WO2012026014A1 - 風力発電装置及び出力制御方法 - Google Patents

風力発電装置及び出力制御方法 Download PDF

Info

Publication number
WO2012026014A1
WO2012026014A1 PCT/JP2010/064470 JP2010064470W WO2012026014A1 WO 2012026014 A1 WO2012026014 A1 WO 2012026014A1 JP 2010064470 W JP2010064470 W JP 2010064470W WO 2012026014 A1 WO2012026014 A1 WO 2012026014A1
Authority
WO
WIPO (PCT)
Prior art keywords
output
generator
power
wind turbine
wind
Prior art date
Application number
PCT/JP2010/064470
Other languages
English (en)
French (fr)
Inventor
明 八杉
Original Assignee
三菱重工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱重工業株式会社 filed Critical 三菱重工業株式会社
Priority to CN201080002715.0A priority Critical patent/CN102597506B/zh
Priority to EP10784654.5A priority patent/EP2610486B1/en
Priority to PCT/JP2010/064470 priority patent/WO2012026014A1/ja
Priority to BRPI1004556A priority patent/BRPI1004556A2/pt
Priority to KR1020117006803A priority patent/KR101303404B1/ko
Priority to AU2010257198A priority patent/AU2010257198A1/en
Priority to JP2010548965A priority patent/JP5244923B2/ja
Priority to CA2724601A priority patent/CA2724601C/en
Priority to US12/966,576 priority patent/US8299650B2/en
Publication of WO2012026014A1 publication Critical patent/WO2012026014A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D7/00Controlling wind motors 
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P9/00Arrangements for controlling electric generators for the purpose of obtaining a desired output
    • H02P9/10Control effected upon generator excitation circuit to reduce harmful effects of overloads or transients, e.g. sudden application of load, sudden removal of load, sudden change of load
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D7/00Controlling wind motors 
    • F03D7/02Controlling wind motors  the wind motors having rotation axis substantially parallel to the air flow entering the rotor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D7/00Controlling wind motors 
    • F03D7/02Controlling wind motors  the wind motors having rotation axis substantially parallel to the air flow entering the rotor
    • F03D7/028Controlling wind motors  the wind motors having rotation axis substantially parallel to the air flow entering the rotor controlling wind motor output power
    • F03D7/0284Controlling wind motors  the wind motors having rotation axis substantially parallel to the air flow entering the rotor controlling wind motor output power in relation to the state of the electric grid
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D9/00Adaptations of wind motors for special use; Combinations of wind motors with apparatus driven thereby; Wind motors specially adapted for installation in particular locations
    • F03D9/10Combinations of wind motors with apparatus storing energy
    • F03D9/11Combinations of wind motors with apparatus storing energy storing electrical energy
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D9/00Adaptations of wind motors for special use; Combinations of wind motors with apparatus driven thereby; Wind motors specially adapted for installation in particular locations
    • F03D9/20Wind motors characterised by the driven apparatus
    • F03D9/25Wind motors characterised by the driven apparatus the apparatus being an electrical generator
    • F03D9/255Wind motors characterised by the driven apparatus the apparatus being an electrical generator connected to electrical distribution networks; Arrangements therefor
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P9/00Arrangements for controlling electric generators for the purpose of obtaining a desired output
    • H02P9/04Control effected upon non-electric prime mover and dependent upon electric output value of the generator
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2240/00Components
    • F05B2240/90Mounting on supporting structures or systems
    • F05B2240/96Mounting on supporting structures or systems as part of a wind turbine farm
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2270/00Control
    • F05B2270/10Purpose of the control system
    • F05B2270/104Purpose of the control system to match engine to driven device
    • F05B2270/1041Purpose of the control system to match engine to driven device in particular the electrical frequency of driven generator
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2270/00Control
    • F05B2270/70Type of control algorithm
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P2101/00Special adaptation of control arrangements for generators
    • H02P2101/15Special adaptation of control arrangements for generators for wind-driven turbines
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/72Wind turbines with rotation axis in wind direction
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E70/00Other energy conversion or management systems reducing GHG emissions
    • Y02E70/30Systems combining energy storage with energy generation of non-fossil origin

Definitions

  • the present invention relates to a wind turbine generator and an output control method.
  • Patent Document 1 discloses that a variable frequency generated power of a generator connected to a wind turbine shaft is converted into DC power by a forward converter, and the DC power is converted by an inverse converter.
  • Wind power generator that converts to AC power directly connects a chargeable / dischargeable secondary battery between the forward converter and the reverse converter, and constantly controls the secondary battery to control output fluctuation to the power system. Is described.
  • the output value of the high-frequency elimination filter that removes fluctuations from the detected output value of the generator is used as the output value of the inverse converter, and the generator
  • the secondary battery charges and discharges and absorbs the difference between the output and the output of the inverter, fluctuations in the output to the power system are suppressed.
  • An object of the present invention is to provide a wind turbine generator and an output control method capable of performing the above.
  • the present invention employs the following means.
  • a wind turbine rotor having a plurality of blades receives wind to rotate, and the generator is driven by the rotation of the wind turbine rotor.
  • a power generation system for deriving a slope of a change in the output of the generator, and determining means for determining an increase or decrease in the output of the generator based on the derived slope;
  • Control means for performing power control based on the determination result of the determination means.
  • the determination means derives the inclination of the change in the output of the generator that generates power by the rotation of the wind turbine rotor, and the increase / decrease in the output of the generator is determined based on the derived inclination.
  • the slope of the change in output is derived from, for example, the slope of a straight line connecting the detected values by detecting the output of the generator a plurality of times at predetermined time intervals.
  • the determining means determines that the output of the generator is increasing when the slope of the change is 0 ° ⁇ ⁇ 90 °, and the output of the generator is when 270 ° ⁇ ⁇ 360 °. Judge that it is decreasing.
  • the case where the output is increasing is a case where the wind speed is increasing
  • the case where the output is decreasing is a case where the wind speed is decreasing. Then, when the frequency of the power system is lowered by the control means, power control is performed based on the determination result of the determination means. From the above, the present invention can more effectively compensate for a reduction in the power supply amount of the power system by accurately detecting the output fluctuation of the generator with a simple configuration.
  • the wind power generator of the present invention comprises a rechargeable secondary battery
  • the control means is a case where the frequency of the power system is reduced, and the output of the generator is reduced by the determination means.
  • the difference between the output of the generator and the power required by the power system is determined by at least the inertial force stored in the wind turbine rotor and the power charged in the secondary battery. On the other hand, you may control so that it may supplement.
  • the frequency of the power system When an abnormality occurs in the power system (for example, disconnection of a large power plant), the frequency of the power system temporarily decreases significantly. Then, this decrease in frequency gradually returns to an equilibrium state while repeating frequency fluctuations. Therefore, the wind turbine generator varies the output of the connected power plant according to the variation of the frequency of the current system in order to compensate for the decrease of the frequency of the power system, that is, the decrease of the power supply amount of the power system. A request arises. Note that the request is the power required by the power system. Therefore, according to the present invention, when the frequency of the power system is reduced and the determination means determines that the output of the generator is decreasing, the output of the generator and the power system are determined by the control means.
  • Control is performed so that the difference from the required power is compensated for at least one of the inertial force stored in the wind turbine rotor and the power charged in the secondary battery. For this reason, the present invention can supply the output required by the power system even when the power supply amount of the power system is reduced and the wind speed is decreasing.
  • the wind power generator of the present invention is a case where the frequency of the chargeable / dischargeable secondary battery and the power system is lowered, and the output of the generator is determined to be increased by the determination means.
  • the storage means stores the output of the generator when the frequency of the power system is lowered, and the control means limits the output of the generator to the output stored in the storage means. Is done. Further, the control means controls so that the difference between the output of the generator and the power required by the power system is supplemented by the inertial force stored in the wind turbine rotor and the power charged in the secondary battery. For this reason, the present invention can supply the output required by the power system even when the power supply amount of the power system is reduced and the wind speed is increased.
  • control unit may control the pitch angle of the blade so that the output of the generator becomes an output stored in the storage unit.
  • the pitch angle of the blade is controlled by the control means so that the output of the generator becomes the output stored in the storage means. For this reason, this invention can reduce the output of a generator easily.
  • the control unit In the wind power generator of the present invention, a plurality of the secondary batteries are provided, and the control unit generates power from the generator so that the output of the generator becomes the output stored in the storage unit. You may control so that electric power may be charged to the said secondary battery which does not contribute to discharge among several said secondary batteries. According to the present invention, the power generated by the generator is charged into the secondary battery that does not contribute to the discharge by the control means so that the output of the generator becomes the output stored in the storage means. For this reason, this invention can reduce the output of a generator easily.
  • the wind turbine rotor having a plurality of blades rotates by receiving wind
  • the generator is driven by the rotation of the wind turbine rotor.
  • An output control method for a wind turbine generator that transmits the generated power to an electric power system, wherein a slope of a change in the output of the generator is derived, and an increase or decrease in the output of the generator is determined based on the derived slope
  • the slope of the change in the output of the generator is derived, and the increase / decrease in the output of the generator is determined based on the slope of the derived change. Based on the power control. For this reason, this invention can compensate the fall of the electric power supply amount of an electric power grid
  • FIG. 1 is an external view of a wind turbine generator according to an embodiment of the present invention. It is a block diagram which shows the electric constitution of the wind power generator which concerns on embodiment of this invention. It is a flowchart which shows the flow of a process of the output control program which concerns on embodiment of this invention. It is a graph required for description of derivation
  • the wind power generator according to the embodiment of the present invention is a schematic diagram showing a ratio between the output of the windmill secondary battery device and the inertial force stored in the windmill rotor for outputting electric power that satisfies the required output, (A) is a case where the requested output is equal to or greater than a predetermined threshold, and (B) is a case where the requested output is less than the predetermined threshold.
  • A is a case where the requested output is equal to or greater than a predetermined threshold
  • B is a case where the requested output is less than the predetermined threshold.
  • FIG. 1 is an external view of a wind turbine generator 10 according to the present embodiment.
  • the wind power generator 10 includes a tower 12, a nacelle 14 provided on the top of the tower 12, and a windmill rotor 16.
  • the nacelle 14 includes a generator 20 and the like (see also FIG. 2) therein, and the wind turbine rotor 16 and the generator 20 are mechanically connected, and the rotation of the wind turbine rotor 16 is transmitted to the generator 20. It has become so. Further, the nacelle 14 can turn in a desired yaw direction together with the wind turbine rotor 16.
  • the wind turbine rotor 16 includes a plurality of blades 22 and a hub 24. Several blades 22 to be blown can be variably controlled in pitch angle, and are provided radially on the hub 24.
  • the wind turbine generator 10 rotates the wind turbine rotor 16 when the blade 22 receives wind energy, and drives the generator 20 by the rotation of the wind turbine rotor 16 and also generates the electric power generated by the generator 20 in the power system. Power to
  • FIG. 2 is a block diagram showing an electrical configuration of the wind turbine generator 10 according to the present embodiment.
  • An AC-DC converter 30A is connected to the generator 20, and the AC-DC converter 30A converts AC power output from the generator 20 into DC.
  • a DC-DC converter 32 and a DC-AC converter 34 are connected to the AC-DC converter 30A.
  • a windmill secondary battery device 36 that is a rechargeable secondary battery (for example, a lithium battery) disposed in the nacelle 14 is connected to the DC-DC converter 32, and the AC-DC converter 30A performs direct current. Is converted into a voltage of a magnitude that can charge the windmill secondary battery device 36.
  • the DC-AC converter 34 converts the power converted into DC by the AC-DC converter 30A again into AC.
  • the electric power converted into alternating current by the direct current-alternating current converter 34 is transmitted to the electric power system 42 via the transformer 38A and the main line 40 for electrical connection with other wind power generators.
  • the main line 40 for transmitting power to the power system 42 includes a farm secondary battery device 44, which is a rechargeable secondary battery (for example, a lithium battery) disposed outside the nacelle 14, and includes a transformer 38B and They are connected via an AC-DC converter 30B.
  • the farm secondary battery device 44 may be provided for each wind power generator 10 or may be provided for each predetermined number of wind power generators 10.
  • the wind power generator 10 includes a power detection unit 46 that detects the output of the generator 20.
  • the power detection unit 46 detects power at predetermined time intervals (for example, every 3 seconds).
  • the wind power generator 10 includes a control unit 48.
  • the control unit 48 receives a detection value indicating the power detected by the power detection unit 46, and also includes the wind turbine rotor 16, the AC-DC conversion unit 30A, the DC-DC conversion unit 32, the DC-AC conversion unit 34, and Controls the AC-DC converter 30B.
  • control unit 48 includes a storage unit 50 constituted by a magnetic storage device or a semiconductor storage device.
  • the storage unit 50 is used as a work area for various data storage and programs executed by the control unit 48.
  • FIG. 3 is a flowchart showing the flow of processing of the output change determination program executed by the control unit 48 when the output change determination process is performed.
  • the output change determination program is stored in a predetermined area of the storage unit 50 in advance. ing. In addition, this program is started when the wind power generator 10 starts electric power generation, for example.
  • step 100 the process waits until a detection value is input from the power detection unit 46.
  • the process proceeds to step 102.
  • step 102 the detected value of the output of the generator 20 input from the power detection unit 46 is stored in the storage unit 50.
  • step 104 whether or not the detected value stored in the storage unit 50 is stored more than a predetermined number (in this embodiment, two as an example) necessary for determining increase / decrease in the output of the generator 20. If the determination is affirmative, the process proceeds to step 106. If the determination is negative, the process returns to step 100.
  • a predetermined number in this embodiment, two as an example
  • step 106 the slope of the change in the output of the generator 20 is derived based on the predetermined number of detection values stored in the storage unit 50.
  • FIG. 4 is a graph showing changes in power (output) detected by the power detection unit 46.
  • the detection value n shown in FIG. 4 is the latest detection value
  • the detection value n ⁇ 1 is a detection value detected immediately before the detection value n.
  • the slope ⁇ of the straight line L connecting the detection value n and the detection value n ⁇ 1 is derived as the slope of the change in output.
  • the number of detection values required to determine increase / decrease in the output of the generator 20 may be three or more.
  • an approximate line of a straight line is obtained from three or more detection values, and the slope of the approximate line is set as the slope of the change in the output of the generator 20.
  • the increase / decrease in the output of the generator 20 is determined based on the slope ⁇ derived in step 106. Specifically, when the inclination ⁇ is, for example, 0 ° ⁇ ⁇ 90 °, it is determined that the wind speed is increasing and the output of the generator 20 is increasing. On the other hand, when the inclination ⁇ is, for example, 270 ° ⁇ ⁇ 360 °, it is determined that the wind speed is decreasing and the output of the generator 20 is decreasing. When the inclination ⁇ is neither 0 ° ⁇ ⁇ 90 ° nor 270 ° ⁇ ⁇ 360 °, it is determined that there is no increase or decrease in the output of the generator 20. In other words, the determination result is one of three types: output increase, output decrease, and no output increase / decrease.
  • step 110 it is determined whether an instruction to stop the power generation of the wind turbine generator 10 has been input by the operator via a control panel (not shown). If the determination is affirmative, the program is terminated. If the determination is negative, the process returns to step 100.
  • the frequency of the power system 42 to which the wind power generator 10 is connected is reduced due to an abnormality (for example, disconnection of a large power plant) in the power system 42 will be described.
  • an abnormality for example, as shown in FIG. 5
  • the frequency of the power system 42 may temporarily greatly decrease (frequency decrease in the range of 0 to 5 sec). This decrease in frequency returns to the equilibrium state while repeating minute fluctuations in frequency (frequency fluctuations in which the period after 5 seconds is 2 seconds).
  • the wind power generation apparatus 10 is required to change the output power in accordance with the change in the frequency of the power system 42 in order to compensate for the reduction in the frequency of the power system 42, that is, the reduction in the power of the power system 42. That is, this request is the power required by the power system 42 for the wind power generator 10 (hereinafter referred to as “request output”).
  • the required output is obtained from the following equation (1).
  • ⁇ P is the fluctuation range of the required output according to the fluctuation of the frequency of the power system 42
  • f is the frequency of the power system
  • R is a predetermined constant.
  • FIG. 6 is a graph showing a required output according to a decrease in the frequency of the power system 42 shown in FIG. As shown in FIG. 6, the required output increases when the frequency variation of the power system 42 is large, and the required output decreases when the frequency variation of the power system 42 is small.
  • wind power generator 10 which concerns on this embodiment is controlled by the control part 48 so that a required output may be output, when the frequency of the electric power grid
  • FIG. 7 is a block diagram showing functions of the control unit 48 related to output of the requested output.
  • the control unit 48 includes a request output calculation unit 60, an output change determination processing unit 62, and a control command generation unit 64.
  • the control unit 48 receives the frequency of the power system 42.
  • the required output calculation unit 60 calculates a required output to be increased with respect to the output of the wind turbine generator 10 from the frequency of the input power system 42 using the above equation (1), and outputs the calculated value as an output increase command.
  • the value is output to the control command generator 64 as a value.
  • the output change determination processing unit 62 performs the above-described output change determination processing, determines increase / decrease in output by the generator 20, and outputs the determination result to the control command generation unit 64.
  • the control command generator 64 controls the wind turbine rotor 16 based on the rotation speed of the wind turbine rotor 16, the output increase command value output from the request output calculator 60, and the determination result by the output change determination processor 62.
  • a wind turbine rotor control command value, a charge / discharge control command value for controlling charge / discharge of at least one of the wind turbine secondary battery device 36 and the farm secondary battery device 44 are generated.
  • the wind turbine rotor control command value is transmitted to the wind turbine rotor controller 66, and the charge / discharge control command value is transmitted to the wind turbine charge / discharge controller 68 and the farm charge / discharge controller 70.
  • the wind turbine rotor controller 66 applies braking force (brake) to the wind turbine rotor 16 or changes the pitch angle of the blades 22 based on the wind turbine rotor control command value.
  • the windmill charge / discharge controller 68 controls the DC-DC converter 32 so that the windmill secondary battery device 36 is charged / discharged based on the charge / discharge control command value.
  • the firm charge / discharge controller 70 controls the AC-DC converter 30B so that the firm secondary battery device 44 is charged / discharged based on the charge / discharge control command value.
  • the frequency of the power system 42 due to the occurrence of an abnormality in the power system 42 greatly decreases immediately after the occurrence of the abnormality, as shown in FIG. 5 described above. And the required output with respect to the large fall of this frequency is large compared with it after that, as shown in FIG. Therefore, a large decrease in the frequency of the electric power system 42 is compensated by using an inertial force (inertial energy) stored in the windmill rotor 16 by applying a braking force to the windmill rotor 16.
  • FIG. 8 shows a change in the output of the wind power generator 10, and also shows an example of the timing at which an abnormality has occurred in the power system 42 when the output of the generator 20 is decreasing.
  • FIG. 8B is an enlarged view of the region A. Then, as shown in FIG. 8 (B), the output of the wind turbine generator 10 temporarily becomes close to the required output due to the compensation by the inertia force stored in the wind turbine rotor 16. However, the output of the generator 20 thereafter decreases because the braking force is applied to the wind turbine rotor 16. Therefore, the wind power generator 10 cannot output the requested output.
  • the control command generation unit 64 generates a wind turbine rotor control command value and a charge / discharge control command value for the wind turbine generator 10 to output a required output.
  • FIG. 9 shows the ratio between the output of the wind turbine secondary battery device 36 and the inertial force stored in the wind turbine rotor 16 for the wind power generator 10 to output power that satisfies the required output.
  • FIG. 9A shows the wind turbine secondary battery device 36 and the wind turbine rotor when the output increase command value indicating the required output is equal to or higher than a predetermined ratio (for example, 3%) with respect to the output of the wind power generator 10.
  • 16 shows the ratio to the inertial force stored in 16. In the following description, the ratio is simply referred to as a threshold value.
  • the control command generator 64 causes the inertial force stored in the wind turbine rotor 16 to increase as the rotational speed of the wind turbine rotor 16 increases as shown in FIG.
  • the wind turbine rotor control command value and the charging / discharging control command value are generated so that the output from is increased and the output from the wind turbine secondary battery device 36 is decreased.
  • the control command generator 64 does not generate the wind turbine rotor control command value as shown in FIG. Regardless of the rotational speed of 16, the charge / discharge control command value is generated so as to satisfy the required output by the discharge of the windmill secondary battery device 36. This is because when the output increase command value is less than the threshold value, the output to be followed is too small and the output cannot be followed by the control for the wind turbine rotor 16.
  • FIG. 10 shows an example in which the inertia force stored in the wind turbine rotor 16 and the wind turbine secondary battery device 36 are used for compensation.
  • the inertial force stored in the windmill rotor 16 is compensated by the windmill secondary battery device 36
  • the inertial force stored in the windmill rotor 16 is compared with the case where only the inertial force is used.
  • the difference between the output of the wind turbine generator 10 and the required output is reduced.
  • the required output cannot be satisfied only by the discharge by the windmill secondary battery device 36.
  • the firm secondary battery device 44 is also discharged, and a charge / discharge control command value for performing compensation using the firm secondary battery device 44 is generated.
  • the wind turbine generator 10 is the case where the frequency of the power system 42 is reduced and the output of the generator 20 and the request when the output of the generator 20 is reduced.
  • the difference from the output is compensated by the inertial force stored in the wind turbine rotor 16 and the electric power charged in the wind turbine secondary battery device 36 or the farm secondary battery device 44.
  • the difference between the output of the generator 20 and the required output may be compensated only by the inertial force stored in the windmill rotor 16, or the windmill secondary battery device 36 or the farm secondary battery device 44 is charged. It may be supplemented only with the electric power.
  • the wind power generator 10 determines whether the output change determination processing unit 62 increases or decreases the output of the generator 20 while performing output according to the requested output, and the control command generation unit 64 determines the increase or decrease in output according to the determination result.
  • a wind turbine rotor control command value and a charge / discharge control command value are newly generated and output.
  • FIG. 11 shows a change in the output of the wind power generator 10 and shows an example of the timing at which an abnormality has occurred in the power system 42 when the output of the generator 20 is increasing.
  • FIG. 11B is an enlarged view of the region A.
  • FIG. 11B shows an example in which compensation is performed by inertia force stored in the wind turbine rotor 16 as the frequency of the power system 42 decreases.
  • the output of the wind power generator 10 temporarily corresponds to the required output.
  • the output of the wind power generator 10 may exceed the required output thereafter.
  • the wind turbine generator 10 reduces the output of the generator 20 when the frequency of the power system 42 decreases and the output of the generator 20 increases.
  • the control unit 48 outputs the output of the generator (hereinafter referred to as “storage output”) when the frequency of the power system 42 decreases in the storage unit 50, that is, when an abnormality occurs in the power system 42.
  • the control unit 48 controls the output of the generator 20 to be a stored output, and also calculates the difference between the output of the generator 20 and the required output and the inertia force stored in the wind turbine rotor 16 and the wind turbine secondary.
  • the battery device 36 is controlled to be supplemented with electric power charged.
  • control command generator 64 first applies the wind turbine rotor control command value for applying a braking force to the wind turbine rotor 16 and the wind turbine secondary battery device 36 corresponding to the frequency that greatly decreases immediately after the occurrence of abnormality in the power system 42.
  • a charge / discharge control command value for discharging the battery is generated.
  • the wind power generator 10 outputs electric power that satisfies the required output by compensating for the inertia force stored in the wind turbine rotor 16 and the electric power discharged from the wind turbine secondary battery device 36.
  • the control command generation unit 64 generates a wind turbine rotor control command value for controlling the pitch angle of the blade 22 so that the output of the generator 20 decreases to the stored output. Specifically, by generating a wind turbine rotor control command value that changes the pitch angle of the blade 22 to the feather side, the wind force received by the blade 22 is reduced and the output of the generator 20 is reduced.
  • the dashed-dotted line of FIG. 12 has shown the case where the output of the generator 20 is reduced to the memory output. Thereby, it can suppress that the output of the wind power generator 10 exceeds request
  • control command generation unit 64 generates a windmill rotor control command value for controlling the pitch angle of the blade 22, and discharges the windmill secondary battery device 36 based on the output increase command value.
  • a charge / discharge control command value is generated for this purpose.
  • the wind power generator 10 can make an output correspond to a request
  • the wind turbine generator 10 stores the output of the generator 20 when the frequency of the power system 42 has decreased and the output of the generator 20 has increased.
  • the difference between the output of the generator 20 and the required output is charged to the inertial force stored in the wind turbine rotor 16 and the wind turbine secondary battery device 36. Make up with the power you have. For this reason, the wind power generator 10 can output the power required by the power system 42 even when the frequency of the power system is lowered and the wind speed is increased due to an abnormality occurring in the power system 42. it can.
  • the control command generation unit 64 also discharges the farm secondary battery device 44 when the required output cannot be satisfied only by the discharge by the windmill secondary battery device 36, and the farm secondary battery device The charge / discharge control command value for performing compensation using 44 is also generated. In addition, you may compensate by discharging only the farm secondary battery apparatus 44, without discharging the windmill secondary battery apparatus 36.
  • FIG. 1 A block diagram illustrating an exemplary computing environment in accordance with the present embodiment.
  • the pitch angle of the blade 22 is controlled in order to use the output of the generator 20 as the storage output has been described, but the present invention is not limited to this, and the generator 20 is not limited thereto.
  • the power generated by the generator 20 may be controlled so as to charge the secondary battery.
  • the windmill secondary battery device 36 includes a plurality of secondary batteries, and the secondary battery that does not contribute to the discharge among the plurality of secondary batteries is charged with the power generated by the generator 20.
  • the secondary battery which has contributed to discharge is the secondary battery currently discharged in order to make the output of the wind power generator 10 into a request
  • the wind turbine generator 10 having the windmill secondary battery device 36 transmits power charged in the windmill secondary battery device 36 to another wind turbine generator that does not include the windmill secondary battery device 36.
  • the output of the other wind power generator may satisfy the required output.
  • the wind turbine generator 10 receives the measurement value of the output output from the other wind turbine generator, and determines the difference between the requested output required for the other wind turbine generator and the received measurement value. Corresponding electric power is discharged from the windmill secondary battery device 36.

Abstract

 風力発電装置(10)は、風車ロータ(16)の回転により発電する発電機(20)の出力の変化の傾きを導出し、導出した出力の変化の傾きに基づいて、発電機(20)の出力の増減を判定する。そして、電力系統(42)の周波数が低下した場合、判定結果に基づいて電力制御を行う。このため、発電機(20)の出力変動を簡易な構成で正確に検知することで、より効果的に電力系統(42)の電力供給量の低下を補うことができる。

Description

風力発電装置及び出力制御方法
 本発明は、風力発電装置及び出力制御方法に関するものである。
 ブレードが風力エネルギーを受けて風車ロータが回転し、風車ロータの回転により発電機を駆動して発電する風力発電装置は、出力が風速の変動によって変動するという問題があった。
 この問題を解決するための技術として、特許文献1には、風車の軸に接続された発電機の可変周波数の発電電力を順変換器で直流電力に変換し、該直流電力を逆変換器で交流電力に変換し、順変換器と逆変換器の間に充放電可能な二次電池を直結し、電力系統への出力変動を抑制するように二次電池を常時充放電制御する風力発電装置が記載されている。より詳細には、特許文献1に記載されている風力発電装置は、発電機の出力の検出値から変動分を除去する高周波除去フィルタの出力値を、逆変換機の出力値とし、発電機の出力と逆変換機の出力との差分を、上記二次電池が充放電して吸収することにより、電力系統への出力の変動を抑制する。
特開2003-333752号公報
 しかしながら、特許文献1に記載の技術では、発電機の出力と高周波除去フィルタの出力値との差分を、二次電池が充放電して吸収するための電力としており、発電機から出力された電力の変動量を検知するための構成が複雑である。
 本発明は、このような事情に鑑みてなされたものであって、発電機の出力変動を簡易な構成で正確に検知することで、より効果的に電力系統の電力供給量の低下を補うことができる風力発電装置及び出力制御方法を提供することを目的とする。
 上記課題を解決するために、本発明は、以下の手段を採用する。
 本発明の第1の態様に係る風力発電装置は、複数枚のブレードを有する風車ロータが風を受けて回転し、該風車ロータの回転により発電機を駆動させると共に、該発電機によって発電した電力を電力系統に送電する風力発電装置であって、前記発電機の出力の変化の傾きを導出し、導出した該傾きに基づいて、前記発電機の出力の増減を判定する判定手段と、電力系統の周波数が低下した場合、前記判定手段の判定結果に基づいて電力制御を行う制御手段と、を備える。
 本発明によれば、判定手段によって、風車ロータの回転により発電する発電機の出力の変化の傾きが導出され、導出された該傾きに基づいて、前記発電機の出力の増減が判定される。
 なお、出力の変化の傾きは、例えば、発電機の出力を所定時間間隔で複数回検出し、検出値を結ぶ直線の傾きから導出される。例えば、判定手段は、変化の傾きが、0°<θ<90°の場合に発電機の出力が増加していると判定し、270°<θ<360°の場合に、発電機の出力が減少していると判定する。なお、出力が増加している場合とは、風速が上昇している場合であり、出力が減少している場合とは、風速が下降している場合である。
 そして、制御手段によって、電力系統の周波数が低下した場合、判定手段の判定結果に基づいて電力制御が行われる。
 以上のことから、本発明は、発電機の出力変動を簡易な構成で正確に検知することで、より効果的に電力系統の電力供給量の低下を補うことができる。
 また、本発明の風力発電装置は、充放電可能な二次電池を備え、前記制御手段が、前記電力系統の周波数が低下した場合であって、前記判定手段によって前記発電機の出力が減少していると判定された場合に、前記発電機の出力と前記電力系統が要求する電力との差を、前記風車ロータに蓄えられている慣性力及び前記二次電池に充電されている電力の少なくとも一方で補うように制御してもよい。
 電力系統に異常(例えば、大型発電所の解列)が発生すると、電力系統の周波数が一時的に大きく低下する。そして、この周波数の低下は、周波数の変動を繰り返しながら徐々に平衡の状態に戻る。そのため、風力発電装置は、電力系統の周波数の低下、すなわち電力系統の電力供給量の低下を補うために、電流系統の周波数の変動に応じて、連系されている発電所の出力を変動させる要求が生じる。なお、上記要求が、電力系統が要求する電力である。
 そこで、本発明によれば、電力系統の周波数が低下した場合であって、判定手段で発電機の出力が減少していると判定された場合、制御手段によって、発電機の出力と電力系統が要求する電力との差が、風車ロータに蓄えられている慣性力及び二次電池に充電されている電力の少なくとも一方で補われるように制御される。
 このため、本発明は、電力系統の電力供給量が低下し、かつ風速が下降している場合であっても、電力系統が要求する出力を供給することができる。
 また、本発明の風力発電装置は、充放電可能な二次電池と、前記電力系統の周波数が低下した場合であって、前記判定手段によって前記発電機の出力が増加していると判定された場合に、前記電力系統の周波数が低下したときの前記発電機の出力を記憶する記憶手段と、を備え、前記制御手段が、前記発電機の出力を前記記憶手段に記憶されている出力となるように制御すると共に、前記発電機の出力と前記電力系統が要求する電力との差を、前記風車ロータに蓄えられている慣性力及び前記二次電池に充電されている電力で補うように制御してもよい。
 前記電力系統の周波数が低下した場合に、発電機の出力が増加していると、電力系統が要求する電力を超える電力を発電機が出力する可能性がある。
 そこで、本発明によれば、記憶手段によって、電力系統の周波数が低下したときの発電機の出力が記憶され、制御手段によって、発電機の出力が記憶手段に記憶された出力となるように制限される。
 また、制御手段によって、発電機の出力と電力系統が要求する電力との差が、風車ロータに蓄えられている慣性力及び二次電池に充電されている電力で補われるように制御される。
 このため、本発明は、電力系統の電力供給量が低下し、かつ風速が上昇している場合であっても、電力系統が要求する出力を供給することができる。
 また、本発明の風力発電装置は、前記制御手段が、前記発電機の出力が前記記憶手段に記憶されている出力となるように、前記ブレードのピッチ角を制御してもよい。
 本発明によれば、制御手段によって、前記発電機の出力が記憶手段に記憶されている出力となるようにブレードのピッチ角が制御される。
 このため、本発明は、簡易に発電機の出力を減少させることができる。
 また、本発明の風力発電装置は、前記二次電池が、複数設けられ、前記制御手段が、前記発電機の出力が前記記憶手段に記憶された出力となるように、前記発電機の発電した電力を、複数の前記二次電池のうち放電に寄与しない前記二次電池に充電するように制御してもよい。
 本発明によれば、制御手段によって、発電機の出力が記憶手段に記憶された出力となるように、発電機で発電された電力が放電に寄与しない二次電池に充電される。
 このため、本発明は、簡易に発電機の出力を減少させることができる。
 一方、本発明の第2の態様に係る出力制御方法は、複数枚のブレードを有する風車ロータが風を受けて回転し、該風車ロータの回転により発電機を駆動させると共に、該発電機によって発電した電力を電力系統に送電する風力発電装置の出力制御方法であって、前記発電機の出力の変化の傾きを導出し、導出した該傾きに基づいて、前記発電機の出力の増減を判定する第1工程と、電力系統の周波数が低下した場合、前記第1工程の判定結果に基づいて電力制御を行う第2工程と、を有する。
 本発明によれば、発電機の出力の変化の傾きを導出し、導出した変化の傾きに基づいて、発電機の出力の増減を判定すると共に、電力系統の周波数が低下した場合、判定結果に基づいて電力制御を行う。
 このため、本発明は、発電機の出力変動を簡易な構成で正確に検知することで、より効果的に電力系統の電力供給量の低下を補うことができる。
 本発明によれば、発電機の出力変動を簡易な構成で正確に検知することで、より効果的に電力系統の電力供給量の低下を補うことができる、という優れた効果を有する。
本発明の実施形態に係る風力発電装置の外観図である。 本発明の実施形態に係る風力発電装置の電気的構成を示すブロック図である。 本発明の実施形態に係る出力制御プログラムの処理の流れを示すフローチャートである。 本発明の実施形態に係る発電機の出力の変化の傾きの導出の説明に要するグラフである。 本発明の実施形態に係る電力系統の周波数の低下の一例を示すグラフである。 本発明の実施形態に係る電力系統の周波数の低下に応じた要求出力の一例を示すグラフである。 本発明の実施形態に係る制御部の機能を示す機能ブロック図である。 電力系統の周波数が低下すると共に、発電機の出力が減少している場合に、風車ロータに蓄えられている慣性力による補填を行った場合の風力発電装置の出力の一例であり、(A)は、電力系統に異常が発生したタイミングを示す全体図、(B)は、電力系統に異常が発生したタイミングの前後を示す領域Aの拡大図である。 本発明の実施形態に係る風力発電装置が、要求出力を満たす電力を出力するための、風車二次電池装置の出力と風車ロータに蓄えられている慣性力との比を示す模式図であり、(A)は、要求出力が予め定められた閾値以上の場合であり、(B)は、要求出力が予め定められた閾値未満の場合である。 本発明の実施形態に係る風力発電装置において、電力系統の周波数が低下すると共に、発電機の出力が減少している場合に、風車ロータに蓄えられている慣性力と風車二次電池装置による補填を行った場合の風力発電装置の出力の一例である。 電力系統の周波数が低下すると共に、発電機の出力が増加している場合に、風車ロータに蓄えられている慣性力による補填を行った場合の風力発電装置の出力の一例であり、(A)は、電力系統に異常が発生したタイミングを示す全体図、(B)は、電力系統に異常が発生したタイミングの前後を示す領域Aの拡大図である。 本発明の実施形態に係る風力発電装置において電力系統の周波数が低下すると共に、発電機の出力が増加している場合に、風車ロータに蓄えられている慣性力と風車二次電池装置による補填を行った場合の風力発電装置の出力の一例である。
 以下に、本発明に係る風力発電装置の一実施形態について、図面を参照して説明する。
 図1は、本実施形態に係る風力発電装置10の外観図である。
 風力発電装置10は、タワー12、タワー12の上部に設けられたナセル14、及び風車ロータ16を備えている。
 ナセル14は、その内部に発電機20等(図2も参照。)を備えており、風車ロータ16と発電機20とは機械的に連結され、風車ロータ16の回転が発電機20に伝達されるようになっている。また、ナセル14は、風車ロータ16と共に所望のヨー方向に旋回可能とされている。
 風車ロータ16は、複数枚のブレード22及びハブ24を備えている。吹く数枚のブレード22は、各々そのピッチ角が可変制御可能とされ、ハブ24に放射状に設けられている。
 このように、風力発電装置10は、ブレード22が風力エネルギーを受けることで風車ロータ16が回転し、風車ロータ16の回転により発電機20を駆動させると共に、発電機20によって発電した電力を電力系統に送電する
 図2は、本実施形態に係る風力発電装置10の電気的構成を示すブロック図である。
 発電機20には交流-直流変換部30Aが接続されており、交流-直流変換部30Aは、発電機20から出力される交流の電力を直流に変換する。
 また、交流-直流変換部30Aには直流-直流変換部32及び直流-交流変換部34が接続されている。
 直流-直流変換部32には、ナセル14内に配置され充放電可能な二次電池(例えば、リチウム電池)である風車二次電池装置36が接続されており、交流-直流変換部30Aで直流に変換された電圧を風車二次電池装置36に充電可能な大きさの電圧に変換する。
 一方、直流-交流変換部34は、交流-直流変換部30Aによって直流に変換された電力を再び交流に変換する。そして、直流-交流変換部34によって交流に変換された電力は、他の風力発電装置と電気的に接続するための変圧器38A及び本線40を介して電力系統42へ送電される。
 なお、電力系統42へ送電するための本線40には、ナセル14外に配置されている充放電可能な二次電池(例えば、リチウム電池)であるファーム二次電池装置44が、変圧器38B及び交流-直流変換部30Bを介して接続されている。なお、ファーム二次電池装置44は、風力発電装置10毎に設けられてもよく、所定数の風力発電装置10毎に設けられてもよい。
 また、風力発電装置10は、発電機20の出力を検出する電力検出部46を備えている。なお、電力検出部46は、所定時間間隔毎(例えば、3秒間隔毎)に電力を検出する。
 さらに、風力発電装置10は、制御部48を備えている。制御部48は、電力検出部46で検出された電力を示す検出値が入力されると共に、風車ロータ16、交流-直流変換部30A、直流-直流変換部32、直流-交流変換部34、及び交流-直流変換部30Bを制御する。
 また、制御部48は、磁気記憶装置又は半導体記憶装置で構成される記憶部50を備えている。記憶部50は、各種データの記憶及び制御部48が実行するプログラムのワークエリアとして用いられる。
 そして、本実施形態に係る風力発電装置10は、発電機20の出力の変化の傾きを導出し、該変化の傾きから発電機20の出力の増減を判定する処理(以下、「出力変化判定処理」という。)を行う。
 図3は、出力変化判定処理を行う場合に、制御部48によって実行される出力変化判定プログラムの処理の流れを示すフローチャートであり、該出力変化判定プログラムは記憶部50の所定領域に予め記憶されている。なお、本プログラムは、例えば、風力発電装置10が発電を開始すると共に開始する。
 まず、ステップ100では、電力検出部46から検出値が入力されるまで待ち状態となり、電力検出部46から検出値が入力されるとステップ102へ移行する。
 ステップ102では、電力検出部46から入力された発電機20の出力の検出値を記憶部50に記憶する。
 次のステップ104では、記憶部50に記憶された検出値が発電機20の出力の増減を判定するのに必要な所定数(本実施形態では、一例として2つ)以上記憶されているか否かを判定し、肯定判定となった場合はステップ106へ移行する一方、否定判定となった場合はステップ100へ戻る。
 ステップ106では、記憶部50に記憶された所定数の検出値に基づいて、発電機20の出力の変化の傾きを導出する。
 ここで、図4を参照して、出力の変化の傾きの導出方法について説明する。図4は、電力検出部46で検出された電力(出力)の変化を示すグラフである。
 図4に示す検出値nは、最新の検出値であり、検出値n-1は、検出値nよりも一つ前に検出された検出値である。
 そして、本実施形態では、検出値nと検出値n-1を結ぶ直線Lの傾きθを出力の変化の傾きとして導出する。
 なお、発電機20の出力の増減を判定するのに必要な検出値の数は、3つ以上でもよい。この場合、3つ以上の検出値から直線の近似線を求め、該近似線の傾きを、発電機20の出力の変化の傾きとする。
 次のステップ108では、ステップ106で導出した傾きθに基づいて、発電機20の出力の増減を判定する。
 具体的には、傾きθが、例えば0°<θ<90°の場合は、風速が上昇中であり、発電機20の出力が増加していると判定する。一方、傾きθが、例えば270°<θ<360°の場合は、風速が下降中であり、発電機20の出力が減少していると判定する。なお、傾きθが0°<θ<90°及び270°<θ<360°の何れでもない場合は、発電機20の出力に増減がないと判定する。
 すなわち、判定結果は、出力の増加、出力の減少、及び出力の増減無しの3種類の何れかとなる。
 次のステップ110では、風力発電装置10の発電を停止する旨の指示が不図示の制御盤を介してオペレータによって入力されたか否かを判定し、肯定判定となった場合は、本プログラムを終了し、否定判定となった場合は、ステップ100へ戻る。
 次に、電力系統42に異常(例えば、大型発電所の解列)が発生することによって、風力発電装置10が接続されている電力系統42の周波数が低下した場合について説明する。
 電力系統42に異常が発生すると、例えば、図5に示すように電力系統42の周波数が一時的に大きく低下(0~5secの範囲における周波数の低下)する場合がある。そして、この周波数の低下は、周波数の微小な変動(5sec以降の周期が2secの周波数の変動)を繰り返しながら平衡状態に戻る。
 そのため、風力発電装置10は、電力系統42の周波数の低下、すなわち電力系統42の電力の低下を補うために、電力系統42の周波数の変動に応じて、出力させる電力を変動させる要求が生じる。すなわち、この要求は、風力発電装置10に対して、電力系統42が要求する電力(以下、「要求出力」という。)である。
 なお、要求出力は、下記(1)式から求められる。(1)式においてΔPは、電力系統42の周波数の変動に応じた要求出力の変動幅であり、fは電力系統の周波数、Rは予め定められた定数である。
Figure JPOXMLDOC01-appb-M000001
 図6は、図5に示す電力系統42の周波数の低下に応じた要求出力を示すグラフである。図6に示すように、電力系統42の周波数の変動が大きいと要求出力も大きくなり、電力系統42の周波数の変動が小さいと要求出力も小さくなる。
 そして、本実施形態に係る風力発電装置10は、電力系統42の周波数が低下した場合に、要求出力を出力するように制御部48によって制御される。
 図7は、要求出力の出力に関する制御部48の機能を示すブロック図である。制御部48は、要求出力算出部60、出力変化判定処理部62、及び制御指令生成部64を備えている。
 制御部48は、電力系統42の周波数が入力される。
 要求出力算出部60は、入力された電力系統42の周波数から、上記(1)式を用いて風力発電装置10の出力に対して増加させるべき要求出力を算出し、算出した値を出力上昇指令値として制御指令生成部64に出力する。
 出力変化判定処理部62は、上述した出力変化判定処理を行い、発電機20による出力の増減を判定し、判定結果を制御指令生成部64に出力する。
 制御指令生成部64は、風車ロータ16の回転数、要求出力算出部60から出力された出力上昇指令値、及び出力変化判定処理部62による判定結果に基づいて、風車ロータ16を制御するための風車ロータ制御指令値、風車二次電池装置36及びファーム二次電池装置44の少なくとも一方の充放電を制御するための充放電制御指令値を生成する。
 なお、風車ロータ制御指令値は、風車ロータコントローラ66に送信され、充放電制御指令値は、風車充放電コントローラ68及びファーム充放電コントローラ70に送信される。
 風車ロータコントローラ66は、風車ロータ制御指令値に基づいて風車ロータ16への制動力(ブレーキ)の付与又はブレード22のピッチ角の変更を行う。
 風車充放電コントローラ68は、充放電制御指令値に基づいて風車二次電池装置36が充放電するように直流-直流変換部32制御する。
 ファーム充放電コントローラ70は、充放電制御指令値に基づいてファーム二次電池装置44が充放電するように交流-直流変換部30B制御する。
 次に、電力系統42の周波数が低下した場合であって、出力変化判定処理部62によって発電機20の出力が減少していると判定された場合について説明する。
 電力系統42に異常が生じたことによる電力系統42の周波数は、上述した図5に示すように異常発生直後に大きく低下する。そして、この周波数の大きな低下に対する要求出力は、図6に示すようにそれ以降に比較して大きい。
 そのため、電力系統42の周波数の大きな低下に対しては、風車ロータ16に制動力を加えることで、風車ロータ16に蓄えられている慣性力(慣性エネルギー)を用いること補填する。
 図8は、風力発電装置10の出力の変化を示すと共に、発電機20の出力が減少している場合に、電力系統42に異常が生じたタイミングの一例を示しており、図8(A)の領域Aの拡大図が図8(B)である。
 そして、図8(B)に示すように、風車ロータ16に蓄えられている慣性力による補填によって、風力発電装置10の出力が一時的に要求出力に近くなる。しかし、その後発電機20の出力は、風車ロータ16に制動力が加えられたため減少する。そのため、風力発電装置10は、要求出力を出力することができなくなる。
 そこで、本実施形態に係る風力発電装置10は、電力系統42の周波数が低下すると共に、発電機20の出力が減少している場合、慣性力による補填の不足分を風車二次電池装置36に充電されている電力で補う。つまり、制御指令生成部64が、風力発電装置10が要求出力を出力するための風車ロータ制御指令値及び充放電制御指令値を生成する。
 図9は、要求出力を満たす電力を風力発電装置10が出力するための、風車二次電池装置36の出力と風車ロータ16に蓄えられている慣性力との比を示す。
 図9(A)は、要求出力を示す出力上昇指令値が風力発電装置10の出力に対して予め定められた比率(例えば、3%)以上の場合における、風車二次電池装置36及び風車ロータ16に蓄えられている慣性力との比を示す。なお、以下の説明において、上記比率を単に閾値という。
 出力上昇指令値が予め定められた閾値以上の場合、制御指令生成部64は、図9(A)に示すように風車ロータ16の回転数が多いほど、風車ロータ16に蓄えられている慣性力による出力が大きくなり、風車二次電池装置36からの出力が小さくなるように、風車ロータ制御指令値及び充放電制御指令値を生成する。
 一方、要求出力を示す出力上昇指令値が上記予め定められた閾値未満の場合、制御指令生成部64は、図9(B)に示すように風車ロータ制御指令値を生成せずに、風車ロータ16の回転数にかかわりなく、風車二次電池装置36の放電によって要求出力を満たすように充放電制御指令値を生成する。これは、出力上昇指令値が閾値未満の場合は、追従させるべき出力が小さすぎ、風車ロータ16に対する制御では該出力の追従ができないためである。
 図10に、風車ロータ16に蓄えられている慣性力と風車二次電池装置36による補填を行った場合の一例を示す。図10に示すように、風車ロータ16に蓄えられている慣性力と風車二次電池装置36による補填を行った場合は、風車ロータ16に蓄えられている慣性力を用いただけの場合に比較して、風力発電装置10の出力と要求出力との差が小さくなる。
 なお、図10に示す例では、風車二次電池装置36による放電だけでは要求出力を満たすことができていない。このような場合には、ファーム二次電池装置44も放電させ、ファーム二次電池装置44も用いた補填を行う充放電制御指令値を生成する。
 以上説明したように、本実施形態に係る風力発電装置10は、電力系統42の周波数が低下した場合であって、発電機20の出力が減少している場合に、発電機20の出力と要求出力との差を、風車ロータ16に蓄えられている慣性力、及び風車二次電池装置36又はファーム二次電池装置44に充電されている電力で補う。
 なお、発電機20の出力と要求出力との差を、風車ロータ16に蓄えられている慣性力のみで補ってもよいし、風車二次電池装置36又はファーム二次電池装置44に充電されている電力のみで補ってもよい。
 また、風力発電装置10は、要求出力に応じた出力を行っている間も、出力変化判定処理部62による発電機20の出力の増減を判定し、判定結果に応じて制御指令生成部64によって風車ロータ制御指令値及び充放電制御指令値を新たに生成し、出力する。
 次に、電力系統42の周波数が低下した場合であって、出力変化判定処理部62によって発電機20の出力が増加していると判定された場合について説明する。
 図11は、風力発電装置10の出力の変化を示すと共に、発電機20の出力が増加している場合に、電力系統42に異常が生じたタイミングの一例を示しており、図11(A)の領域Aの拡大図が図11(B)である。
 そして、図11(B)には、電力系統42の周波数の低下に伴い、風車ロータ16に蓄えられている慣性力による補填を行った場合の例が示されている。
 図11(B)に示すように、風車ロータ16に蓄えられている慣性力による補填を行うと、風力発電装置10の出力が一時的に要求出力に相当する。しかし、発電機20の出力が増加しているため、その後、風力発電装置10の出力が要求出力を超えてしまう可能性がある。
 そこで、本実施形態に係る風力発電装置10は、電力系統42の周波数が低下すると共に、発電機20の出力が増加している場合、発電機20の出力を低下させる。具体的には、制御部48は、記憶部50に電力系統42の周波数が低下したとき、すなわち電力系統42に異常が発生したときの発電機の出力(以下、「記憶出力」という。)を記憶させる。そして、制御部48は、発電機20の出力を記憶出力となるように制御すると共に、発電機20の出力と要求出力との差を、風車ロータ16に蓄えられている慣性力及び風車二次電池装置36に充電されている電力で補うように制御する。
 つまり、制御指令生成部64が、まず、電力系統42の異常発生直後に大きく低下する周波数に対応した、風車ロータ16に制動力を与えるための風車ロータ制御指令値、及び風車二次電池装置36を放電させるための充放電制御指令値を生成する。これによって、風力発電装置10は、風車ロータ16に蓄えられている慣性力及び風車二次電池装置36から放電される電力の補填によって、要求出力を満たした電力を出力する。
 その後、制御指令生成部64は、発電機20の出力が記憶出力に減少するようにブレード22のピッチ角を制御するための風車ロータ制御指令値を生成する。具体的には、ブレード22のピッチ角をフェザー側に変更させる風車ロータ制御指令値を生成することによって、ブレード22が受ける風力を減少させ、発電機20の出力を減少させる。
 なお、図12の一点鎖線が、発電機20の出力を記憶出力に減少させた場合を示している。これにより、風力発電装置10の出力が要求有効出力を超えることを抑制できる。しかし、これだけでは、電力系統42の微小な周波数の変動には対応できないため、風力発電装置10の出力が要求有効出力に達しない。
 そのため、本実施形態に係る制御指令生成部64は、ブレード22のピッチ角を制御するための風車ロータ制御指令値を生成すると共に、出力上昇指令値に基づいて、風車二次電池装置36を放電させるための充放電制御指令値を生成する。これによって、図12の破線に示すように、風力発電装置10は、出力を要求出力に相当させることができる。
 以上説明したように、本実施形態に係る風力発電装置10は、電力系統42の周波数が低下した場合であって、発電機20の出力が増加している場合に、発電機20の出力を記憶部50に記憶されている記憶出力となるように制御すると共に、発電機20の出力と要求出力との差が、風車ロータ16に蓄えられている慣性力及び風車二次電池装置36に充電されている電力で補う。
 このため、風力発電装置10は、電力系統42に生じた異常によって電力系統の周波数が低下し、かつ風速が上昇している場合であっても、電力系統42が要求する電力を出力することができる。
 なお、本実施形態に係る制御指令生成部64は、風車二次電池装置36による放電だけでは要求出力を満たすことができない場合には、ファーム二次電池装置44も放電させ、ファーム二次電池装置44も用いた補填を行う充放電制御指令値を生成する。なお、風車二次電池装置36を放電させず、ファーム二次電池装置44のみを放電させることで、補填を行ってもよい。
 以上、本発明を、上記実施形態を用いて説明したが、本発明の技術的範囲は上記実施形態に記載の範囲には限定されない。発明の要旨を逸脱しない範囲で上記実施形態に多様な変更または改良を加えることができ、該変更または改良を加えた形態も本発明の技術的範囲に含まれる。
 例えば、上記実施形態では、発電機20の出力を記憶出力とするために、ブレード22のピッチ角を制御する場合について説明したが、本発明は、これに限定されるものではなく、発電機20の出力を記憶出力とするために、発電機20の発電した電力を、二次電池に充電するように制御する形態としてもよい。
 具体的には、例えば、風車二次電池装置36が複数の二次電池を備え、複数の該二次電池のうち放電に寄与しない二次電池に、発電機20の発電した電力を充電させる。なお、放電に寄与している二次電池とは、風力発電装置10の出力を要求出力とするために放電している二次電池である。
 また、上記実施形態では、風車二次電池装置36としてリチウム電池を用いる場合について説明したが、本発明は、これに限定されるものではなく、風車二次電池装置36として電界コンデンサ等、他の蓄電手段を用いる形態としてもよい。
 また、上記実施形態では、風車二次電池装置36をナセル14内に配置する場合について説明したが、本発明は、これに限定されるものではなく、風車二次電池装置36をタワー12内又はタワー12下に配置する形態としてもよい。
 また、風車二次電池装置36を備えない他の風力発電装置に対して風車二次電池装置36を備える風力発電装置10が、風車二次電池装置36に充電されている電力を送電することで、上記他の風力発電装置の出力が要求出力を満たす形態としてもよい。
 この形態の場合、風力発電装置10は、他の風力発電装置から出力される出力の計測値を受信し、該他の風力発電装置に要求されている要求出力と受信した計測値との差に相当する電力を風車二次電池装置36から放電する。
 10  風力発電装置
 16  風車ロータ
 20  発電機
 22  ブレード
 36  風車二次電池装置
 42  電力系統
 44  ファーム二次電池装置
 48  制御部
 50  記憶部

Claims (6)

  1.  複数枚のブレードを有する風車ロータが風を受けて回転し、該風車ロータの回転により発電機を駆動させると共に、該発電機によって発電した電力を電力系統に送電する風力発電装置であって、
     前記発電機の出力の変化の傾きを導出し、導出した該傾きに基づいて、前記発電機の出力の増減を判定する判定手段と、
     電力系統の周波数が低下した場合、前記判定手段の判定結果に基づいて電力制御を行う制御手段と、
    を備えた風力発電装置。
  2.  充放電可能な二次電池
    を備え、
     前記制御手段は、前記電力系統の周波数が低下した場合であって、前記判定手段によって前記発電機の出力が減少していると判定された場合に、前記発電機の出力と前記電力系統が要求する電力との差を、前記風車ロータに蓄えられている慣性力及び前記二次電池に充電されている電力の少なくとも一方で補うように制御する請求項1記載の風力発電装置。
  3.  充放電可能な二次電池と、
     前記電力系統の周波数が低下した場合であって、前記判定手段によって前記発電機の出力が増加していると判定された場合に、前記電力系統の周波数が低下したときの前記発電機の出力を記憶する記憶手段と、
    を備え、
     前記制御手段は、前記発電機の出力を前記記憶手段に記憶されている出力となるように制御すると共に、前記発電機の出力と前記電力系統が要求する電力との差を、前記風車ロータに蓄えられている慣性力及び前記二次電池に充電されている電力で補うように制御する請求項1記載の風力発電装置。
  4.  前記制御手段は、前記発電機の出力が前記記憶手段に記憶されている出力となるように、前記ブレードのピッチ角を制御する請求項3記載の風力発電装置。
  5.  前記二次電池は、複数設けられ、
     前記制御手段は、前記発電機の出力が前記記憶手段に記憶された出力となるように、前記発電機の発電した電力を、複数の前記二次電池のうち放電に寄与しない前記二次電池に充電するように制御する請求項3記載の風力発電装置。
  6.  複数枚のブレードを有する風車ロータが風を受けて回転し、該風車ロータの回転により発電機を駆動させると共に、該発電機によって発電した電力を電力系統に送電する風力発電装置の出力制御方法であって、
     前記発電機の出力の変化の傾きを導出し、導出した該傾きに基づいて、前記発電機の出力の増減を判定する第1工程と、
     電力系統の周波数が低下した場合、前記第1工程の判定結果に基づいて電力制御を行う第2工程と、
    を有する出力制御方法。
PCT/JP2010/064470 2009-01-09 2010-08-26 風力発電装置及び出力制御方法 WO2012026014A1 (ja)

Priority Applications (9)

Application Number Priority Date Filing Date Title
CN201080002715.0A CN102597506B (zh) 2010-08-26 2010-08-26 风力发电装置和输出控制方法
EP10784654.5A EP2610486B1 (en) 2010-08-26 2010-08-26 Wind power generation apparatus and output control method
PCT/JP2010/064470 WO2012026014A1 (ja) 2010-08-26 2010-08-26 風力発電装置及び出力制御方法
BRPI1004556A BRPI1004556A2 (pt) 2009-01-09 2010-08-26 gerador de turbina de vento e método de controle de potência de saída
KR1020117006803A KR101303404B1 (ko) 2010-08-26 2010-08-26 풍력 발전 장치 및 출력 제어 방법
AU2010257198A AU2010257198A1 (en) 2010-08-26 2010-08-26 Wind turbine generator and output power control method
JP2010548965A JP5244923B2 (ja) 2010-08-26 2010-08-26 風力発電装置及び出力制御方法
CA2724601A CA2724601C (en) 2010-08-26 2010-08-26 Wind turbine generator and output power control method
US12/966,576 US8299650B2 (en) 2010-08-26 2010-12-13 Wind turbine generator and output power control method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2010/064470 WO2012026014A1 (ja) 2010-08-26 2010-08-26 風力発電装置及び出力制御方法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US12/966,576 Continuation US8299650B2 (en) 2010-08-26 2010-12-13 Wind turbine generator and output power control method

Publications (1)

Publication Number Publication Date
WO2012026014A1 true WO2012026014A1 (ja) 2012-03-01

Family

ID=45696122

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/064470 WO2012026014A1 (ja) 2009-01-09 2010-08-26 風力発電装置及び出力制御方法

Country Status (8)

Country Link
US (1) US8299650B2 (ja)
EP (1) EP2610486B1 (ja)
JP (1) JP5244923B2 (ja)
KR (1) KR101303404B1 (ja)
CN (1) CN102597506B (ja)
AU (1) AU2010257198A1 (ja)
CA (1) CA2724601C (ja)
WO (1) WO2012026014A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019514323A (ja) * 2016-04-05 2019-05-30 ヴォッベン プロパティーズ ゲーエムベーハー 電力供給方法および電力供給用風力タービン
WO2020100372A1 (ja) * 2018-11-16 2020-05-22 株式会社日立製作所 電力変換装置、電力変換装置の制御方法

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2011202422A1 (en) * 2011-03-04 2012-09-20 Mitsubishi Heavy Industries, Ltd. Wind turbine generator system and wind turbine generator
KR20130026788A (ko) * 2011-09-06 2013-03-14 삼성전기주식회사 풍력 발전 시스템 및 그 제어방법
AU2013301058B2 (en) * 2012-08-07 2017-02-02 Kabushiki Kaisha Toshiba Power generation system
US9450416B2 (en) * 2013-07-16 2016-09-20 Siemens Aktiengesellschaft Wind turbine generator controller responsive to grid frequency change
CN104753402B (zh) * 2013-12-25 2017-08-25 台达电子工业股份有限公司 发电机制动系统及其控制方法
JP6034351B2 (ja) * 2014-10-03 2016-11-30 株式会社シマノ 自転車用電力制御装置
US10188039B2 (en) * 2015-09-30 2019-01-29 Deere & Company Electrical power generation for header systems from a combine backshaft
CN107781111B (zh) * 2017-09-15 2019-05-28 燕山大学 储能式液压型风力发电机组一次调频系统及控制方法
US10808681B2 (en) * 2018-01-23 2020-10-20 General Electric Company Twist correction factor for aerodynamic performance map used in wind turbine control
CA3082177A1 (en) * 2019-06-05 2020-12-05 Battelle Memorial Institute Control of energy storage to reduce electric power system off-nominal frequency deviations
WO2021251512A1 (en) * 2020-06-09 2021-12-16 Battery R&D Association Of Korea Hybrid charge/discharge system

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000166096A (ja) * 1998-12-01 2000-06-16 Hitachi Ltd 発電システム
WO2004047284A1 (ja) * 2002-11-15 2004-06-03 Zephyr Corporation 風力発電装置
JP2009197587A (ja) * 2008-02-19 2009-09-03 Tokyo Electric Power Co Inc:The 風力発電設備
JP2009303355A (ja) * 2008-06-12 2009-12-24 Hitachi Ltd 風力発電装置および風力発電装置群

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19756777B4 (de) * 1997-12-19 2005-07-21 Wobben, Aloys, Dipl.-Ing. Verfahren zum Betreiben einer Windenergieanlage sowie Windenergieanlage
JP4092949B2 (ja) * 2002-05-14 2008-05-28 株式会社日立製作所 二次電池を備えた風力発電装置および変換器制御装置および電力変換器の制御方法
US7528496B2 (en) 2003-09-03 2009-05-05 Repower Systems Ag Method for operating or controlling a wind turbine and method for providing primary control power by means of wind turbines
JP2005312138A (ja) * 2004-04-19 2005-11-04 Canon Inc 電力制御装置、発電システム及び電力系統システム
US7227275B2 (en) * 2005-02-01 2007-06-05 Vrb Power Systems Inc. Method for retrofitting wind turbine farms
US7680562B2 (en) 2005-09-08 2010-03-16 General Electric Company Power generation system
US7345373B2 (en) * 2005-11-29 2008-03-18 General Electric Company System and method for utility and wind turbine control
JP4551921B2 (ja) * 2007-09-27 2010-09-29 株式会社日立エンジニアリング・アンド・サービス 蓄電システム併設型風力発電システム
ES2338396B1 (es) 2007-12-27 2011-04-08 GAMESA INNOVATION & TECHONOLOGY S.L. Instalacion de energia eolica y procedimiento para su funcionamiento.
US8688282B2 (en) * 2008-06-30 2014-04-01 Vestas Wind Systems A/S Method and system for controlling a wind power plant comprising a number of wind turbine generators

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000166096A (ja) * 1998-12-01 2000-06-16 Hitachi Ltd 発電システム
WO2004047284A1 (ja) * 2002-11-15 2004-06-03 Zephyr Corporation 風力発電装置
JP2009197587A (ja) * 2008-02-19 2009-09-03 Tokyo Electric Power Co Inc:The 風力発電設備
JP2009303355A (ja) * 2008-06-12 2009-12-24 Hitachi Ltd 風力発電装置および風力発電装置群

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019514323A (ja) * 2016-04-05 2019-05-30 ヴォッベン プロパティーズ ゲーエムベーハー 電力供給方法および電力供給用風力タービン
US11088546B2 (en) 2016-04-05 2021-08-10 Wobben Properties Gmbh Method and wind turbine for feeding electric power
WO2020100372A1 (ja) * 2018-11-16 2020-05-22 株式会社日立製作所 電力変換装置、電力変換装置の制御方法

Also Published As

Publication number Publication date
KR20120088526A (ko) 2012-08-08
CN102597506B (zh) 2014-11-05
EP2610486A1 (en) 2013-07-03
EP2610486A4 (en) 2014-06-11
CN102597506A (zh) 2012-07-18
EP2610486B1 (en) 2016-08-10
JPWO2012026014A1 (ja) 2013-10-28
US20120049517A1 (en) 2012-03-01
US8299650B2 (en) 2012-10-30
KR101303404B1 (ko) 2013-09-05
CA2724601C (en) 2013-10-29
AU2010257198A1 (en) 2012-03-15
JP5244923B2 (ja) 2013-07-24
CA2724601A1 (en) 2012-02-26

Similar Documents

Publication Publication Date Title
JP5244923B2 (ja) 風力発電装置及び出力制御方法
US8227929B2 (en) Multi-use energy storage for renewable sources
EP2573896B1 (en) Methods of controlling a combined plant including at least one generator and an energy store
US8324751B2 (en) Wind turbine generator system and wind turbine generator
US20120265356A1 (en) Power output leveling method and apparatus for wind turbine generating facility
WO2012070141A1 (ja) 風力発電設備の出力制御方法及び出力制御装置
JP5579176B2 (ja) 風力発電設備及び風力発電設備の制御方法
EP2822163A1 (en) Power supply system
US8853875B2 (en) Wind power generation system and method for controlling excitation synchronous generator thereof
EP2485378A1 (en) Control arrangement and method for regulating the output voltage of a dc source power converter connected to a multi-source dc system
WO2012137356A1 (ja) 風力発電装置の制御装置、風力発電装置、ウインドファーム、及び風力発電装置の制御方法
EP2743501B1 (en) Control device for wind power plant and control method for wind power plant
EP3082210B1 (en) Power generation system and method with energy management
JP3758359B2 (ja) 風力発電出力安定化方法及び装置
EP2527606A2 (en) Closed energy combined cycle system and operation method thereof
JP2003333752A (ja) 二次電池を備えた風力発電装置
JP5752529B2 (ja) 風車発電設備の制御装置及び制御方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080002715.0

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2724601

Country of ref document: CA

Ref document number: 2010257198

Country of ref document: AU

REEP Request for entry into the european phase

Ref document number: 2010784654

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2010548965

Country of ref document: JP

Ref document number: 2010784654

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 1086/DELNP/2011

Country of ref document: IN

ENP Entry into the national phase

Ref document number: 20117006803

Country of ref document: KR

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10784654

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: PI1004556

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20110321