WO2012024911A1 - Procédé pour la régénération d'un matériau filtrant utilisé dans l'élimination du fluor de l'eau potable - Google Patents
Procédé pour la régénération d'un matériau filtrant utilisé dans l'élimination du fluor de l'eau potable Download PDFInfo
- Publication number
- WO2012024911A1 WO2012024911A1 PCT/CN2011/070799 CN2011070799W WO2012024911A1 WO 2012024911 A1 WO2012024911 A1 WO 2012024911A1 CN 2011070799 W CN2011070799 W CN 2011070799W WO 2012024911 A1 WO2012024911 A1 WO 2012024911A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- regeneration
- filter material
- hydroxyapatite
- treatment
- regeneration treatment
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Ceased
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F1/00—Treatment of water, waste water, or sewage
- C02F1/28—Treatment of water, waste water, or sewage by sorption
- C02F1/281—Treatment of water, waste water, or sewage by sorption using inorganic sorbents
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J20/00—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
- B01J20/02—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
- B01J20/04—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising compounds of alkali metals, alkaline earth metals or magnesium
- B01J20/048—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising compounds of alkali metals, alkaline earth metals or magnesium containing phosphorus, e.g. phosphates, apatites, hydroxyapatites
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J20/00—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
- B01J20/30—Processes for preparing, regenerating, or reactivating
- B01J20/34—Regenerating or reactivating
- B01J20/3433—Regenerating or reactivating of sorbents or filter aids other than those covered by B01J20/3408 - B01J20/3425
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J20/00—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
- B01J20/30—Processes for preparing, regenerating, or reactivating
- B01J20/34—Regenerating or reactivating
- B01J20/3483—Regenerating or reactivating by thermal treatment not covered by groups B01J20/3441 - B01J20/3475, e.g. by heating or cooling
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2220/00—Aspects relating to sorbent materials
- B01J2220/50—Aspects relating to the use of sorbent or filter aid materials
- B01J2220/56—Use in the form of a bed
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F2101/00—Nature of the contaminant
- C02F2101/10—Inorganic compounds
- C02F2101/12—Halogens or halogen-containing compounds
- C02F2101/14—Fluorine or fluorine-containing compounds
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F2303/00—Specific treatment goals
- C02F2303/16—Regeneration of sorbents, filters
Definitions
- the invention relates to a drinking water treatment technology, in particular to a method for regenerating a drinking water defluoridation filter material for granular hydroxyapatite.
- Fluorosis caused by drinking high-fluorine water is a worldwide endemic disease. It causes fluorosis in the light, and causes fluorosis in the severe cases, causing osteoporosis, bone deformation, and even paralysis. China is one of the countries with the most serious fluorosis in the world. Except for Shanghai, it is distributed in all provinces of the country, mainly in rural and desert areas with relatively backward economy. At present, the population of sick villages with high fluoride water poisoning is as high as 81.41 million. The National Eleventh Five-Year Plan for Rural Drinking Water Safety Project decided to basically solve the drinking water safety problem of more than 300 million rural people by 2015.
- the general fluorine removal technology at home and abroad mainly adopts the adsorption method, and the regeneration problem of the adsorbent is one of the key factors affecting whether the adsorbent material can be used for the fluorine removal filter.
- Hydroxyapatite (HAP) is gradually recognized and accepted as a fluoride removal filter for drinking water.
- the traditional regeneration method is mainly 0.25%. ⁇ 1%
- the NaOH solution is used as a regenerant, and is neutralized with hydrochloric acid or sulfuric acid solution after regeneration.
- the regeneration efficiency of the method is low, and the device has a corrosive effect, which affects the promotion and application of the hydroxyapatite defluoridation agent.
- the coating regeneration method needs to return the HAP saturated with fluoride ions back to a solution consisting of a certain concentration of Ca2+ and H2PO3-, and adjust the pH of the solution to about 3, and re-react on the surface to form a new layer of hydroxyphosphorus. Graystone to restore its ability to remove fluorine. For the vast rural areas, this kind of operation is relatively complicated, and the reaction conditions are not easy to control, which makes it difficult to guarantee the regeneration efficiency.
- the object of the present invention is to provide a method for regenerating a drinking water defluoridation filter material, which realizes high efficiency of regeneration of hydroxyapatite filter material by coupling of thermal regeneration and mechanical wear, no need to replace filter material, convenient use, and simple method. Fast.
- the regeneration method of the present invention is as follows: a, using thermal regeneration treatment: the hydroxyapatite granular filter material saturated with fluoride ions is heated in water for a period of time, and can be reused until it is again saturated with fluoride ions; b. Re-recycling the granular hydroxyapatite filter material saturated with fluoride ions again; c, repeat step b, perform multiple thermal regeneration treatment until the regeneration rate of hydroxyapatite is less than 20%; d.
- Mechanical wear regeneration treatment the hydroxyapatite granular filter material saturated with fluoride ions with a regeneration rate of less than 20% is used in the fluorine removal device, and the fluoroapatite is worn away by the water flow to remove the hydroxyapatite.
- the outer layer reveals a fresh surface, restores the fluorine removal ability of the hydroxyapatite, and replenishes the new filter material corresponding to the corresponding amount of wear; e, then use the thermal regeneration treatment method, repeat steps c and d, recycle the thermal regeneration treatment multiple times, mechanical wear regeneration once, can achieve the reuse of the fluorine removal filter; through thermal regeneration treatment and mechanical wear regeneration The treatment is used alternately to maximize the filter regeneration efficiency and cycle times.
- the filter material is heated in water at a temperature of 50 to 100 ° for a duration of 0.5 to 5 hours; and the number of repeated use of the thermal regeneration treatment is about 5 times.
- the regeneration method of the present invention achieves the maximum of regeneration efficiency and repeated use by alternately treating the thermal regeneration treatment and mechanical wear of the hydroxyapatite granular filter material saturated with fluoride ions, thereby realizing the hydroxyapatite filter material.
- the regeneration is highly efficient. After repeated heat regeneration treatment, the mechanical wear treatment is used when the regeneration rate is low, so that the fresh surface of the hydroxyapatite pellet is exposed, the fluorine removal ability is restored, and the new material is added according to the wear amount to ensure the fluorine removal ability, instead of Wait until the filter material is completely effective after removing the fluorine performance.
- the main advantages are: 1.
- the regeneration efficiency of the fluorine removal filter is high: the single regeneration efficiency is greater than 50% to 80%; 2.
- the fluorine removal filter material is continuously updated during the operation, and the fluorine removal performance is stable for a long time. 3.
- the regeneration method is simple and easy.
- thermal regeneration treatment is adopted: by using a heating method to provide energy for removing the fluorine-containing filter material to obtain energy of the hydroxyapatite saturated with fluorine ions, the fluorine ions on the surface of the hydroxyapatite migrate to the inside, and the surface The active position is vacated and the fluorine removal ability is restored; By loading the container for removing the fluorine filter, the granular filter material saturated with fluoride ions is heated to 95° in water for 0.5 hour, and then can be used continuously;
- Q is the regeneration defluoridation capacity mg/g
- Co is the concentration of fluoride ion in the raw water mg/L
- C is the concentration of fluoride ion in the water after saturation adsorption of the regenerated defluorinated filter material, mg/L
- V is the water sample volume L
- m is the mass g of the fluorine-containing granular filter.
- the granular hydroxyapatite filter material saturated with fluoride ions is heated to 95° for 0.5 hours, and can be used continuously.
- the regeneration rate at this time can be measured by the same method as above. %;
- step c repeat the process of step b, after 5 times of thermal regeneration, mechanical wear regeneration treatment is required, and the measured regeneration rate is reduced to 19%;
- the second embodiment is basically the same as the first embodiment, the same parts are omitted, and the different parts are as follows:
- the granular filter material saturated with fluoride ions is heated to 50 ° in water, and can continue to be used after 5 hours, at which time the measured regeneration rate is 55%;
- the granular hydroxyapatite filter material saturated with fluoride ions is heated to 50°, and can be used continuously after 5 hours, and the measured regeneration rate is 45%;
- step c repeat the process of step b, after 5 times of thermal regeneration, mechanical wear regeneration treatment is required, and the measured regeneration rate is reduced to 18%;
- the method of the thermal regeneration treatment is repeated, and the steps c and d are repeated, and after the thermal regeneration treatment is cycled for about 5 times, the mechanical abrasion is regenerated once, and the recycling of the fluorine-removing filter material can be realized.
- the third embodiment is basically the same as the first embodiment, the same parts are omitted, and the different parts are as follows:
- the granular filter material saturated with fluoride ions is heated to 70 ° in water, and can continue to be used after 3 hours, at which time the measured regeneration rate is 65%;
- the granular hydroxyapatite filter material saturated with fluoride ions is heated to 70° for 3 hours, and the measured regeneration rate is 55%;
- step c repeat the process of step c, after 5 times of thermal regeneration, mechanical wear regeneration treatment is required, and the measured regeneration rate is reduced to 19%;
- the method of the thermal regeneration treatment is repeated, and the steps c and d are repeated, and after the thermal regeneration treatment is cycled for about 5 times, the mechanical abrasion is regenerated once, and the recycling of the fluorine-removing filter material can be realized.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Analytical Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Inorganic Chemistry (AREA)
- Hydrology & Water Resources (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Environmental & Geological Engineering (AREA)
- Water Supply & Treatment (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Solid-Sorbent Or Filter-Aiding Compositions (AREA)
- Water Treatment By Sorption (AREA)
Abstract
L'invention porte sur un procédé pour la régénération d'un matériau filtrant utilisé dans l'élimination du fluor de l'eau potable. Le procédé comprend le fait de soumettre le matériau filtrant granulaire constitué d'hydroxyapatite saturé d'ions fluorures à un traitement de régénération thermique et un traitement d'attrition mécanique alternés, le traitement d'attrition mécanique étant effectué lorsque l'efficacité de régénération devient plus faible après une pluralité de traitements de régénération thermique, afin que la surface fraîche des granulés d'hydroxyapatite soit exposée pour une récupération supplémentaire du pouvoir d'élimination du fluor. Le procédé a une efficacité de régénération élevée et peut être effectué de façon commode et le matériau filtrant régénéré a une stabilité de longue durée.
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| ZA2012/04090A ZA201204090B (en) | 2010-08-27 | 2012-06-05 | Method for regenerating filter material used in removing fluorine from drinking water |
Applications Claiming Priority (2)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN 201010264606 CN101912773B (zh) | 2010-08-27 | 2010-08-27 | 一种饮用水除氟滤料的再生方法 |
| CN201010264606.8 | 2010-08-27 |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| WO2012024911A1 true WO2012024911A1 (fr) | 2012-03-01 |
Family
ID=43320498
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| PCT/CN2011/070799 Ceased WO2012024911A1 (fr) | 2010-08-27 | 2011-01-30 | Procédé pour la régénération d'un matériau filtrant utilisé dans l'élimination du fluor de l'eau potable |
Country Status (3)
| Country | Link |
|---|---|
| CN (1) | CN101912773B (fr) |
| WO (1) | WO2012024911A1 (fr) |
| ZA (1) | ZA201204090B (fr) |
Cited By (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN114735782A (zh) * | 2022-05-06 | 2022-07-12 | 李宗洋 | 民用地下水除氟装置 |
Families Citing this family (7)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN101912773B (zh) * | 2010-08-27 | 2012-06-13 | 江苏永冠给排水设备有限公司 | 一种饮用水除氟滤料的再生方法 |
| CN102728333B (zh) * | 2012-07-09 | 2014-08-13 | 河海大学 | 一种除氟用球状羟基磷灰石再生装置 |
| CN107324459B (zh) * | 2017-07-31 | 2019-10-01 | 武汉理工大学 | 一种鱼骨炭除氟电极的制作方法 |
| CN109179553B (zh) * | 2018-09-25 | 2021-12-24 | 中煤科工集团杭州研究院有限公司 | 一种含氟废水除氟处理和滤料再生装置及方法 |
| CN109395707A (zh) * | 2018-11-07 | 2019-03-01 | 江苏永冠给排水设备有限公司 | 一种羟基磷灰石除氟滤料的再生方法 |
| CN111471850B (zh) * | 2020-05-20 | 2021-10-29 | 赣州有色冶金研究所有限公司 | 一种含氟钨渣洗涤过程的固氟方法 |
| CN112958035B (zh) * | 2021-03-31 | 2023-06-16 | 煤炭科学技术研究院有限公司 | 一种除氟滤料及其制备方法 |
Citations (6)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN1039567A (zh) * | 1988-07-22 | 1990-02-14 | 北京工业大学 | 羟基磷酸钙的合成方法及其用途 |
| CN1616145A (zh) * | 2003-11-11 | 2005-05-18 | 李书伟 | 高效改性降氟净水滤料的制备工艺 |
| JP2006242921A (ja) * | 2005-03-07 | 2006-09-14 | Pentax Corp | 金属イオンの除去方法、吸着剤の再生方法および吸着装置の再生方法 |
| US20060207940A1 (en) * | 2005-03-07 | 2006-09-21 | Tsuneo Okuyama | Adsorbent, adsorption apparatus, and method for manufacturing the adsorption apparatus |
| CN101773817A (zh) * | 2009-01-13 | 2010-07-14 | 厦门绿邦膜技术有限公司 | 用于废水处理的复合吸附材料及其制备方法 |
| CN101912773A (zh) * | 2010-08-27 | 2010-12-15 | 江苏永冠给排水设备有限公司 | 一种饮用水除氟滤料的再生方法 |
Family Cites Families (4)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JPS586553B2 (ja) * | 1977-04-06 | 1983-02-04 | 安宅建設工業株式会社 | 水中フツ素イオンの除去法 |
| CN2042078U (zh) * | 1988-12-16 | 1989-08-02 | 北京市永定门外粮库 | 天然地热矿泉水脱氟装置 |
| JP2003170003A (ja) * | 2001-11-30 | 2003-06-17 | Jae Jong Kim | フッ素含有流体の処理方法及びフッ素含有流体の処理装置 |
| CN1415537A (zh) * | 2002-11-19 | 2003-05-07 | 武汉化工学院 | 掺杂羟基磷灰石及其生产方法 |
-
2010
- 2010-08-27 CN CN 201010264606 patent/CN101912773B/zh not_active Expired - Fee Related
-
2011
- 2011-01-30 WO PCT/CN2011/070799 patent/WO2012024911A1/fr not_active Ceased
-
2012
- 2012-06-05 ZA ZA2012/04090A patent/ZA201204090B/en unknown
Patent Citations (6)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN1039567A (zh) * | 1988-07-22 | 1990-02-14 | 北京工业大学 | 羟基磷酸钙的合成方法及其用途 |
| CN1616145A (zh) * | 2003-11-11 | 2005-05-18 | 李书伟 | 高效改性降氟净水滤料的制备工艺 |
| JP2006242921A (ja) * | 2005-03-07 | 2006-09-14 | Pentax Corp | 金属イオンの除去方法、吸着剤の再生方法および吸着装置の再生方法 |
| US20060207940A1 (en) * | 2005-03-07 | 2006-09-21 | Tsuneo Okuyama | Adsorbent, adsorption apparatus, and method for manufacturing the adsorption apparatus |
| CN101773817A (zh) * | 2009-01-13 | 2010-07-14 | 厦门绿邦膜技术有限公司 | 用于废水处理的复合吸附材料及其制备方法 |
| CN101912773A (zh) * | 2010-08-27 | 2010-12-15 | 江苏永冠给排水设备有限公司 | 一种饮用水除氟滤料的再生方法 |
Non-Patent Citations (1)
| Title |
|---|
| YING BO ET AL.: "Study on the Regeneration Methods of the Synthetic Hydroxyapatite as a Material for Defluoridation of Drinking Water.", JOURNAL OF HYGIENE RESEARCH., vol. 31, no. 2, April 2002 (2002-04-01), pages 83 - 84 * |
Cited By (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN114735782A (zh) * | 2022-05-06 | 2022-07-12 | 李宗洋 | 民用地下水除氟装置 |
Also Published As
| Publication number | Publication date |
|---|---|
| CN101912773B (zh) | 2012-06-13 |
| ZA201204090B (en) | 2013-02-27 |
| CN101912773A (zh) | 2010-12-15 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| WO2012024911A1 (fr) | Procédé pour la régénération d'un matériau filtrant utilisé dans l'élimination du fluor de l'eau potable | |
| CN101549873B (zh) | 一种表面活性剂改性沸石及其制备方法及用途 | |
| CN105381782A (zh) | 一种去除水中氨氮和磷酸盐的改性沸石吸附剂及其制备和再生方法 | |
| CN111377497B (zh) | 一种海藻酸钠包埋的铁碳-麦饭石高效除磷颗粒及其制备方法 | |
| CN114984956A (zh) | 一种应用于活化过一硫酸盐高效降解水中磺胺甲恶唑的磁性污泥生物炭的制备方法 | |
| CN101723499B (zh) | 二乙烯三胺五乙酸改性硅藻土的制备工艺 | |
| CN105797679B (zh) | 一种同步去除废水氨氮和磷酸根的沸石改性方法 | |
| CN103706326B (zh) | 一种天然矿物负载型纳米除氟剂的制备方法 | |
| CN107626335A (zh) | 一种铋系/氮化碳复合催化剂及其制备方法和应用 | |
| CN102527328A (zh) | 一种制备去除污水中磷酸盐的吸附材料的方法 | |
| CN110508232A (zh) | 羟基磷灰石的制备方法及其应用以及羟基磷灰石在废水中除铀的方法 | |
| CN102145239A (zh) | 水净化用沸石滤料的制备方法 | |
| CN103071452B (zh) | 镧、铈柱撑蒙脱石除氟剂的制备方法 | |
| CN101554579B (zh) | 一种人工湿地填料磷吸附饱和的原位再生方法 | |
| CN114682217A (zh) | 金属单原子掺杂生物质炭吸附材料、制备方法及应用 | |
| CN101838042B (zh) | 一种基于天然矿物的水处理除氟滤料的制备及再生方法 | |
| CN110681344A (zh) | 一种新型锆系纳米杂化材料及应用方法 | |
| CN102910700B (zh) | 一种氧化锆改性的氧化石墨吸附去除水体中磷酸盐的方法 | |
| CN104591336B (zh) | 一种从含磷霉素废水中回收磷的方法 | |
| CN101088604A (zh) | 用于降氟改水的滤料制备工艺 | |
| CN102962028B (zh) | 一种重金属离子吸附剂的制备方法 | |
| CN103570120B (zh) | 一种氧化铈改性赤泥催化剂的制备及其在水处理技术中的应用 | |
| CN105056987B (zh) | 一种用于催化氧化的改性沸石的制备方法 | |
| CN114797759B (zh) | 一种羟基磷灰石/埃洛石纳米管复合吸附材料及其制备方法和应用 | |
| CN113000010B (zh) | 一种用于建筑雨水中氮磷协同去除的活性氧化铝复合改性方法 |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| 121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 11819286 Country of ref document: EP Kind code of ref document: A1 |
|
| WWE | Wipo information: entry into national phase |
Ref document number: 1881/MUMNP/2012 Country of ref document: IN |
|
| NENP | Non-entry into the national phase |
Ref country code: DE |
|
| 122 | Ep: pct application non-entry in european phase |
Ref document number: 11819286 Country of ref document: EP Kind code of ref document: A1 |