WO2013015092A1 - Ion content measurement device, ion content measurement method, and ion generation device - Google Patents

Ion content measurement device, ion content measurement method, and ion generation device Download PDF

Info

Publication number
WO2013015092A1
WO2013015092A1 PCT/JP2012/067272 JP2012067272W WO2013015092A1 WO 2013015092 A1 WO2013015092 A1 WO 2013015092A1 JP 2012067272 W JP2012067272 W JP 2012067272W WO 2013015092 A1 WO2013015092 A1 WO 2013015092A1
Authority
WO
WIPO (PCT)
Prior art keywords
ion
ions
operating state
measurement
ion generator
Prior art date
Application number
PCT/JP2012/067272
Other languages
French (fr)
Japanese (ja)
Inventor
松井 裕文
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Publication of WO2013015092A1 publication Critical patent/WO2013015092A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/30Control or safety arrangements for purposes related to the operation of the system, e.g. for safety or monitoring
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/62Control or safety arrangements characterised by the type of control or by internal processing, e.g. using fuzzy logic, adaptive control or estimation of values
    • F24F11/63Electronic processing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F8/00Treatment, e.g. purification, of air supplied to human living or working spaces otherwise than by heating, cooling, humidifying or drying
    • F24F8/30Treatment, e.g. purification, of air supplied to human living or working spaces otherwise than by heating, cooling, humidifying or drying by ionisation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/62Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating the ionisation of gases, e.g. aerosols; by investigating electric discharges, e.g. emission of cathode
    • G01N27/68Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating the ionisation of gases, e.g. aerosols; by investigating electric discharges, e.g. emission of cathode using electric discharge to ionise a gas
    • G01N27/70Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating the ionisation of gases, e.g. aerosols; by investigating electric discharges, e.g. emission of cathode using electric discharge to ionise a gas and measuring current or voltage
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2110/00Control inputs relating to air properties
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2110/00Control inputs relating to air properties
    • F24F2110/50Air quality properties
    • F24F2110/80Electric charge
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/70Efficient control or regulation technologies, e.g. for control of refrigerant flow, motor or heating

Definitions

  • the present invention relates to an ion amount measuring device and an ion amount measuring method for measuring the amount of ions in the air, and an ion generator equipped with this ion amount measuring device.
  • the ion generator has two electrodes facing each other through a dielectric, and a discharge plasma is generated between the electrodes by applying a voltage from a high voltage generation circuit that generates a voltage of several kV between the two electrodes.
  • H + (H 2 O) m (m is a natural number) and O 2- (H 2 O) n (n is a natural number) as negative ions are generated in the air in substantially the same amount. It is like that.
  • the generated positive ions and negative ions are generated by ionizing water vapor in the air with discharge plasma, and a plurality of water molecules are present around hydrogen ions (H + ) or oxygen ions (O 2 ⁇ ). It is in the form of a so-called cluster ion.
  • H + hydrogen ions
  • O 2 ⁇ oxygen ions
  • These ions released into the air chemically react with suspended particulates or suspended bacteria to form hydrogen peroxide water H 2 O 2 or hydroxyl radicals / OH as active substances, and oxidize to extract hydrogen from suspended particulates or suspended bacteria. By carrying out the reaction, it is possible to inactivate suspended particulates or to sterilize suspended bacteria and clean the air.
  • ion amount the amount of positive ions and negative ions in the air (hereinafter referred to as “ion amount”) is a desired quantity.
  • ion amount measuring device that measures the amount of positive ions and negative ions contained in the air and presents the ion amount to the user.
  • an air ion measuring device for example, an air ion measuring device disclosed in Patent Document 1 is known.
  • the air ion measuring device measures each charge of a charge collector plate that collects positive ions and a charge collector plate that collects negative ions, and calculates the amount of positive ions or negative ions in the air.
  • the amount of positive ions and negative ions can be calculated simultaneously.
  • Patent Document 2 discloses an ion sensor having a collection electrode.
  • a minute ion current is generated by the ions collected by the collection electrode, and the ion current is amplified by the amplification circuit unit to obtain an output voltage corresponding to the number of collected ions. The amount can be measured.
  • the current due to the ions collected on the charge collector plate or the collecting electrode is very small, ranging from pA (picoampere) to nA (nanoampere). Although it is a current and various minute noise components are at a level that does not cause a problem in a general circuit, it has a great influence on the current measurement of such pA to nA.
  • the value of the measured ion current is greatly changed by power supply noise synchronized with the frequency of the power supply, static electricity when a person approaches, electromagnetic noise generated from a motor, circuit leakage current, and the like.
  • circuit leakage currents cannot be removed by the above solutions.
  • the value of the leakage current of a circuit may vary depending on the environment such as individual variations of operational amplifiers in the circuit, mounting conditions such as board soldering, temperature, humidity, and atmospheric pressure. May interfere. For this reason, removal of the leakage current generated in the circuit has been a problem in the conventional ion amount measurement.
  • the present invention has been made in view of such circumstances, and an object of the present invention is to reduce the influence of leakage current and to measure an ion amount with high accuracy and an ion amount It is in providing a measuring method and an ion generator.
  • An ion amount measuring apparatus is the ion amount measuring apparatus having a collecting electrode for collecting ions generated by an ion generator, and a measuring means for measuring a potential of the collecting electrode.
  • a control unit that causes the ionizer to be in an operating state in which ions are generated or in a non-operating state in which ions are not generated, the measurement result by the measuring unit during a period in which the ion generator is in an operating state, and the ion generator It is characterized in that the ion amount is calculated and measured based on the difference between the measurement results obtained by the measurement means during the non-operating state.
  • the ion amount measuring device has a collecting electrode, a measuring means, and a control means.
  • the ions generated by the ion generator are collected by the collecting electrode, the ion generator is activated or deactivated by the control means, and the collecting electrode is The potential is measured, and the result measured during the period when the ion generator is in the non-operating state is used as a correction value, and this correction value is subtracted from the result measured during the period during which the ion generator is operating.
  • the ion amount measuring apparatus is characterized in that the control means causes the ion generator to be in a non-operating state when the operating state of the ion generator continues for a predetermined time.
  • the ion amount measuring device causes the ion generator to be changed from the operating state to the non-operating state when the operation state of the ion generator continues for a predetermined time by the control means, and the measurement means By measuring the leakage current, even if the leakage current of the circuit changes according to the environment, the influence of the leakage current can be accurately grasped, and the ion amount can be measured with high accuracy.
  • the ion content measuring apparatus is characterized in that the time during which the operation state continues is different from the time during which the non-operation state continues.
  • the ion amount measuring apparatus controls the time during which the operating state continues to be different from the time during which the non-operating state continues, thereby shortening the measurement time that does not require time if necessary.
  • the efficiency of ion amount measurement can be increased.
  • the ion amount measuring device measures the number of times the ion generator measures the period when the ion generator is in an operating state and the measuring means measures the period when the ion generator is in a non-operating state. It is characterized by being different from the number of times.
  • the number of times the ion generator measures the period when the ion generator is in the operating state is different from the number of times the ion generator measures the period when the ion generator is in the non-operating state.
  • the ion amount measuring apparatus measures once by the measuring means during a period in which the ion generator is in a non-operating state, and by the measuring means during a period in which the ion generator is in an operating state. It is characterized by being measured a plurality of times.
  • the ion amount measuring device measures the potential of the collection electrode once during the period when the ion generator is in the non-operating state, and continues to use the measured result as a correction value for a certain period of time.
  • the measurement time can be shortened, and the uncomfortable feeling due to the discontinuity of the operation of the ion generator can be suppressed.
  • the ion content measuring apparatus is characterized by having means for removing noise.
  • the ion amount measuring apparatus has means for removing noise, so that the influence of leakage current and the influence of other noise components can be eliminated.
  • An ion generator includes an ion generator that generates ions and the ion amount measuring device, and the amount of ions generated by the ion generator is measured by the ion amount measuring device. It is characterized by being.
  • the ion generator includes an ion generator that generates ions and the ion amount measuring device, and the amount of ions generated by the ion generator is measured by the ion amount measuring device.
  • the ion generator according to the present invention has a display means for displaying a measurement result of the ion content measuring apparatus.
  • the ion generator has display means for displaying the measurement result of the ion content measurement device, so that the information related to the measured ion content can be presented to the user.
  • An ion amount measuring method is a method for collecting ions generated by an ion generator and measuring an electric potential by the collected ions, wherein the ion generator is operated in an ion generating state. Or a difference between a measurement result measured during a period when the ion generator is in an operating state and a measurement result measured during a period when the ion generator is in a non-operating state. Based on this, the ion amount is calculated and measured.
  • the ions generated by the ion generator are collected, the ion generator is made to be in an operating state or a non-operating state, the potential of the collecting electrode is measured, and the ion generator is in a non-operating state.
  • the measurement result is taken as the correction value, and the difference between the measurement results is obtained by subtracting this correction value from the result measured during the period when the ion generator is in the operating state, and the ion amount is calculated based on the difference. To do. Thereby, the influence by a leakage current is eliminated, an ion current is obtained, and the amount of ions can be measured with high accuracy.
  • the ion generator is brought into an operating state or a non-operating state, and the measurement result by the measuring unit during the period in which the ion generator is in the operating state and the measurement by the measuring unit during the period in which the ion generator is in the non-operating state.
  • the leakage current fluctuates depending on the environment such as individual variations of operational amplifiers in the circuit, mounting conditions such as soldering of the board, temperature, humidity, and atmospheric pressure, the leakage current can be accurately grasped and the amount of ions Can be measured with high accuracy.
  • FIG. 2 is a side sectional view taken along line II-II in FIG. 1.
  • FIG. 3 is a plan sectional view taken along line III-III in FIG. 1. It is side surface sectional drawing to which a part of air conditioner provided with the ion content measuring apparatus which concerns on this invention was expanded.
  • It is a figure which shows the circuit board provided in the ion content measuring apparatus which concerns on this invention.
  • It is a figure which shows the circuit board provided in the ion content measuring apparatus which concerns on this invention.
  • It is a block diagram which shows schematic structure of the control system of the air conditioner which concerns on this invention. It is a circuit diagram which shows the structural example of a measurement part.
  • FIG. 1 is a front view schematically showing an air conditioner equipped with an ion content measuring apparatus according to the present invention
  • FIG. 2 is a side sectional view taken along the line II-II in FIG. 1
  • FIG. 3 is a plan sectional view taken along line III-III.
  • the air conditioner includes a vertically long rectangular parallelepiped housing 1, which includes a front housing 1a, a rear housing 1b, left and right side housings 1c, a bottom housing 1d, and a top housing 1e.
  • a suction port 2 for sucking outside air is provided at the lower part of the rear housing 1b, and a blower outlet 4 for blowing air to the outside is provided at the upper part of the front housing 1a.
  • a ventilation path 3 extending from the suction port 2 to the blowout port 4 is formed in the housing 1.
  • the ventilation path 3 has a rectangular cross section surrounded by a front wall 3a and a rear wall 3b arranged in parallel at intervals in the front-rear direction and left and right side walls 3f, 3f.
  • the upper end of the front wall 3a is bent forward to become the lower edge 3e of the outlet 4, the upper end of the rear wall 3b is bent forward to become the upper edge 3c of the outlet 4, and the lower end of the rear wall 3b is the rear side To be the upper edge 3d of the suction port 2.
  • a fan 5 that sucks air from the suction port 2 and generates an upward wind flow is installed in the lower part of the ventilation path 3.
  • an ion generator 6 is provided above the fan 5, and an ion amount measuring device 8 is provided above the ion generator 6.
  • the fan 5 may be provided at the upper or lower intermediate portion or the upper portion in the ventilation passage 3, and the ion generation unit 6 and the ion amount measuring device 8 may be installed below the fan 5.
  • FIG. 4 is an enlarged side cross-sectional view of a part of an air conditioner equipped with an ion content measuring apparatus 8 according to the present invention.
  • the ion generation unit 6 includes, for example, an annular electrode and a needle electrode located at the center thereof, and applies a high voltage between the annular electrode and the needle electrode to generate positive or negative ions or negative ions. And are supplied into the ventilation path 3 (FIG. 4 shows a case where positive and negative ions are generated).
  • the ion amount measuring device 8 has a circuit board and a collection electrode (see FIGS. 5A and 5B), and collects ions generated by the ion generation unit 6 and blown together with air at the collection electrode. In addition, the amount of ions is calculated based on the potential of the collecting electrode in a circuit mounted on the circuit board.
  • FIGS. 5A and 5B are views showing a circuit board 80 provided in the ion amount measuring apparatus 8 according to the present invention
  • FIG. 5A is a plan view of a component surface 80b
  • FIG. 5B is a plan view of a current collecting surface 80a. is there.
  • the circuit board 80 is formed with a collecting electrode 86 for collecting positive ions or negative ions on the current collecting surface 80a on the ventilation path 3 side.
  • a measuring unit 87 for measuring the potential of the collecting electrode 86 is mounted on the opposite component surface 80b.
  • the collecting electrode 86 is formed as a substantially rectangular pattern, and is electrically connected to the electrode 86b on the component surface 80b through the through hole 86a.
  • the circuit board 80 is arranged in parallel with the front wall 3a.
  • the circuit board 80 may not be in parallel with the front wall 3a, and the collecting electrode 86 can secure an area for collecting necessary charges.
  • a pattern other than a substantially rectangular shape may be used. 5A and 5B, detailed circuit patterns and connection states of the measurement unit 87 are omitted.
  • FIG. 6 is a block diagram showing a schematic configuration of the control system of the air conditioner according to the present invention.
  • the CPU 81 is the center of the control system.
  • the CPU 81 is connected to a ROM 82 for storing information such as programs, a RAM 83 for storing temporarily generated information, and a timer 84 for measuring time through a bus.
  • the CPU 81 executes processes such as input / output and calculation according to a control program stored in advance in the ROM 82.
  • the CPU 81 further drives an operation unit 85 for receiving an operation for changing the air volume of the air conditioner, a display unit 90 including an LCD for displaying information such as a warning and an operating state, and a motor 72 of the fan 5.
  • the fan drive circuit 7 is connected to the A / D conversion circuit 89 for converting the analog voltage measured by the measuring unit 87 for measuring the potential of the collecting electrode 86 into a digital voltage and taking it in via a bus. Has been.
  • the collection electrode 86, the measurement unit 87, the A / D conversion circuit 89, the CPU 81, the ROM 82, the RAM 83, and the timer 84 constitute the ion amount measurement device 8.
  • the CPU 81 causes the ion generating unit 6 to be in an operation state where ions are generated or in a non-operation state where ions are not generated. For example, each time the timer 84 measures a predetermined time, the CPU 81 inverts on / off of the ion generation unit drive circuit 91 via the output I / F 88. As a result, the state of the ion generator 6 is changed every predetermined time, and changes from the operating state to the non-operating state, or from the non-operating state to the operating state.
  • the measuring unit 87 measures the potential of the collecting electrode 86.
  • a measurement method there are a high resistance method in which a current caused by ions is taken as a voltage by flowing it through a resistor, and an integration method that obtains a rising (falling) voltage between the capacitors by continuously passing the current caused by ions through the capacitor for a certain time.
  • a measurement unit 87 that measures the potential of the collection electrode 86 by an integration method will be described as an example.
  • FIG. 7 is a circuit diagram showing a configuration example of the measuring unit 87.
  • the measuring unit 87 includes a protection circuit composed of diodes 874 and 875 and an integrating circuit 87a surrounded by a broken line, and measures the potential of the collecting electrode 86 and outputs it as a voltage signal.
  • the potential of the collection electrode 86 is measured as a voltage value with respect to the ground potential.
  • diodes 874 and 875 for electrostatic protection are connected between the voltage + 5V and GND, the output side of the collecting electrode 86 is connected between the diodes 874 and 875, and the integrating circuit 87a.
  • the operational amplifier 871 is connected to the inverting input terminal.
  • the integrating circuit 87a includes an operational amplifier 871, a capacitor 872, and a switch 873.
  • the operational amplifier 871 has an inverting input terminal connected to an output terminal via a capacitor 872, and a non-inverting input terminal grounded.
  • the switch 873 is connected to the capacitor 872 in parallel.
  • connection of the operational amplifier 871 is simplified, but a fully differential operational amplifier may be used as the operational amplifier.
  • noise can be easily removed by providing a dummy electrode for noise removal, and connecting the collection electrode 86 and the dummy electrode to the inverting input terminal and the non-inverting input terminal of the fully differential operational amplifier, respectively.
  • the switch 873 When measuring the potential of the collection electrode 86, the switch 873 is turned off, and the charge of the ions collected by the collection electrode 86 is accumulated in the capacitor 872. An analog voltage signal proportional to the amount of collected ions is output from the output terminal of the operational amplifier 871, and after a certain period of time, the switch 873 is turned on, and the electric charge accumulated in the capacitor 872 is discharged, and one period The integration of is finished, and the next integration cycle starts.
  • the CPU 81 calculates the ion amount based on the measurement result obtained by the measuring unit 87. It is preferable that the potential measurement is performed for a plurality of periods and an average value thereof is taken.
  • T is the measurement time
  • C is the capacitance of the capacitor 872
  • I is the value of the current due to the ions collected by the collection electrode 86
  • n is the number of ions. That is, when the capacitance C of the capacitor 872 is constant, the current I due to the collected ions is proportional to the slope (V / T).
  • VB ⁇ VA I ⁇ (TB ⁇ TA) / C (1-1)
  • TA and TB are two time points in the same period, respectively
  • VA and VB are voltages measured at the time points TA and TB, respectively.
  • FIG. 8 is a diagram showing a voltage waveform measured by the measuring unit 87.
  • A indicates a disconnection signal applied to the switch 873 of the integrating circuit 87a
  • B, C, and D each indicate a waveform when the amount of ions generated by the ion generator 6 is large, and a waveform when it is small.
  • E indicates a voltage waveform due to leakage current measured when the ion generator 6 is in a non-operating state in which no ions are generated.
  • the waveform becomes steeper as it saturates immediately.
  • the amount of ions is small, the gradient becomes gentle.
  • the waveform does not change ideally from the reference voltage.
  • a voltage waveform due to the leakage current shown in E of FIG. 8 is obtained.
  • the CPU 81 is configured to place the ion generating unit 6 in a non-operating state when the operating state of the ion generating unit 6 continues for a predetermined time.
  • the CPU 81 inverts on / off of the ion generation unit drive circuit 91 at every predetermined time. Thereby, in the ion amount measurement period, the ion generator 6 is alternately in an operating state and a non-operating state.
  • the predetermined time is set as one integration cycle of the integration circuit 87a.
  • the present invention is not limited to this, and the predetermined time may be set as a plurality of integration cycles of the integration circuit 87a.
  • the measuring unit 87 measures the potential of the collecting electrode 86 when the ion generating unit 6 is in an operating state and when it is in a non-operating state.
  • a voltage V1 (hereinafter referred to as a correction voltage V1) due to a leakage current is measured by the measuring unit 87.
  • the voltage V2 measured by the measuring unit 87 (hereinafter referred to as a measured voltage V2) includes an ion voltage due to the charge of the collected ions and a voltage due to a leakage current. It is out.
  • the CPU 81 calculates the difference between the measurement results (measurement voltage V2 ⁇ correction voltage V1) to obtain the ion voltage V, and calculates the ion amount from the above formulas (1) and (2).
  • the values of the correction voltage V1 and the measurement voltage V2 are preferably an average value of the measurement values obtained by integrating a plurality of times. Further, based on the correction voltage V1 and the measurement voltage V2, the current I2 in the operating state (hereinafter referred to as measurement current I2) and the current I1 in the non-operation state (hereinafter referred to as correction current) are calculated from Equation (1), respectively. Then, the difference (I1 ⁇ I2) between them may be obtained, and the ion amount may be calculated from Equation (2) as the ion current I.
  • FIG. 9 is a diagram for explaining the operation timing of each unit in the first embodiment of the present invention.
  • time points t1 to t6 indicate times when the state of the ion generator 6 changes.
  • the state of the ion generator 6 is changed every predetermined time.
  • the CPU 81 outputs an off signal to the ion generation unit drive circuit 91 via the output I / F 88, and the ion generation unit 6 stops the ion generation operation, and the ions are generated.
  • a non-operating state that does not occur.
  • the measurement unit 87 starts integration by the integration circuit 87a, and measures a correction voltage V11 (referred to as “integration V11” in FIG.
  • the CPU 81 outputs an ON signal to the ion generation unit drive circuit 91 via the output I / F 88, and the ion generation unit 6 starts the ion generation operation and enters an operation state in which ions are generated.
  • the unit 87 resets the switch 873 and restarts the integration by the integration circuit, and measures the measurement voltage V12 (denoted as “integration V12” in FIG. 9) from the time point t2 to the time point t3.
  • the CPU 81 performs the same operation as that at time t1 and performs integral correction, that is, the measured voltage V12 measured during the period from time t2 to time t3 and the correction measured during the period from time t1 to time t2.
  • a difference (denoted as “integration V12 ⁇ integration V11” in FIG. 9) from the voltage V11 is calculated to obtain an ion voltage.
  • the CPU 81, the ion generation unit 6, and the measurement unit 87 perform the same operations as at time t2.
  • the CPU 81 performs an operation similar to the operation at time t1 and performs integral correction.
  • FIG. 10 is a flowchart showing the processing procedure of the CPU 81 according to the present invention. As shown in FIG. 10, the CPU 81 instructs to stop the ion generation operation of the ion generator 6 via the output I / F 88 (step S1). The ion generator 6 is in a non-operating state.
  • the CPU 81 counts the timer 84 and the measuring unit 87, and instructs the start of measurement (step S2).
  • the timer 84 starts measuring time
  • the measuring unit 87 turns off the switch 873, and integration by the integrating circuit 87a is started.
  • step S3: NO When the time counted by the timer 84 is less than the predetermined time (step S3: NO), such determination is repeated until the time measured reaches the predetermined time, and when the time measured becomes equal to or longer than the predetermined time (step S3: YES), the CPU 81 instructs the timer 84 and the measuring unit 87 to time and end the measurement (step S4). In response to the instruction from the CPU 81, the time measurement by the timer 84 and the measurement by the measurement unit 87 are terminated.
  • CPU81 memorize
  • the ion generation part 6 will be in an operation state.
  • the CPU 81 counts the timer 84 and the measuring unit 87, and instructs the start of measurement (step S7).
  • the timer 84 starts timing
  • the measuring unit 87 turns off the switch 873, and integration by the integration circuit is started.
  • step S8: NO When the time measured by the timer 84 is less than the predetermined time (step S8: NO), such determination is repeated until the time measured reaches the predetermined time, and when the time measured becomes equal to or longer than the predetermined time (step S8: YES), the CPU 81 instructs the timer 84 and the measuring unit 87 to time and end the measurement (step S9). In response to the instruction from the CPU 81, the time measurement by the timer 84 and the measurement by the measurement unit 87 are terminated.
  • the CPU 81 calculates the difference between the current measurement result and the previous measurement result temporarily stored in the RAM, and calculates the ion amount based on the calculated difference (step S10).
  • the CPU 81 determines whether or not a stop instruction has been received (step S11). If it is determined that the stop instruction has not been received (step S11: NO), the process returns to step S1 and it is determined that a stop instruction has been received (step S11). Step S11: YES), the process ends.
  • Embodiment 1 by measuring the potential of the collection electrode 86 when the ion generator 6 is in the operating state and when not operating, the ion amount is calculated based on the difference between the measurement results.
  • the effect of leakage current can be reduced without adding new circuit components or the like and introducing complicated software processing.
  • the leakage current can be accurately grasped and the amount of ions can be increased. It can be measured with high accuracy.
  • the time during which the operation state of the ion generation unit 6 continues is the same as the time during which the non-operation state continues, but the second embodiment is the operation state of the ion generation unit 6. This is a mode in which the time during which the operation continues and the time during which the non-operating state continues are different.
  • the first embodiment is referred to, and the description thereof is omitted. Note that the same reference numerals as those in the first embodiment are used for configurations similar to those in the first embodiment.
  • FIG. 11 is a diagram for explaining the operation timing of each unit in the second embodiment of the present invention.
  • the CPU 81 outputs an off signal to the ion generation unit drive circuit 91 via the output I / F 88, and the ion generation unit 6 stops the ion generation operation and generates ions.
  • the integration by the integrating circuit 87a of the measuring unit 87 is started, and the correction voltage V11 due to the leakage current is measured.
  • the CPU 81 outputs an ON signal to the ion generation unit drive circuit 91 via the output I / F 88, and the ion generation unit 6 resumes the ion generation operation and enters an operation state in which ions are generated.
  • the switch 873 is reset, the integration by the integration circuit 87a is restarted, and the measurement voltage V12 is measured.
  • the CPU 81 performs an operation similar to that at time t1 and performs integral correction, that is, the measurement voltage V12 measured during the period from time t2 to time t3 and the correction voltage measured during the period from time t1 to time t2. The difference from V11 is obtained to obtain the ion voltage.
  • the CPU 81, the ion generation unit 6, and the measurement unit 87 perform the same operation as at time t2.
  • the CPU 81 performs the same operation as that at time t1 and performs integral correction, and the measurement voltage V22 measured from time t4 to time t5 and the correction voltage V21 measured from time t3 to time t4. To obtain the ion voltage.
  • the CPU 81, the ion generation unit 6, and the measurement unit 87 perform the same operations as at time t2. By repeating in this way, a voltage due to the ions collected by the collecting electrode 86 is obtained, and the amount of ions can be obtained from the equations (1) and (2).
  • the time during which the operation state of the ion generator 6 continues is longer than the time during which the non-operation state continues, but the non-operation state continues for a time during which the operation state continues as necessary. It may be shorter than time.
  • the integration cycle of the integration circuit 87a is set based on the time during which the ion generator 6 is in the operating state and the non-operating state. For convenience of explanation, the ion generating unit 6 is in the operating state. The integration cycle of a certain period is set to the time that the operation state continues, and the integration cycle of the period during which the ion generator 6 is in the non-operation state is set to the time that the non-operation state continues. The integration period may be always constant.
  • the leakage current measurement time and the ion current measurement time are appropriately set as necessary by making the time during which the operation state of the ion generator 6 continues to be different from the time during which the non-operation state continues. Can be adjusted. For example, when it is not necessary to take time to measure the leakage current, the measurement time of the correction voltage V1 can be shortened to increase the efficiency of ion amount measurement.
  • the third embodiment is a mode in which the number of times of measurement during a period in which the ion generator 6 is in an operating state is different from the number of times of measurement in a period in which the ion generating unit 6 is in a non-operating state.
  • the first embodiment is referred to, and the description thereof is omitted. Note that the same reference numerals as those in the first embodiment are used for configurations similar to those in the first embodiment.
  • FIG. 12 is a diagram for explaining the operation timing of each part in the third embodiment of the present invention.
  • the correction voltage V11 is measured once, and the measurement result continues to be used as a correction value for a fixed time.
  • the CPU 81 outputs an off signal to the ion generation unit drive circuit 91 via the output I / F 88, and the ion generation unit 6 is stopped and the ion generation operation is stopped, and the ion generation unit 6 is in a non-operation state in which no ions are generated. Integration by the integrating circuit 87a of the measuring unit 87 is started, and the correction voltage V11 is measured.
  • the CPU 81 outputs an ON signal to the ion generation unit drive circuit 91 via the output I / F 88, and the ion generation unit 6 starts the ion generation operation and enters an operation state in which ions are generated.
  • the switch 873 is reset, the integration by the integration circuit 87a is restarted, and the measurement voltage V12 is measured.
  • the ion generator 6 is still in an operating state, performs the same operation as at time t2, and performs integral correction, that is, the measured voltage V12 measured during the period from time t2 to time t3, and time t1 to time A difference from the correction voltage V11 measured in the period t2 is obtained to obtain an ion voltage.
  • the ion generator 6 is still in an operating state, performs the same operation as at time t3, performs integration correction, and measures the voltage V22 measured from time t3 to time t4, and from time t1 to time t2 The difference from the measured correction voltage V11 is obtained to obtain the ion voltage.
  • a voltage due to the ions collected by the collecting electrode 86 is obtained, and the amount of ions can be obtained from the equations (1) and (2).
  • integration for one cycle is performed for each measurement, but this is not limiting, and integration for a plurality of cycles is performed for each measurement, and the average value of measurement results Is preferably calculated.
  • the leakage current is measured once, and the measurement result is continuously used as a leakage correction value for a fixed time. For this reason, the time of ion content measurement can be shortened. Moreover, since the opportunity to stop the ion generation operation of the ion generation unit 6 is reduced, it is possible to suppress a sense of discomfort due to discontinuity when stopping the ion generation operation.
  • the ion amount measuring device of the present invention includes a medical substance generator, an air purifier, a humidifier, and a dehumidifier.
  • the present invention can be applied to devices equipped with an ion generator such as a machine, a warm air fan, a fan, and a vacuum cleaner.
  • the ion content measuring apparatus according to the present invention can be used in combination with means for removing various noises.
  • the time point at which the difference between the measurement results is calculated is an arbitrary time point after the correction voltage V1 and the measurement voltage V2 are measured. May be.
  • Ion generator Ion generator
  • Ion content measuring device 81 CPU (control means) 84 Timer 86 Collection electrode 87 Measuring unit (Measuring means) 87a integration circuit 871 operational amplifier 872 capacitor 873 switch 89 A / D conversion circuit 90 display unit (display means)

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Combustion & Propulsion (AREA)
  • Signal Processing (AREA)
  • Immunology (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Biochemistry (AREA)
  • Pathology (AREA)
  • Analytical Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Fuzzy Systems (AREA)
  • Mathematical Physics (AREA)
  • Health & Medical Sciences (AREA)
  • Electrochemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Other Investigation Or Analysis Of Materials By Electrical Means (AREA)

Abstract

Provided are: an ion content measurement device that reduces the effect of leakage current and can highly precisely measure ion content; an ion content measurement method; and an ion generation device. The ion content measurement device has: a collection electrode (86) that collects ions generated by an ion generation unit (6); a measurement unit (87) that measures the potential of the collection electrode (86); and a CPU (81) that causes the ion generation unit (6) to be in an operating state for generating ions or a non-operating state for not generating ions. The ion content is calculated and measured on the basis of the difference between the measurement results of the measurement unit (87) during the period in which the ion generation unit (6) is in the operating state, and the measurement results of the measurement unit (87) during the period in which the ion generation unit (6) is in the non-operating state.

Description

イオン量測定装置、イオン量測定方法及びイオン発生装置Ion content measuring apparatus, ion content measuring method, and ion generator
 本発明は、空気中のイオン量を測定するイオン量測定装置及びイオン量測定方法、並びにこのイオン量測定装置を搭載したイオン発生装置に関する。 The present invention relates to an ion amount measuring device and an ion amount measuring method for measuring the amount of ions in the air, and an ion generator equipped with this ion amount measuring device.
 近年、正イオン及び負イオンを発生して、このイオンを含む空気を送出し、イオンが送出された空間の空気中に浮遊する微粒子及び細菌等の浮遊物を除去して空気を浄化するイオン発生装置及びそれを備える空気調和機が実用化されている。イオン発生装置は、誘電体を介して対向する二つの電極を有しており、数kVの電圧を発生する高電圧発生回路からの電圧を二つの電極間に印加することで電極間に放電プラズマを生じさせ、空気中に正イオンであるH+ (HO)m (mは自然数)、及び負イオンであるO2-(HO)(nは自然数)を略同量発生させるようにしてある。 In recent years, the generation of ions that generate positive ions and negative ions, send out air containing these ions, and purify the air by removing suspended matters such as fine particles and bacteria floating in the air in the space where the ions are sent out. An apparatus and an air conditioner including the same have been put into practical use. The ion generator has two electrodes facing each other through a dielectric, and a discharge plasma is generated between the electrodes by applying a voltage from a high voltage generation circuit that generates a voltage of several kV between the two electrodes. H + (H 2 O) m (m is a natural number) and O 2- (H 2 O) n (n is a natural number) as negative ions are generated in the air in substantially the same amount. It is like that.
 発生する正イオン及び負イオンは、空気中の水蒸気を放電プラズマによりイオン化することで生成されるものであり、水素イオン(H)又は酸素イオン(O2-)の周囲に複数の水分子が付随した形態、所謂クラスターイオンの形態をなしている。空気中に放出されたこれらのイオンは、浮遊微粒子又は浮遊細菌と化学反応し、活性物質としての過酸化水素水H又は水酸基ラジカル・OHとなり、浮遊微粒子又は浮遊細菌から水素を抜き取る酸化反応を行うことで、浮遊微粒子を不活性化し、又は浮遊細菌を殺菌して、空気を清浄にすることができる。 The generated positive ions and negative ions are generated by ionizing water vapor in the air with discharge plasma, and a plurality of water molecules are present around hydrogen ions (H + ) or oxygen ions (O 2− ). It is in the form of a so-called cluster ion. These ions released into the air chemically react with suspended particulates or suspended bacteria to form hydrogen peroxide water H 2 O 2 or hydroxyl radicals / OH as active substances, and oxidize to extract hydrogen from suspended particulates or suspended bacteria. By carrying out the reaction, it is possible to inactivate suspended particulates or to sterilize suspended bacteria and clean the air.
 しかし、イオン発生装置が発生する正イオン及び負イオンは無色透明且つ無味無臭であるため、空気中の正イオン及び負イオンの量(以降の説明において、「イオン量」と言う)が所望の数量又は濃度等に達したか否かをユーザが確認することは困難である。よって、空気中に含まれる正イオン及び負イオンのイオン量を測定してユーザに提示するイオン量測定装置を、イオン発生装置に搭載することが望ましい。 However, since positive ions and negative ions generated by the ion generator are colorless and transparent and tasteless and odorless, the amount of positive ions and negative ions in the air (hereinafter referred to as “ion amount”) is a desired quantity. Alternatively, it is difficult for the user to confirm whether or not the concentration has been reached. Therefore, it is desirable to mount an ion amount measuring device that measures the amount of positive ions and negative ions contained in the air and presents the ion amount to the user.
 イオン量測定装置としては、例えば、特許文献1に開示されている空気イオン測定器が公知である。該空気イオン測定器は、正イオンを収集する電荷集電板及び負イオンを収集する電荷集電板の各電荷を測定し、正イオン又は負イオンのイオン量として演算処理することにより、空気中の正イオン及び負イオンのイオン量を同時に算出することができる。 As an ion amount measuring device, for example, an air ion measuring device disclosed in Patent Document 1 is known. The air ion measuring device measures each charge of a charge collector plate that collects positive ions and a charge collector plate that collects negative ions, and calculates the amount of positive ions or negative ions in the air. The amount of positive ions and negative ions can be calculated simultaneously.
 また、特許文献2には、捕集電極を有するイオンセンサが開示されている。該イオンセンサでは、捕集電極に捕集されたイオンにより微小なイオン電流が発生し、このイオン電流を増幅回路部で増幅することにより、捕集したイオン数に応じた出力電圧を得てイオン量を測定することができる。 Patent Document 2 discloses an ion sensor having a collection electrode. In the ion sensor, a minute ion current is generated by the ions collected by the collection electrode, and the ion current is amplified by the amplification circuit unit to obtain an output voltage corresponding to the number of collected ions. The amount can be measured.
特開2003-194777号公報JP 2003-194777 A 特開2003-336872号公報JP 2003-336872 A
 しかしながら、特許文献1、2に開示されているイオン量測定装置では、電荷集電板、又は捕集電極に収集されたイオンによる電流がpA(ピコアンペア)~nA(ナノアンペア)の非常に微小な電流であり、各種の微小なノイズ成分は一般的な回路では問題とならないレベルであるが、このようなpA~nAの電流計測に大きな影響を及ぼす。例えば、電源の周波数に同期した電源ノイズ、人が接近したときの静電気、モータから発生した電磁ノイズ、回路の漏れ電流などにより、計測されたイオン電流の値が大きく変化させられる。一部のノイズ成分はサンプリング平均化、差動オペアンプ、又はシールド材などの解決策により除去されるが、回路の漏れ電流は上記解決策では除去できない。特に、回路の漏れ電流の値は、回路におけるオペアンプの個体バラツキ、基板のはんだ付け等の実装状態のバラツキ、温度、湿度、気圧等の環境により変わる可能性があり、イオン量の高精度の測定を妨げる虞がある。このため、従来のイオン量測定には、回路に発生された漏れ電流の除去が課題であった。 However, in the ion amount measuring devices disclosed in Patent Documents 1 and 2, the current due to the ions collected on the charge collector plate or the collecting electrode is very small, ranging from pA (picoampere) to nA (nanoampere). Although it is a current and various minute noise components are at a level that does not cause a problem in a general circuit, it has a great influence on the current measurement of such pA to nA. For example, the value of the measured ion current is greatly changed by power supply noise synchronized with the frequency of the power supply, static electricity when a person approaches, electromagnetic noise generated from a motor, circuit leakage current, and the like. Some noise components are removed by solutions such as sampling averaging, differential operational amplifiers, or shielding materials, but circuit leakage currents cannot be removed by the above solutions. In particular, the value of the leakage current of a circuit may vary depending on the environment such as individual variations of operational amplifiers in the circuit, mounting conditions such as board soldering, temperature, humidity, and atmospheric pressure. May interfere. For this reason, removal of the leakage current generated in the circuit has been a problem in the conventional ion amount measurement.
 本発明は、斯かる事情に鑑みてなされたものであり、その目的とするところは、漏れ電流による影響を減少させ、イオン量を高精度に測定することが可能なイオン量測定装置、イオン量測定方法及びイオン発生装置を提供することにある。 The present invention has been made in view of such circumstances, and an object of the present invention is to reduce the influence of leakage current and to measure an ion amount with high accuracy and an ion amount It is in providing a measuring method and an ion generator.
 本発明に係るイオン量測定装置は、イオン発生器により発生されたイオンを捕集する捕集電極と、該捕集電極の電位を計測する計測手段とを有するイオン量測定装置において、前記イオン発生器を、イオンを発生する動作状態、又はイオンを発生しない非動作状態にさせる制御手段を有し、前記イオン発生器が動作状態にある期間の前記計測手段による計測結果、及び前記イオン発生器が非動作状態にある期間の前記計測手段による計測結果の差分に基づいてイオン量を算出して測定するようにしてあることを特徴とする。 An ion amount measuring apparatus according to the present invention is the ion amount measuring apparatus having a collecting electrode for collecting ions generated by an ion generator, and a measuring means for measuring a potential of the collecting electrode. A control unit that causes the ionizer to be in an operating state in which ions are generated or in a non-operating state in which ions are not generated, the measurement result by the measuring unit during a period in which the ion generator is in an operating state, and the ion generator It is characterized in that the ion amount is calculated and measured based on the difference between the measurement results obtained by the measurement means during the non-operating state.
 本発明では、イオン量測定装置は、捕集電極、計測手段、及び制御手段を有する。イオン量測定装置では、捕集電極にてイオン発生器により発生されたイオンを捕集し、制御手段にてイオン発生器を動作状態、又は非動作状態にさせ、計測手段にて捕集電極の電位を計測し、イオン発生器が非動作状態にある期間に計測した結果を補正値とし、イオン発生器が動作状態にある期間に計測された結果からこの補正値を引いて計測結果の差分を得て、該差分に基づいてイオン量を算出して測定する。これにより、漏れ電流による影響を解消してイオン電流を得て、イオン量を高精度に測定することができる。 In the present invention, the ion amount measuring device has a collecting electrode, a measuring means, and a control means. In the ion amount measuring device, the ions generated by the ion generator are collected by the collecting electrode, the ion generator is activated or deactivated by the control means, and the collecting electrode is The potential is measured, and the result measured during the period when the ion generator is in the non-operating state is used as a correction value, and this correction value is subtracted from the result measured during the period during which the ion generator is operating. Obtaining and calculating the amount of ions based on the difference. Thereby, the influence by a leakage current is eliminated, an ion current is obtained, and the amount of ions can be measured with high accuracy.
 本発明に係るイオン量測定装置は、前記制御手段は、前記イオン発生器の動作状態が所定時間継続した場合、前記イオン発生器を非動作状態にさせるようにしてあることを特徴とする。 The ion amount measuring apparatus according to the present invention is characterized in that the control means causes the ion generator to be in a non-operating state when the operating state of the ion generator continues for a predetermined time.
 本発明では、イオン量測定装置は、制御手段にてイオン発生器の動作状態が所定時間継続した場合、イオン発生器を動作状態から非動作状態にさせ、計測手段にて所定時間ごとに回路の漏れ電流を計測することにより、回路の漏れ電流が環境に従って変化しても、漏れ電流による影響を正確に把握することができ、イオン量を高精度に測定することができる。 In the present invention, the ion amount measuring device causes the ion generator to be changed from the operating state to the non-operating state when the operation state of the ion generator continues for a predetermined time by the control means, and the measurement means By measuring the leakage current, even if the leakage current of the circuit changes according to the environment, the influence of the leakage current can be accurately grasped, and the ion amount can be measured with high accuracy.
 本発明に係るイオン量測定装置は、前記動作状態が継続する時間と、前記非動作状態が継続する時間とは異なることを特徴とする。 The ion content measuring apparatus according to the present invention is characterized in that the time during which the operation state continues is different from the time during which the non-operation state continues.
 本発明では、イオン量測定装置は、動作状態が継続する時間と、非動作状態が継続する時間とが異なるように制御することにより、必要に応じて、時間を掛ける必要がない計測時間を短縮して、イオン量測定の効率を高めることができる。 In the present invention, the ion amount measuring apparatus controls the time during which the operating state continues to be different from the time during which the non-operating state continues, thereby shortening the measurement time that does not require time if necessary. Thus, the efficiency of ion amount measurement can be increased.
 本発明に係るイオン量測定装置は、前記イオン発生器が動作状態にある期間に前記計測手段にて計測する回数と、前記イオン発生器が非動作状態にある期間に前記計測手段にて計測する回数とは異なるようにしてあることを特徴とする。 The ion amount measuring device according to the present invention measures the number of times the ion generator measures the period when the ion generator is in an operating state and the measuring means measures the period when the ion generator is in a non-operating state. It is characterized by being different from the number of times.
 本発明では、イオン量測定装置は、イオン発生器が動作状態にある期間に計測手段にて計測する回数と、イオン発生器が非動作状態にある期間に計測手段にて計測する回数とが異なるように制御することにより、必要に応じて各期間に計測する回数を設定し、イオン量測定の効率を高めることができる。 In the present invention, in the ion amount measuring device, the number of times the ion generator measures the period when the ion generator is in the operating state is different from the number of times the ion generator measures the period when the ion generator is in the non-operating state. By controlling in this way, the number of times of measurement in each period can be set as necessary, and the efficiency of ion amount measurement can be increased.
 本発明に係るイオン量測定装置は、前記イオン発生器が非動作状態にある期間に、前記計測手段にて1回計測し、前記イオン発生器が動作状態にある期間に、前記計測手段にて複数回計測するようにしてあることを特徴とする。 The ion amount measuring apparatus according to the present invention measures once by the measuring means during a period in which the ion generator is in a non-operating state, and by the measuring means during a period in which the ion generator is in an operating state. It is characterized by being measured a plurality of times.
 本発明では、イオン量測定装置は、イオン発生器が非動作状態にある期間に捕集電極の電位を1回計測し、計測した結果を一定時間、補正値として使用し続けることにより、全体の測定時間を短縮するとともに、イオン発生器の動作の不連続性による違和感を抑えることができる。 In the present invention, the ion amount measuring device measures the potential of the collection electrode once during the period when the ion generator is in the non-operating state, and continues to use the measured result as a correction value for a certain period of time. The measurement time can be shortened, and the uncomfortable feeling due to the discontinuity of the operation of the ion generator can be suppressed.
 本発明に係るイオン量測定装置は、ノイズを除去する手段を有することを特徴とする。 The ion content measuring apparatus according to the present invention is characterized by having means for removing noise.
 本発明では、イオン量測定装置は、ノイズを除去する手段を有することにより、漏れ電流による影響を解消するとともに他のノイズ成分の影響を解消することができる。 In the present invention, the ion amount measuring apparatus has means for removing noise, so that the influence of leakage current and the influence of other noise components can be eliminated.
 本発明に係るイオン発生装置は、イオンを発生するイオン発生器と、前記イオン量測定装置とを有し、前記イオン発生器が発生したイオンの量を前記イオン量測定装置により測定するようにしてあることを特徴とする。 An ion generator according to the present invention includes an ion generator that generates ions and the ion amount measuring device, and the amount of ions generated by the ion generator is measured by the ion amount measuring device. It is characterized by being.
 本発明では、イオン発生装置は、イオンを発生するイオン発生器と、前記イオン量測定装置とを有し、イオン発生器が発生したイオンの量をイオン量測定装置により測定する。 In the present invention, the ion generator includes an ion generator that generates ions and the ion amount measuring device, and the amount of ions generated by the ion generator is measured by the ion amount measuring device.
 本発明に係るイオン発生装置は、前記イオン量測定装置の測定結果を表示する表示手段を有することを特徴とする。 The ion generator according to the present invention has a display means for displaying a measurement result of the ion content measuring apparatus.
 本発明では、イオン発生装置は、前記イオン量測定装置の測定結果を表示する表示手段を有することにより、測定したイオン量に係る情報をユーザに提示することができる。 In the present invention, the ion generator has display means for displaying the measurement result of the ion content measurement device, so that the information related to the measured ion content can be presented to the user.
 本発明に係るイオン量測定方法は、イオン発生器により発生されたイオンを捕集し、捕集したイオンによる電位を計測するイオン量測定方法において、前記イオン発生器を、イオンを発生する動作状態、又はイオンを発生しない非動作状態にさせ、前記イオン発生器が動作状態にある期間に計測される計測結果、及び前記イオン発生器が非動作状態にある期間に計測される計測結果の差分に基づいてイオン量を算出して測定することを特徴とする。 An ion amount measuring method according to the present invention is a method for collecting ions generated by an ion generator and measuring an electric potential by the collected ions, wherein the ion generator is operated in an ion generating state. Or a difference between a measurement result measured during a period when the ion generator is in an operating state and a measurement result measured during a period when the ion generator is in a non-operating state. Based on this, the ion amount is calculated and measured.
 本発明では、イオン発生器により発生されたイオンを捕集し、イオン発生器を動作状態、又は非動作状態にさせ、捕集電極の電位を計測し、イオン発生器が非動作状態にある期間に計測した結果を補正値とし、イオン発生器が動作状態にある期間に計測された結果からこの補正値を引いて計測結果の差分を得て、該差分に基づいてイオン量を算出して測定する。これにより、漏れ電流による影響を解消してイオン電流を得て、イオン量を高精度に測定することができる。 In the present invention, the ions generated by the ion generator are collected, the ion generator is made to be in an operating state or a non-operating state, the potential of the collecting electrode is measured, and the ion generator is in a non-operating state. The measurement result is taken as the correction value, and the difference between the measurement results is obtained by subtracting this correction value from the result measured during the period when the ion generator is in the operating state, and the ion amount is calculated based on the difference. To do. Thereby, the influence by a leakage current is eliminated, an ion current is obtained, and the amount of ions can be measured with high accuracy.
 本発明においては、イオン発生器を動作状態又は非動作状態にさせ、イオン発生器が動作状態にある期間の計測手段による計測結果と、イオン発生器が非動作状態にある期間の計測手段による計測結果との差分に基づいてイオン量を測定することにより、新規の回路部分などの追加、複雑なソフトウェア処理の導入を行うことなく、漏れ電流による影響を低減することができる。また、回路におけるオペアンプの個体バラツキ、基板のはんだ付け等の実装状態のバラツキ、温度、湿度、気圧等の環境により漏れ電流が変動した場合でも、漏れ電流を正確に把握することができ、イオン量を高精度に測定することができる。 In the present invention, the ion generator is brought into an operating state or a non-operating state, and the measurement result by the measuring unit during the period in which the ion generator is in the operating state and the measurement by the measuring unit during the period in which the ion generator is in the non-operating state. By measuring the amount of ions based on the difference from the result, it is possible to reduce the influence of leakage current without adding a new circuit part or the like or introducing complicated software processing. In addition, even if the leakage current fluctuates depending on the environment such as individual variations of operational amplifiers in the circuit, mounting conditions such as soldering of the board, temperature, humidity, and atmospheric pressure, the leakage current can be accurately grasped and the amount of ions Can be measured with high accuracy.
本発明に係るイオン量測定装置を備えた空気調和機を模式的に示す正面図である。It is a front view which shows typically the air conditioner provided with the ion content measuring apparatus which concerns on this invention. 図1のII-II線における側面断面図である。FIG. 2 is a side sectional view taken along line II-II in FIG. 1. 図1のIII-III線における平面断面図である。FIG. 3 is a plan sectional view taken along line III-III in FIG. 1. 本発明に係るイオン量測定装置を備えた空気調和機の一部を拡大した側面断面図である。It is side surface sectional drawing to which a part of air conditioner provided with the ion content measuring apparatus which concerns on this invention was expanded. 本発明に係るイオン量測定装置に設けた回路基板を示す図である。It is a figure which shows the circuit board provided in the ion content measuring apparatus which concerns on this invention. 本発明に係るイオン量測定装置に設けた回路基板を示す図である。It is a figure which shows the circuit board provided in the ion content measuring apparatus which concerns on this invention. 本発明に係る空気調和機の制御系の概略構成を示すブロック図である。It is a block diagram which shows schematic structure of the control system of the air conditioner which concerns on this invention. 計測部の構成例を示す回路図である。It is a circuit diagram which shows the structural example of a measurement part. 計測部により計測された電圧波形を示す図である。It is a figure which shows the voltage waveform measured by the measurement part. 本発明の実施の形態1における各部の動作タイミングを説明するための図である。It is a figure for demonstrating the operation timing of each part in Embodiment 1 of this invention. 本発明に係るCPUの処理手順を示すフローチャートである。It is a flowchart which shows the process sequence of CPU which concerns on this invention. 本発明の実施の形態2における各部の動作タイミングを説明するための図である。It is a figure for demonstrating the operation timing of each part in Embodiment 2 of this invention. 本発明の実施の形態3における各部の動作タイミングを説明するための図である。It is a figure for demonstrating the operation timing of each part in Embodiment 3 of this invention.
 以下、図面に基づいて、本発明に係るイオン量測定装置を空気調和機に適用した実施の形態について詳述する。 Hereinafter, an embodiment in which the ion amount measuring apparatus according to the present invention is applied to an air conditioner will be described in detail with reference to the drawings.
(実施の形態1)
 図1は本発明に係るイオン量測定装置を備えた空気調和機を模式的に示す正面図であり、図2は図1のII-II線における側面断面図であり、図3は図1のIII-III線における平面断面図である。
(Embodiment 1)
FIG. 1 is a front view schematically showing an air conditioner equipped with an ion content measuring apparatus according to the present invention, FIG. 2 is a side sectional view taken along the line II-II in FIG. 1, and FIG. FIG. 3 is a plan sectional view taken along line III-III.
 図1~3に示すように、空気調和機は、縦長の直方体状のハウジング1を備え、ハウジング1は前面ハウジング1a、後面ハウジング1b、左右の側面ハウジング1c、底面ハウジング1d及び天面ハウジング1eを有する。後面ハウジング1bの下部に外部の空気を吸い込む吸込口2が設けてあり、前面ハウジング1aの上部に外部へ空気を吹き出す吹出口4が設けてある。ハウジング1内には、吸込口2から吹出口4に至る通風路3が形成されている。通風路3は前後に間隔を隔てて平行に配置された前壁3a及び後壁3bと、左右の側壁3f,3fとで囲まれた長方形の断面を有する。 As shown in FIGS. 1 to 3, the air conditioner includes a vertically long rectangular parallelepiped housing 1, which includes a front housing 1a, a rear housing 1b, left and right side housings 1c, a bottom housing 1d, and a top housing 1e. Have. A suction port 2 for sucking outside air is provided at the lower part of the rear housing 1b, and a blower outlet 4 for blowing air to the outside is provided at the upper part of the front housing 1a. A ventilation path 3 extending from the suction port 2 to the blowout port 4 is formed in the housing 1. The ventilation path 3 has a rectangular cross section surrounded by a front wall 3a and a rear wall 3b arranged in parallel at intervals in the front-rear direction and left and right side walls 3f, 3f.
 前壁3aの上端は前側に屈曲して吹出口4の下縁部3eとなり、後壁3bの上端は前側に屈曲して吹出口4の上縁部3cとなり、後壁3bの下端は後側に屈曲して吸込口2の上縁部3dとなる。通風路3内の下部に、吸込口2から空気を吸い込み、上向きの風の流れを発生させるファン5が設置してある。前壁3aには、ファン5より上側にイオン発生部6を設け、イオン発生部6より上側にイオン量測定装置8を設けてある。尚、ファン5を通風路3内の上下中間部又は上部に設け、イオン発生部6及びイオン量測定装置8をファン5より下側に設置してもよい。
The upper end of the front wall 3a is bent forward to become the lower edge 3e of the outlet 4, the upper end of the rear wall 3b is bent forward to become the upper edge 3c of the outlet 4, and the lower end of the rear wall 3b is the rear side To be the upper edge 3d of the suction port 2. A fan 5 that sucks air from the suction port 2 and generates an upward wind flow is installed in the lower part of the ventilation path 3. On the front wall 3 a, an ion generator 6 is provided above the fan 5, and an ion amount measuring device 8 is provided above the ion generator 6. Note that the fan 5 may be provided at the upper or lower intermediate portion or the upper portion in the ventilation passage 3, and the ion generation unit 6 and the ion amount measuring device 8 may be installed below the fan 5.
 図4は本発明に係るイオン量測定装置8を備えた空気調和機の一部を拡大した側面断面図である。図4に示すように、イオン発生部6は、例えば環状電極とその中央に位置する針電極とを有し、環状電極と針電極との間に高電圧を印加することにより正負イオン又は負イオンを発生させ、通風路3内に供給する(図4には正負イオンを発生した場合を示す)ようにしてある。イオン量測定装置8は、回路基板及び捕集電極(図5A及び図5Bを参照)を有し、捕集電極にて、イオン発生部6により発生され、空気と共に送風されてきたイオンを捕集し、回路基板に搭載されている回路にて、捕集電極の電位に基づいてイオン量を算出するようにしてある。 FIG. 4 is an enlarged side cross-sectional view of a part of an air conditioner equipped with an ion content measuring apparatus 8 according to the present invention. As shown in FIG. 4, the ion generation unit 6 includes, for example, an annular electrode and a needle electrode located at the center thereof, and applies a high voltage between the annular electrode and the needle electrode to generate positive or negative ions or negative ions. And are supplied into the ventilation path 3 (FIG. 4 shows a case where positive and negative ions are generated). The ion amount measuring device 8 has a circuit board and a collection electrode (see FIGS. 5A and 5B), and collects ions generated by the ion generation unit 6 and blown together with air at the collection electrode. In addition, the amount of ions is calculated based on the potential of the collecting electrode in a circuit mounted on the circuit board.
 図5A及び図5Bは本発明に係るイオン量測定装置8に設けた回路基板80を示す図であり、図5Aは部品面80bの平面図であり、図5Bは集電面80aの平面図である。図5A及び図5Bに示すように、回路基板80には、通風路3側の集電面80aに正イオン又は負イオンを捕集する捕集電極86が形成してあり、集電面80aの反対側の部品面80bに、捕集電極86の電位を計測する計測部87が搭載されている。捕集電極86は略矩形のパターンとして形成され、スルーホール86aによって部品面80bの電極86bに導通している。なお、実施の形態1では、回路基板80は前壁3aと平行に配置されるが、前壁3aと平行でなくてもよく、捕集電極86は必要な電荷を集めるための面積が確保できれば略矩形以外のパターンでもよい。図5A及び図5Bでは、計測部87について詳細な回路パターンや接続状態は省略している。なお、ノイズによる影響を解消するために、集電面80aと部品面80bとの間にノイズ遮断用のノイズシールドを設けることが好ましい。 5A and 5B are views showing a circuit board 80 provided in the ion amount measuring apparatus 8 according to the present invention, FIG. 5A is a plan view of a component surface 80b, and FIG. 5B is a plan view of a current collecting surface 80a. is there. As shown in FIGS. 5A and 5B, the circuit board 80 is formed with a collecting electrode 86 for collecting positive ions or negative ions on the current collecting surface 80a on the ventilation path 3 side. A measuring unit 87 for measuring the potential of the collecting electrode 86 is mounted on the opposite component surface 80b. The collecting electrode 86 is formed as a substantially rectangular pattern, and is electrically connected to the electrode 86b on the component surface 80b through the through hole 86a. In the first embodiment, the circuit board 80 is arranged in parallel with the front wall 3a. However, the circuit board 80 may not be in parallel with the front wall 3a, and the collecting electrode 86 can secure an area for collecting necessary charges. A pattern other than a substantially rectangular shape may be used. 5A and 5B, detailed circuit patterns and connection states of the measurement unit 87 are omitted. In order to eliminate the influence of noise, it is preferable to provide a noise shield for blocking noise between the current collecting surface 80a and the component surface 80b.
 図6は、本発明に係る空気調和機の制御系の概略構成を示すブロック図である。制御系の中枢となるのはCPU81である。CPU81は、プログラム等の情報を記憶するROM82、一時的に発生した情報を記憶するRAM83、及び時間を計時するためのタイマ84と互いにバスを介して接続されている。CPU81は、ROM82に予め格納されている制御プログラムに従って入出力、演算等の処理を実行する。 FIG. 6 is a block diagram showing a schematic configuration of the control system of the air conditioner according to the present invention. The CPU 81 is the center of the control system. The CPU 81 is connected to a ROM 82 for storing information such as programs, a RAM 83 for storing temporarily generated information, and a timer 84 for measuring time through a bus. The CPU 81 executes processes such as input / output and calculation according to a control program stored in advance in the ROM 82.
 CPU81には、更に、空気調和機の風量を変更する操作を受け付けるための操作部85と、警告、運転状態等の情報を表示するLCDからなる表示部90と、ファン5のモータ72を駆動するためのファン駆動回路7と、捕集電極86の電位を計測する計測部87が計測したアナログの電圧をデジタルの電圧に変換して取り込むためのA/D変換回路89とがバスを介して接続されている。尚、捕集電極86、計測部87、A/D変換回路89、CPU81、ROM82、RAM83、及びタイマ84がイオン量測定装置8を構成する。 The CPU 81 further drives an operation unit 85 for receiving an operation for changing the air volume of the air conditioner, a display unit 90 including an LCD for displaying information such as a warning and an operating state, and a motor 72 of the fan 5. The fan drive circuit 7 is connected to the A / D conversion circuit 89 for converting the analog voltage measured by the measuring unit 87 for measuring the potential of the collecting electrode 86 into a digital voltage and taking it in via a bus. Has been. The collection electrode 86, the measurement unit 87, the A / D conversion circuit 89, the CPU 81, the ROM 82, the RAM 83, and the timer 84 constitute the ion amount measurement device 8.
 上述した構成において、CPU81は、イオン発生部6を、イオンを発生する動作状態、又はイオンを発生しない非動作状態にさせるようにしてある。例えば、タイマ84が所定時間を計時する都度、CPU81は、出力I/F88を介して、イオン発生部駆動回路91のオン/オフを反転させる。これにより、イオン発生部6は、所定時間ごとに状態が変化され、動作状態から非動作状態となり、又は、非動作状態から動作状態となる。 In the above-described configuration, the CPU 81 causes the ion generating unit 6 to be in an operation state where ions are generated or in a non-operation state where ions are not generated. For example, each time the timer 84 measures a predetermined time, the CPU 81 inverts on / off of the ion generation unit drive circuit 91 via the output I / F 88. As a result, the state of the ion generator 6 is changed every predetermined time, and changes from the operating state to the non-operating state, or from the non-operating state to the operating state.
 計測部87は捕集電極86の電位を計測するものである。計測方式として、イオンによる電流を抵抗に流すことによって電圧として取り出す高抵抗方式、及びイオンによる電流をコンデンサに一定時間流し続けることでコンデンサ間の上昇(下降)電圧を得る積分方式などがある。実施の形態1では、積分方式で捕集電極86の電位を計測する計測部87を例として説明する。 The measuring unit 87 measures the potential of the collecting electrode 86. As a measurement method, there are a high resistance method in which a current caused by ions is taken as a voltage by flowing it through a resistor, and an integration method that obtains a rising (falling) voltage between the capacitors by continuously passing the current caused by ions through the capacitor for a certain time. In the first embodiment, a measurement unit 87 that measures the potential of the collection electrode 86 by an integration method will be described as an example.
 図7は計測部87の構成例を示す回路図である。計測部87は、ダイオード874、875からなる保護回路と、破線に囲まれている積分回路87aとを有し、捕集電極86の電位を計測して電圧信号として出力するようにしてある。実施の形態1では、捕集電極86の電位は、接地電位に対する電圧値として計測される。図7に示すように、電圧+5VとGNDとの間に静電気保護用のダイオード874、875が接続してあり、捕集電極86の出力側がダイオード874、875の間に接続し、さらに積分回路87aのオペアンプ871の反転入力端子に接続してある。積分回路87aはオペアンプ871と、コンデンサ872と、スイッチ873とを含んでいる。オペアンプ871は、反転入力端子がコンデンサ872を介して出力端子に接続し、非反転入力端子が接地してある。スイッチ873はコンデンサ872に並列に接続してある。 FIG. 7 is a circuit diagram showing a configuration example of the measuring unit 87. The measuring unit 87 includes a protection circuit composed of diodes 874 and 875 and an integrating circuit 87a surrounded by a broken line, and measures the potential of the collecting electrode 86 and outputs it as a voltage signal. In the first embodiment, the potential of the collection electrode 86 is measured as a voltage value with respect to the ground potential. As shown in FIG. 7, diodes 874 and 875 for electrostatic protection are connected between the voltage + 5V and GND, the output side of the collecting electrode 86 is connected between the diodes 874 and 875, and the integrating circuit 87a. The operational amplifier 871 is connected to the inverting input terminal. The integrating circuit 87a includes an operational amplifier 871, a capacitor 872, and a switch 873. The operational amplifier 871 has an inverting input terminal connected to an output terminal via a capacitor 872, and a non-inverting input terminal grounded. The switch 873 is connected to the capacitor 872 in parallel.
 図7において、説明の便宜上、オペアンプ871の接続を簡素化して記載しているが、オペアンプとして全差動オペアンプを用いる場合もある。例えば、ノイズ除去用のダミー電極を設け、捕集電極86及びダミー電極を、夫々全差動オペアンプの反転入力端子及び非反転入力端子に接続することにより、ノイズを簡単に除去することができる。 In FIG. 7, for convenience of explanation, the connection of the operational amplifier 871 is simplified, but a fully differential operational amplifier may be used as the operational amplifier. For example, noise can be easily removed by providing a dummy electrode for noise removal, and connecting the collection electrode 86 and the dummy electrode to the inverting input terminal and the non-inverting input terminal of the fully differential operational amplifier, respectively.
 捕集電極86の電位を計測する場合、スイッチ873がオフとされ、捕集電極86に捕集されたイオンの電荷がコンデンサ872に蓄積される。捕集されたイオン量に比例したアナログの電圧信号がオペアンプ871の出力端子から出力され、一定の時間を経て、スイッチ873がオンとされ、コンデンサ872に蓄積している電荷が放電され、1周期の積分が終わり、次の積分周期に入る。イオン量測定装置8では、CPU81にて、計測部87による計測結果に基づいてイオン量を算出する。電位計測は複数の周期分を実施してその平均値を取ることが好ましい。 When measuring the potential of the collection electrode 86, the switch 873 is turned off, and the charge of the ions collected by the collection electrode 86 is accumulated in the capacitor 872. An analog voltage signal proportional to the amount of collected ions is output from the output terminal of the operational amplifier 871, and after a certain period of time, the switch 873 is turned on, and the electric charge accumulated in the capacitor 872 is discharged, and one period The integration of is finished, and the next integration cycle starts. In the ion amount measuring device 8, the CPU 81 calculates the ion amount based on the measurement result obtained by the measuring unit 87. It is preferable that the potential measurement is performed for a plurality of periods and an average value thereof is taken.
 実施の形態1では、負イオン量を測定する場合を例としてイオン量の算出について説明する。捕集電極86が負イオンを捕集した場合、捕集電極86の電位が低くなり、計測部87において、捕集電極86に向かって流れる電流が発生し、捕集されたイオン量に比例したアナログの電圧信号がオペアンプ871の出力端子から出力される。出力されたアナログの電圧がA/D変換回路89を介してデジタルの電圧Vに変換され、CPU81は該デジタルの電圧Vに基づいて、下記の数式(1)、(2)から、イオン量を算出することができる。
V=I×T/C     (1)
I=1.6×10-19 ×n           (2)
In the first embodiment, calculation of the amount of ions will be described by taking the case of measuring the amount of negative ions as an example. When the collection electrode 86 collects negative ions, the potential of the collection electrode 86 becomes low, and a current flowing toward the collection electrode 86 is generated in the measurement unit 87, which is proportional to the amount of collected ions. An analog voltage signal is output from the output terminal of the operational amplifier 871. The output analog voltage is converted into a digital voltage V via the A / D conversion circuit 89, and the CPU 81 calculates the ion amount from the following equations (1) and (2) based on the digital voltage V. Can be calculated.
V = I × T / C (1)
I = 1.6 × 10 −19 × n (2)
 ここで、Tは計測時間であり、Cはコンデンサ872の容量であり、Iは捕集電極86に捕集されたイオンによる電流の値であり、nはイオンの数量である。即ち、コンデンサ872の容量Cが一定の場合、捕集されたイオンによる電流Iは傾き(V/T)に比例する。また、積分方式の計測部におけるオフセット成分の除去の点では、下記数式(1-1)から電流Iを算出することが好ましい。
VB-VA=I×(TB-TA)/C     (1-1)
 ここで、TA、TBは夫々同一周期における二つの時点であり、VA、VBは夫々時点TA、TBで計測された電圧である。
Here, T is the measurement time, C is the capacitance of the capacitor 872, I is the value of the current due to the ions collected by the collection electrode 86, and n is the number of ions. That is, when the capacitance C of the capacitor 872 is constant, the current I due to the collected ions is proportional to the slope (V / T). In terms of removing the offset component in the integration type measurement unit, it is preferable to calculate the current I from the following equation (1-1).
VB−VA = I × (TB−TA) / C (1-1)
Here, TA and TB are two time points in the same period, respectively, and VA and VB are voltages measured at the time points TA and TB, respectively.
 図8は、計測部87により計測された電圧波形を示す図である。図8において、Aは積分回路87aのスイッチ873に印加される通断信号を示しており、B、C及びD夫々はイオン発生部6により発生したイオン量が大きい場合の波形、小さい場合の波形及び無し(ゼロ)の場合の波形を示しており、Eはイオン発生部6がイオンを発生しない非動作状態にある場合に計測した漏れ電流による電圧波形を示している。イオン量が大きい場合、波形はすぐに飽和するほど傾きが急になり、イオン量が小さい場合、傾きが緩やかになり、イオン無しの場合、理想的には基準電圧から波形が変化することはないが、実際には図8のEに示される漏れ電流による電圧波形が得られる。 FIG. 8 is a diagram showing a voltage waveform measured by the measuring unit 87. In FIG. 8, A indicates a disconnection signal applied to the switch 873 of the integrating circuit 87a, and B, C, and D each indicate a waveform when the amount of ions generated by the ion generator 6 is large, and a waveform when it is small. And E indicates a voltage waveform due to leakage current measured when the ion generator 6 is in a non-operating state in which no ions are generated. When the amount of ions is large, the waveform becomes steeper as it saturates immediately. When the amount of ions is small, the gradient becomes gentle. In the absence of ions, the waveform does not change ideally from the reference voltage. However, in practice, a voltage waveform due to the leakage current shown in E of FIG. 8 is obtained.
 次に、本発明の実施の形態1に係るイオン量測定の動作について説明する。CPU81は、イオン発生部6の動作状態が所定時間継続した場合、イオン発生部6を非動作状態にさせるようにしてある。実施の形態1において、CPU81は、所定時間ごとに、イオン発生部駆動回路91のオン/オフを反転させる。これにより、イオン量測定期間において、イオン発生部6は、交互に動作状態及び非動作状態になる。ここで、説明の便宜上、所定時間を積分回路87aの1積分周期としたが、これに限らず、所定時間を積分回路87aの複数の積分周期としてもよい。 Next, the ion amount measurement operation according to Embodiment 1 of the present invention will be described. The CPU 81 is configured to place the ion generating unit 6 in a non-operating state when the operating state of the ion generating unit 6 continues for a predetermined time. In the first embodiment, the CPU 81 inverts on / off of the ion generation unit drive circuit 91 at every predetermined time. Thereby, in the ion amount measurement period, the ion generator 6 is alternately in an operating state and a non-operating state. Here, for convenience of explanation, the predetermined time is set as one integration cycle of the integration circuit 87a. However, the present invention is not limited to this, and the predetermined time may be set as a plurality of integration cycles of the integration circuit 87a.
 計測部87はイオン発生部6が動作状態にある場合及び非動作状態にある場合に夫々捕集電極86の電位を計測する。イオン発生部6が非動作状態にある場合、漏れ電流による電圧V1(以下、補正電圧V1と記す)が計測部87により計測される。イオン発生部6が動作状態にある場合、計測部87により計測された電圧V2(以下、計測電圧V2と記す)は、捕集されたイオンの電荷によるイオン電圧と、漏れ電流による電圧とを含んでいる。CPU81は、計測結果の差分(計測電圧V2-補正電圧V1)を算出してイオン電圧Vを得て、上記の数式(1)、(2)から、イオン量を算出する。 The measuring unit 87 measures the potential of the collecting electrode 86 when the ion generating unit 6 is in an operating state and when it is in a non-operating state. When the ion generating unit 6 is in a non-operating state, a voltage V1 (hereinafter referred to as a correction voltage V1) due to a leakage current is measured by the measuring unit 87. When the ion generating unit 6 is in an operating state, the voltage V2 measured by the measuring unit 87 (hereinafter referred to as a measured voltage V2) includes an ion voltage due to the charge of the collected ions and a voltage due to a leakage current. It is out. The CPU 81 calculates the difference between the measurement results (measurement voltage V2−correction voltage V1) to obtain the ion voltage V, and calculates the ion amount from the above formulas (1) and (2).
 ここで、補正電圧V1及び計測電圧V2の値は、複数回積分してそれらの計測値の平均値が好ましい。また、補正電圧V1及び計測電圧V2に基づいて、夫々数式(1)から動作状態における電流I2(以下、計測電流I2と記す)及び非動作状態における電流I1(以下、補正電流と記す)を算出して、それらの差分(I1-I2)を求めてイオン電流Iとして、数式(2)からイオン量を算出するようにしてもよい。 Here, the values of the correction voltage V1 and the measurement voltage V2 are preferably an average value of the measurement values obtained by integrating a plurality of times. Further, based on the correction voltage V1 and the measurement voltage V2, the current I2 in the operating state (hereinafter referred to as measurement current I2) and the current I1 in the non-operation state (hereinafter referred to as correction current) are calculated from Equation (1), respectively. Then, the difference (I1−I2) between them may be obtained, and the ion amount may be calculated from Equation (2) as the ion current I.
 図9は本発明の実施の形態1における各部の動作タイミングを説明するための図である。図9において、時点t1~t6は夫々イオン発生部6の状態が変化した時点を示す。ここで、イオン発生部6の状態が所定時間ごとに変化される。図9に示すように、時点t1において、CPU81は、出力I/F88を介して、イオン発生部駆動回路91にオフ信号を出力し、イオン発生部6はイオン発生動作が停止されて、イオンを発生しない非動作状態となる。計測部87は積分回路87aによる積分が開始され、時点t1~時点t2期間において、漏れ電流による補正電圧V11(図9において「積分V11」と記す)を計測する。時点t2において、CPU81は、出力I/F88を介して、イオン発生部駆動回路91にオン信号を出力し、イオン発生部6はイオン発生動作が開始されて、イオンを発生する動作状態となり、計測部87は、スイッチ873がリセットして積分回路による積分が再開され、時点t2~時点t3期間において、計測電圧V12(図9において「積分V12」と記す)を計測する。時点t3において、CPU81が時点t1の動作と同様な動作を行うとともに積分補正を行ない、即ち、時点t2~時点t3期間に計測された計測電圧V12と、時点t1~時点t2期間に計測された補正電圧V11との差分(図9において「積分V12-積分V11」と記す)を算出してイオン電圧を得る。時点t4において、CPU81、イオン発生部6、計測部87は時点t2と同様な動作を行う。時点t5において、CPU81は時点t1の動作と同様な動作を行うとともに積分補正を行ない、時点t4~時点t5期間に計測された計測電圧V22と、時点t3~時点t4期間に計測された補正電圧V21との差分を算出してイオン電圧を得る。時点t6において、時点t4と同様な動作を行う。このように繰り返すことにより、捕集電極86により捕集されたイオンによる電圧が得られ、数式(1)、(2)からイオン量が得られる。 FIG. 9 is a diagram for explaining the operation timing of each unit in the first embodiment of the present invention. In FIG. 9, time points t1 to t6 indicate times when the state of the ion generator 6 changes. Here, the state of the ion generator 6 is changed every predetermined time. As shown in FIG. 9, at time t1, the CPU 81 outputs an off signal to the ion generation unit drive circuit 91 via the output I / F 88, and the ion generation unit 6 stops the ion generation operation, and the ions are generated. A non-operating state that does not occur. The measurement unit 87 starts integration by the integration circuit 87a, and measures a correction voltage V11 (referred to as “integration V11” in FIG. 9) due to leakage current during a period from time t1 to time t2. At time t2, the CPU 81 outputs an ON signal to the ion generation unit drive circuit 91 via the output I / F 88, and the ion generation unit 6 starts the ion generation operation and enters an operation state in which ions are generated. The unit 87 resets the switch 873 and restarts the integration by the integration circuit, and measures the measurement voltage V12 (denoted as “integration V12” in FIG. 9) from the time point t2 to the time point t3. At time t3, the CPU 81 performs the same operation as that at time t1 and performs integral correction, that is, the measured voltage V12 measured during the period from time t2 to time t3 and the correction measured during the period from time t1 to time t2. A difference (denoted as “integration V12−integration V11” in FIG. 9) from the voltage V11 is calculated to obtain an ion voltage. At time t4, the CPU 81, the ion generation unit 6, and the measurement unit 87 perform the same operations as at time t2. At time t5, the CPU 81 performs an operation similar to the operation at time t1 and performs integral correction. The measurement voltage V22 measured during the period from time t4 to time t5 and the correction voltage V21 measured during the period from time t3 to time t4. To obtain the ion voltage. At time t6, the same operation as at time t4 is performed. By repeating in this way, a voltage due to the ions collected by the collecting electrode 86 is obtained, and the amount of ions can be obtained from the equations (1) and (2).
 図10は本発明に係るCPU81の処理手順を示すフローチャートである。図10に示すように、CPU81は出力I/F88を介してイオン発生部6のイオン発生動作の停止を指示する(ステップS1)。イオン発生部6は非動作状態となる。 FIG. 10 is a flowchart showing the processing procedure of the CPU 81 according to the present invention. As shown in FIG. 10, the CPU 81 instructs to stop the ion generation operation of the ion generator 6 via the output I / F 88 (step S1). The ion generator 6 is in a non-operating state.
 CPU81はタイマ84、計測部87夫々に計時、計測の開始を指示する(ステップS2)。CPU81の指示に応じて、タイマ84は計時が開始され、計測部87はスイッチ873がオフとされ、積分回路87aによる積分が開始される。 The CPU 81 counts the timer 84 and the measuring unit 87, and instructs the start of measurement (step S2). In response to an instruction from the CPU 81, the timer 84 starts measuring time, the measuring unit 87 turns off the switch 873, and integration by the integrating circuit 87a is started.
 タイマ84にて計時した時間が所定時間未満である場合(ステップS3:NO)、計時した時間が所定時間となるまで斯かる判定を繰り返し、計時した時間が所定時間以上となる場合(ステップS3:YES)、CPU81はタイマ84、計測部87夫々に計時、計測の終了を指示する(ステップS4)。CPU81の指示に応じて、タイマ84による計時及び計測部87による計測が終了される。 When the time counted by the timer 84 is less than the predetermined time (step S3: NO), such determination is repeated until the time measured reaches the predetermined time, and when the time measured becomes equal to or longer than the predetermined time (step S3: YES), the CPU 81 instructs the timer 84 and the measuring unit 87 to time and end the measurement (step S4). In response to the instruction from the CPU 81, the time measurement by the timer 84 and the measurement by the measurement unit 87 are terminated.
 CPU81は計測部87による計測結果を例えばRAMに一時的に記憶し(ステップS5)、出力I/F88を介してイオン発生部6のイオン発生動作の開始を指示する(ステップS6)。イオン発生部6は動作状態となる。 CPU81 memorize | stores the measurement result by the measurement part 87 temporarily, for example in RAM (step S5), and instruct | indicates the start of ion generation operation of the ion generation part 6 via output I / F88 (step S6). The ion generation part 6 will be in an operation state.
 CPU81はタイマ84、計測部87夫々に計時、計測の開始を指示する(ステップS7)。CPU81の指示に応じて、タイマ84は計時が開始され、計測部87はスイッチ873がオフとされ、積分回路による積分が開始される。 The CPU 81 counts the timer 84 and the measuring unit 87, and instructs the start of measurement (step S7). In response to an instruction from the CPU 81, the timer 84 starts timing, the measuring unit 87 turns off the switch 873, and integration by the integration circuit is started.
 タイマ84にて計時した時間が所定時間未満である場合(ステップS8:NO)、計時した時間が所定時間となるまで斯かる判定を繰り返し、計時した時間が所定時間以上となる場合(ステップS8:YES)、CPU81はタイマ84、計測部87夫々に計時、計測の終了を指示する(ステップS9)。CPU81の指示に応じて、タイマ84による計時及び計測部87による計測が終了される。 When the time measured by the timer 84 is less than the predetermined time (step S8: NO), such determination is repeated until the time measured reaches the predetermined time, and when the time measured becomes equal to or longer than the predetermined time (step S8: YES), the CPU 81 instructs the timer 84 and the measuring unit 87 to time and end the measurement (step S9). In response to the instruction from the CPU 81, the time measurement by the timer 84 and the measurement by the measurement unit 87 are terminated.
 CPU81は今回の計測結果とRAMに一時的に記憶されている前回の計測結果との差分を算出し、算出した差分に基づいてイオン量を算出する(ステップS10)。CPU81は停止指示を受けたか否かを判定し(ステップS11)、停止指示を受けていないと判定した場合(ステップS11:NO)、処理をステップS1に戻し、停止指示を受けたと判定した場合(ステップS11:YES)、処理を終了する。 The CPU 81 calculates the difference between the current measurement result and the previous measurement result temporarily stored in the RAM, and calculates the ion amount based on the calculated difference (step S10). The CPU 81 determines whether or not a stop instruction has been received (step S11). If it is determined that the stop instruction has not been received (step S11: NO), the process returns to step S1 and it is determined that a stop instruction has been received (step S11). Step S11: YES), the process ends.
 実施の形態1では、イオン発生部6が動作状態にある場合、及び非動作状態にある場合に夫々捕集電極86の電位を計測し、計測結果の差分に基づいてイオン量を算出することにより、新規の回路部品等の追加と複雑なソフトウェア処理の導入とを行うことなく、漏れ電流による影響を低減することができる。また、回路におけるオペアンプの個体バラツキ、基板のはんだ付け等の実装状態のバラツキ、温度湿度気圧等の環境により漏れ電流が変動した場合でも、漏れ電流を正確に把握することができ、イオン量を高精度に測定することができる。 In Embodiment 1, by measuring the potential of the collection electrode 86 when the ion generator 6 is in the operating state and when not operating, the ion amount is calculated based on the difference between the measurement results. The effect of leakage current can be reduced without adding new circuit components or the like and introducing complicated software processing. In addition, even if the leakage current fluctuates due to variations in individual operational amplifiers in the circuit, mounting conditions such as soldering of the board, and temperature, humidity, and pressure, the leakage current can be accurately grasped and the amount of ions can be increased. It can be measured with high accuracy.
(実施の形態2)
 上記実施の形態1は、イオン発生部6の動作状態が継続する時間と非動作状態が継続する時間とを同じにさせた形態であるが、実施の形態2は、イオン発生部6の動作状態が継続する時間と非動作状態が継続する時間とが異なる形態である。以降の説明において、実施の形態1と同様の構成については、実施の形態1を参照するものとし、その説明を省略する。なお、実施の形態1と同様の構成については実施の形態1と同じ符号を用いる。
(Embodiment 2)
In the first embodiment, the time during which the operation state of the ion generation unit 6 continues is the same as the time during which the non-operation state continues, but the second embodiment is the operation state of the ion generation unit 6. This is a mode in which the time during which the operation continues and the time during which the non-operating state continues are different. In the following description, for the same configuration as in the first embodiment, the first embodiment is referred to, and the description thereof is omitted. Note that the same reference numerals as those in the first embodiment are used for configurations similar to those in the first embodiment.
 図11は本発明の実施の形態2における各部の動作タイミングを説明するための図である。図11に示すように、時点t1において、CPU81は、出力I/F88を介して、イオン発生部駆動回路91にオフ信号を出力し、イオン発生部6はイオン発生動作が停止されてイオンを発生しない非動作状態となり、計測部87の積分回路87aによる積分が開始され、漏れ電流による補正電圧V11を計測する。時点t2になると、CPU81は、出力I/F88を介して、イオン発生部駆動回路91にオン信号を出力し、イオン発生部6はイオン発生動作が再開されてイオンを発生する動作状態となり、計測部87では、スイッチ873がリセットされ、積分回路87aによる積分が再開され、計測電圧V12を計測する。時点t3になると、CPU81は、時点t1と同様な動作を行うとともに積分補正を行ない、即ち、時点t2~時点t3期間に計測された計測電圧V12と時点t1~時点t2期間に計測された補正電圧V11との差分を求めて、イオン電圧を得る。時点t4になると、CPU81、イオン発生部6、計測部87は、時点t2と同様な動作を行う。時点t5になると、CPU81は、時点t1と同様な動作を行うとともに積分補正を行ない、時点t4~時点t5期間に計測された計測電圧V22と時点t3~時点t4期間に計測された補正電圧V21との差分を求めて、イオン電圧を得る。時点t6になると、CPU81、イオン発生部6、計測部87は時点t2と同様な動作を行う。このように繰り返すことにより、捕集電極86により捕集されたイオンによる電圧が得られ、数式(1)、(2)からイオン量が得られる。 FIG. 11 is a diagram for explaining the operation timing of each unit in the second embodiment of the present invention. As shown in FIG. 11, at time t1, the CPU 81 outputs an off signal to the ion generation unit drive circuit 91 via the output I / F 88, and the ion generation unit 6 stops the ion generation operation and generates ions. The integration by the integrating circuit 87a of the measuring unit 87 is started, and the correction voltage V11 due to the leakage current is measured. At time t2, the CPU 81 outputs an ON signal to the ion generation unit drive circuit 91 via the output I / F 88, and the ion generation unit 6 resumes the ion generation operation and enters an operation state in which ions are generated. In the unit 87, the switch 873 is reset, the integration by the integration circuit 87a is restarted, and the measurement voltage V12 is measured. At time t3, the CPU 81 performs an operation similar to that at time t1 and performs integral correction, that is, the measurement voltage V12 measured during the period from time t2 to time t3 and the correction voltage measured during the period from time t1 to time t2. The difference from V11 is obtained to obtain the ion voltage. At time t4, the CPU 81, the ion generation unit 6, and the measurement unit 87 perform the same operation as at time t2. At time t5, the CPU 81 performs the same operation as that at time t1 and performs integral correction, and the measurement voltage V22 measured from time t4 to time t5 and the correction voltage V21 measured from time t3 to time t4. To obtain the ion voltage. At time t6, the CPU 81, the ion generation unit 6, and the measurement unit 87 perform the same operations as at time t2. By repeating in this way, a voltage due to the ions collected by the collecting electrode 86 is obtained, and the amount of ions can be obtained from the equations (1) and (2).
 実施の形態2では、イオン発生部6の動作状態が継続する時間は、非動作状態が継続する時間より長くしたが、必要に応じて、動作状態が継続する時間を、非動作状態が継続する時間より短くしてもよい。また、実施の形態2では、積分回路87aの積分周期は、イオン発生部6の動作状態及び非動作状態が継続する時間に基づいて夫々設定され、説明の便宜上、イオン発生部6が動作状態にある期間の積分周期を動作状態が継続する時間に、イオン発生部6が非動作状態にある期間の積分周期を非動作状態が継続する時間に設定したが、これに限らず、積分回路87aの積分周期を常に一定としてもよい。また、イオン発生部6が動作状態にある期間と非動作状態にある期間とに、夫々に複数の周期分の積分を実施して計測結果の平均値を取ることが好ましい。 In the second embodiment, the time during which the operation state of the ion generator 6 continues is longer than the time during which the non-operation state continues, but the non-operation state continues for a time during which the operation state continues as necessary. It may be shorter than time. In the second embodiment, the integration cycle of the integration circuit 87a is set based on the time during which the ion generator 6 is in the operating state and the non-operating state. For convenience of explanation, the ion generating unit 6 is in the operating state. The integration cycle of a certain period is set to the time that the operation state continues, and the integration cycle of the period during which the ion generator 6 is in the non-operation state is set to the time that the non-operation state continues. The integration period may be always constant. In addition, it is preferable to perform integration for a plurality of periods in each of the period in which the ion generator 6 is in the operating state and the period in which the ion generating unit 6 is in the non-operating state to obtain an average value of the measurement results.
 実施の形態2では、イオン発生部6の動作状態が継続する時間と非動作状態が継続する時間とが異なるようにさせることにより、必要に応じて、漏れ電流計測時間及びイオン電流計測時間を適当に調整することができる。例えば、漏れ電流の計測に時間を掛ける必要がない場合に、補正電圧V1の計測時間を短縮して、イオン量測定の効率を高めることができる。 In the second embodiment, the leakage current measurement time and the ion current measurement time are appropriately set as necessary by making the time during which the operation state of the ion generator 6 continues to be different from the time during which the non-operation state continues. Can be adjusted. For example, when it is not necessary to take time to measure the leakage current, the measurement time of the correction voltage V1 can be shortened to increase the efficiency of ion amount measurement.
(実施の形態3)
 実施の形態3は、イオン発生部6が動作状態にある期間の計測回数と、非動作状態にある期間の計測回数とが異なる形態である。以降の説明において、実施の形態1と同様の構成については、実施の形態1を参照するものとし、その説明を省略する。なお、実施の形態1と同様の構成については実施の形態1と同じ符号を用いる。
(Embodiment 3)
The third embodiment is a mode in which the number of times of measurement during a period in which the ion generator 6 is in an operating state is different from the number of times of measurement in a period in which the ion generating unit 6 is in a non-operating state. In the following description, for the same configuration as in the first embodiment, the first embodiment is referred to, and the description thereof is omitted. Note that the same reference numerals as those in the first embodiment are used for configurations similar to those in the first embodiment.
 図12は本発明の実施の形態3における各部の動作タイミングを説明するための図である。図12に示すように、補正電圧V11の計測が1回行われ、その計測結果は一定時間において補正値として使用し続ける。時点t1において、CPU81は、出力I/F88を介して、イオン発生部駆動回路91にオフ信号を出力し、イオン発生部6はイオン発生動作が停止されて、イオンを発生しない非動作状態となり、計測部87の積分回路87aによる積分が開始され、補正電圧V11を計測する。時点t2になると、CPU81は、出力I/F88を介して、イオン発生部駆動回路91にオン信号を出力し、イオン発生部6はイオン発生動作が開始されて、イオンを発生する動作状態となり、計測部87は、スイッチ873がリセットされ、積分回路87aによる積分が再開され、計測電圧V12を計測する。時点t3において、イオン発生部6が依然として動作状態であり、時点t2と同様な動作を行うとともに積分補正を行ない、即ち、時点t2~時点t3期間に計測された計測電圧V12と、時点t1~時点t2期間に計測された補正電圧V11との差分を求めて、イオン電圧を得る。時点t4において、イオン発生部6が依然として動作状態であり、時点t3と同様な動作を行うとともに積分補正を行ない、時点t3~時点t4期間に計測された計測電圧V22と、時点t1~時点t2期間に計測された補正電圧V11との差分を求めて、イオン電圧を得る。このように繰り返すことにより、捕集電極86により捕集されたイオンによる電圧が得られ、数式(1)、(2)からイオン量が得られる。 FIG. 12 is a diagram for explaining the operation timing of each part in the third embodiment of the present invention. As shown in FIG. 12, the correction voltage V11 is measured once, and the measurement result continues to be used as a correction value for a fixed time. At time t1, the CPU 81 outputs an off signal to the ion generation unit drive circuit 91 via the output I / F 88, and the ion generation unit 6 is stopped and the ion generation operation is stopped, and the ion generation unit 6 is in a non-operation state in which no ions are generated. Integration by the integrating circuit 87a of the measuring unit 87 is started, and the correction voltage V11 is measured. At time t2, the CPU 81 outputs an ON signal to the ion generation unit drive circuit 91 via the output I / F 88, and the ion generation unit 6 starts the ion generation operation and enters an operation state in which ions are generated. In the measurement unit 87, the switch 873 is reset, the integration by the integration circuit 87a is restarted, and the measurement voltage V12 is measured. At time t3, the ion generator 6 is still in an operating state, performs the same operation as at time t2, and performs integral correction, that is, the measured voltage V12 measured during the period from time t2 to time t3, and time t1 to time A difference from the correction voltage V11 measured in the period t2 is obtained to obtain an ion voltage. At time t4, the ion generator 6 is still in an operating state, performs the same operation as at time t3, performs integration correction, and measures the voltage V22 measured from time t3 to time t4, and from time t1 to time t2 The difference from the measured correction voltage V11 is obtained to obtain the ion voltage. By repeating in this way, a voltage due to the ions collected by the collecting electrode 86 is obtained, and the amount of ions can be obtained from the equations (1) and (2).
 実施の形態3では、1回の計測ごとに1周期分の積分を実施するとされたが、これに限らず、1回の計測ごとに複数の周期分の積分を実施して計測結果の平均値を算出することが好ましい。 In the third embodiment, integration for one cycle is performed for each measurement, but this is not limiting, and integration for a plurality of cycles is performed for each measurement, and the average value of measurement results Is preferably calculated.
 実施の形態3では、漏れ電流の計測が1回行われ、その計測結果は一定時間に漏れ補正値として使用し続ける。このため、イオン量測定の時間を短縮させることができる。また、イオン発生部6のイオン発生動作を停止する機会が少なくなるので、イオン発生動作を停止する際の不連続性による違和感を抑えることができる。 In Embodiment 3, the leakage current is measured once, and the measurement result is continuously used as a leakage correction value for a fixed time. For this reason, the time of ion content measurement can be shortened. Moreover, since the opportunity to stop the ion generation operation of the ion generation unit 6 is reduced, it is possible to suppress a sense of discomfort due to discontinuity when stopping the ion generation operation.
 以上の実施の形態では、本発明のイオン量測定装置を空気調和機に設ける場合について説明したが、本発明に係るイオン量測定装置は、医療用物質発生器、空気清浄機、加湿器、除湿機、温風機、扇風機、掃除機等のイオン発生器を備えた機器に適用されることができる。また、本発明に係るイオン量測定装置は、各種のノイズを除去する手段と組み合わせて使用することができる。 In the above embodiment, the case where the ion amount measuring device of the present invention is provided in an air conditioner has been described. However, the ion amount measuring device according to the present invention includes a medical substance generator, an air purifier, a humidifier, and a dehumidifier. The present invention can be applied to devices equipped with an ion generator such as a machine, a warm air fan, a fan, and a vacuum cleaner. Moreover, the ion content measuring apparatus according to the present invention can be used in combination with means for removing various noises.
 以上の実施の形態では、時点t3から計測結果の差分を算出する例を説明したが、計測結果の差分を算出する時点は、補正電圧V1及び計測電圧V2を計測した後の任意の時点であってもよい。 In the above embodiment, the example in which the difference between the measurement results is calculated from the time point t3 has been described. However, the time point at which the difference between the measurement results is calculated is an arbitrary time point after the correction voltage V1 and the measurement voltage V2 are measured. May be.
 要するに、以上の実施の形態は例示であって、制限的なものではないと考えられるべきである。本発明の範囲は、上記した意味ではなく、請求の範囲によって示され、請求の範囲と均等の意味及び範囲内でのすべての変更が含まれることが意図される。 In short, it should be considered that the above embodiment is an example and is not restrictive. The scope of the present invention is defined not by the above-described meaning but by the scope of claims, and is intended to include all modifications within the meaning and scope equivalent to the scope of claims.
 6  イオン発生部(イオン発生器)
 8  イオン量測定装置
 81  CPU(制御手段)
 84  タイマ
 86  捕集電極
 87  計測部(計測手段)
 87a  積分回路
 871  オペアンプ
 872  コンデンサ
 873  スイッチ
 89  A/D変換回路
 90  表示部(表示手段)
6 Ion generator (ion generator)
8 Ion content measuring device 81 CPU (control means)
84 Timer 86 Collection electrode 87 Measuring unit (Measuring means)
87a integration circuit 871 operational amplifier 872 capacitor 873 switch 89 A / D conversion circuit 90 display unit (display means)

Claims (9)

  1.  イオン発生器により発生されたイオンを捕集する捕集電極と、該捕集電極の電位を計測する計測手段とを有するイオン量測定装置において、
     前記イオン発生器を、イオンを発生する動作状態、又はイオンを発生しない非動作状態にさせる制御手段を有し、
     前記イオン発生器が動作状態にある期間の前記計測手段による計測結果、及び前記イオン発生器が非動作状態にある期間の前記計測手段による計測結果の差分に基づいてイオン量を算出して測定するようにしてあることを特徴とするイオン量測定装置。
    In an ion content measurement apparatus having a collection electrode for collecting ions generated by an ion generator, and a measuring means for measuring the potential of the collection electrode,
    Control means for causing the ion generator to be in an operating state for generating ions or in a non-operating state for not generating ions,
    Calculating and measuring the amount of ions based on the difference between the measurement result by the measurement means during the period when the ion generator is in operation and the measurement result by the measurement means during the period when the ion generator is not in operation. An ion content measuring apparatus characterized by being configured as described above.
  2.  前記制御手段は、前記イオン発生器の動作状態が所定時間継続した場合、前記イオン発生器を非動作状態にさせるようにしてあることを特徴とする請求項1に記載のイオン量測定装置。 2. The ion amount measuring apparatus according to claim 1, wherein the control means is configured to make the ion generator inactive when the operation state of the ion generator continues for a predetermined time.
  3.  前記動作状態が継続する時間と、前記非動作状態が継続する時間とは異なることを特徴とする請求項2に記載のイオン量測定装置。 3. The ion amount measuring apparatus according to claim 2, wherein a time during which the operating state continues is different from a time during which the non-operating state continues.
  4.  前記イオン発生器が動作状態にある期間に前記計測手段にて計測する回数と、前記イオン発生器が非動作状態にある期間に前記計測手段にて計測する回数とは異なるようにしてあることを特徴とする請求項1に記載のイオン量測定装置。 The number of times measured by the measuring means during a period in which the ion generator is in an operating state is different from the number of times measured by the measuring means in a period in which the ion generator is in a non-operating state. The ion content measuring apparatus according to claim 1, wherein
  5.  前記イオン発生器が非動作状態にある期間に、前記計測手段にて1回計測し、前記イオン発生器が動作状態にある期間に、前記計測手段にて複数回計測するようにしてあることを特徴とする請求項4に記載のイオン量測定装置。 In the period when the ion generator is in the non-operating state, it is measured once by the measuring means, and during the period in which the ion generator is in the operating state, the measuring means is measured a plurality of times. The ion content measuring apparatus according to claim 4, wherein
  6.  ノイズを除去する手段を有することを特徴とする請求項1から5の何れか一つに記載のイオン量測定装置。 6. The ion amount measuring apparatus according to claim 1, further comprising means for removing noise.
  7.  イオンを発生するイオン発生器と、
     請求項1から請求項6の何れか一つに記載のイオン量測定装置と
     を有し、
     前記イオン発生器が発生したイオンの量を前記イオン量測定装置により測定するようにしてあることを特徴とするイオン発生装置。
    An ion generator for generating ions;
    An ion content measuring device according to any one of claims 1 to 6,
    An ion generating apparatus characterized in that the amount of ions generated by the ion generator is measured by the ion amount measuring apparatus.
  8.  前記イオン量測定装置による測定結果を表示する表示手段を有することを特徴とする請求項7に記載のイオン発生装置。 8. The ion generating apparatus according to claim 7, further comprising display means for displaying a measurement result obtained by the ion amount measuring apparatus.
  9.  イオン発生器により発生されたイオンを捕集し、捕集したイオンによる電位を計測するイオン量測定方法において、
     前記イオン発生器を、イオンを発生する動作状態、又はイオンを発生しない非動作状態にさせ、
     前記イオン発生器が動作状態にある期間に計測される計測結果、及び前記イオン発生器が非動作状態にある期間に計測される計測結果の差分に基づいてイオン量を算出して測定することを特徴とするイオン量測定方法。
    In the ion content measurement method for collecting the ions generated by the ion generator and measuring the potential due to the collected ions,
    Making the ion generator into an operating state for generating ions, or a non-operating state for generating no ions,
    Calculating and measuring the amount of ions based on a difference between a measurement result measured during a period in which the ion generator is in operation and a measurement result measured in a period in which the ion generator is in a non-operation state. A characteristic ion content measurement method.
PCT/JP2012/067272 2011-07-27 2012-07-06 Ion content measurement device, ion content measurement method, and ion generation device WO2013015092A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011164769A JP2013029385A (en) 2011-07-27 2011-07-27 Ion content measurement device, ion content measurement method, and ion generation device
JP2011-164769 2011-07-27

Publications (1)

Publication Number Publication Date
WO2013015092A1 true WO2013015092A1 (en) 2013-01-31

Family

ID=47600946

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/067272 WO2013015092A1 (en) 2011-07-27 2012-07-06 Ion content measurement device, ion content measurement method, and ion generation device

Country Status (2)

Country Link
JP (1) JP2013029385A (en)
WO (1) WO2013015092A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020008317A (en) * 2018-07-03 2020-01-16 新日本無線株式会社 Ion sensor
WO2020090438A1 (en) * 2018-10-31 2020-05-07 日本碍子株式会社 Microparticle detector

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06194340A (en) * 1992-09-18 1994-07-15 Sorbios Verfahrenstechnische Geraete & Syst Gmbh Ion measurement device
JP2003014694A (en) * 2001-06-29 2003-01-15 Andes Denki Kk Ion measuring equipment
JP2003336872A (en) * 2002-05-23 2003-11-28 Sharp Corp Ion generator
JP2010092773A (en) * 2008-10-09 2010-04-22 Sharp Corp Ion generating device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06194340A (en) * 1992-09-18 1994-07-15 Sorbios Verfahrenstechnische Geraete & Syst Gmbh Ion measurement device
JP2003014694A (en) * 2001-06-29 2003-01-15 Andes Denki Kk Ion measuring equipment
JP2003336872A (en) * 2002-05-23 2003-11-28 Sharp Corp Ion generator
JP2010092773A (en) * 2008-10-09 2010-04-22 Sharp Corp Ion generating device

Also Published As

Publication number Publication date
JP2013029385A (en) 2013-02-07

Similar Documents

Publication Publication Date Title
JP4610657B2 (en) Ion generator and method for determining presence / absence of ions
WO2010023979A1 (en) Ion detection device and ion generation device
KR20200056092A (en) air cleaning apparatus and control method of air cleaning apparatus
JP4703770B1 (en) Ion generator and method for determining presence / absence of ions
WO2013015092A1 (en) Ion content measurement device, ion content measurement method, and ion generation device
KR20060089447A (en) A sterilizing apparatus and ion generating apparatus
JP5197291B2 (en) Ion generator
JP3726220B2 (en) Air cleaner
KR20190129335A (en) Air cleaner calculating information for its used space
JP4979798B2 (en) Ion detection device, air conditioner and ion measuring instrument
JP4411356B1 (en) Ion detection device and ion generator provided with the same
JPH01180258A (en) Dust concentration detector and air cleaner provided with said detector
JPH11156131A (en) Method for judging filter replacement time and air cleaner using the same
KR102340317B1 (en) Ion generator
JPH0216445A (en) Dust concentration detecting device and air cleaner equipped with same
KR101198883B1 (en) Air cleaning system using negative ion aerosol
JP2004192993A (en) Negative ion generating device, manufacturing method and air cleaner thereof, air conditioning equipment
KR101906305B1 (en) Apparatus for sensing water level using capacitance type
JP2013218852A (en) Charged particle generation device
KR20210101018A (en) Apparatus for Producing Ion for Air Cleaning Indoor
JP3331923B2 (en) Odor detector and air purifier
JP3112384B2 (en) Electric dust collector control device
JP2003194777A (en) Air ion measuring instrument
KR20160051258A (en) Apparatus for detecting water level of air washer
KR20090084430A (en) Air purifying device with anion and cation producer for a vehicle

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12817589

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12817589

Country of ref document: EP

Kind code of ref document: A1