WO2012026169A1 - Ion detection device, air conditioner and ion measurement instrument - Google Patents

Ion detection device, air conditioner and ion measurement instrument Download PDF

Info

Publication number
WO2012026169A1
WO2012026169A1 PCT/JP2011/061756 JP2011061756W WO2012026169A1 WO 2012026169 A1 WO2012026169 A1 WO 2012026169A1 JP 2011061756 W JP2011061756 W JP 2011061756W WO 2012026169 A1 WO2012026169 A1 WO 2012026169A1
Authority
WO
WIPO (PCT)
Prior art keywords
ion
detection
temperature
heating element
substrate
Prior art date
Application number
PCT/JP2011/061756
Other languages
French (fr)
Japanese (ja)
Inventor
松井 裕文
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Priority to CN201190000678.XU priority Critical patent/CN203443917U/en
Publication of WO2012026169A1 publication Critical patent/WO2012026169A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F8/00Treatment, e.g. purification, of air supplied to human living or working spaces otherwise than by heating, cooling, humidifying or drying
    • F24F8/30Treatment, e.g. purification, of air supplied to human living or working spaces otherwise than by heating, cooling, humidifying or drying by ionisation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D47/00Separating dispersed particles from gases, air or vapours by liquid as separating agent
    • B01D47/05Separating dispersed particles from gases, air or vapours by liquid as separating agent by condensation of the separating agent
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F8/00Treatment, e.g. purification, of air supplied to human living or working spaces otherwise than by heating, cooling, humidifying or drying
    • F24F8/10Treatment, e.g. purification, of air supplied to human living or working spaces otherwise than by heating, cooling, humidifying or drying by separation, e.g. by filtering
    • F24F8/192Treatment, e.g. purification, of air supplied to human living or working spaces otherwise than by heating, cooling, humidifying or drying by separation, e.g. by filtering by electrical means, e.g. by applying electrostatic fields or high voltages
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters

Definitions

  • the present invention relates to an ion detector that detects the amount of ions in the air, and an air conditioner and an ion measuring instrument equipped with the ion detector.
  • the amount of ions (number of ions and ion concentration) measured by the ion detector is displayed on a monitor or the like to give the user a sense of security.
  • both positive and negative ions (or negative ions) generated by the ion generator are collected as electric charges by a current collector (collecting electrode), and the collected electric charges are passed through a resistor for current-voltage conversion. Since the voltage value after current-voltage conversion is small, it is amplified by an amplifier and then input to an AD converter. The value digitized by the AD converter is processed by a microcomputer or DSP to calculate the amount of ions, and the result is monitored. To display.
  • Patent Document 1 As an ion detector, for example, a device that simultaneously measures positive and negative ions (see Patent Document 1) is known. As a display method of the monitor, a method for displaying numerical values (see Patent Document 2) and a method for displaying an image representing a design or landscape corresponding to the ion concentration (see Patent Document 3) are known.
  • the current value is about pA (picoampere) to nA (nanoampere).
  • a resistance for converting the current value into a voltage suitable for the input of the AD converter a high resistance value of several giga to several tens of giga ohm is required.
  • the present invention has been made in view of the above-described circumstances, and an ion detection device capable of avoiding malfunctions under high humidity conditions by simple means, an air conditioner equipped with the ion detection device, and An object is to provide an ion measuring instrument.
  • An ion detection apparatus includes a collection electrode that collects ions in the air, and a measurement unit that measures a potential of the collection electrode, and increases the temperature of the measurement unit.
  • a temperature raising means is provided.
  • the temperature of the measuring unit that measures the potential of the collecting electrode that collects ions in the air is raised.
  • the electric potential of the collecting electrode is measured by flowing the charge due to the ions collected by the collecting electrode to the resistance provided in the measuring section under high humidity environmental conditions, the water generated on the surface of the resistance Since the layer evaporates due to the temperature rise, and the relative humidity decreases due to the temperature rise, it becomes difficult to generate a water layer on the surface of the resistor, so the leakage current is reduced and the resistance drop is suppressed. It is possible to obtain an accurate ion amount based on the potential of the collecting electrode.
  • the ion detector according to the present invention is characterized in that the measurement unit is provided on a substrate, and the temperature raising means is a heating element provided on the substrate.
  • the measurement unit and the heating element are provided on the same substrate, when the heating element is heated, the heat generated in the heating element is transmitted to the substrate and is conducted from the substrate to the measurement unit, and the temperature of the measurement unit raising the.
  • the heating element is a resistor installed on the substrate and generating heat when energized.
  • the heat generated by the resistor is transmitted to the substrate and is conducted from the substrate to the measurement unit.
  • the ion detector according to the present invention is characterized in that the heating element is a resistance pattern formed on the surface of the substrate and generating heat when energized.
  • the heating element is a resistance pattern formed on the surface of the substrate and generating heat when energized.
  • the ion detector according to the present invention is characterized in that the collecting electrode is provided on one surface of the substrate, and the measuring section and the heating element are provided on the other surface.
  • the measurement unit and the heating element are provided on the surface opposite to the substrate surface provided with the collection electrode, the measurement unit and the heating element are used when collecting ions in the air with the collection electrode. Therefore, the heat of the heating element can be efficiently conducted to the measurement unit provided on the same substrate surface.
  • the ion detector according to the present invention is characterized in that the measurement unit is provided on a substrate, and the temperature raising means is a heating element installed at a position separated from the substrate.
  • the temperature of the measurement unit rises due to the radiant heat generated by the heating element.
  • An ion detection apparatus includes a temperature detection unit that detects a temperature of the measurement unit, and a control unit that performs heat generation control of the heating element based on a detection result of the temperature detection unit. to.
  • the heat generation control of the heating element can be appropriately performed based on the temperature detection result of the measurement unit.
  • the ion detection apparatus includes an external temperature detection unit that detects a temperature outside the measurement unit, and the control unit detects a difference between a detection value of the temperature detection unit and a detection value of the external temperature detection unit.
  • the control unit detects a difference between a detection value of the temperature detection unit and a detection value of the external temperature detection unit.
  • the measurement unit when the difference between the temperature of the measurement unit and the external temperature is small, the measurement unit is not sufficiently heated, so the heating element is heated, and the difference between the temperature of the measurement unit and the external temperature is If it is larger, the temperature of the measuring part has risen sufficiently, so that the heat generation of the heating element is stopped and unnecessary heat generation is prevented.
  • the control means controls the heat generation of the heating element so that the difference between the detection value of the temperature detection means and the detection value of the external temperature detection means is in the range of 5 ° C to 25 ° C. and performing.
  • the control means controls the heat generation of the heating element so that the difference between the temperature of the measurement unit and the external temperature, that is, the temperature rise is maintained in the range of 5 ° C to 25 ° C.
  • a relative humidity environment of 70% or less, which is preferable for performing an ion detection operation with an appropriate humidity can be realized.
  • the ion detection apparatus includes a humidity detection unit that detects humidity around the measurement unit, and a control unit that performs heat generation control of the heating element based on a detection result of the humidity detection unit. the features.
  • the heat generation control of the heating element can be appropriately performed based on the detection result of the humidity around the measurement unit.
  • the control unit causes the heating element to generate heat when the detection value of the humidity detection unit is larger than a set value, and the detection value of the humidity detection unit is smaller than the set value.
  • the heat generation of the heating element is stopped.
  • the heating element under a high humidity condition where the humidity around the measurement unit is larger than the set value, the water layer generated on the surface of the resistor provided in the measurement unit is evaporated, and the humidity around the measurement unit is reduced.
  • the heating element is heated, and under low humidity conditions where the humidity around the measurement unit is lower than the set value, the heating element stops heating and generates unnecessary heating. let not.
  • An air conditioner according to the present invention includes an ion generator and the ion detector.
  • ions generated by the ion generator can be detected by the ion detector.
  • the air conditioner according to the present invention includes an ion display unit that displays a detection result of the ion detector.
  • the detection result of the ions generated by the ion generator is displayed, the user can confirm the generation of ions.
  • An ion measuring instrument includes the ion detection device, and includes an ion display unit that displays a detection result of the ion detection device.
  • the detection result of ions is displayed, the user can easily confirm the state of ions to be measured.
  • an ion detector capable of avoiding a malfunction in a high humidity condition by a simple means by providing a temperature raising means for raising the temperature of the measuring section.
  • a preferred specific configuration of the temperature raising means can be obtained by providing a heating element at a position where the measurement unit is mounted or at a position separated from the substrate.
  • the temperature of the measuring unit is adjusted appropriately by performing heat generation control of the heating element based on the temperature of the measuring unit, the difference between the temperature of the measuring unit and the external temperature, or each detection result of the humidity around the measuring unit.
  • an ion detection device that can be raised to a low level.
  • an air conditioner that can be appropriately blown out together with air while reliably detecting the generation of ions.
  • an ion measuring instrument that allows a user to easily check the state of ions to be measured.
  • FIG. 2 is a side sectional view taken along line II-II in FIG. 1.
  • FIG. 3 is a plan sectional view taken along line III-III in FIG. 1. It is the figure which expanded a part of FIG. It is a figure of the circuit board provided in the ion detector which concerns on Embodiment 1 of this invention. It is a figure of the circuit board provided in the ion detector which concerns on Embodiment 1 of this invention. It is a block diagram which shows the outline
  • FIG. 1 is a front view schematically showing an air conditioner equipped with an ion detector according to Embodiment 1 of the present invention
  • FIG. 2 is a side sectional view taken along line II-II in FIG. 1, and FIG. 3 is III in FIG.
  • FIG. 4 is an enlarged view of a part of FIG. 2
  • FIGS. 5A and 5B are diagrams of a circuit board provided in the ion detector according to Embodiment 1 of the present invention
  • FIG. It is a block diagram which shows the outline
  • the air conditioner includes a vertically long rectangular parallelepiped housing 1, and the housing 1 includes a front housing 1a, a rear housing 1b, left and right side housings 1c, a bottom housing 1d, and a top housing 1e.
  • a suction port 2 for sucking outside air is provided in the lower part of the rear housing 1b, and a blower outlet 4 for blowing air to the outside is provided in the upper part of the front housing 1a.
  • a ventilation path 3 extending from the suction port 2 to the blowout port 4 is formed in the housing 1.
  • the ventilation path 3 has a rectangular cross section surrounded by a front wall 3a and a rear wall 3b arranged in parallel with a space in the front and rear direction, and left and right side walls 3f and 3f.
  • the upper end of the front wall 3a is bent forward to become the lower edge 3e of the outlet 4, the upper end of the rear wall 3b is bent forward to become the upper edge 3c of the outlet 4, and the lower end of the rear wall 3b is the rear side To be the upper edge 3d of the suction port 2.
  • a fan 5 that sucks air from the suction port 2 and generates an upward wind flow is installed in the lower part of the ventilation path 3.
  • the front wall 3 a is provided with an ion generator 6 above the fan 5 and an ion detector 7 above the ion generator 6.
  • the fan 5 may be provided at the upper or lower intermediate portion or the upper portion in the ventilation passage 3, and the ion generation unit 6 and the ion detection unit 7 may be installed below the fan 5.
  • the ion generator 6 generates positive and negative ions or negative ions by applying a high voltage between the annular electrode and the needle electrode located at the center thereof, and supplies the positive and negative ions to the ventilation path 3 (see FIG. 4 for negative ions). Is shown).
  • the ion detection part 7 detects the ion which generate
  • the ion detector 7 has a sensor substrate 8 arranged in parallel with the front wall 3a.
  • the sensor substrate 8 may not be parallel to the front wall 3a.
  • the sensor substrate 8 forms a current collecting electrode 9 serving as a current collecting portion on the current collecting surface 8a on the ventilation path 3 side, and measures the potential of the current collecting electrode 9 on the component surface 8b opposite to the current collecting surface 8a.
  • a measuring unit 11 is mounted.
  • the collecting electrode 9 is formed as a substantially rectangular pattern, and is electrically connected to the electrode 9b on the component surface 8b through the through hole 9a.
  • 5A is a plan view of the component surface 8b
  • FIG. 5B is a current collecting surface 8a.
  • the electrode 9 b is connected to the input terminal of the amplifier 13 and grounded through a resistor 12 having a high resistance value (about gigaohm).
  • the current collecting electrode 9 may have a pattern other than a substantially rectangular shape as long as an area for collecting necessary charges can be secured. 5A and 5B, detailed circuit patterns and connection states of the measuring unit 11 are omitted.
  • the output of the amplifier 13 is input as a sensor output to an AD converter 14 provided on a substrate (not shown) different from the sensor substrate 8, and the output of the AD converter 14 is input to the microcomputer / DSP 15.
  • a monitor 16 for displaying the processing result in the microcomputer / DSP 15 is provided.
  • the board on which the AD converter 14 and the microcomputer / DSP 15 are mounted is installed in the housing 1, and the monitor 16 is provided on the front side of the front housing 1a or the upper surface of the top housing 1e.
  • FIG. 7 is a flowchart showing an outline of the ion detection process
  • FIG. 8 is a graph showing an example of an ion detection waveform.
  • the output of the amplifier 13 is converted to a digital value by the AD converter 14 and then digitally processed by the microcomputer / DSP 15 to detect the amount and polarity of ions.
  • the processing result (the amount and polarity of ions) of the microcomputer / DSP 15 is displayed on the monitor 16.
  • the monitor display As the monitor display, the number of LEDs, the luminance, or the digital value is changed to display the ion amount. Further, based on the detection result of the ion generation amount, a warning can be given when the ion generation amount is not sufficient.
  • FIG. 8 shows an example of the output voltage (before AD conversion) of the amplifier 13 when negative ions are detected. If no ions are generated, the voltage is in the vicinity of the reference voltage. When the generation of ions starts, the voltage changes according to the polarity and amount of ions (in the example shown, negative ions are detected and the reference voltage is negative). Then, the polarity and amount of ions can be measured from the change direction and value.
  • the component surface 8b of the sensor substrate 8 is provided with a resistor (chip resistor) 10 that generates heat when energized.
  • the two terminals of the resistor 10 are basically connected to a power source (for example, 5V) at one terminal and to a ground (for example, 0V) at the other terminal.
  • a voltage having a necessary potential difference generated by a transistor or the like from a power source may be applied to the two terminals of the resistor 10.
  • the heat generated by energizing the resistor 10 is transmitted to the substrate 8 and raises the temperature of the measuring unit 11 mounted on the same substrate 8.
  • At least one resistor 10 for heating (preferably near the resistor 12) is installed on the component surface 8b. If a desired temperature rise is obtained, the resistance 10 may be one, or may be installed at a plurality of locations to realize a desired temperature rise. In addition, when the resistance 10 for heating is installed in the current collection surface 8a, since there exists a possibility that the ion which should be collected by the collection electrode 9 with which the current collection surface 8a was equipped may flow into the electrode part of the resistance 10, resistance Although 10 is installed on the component surface 8b, the resistor 10 may be installed on the current collecting surface 8a.
  • FIG. 9 is a chart showing the effect of reducing the relative humidity due to the temperature rise.
  • the relative humidity when the temperature is increased by 5 ° C., 10 ° C., 15 ° C., and 20 ° C. is shown for each value of the initial temperature and the relative humidity. For example, when the initial temperature and the relative humidity are 10 ° C./100%, the relative humidity becomes about 53% when the temperature rises by 10 ° C., and the relative humidity becomes 30% when the temperature rises by 20 ° C.
  • a humidity sensor is provided to measure the humidity, and when the relative humidity is 70% or more, a process for correcting the measured ion quantity is performed to obtain the ion quantity, or the correction process is not performed.
  • the relative humidity is 70% or more
  • a process for correcting the measured ion quantity is performed to obtain the ion quantity, or the correction process is not performed.
  • the progress of deterioration of other mounted parts is predicted due to the temperature rise of the sensor substrate 8. For example, if the temperature rises to 10 ° C., the life of the component may deteriorate to about 1 ⁇ 2, and if the temperature rises to 20 ° C., it may deteriorate to about 1 ⁇ 4. Therefore, it is necessary to select a part in consideration of the part life due to temperature rise.
  • the resistance value of the resistor 10 is determined so as to satisfy the electric power necessary for increasing the temperature of the sensor substrate 8 (for example, 10 ° C.) as described above.
  • the physical property values of the substrate 8 in the case of a glass / epoxy substrate, specific gravity (2 [g / cm 3 ]) and specific heat (0.42 [cal / g ° C.]) are used in the calculation.
  • the amount of heat for raising the surface of the 2 cm ⁇ 2 cm glass / epoxy substrate 0.01 cm by 10 ° C. is (2 ⁇ 2 ⁇ 0.01) [cm 3 ] ⁇ 2 [g / cm 3 ] ⁇ 0.42 [cal / g ⁇ ° C.] ⁇ 10 [° C.
  • the temperature rise characteristics may change due to the ratio of the metal pattern on the board, component placement conditions, heat dissipation to the air due to the wind, etc., and correction is necessary according to the actual conditions. it is.
  • the temperature increase range of the sensor substrate 8 is increased by 5 ° C. from 5 ° C. to 25 ° C.
  • FIG. 10A is a plan view of the component surface 8b
  • FIG. 10B shows that at least one portion of the resistance pattern 20 for heat generation is formed on the sensor substrate 8 which is the current collecting surface 8a.
  • the resistance pattern 20 is preferably installed on the component surface 8b, but may be installed on the current collecting surface 8a. When a constant current is passed through the resistance pattern 20, the resistance pattern 20 generates heat, and the temperature of the sensor substrate 8 is increased by heat conduction.
  • FIG. 11 is an enlarged cross-sectional view of a part of an air conditioner equipped with an ion detector according to Embodiment 3 of the present invention.
  • a heating resistor 21 is installed not at the sensor substrate 8 but at a position facing the substrate surface of the sensor substrate 8 with a gap. There may be at least one resistor 21 or a plurality of resistors 21 as shown in the figure.
  • the support member that supports the resistor 21 is omitted. By flowing a constant current through the resistor 21, the resistor 21 generates heat, and the temperature of the sensor substrate 8 is raised by radiant heat.
  • FIG. 12 is an enlarged cross-sectional view of a part of an air conditioner equipped with an ion detector according to Embodiment 4 of the present invention.
  • a single heater 22 is installed not at the sensor substrate 8 but at a position facing the substrate surface of the sensor substrate 8 with a gap. There may be at least one heater 22 or a plurality of heaters 22 as shown in the figure.
  • a support member that supports the heater 22 is omitted. The heater 22 generates heat, and the temperature of the sensor substrate 8 is increased by radiant heat.
  • FIG. 13 is an enlarged cross-sectional view of a part of an air conditioner including an ion detector according to Embodiment 5 of the present invention
  • FIG. 14 is a block diagram of a heat generation control configuration of the ion detector according to Embodiment 5 of the present invention. it is a diagram.
  • Two thermistors (temperature sensors) 23a and 23b are used, and one thermistor 23a is placed in contact with the sensor substrate 8 or separated from the sensor substrate 8 with a small gap to detect the temperature of the sensor substrate 8.
  • the other one thermistor 23b is installed in the ventilation path 3 away from the sensor board 8 or outside the ventilation path 3 (for example, at the front side of the front wall 3a) to detect the temperature around the sensor board 8.
  • two resistors 10 are provided.
  • a heat generation control unit 24 composed of a microcomputer or the like is provided. Detection signals of the thermistors 23 a and 23 b are input to the heat generation control unit 24, and a current drive signal for the resistor 10 is output from the heat generation control unit 24.
  • the temperature rise of the sensor substrate 8 is detected from the difference in temperature detected by the two thermistors 23a and 23b.
  • the resistor 10 is driven at a constant current, and the temperature rise is 5 ° C.
  • the current value for driving the resistor 10 is increased to increase the energizing power, and when the temperature rise exceeds 25 ° C., the current value for driving the resistor 10 is decreased to decrease the energizing power, or the resistance
  • the current value for driving 10 is set to zero, and energization control is performed so that the temperature rises appropriately.
  • the voltage value to the resistor 10 may be controlled, or the energization time may be controlled.
  • this energization control can function as a safety device and stop energization when an abnormal temperature rise of a specified value or more is observed due to a component defect or the like.
  • the fifth embodiment can be applied to the second to fourth embodiments.
  • the energization of the resistance pattern 20 is controlled based on the detection results of the two thermistors 23a and 23b.
  • the resistor 21 is energized and controlled based on the detection results of the two thermistors 23a and 23b.
  • the heater 22 is controlled to generate heat based on the detection results of the two thermistors 23a and 23b.
  • FIG. 15 is an enlarged cross-sectional view of a part of an air conditioner including an ion detector according to Embodiment 6 of the present invention
  • FIG. 16 is a block diagram of a heat generation control configuration of the ion detector according to Embodiment 6 of the present invention. it is a diagram.
  • a humidity sensor 25 is installed on the rear wall 3b that faces the ion generator 6 across the ventilation path 3.
  • a detection signal of the humidity sensor 25 is input to the heat generation control unit 24, and a current drive signal for the resistor 10 is output from the heat generation control unit 24.
  • the installation location of the humidity sensor 25 may be any location as long as the humidity of the air flowing in the ventilation path 3 can be detected (for example, in the vicinity of the suction port 2).
  • the humidity sensor 25 detects the relative humidity in the ventilation path 3 outside the ion detector 7 and controls the current flowing through the resistor 10 according to the output of the humidity sensor 25.
  • the relative humidity is 60% or less
  • the output of the measurement unit 11 is hardly affected by the humidity. Therefore, in this embodiment, for example, when the relative humidity is 60% or less, no current flows through the resistor 10, and when the relative humidity is greater than 60%, a constant current flows through the resistor 10. Accordingly, it is possible to prevent unnecessary power consumption without flowing a current through the resistor 10 under a high humidity condition without flowing a current through the resistor 10 under a low humidity condition.
  • the sixth embodiment can also be applied to the second to fourth embodiments.
  • the energization of the resistance pattern 20 is controlled based on the detection result of the humidity sensor 25.
  • the energization of the resistor 21 is controlled based on the detection result of the humidity sensor 25.
  • the heater 22 is controlled to generate heat based on the detection result of the humidity sensor 25.
  • an air purifier, an air conditioner, a humidifier, a dehumidifier, a warm air fan, a fan, a vacuum cleaner, and a medical substance generator (ion generator) ) And the like can be realized. Briefly, air is cleaned by a filter not shown in the air cleaner, moisture is added to the air from a humidifier mechanism not shown in the humidifier, and the dehumidifier mechanism not shown in the dehumidifier is used to remove air from the air. Water is removed and the air is heated by a heater (not shown) in the hot air machine to perform air treatment for each purpose, and then the treated air is discharged from the outlet 4 together with the ions generated inside. Will be released.
  • the ion detectors according to Embodiments 1 to 6 above and the monitor that displays the amount of ions the amount and polarity of ions can be detected, and the user can know the current amount of ions generated by the monitor. Ion measuring instrument that can be realized.
  • the ion detector that measures the amount of ions in the atmosphere, the monitor that changes the display according to the output of the ion detector, the air conditioner equipped with the ion detector and the monitor, the ion
  • the ion detector is provided with a means for raising the temperature, thereby reducing the amount of moisture in the air, and lowering the relative humidity due to the temperature rise, and the ion detector under high humidity conditions. It becomes possible to avoid malfunction. Further, it is possible to eliminate the correction process using the humidity sensor value and the use of the humidity sensor as in the past.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Other Investigation Or Analysis Of Materials By Electrical Means (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

Provided is an ion detection device that is able to use a simple means to avoid malfunctioning under high humidity conditions. A collection electrode (9) that collects ions from the air is provided to a surface (8a) of a substrate (8), a measurement unit (11) that measures the electric potential of the collection electrode (9) is provided to another surface (8b) of the substrate (8) and a resistor (10) (heater) that generates heat using the passage of an electric current is mounted on the other surface (8b) of the substrate (8) to increase the temperature of the measurement unit (11). Under high humidity environmental conditions, if the charge due to the ions accumulated by the collecting electrode (9) passes through high current-voltage conversion resistance provided to the measuring unit (11) and the electric potential of the collecting electrode (9) is measured, by increasing the temperature of the measurement unit (11), a layer of water that occurs on the surface of the current-voltage conversion resistor evaporates, the relative humidity falls and the occurrence of a layer of water on the surface of the resistor is inhibited, so leak current can be minimised, a fall in resistance value can be curbed and an accurate ion content can be calculated on the basis of the electric potential of the collection electrode (9).

Description

イオン検出装置、空調機器及びイオン計測器Ion detection device, air conditioner and ion measuring instrument
 本発明は、空気中のイオン量を検出するイオン検出装置、並びに該イオン検出装置を搭載した空調機器及びイオン計測器に関する。 The present invention relates to an ion detector that detects the amount of ions in the air, and an air conditioner and an ion measuring instrument equipped with the ion detector.
 近年、健康志向の高まりからウイルス除去対策、花粉等のアレルギー物資対策、カビ菌対策として、イオンを発生する空調機器が各種商品化されている。また人体に悪影響が無い場合には、放出されるイオン量が多いほど効果効能が高いとされている。しかし、使用者は、イオンの脱臭効果に関しては直接感じることができても、放出されているイオン自体が見えないため、ウイルス不活性化やカビ菌成長の抑制やアレルギー物資の分解除去に関してはメーカーが発表している学術的な実験結果等を信じるしかなく、イオンを発生する空調機器等の効果が実感し難い。 In recent years, air conditioning equipment that generates ions has been commercialized as a countermeasure against virus removal, allergy supplies such as pollen, and mold fungus countermeasures due to the growing health consciousness. When there is no adverse effect on the human body, the greater the amount of ions released, the higher the effectiveness. However, even though the user can directly feel the deodorizing effect of the ions, the released ions themselves cannot be seen. Therefore, the manufacturer is concerned with virus inactivation, inhibition of mold growth, and decomposition and removal of allergens. Can only believe in the results of academic experiments published by, and it is difficult to realize the effects of air-conditioning equipment that generates ions.
 そこで、イオン発生装置を備えた空調機器では、使用者に安心感を与えるために、イオン検出装置で計測したイオン量(イオン数やイオン濃度)をモニター等に表示している。具体的には、イオン発生装置で発生した正負両イオン(又は負イオン)は集電部(捕集電極)で電荷として集められ、集めた電荷を抵抗に流して電流電圧変換する。電流電圧変換後の電圧値は小さいので増幅器で増幅してからAD変換器に入力し、AD変換器でデジタル化された値をマイコンやDSPで処理してイオン量を算出し、結果をモニター等に表示する。イオン検出装置としては、例えば正負イオンを同時に計測するもの(特許文献1参照)が公知である。モニターの表示方法としては、数値を表示するもの(特許文献2参照)やイオン濃度に対応する図案や風景を表す画像を表示するもの(特許文献3参照)が公知である。 Therefore, in an air conditioner equipped with an ion generator, the amount of ions (number of ions and ion concentration) measured by the ion detector is displayed on a monitor or the like to give the user a sense of security. Specifically, both positive and negative ions (or negative ions) generated by the ion generator are collected as electric charges by a current collector (collecting electrode), and the collected electric charges are passed through a resistor for current-voltage conversion. Since the voltage value after current-voltage conversion is small, it is amplified by an amplifier and then input to an AD converter. The value digitized by the AD converter is processed by a microcomputer or DSP to calculate the amount of ions, and the result is monitored. To display. As an ion detector, for example, a device that simultaneously measures positive and negative ions (see Patent Document 1) is known. As a display method of the monitor, a method for displaying numerical values (see Patent Document 2) and a method for displaying an image representing a design or landscape corresponding to the ion concentration (see Patent Document 3) are known.
 集電部で集めた電荷による電流は非常に小さく、例えばイオン濃度が100万個/cm3を超えるような場合でも、電流値としてはpA(ピコアンペア)~nA(ナノアンペア)程度であり、この電流値をAD変換器の入力に適する電圧に変換するための抵抗としては、数ギガ~数十ギガオームの高い抵抗値が必要となる。 For example, even when the ion concentration exceeds 1 million ions / cm 3 , the current value is about pA (picoampere) to nA (nanoampere). As a resistance for converting the current value into a voltage suitable for the input of the AD converter, a high resistance value of several giga to several tens of giga ohm is required.
特開2003-194777号公報JP 2003-194777 A 特開2003-336872号公報JP 2003-336872 A 特開2006-232018号公報JP 2006-233201 A
 しかし、一般に抵抗は相対湿度が高くなると(特に70%以上)、表面に水の薄い層ができ、表面を伝わってリーク(漏れ)電流が流れ、抵抗値が低下する傾向にある。従って、正確なイオン量を求めるためには、予め準備した湿度とイオン量との相関に基づき、計測した電圧値に対応するイオン量を湿度によって補正する手段が考えられるが、この場合は、追加部品として湿度センサーを設置する必要がある。
 また、抵抗値の低下が上記補正可能範囲を超えるような高湿度の環境では、増幅器の入出力電圧が著しく低下し、AD変換器への入力として十分な電圧が得られないという問題があり、さらに、湿度環境が変化する場合には、同じイオン量を計測していても、湿度環境により計測値が変動し、正確なイオン量を測定できないという問題もあった。
However, in general, when the relative humidity becomes high (especially 70% or more), a thin layer of water is formed on the surface, and a leak (leakage) current flows along the surface and the resistance value tends to decrease. Therefore, in order to obtain an accurate ion amount, a means for correcting the ion amount corresponding to the measured voltage value by the humidity based on the correlation between the humidity prepared in advance and the ion amount can be considered. It is necessary to install a humidity sensor as a part.
Further, in a high humidity environment where the decrease in resistance value exceeds the correctable range, there is a problem that the input / output voltage of the amplifier is remarkably reduced, and a sufficient voltage cannot be obtained as an input to the AD converter. Further, when the humidity environment changes, there is a problem that even if the same ion amount is measured, the measured value varies depending on the humidity environment, and the accurate ion amount cannot be measured.
 本発明は、上述したような事情に鑑みてなされたものであり、高湿度条件での動作不良を簡易な手段により回避することができるイオン検出装置、並びに該イオン検出装置を搭載した空調機器及びイオン計測器を提供することを目的とする。 The present invention has been made in view of the above-described circumstances, and an ion detection device capable of avoiding malfunctions under high humidity conditions by simple means, an air conditioner equipped with the ion detection device, and An object is to provide an ion measuring instrument.
 本発明に係るイオン検出装置は、空気中のイオンを捕集する捕集電極と、該捕集電極の電位を計測する計測部とを備えたイオン検出装置において、前記計測部の温度を上昇させる温度上昇手段を備えていることを特徴とする。 An ion detection apparatus according to the present invention includes a collection electrode that collects ions in the air, and a measurement unit that measures a potential of the collection electrode, and increases the temperature of the measurement unit. A temperature raising means is provided.
 本発明においては、空気中のイオンを捕集する捕集電極の電位を計測する計測部の温度を上昇させる。その結果、高湿度の環境条件下で、捕集電極が集めたイオンによる電荷を計測部に設けた抵抗に流して捕集電極の電位を計測する場合に、抵抗の表面に生成される水の層が温度上昇のために蒸発し、温度上昇による相対湿度の低下のために抵抗の表面に水の層が生成され難くなるので、リーク(漏れ)電流が減少して抵抗値の低下が抑制され、捕集電極の電位に基づき正確なイオン量を求めることが可能となる。 In the present invention, the temperature of the measuring unit that measures the potential of the collecting electrode that collects ions in the air is raised. As a result, when the electric potential of the collecting electrode is measured by flowing the charge due to the ions collected by the collecting electrode to the resistance provided in the measuring section under high humidity environmental conditions, the water generated on the surface of the resistance Since the layer evaporates due to the temperature rise, and the relative humidity decreases due to the temperature rise, it becomes difficult to generate a water layer on the surface of the resistor, so the leakage current is reduced and the resistance drop is suppressed. It is possible to obtain an accurate ion amount based on the potential of the collecting electrode.
 本発明に係るイオン検出装置は、前記計測部は基板に設けてあり、前記温度上昇手段は、前記基板に設けた発熱体であることを特徴とする。
 本発明においては、計測部と発熱体とが同じ基板に設けてあるので、発熱体を発熱させると、発熱体で発生した熱が基板に伝わり、基板から計測部に伝導され、計測部の温度を上昇させる。
The ion detector according to the present invention is characterized in that the measurement unit is provided on a substrate, and the temperature raising means is a heating element provided on the substrate.
In the present invention, since the measurement unit and the heating element are provided on the same substrate, when the heating element is heated, the heat generated in the heating element is transmitted to the substrate and is conducted from the substrate to the measurement unit, and the temperature of the measurement unit raising the.
 本発明に係るイオン検出装置は、前記発熱体は、前記基板に設置され、通電により発熱する抵抗であることを特徴とする。
 本発明においては、基板に設置された抵抗に通電して発熱させると、抵抗で発生した熱が基板に伝わり、基板から計測部に伝導される。
In the ion detector according to the present invention, the heating element is a resistor installed on the substrate and generating heat when energized.
In the present invention, when a resistor installed on the substrate is energized to generate heat, the heat generated by the resistor is transmitted to the substrate and is conducted from the substrate to the measurement unit.
 本発明に係るイオン検出装置は、前記発熱体は、前記基板の表面に形成され、通電により発熱する抵抗パターンであることを特徴とする。
 本発明においては、基板の表面に形成された抵抗パターンに通電して発熱させると、抵抗パターンで発生した熱が基板に伝わり、基板から計測部に伝導される。
The ion detector according to the present invention is characterized in that the heating element is a resistance pattern formed on the surface of the substrate and generating heat when energized.
In the present invention, when the resistor pattern formed on the surface of the substrate is energized to generate heat, the heat generated in the resistor pattern is transmitted to the substrate and is conducted from the substrate to the measuring unit.
 本発明に係るイオン検出装置は、前記基板の一面に前記捕集電極を設け、他面に前記計測部と発熱体とが設けてあることを特徴とする。
 本発明においては、捕集電極を設けた基板面とは反対の面に計測部と発熱体とが設けてあるため、捕集電極で空気中のイオンを捕集する際に計測部と発熱体とが捕集の障害にならず、しかも同じ基板面に設けてある計測部に対して発熱体の熱を効率よく伝導することができる。
The ion detector according to the present invention is characterized in that the collecting electrode is provided on one surface of the substrate, and the measuring section and the heating element are provided on the other surface.
In the present invention, since the measurement unit and the heating element are provided on the surface opposite to the substrate surface provided with the collection electrode, the measurement unit and the heating element are used when collecting ions in the air with the collection electrode. Therefore, the heat of the heating element can be efficiently conducted to the measurement unit provided on the same substrate surface.
 本発明に係るイオン検出装置は、前記計測部は基板に設けてあり、前記温度上昇手段は、前記基板から離隔した位置に設置された発熱体であることを特徴とする。
 本発明においては、基板から離隔した位置に設置された発熱体に通電して発熱させると、発熱体で発生した輻射熱を受けて計測部の温度が上昇する。
The ion detector according to the present invention is characterized in that the measurement unit is provided on a substrate, and the temperature raising means is a heating element installed at a position separated from the substrate.
In the present invention, when a heating element installed at a position separated from the substrate is energized to generate heat, the temperature of the measurement unit rises due to the radiant heat generated by the heating element.
 本発明に係るイオン検出装置は、前記計測部の温度を検出する温度検出手段と、該温度検出手段の検出結果に基づいて前記発熱体の発熱制御を行う制御手段とを備えていることを特徴とする。
 本発明においては、計測部の温度の検出結果に基づいて、発熱体の発熱制御を適切に行うことができる。
An ion detection apparatus according to the present invention includes a temperature detection unit that detects a temperature of the measurement unit, and a control unit that performs heat generation control of the heating element based on a detection result of the temperature detection unit. to.
In the present invention, the heat generation control of the heating element can be appropriately performed based on the temperature detection result of the measurement unit.
 本発明に係るイオン検出装置は、前記計測部の外部の温度を検出する外部温度検出手段を備え、前記制御手段は、前記温度検出手段の検出値と外部温度検出手段の検出値との差が小さい場合に前記発熱体を発熱させ、前記温度検出手段の検出値と外部温度検出手段の検出値との差が大きい場合に前記発熱体の発熱を停止させることを特徴とする。
 本発明においては、計測部の温度と外部の温度との差が小さい場合は、計測部が十分に温度上昇していないので発熱体を発熱させ、計測部の温度と外部の温度との差が大きい場合は、計測部が十分に温度上昇しているので、発熱体の発熱を停止して不要な発熱をさせない。
The ion detection apparatus according to the present invention includes an external temperature detection unit that detects a temperature outside the measurement unit, and the control unit detects a difference between a detection value of the temperature detection unit and a detection value of the external temperature detection unit. When the temperature is small, the heating element is caused to generate heat, and when the difference between the detection value of the temperature detection means and the detection value of the external temperature detection means is large, the heat generation of the heating element is stopped.
In the present invention, when the difference between the temperature of the measurement unit and the external temperature is small, the measurement unit is not sufficiently heated, so the heating element is heated, and the difference between the temperature of the measurement unit and the external temperature is If it is larger, the temperature of the measuring part has risen sufficiently, so that the heat generation of the heating element is stopped and unnecessary heat generation is prevented.
 本発明に係るイオン検出装置は、前記制御手段は、前記温度検出手段の検出値と外部温度検出手段の検出値との差が5℃から25℃の範囲になるように前記発熱体の発熱制御を行うことを特徴とする。
 本発明においては、計測部の温度と外部の温度との差、即ち温度上昇が5℃から25℃の範囲に維持されるように発熱体の発熱制御を行うことにより、計測部の周囲の相対湿度が適正なイオン検出動作をするのに好ましい70%以下の相対湿度環境が実現できる。
In the ion detection apparatus according to the present invention, the control means controls the heat generation of the heating element so that the difference between the detection value of the temperature detection means and the detection value of the external temperature detection means is in the range of 5 ° C to 25 ° C. and performing.
In the present invention, by controlling the heat generation of the heating element so that the difference between the temperature of the measurement unit and the external temperature, that is, the temperature rise is maintained in the range of 5 ° C to 25 ° C, A relative humidity environment of 70% or less, which is preferable for performing an ion detection operation with an appropriate humidity, can be realized.
 本発明に係るイオン検出装置は、前記計測部の周囲の湿度を検出する湿度検出手段と、該湿度検出手段の検出結果に基づいて前記発熱体の発熱制御を行う制御手段とを備えていることを特徴とする。
 本発明においては、計測部の周囲の湿度の検出結果に基づいて、発熱体の発熱制御を適切に行うことができる。
The ion detection apparatus according to the present invention includes a humidity detection unit that detects humidity around the measurement unit, and a control unit that performs heat generation control of the heating element based on a detection result of the humidity detection unit. the features.
In the present invention, the heat generation control of the heating element can be appropriately performed based on the detection result of the humidity around the measurement unit.
 本発明に係るイオン検出装置は、前記制御手段は、前記湿度検出手段の検出値が設定値よりも大きい場合に前記発熱体を発熱させ、前記湿度検出手段の検出値が設定値よりも小さい場合に前記発熱体の発熱を停止させることを特徴とする。
 本発明においては、計測部の周囲の湿度が設定値よりも大きい高湿度条件では、計測部に設けた抵抗の表面に生じた水の層を蒸発させ、また計測部の周囲の湿度を低下させて抵抗の表面に水の層を生成させ難くするために発熱体を発熱させ、計測部の周囲の湿度が設定値よりも小さい低湿度条件では、発熱体の発熱を停止して不要な発熱をさせない。
In the ion detection apparatus according to the present invention, the control unit causes the heating element to generate heat when the detection value of the humidity detection unit is larger than a set value, and the detection value of the humidity detection unit is smaller than the set value. The heat generation of the heating element is stopped.
In the present invention, under a high humidity condition where the humidity around the measurement unit is larger than the set value, the water layer generated on the surface of the resistor provided in the measurement unit is evaporated, and the humidity around the measurement unit is reduced. In order to make it difficult to form a water layer on the surface of the resistor, the heating element is heated, and under low humidity conditions where the humidity around the measurement unit is lower than the set value, the heating element stops heating and generates unnecessary heating. let not.
 本発明に係る空調機器は、イオン発生装置及び前記イオン検出装置を搭載したことを特徴とする。
 本発明においては、イオン発生装置で発生したイオンをイオン検出装置で検出することができる。
An air conditioner according to the present invention includes an ion generator and the ion detector.
In the present invention, ions generated by the ion generator can be detected by the ion detector.
 本発明に係る空調機器は、前記イオン検出装置の検出結果を表示するイオン表示部を備えたことを特徴とする。
 本発明においては、イオン発生装置で発生したイオンの検出結果を表示するので、使用者がイオンの発生を確認することができる。
The air conditioner according to the present invention includes an ion display unit that displays a detection result of the ion detector.
In the present invention, since the detection result of the ions generated by the ion generator is displayed, the user can confirm the generation of ions.
 本発明に係るイオン計測器は、前記イオン検出装置を搭載し、該イオン検出装置の検出結果を表示するイオン表示部を備えたことを特徴とする。
 本発明においては、イオンの検出結果を表示するので、使用者が計測対象のイオンの状態を容易に確認することができる。
An ion measuring instrument according to the present invention includes the ion detection device, and includes an ion display unit that displays a detection result of the ion detection device.
In the present invention, since the detection result of ions is displayed, the user can easily confirm the state of ions to be measured.
 本発明によれば、計測部の温度を上昇させる温度上昇手段を備えることにより、高湿度条件での動作不良を簡易な手段により回避することができるイオン検出装置が提供される。特に、計測部を搭載した基板又は該基板から離隔した位置に、発熱体を設けることにより、温度上昇手段の好適な具体構成が得られる。 According to the present invention, there is provided an ion detector capable of avoiding a malfunction in a high humidity condition by a simple means by providing a temperature raising means for raising the temperature of the measuring section. In particular, a preferred specific configuration of the temperature raising means can be obtained by providing a heating element at a position where the measurement unit is mounted or at a position separated from the substrate.
 また、計測部の温度、又は計測部の温度と外部温度との差、あるいは、計測部の周囲の湿度の各検出結果に基づき、発熱体の発熱制御を行うことにより、計測部の温度を適切に上昇させることができるイオン検出装置が提供される。 In addition, the temperature of the measuring unit is adjusted appropriately by performing heat generation control of the heating element based on the temperature of the measuring unit, the difference between the temperature of the measuring unit and the external temperature, or each detection result of the humidity around the measuring unit. There is provided an ion detection device that can be raised to a low level.
 本発明によれば、イオンの発生を確実に検出しながら、空気と一緒に適切に吹き出すことができる空調機器が提供される。 According to the present invention, there is provided an air conditioner that can be appropriately blown out together with air while reliably detecting the generation of ions.
 本発明によれば、使用者が計測対象のイオンの状態を容易に確認することができるイオン計測器が提供される。 According to the present invention, an ion measuring instrument is provided that allows a user to easily check the state of ions to be measured.
本発明の実施の形態1に係るイオン検出装置を備えた空調機器を模式的に示す正面図である。It is a front view which shows typically the air-conditioning equipment provided with the ion detector which concerns on Embodiment 1 of this invention. 図1のII-II線における側面断面図である。FIG. 2 is a side sectional view taken along line II-II in FIG. 1. 図1のIII-III線における平面断面図である。FIG. 3 is a plan sectional view taken along line III-III in FIG. 1. 図2の一部を拡大した図である。It is the figure which expanded a part of FIG. 本発明の実施の形態1に係るイオン検出装置に設けた回路基板の図である。It is a figure of the circuit board provided in the ion detector which concerns on Embodiment 1 of this invention. 本発明の実施の形態1に係るイオン検出装置に設けた回路基板の図である。It is a figure of the circuit board provided in the ion detector which concerns on Embodiment 1 of this invention. イオン検出装置の回路構成の概要を示すブロック図である。It is a block diagram which shows the outline | summary of the circuit structure of an ion detector. イオン検出処理の概要を示すフローチャートである。It is a flowchart which shows the outline | summary of an ion detection process. イオン検出波形の一例を示すグラフである。It is a graph which shows an example of an ion detection waveform. 温度上昇による相対湿度の低減効果を示す図表である。It is a graph which shows the reduction effect of the relative humidity by a temperature rise. 本発明の実施の形態2に係るイオン検出装置に設けた回路基板の図である。It is a figure of the circuit board provided in the ion detector which concerns on Embodiment 2 of this invention. 本発明の実施の形態2に係るイオン検出装置に設けた回路基板の図である。It is a figure of the circuit board provided in the ion detector which concerns on Embodiment 2 of this invention. 本発明の実施の形態3に係るイオン検出装置を備えた空調機器の一部を拡大した断面図である。It is sectional drawing to which a part of air-conditioning equipment provided with the ion detector which concerns on Embodiment 3 of this invention was expanded. 本発明の実施の形態4に係るイオン検出装置を備えた空調機器の一部を拡大した断面図である。It is sectional drawing to which a part of air-conditioning equipment provided with the ion detector which concerns on Embodiment 4 of this invention was expanded. 本発明の実施の形態5に係るイオン検出装置を備えた空調機器の一部を拡大した断面図である。It is sectional drawing to which a part of air-conditioning equipment provided with the ion detector which concerns on Embodiment 5 of this invention was expanded. 本発明の実施の形態5に係るイオン検出装置の発熱制御構成のブロック図である。It is a block diagram of the heat generation | occurrence | production control structure of the ion detector which concerns on Embodiment 5 of this invention. 本発明の実施の形態6に係るイオン検出装置を備えた空調機器の一部を拡大した断面図である。It is sectional drawing to which a part of air-conditioning equipment provided with the ion detector which concerns on Embodiment 6 of this invention was expanded. 本発明の実施の形態6に係るイオン検出装置の発熱制御構成のブロック図である。It is a block diagram of the heat_generation | fever control structure of the ion detector which concerns on Embodiment 6 of this invention.
 以下、本発明に係るイオン検出装置及び該イオン検出装置を備えた空調機器の実施形態について図面に基づいて説明する。尚、以下説明する空調機器の構造は一例を示すものであり、本発明は図示の構造に限定されるものではない。 Hereinafter, embodiments of an ion detector according to the present invention and an air conditioner equipped with the ion detector will be described with reference to the drawings. In addition, the structure of the air-conditioning apparatus demonstrated below shows an example, and this invention is not limited to the structure of illustration.
(実施の形態1)
 図1は本発明の実施の形態1に係るイオン検出装置を備えた空調機器を模式的に示す正面図、図2は図1のII-II線における側面断面図、図3は図1のIII-III線における平面断面図、図4は図2の一部を拡大した図、図5A及び図5Bは本発明の実施の形態1に係るイオン検出装置に設けた回路基板の図、図6はイオン検出装置の回路構成の概要を示すブロック図である。
(Embodiment 1)
FIG. 1 is a front view schematically showing an air conditioner equipped with an ion detector according to Embodiment 1 of the present invention, FIG. 2 is a side sectional view taken along line II-II in FIG. 1, and FIG. 3 is III in FIG. FIG. 4 is an enlarged view of a part of FIG. 2, FIGS. 5A and 5B are diagrams of a circuit board provided in the ion detector according to Embodiment 1 of the present invention, and FIG. It is a block diagram which shows the outline | summary of the circuit structure of an ion detector.
 空調機器は縦長の直方体状のハウジング1を備え、ハウジング1は前面ハウジング1a、後面ハウジング1b、左右の側面ハウジング1c、底面ハウジング1d及び天面ハウジング1eを有する。後面ハウジング1bの下部に外部の空気を吸い込む吸込口2を設け、前面ハウジング1aの上部に外部へ空気を吹き出す吹出口4を設けている。ハウジング1内には、吸込口2から吹出口4に至る通風路3が形成されている。通風路3は前後に間隔を隔てて平行配置された前壁3a及び後壁3bと、左右の側壁3f,3fとで囲まれた長方形の断面を有する。前壁3aの上端は前側に屈曲して吹出口4の下縁部3eとなり、後壁3bの上端は前側に屈曲して吹出口4の上縁部3cとなり、後壁3bの下端は後側に屈曲して吸込口2の上縁部3dとなる。通風路3内の下部に、吸込口2から空気を吸い込み、上向きの風の流れを発生させるファン5が設置してある。 The air conditioner includes a vertically long rectangular parallelepiped housing 1, and the housing 1 includes a front housing 1a, a rear housing 1b, left and right side housings 1c, a bottom housing 1d, and a top housing 1e. A suction port 2 for sucking outside air is provided in the lower part of the rear housing 1b, and a blower outlet 4 for blowing air to the outside is provided in the upper part of the front housing 1a. A ventilation path 3 extending from the suction port 2 to the blowout port 4 is formed in the housing 1. The ventilation path 3 has a rectangular cross section surrounded by a front wall 3a and a rear wall 3b arranged in parallel with a space in the front and rear direction, and left and right side walls 3f and 3f. The upper end of the front wall 3a is bent forward to become the lower edge 3e of the outlet 4, the upper end of the rear wall 3b is bent forward to become the upper edge 3c of the outlet 4, and the lower end of the rear wall 3b is the rear side To be the upper edge 3d of the suction port 2. A fan 5 that sucks air from the suction port 2 and generates an upward wind flow is installed in the lower part of the ventilation path 3.
 前壁3aには、ファン5より上側にイオン発生部6を設け、イオン発生部6より上側にイオン検出部7を設けてある。尚、ファン5を通風路3内の上下中間部又は上部に設け、イオン発生部6及びイオン検出部7をファン5より下側に設置してもよい。イオン発生部6は、例えば環状電極とその中央に位置する針電極との間に高電圧を印加して正負イオン又は負イオンを発生させ、通風路3内に供給する(図4には負イオンを発生した場合を示す)。イオン検出部7はイオン発生部6で発生し、空気と共に送風されてきたイオンを検出する。 The front wall 3 a is provided with an ion generator 6 above the fan 5 and an ion detector 7 above the ion generator 6. Note that the fan 5 may be provided at the upper or lower intermediate portion or the upper portion in the ventilation passage 3, and the ion generation unit 6 and the ion detection unit 7 may be installed below the fan 5. For example, the ion generator 6 generates positive and negative ions or negative ions by applying a high voltage between the annular electrode and the needle electrode located at the center thereof, and supplies the positive and negative ions to the ventilation path 3 (see FIG. 4 for negative ions). Is shown). The ion detection part 7 detects the ion which generate | occur | produced in the ion generation part 6, and was sent with air.
 イオン検出部7は前壁3aと平行に配置されたセンサー基板8を有する。尚、センサー基板8は前壁3aと平行でなくてもよい。センサー基板8は、通風路3側の集電面8aに集電部となる集電電極9を形成し、集電面8aの反対側の部品面8bに、集電電極9の電位を計測する計測部11が搭載されている。集電電極9は略長方形のパターンとして形成され、スルーホール9aによって部品面8bの電極9bに導通している。図5Aは部品面8bの平面図であり、図5Bは集電面8aである。計測部11では、電極9bが増幅器13の入力端子に接続されるとともに高抵抗値(ギガオーム程度)の抵抗12を通して接地されている。尚、集電電極9は必要な電荷を集めるための面積が確保できれば略長方形以外のパターンでもよい。図5A及び図5Bでは、計測部11について詳細な回路パターンや接続状態は省略している。 The ion detector 7 has a sensor substrate 8 arranged in parallel with the front wall 3a. The sensor substrate 8 may not be parallel to the front wall 3a. The sensor substrate 8 forms a current collecting electrode 9 serving as a current collecting portion on the current collecting surface 8a on the ventilation path 3 side, and measures the potential of the current collecting electrode 9 on the component surface 8b opposite to the current collecting surface 8a. A measuring unit 11 is mounted. The collecting electrode 9 is formed as a substantially rectangular pattern, and is electrically connected to the electrode 9b on the component surface 8b through the through hole 9a. 5A is a plan view of the component surface 8b, and FIG. 5B is a current collecting surface 8a. In the measurement unit 11, the electrode 9 b is connected to the input terminal of the amplifier 13 and grounded through a resistor 12 having a high resistance value (about gigaohm). The current collecting electrode 9 may have a pattern other than a substantially rectangular shape as long as an area for collecting necessary charges can be secured. 5A and 5B, detailed circuit patterns and connection states of the measuring unit 11 are omitted.
 増幅器13の出力は、センサー出力としてセンサー基板8とは別の基板(不図示)に設けたAD変換器14に入力し、AD変換器14の出力はマイコン/DSP15に入力している。マイコン/DSP15での処理結果を表示するモニター16が設けてある。尚、図示はしないが、AD変換器14やマイコン/DSP15を搭載した基板はハウジング1内に設置され、モニター16は前面ハウジング1aの前面側又は天面ハウジング1eの上面等に設け
てある。
The output of the amplifier 13 is input as a sensor output to an AD converter 14 provided on a substrate (not shown) different from the sensor substrate 8, and the output of the AD converter 14 is input to the microcomputer / DSP 15. A monitor 16 for displaying the processing result in the microcomputer / DSP 15 is provided. Although not shown, the board on which the AD converter 14 and the microcomputer / DSP 15 are mounted is installed in the housing 1, and the monitor 16 is provided on the front side of the front housing 1a or the upper surface of the top housing 1e.
 次に、イオンの検出動作について説明する。図7はイオン検出処理の概要を示すフローチャート、図8はイオン検出波形の一例を示すグラフである。
 イオン発生部6で発生した正負イオン(又は負イオン)が通風路3を流れる空気に付加されて上側に送られ、吹出口4から放出されるときに、イオン検出部7の集電電極9に当たると、集電電極9で電荷として集められる。集電電極9で集めた電荷を単位時間当たりに換算した電流が抵抗12に流れ(即ち電流変換され)、抵抗12に流れた電流が電圧変換された後、増幅器13に入力して増幅される。
Next, the ion detection operation will be described. FIG. 7 is a flowchart showing an outline of the ion detection process, and FIG. 8 is a graph showing an example of an ion detection waveform.
When positive and negative ions (or negative ions) generated in the ion generation unit 6 are added to the air flowing through the ventilation path 3 and sent to the upper side and discharged from the blowout port 4, they hit the current collecting electrode 9 of the ion detection unit 7. Then, it is collected as a charge by the current collecting electrode 9. A current obtained by converting the electric charge collected by the current collecting electrode 9 per unit time flows to the resistor 12 (that is, converted into a current), and the current flowing through the resistor 12 is converted into a voltage and then input to the amplifier 13 and amplified. .
 増幅器13の出力はAD変換器14でデジタル値に変換された後、マイコン/DSP15でデジタル処理され、イオンの量及び極性の検知が行われる。マイコン/DSP15の処理結果(イオンの量及び極性)はモニター16に表示される。モニター表示としては、LEDの数や輝度、あるいはデジタル値を変化させてイオン量を表示する。また、イオン発生量の検知結果に基づき、イオン発生量が十分でない時等の警告を行うこともできる。 The output of the amplifier 13 is converted to a digital value by the AD converter 14 and then digitally processed by the microcomputer / DSP 15 to detect the amount and polarity of ions. The processing result (the amount and polarity of ions) of the microcomputer / DSP 15 is displayed on the monitor 16. As the monitor display, the number of LEDs, the luminance, or the digital value is changed to display the ion amount. Further, based on the detection result of the ion generation amount, a warning can be given when the ion generation amount is not sufficient.
 図8には負イオンを検出したときの増幅器13の出力電圧(AD変換前)の例を示してある。イオンの発生が無ければ電圧は基準電圧付近にあり、イオンの発生が開始するとイオンの極性及び量に応じて(図の例では、負イオンを検出して基準電圧からマイナス方向に)電圧が変化し、その変化方向と値からイオンの極性と量を計測することができる。 FIG. 8 shows an example of the output voltage (before AD conversion) of the amplifier 13 when negative ions are detected. If no ions are generated, the voltage is in the vicinity of the reference voltage. When the generation of ions starts, the voltage changes according to the polarity and amount of ions (in the example shown, negative ions are detected and the reference voltage is negative). Then, the polarity and amount of ions can be measured from the change direction and value.
 センサー基板8の部品面8bには、通電により発熱する抵抗(チップ抵抗)10が設けてある。抵抗10の2端子には、図示していないが、基本的には一方の端子に電源(例えば5V)が接続され、他方の端子にグランド(例えば0V)が接続される。あるいは、抵抗10の2端子に電源からトランジスタ等で生成された必要な電位差の電圧を印加しても良い。抵抗10に通電して発生した熱は基板8に伝わり、同じ基板8に搭載されている計測部11の温度を上昇させる。 The component surface 8b of the sensor substrate 8 is provided with a resistor (chip resistor) 10 that generates heat when energized. Although not shown, the two terminals of the resistor 10 are basically connected to a power source (for example, 5V) at one terminal and to a ground (for example, 0V) at the other terminal. Alternatively, a voltage having a necessary potential difference generated by a transistor or the like from a power source may be applied to the two terminals of the resistor 10. The heat generated by energizing the resistor 10 is transmitted to the substrate 8 and raises the temperature of the measuring unit 11 mounted on the same substrate 8.
 発熱用の抵抗10は部品面8bに少なくとも1か所(好ましくは抵抗12付近)設置するのが好ましい。所望の温度上昇が得られれば抵抗10は1個でも構わないし、複数箇所に設置して所望の温度上昇を実現させるようにしてもよい。なお、集電面8aに加熱用の抵抗10を設置すると、集電面8aに備えた捕集電極9に捕集されるべきイオンが抵抗10の電極部分に流れ込んでしまう恐れがあるため、抵抗10は部品面8bに設置しているが、抵抗10を集電面8aに設置してもよい。 It is preferable that at least one resistor 10 for heating (preferably near the resistor 12) is installed on the component surface 8b. If a desired temperature rise is obtained, the resistance 10 may be one, or may be installed at a plurality of locations to realize a desired temperature rise. In addition, when the resistance 10 for heating is installed in the current collection surface 8a, since there exists a possibility that the ion which should be collected by the collection electrode 9 with which the current collection surface 8a was equipped may flow into the electrode part of the resistance 10, resistance Although 10 is installed on the component surface 8b, the resistor 10 may be installed on the current collecting surface 8a.
 次に、イオン検出部7の温度上昇による湿度低下の効果を説明する。図9は温度上昇による相対湿度の低減効果を示す図表である。初期温度と相対湿度のそれぞれの値に対し、温度が5℃、10℃、15℃、20℃それぞれ上昇した時の相対湿度が示してある。例えば初期温度と相対湿度が10℃/100%時に、温度が10℃上昇すると相対湿度は約53%となり、20℃上昇すると相対湿度は30%となる。初期時に100%の高湿度条件であっても温度を5℃~20℃程度強制的に上昇させることで相対湿度70%程度以下の最適動作条件にすることが可能となる。また本表からは、-10℃から30℃までの相対湿度100%の環境では、どの温度帯でも温度を10℃上昇させることにより60%以下の相対湿度となる。 Next, the effect of lowering the humidity due to the temperature rise of the ion detector 7 will be described. FIG. 9 is a chart showing the effect of reducing the relative humidity due to the temperature rise. The relative humidity when the temperature is increased by 5 ° C., 10 ° C., 15 ° C., and 20 ° C. is shown for each value of the initial temperature and the relative humidity. For example, when the initial temperature and the relative humidity are 10 ° C./100%, the relative humidity becomes about 53% when the temperature rises by 10 ° C., and the relative humidity becomes 30% when the temperature rises by 20 ° C. Even under high humidity conditions of 100% at the initial stage, it is possible to achieve optimum operating conditions with a relative humidity of about 70% or less by forcibly raising the temperature by about 5 ° C to 20 ° C. Further, according to this table, in an environment with a relative humidity of 100% from −10 ° C. to 30 ° C., a relative humidity of 60% or less is obtained by increasing the temperature by 10 ° C. in any temperature range.
 その結果、従来、湿度センサーを備えて湿度を計測し、相対湿度70%以上の場合は、計測したイオン量を補正する処理を行ってイオン量を求めるか、あるいは、補正処理を行なわず、「正確なイオン量を計測できない」との表示をすることが必要であったが、これらの処理や湿度センサーを用いること自体を不要にすることが可能となる。 As a result, conventionally, a humidity sensor is provided to measure the humidity, and when the relative humidity is 70% or more, a process for correcting the measured ion quantity is performed to obtain the ion quantity, or the correction process is not performed. Although it was necessary to display that “the amount of accurate ions cannot be measured”, it is possible to eliminate the need for these processes and the use of a humidity sensor.
 なお、センサー基板8の温度上昇により他の搭載部品の劣化等の進行が予測される。例えば10℃までの温度上昇であれば部品の寿命は1/2程度に、20℃までの温度上昇であれば1/4程度に劣化することもある。したがって、温度上昇による部品寿命を考慮した上で部品の選定等を行うことが必要となる。 In addition, the progress of deterioration of other mounted parts is predicted due to the temperature rise of the sensor substrate 8. For example, if the temperature rises to 10 ° C., the life of the component may deteriorate to about ½, and if the temperature rises to 20 ° C., it may deteriorate to about ¼. Therefore, it is necessary to select a part in consideration of the part life due to temperature rise.
 次に、抵抗10の抵抗値は、前述したようにセンサー基板8の温度を上昇(例えば10℃)させるために必要な電力を満たすように決定される。そのためには、基板8の物性値(ガラス・エポキシ基板の場合、比重(2[g/cm])と比熱(0.42[cal/g℃])が計算に用いられる。
 2cmx2cmのガラス・エポキシ基板の表面0.01cmを10℃上昇させるための熱量は、(2x2x0.01)[cm]x2[g/cm]x0.42[cal/g・℃]x10[℃]=0.336[cal]⇒1.4[Ws]となる。
 つまり、例えば0.1W、14秒間の通電で所望の特性が得られる。抵抗はこの定格電力を満たすように決定される。例えば、使用する抵抗の定格電力が0.1Wであり、印加する電源が5Vとすると、電力[W]=電圧[V])/抵抗[Ω]から、抵抗[Ω]=電圧[V])/電力[W]=5x5/0.1=250[Ω]と決定される。但し、実際は、基板上の金属パターンの比率、部品の配置条件、風が当たることによる空気中への放熱などで、温度上昇特性は変化すると考えられ、実際の条件に即して、修正が必要である。
Next, the resistance value of the resistor 10 is determined so as to satisfy the electric power necessary for increasing the temperature of the sensor substrate 8 (for example, 10 ° C.) as described above. For this purpose, the physical property values of the substrate 8 (in the case of a glass / epoxy substrate, specific gravity (2 [g / cm 3 ]) and specific heat (0.42 [cal / g ° C.]) are used in the calculation.
The amount of heat for raising the surface of the 2 cm × 2 cm glass / epoxy substrate 0.01 cm by 10 ° C. is (2 × 2 × 0.01) [cm 3 ] × 2 [g / cm 3 ] × 0.42 [cal / g · ° C.] × 10 [° C. ] = 0.336 [cal] => 1.4 [Ws].
That is, for example, desired characteristics can be obtained by energization for 14 seconds at 0.1 W. The resistance is determined so as to satisfy this rated power. For example, when the rated power of the resistor to be used is 0.1 W and the applied power source is 5 V, the resistance [Ω] = voltage [V] from power [W] = voltage [V]) 2 / resistance [Ω]. ) 2 / Power [W] = 5 × 5 / 0.1 = 250 [Ω] However, in reality, the temperature rise characteristics may change due to the ratio of the metal pattern on the board, component placement conditions, heat dissipation to the air due to the wind, etc., and correction is necessary according to the actual conditions. it is.
 上記の如く抵抗10に電流を流して、10℃~20℃程度センサー基板8の温度を上昇させると、イオン検出部7が動作するのに好ましい70%以下の相対湿度環境を実現することができる。実際には部品のばらつきを抑えて細かすぎる制御も実施した場合はコスト上昇につながることから、センサー基板8の温度上昇範囲は上下ともに5℃広げて5℃から25℃までとすることが好ましい。 As described above, when a current is passed through the resistor 10 to increase the temperature of the sensor substrate 8 by about 10 ° C. to 20 ° C., a relative humidity environment of 70% or less preferable for the operation of the ion detector 7 can be realized. . Actually, if too small control is performed while suppressing variations in components, the cost increases. Therefore, it is preferable that the temperature increase range of the sensor substrate 8 is increased by 5 ° C. from 5 ° C. to 25 ° C.
(実施の形態2)
 実施の形態2では、センサー基板8の温度上昇手段が実施の形態1と異なるが、他の構成は実施の形態1と同様である。図10A及び図10Bは本発明の実施の形態2に係るイオン検出装置に設けた回路基板の図である。図10Aは部品面8bの平面図であり、図10Bは集電面8aであるセンサー基板8に少なくとも1か所、発熱用の抵抗パターン20が形成してある。抵抗パターン20は部品面8bに設置するのが好ましいが、集電面8aに設置してもよい。抵抗パターン20に一定電流を流すことで抵抗パターン20が発熱し、熱伝導によりセンサー基板8の温度を上昇させる。
(Embodiment 2)
In the second embodiment, the temperature raising means of the sensor substrate 8 is different from that of the first embodiment, but other configurations are the same as those of the first embodiment. 10A and 10B are diagrams of a circuit board provided in the ion detector according to Embodiment 2 of the present invention. FIG. 10A is a plan view of the component surface 8b, and FIG. 10B shows that at least one portion of the resistance pattern 20 for heat generation is formed on the sensor substrate 8 which is the current collecting surface 8a. The resistance pattern 20 is preferably installed on the component surface 8b, but may be installed on the current collecting surface 8a. When a constant current is passed through the resistance pattern 20, the resistance pattern 20 generates heat, and the temperature of the sensor substrate 8 is increased by heat conduction.
(実施の形態3)
 実施の形態3では、センサー基板8の温度上昇手段が実施の形態1と異なるが、他の構成は実施の形態1と同様である。図11は本発明の実施の形態3に係るイオン検出装置を備えた空調機器の一部を拡大した断面図である。センサー基板8ではなく、センサー基板8の基板面と間隙をおいて対向した位置に発熱用の抵抗21を設置する。抵抗21は少なくとも1個か、図に示すように複数個設置しても構わない。尚、図11では抵抗21を支持する支持部材を省略している。抵抗21に一定電流を流すことで抵抗21が発熱し、輻射熱によりセンサー基板8の温度を上昇させる。
(Embodiment 3)
In the third embodiment, the temperature raising means of the sensor substrate 8 is different from that in the first embodiment, but other configurations are the same as those in the first embodiment. FIG. 11 is an enlarged cross-sectional view of a part of an air conditioner equipped with an ion detector according to Embodiment 3 of the present invention. A heating resistor 21 is installed not at the sensor substrate 8 but at a position facing the substrate surface of the sensor substrate 8 with a gap. There may be at least one resistor 21 or a plurality of resistors 21 as shown in the figure. In FIG. 11, the support member that supports the resistor 21 is omitted. By flowing a constant current through the resistor 21, the resistor 21 generates heat, and the temperature of the sensor substrate 8 is raised by radiant heat.
(実施の形態4)
 実施の形態4では、センサー基板8の温度上昇手段が実施の形態1と異なるが、他の構成は実施の形態1と同様である。図12は本発明の実施の形態4に係るイオン検出装置を備えた空調機器の一部を拡大した断面図である。センサー基板8ではなく、センサー基板8の基板面と間隙をおいて対向した位置に単体のヒーター22を設置する。ヒーター22は少なくとも1個か、図に示すように複数個設置しても構わない。尚、図12ではヒーター22を支持する支持部材を省略している。ヒーター22を発熱させ、輻射熱によりセンサー基板8の温度を上昇させる。
(Embodiment 4)
In the fourth embodiment, the temperature raising means of the sensor substrate 8 is different from that in the first embodiment, but other configurations are the same as those in the first embodiment. FIG. 12 is an enlarged cross-sectional view of a part of an air conditioner equipped with an ion detector according to Embodiment 4 of the present invention. A single heater 22 is installed not at the sensor substrate 8 but at a position facing the substrate surface of the sensor substrate 8 with a gap. There may be at least one heater 22 or a plurality of heaters 22 as shown in the figure. In FIG. 12, a support member that supports the heater 22 is omitted. The heater 22 generates heat, and the temperature of the sensor substrate 8 is increased by radiant heat.
(実施の形態5)
 実施の形態5では、イオン検出部7付近の温度を検出した結果に基づき、発熱用の抵抗10を通電制御する点が実施の形態1と異なる。図13は本発明の実施の形態5に係るイオン検出装置を備えた空調機器の一部を拡大した断面図、図14は本発明の実施の形態5に係るイオン検出装置の発熱制御構成のブロック図である。
(Embodiment 5)
The fifth embodiment is different from the first embodiment in that energization control is performed on the heating resistor 10 based on the result of detecting the temperature near the ion detector 7. FIG. 13 is an enlarged cross-sectional view of a part of an air conditioner including an ion detector according to Embodiment 5 of the present invention, and FIG. 14 is a block diagram of a heat generation control configuration of the ion detector according to Embodiment 5 of the present invention. it is a diagram.
 2個のサーミスタ(温度センサー)23a,23bを用い、1個のサーミスタ23aはセンサー基板8に接触させるか又はセンサー基板8と非接触で小さい隙間を隔てて設置してセンサー基板8の温度を検出し、他の1個のサーミスタ23bはセンサー基板8から離れた通風路3内又は通風路3の外部(例えば前壁3aの前側箇所)に設置してセンサー基板8の周囲の温度を検出する。尚、本実施形態では、抵抗10は2個設置している。マイコン等で構成される発熱制御部24を設け、発熱制御部24に各サーミスタ23a,23bの検出信号が入力され、発熱制御部24から抵抗10に対する電流駆動信号が出力されている。 Two thermistors (temperature sensors) 23a and 23b are used, and one thermistor 23a is placed in contact with the sensor substrate 8 or separated from the sensor substrate 8 with a small gap to detect the temperature of the sensor substrate 8. The other one thermistor 23b is installed in the ventilation path 3 away from the sensor board 8 or outside the ventilation path 3 (for example, at the front side of the front wall 3a) to detect the temperature around the sensor board 8. In the present embodiment, two resistors 10 are provided. A heat generation control unit 24 composed of a microcomputer or the like is provided. Detection signals of the thermistors 23 a and 23 b are input to the heat generation control unit 24, and a current drive signal for the resistor 10 is output from the heat generation control unit 24.
 2個のサーミスタ23a,23bで検出された温度の差からセンサー基板8の温度上昇が検知され、温度上昇が5℃~25℃の場合は抵抗10を一定電流で駆動し、温度上昇が5℃以下の場合は抵抗10を駆動する電流値を大きくして通電電力を上昇させ、温度上昇が25℃を上回る場合は抵抗10を駆動する電流値を小さくして通電電力を低下させるか、あるいは抵抗10を駆動する電流値をゼロにして、適切な温度上昇となるように通電制御を行う。尚、通電制御は、抵抗10への電圧値を制御してもよいし、通電時間を制御してもよい。またこの通電制御は、部品不良等により規定値以上の異常な温度上昇が見られた場合には安全装置として働き、通電を停止することも可能である。 The temperature rise of the sensor substrate 8 is detected from the difference in temperature detected by the two thermistors 23a and 23b. When the temperature rise is 5 ° C. to 25 ° C., the resistor 10 is driven at a constant current, and the temperature rise is 5 ° C. In the following cases, the current value for driving the resistor 10 is increased to increase the energizing power, and when the temperature rise exceeds 25 ° C., the current value for driving the resistor 10 is decreased to decrease the energizing power, or the resistance The current value for driving 10 is set to zero, and energization control is performed so that the temperature rises appropriately. In the energization control, the voltage value to the resistor 10 may be controlled, or the energization time may be controlled. In addition, this energization control can function as a safety device and stop energization when an abnormal temperature rise of a specified value or more is observed due to a component defect or the like.
 本実施形態5は、実施の形態2~4にも適用することができる。実施の形態2に適用した場合は2個のサーミスタ23a,23bの検出結果にも基づき、抵抗パターン20を通電制御する。実施の形態3に適用した場合は2個のサーミスタ23a,23bの検出結果にも基づき、抵抗21を通電制御する。実施の形態4に適用した場合は2個のサーミスタ23a,23bの検出結果にも基づき、ヒーター22を発熱制御する。 The fifth embodiment can be applied to the second to fourth embodiments. When applied to the second embodiment, the energization of the resistance pattern 20 is controlled based on the detection results of the two thermistors 23a and 23b. When applied to the third embodiment, the resistor 21 is energized and controlled based on the detection results of the two thermistors 23a and 23b. When applied to the fourth embodiment, the heater 22 is controlled to generate heat based on the detection results of the two thermistors 23a and 23b.
(実施の形態6)
 実施の形態6では、イオン検出部7の周囲の湿度を検出した結果に基づき、発熱用の抵抗10を通電制御する点が実施の形態5と異なる。図15は本発明の実施の形態6に係るイオン検出装置を備えた空調機器の一部を拡大した断面図、図16は本発明の実施の形態6に係るイオン検出装置の発熱制御構成のブロック図である。
(Embodiment 6)
The sixth embodiment is different from the fifth embodiment in that energization control is performed on the heating resistor 10 based on the result of detecting the humidity around the ion detector 7. FIG. 15 is an enlarged cross-sectional view of a part of an air conditioner including an ion detector according to Embodiment 6 of the present invention, and FIG. 16 is a block diagram of a heat generation control configuration of the ion detector according to Embodiment 6 of the present invention. it is a diagram.
 イオン発生部6と通風路3を挟んで対向する後壁3bに湿度センサー25が設置されている。前記発熱制御部24に湿度センサー25の検出信号が入力され、発熱制御部24から抵抗10に対する電流駆動信号が出力されている。尚、湿度センサー25の設置箇所は通風路3内を流れる空気の湿度が検知できる位置(例えば、吸込口2付近)であれば何れの箇所でもよい。 A humidity sensor 25 is installed on the rear wall 3b that faces the ion generator 6 across the ventilation path 3. A detection signal of the humidity sensor 25 is input to the heat generation control unit 24, and a current drive signal for the resistor 10 is output from the heat generation control unit 24. The installation location of the humidity sensor 25 may be any location as long as the humidity of the air flowing in the ventilation path 3 can be detected (for example, in the vicinity of the suction port 2).
 実施形態6においては、湿度センサー25によってイオン検出部7の外部である通風路3内の相対湿度を検知し、湿度センサー25の出力に応じて、抵抗10に流す電流を制御する。相対湿度が60%以下の場合は、計測部11の出力は湿度による影響をほとんど受けない。したがって、本実施形態においては、例えば相対湿度が60%以下の場合は、抵抗10には電流を流さず、相対湿度が60%より大きい場合には、抵抗10に一定電流を流す。これにより、高湿度条件では抵抗10に電流を流して温度上昇させ、低湿度条件では抵抗10に電流を流すことなく、不必要な電力消費を防止することができる。 In the sixth embodiment, the humidity sensor 25 detects the relative humidity in the ventilation path 3 outside the ion detector 7 and controls the current flowing through the resistor 10 according to the output of the humidity sensor 25. When the relative humidity is 60% or less, the output of the measurement unit 11 is hardly affected by the humidity. Therefore, in this embodiment, for example, when the relative humidity is 60% or less, no current flows through the resistor 10, and when the relative humidity is greater than 60%, a constant current flows through the resistor 10. Accordingly, it is possible to prevent unnecessary power consumption without flowing a current through the resistor 10 under a high humidity condition without flowing a current through the resistor 10 under a low humidity condition.
 本実施形態6は、実施の形態2~4にも適用することができる。実施の形態2に適用した場合は湿度センサー25の検出結果にも基づき、抵抗パターン20を通電制御する。実施の形態3に適用した場合は湿度センサー25の検出結果にも基づき、抵抗21を通電制御する。実施の形態4に適用した場合は湿度センサー25の検出結果にも基づき、ヒーター22を発熱制御する。 The sixth embodiment can also be applied to the second to fourth embodiments. When applied to the second embodiment, the energization of the resistance pattern 20 is controlled based on the detection result of the humidity sensor 25. When applied to the third embodiment, the energization of the resistor 21 is controlled based on the detection result of the humidity sensor 25. When applied to the fourth embodiment, the heater 22 is controlled to generate heat based on the detection result of the humidity sensor 25.
 上記実施の形態1~6に係るイオン検出装置を搭載した空調機器として、空気清浄機、エアコン、加湿器、除湿機、温風機、扇風機、掃除機、及び、医療用物質発生器(イオン発生機)等を実現することができる。簡単に説明すると、空気清浄機では図示していないフィルターにより空気をきれいにし、また加湿器では図示していない加湿機構から空気に水分を加え、また除湿機では図示していない除湿機構で空気から水分を取り去り、また温風機では図示していないヒーター等により空気を温めて、それぞれの目的毎の空気処理を行った上で、内部で発生させたイオンとともに処理済みの空気を吹出口4から外部に放出することになる。 As an air conditioner equipped with the ion detectors according to Embodiments 1 to 6, an air purifier, an air conditioner, a humidifier, a dehumidifier, a warm air fan, a fan, a vacuum cleaner, and a medical substance generator (ion generator) ) And the like can be realized. Briefly, air is cleaned by a filter not shown in the air cleaner, moisture is added to the air from a humidifier mechanism not shown in the humidifier, and the dehumidifier mechanism not shown in the dehumidifier is used to remove air from the air. Water is removed and the air is heated by a heater (not shown) in the hot air machine to perform air treatment for each purpose, and then the treated air is discharged from the outlet 4 together with the ions generated inside. Will be released.
 上記実施の形態1~6に係るイオン検出装置と、イオン量を表示するモニターとを備えることにより、イオンの量及び極性の検知を行い、モニターによって現在の発生イオン量を使用者が知ることができるイオン計測器が実現される。 By providing the ion detectors according to Embodiments 1 to 6 above and the monitor that displays the amount of ions, the amount and polarity of ions can be detected, and the user can know the current amount of ions generated by the monitor. Ion measuring instrument that can be realized.
 以上説明したように、本発明では、大気中のイオン量を計測するイオン検出装置およびこのイオン検出装置の出力に応じて表示を変化させるモニターならびにこのイオン検出装置やモニターを搭載した空調機器、イオン計測器に関する分野において、イオン検出装置に温度を上昇させる手段を併設することにより、空気中の水分量を減少させ、また温度上昇により相対湿度を低下させ、高湿度条件下でのイオン検出装置の動作不良を回避することが可能となる。また従来のような湿度センサー値による補正処理と湿度センサーの使用自体を無くすことが可能となる。 As described above, in the present invention, the ion detector that measures the amount of ions in the atmosphere, the monitor that changes the display according to the output of the ion detector, the air conditioner equipped with the ion detector and the monitor, the ion In the field related to measuring instruments, the ion detector is provided with a means for raising the temperature, thereby reducing the amount of moisture in the air, and lowering the relative humidity due to the temperature rise, and the ion detector under high humidity conditions. It becomes possible to avoid malfunction. Further, it is possible to eliminate the correction process using the humidity sensor value and the use of the humidity sensor as in the past.
 8   基板
 8a  捕集面(一面)
 8b  部品面(他面)
 9   捕集電極
 10  抵抗(発熱体、温度上昇手段)
 11  計測部
 16  モニター(イオン表示部)
 20  抵抗パターン(発熱体、温度上昇手段)
 21  抵抗(発熱体、温度上昇手段)
 22  ヒーター(発熱体、温度上昇手段)
 23a サーミスタ(温度検出手段)
 23b サーミスタ(外部温度検出手段)
 24  発熱制御部(制御手段)
 25  湿度センサー(湿度検出手段)
 
8 Substrate 8a Collection surface (one side)
8b component side (the other side)
9 Collection electrode 10 Resistance (heating element, temperature rise means)
11 Measurement section 16 Monitor (ion display section)
20 Resistance pattern (heating element, temperature riser)
21 Resistance (heating element, temperature rise means)
22 Heater (heating element, temperature riser)
23a thermistor (temperature detecting means)
23b Thermistor (External temperature detection means)
24 heating control section (control means)
25 Humidity sensor (humidity detection means)

Claims (14)

  1.  空気中のイオンを捕集する捕集電極と、該捕集電極の電位を計測する計測部とを備えたイオン検出装置において、
     前記計測部の温度を上昇させる温度上昇手段を備えていることを特徴とするイオン検出装置。
    In an ion detector comprising a collection electrode that collects ions in the air, and a measurement unit that measures the potential of the collection electrode,
    An ion detection apparatus comprising temperature raising means for raising the temperature of the measurement unit.
  2.  前記計測部は基板に設けてあり、
     前記温度上昇手段は、前記基板に設けた発熱体であることを特徴とする請求項1に記載のイオン検出装置。
    The measurement unit is provided on the substrate,
    The ion detector according to claim 1, wherein the temperature raising means is a heating element provided on the substrate.
  3.  前記発熱体は、前記基板に設置され、通電により発熱する抵抗であることを特徴とする請求項2に記載のイオン検出装置。 3. The ion detection apparatus according to claim 2, wherein the heating element is a resistor installed on the substrate and generating heat when energized.
  4.  前記発熱体は、前記基板の表面に形成され、通電により発熱する抵抗パターンであることを特徴とする請求項2に記載のイオン検出装置。 3. The ion detector according to claim 2, wherein the heating element is a resistance pattern that is formed on a surface of the substrate and generates heat when energized.
  5.  前記基板の一面に前記捕集電極を設け、他面に前記計測部と発熱体とが設けてあることを特徴とする請求項2から4の何れか1項に記載のイオン検出装置。 The ion detection apparatus according to any one of claims 2 to 4, wherein the collecting electrode is provided on one surface of the substrate, and the measurement unit and a heating element are provided on the other surface.
  6.  前記計測部は基板に設けてあり、
     前記温度上昇手段は、前記基板から離隔した位置に設置された発熱体であることを特徴とする請求項1に記載のイオン検出装置。
    The measurement unit is provided on the substrate,
    The ion detector according to claim 1, wherein the temperature raising unit is a heating element installed at a position separated from the substrate.
  7.  前記計測部の温度を検出する温度検出手段と、該温度検出手段の検出結果に基づいて前記発熱体の発熱制御を行う制御手段とを備えていることを特徴とする請求項2から6の何れか1項に記載のイオン検出装置。 The temperature detecting means for detecting the temperature of the measuring section and the control means for controlling the heat generation of the heating element based on the detection result of the temperature detecting means. The ion detector according to claim 1.
  8.  前記計測部の外部の温度を検出する外部温度検出手段を備え、
     前記制御手段は、前記温度検出手段の検出値と外部温度検出手段の検出値との差が小さい場合に前記発熱体を発熱させ、前記温度検出手段の検出値と外部温度検出手段の検出値との差が大きい場合に前記発熱体の発熱を停止させることを特徴とする請求項7に記載のイオン検出装置。
    An external temperature detecting means for detecting the temperature outside the measuring unit;
    The control means causes the heating element to generate heat when the difference between the detection value of the temperature detection means and the detection value of the external temperature detection means is small, and the detection value of the temperature detection means and the detection value of the external temperature detection means The ion detection device according to claim 7, wherein the heat generation of the heating element is stopped when the difference is large.
  9.  前記制御手段は、前記温度検出手段の検出値と外部温度検出手段の検出値との差が5℃から25℃の範囲になるように前記発熱体の発熱制御を行うことを特徴とする請求項8に記載のイオン検出装置。 The said control means controls the heat_generation | fever of the said heat generating body so that the difference of the detection value of the said temperature detection means and the detection value of an external temperature detection means may be in the range of 5 to 25 degreeC. 8. The ion detector according to 8.
  10.  前記計測部の周囲の湿度を検出する湿度検出手段と、該湿度検出手段の検出結果に基づいて前記発熱体の発熱制御を行う制御手段とを備えていることを特徴とする請求項2から9の何れか1項に記載のイオン検出装置。 10. A humidity detection unit that detects humidity around the measurement unit, and a control unit that performs heat generation control of the heating element based on a detection result of the humidity detection unit. The ion detector of any one of these.
  11.  前記制御手段は、前記湿度検出手段の検出値が設定値よりも大きい場合に前記発熱体を発熱させ、前記湿度検出手段の検出値が設定値よりも小さい場合に前記発熱体の発熱を停止させることを特徴とする請求項10に記載のイオン検出装置。 The control means causes the heating element to generate heat when the detection value of the humidity detection means is larger than a set value, and stops the heat generation of the heating element when the detection value of the humidity detection means is smaller than a set value. The ion detection apparatus according to claim 10.
  12.  イオン発生装置及び請求項1から11の何れか1項に記載のイオン検出装置を搭載した空調機器。 An air conditioner equipped with an ion generator and the ion detector according to any one of claims 1 to 11.
  13.  前記イオン検出装置の検出結果を表示するイオン表示部を備えた請求項12に記載の空調機器。 The air conditioner according to claim 12, further comprising an ion display unit that displays a detection result of the ion detector.
  14.  請求項1から11の何れか1項に記載のイオン検出装置を搭載し、該イオン検出装置の検出結果を表示するイオン表示部を備えたイオン計測器。
     
    An ion measuring instrument equipped with the ion detector according to any one of claims 1 to 11 and including an ion display unit that displays a detection result of the ion detector.
PCT/JP2011/061756 2010-08-25 2011-05-23 Ion detection device, air conditioner and ion measurement instrument WO2012026169A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201190000678.XU CN203443917U (en) 2010-08-25 2011-05-23 Ion detection device, air conditioning equipment and ion meter

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010188621A JP4979798B2 (en) 2010-08-25 2010-08-25 Ion detection device, air conditioner and ion measuring instrument
JP2010-188621 2010-08-25

Publications (1)

Publication Number Publication Date
WO2012026169A1 true WO2012026169A1 (en) 2012-03-01

Family

ID=45723186

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/061756 WO2012026169A1 (en) 2010-08-25 2011-05-23 Ion detection device, air conditioner and ion measurement instrument

Country Status (3)

Country Link
JP (1) JP4979798B2 (en)
CN (1) CN203443917U (en)
WO (1) WO2012026169A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9714967B1 (en) * 2016-01-27 2017-07-25 General Electric Company Electrostatic dust and debris sensor for an engine
CN106196386A (en) * 2016-08-29 2016-12-07 佛山市南海研明热能设备科技有限公司 A kind of infrared negative ion generator and infrared negative ion humidifier
JPWO2019049566A1 (en) * 2017-09-06 2020-10-29 日本碍子株式会社 Particle detection element and particle detector
CN112432318B (en) * 2019-08-26 2022-04-12 广东美的制冷设备有限公司 Air purification assembly, control method and device thereof, air conditioner and storage medium

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003139361A (en) * 2001-11-02 2003-05-14 Sharp Corp Air purifier
JP2004093361A (en) * 2002-08-30 2004-03-25 Takako Mori Co sensor
JP2005017285A (en) * 2003-05-30 2005-01-20 Ngk Spark Plug Co Ltd Humidity sensor, and method of using humidity sensor
JP2006340740A (en) * 2005-06-07 2006-12-21 Sharp Corp Positive and negative ion generator and air cleaner provided with the same
JP2007114177A (en) * 2005-09-21 2007-05-10 Sharp Corp Ion detector and ion generator
JP2008306084A (en) * 2007-06-11 2008-12-18 Sharp Corp Cooling system

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010145970A (en) * 2008-12-22 2010-07-01 Sharp Corp Ion generating device, charging device and image forming apparatus

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003139361A (en) * 2001-11-02 2003-05-14 Sharp Corp Air purifier
JP2004093361A (en) * 2002-08-30 2004-03-25 Takako Mori Co sensor
JP2005017285A (en) * 2003-05-30 2005-01-20 Ngk Spark Plug Co Ltd Humidity sensor, and method of using humidity sensor
JP2006340740A (en) * 2005-06-07 2006-12-21 Sharp Corp Positive and negative ion generator and air cleaner provided with the same
JP2007114177A (en) * 2005-09-21 2007-05-10 Sharp Corp Ion detector and ion generator
JP2008306084A (en) * 2007-06-11 2008-12-18 Sharp Corp Cooling system

Also Published As

Publication number Publication date
JP4979798B2 (en) 2012-07-18
JP2012047538A (en) 2012-03-08
CN203443917U (en) 2014-02-19

Similar Documents

Publication Publication Date Title
JP4979798B2 (en) Ion detection device, air conditioner and ion measuring instrument
JP5185250B2 (en) Ion blower that sends ionized air straight
US20050031503A1 (en) Air ionization control
JP5884125B2 (en) Anomaly detection apparatus and environmental test apparatus equipped with the same
JP4828868B2 (en) Positive / negative ion generator and air purifier equipped with the same
EP3444535A1 (en) Ventilation unit, system and method
TWI651496B (en) Temperature-based adaptive dehumidification sysyem
JP5381277B2 (en) Blower control pattern creation device
JP4742572B2 (en) Air conditioner air purifier
JP2010002068A (en) Air cleaner
JP2010243068A (en) Air cleaner with humidification function
JP2005233484A (en) Air conditioner
JP5840888B2 (en) Ion delivery device and electrical apparatus equipped with the same
KR102346621B1 (en) Humidifier and control method thereof
KR102340317B1 (en) Ion generator
JP2017062091A (en) Air cleaner
JP5266931B2 (en) Air volume characteristic determination method and air conditioner for constant air volume control
EP2221956B1 (en) Motor current calculation device and air conditioning device
KR101105961B1 (en) Aircleaner having a gas sensor and a pollution level sensing method using a gas sensor
JP3364421B2 (en) Air conditioner
KR20180013408A (en) Air conditioner and controlling method of the same
KR101535557B1 (en) Air cleaner having sensitivity adjustment function and control method thereof
WO2013015092A1 (en) Ion content measurement device, ion content measurement method, and ion generation device
JP2004156855A (en) Remote controller for electric home appliance with built-in ion sensor, electric home appliance
JP2007311227A (en) Air cleaner

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201190000678.X

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11819643

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11819643

Country of ref document: EP

Kind code of ref document: A1