquired in S412 (S416). Further, the mobile station 20 feeds back V1, V2_MU, and V2_SU to the base station 10 (S420).
  • the mobile station 20 acquires a channel matrix H multiplied by V1 from the reception result of V1 * CSI_RS (S424). Then, the mobile station 20 determines V2_MU based on the channel matrix H multiplied by V1 without performing an operation using V1 (S428). Further, the mobile station 20 feeds back V2_MU to the base station 10 (S432).
  • the mobile station 20 demodulates the data signal and acquires data transmitted from the base station 10 (S436).
  • the base station 10 starts transmission of V1 * CSI_RS after determining the transmission weight V1. With this configuration, it is possible to suppress a calculation load such as V2_MU in the mobile station 20 described below. Furthermore, the base station 10 according to the embodiment of the present disclosure also continues to transmit CSI_RS. With this configuration, the mobile station 20 can determine V2_SU based on reception of CSI_RS. As a result, dynamic switching between MU-MIMO and SU-MIMO can be realized.
  • two or more of the first to seventh embodiments may be combined.
  • resource allocation in the time direction described in the third embodiment, resource allocation in the frequency direction described in the fifth embodiment, SU-MIMO and MU-MIMO described in the sixth embodiment It is also possible to combine resource allocations for.
  • each step in the processing of the base station 10 or the mobile station 20 in this specification does not necessarily have to be processed in time series in the order described as a flowchart.
  • each step in the processing of the base station 10 or the mobile station 20 may be processed in an order different from the order described as the flowchart, or may be processed in parallel.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Power Engineering (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Radio Transmission System (AREA)
  • Transceivers (AREA)
  • Transmitters (AREA)

Abstract

【課題】無線通信装置、無線通信システム、無線通信方法、およびプログラムを提供する。 【解決手段】参照信号を送信する通信部と、通信相手による前記参照信号の受信に基づいて決定された第1の送信用重みを乗算する第1の乗算部と、前記通信相手による前記参照信号の受信に基づいて決定された第2の送信用重みを乗算する第2の乗算部と、を備え、前記通信部は、前記第1の送信用重みの決定後、前記参照信号および前記第1の送信用重みとの乗算により得られる重み付き参照信号を送信する、無線通信装置。

Description

無線通信装置、無線通信システム、無線通信方法、およびプログラム
 本開示は、無線通信装置、無線通信システム、無線通信方法、およびプログラムに関する。
 現在、3GPP(Third Generation Partnership Project)において4Gの無線通信システムの規格化が進められている。4Gにおいては、リレー、キャリアアグリゲーション、CoMP(Coordinated Multiple Point transmission and reception)およびMU-MIMO(Multi User Multi Input Multi Output)などの技術が注目されている。
 リレーは、セル端のスループットを改善するための重要な技術と考えられている。また、キャリアアグリゲーションは、20MHzのバンド幅を有する例えば5つの周波数帯をまとめて扱うことにより、20MHz×5=100MHzのバンド幅を扱える技術である。このキャリアアグリゲーションによれば、最大スループットの向上が期待される。
 また、CoMPは、高いデータレートのカバレッジを向上させるために、複数の基地局が連携してデータの送受信を行う技術である。さらに、MU-MIMOは、複数のユーザが、同一周波数かつ同一時間のリソースブロックを空間多重して使用することにより、システムスループットを向上させる技術である。このように、4G(LTE-Advanced)では、様々な技術でさらなるパフォーマンスの向上を図ることが議論されている。
 ここで、MU-MIMOについてより詳細に説明する。3.9G(LTE)では、MU-MIMOおよびSU-MIMO(Single User MIMO)が存在する。SU-MIMOは、例えば特許文献1に記載されているように、UE(User Equipment)同士は空間多重しないが、1のUEが複数のチャネルを空間多重して使用する技術である。
 一方、MU-MIMOは、上述したように、各UEが同一周波数かつ同一時間のリソースブロックを空間多重して使用する(UE同士を空間多重する)技術である。ただし、3.9Gで実現されていたMU-MIMOでは、各UEが1本のチャネルしか扱えなかった。これに対し、4Gでは、各UEが複数チャネルを扱うことを可能とするMU-MIMOを実現しようとしている。
 4GでこのようなMU-MIMOを実現するために、基地局が2種類(V1およびV2)の送信用重みを用いることが検討されている。V1は指向性を実現する送信用重みであり、V2は位相を調整することを主目的とする無指向性の送信用重みである。このV1およびV2は、例えばUEにおいて判断可能である。より具体的に説明すると、UEは、基地局から送信されるリファレンス信号を受信し、リファレンス信号の受信結果からチャネル行列Hを取得し、チャネル行列Hに対して最適なV1およびV2を判断する。
特開2005-184730号公報
 しかし、送信用重みV1およびV2は複素数であるので、送信用重みV1およびV2の判断のためのUEにおける計算負荷が高くなってしまうことが懸念される。
 そこで、本開示では、送信用重みの決定のための通信相手における計算負荷を抑制することが可能な、新規かつ改良された無線通信装置、無線通信システム、無線通信方法、およびプログラムを提案する。
 本開示のある観点によれば、参照信号を送信する通信部と、通信相手による前記参照信号の受信に基づいて決定された第1の送信用重みを乗算する第1の乗算部と、前記通信相手による前記参照信号の受信に基づいて決定された第2の送信用重みを乗算する第2の乗算部と、を備え、前記通信部は、前記第1の送信用重みの決定後、前記参照信号および前記第1の送信用重みとの乗算により得られる重み付き参照信号を送信する、無線通信装置が提供される。
 前記無線通信装置は、前記重み付き参照信号の送信のためのリソースを管理する参照信号管理部をさらに備えてもよい。
 前記参照信号管理部は、前記第1の送信用重みの決定後、前記重み付き参照信号の送信のためのリソース、および前記参照信号を送信するためのリソースを割り当ててもよい。
 前記参照信号管理部は、前記重み付き参照信号の送信より、前記参照信号を送信のために多くのリソースを割り当ててもよい。
 前記参照信号管理部は、前記重み付き参照信号の時間軸上の送信頻度より、前記参照信号の時間軸上の送信頻度が高くなるようにリソースを割り当ててもよい。
 前記参照信号管理部は、前記重み付き参照信号の送信用リソースの周波数軸上の密度より、前記参照信号の送信用リソースの周波数軸上の密度が高くなるようにリソースを割り当ててもよい。
 前記無線通信装置は、各通信相手に第1の方式または第2の方式による通信のためのリソースを割り当てるスケジューラをさらに備え、前記スケジューラは、第1の周波数範囲内のリソースを前記第1の方式による通信のために割り当て、第2の周波数範囲内のリソースを前記第2の方式による通信のために割り当ててもよい。
 前記第1の周波数範囲は、前記重み付き参照信号の送信用リソースが割り当てられる周波数範囲であり、前記第2の周波数範囲は、前記参照信号の送信用リソースが割り当てられる周波数範囲であってもよい。
 前記第1の方式はMU-MIMO(Multi User Multi Input Multi Output)であり、前記第2の方式はSU-MIMO(SIngle User Multi Input Multi Output)であってもよい。
 前記無線通信装置は、各通信相手に第1の方式または第2の方式による通信のためのリソースを割り当てるスケジューラをさらに備え、前記スケジューラは、前記重み付き参照信号の送信用リソースが割り当てられる周波数範囲内のリソースを前記第1の方式による通信のために割り当て、前記参照信号の送信用リソースが割り当てられる周波数範囲内のリソースを前記第1の方式または前記第2の方式による通信のために割り当ててもよい。
 前記第2の送信用重みの更新頻度は、前記第1の送信用重みの更新頻度よりも高くてもよい。
 前記第1の送信用重みは指向性を形成するための重みであり、前記第2の送信用重みは位相を調整するための無指向性の重みであってもよい。
 また、本開示の別の観点によれば、コンピュータを、参照信号を送信する通信部と、通信相手による前記参照信号の受信に基づいて決定された第1の送信用重みを乗算する第1の乗算部と、前記通信相手による前記参照信号の受信に基づいて決定された第2の送信用重みを乗算する第2の乗算部と、を備え、前記通信部は、前記第1の送信用重みの決定後、前記参照信号および前記第1の送信用重みとの乗算により得られる重み付き参照信号を送信する、無線通信装置として機能させるための、プログラムが提供される。
 また、本開示の別の観点によれば、参照信号を送信することと、通信相手による前記参照信号の受信に基づいて決定された第1の送信用重みを前記参照信号と乗算することと、前記参照信号および前記第1の送信用重みとの乗算により得られる重み付き参照信号を送信することと、を含む無線通信方法が提供される。
 また、本開示の別の観点によれば、第1の無線通信装置と、参照信号を送信する通信部、前記第1の無線通信装置による前記参照信号の受信に基づいて決定された第1の送信用重みを乗算する第1の乗算部、および前記第1の無線通信装置による前記参照信号の受信に基づいて決定された第2の送信用重みを乗算する第2の乗算部、を有し、前記通信部は、前記第1の送信用重みの決定後、前記参照信号および前記第1の送信用重みとの乗算により得られる重み付き参照信号を送信する、第2の無線通信装置と、を備える無線通信システムが提供される。
 また、本開示の別の観点によれば、通信相手から参照信号を受信する通信部と、前記通信部による前記参照信号の受信結果に応じて第1の送信用重み、および第2の送信用重みを決定する重み決定部とを備え、前記参照信号および前記第1の送信用重みとの乗算により得られる重み付き参照信号が前記通信部により受信された場合、前記重み決定部は、前記重み付け参照信号の受信結果から前記第2の送信用重みを決定する、無線通信装置が提供される。
 また、本開示の別の観点によれば、各通信相手に第1の方式または第2の方式による通信のためのリソースを割り当てるスケジューラを備え、前記スケジューラは、第1の周波数範囲内のリソースを前記第1の方式による通信のために割り当て、第2の周波数範囲内のリソースを前記第2の方式による通信のために割り当てる、無線通信装置が提供される。
 前記第1の方式はMU-MIMO(Multi User Multi Input Multi Output)であり、前記第2の方式はSU-MIMO(SIngle User Multi Input Multi Output)であってもよい。
 以上説明したように本開示によれば、送信用重みの決定のための通信相手における計算負荷を抑制することが可能である。
本開示の実施形態による無線通信システムの構成を示した説明図である。 送信用重みの乗算順序の一例を示した説明図である。 V1とV2の関係を示した説明図である。 送信用重みV1およびV2_MUの比較例による決定方法を示した説明図である。 MU-MIMOとSU-MIMOが混在している場合の送信用重みの比較例による決定方法を示した説明図である。 本開示の実施形態による基地局の構成を示した説明図である。 重み乗算部の構成を示した説明図である。 変形例による重み乗算部の構成を示した説明図である。 本実施形態による移動局の構成を示した説明図である。 本開示の第1の実施形態を示した説明図である。 本開示の第2の実施形態を示した説明図である。 本開示の第3の実施形態を示した説明図である。 第4の実施形態によるV1*CSI_RSおよびCSI_RSのリソース割り当て例を示した説明図である。 第5の実施形態によるリソース割り当ての具体例を示した説明図である。 第6の実施形態によるリソース割り当ての具体例を示した説明図である。 第7の実施形態によるリソース割り当ての具体例を示した説明図である。 本開示の実施形態による基地局の動作を示したフローチャートである。 本開示の実施形態による移動局の動作を示したフローチャートである。
 以下に添付図面を参照しながら、本開示の実施の形態について詳細に説明する。なお、本明細書及び図面において、実質的に同一の機能構成を有する構成要素については、同一の符号を付することにより重複説明を省略する。
 また、本明細書及び図面において、実質的に同一の機能構成を有する複数の構成要素を、同一の符号の後に異なるアルファベットを付して区別する場合もある。例えば、実質的に同一の機能構成を有する複数の構成を、必要に応じて移動局20A、20Bおよび20Cのように区別する。ただし、実質的に同一の機能構成を有する複数の構成要素の各々を特に区別する必要がない場合、同一符号のみを付する。例えば、移動局20A、20Bおよび20Cを特に区別する必要が無い場合には、単に移動局20と称する。
 また、以下に示す項目順序に従って当該「発明を実施するための形態」を説明する。
  1.無線通信システムの概略
   1-1.無線通信システムの構成
   1-2.送信用重み(V1およびV2)
   1-3.送信用重みのフィードバック方式
   1-4.ダイナミックスイッチング
   1-5.比較例
  2.基地局の基本構成
  3.移動局の基本構成
  4.各実施形態の説明
   4-1.第1の実施形態
   4-2.第2の実施形態
   4-3.第3の実施形態
   4-4.第4の実施形態
   4-5.第5の実施形態
   4-6.第6の実施形態
   4-7.第7の実施形態
  5.基地局および移動局の動作
  6.まとめ
  <1.無線通信システムの概略>
 現在、3GPPにおいて4Gの無線通信システムの規格化が進められている。本開示の実施形態は、一例としてこの4Gの無線通信システムに適用することができるので、まず、4Gの無線通信システムの概略を説明する。
   [1-1.無線通信システムの構成]
 図1は、本開示の実施形態による無線通信システム1の構成を示した説明図である。図1に示したように、本開示の実施形態による無線通信システム1は、基地局10および複数の移動局20を備える。なお、基地局10は、4GにおけるeNodeB、リレーノード、または家庭用小型基地局であるHome eNodeBなどの無線通信装置であってもよい。また、移動局20は、4GにおけるリレーノードまたはUEなどの無線通信装置であってもよい。
 基地局10は、セル内の移動局20との通信を制御する。また、基地局10は例えば図1に示したように、各セクタが120度の角度を有するように3セクタで運用される。さらに、基地局10は、複数のアンテナを備え、各アンテナからの送信信号に後述する送信用重みV1を乗算することにより、各セクタ内の複数方向(図1に示した例では4方向)に指向性を形成することが可能である。
 このため、基地局10は、基地局10から見て異なる方向に存在する移動局20Aおよび20Bを空間的に分離して多重することができる。すなわち、基地局10は、MU-MIMOにより複数の移動局20と通信することが可能である。なお、基地局10は、SU-MIMOにより移動局20と通信することも可能である。
 移動局20は、基地局10とMU-MIMOまたはSU-MIMOにより通信する無線通信装置である。この移動局20は、ユーザや乗り物などの移動体による移動に伴って移動する。なお、本実施形態においては、基地局10と無線通信する無線通信装置の一例として移動局20を説明するが、固定的に設置される無線通信装置にも本実施形態を適用可能である。
   [1-2.送信用重み(V1およびV2)]
 4Gでは、MU-MIMOの実現に際して、上記のV1に加え、V2という送信用重みを用いること(ダブルコードブック方式)が検討されている。V1は、上述したように指向性を実現する送信用重みである。このV1は、広い周波数領域をカバーする、V2に比べて更新頻度が低いなどの特性を有する。
 一方、V2は位相を調整することを主目的とする無指向性の送信用重みである。より詳細には、V2は、移動局20と基地局10のアンテナ間の各パスの位相を調整することにより受信電力を最大化するために用いられる。また、このV2は、狭い周波数領域をカバーする、V1に比べて更新頻度が高いなどの特性を有する。
 本実施形態による基地局10は、このような送信用重みV1およびV2を送信データに対して乗算することによりMU-MIMOを実現する。なお、基地局10は、図2に示すように送信データに対してV2、V1という順序で送信用重みを乗算してもよいし、V1、V2という順序で送信用重みを乗算してもよい。
 図3は、V1とV2の関係を示した説明図である。図3に示したように、基地局10が8本のアンテナを有する場合、これらのアンテナは、2組の4素子からなるリニアーアレーアンテナ4Aおよび4Bとして動作する。なお、各リニアーアレーアンテナ4Aおよび4Bは、図3に示したように同じ指向性を有するアレーアンテナとして動作する。
 また、V2は、送信データの2コードワードを2組のリニアーアレーアンテナ4Aおよび4Bに位相を変えて分配するよう作用する。すなわち、V2は、同一方向へ送信するリニアーアレーアンテナ4Aおよび4Bへ供給する送信信号の位相を変えるよう作用する。一方、V1は、図3に示したように各アンテナに対して適用され、リニアーアレーアンテナ4Aおよび4Bが指向性を形成するように作用する。
 以下に、上述したV1およびV2の具体例を示す。なお、V1を示す数式1中のdは基準アンテナからの距離を示し、λは波長を示し、θはビームの方向を示し、iはアンテナ番号を示す。また、V2を示す数式2中のHはチャネル行列を示す。
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000002
 数式2に示したように、V2はプラスマイナス1またはプラスマイナスjで表わされる送信用重みである。なお、jは虚数を示す。したがって、ある特定の行列にV2を乗算するための負荷は少ない。一方、V1は、方向性ベクトルで記述される送信用重みであるので、プラスマイナス1やプラスマイナスjで表わされる行列でない。このため、V1を用いた演算では計算の負荷が大きくなってしまう。
 なお、基地局10の送信データをS、移動局20の受信データをRとすると、移動局20の受信データRは、以下の数式3または数式4のように表現される。
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-M000004
   [1-3.送信用重みのフィードバック方式]
 上記の送信用重みV1およびV2を決定するためのMIMOのフィードバック方式として、Implicit Feedback、Explicit Feedback、およびSRS-based Feedbackの3つの方式が考えられる。4Gでは、送信用重みV1およびV2を決定するためのMIMOのフィードバック方式として、フィードバック回線への負荷が少ないことからImplicit Feedbackを用いることが決まっている。以下、参考のために、3.9G(LTE)での各フィードバック方式について説明する。
 (1)Implicit Feedback
 基地局は、予め設計されたcoodbookに16種類の送信用重み(V1)~(V16)(pre coding)を用意しておく。基地局からのリファレンス信号を受信した移動局は、基地局と移動局の間のチャネル行列Hを取得する。そして、移動局は、HV(1),HV(2),・・・,HV(16)のうちでどれが最も受信電力が大きいかを仮判定する。その後、移動局は、受信電力を最大化するVを指し示すインデックス番号を基地局にフィードバックする。基地局は、そのフィードバックされたインデックスに対応するVを用いてデータを送信する。
 (2)Explicit Feedback
 基地局がリファレンス信号を送信し、基地局からのリファレンス信号を受信した移動局は、Implicit Feedbackと同様に、基地局と移動局の間のチャネル行列Hを取得する。そして、移動局は、チャネル行列Hをそのままの形で基地局にフィードバックする。基地局は、移動局からフィードバックされたダウンリンクのチャネル行列Hから望ましい送信用の重みを計算して作成する。そして、基地局は、作成した送信用重みを用いてデータを送信する。このExplicit Feedbackでは、フィードバック時にチャネル行列Hがそのまま送信されるので、フィードバックに費やされるリソースがImplicit Feedbackより大きくなるという問題がある。
 (3)SRS-based Feedback
 移動局がリファレンス信号を送信し、移動局からのリファレンス信号を受信した基地局は、移動局から基地局の間のアップリンクのチャネル行列を取得する。チャネルの可逆性が成り立つ場合(TDDモードの場合)、基地局は、このチャネル行列から仮想的なダウンリンクのチャネル行列を作ることができる。このようにして仮想的なダウンリンクのチャネル行列を作る方式がSRS-based Feedbackである。このSRS-based Feedbackには、基地局のアナログ回路のバラツキを補正しておくキャリブレーションを行なわないと、アップリンクとダウンリンクのチャネル(アナログ回路の特性を含んだ形のチャネル行列)の可逆性が成りたたないという問題点がある。
   [1-4.ダイナミックスイッチング]
 4G(LTE-Advanced)では、MIMOの設定をMU-MIMOとSU-MIMOの間でダイナミックに切り替えることが検討されている。また、4GのMU-MIMOでは、8ストリームを用いることが検討されている。8ストリームの場合、「1-2.送信用重み(V1およびV2)」において説明したV2のような位相調整のための行列を一つ使用することになる。
 上記では、MU-MIMOを、4x4の行列であるV1と2x2の行列であるV2を組み合わせて実現する例を説明した。一方、SU-MIMOのためには、8x8の行列であるV2のみが用いられる。また、8x8のV2の各要素は、2x2のV2と同様にプラスマイナス1とプラスマイナスjで表わされる。なお、jは虚数を表わす。
 このように、MU-MIMOとSU-MIMOとでは異なるV2が用いられるので、本明細書においては、MU-MIMO用のV2をV2_MUと称し、SU-MIMO用の重みをV2_SUと称することで双方のV2を区別する。
   [1-5.比較例]
 4Gおよび本実施形態では、「1-3.送信用重みのフィードバック方式」において説明したように、Implicit Feedbackにより送信用重みV1およびV2_MUを決定する。ここで、本実施形態の技術的意義をより明確にするために、図4を参照し、送信用重みV1およびV2_MUの比較例による決定方法を説明する。
 図4は、送信用重みV1およびV2_MUの比較例による決定方法を示した説明図である。図4において横軸は時間を示す。また、CSIは、CSI_RS(Channel State Information Reference Signal)である。
 図4に示したように、基地局はCSI_RSを送信し(ステップ1)、移動局は、基地局から受信したCSI_RSからチャネル行列Hを取得する。そして、移動局は、取得したチャネル行列Hに対して、4種類のV1の候補から、いずれのV1が最適であるかを評価する。例えば、移動局は、4種類のV1の候補のうちで受信電力を最大化するV1を選択する。さらに、移動局は、最適なV2_MUを評価、選択する。その後、移動局は、選択したV1を示すIndex_V1、およびV2_MUを示すIndex_V2を基地局にフィードバックする(ステップ2)。基地局は、移動局からのフィードバックに基づいてV1およびV2_MUを決定する。
 基地局および移動局は、V1およびV2_MUを決定すると、V2_MUのみを複数回更新した後(ステップ3)、V1およびV2_MUを更新する(ステップ4)。このように、V2_MUの更新頻度の方がV1の更新頻度よりも高い。
 ここで、移動局は、V1を選択する際に、複数種類のV1を用いた演算を行う。「1-2.送信用重み(V1およびV2)」において説明したように、V1を用いた演算は、V2_MUを用いた演算よりも負荷が重いので、V1を選択する際の移動局の負荷は大きくなる。
 一方、V2の選択に際してはV1を用いた演算が不要となるようにも思われる。しかし、この考えは誤りであり、移動局はV2の選択に際してもV1を用いた演算を行う。なぜならば、移動局は、新しく受信したCSI_RSからチャネル行列Hを取得し、このチャネル行列Hに決定済みのV1を乗算し、V1が乗算されたチャネル行列Hに対して最適なV2_MUを評価するからである。このように、比較例による送信用重みの決定方法では、V1およびV2の更新時のいずれにおいても移動局がV1を用いた演算を行う必要があるので、移動局の計算量が増大してしまう。
 続いて、図5を参照し、MU-MIMOとSU-MIMOが混在している場合の送信用重みの比較例による決定方法を説明する。
 図5は、MU-MIMOとSU-MIMOが混在している場合の送信用重みの比較例による決定方法を示した説明図である。図5に示したように、MU-MIMOとSU-MIMOが混在している場合、基地局および移動局は、V1およびV2_MUに加え、全てのCSI_RSに関してV2_SUの更新を行う。このため、移動局における計算負荷は、V2_SUの更新を行う分さらに増大してしまう。しかし、MU-MIMOとSU-MIMOのダイナミックスイッチングを実現するためには、V2_MUおよびV2_SUの双方を常時評価していることが重要である。
 以上説明した比較例による送信用重みの決定方法は以下のように総括される。
(1)移動局における計算負荷が高い
 理由:図4を参照して説明したように、V2_MUを評価する際にも決定済みのV1を用いた演算を行う。
(2)MU-MIMOとSU-MIMOのダイナミックスイッチングを実現しようとすると、移動局における計算負荷がさらに増大する。
 理由:図5を参照して説明したように、V2_MUおよびV2_SUの双方を常時評価する。
 また、OFDM変調方式等の複数のサブキャリヤを用いる通信システムにおいてダイナミックスイッチングを行う場合に、効果的に計算量を減らすことのできる周波数サブキャリヤの割り当て方法が存在しなかった。
 そこで、上記事情を一着眼点にして本開示の実施形態を創作するに至った。本開示の各実施形態によれば、送信用重みの決定のための移動局20における計算負荷を抑制することが可能である。以下、このような本開示の各実施形態について詳細に説明する。
  <2.基地局の基本構成>
 本開示による技術は、一例として「4-1.第1の実施形態」~「4-7.第7の実施形態」において詳細に説明するように、多様な形態で実施され得る。また、各実施形態による基地局10は、
 A:参照信号(CSI_RS)を送信する通信部(アンテナ110、アナログ処理部120など)と、
 B:通信相手(移動局20)による参照信号の受信に基づいて決定された第1の送信用重み(V1)を乗算する第1の乗算部(V1乗算部154)と、
 C:通信相手による参照信号の受信に基づいて決定された第2の送信用重み(V2_MU)を乗算する第2の乗算部(V2_MU乗算部156)と、
を備える。さらに、
 D:通信部が、第1の送信用重みの決定後、参照信号および第1の送信用重みとの乗算により得られる重み付き参照信号(V1*CSI_RS)を送信する。
 以下では、まず、このような各実施形態による基地局10おいて共通する基本構成について図6~図8を参照して説明する。
 図6は、本開示の実施形態による基地局10の構成を示した説明図である。図6に示したように、本開示の実施形態による基地局10は、複数のアンテナ110と、スイッチSW116と、アナログ処理部120と、AD/DA変換部124と、復調処理部128と、上位レイヤ用信号処理部132と、スケジューラ136と、変調処理部140と、重み乗算部150と、を備える。
 アンテナ110A~110Nは、移動局20から送信された無線信号を電気的な受信信号に変換してアナログ処理部120に供給する受信部、および、アナログ処理部120から供給される送信信号を無線信号に変換して移動局20に送信する送信部として機能する。なお、アンテナ110の数は特に限定されず、例えば、8本であってもよいし、16本であってもよい。
 スイッチSW116は、基地局10による送信動作と受信動作を切り替えるためのスイッチである。アンテナ110A~110NがスイッチSW116を介してアナログ処理部120の送信回路と接続される場合には基地局10は送信動作を行い、アンテナ110A~110NがスイッチSW116を介してアナログ処理部120の受信回路と接続される場合には基地局10は受信動作を行う。
 アナログ処理部120は、送信信号に対するアナログ処理を行う送信回路、および、受信信号に対するアナログ処理を行う受信回路を備える。送信回路においては、例えば、AD/DA変換部124から供給されるアナログ形式の送信信号のアップコンバージョン、フィルタリング、およびゲインコントーロールなどが行われる。受信回路においては、例えば、スイッチSW116を介してアンテナ110から供給される受信信号のダウンコンバージョンおよびフィルタリングなどが行われる。
 AD/DA変換部124は、アナログ処理部120から供給される受信信号のAD(Analogue Digital)変換、および重み乗算部150から供給される送信信号のDA(Digital Analogue)変換を行う。
 復調処理部128は、AD/DA変換部124から供給される受信信号の復調処理を行う。復調処理部128が行う復調処理は、OFDM復調処理、MIMO復調処理、および誤り訂正などを含んでもよい。
 上位レイヤ用信号処理部132は、上位レイヤとの間で送信データおよび受信データを入出力するための処理、スケジューラ136、変調処理部140および重み乗算部150の制御処理、および移動局20からのフィードバック情報に基づく各送信用重みの決定処理などを行う。
 また、本実施形態による基地局10は、詳細については後述するように、移動局20からのフィードバック情報に基づいて送信用重みV1を決定した後、CSI_RS(参照信号)に加え、CSI_RSとV1を乗算して得られるV1*CSI_RS(重み付き参照信号)を送信する。上位レイヤ用信号処理部132は、このCSI_RSおよびV1*CSI_RSを送信するためのリソースを管理する参照信号管理部としての機能を包含する。そして、上位レイヤ用信号処理部132は、割り当てたリソースにおいてCSI_RSまたはV1*CSI_RSが送信されるよう、重み乗算部150を制御する。
 スケジューラ136は、各移動局20にデータ通信のためのリソースを割り当てる。スケジューラ136によって割り当てられたリソースは制御チャネルにより各移動局20に通知され、各移動局20は、通知されたリソースを用いてアップリンクまたはダウンリンクのデータ通信を行う。
 変調処理部140は、上位レイヤ用信号処理部132から供給される送信データに対し、コンスタレーションに基づくマッピングなどの変調処理を行う。変調処理部140による変調後の送信信号は重み乗算部150に供給される。
 重み乗算部150は、MU-MIMO実行時、変調処理部140から供給される送信信号に、上位レイヤ用信号処理部132により決定された送信用重みV1およびV2_MUを乗算する。一方、重み乗算部150は、SU-MIMO実行時、変調処理部140から供給される送信信号に、上位レイヤ用信号処理部132により決定された送信用重みV2_SUを乗算する。また、重み乗算部150は、上位レイヤ用信号処理部132によりV1*CSI_RS(*は複素乗算)を送信するために割り当てられたリソースにおいて、CSI_RSにV1を乗算する。以下、図7を参照し、このような重み乗算部150の構成をより詳細に説明する。
 図7は、重み乗算部150の構成を示した説明図である。図7に示したように、重み乗算部150は、セレクタ151、157および158と、V2_SU乗算部152と、V1乗算部154と、V2_MU乗算部156と、を備える。
 セレクタ151は、変調処理部140から供給される送信信号を、V2_MU乗算部156またはV2_SU乗算部152に供給する。より詳細に説明すると、セレクタ151は、MIMOの設定がMU-MIMOである場合には送信信号をV2_MU乗算部156に供給し、MIMOの設定がSU-MIMOである場合には送信信号をV2_SU乗算部152に供給する。
 V2_SU乗算部152は、セレクタ151から供給される送信信号に、上位レイヤ用信号処理部132により決定されたV2_SUを乗算する。
 一方、V2_MU乗算部156は、セレクタ151から供給される送信信号に、上位レイヤ用信号処理部132により決定されたV2_MUを乗算する。さらに、V1乗算部154は、V2_MUが乗算された送信信号にV1を乗算する。
 セレクタ157は、V1乗算部154による乗算結果、またはV2_SU乗算部152による乗算結果を選択的に出力する。より詳細に説明すると、セレクタ157は、MIMOの設定がMU-MIMOである場合にはV1乗算部154による乗算結果を出力し、MIMOの設定がSU-MIMOである場合にはV2_SU乗算部152による乗算結果を出力する。
 セレクタ158は、CSI_RSを、V1乗算部154の前段または後段に供給する。より詳細に説明すると、セレクタ158は、CSI_RSの送信のために割り当てられたリソースにおいては、CSI_RSをV1乗算部154の後段に供給する。この場合、基地局10は、V1が乗算されていないCSI_RSを送信する。
 一方、セレクタ158は、V1*CSI_RSの送信のために割り当てられたリソースにおいては、CSI_RSをV1乗算部154の前段に供給する。この場合、CSI_RSはV1乗算部154においてV1と乗算されるので、基地局10は、V1*CSI_RSを送信する。
 なお、図7においてはV1乗算部154がV2乗算部156の後段に配置される例を示しているが、重み乗算部150の構成はかかる例に限定されない。例えば、以下に図8を参照して説明するように、V1乗算部154をV2乗算部156の前段に配置することも可能である。
 図8は、変形例による重み乗算部150’の構成を示した説明図である。図8に示したように、変形例による重み乗算部150’は、セレクタ151、155、157および159と、V2_SU乗算部152と、V1乗算部154と、V2_MU乗算部156と、を備える。
 変形例による重み乗算部150’においては、図8に示したように、V1乗算部154はV2_MU乗算部156の前段に配置される。また、変形例による重み乗算部150’においては、セレクタ159が、CSI_RSをV1乗算部154の前段またはV2_MU乗算部156の後段に供給する。
 より詳細に説明すると、セレクタ159は、CSI_RSの送信のために割り当てられたリソースにおいては、CSI_RSをV2_MU乗算部156の後段に供給する。この場合、基地局10は、V1が乗算されていないCSI_RSを送信する。
 一方、セレクタ159は、V1*CSI_RSの送信のために割り当てられたリソースにおいては、CSI_RSをV1乗算部154の前段に供給する。この場合、CSI_RSはV1乗算部154においてV1と乗算され、乗算結果であるV1*CSI_RSは、セレクタ155からV2_MU乗算部156をバイパスするようにセレクタ157へ供給される。その結果、基地局10はV1*CSI_RSを送信する。
 以上説明したように、本実施形態による基地局10は、送信用重みV1の決定後、V1*CSI_RSの送信を開始する。かかる構成により、以下に説明する移動局20におけるV2_MUなどの計算負荷を抑制することが可能となる。
  <3.移動局の基本構成>
 図9は、本実施形態による移動局20の構成を示した説明図である。図9に示したように、本実施形態による移動局20は、複数のアンテナ210と、スイッチSW216と、アナログ処理部220と、AD/DA変換部224と、復調処理部228と、上位レイヤ用信号処理部232と、変調処理部240と、チャネル行列取得部244と、重み決定部248と、を備える。
 アンテナ210Aおよび210Bは、基地局10から送信された無線信号を電気的な受信信号に変換してアナログ処理部220に供給する受信部、および、アナログ処理部220から供給される送信信号を無線信号に変換して基地局10に送信する送信部として機能する。なお、アンテナ210の数は特に限定されず、例えば、4本であってもよいし、8本であってもよい。
 スイッチSW216は、移動局20による送信動作と受信動作を切り替えるためのスイッチである。アンテナ210Aおよび210BがスイッチSW216を介してアナログ処理部220の送信回路と接続される場合には移動局20は送信動作を行い、アンテナ210Aおよび210BがスイッチSW216を介してアナログ処理部220の受信回路と接続される場合には移動局20は受信動作を行う。
 アナログ処理部220は、送信信号に対するアナログ処理を行う送信回路、および、受信信号に対するアナログ処理を行う受信回路を備える。送信回路においては、例えば、AD/DA変換部224から供給されるアナログ形式の送信信号のアップコンバージョン、フィルタリング、およびゲインコントーロールなどが行われる。受信回路においては、例えば、スイッチSW216を介してアンテナ210から供給される受信信号のダウンコンバージョンおよびフィルタリングなどが行われる。
 AD/DA変換部224は、アナログ処理部220から供給される受信信号のAD変換、変調処理部240から供給される送信信号のDA変換を行う。
 復調処理部228は、AD/DA変換部224から供給される受信信号の復調処理を行う。復調処理部228が行う復調処理は、OFDM復調処理、MIMO復調処理、および誤り訂正などを含んでもよい。
 上位レイヤ用信号処理部232は、上位レイヤとの間で送信データおよび受信データを入出力するための処理を行う。また、上位レイヤ用信号処理部232は、重み決定部248により決定された送信用重みを示すフィードバック情報を送信データとして変調処理部240へ供給する。
 変調処理部240は、上位レイヤ用信号処理部232から供給される送信データに対し、コンスタレーションに基づくマッピングなどの変調処理を行う。変調処理部240による変調後の送信信号はAD/DA変換部224に供給される。
 チャネル行列取得部244は、基地局10からCSI_RSが受信されると、基地局10と移動局20の間のチャネル行列Hを取得する。
 重み決定部248は、チャネル行列取得部244により取得されたチャネル行列Hに基づき、V1、V2_MU、およびV2_SUなどの送信用重みを決定する。ここで、図4を参照して説明したように、比較例による移動局は、CSI_RSから取得したチャネル行列Hに基づいてV2_MUを更新する場合、チャネル行列Hに対して決定済みのV1を乗算し、V1が乗算されたチャネル行列Hに対して最適なV2_MUを評価する。このため、比較例による移動局では、V2_MUの更新時にもV1を用いた演算が行われる。
 これに対し、本実施形態においては、V1の決定後、基地局10からV1が乗算されたCSI_RSであるV1*CSI_RSが受信される。このV1*CSI_RSからチャネル行列取得部244により取得されるチャネル行列Hは、既にV1が乗算された形となっている。したがって、重み決定部248は、V1*CSI_RSから取得されるチャネル行列Hに基づき、V1を用いた演算を行うことなくV2_MUを更新することができる。その結果、V2_MUの更新のための移動局20における計算負荷を大幅に抑制することが可能である。
  <4.各実施形態の説明>
 以上、本開示の各実施形態による基地局10および移動局20の基本構成を説明した。続いて、本開示の各実施形態について詳細に説明する。
   [4-1.第1の実施形態]
 図10は、本開示の第1の実施形態を示した説明図である。図10に示したように、基地局10は、CSI_RSを送信してV1が決定されると、V2_MUの更新(決定)のためにV1*CSI_RSを送信する。上述したように、V1*CSI_RSを受信した移動局20は、V1を用いた演算を行わずに最適なV2_MUを評価することが可能である。
 そして、基地局10は、V1*CSI_RSを複数回送信した後、V1の更新のためにCSI_RSを送信する。その後、基地局10は、V2_MUの更新のためにV1*CSI_RSを送信する。
 図10においてはV2の更新頻度がV1の更新頻度の4~5倍程度である例を示しているが、更新頻度の関係はかかる例に限定されない。実際には、V1の更新頻度がV2の更新頻度の10倍を上回ることも想定される。
   [4-2.第2の実施形態]
 第1の実施形態で説明したように、基地局10がV1*CSI_RSを送信すれば、移動局20はV1を用いた演算を行わずに最適なV2_MUを評価することが可能である。ここで、MU-MIMOとSU-MIMOのダイナミックスイッチングを実現するためには、移動局20がV2_SUを取得している必要がある。しかし、移動局20はV1*CSI_RSからV2_SUを評価することが困難である。
 そこで、第2の実施形態による基地局10の上位レイヤ用信号処理部132は、V1*CSI_RSを送信するリソースをV2_MUの更新(決定)のために割り当てることに加え、CSI_RSを送信するリソースをV2_SUの更新(決定)のために割り当てる。図11を参照し、このような第2の実施形態による基地局10の動作を具体的に説明する。
 図11は、本開示の第2の実施形態を示した説明図である。図11に示したように、第2の実施形態による基地局10は、V1の決定後、V1*CSI_RSをV2_MUの更新のために送信すると共に、CSI_RSをV2_SUの更新(決定)のために送信する。かかる構成により、V1*CSI_RSに基づいてV2_MUが得られ、CSI_RSに基づいてV2_SUが得られるので、MU-MIMOとSU-MIMOのダイナミックスイッチングを実現することが可能となる。
 なお、移動局20は、基地局10から受信される無線信号がCSI_RSまたはV1*CSI_RSのいずれであるかを、例えば以下の方法により判別することができる。
 (1)基地局10が、RRCシグナリングを経由で事前にCSI_RSまたはV1*CSI_RSを送信するタイミングまたは順序などを移動局20に通知しておく。
 (2)基地局10が、システムインフォメーションをブロードキャストすることによりCSI_RSまたはV1*CSI_RSを送信するタイミングまたは順序などを移動局20に通知しておく。
 (3)基地局10が、CSI_RSまたはV1*CSI_RSのいずれであるかを示す識別情報を付加してCSI_RSおよびV1*CSI_RS送信する
   [4-3.第3の実施形態]
 SU-MIMOは、「1-4.ダイナミックスイッチング」において説明したように、例えば8本の独立なストリームをMIMO送信する。一方、MU-MIMOは、例えば4つの異なる移動局20の各々に対して、2本の独立なストリームをMIMO送信する。したがって、V2_SUは8ストリーム用であるのに対し、V2_MUは2ストリーム用という点で双方は相違する。
 この場合、8ストリーム用であるV2_SUの方が高い精度が求められるので、V2_SUの更新頻度をV2_MUの更新頻度より高くすることが有効である。
 そこで、第3の実施形態による基地局10の上位レイヤ用信号処理部132は、V2_MUの更新(決定)するためのV1*CSI_RSの送信よりも、V2_SUを更新(決定)するためのCSI_RSの送信に多くのリソースを割り当てる。図12を参照し、このような第3の実施形態による基地局10の動作を具体的に説明する。
 図12は、本開示の第3の実施形態を示した説明図である。図12に示したように、第3の実施形態による基地局10は、V1の決定後、V2_MUの更新(決定)するためのV1*CSI_RSよりも、V2_SUを更新(決定)するためのCSI_RSを時間方向上で高い頻度で送信する。かかる構成により、V2_MUの更新時の移動局20における計算負荷を抑制しつつ、高精度なV2_SUを取得することが可能となる。
   [4-4.第4の実施形態]
 第3の実施形態では、V2_SUの更新頻度をV2_MUの更新頻度より高くするために、基地局10が、V1*CSI_RSよりもCSI_RSを時間方向上で高い頻度で送信することを説明した。第4の実施形態では、第3の実施形態と同様にV2_SUの更新頻度をV2_MUの更新頻度より高くするために、OFDMのサブキャリヤにおいて、V1*CSI_RSおよびCSI_RSを周波数方向上での配置を創意工夫した。以下、図13を参照し、第4の実施形態によるリソース割り当て例を具体的に説明する。
 図13は、第4の実施形態によるV1*CSI_RSおよびCSI_RSのリソース割り当て例を示した説明図である。図13に示したように、第4の実施形態による基地局10の上位レイヤ用信号処理部132は、V1*CSI_RSよりもCSI_RSを周波数方向上で密に配置する。このように、周波数方向上でのV1*CSI_RSおよびCSI_RSの配置を創意工夫することによっても、第3の実施形態と同様に、V2_MUの更新時の移動局20における計算負荷を抑制しつつ、高精度なV2_SUを取得することが可能となる。
   [4-5.第5の実施形態]
 第5の実施形態は、送信用重みの決定後の送信用重みを用いたデータ通信のためのリソース割り当てについて説明する。
 図14は、第5の実施形態によるリソース割り当ての具体例を示した説明図である。図14の横軸は時間を示し、縦軸は周波数を示す。また、図14中の方形ブロックの時間幅は1リソースブロックであってもよいし、1サブフレームであってもよい。また、方形ブロックの周波数幅は1リソースブロック(12サブキャリヤ分)であってもよいし、他のバンド幅であってもよい。
 図14に示したように、基地局10がまずCSI_RSを送信すると、移動局20がCSI_RSの受信に基づいてV1、V2_MU、およびV2_SUを周波数ごとに取得する。そして、移動局20は、V1、V2_MU、およびV2_SUを基地局10にフィードバックする。
 その後、基地局10のスケジューラ136は、図14に示したように、周波数範囲Bに含まれる下から4つのリソースブロックを移動局20A~20CとのMU-MIMO(第1の方式)のために割り当てる。一方、基地局10のスケジューラ136は、図14に示したように、周波数範囲Aに含まれる上から2つのリソースブロックを移動局20DとのSU-MIMO(第2の方式)のために割り当てる。
 ここで、第5の実施形態によるスケジューラ136は、周波数範囲Bに含まれるリソースブロックはMU-MIMO用の領域として保ち、周波数範囲Aに含まれるリソースブロックはSU-MIMO用の領域として保つ。
 このため、第5の実施形態によるスケジューラ136は、例えば移動局20CのMIMOの設定をMU-MIMOからSU-MIMOにダイナミックスイッチングさせる場合、図14に示したように、移動局20Cに割り当てるリソースブロックを周波数範囲Aに含まれるリソースブロックに移動させる。
 以上説明したように、第5の実施形態によれば、MU-MIMOとSU-MIMOのダイナミックスイッチングを、移動局20のリソースブロックを周波数方向上で移動させることにより実現することができる。
   [4-6.第6の実施形態]
 図15は、第6の実施形態によるリソース割り当ての具体例を示した説明図である。図15に示したように、第6の実施形態による上位レイヤ用信号処理部132は、V1の決定後、第5の実施形態において説明したMU-MIMO用の周波数範囲Bに含まれるリソースブロックをV1*CSI_RSの送信のために割り当てる。また、上位レイヤ用信号処理部132は、第5の実施形態において説明したSU-MIMO用の周波数範囲Aに含まれるリソースブロックをCSI_RSの送信のために割り当てる。
 かかる構成により、周波数範囲BではV2_MUを移動局20における計算量を抑制して更新しつつ、周波数範囲AではV2_SUを更新することができる。このため、周波数範囲BをMU-MIMOによる通信のために利用し、周波数範囲AをSU-MIMOによる通信のために利用することが可能となる。
   [4-7.第7の実施形態]
 上記の第5の実施形態および第6の実施形態では、MU-MIMO用の周波数範囲およびSU-MIMO用の周波数範囲を固定する例を説明したが、以下に第7の実施形態として説明するように、MU-MIMO用の周波数範囲およびSU-MIMO用の周波数範囲を動的に変化させることも可能である。
 図16は、第7の実施形態によるリソース割り当ての具体例を示した説明図である。図16に示したように、時間t1において周波数範囲Zおよび周波数範囲X内のリソースブロックがCSI_RSの送信用に割り当てられ、周波数範囲Y内のリソースブロックがV1*CSI_RSの送信用に割り当てられたとする。
 ここで、CSI_RSが送信される周波数では、V1、V2_MU、およびV2_SUを取得することが可能である。一方、V1*CSI_RSが送信される周波数では、V2_MUは取得できるものの、V2_SUを取得することは困難である。すなわち、V1*CSI_RSが送信される周波数はMU-MIMOに使用でき、CSI_RSが送信される周波数はMU-MIMOまたはSU-MIMOのいずれにも使用できる。
 そこで、第7の実施形態によるスケジューラ136は、CSI_RSが送信される周波数範囲Xおよび周波数範囲Z内のリソースブロックを、SU-MIMO用とMU-MIMO用とスイッチング可能領域として扱う。一方、スケジューラ136は、V1*CSI_RSが送信される周波数範囲Y内のリソースブロックをMU-MIMO専用領域として扱う。
 例えば、スケジューラ136は、図16に示したように時間t2においては周波数範囲X内のリソースブロックをSU-MIMOによる通信のために割り当て、周波数範囲Yおよび周波数Z内のリソースブロックをMU-MIMOによる通信のために割り当てる。その後、スケジューラ136は、時間t3においては周波数範囲Z内のリソースブロックをMU-MIMO用からSU-MIMO用に切り替え、周波数範囲X内のリソースブロックをSU-MIMO用からMU-MIMO用に切り替えることが可能である。
  <5.基地局および移動局の動作>
 以上、本開示の各実施形態を説明した。続いて、図17および図18を参照し、本開示の実施形態による基地局10および移動局20の動作を説明する。
 図17は、本開示の実施形態による基地局10の動作を示したフローチャートである。なお、図17は、特に第7の実施形態による基地局10の動作に対応している。
 図17に示したように、基地局10は、まずV1とV2_MUの時間方向での更新頻度を決定する(S304)。続いて、基地局10は、V2_SUの時間方向での更新頻度を決定する(S308)。
 その後、基地局10は、MU-MIMOのためのリソースと、SU-MIMOのためのリソースの周波数方向での密度を決定する(S312)。さらに、基地局10は、図16に示したMU-MIMO専用領域とダイナミックスイッチング可能領域の周波数方向上での比率を決定する(S316)。なお、図16に示した例では、MU-MIMO専用領域とダイナミックスイッチング可能領域の周波数方向上での比率は1:2であり、MU-MIMOのためのリソースと、SU-MIMOのためのリソースの周波数方向での密度比は2:1である。
 続いて、基地局10は、CSI_RSを送信するためのリソースおよびV1*CSI_RSを送信するためのリソースを割り当てる(S320)。より具体的には、基地局10は、S316においてMU-MIMO専用領域として決定した周波数のリソースをV1*CSI_RSを送信のために割り当て、ダイナミックスイッチング可能領域として決定した周波数のリソースをCSI_RSの送信のために割り当てる。また、基地局10は、S304およびS308の決定結果に基づいてV1*CSI_RSおよびCSI_RSに時間方向上のリソースを割り当てる。そして、基地局10は、決定されたリソースに従ってCSI_RSおよびV1*CSI_RSを送信する。
 図18は、本実施形態による移動局20の動作を示したフローチャートである。図18に示したように、移動局20は、基地局10から無線信号を受信すると(S404)、この無線信号がCSI_RSである場合(S408)、CSI_RSの受信結果からチャネル行列Hを取得する(S412)。そして、移動局20は、S412で取得したチャネル行列Hに基づき、V1、V2_MU、およびV2_SUなどの送信用重みを決定する(S416)。さらに、移動局20は、V1、V2_MU、およびV2_SUを基地局10にフィードバックする(S420)。
 一方、受信された無線信号がV1*CSI_RSである場合(S408)、移動局20は、V1*CSI_RSの受信結果から、V1が乗算されたチャネル行列Hを取得する(S424)。そして、移動局20は、V1が乗算されたチャネル行列Hに基づき、V1を用いた演算を行うことなくV2_MUを決定する(S428)。さらに、移動局20は、V2_MUを基地局10にフィードバックする(S432)。
 また、受信された無線信号がデータ信号である場合(S408)、移動局20は、データ信号を復調して基地局10から送信されたデータを取得する(S436)。
  <6.まとめ>
 以上説明したように、本開示の実施形態による基地局10は、送信用重みV1の決定後、V1*CSI_RSの送信を開始する。かかる構成により、以下に説明する移動局20におけるV2_MUなどの計算負荷を抑制することが可能となる。さらに、本開示の実施形態による基地局10は、CSI_RSの送信も継続する。かかる構成により、移動局20がCSI_RSの受信に基づいてV2_SUを決定することができる。その結果、MU-MIMOおよびSU―MIMO間のダイナミックスイッチングを実現することが可能となる。
 なお、添付図面を参照しながら本開示の好適な実施形態について詳細に説明したが、本開示の技術的範囲はかかる例に限定されない。本開示の属する技術の分野における通常の知識を有する者であれば、特許請求の範囲に記載された技術的思想の範疇内において、各種の変更例または修正例に想到し得ることは明らかであり、これらについても、当然に本開示の技術的範囲に属するものと了解される。
 例えば、第1の実施形態~第7の実施形態のうちの2以上の実施形態を組み合わせてもよい。具体的には、第3の実施形態で説明した時間方向上のリソース割り当て、第5の実施形態で説明した周波数方向上のリソース割り当て、第6の実施形態で説明したSU-MIMOおよびMU-MIMOのためのリソース割り当てを組み合わせることも可能である。
 また、本明細書の基地局10または移動局20の処理における各ステップは、必ずしもフローチャートとして記載された順序に沿って時系列に処理する必要はない。例えば、基地局10または移動局20の処理における各ステップは、フローチャートとして記載した順序と異なる順序で処理されても、並列的に処理されてもよい。
 また、基地局10または移動局20に内蔵されるCPU、ROMおよびRAMなどのハードウェアを、上述した基地局10または移動局20の各構成と同等の機能を発揮させるためのコンピュータプログラムも作成可能である。また、該コンピュータプログラムを記憶させた記憶媒体も提供される。
 10   基地局
 20、20A、20B 移動局
 110、210 アンテナ
 116、216 スイッチSW
 120、220 アナログ処理部
 124、224 AD/DA変換部
 128、228 復調処理部
 132、232 上位レイヤ信号処理部
 136  スケジューラ
 140、240 変調処理部
 150 重み乗算部
 152 V2_SU乗算部
 154 V1乗算部
 156 V2_MU乗算部
 244 チャネル行列取得部
 248 重み決定部

Claims (18)

  1.  参照信号を送信する通信部と;
     通信相手による前記参照信号の受信に基づいて決定された第1の送信用重みを乗算する第1の乗算部と;
     前記通信相手による前記参照信号の受信に基づいて決定された第2の送信用重みを乗算する第2の乗算部と;
    を備え、
     前記通信部は、前記第1の送信用重みの決定後、前記参照信号および前記第1の送信用重みとの乗算により得られる重み付き参照信号を送信する、無線通信装置。
  2.  前記無線通信装置は、前記重み付き参照信号の送信のためのリソースを管理する参照信号管理部をさらに備える、請求項1に記載の無線通信装置。
  3.  前記参照信号管理部は、前記第1の送信用重みの決定後、前記重み付き参照信号の送信のためのリソース、および前記参照信号を送信するためのリソースを割り当てる、請求項2に記載の無線通信装置。
  4.  前記参照信号管理部は、前記重み付き参照信号の送信より、前記参照信号を送信のために多くのリソースを割り当てる、請求項3に記載の無線通信装置。
  5.  前記参照信号管理部は、前記重み付き参照信号の時間軸上の送信頻度より、前記参照信号の時間軸上の送信頻度が高くなるようにリソースを割り当てる、請求項4に記載の無線通信装置。
  6.  前記参照信号管理部は、前記重み付き参照信号の送信用リソースの周波数軸上の密度より、前記参照信号の送信用リソースの周波数軸上の密度が高くなるようにリソースを割り当てる、請求項4に記載の無線通信装置。
  7.  前記無線通信装置は、各通信相手に第1の方式または第2の方式による通信のためのリソースを割り当てるスケジューラをさらに備え、
     前記スケジューラは、第1の周波数範囲内のリソースを前記第1の方式による通信のために割り当て、第2の周波数範囲内のリソースを前記第2の方式による通信のために割り当てる、請求項3に記載の無線通信装置。
  8.  前記第1の周波数範囲は、前記重み付き参照信号の送信用リソースが割り当てられる周波数範囲であり、
     前記第2の周波数範囲は、前記参照信号の送信用リソースが割り当てられる周波数範囲である、請求項7に記載の無線通信装置。
  9.  前記第1の方式はMU-MIMO(Multi User Multi Input Multi Output)であり、前記第2の方式はSU-MIMO(SIngle User Multi Input Multi Output)である、請求項8に記載の無線通信装置。
  10.  前記無線通信装置は、各通信相手に第1の方式または第2の方式による通信のためのリソースを割り当てるスケジューラをさらに備え、
     前記スケジューラは、前記重み付き参照信号の送信用リソースが割り当てられる周波数範囲内のリソースを前記第1の方式による通信のために割り当て、前記参照信号の送信用リソースが割り当てられる周波数範囲内のリソースを前記第1の方式または前記第2の方式による通信のために割り当てる、請求項3に記載の無線通信装置。
  11.  前記第2の送信用重みの更新頻度は、前記第1の送信用重みの更新頻度よりも高い、請求項3に記載の無線通信装置。
  12.  前記第1の送信用重みは指向性を形成するための重みであり、前記第2の送信用重みは位相を調整するための無指向性の重みである、請求項11に記載の無線通信装置。
  13.  コンピュータを、
     参照信号を送信する通信部と;
     通信相手による前記参照信号の受信に基づいて決定された第1の送信用重みを乗算する第1の乗算部と;
     前記通信相手による前記参照信号の受信に基づいて決定された第2の送信用重みを乗算する第2の乗算部と;
    を備え、
     前記通信部は、前記第1の送信用重みの決定後、前記参照信号および前記第1の送信用重みとの乗算により得られる重み付き参照信号を送信する、無線通信装置として機能させるための、プログラム。
  14.  参照信号を送信することと;
     通信相手による前記参照信号の受信に基づいて決定された第1の送信用重みを前記参照信号と乗算することと;
     前記参照信号および前記第1の送信用重みとの乗算により得られる重み付き参照信号を送信することと;
    を含む、無線通信方法。
  15.  第1の無線通信装置と;
      参照信号を送信する通信部、
      前記第1の無線通信装置による前記参照信号の受信に基づいて決定された第1の送信用重みを乗算する第1の乗算部、および
      前記第1の無線通信装置による前記参照信号の受信に基づいて決定された第2の送信用重みを乗算する第2の乗算部、を有し、
      前記通信部は、前記第1の送信用重みの決定後、前記参照信号および前記第1の送信用重みとの乗算により得られる重み付き参照信号を送信する、第2の無線通信装置と;
    を備える、無線通信システム。
  16.  通信相手から参照信号を受信する通信部と;
     前記通信部による前記参照信号の受信結果に応じて第1の送信用重み、および第2の送信用重みを決定する重み決定部と;
    を備え、
     前記参照信号および前記第1の送信用重みとの乗算により得られる重み付き参照信号が前記通信部により受信された場合、前記重み決定部は、前記重み付け参照信号の受信結果から前記第2の送信用重みを決定する、無線通信装置。
  17.  各通信相手に第1の方式または第2の方式による通信のためのリソースを割り当てるスケジューラを備え、
     前記スケジューラは、第1の周波数範囲内のリソースを前記第1の方式による通信のために割り当て、第2の周波数範囲内のリソースを前記第2の方式による通信のために割り当てる、無線通信装置。
  18.  前記第1の方式はMU-MIMO(Multi User Multi Input Multi Output)であり、前記第2の方式はSU-MIMO(SIngle User Multi Input Multi Output)である、請求項17に記載の無線通信装置。
PCT/JP2011/064218 2010-08-25 2011-06-22 無線通信装置、無線通信システム、無線通信方法、およびプログラム WO2012026195A1 (ja)

Priority Applications (17)

Application Number Priority Date Filing Date Title
AU2011294574A AU2011294574B2 (en) 2010-08-25 2011-06-22 Wireless communication apparatus, wireless communication system, wireless communication method, and program
ES11819667.4T ES2655903T3 (es) 2010-08-25 2011-06-22 Realimentación en sistemas de comunicación inalámbrica con precodificadores en cascada
EP11819667.4A EP2611052B1 (en) 2010-08-25 2011-06-22 Feedback in wireless communication systems with cascaded precoders
RU2013106890/07A RU2569934C2 (ru) 2010-08-25 2011-06-22 Устройство беспроводной передачи данных, система беспроводной передачи данных, способ беспроводной передачи данных и программа
CN201180039971.1A CN103081387B (zh) 2010-08-25 2011-06-22 无线通信装置、无线通信系统和无线通信方法
KR1020137003780A KR20130098998A (ko) 2010-08-25 2011-06-22 무선 통신 장치, 무선 통신 시스템, 무선 통신 방법 및 프로그램
US13/704,254 US9648622B2 (en) 2010-08-25 2011-06-22 Wireless communication device, wireless communication system, wireless communication method, and computer-readable medium for transmission of reference signals
KR1020157023159A KR101850593B1 (ko) 2010-08-25 2011-06-22 무선 통신 장치, 무선 통신 시스템, 무선 통신 방법 및 프로그램
BR112013003745A BR112013003745A2 (pt) 2010-08-25 2011-06-22 dispositivo de comunicação sem fio, programa, método de comunicação sem fio, e, sistema de comunicação sem fio
MYPI2013700268A MY185247A (en) 2010-08-25 2011-06-22 Wireless communication device, wireless communication system, wireless communication method, and program
MX2013001927A MX2013001927A (es) 2010-08-25 2011-06-22 Aparato inalambrico de comunicacion, sistema inalambrico de comunicacion, metodo inalambrico de comunicacion, y programa
KR1020187032655A KR102053565B1 (ko) 2010-08-25 2011-06-22 기지국, 무선 통신 장치, 무선 통신 시스템, 무선 통신 방법 및 기록 매체
CA2804589A CA2804589A1 (en) 2010-08-25 2011-06-22 Wireless communication device, wireless communication system, wireless communication method, and program
ZA2013/00428A ZA201300428B (en) 2010-08-25 2013-01-16 Wireless communication apparatus,wireless communication system,wireless communication method,and program
US14/700,783 US9622219B2 (en) 2010-08-25 2015-04-30 Wireless communication device, wireless communication system, wireless communication method, and computer-readable medium for resource notification
US14/700,726 US10009074B2 (en) 2010-08-25 2015-04-30 Wireless communication device, wireless communication system, wireless communication method, and computer-readable medium for transmission of transmission weight information
US15/972,716 US10693534B2 (en) 2010-08-25 2018-05-07 Wireless communication device, wireless communication system, wireless communication method, and computer-readable medium for transmission of transmission weight information

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010188129A JP5585306B2 (ja) 2010-08-25 2010-08-25 基地局、無線通信装置、無線通信システム、無線通信方法およびプログラム
JP2010-188129 2010-08-25

Related Child Applications (3)

Application Number Title Priority Date Filing Date
US13/704,254 A-371-Of-International US9648622B2 (en) 2010-08-25 2011-06-22 Wireless communication device, wireless communication system, wireless communication method, and computer-readable medium for transmission of reference signals
US14/700,783 Continuation US9622219B2 (en) 2010-08-25 2015-04-30 Wireless communication device, wireless communication system, wireless communication method, and computer-readable medium for resource notification
US14/700,726 Continuation US10009074B2 (en) 2010-08-25 2015-04-30 Wireless communication device, wireless communication system, wireless communication method, and computer-readable medium for transmission of transmission weight information

Publications (1)

Publication Number Publication Date
WO2012026195A1 true WO2012026195A1 (ja) 2012-03-01

Family

ID=45723209

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/064218 WO2012026195A1 (ja) 2010-08-25 2011-06-22 無線通信装置、無線通信システム、無線通信方法、およびプログラム

Country Status (16)

Country Link
US (4) US9648622B2 (ja)
EP (2) EP2611052B1 (ja)
JP (1) JP5585306B2 (ja)
KR (3) KR102053565B1 (ja)
CN (3) CN104954058B (ja)
AR (1) AR082483A1 (ja)
AU (1) AU2011294574B2 (ja)
BR (1) BR112013003745A2 (ja)
CA (1) CA2804589A1 (ja)
ES (2) ES2655903T3 (ja)
MX (1) MX2013001927A (ja)
MY (1) MY185247A (ja)
RU (2) RU2689316C2 (ja)
TR (1) TR201802111T4 (ja)
WO (1) WO2012026195A1 (ja)
ZA (1) ZA201300428B (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014083927A1 (ja) * 2012-11-28 2014-06-05 ソニー株式会社 通信制御装置、通信制御方法及び端末装置

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5585306B2 (ja) * 2010-08-25 2014-09-10 ソニー株式会社 基地局、無線通信装置、無線通信システム、無線通信方法およびプログラム
US10219169B1 (en) * 2015-07-09 2019-02-26 Quantenna Communications, Inc. Hybrid MU-MIMO spatial mapping using both explicit sounding and crosstalk tracking in a wireless local area network
US9973257B1 (en) * 2015-08-19 2018-05-15 Sprint Spectrum L.P. RF slave repeater management
US11303346B2 (en) 2015-08-25 2022-04-12 Cellium Technologies, Ltd. Systems and methods for transporting signals inside vehicles
US10027374B1 (en) * 2015-08-25 2018-07-17 Cellium Technologies, Ltd. Systems and methods for wireless communication using a wire-based medium
CN106685495A (zh) * 2015-11-05 2017-05-17 索尼公司 无线通信方法和无线通信设备
CN106888041A (zh) * 2015-12-14 2017-06-23 北京信威通信技术股份有限公司 基于波束赋形的空分多址资源分配方法及系统
TWI616112B (zh) * 2016-06-07 2018-02-21 和碩聯合科技股份有限公司 傳輸資料的方法、基地台和電腦程式產品
WO2018041347A1 (en) * 2016-08-31 2018-03-08 Huawei Technologies Co., Ltd. Aggregating received data

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005503045A (ja) * 2001-03-28 2005-01-27 ノキア コーポレイション 複数アンテナ送信用の非ゼロ複素重み付けした空間−時間符号
JP2005184730A (ja) 2003-12-24 2005-07-07 Sony Corp 無線通信システム、無線通信装置及び無線通信方法、並びにコンピュータ・プログラム
JP2010521895A (ja) * 2007-03-14 2010-06-24 クゥアルコム・インコーポレイテッド 動的ブロードキャストチャネルのスケジューリング

Family Cites Families (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ATE330378T1 (de) * 2000-11-17 2006-07-15 Nokia Corp Verfahren, vorrichtungen und telekommunikationsnetzwerk zum regeln der antennengewichte eines transceivers
US6748024B2 (en) * 2001-03-28 2004-06-08 Nokia Corporation Non-zero complex weighted space-time code for multiple antenna transmission
JP4604545B2 (ja) 2004-05-10 2011-01-05 ソニー株式会社 無線通信システム、無線通信装置及び無線通信方法ム
JP4543737B2 (ja) * 2004-05-10 2010-09-15 ソニー株式会社 無線通信システム、無線通信装置及び無線通信方法、並びにコンピュータ・プログラム
JP4785377B2 (ja) * 2004-12-14 2011-10-05 株式会社エヌ・ティ・ティ・ドコモ 無線回線制御局、移動通信システム及び移動通信方法
US7885348B2 (en) 2006-02-09 2011-02-08 Intel Corporation MIMO communication system and method for beamforming using polar-cap codebooks
US8059609B2 (en) * 2006-03-20 2011-11-15 Qualcomm Incorporated Resource allocation to support single-user and multi-user MIMO transmission
WO2008103317A2 (en) * 2007-02-16 2008-08-28 Interdigital Technology Corporation Precoded pilot transmission for multi-user and single user mimo communications
EP2127135B1 (en) 2007-03-26 2015-01-21 Telefonaktiebolaget L M Ericsson (publ) Method and arrangement relating to communications network
WO2008139630A1 (ja) 2007-05-16 2008-11-20 Fujitsu Limited 無線通信装置および無線通信方法
CN101388702B (zh) 2007-09-11 2015-05-13 株式会社Ntt都科摩 基于码本的多输入多输出系统自适应预编码的方法和装置
KR20100057033A (ko) * 2007-10-01 2010-05-28 가부시키가이샤 엔티티 도코모 기지국장치, 송신방법, 이동국장치 및 수신방법
KR20090043174A (ko) * 2007-10-29 2009-05-06 엘지전자 주식회사 프리코딩을 이용한 송신 데이터 생성 방법, 생성된 송신데이터 전송 방법, 생성된 송신 데이터 수신 방법 및 그전송 장치
KR101499255B1 (ko) * 2008-03-12 2015-03-06 엘지전자 주식회사 다중안테나 시스템에서 파일럿의 전송방법
WO2009122658A1 (ja) * 2008-04-04 2009-10-08 パナソニック株式会社 無線通信移動局装置およびプレコーディング行列使用方法
US8446814B2 (en) * 2008-04-08 2013-05-21 Nec Corporation Radio communication system, radio communication device, radio communication method, and program
JP2010081360A (ja) * 2008-09-26 2010-04-08 Toshiba Corp 無線通信装置および無線通信方法
CN102257743B (zh) 2008-12-18 2014-05-28 爱立信电话股份有限公司 用于无线通信的系统和提供无线通信的方法
KR101635883B1 (ko) * 2009-02-03 2016-07-20 엘지전자 주식회사 하향링크 참조 신호 송수신 기법
US8351533B2 (en) * 2009-04-16 2013-01-08 Intel Corporation Group resource allocation techniques for IEEE 802.16m
CN101707511B (zh) * 2009-11-18 2015-08-12 中兴通讯股份有限公司 传输方式的指示方法及装置
CN101800628B (zh) * 2010-02-12 2015-09-16 中兴通讯股份有限公司 一种获取信道状态信息的方法和系统
KR101498079B1 (ko) * 2010-03-04 2015-03-03 엘지전자 주식회사 분산 안테나 시스템에서의 신호 송수신 장치
CN103069739B (zh) * 2010-04-02 2016-09-21 交互数字专利控股公司 上行链路探测参考信号配置和传输
US8315221B2 (en) * 2010-06-18 2012-11-20 Sharp Laboratories Of America, Inc. Reducing feedback overhead for multiple component carriers
JP5585306B2 (ja) * 2010-08-25 2014-09-10 ソニー株式会社 基地局、無線通信装置、無線通信システム、無線通信方法およびプログラム

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005503045A (ja) * 2001-03-28 2005-01-27 ノキア コーポレイション 複数アンテナ送信用の非ゼロ複素重み付けした空間−時間符号
JP2005184730A (ja) 2003-12-24 2005-07-07 Sony Corp 無線通信システム、無線通信装置及び無線通信方法、並びにコンピュータ・プログラム
JP2010521895A (ja) * 2007-03-14 2010-06-24 クゥアルコム・インコーポレイテッド 動的ブロードキャストチャネルのスケジューリング

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
"4 Tx Codebook Design based on Two-Component Framework", 3GPP TSG RAN #62, RL-104980, 23 August 2010 (2010-08-23), XP050598655, Retrieved from the Internet <URL:http://www.3gpp.org/ftp/tsg_ran/wg1_r11/TSGR1_62/Docs/R1-104980.zip> *
"Weighted CSI Feedback aided DL CoMP transmissions", 3GPP TSG RAN WG1 #58BIS, RL-093782, 12 October 2009 (2009-10-12), XP050388302, Retrieved from the Internet <URL:http://www.3gpp.org/ftp/tsg_ran/wg1_r11/TSGR1_58b/Docs/R1-093782.zip> *
See also references of EP2611052A4

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014083927A1 (ja) * 2012-11-28 2014-06-05 ソニー株式会社 通信制御装置、通信制御方法及び端末装置

Also Published As

Publication number Publication date
RU2015138491A3 (ja) 2019-03-19
BR112013003745A2 (pt) 2016-05-31
RU2569934C2 (ru) 2015-12-10
ES2655903T3 (es) 2018-02-22
TR201802111T4 (tr) 2018-03-21
MY185247A (en) 2021-04-30
JP2012049680A (ja) 2012-03-08
KR20150104644A (ko) 2015-09-15
AU2011294574A1 (en) 2013-01-24
CN104836608B (zh) 2018-08-21
US20150237522A1 (en) 2015-08-20
CN103081387A (zh) 2013-05-01
US20180331733A1 (en) 2018-11-15
US20130089059A1 (en) 2013-04-11
MX2013001927A (es) 2013-05-14
EP2611052A1 (en) 2013-07-03
KR20130098998A (ko) 2013-09-05
US9648622B2 (en) 2017-05-09
RU2689316C2 (ru) 2019-05-27
KR102053565B1 (ko) 2020-01-08
CN104954058A (zh) 2015-09-30
RU2015138491A (ru) 2018-12-25
CN104836608A (zh) 2015-08-12
CA2804589A1 (en) 2012-03-01
RU2013106890A (ru) 2014-08-20
AU2011294574B2 (en) 2016-05-26
US20150237600A1 (en) 2015-08-20
KR101850593B1 (ko) 2018-04-19
KR20180124154A (ko) 2018-11-20
CN103081387B (zh) 2016-05-18
EP2611052B1 (en) 2017-11-22
ES2674294T3 (es) 2018-06-28
CN104954058B (zh) 2018-10-19
EP3125439A1 (en) 2017-02-01
EP3125439B1 (en) 2018-05-02
AR082483A1 (es) 2012-12-12
US10009074B2 (en) 2018-06-26
US10693534B2 (en) 2020-06-23
JP5585306B2 (ja) 2014-09-10
US9622219B2 (en) 2017-04-11
ZA201300428B (en) 2013-09-25
EP2611052A4 (en) 2015-10-14

Similar Documents

Publication Publication Date Title
JP5585306B2 (ja) 基地局、無線通信装置、無線通信システム、無線通信方法およびプログラム
US10050681B2 (en) Apparatus and method for performing beamforming by using antenna array in wireless communication system
US9820290B2 (en) Virtual antenna mapping method and apparatus for feedback of virtual antenna mapping information in MIMO system
US10305660B2 (en) Method and apparatus for allocating wireless resources
EP1759470A1 (en) Apparatus and method for beamforming in a multi-antenna system
CN105453465A (zh) 无线基站装置以及调度方法
KR101448639B1 (ko) 다중 셀 환경에서 다수의 기지국이 협력하여 데이터를송신하는 방법 및 이를 이용하여 데이터를 수신하는 방법
EP3580978B1 (en) System and method for providing explicit feedback in the uplink
JP5603288B2 (ja) 無線通信システム、無線通信方法および基地局装置
JP5884862B2 (ja) 基地局、無線通信システム、無線通信方法およびプログラム
JP5958592B2 (ja) 移動局および基地局
JP5958591B2 (ja) 移動局、基地局および無線通信方法
US9467980B2 (en) Mobile communication system, base station apparatus, and communication control method

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180039971.1

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11819667

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 13704254

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2804589

Country of ref document: CA

ENP Entry into the national phase

Ref document number: 2011294574

Country of ref document: AU

Date of ref document: 20110622

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2011819667

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2011819667

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20137003780

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2013106890

Country of ref document: RU

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: MX/A/2013/001927

Country of ref document: MX

NENP Non-entry into the national phase

Ref country code: DE

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112013003745

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112013003745

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20130218