WO2012024709A1 - Polymères thermo-isolants ignifugés et leur procédé de production - Google Patents

Polymères thermo-isolants ignifugés et leur procédé de production Download PDF

Info

Publication number
WO2012024709A1
WO2012024709A1 PCT/AT2011/000347 AT2011000347W WO2012024709A1 WO 2012024709 A1 WO2012024709 A1 WO 2012024709A1 AT 2011000347 W AT2011000347 W AT 2011000347W WO 2012024709 A1 WO2012024709 A1 WO 2012024709A1
Authority
WO
WIPO (PCT)
Prior art keywords
polymer
carbon
polymers
polymers according
solid
Prior art date
Application number
PCT/AT2011/000347
Other languages
German (de)
English (en)
Inventor
Roman Eberstaller
Gerhard Hintermeier
Original Assignee
Sunpor Kunststoff Ges.M.B.H.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sunpor Kunststoff Ges.M.B.H. filed Critical Sunpor Kunststoff Ges.M.B.H.
Priority to EP11752455.3A priority Critical patent/EP2609144A1/fr
Publication of WO2012024709A1 publication Critical patent/WO2012024709A1/fr

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/0066Use of inorganic compounding ingredients
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/22After-treatment of expandable particles; Forming foamed products
    • C08J9/228Forming foamed products
    • C08J9/232Forming foamed products by sintering expandable particles
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2301/00Characterised by the use of cellulose, modified cellulose or cellulose derivatives
    • C08J2301/08Cellulose derivatives
    • C08J2301/14Mixed esters
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2325/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring; Derivatives of such polymers
    • C08J2325/02Homopolymers or copolymers of hydrocarbons
    • C08J2325/04Homopolymers or copolymers of styrene
    • C08J2325/06Polystyrene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/30Sulfur-, selenium- or tellurium-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/02Halogenated hydrocarbons
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/49Phosphorus-containing compounds

Definitions

  • the invention relates to flame-retardant expandable polymers according to the preamble of claim 1 and the production of polymer foam insulating bodies thereof.
  • Foamed insulating materials produced from expandable polymers for example from expandable styrene polymer particles (EPS)
  • EPS expandable styrene polymer particles
  • XPS styrene polymer extruded foams
  • the expandable polymers are usually propellant-containing
  • Polymer particles e.g. from polystyrene or cellulose acetate butyrate, which can be expanded by heating with steam (VorCum perspectives) under multiplication of their volume and then by welding to arbitrarily shaped moldings, in particular to plates or blocks, can be processed.
  • expandable polymers By suspension polymerization, e.g. expandable polystyrene can be prepared by polymerization of styrene and gassing with a blowing agent.
  • expandable or expanded polymers can be mechanically processed by extrusion of polymer melts and mixing of a blowing agent in the polymer melt and subsequent promotion through a nozzle plate to extruded granules (eg EPS granules), or by foaming directly after a nozzle into foamed sheets (XPS sheets) are processed.
  • a blowing agent in the polymer melt eg EPS granules
  • XPS sheets foamed sheets
  • thermal insulation materials such as EPS, e.g. for building facades, cold stores or packaging materials.
  • EPS expandable polystyrene
  • XPS expanded polystyrene
  • Polystyrene homo- and copolymers are made predominantly with halogen-containing, in particular brominated organic compounds such as hexabromocyclododecane (HBCD) or brominated styrene copolymer, flame retardant.
  • halogen-free flame retardants need However, to achieve the same flame retardancy of the halogen-containing flame retardants usually be used in significantly higher amounts.
  • Flame-retardant styrenic polymers are usually added to support a mostly halogenated flame retardant, one or more thermal radical generators such as dicumyl or peroxides as a flame retardant synergist such as e.g. EP 0 374 812 A1 (BASF AG).
  • thermal radical generators such as dicumyl or peroxides as a flame retardant synergist such as e.g. EP 0 374 812 A1 (BASF AG).
  • thermal free-radical formers with short half-lives at temperatures of 140 to 300 ° C e.g. Dicumyl peroxide, di-t-butyl peroxide or t-butyl hydroperoxide.
  • radicals which are formed in particular from peroxides and thermal radical formers when using, for example, extruders or static mixers-in the interaction of high temperature and shear stress-lead to a particularly high degradation of the polymer chains. For this reason, the production of expandable polymer particles or extruded polymer foam boards, which contain a thermal radical generator as a synergist in addition to the actual flame retardant problematic.
  • sulfur or sulfur compounds as flame retardant synergists in halogenated or non-halogenated flame retardant systems in the processing of polymers with extruders or static mixers would be advantageous because sulfur, for example, under the usual conditions of producing expandable polystyrene granules, does not favor the degradation reactions of the polymer during extrusion.
  • the major disadvantage is that when processed with extruders or static mixers of sulfur and most sulfur compounds, small amounts of e.g. Mercaptans, sulfides, hydrogen sulfide, sulfur dioxide and similar substances that are extremely odor-intensive and smell unpleasant and / or strong pungent. These odors are also in, from the polymers thus produced molded foam bodies intense and make them virtually unsalable.
  • the object of the invention is a body, in particular a
  • Shaped body of a foamed polymer such as polystyrene or cellulose acetate butyrate, in particular made of polystyrene foam particles or an extruded polystyrene foam board, which makes use of the advantages of sulfur and is substantially free of odor.
  • the object was achieved by the use of sulfur-containing solids, consisting predominantly of atoms of the element carbon, in particular caused by natural Kohlenohlungsvone in the earth's crust and / or by artificially generated Kohlenohlungsvone natural or synthetic materials, mainly consisting of carbon atoms and a content of sulfur from 0.2 to 30 wt .-%, preferably from 0.3 to 15 wt .-%, preferably from 0.6 to 10 wt .-%, particularly preferably from 1, 2 to 7 wt .-%, based on the predominantly carbon-containing solid, in the form of sulfur and / or sulfur compounds, in, preferably halogenated or phosphate-containing, flame retardants polymers provided.
  • the sulfur and / or the sulfur compounds are contained in the solid itself or integrated or contained in the matrix of the solid or athermanic material.
  • sulfur and / or sulfur compounds are contained in the solid itself or integrated or contained in the matrix of the solid or athermanic material.
  • solids consisting predominantly of carbon atoms are preferably particles having a particle size in the range of 0.5 or 1 to 50 ⁇ ⁇ , preferably from 1 to 30 ⁇ , more preferably from 1 to 10 ⁇ . Both isotropic and anisotropic solids are suitable. Platelet-shaped particles having a high aspect ratio are particularly preferred. These can preferably be produced in delaminating mills, for example in ball mills or air jet mills.
  • the preferred amounts used are between 0.5 and 10 wt .-%, based on the weight of the polymer granules produced.
  • the athermanous particles or solids are homogeneously and evenly distributed in the polymer.
  • the expandable polymers of the present invention include all thermoplastic, expandable thermoplastics, e.g. Polystyrene, cellulose acetobutyrate, polyethylene, polypropylene, polyethylene terephthalate, polylactic acid, and mixtures of various thermoplastics.
  • thermoplastic expandable thermoplastics
  • expandable thermoplastics e.g. Polystyrene, cellulose acetobutyrate, polyethylene, polypropylene, polyethylene terephthalate, polylactic acid, and mixtures of various thermoplastics.
  • the expandable polymers according to the invention are preferably expandable styrene polymers (EPS) or expandable styrene polymer granules (EPS) which are in particular homopolymers and copolymers of styrene, preferably glass-clear polystyrene (GPPS), impact polystyrene (HIPS), anionically polymerized polystyrene or impact polystyrene (A).
  • EPS expandable styrene polymers
  • EPS expandable styrene polymer granules
  • GPPS glass-clear polystyrene
  • HIPS impact polystyrene
  • A anionically polymerized polystyrene or impact polystyrene
  • IPS styrene-alpha-methylstyrene copolymers
  • ABS acrylonitrile-butadiene-styrene polymers
  • SAN styrene-acrylonitrile
  • ASA acrylonitrile-styrene-acrylic ester
  • MVS methyl acrylate-butadiene-styrene
  • MABS methyl methacrylate-acrylonitrile-butadiene- Styrene
  • PPE polyphenylene ether
  • thermoplastic polymers such as polyamides (PA), polyolefins, such as polypropylene (PP) or polyethylene (PE), polyacrylates, such as polymethyl methacrylate (PMMA), polycarbonate ( PC), polyesters such as polyethylene terephthalate (PET) or polybutylene terephthalate (PBT), polyether sulfones (PES), polyether ketones or polyether sulfides (PES), or mixtures thereof in U.S. Pat Generally in proportions of up to a maximum of 30 wt .-%, preferably in the range of 1 to 10 wt .-%, each based on the amount of polymer melt, blended.
  • PA polyamides
  • PE polyolefins
  • PMMA polymethyl methacrylate
  • PC polycarbonate
  • PET polyethylene terephthalate
  • PBT polybutylene terephthalate
  • PES polyether sulfones
  • PES polyether ketones or polyether sul
  • Suitable propellants under normal conditions are gaseous or liquid hydrocarbons which have a boiling point below the softening point of the polymer. Typical representatives of these compounds are propane, butane, pentane, hexane and the isomers of these compounds. Also, water, nitrogen, halogenated blowing agents or carbon dioxide are useful as blowing agents. Furthermore, chemical blowing agents and blowing agents which - thermally or radiation-induced - release volatile components can be used.
  • mixtures in the above amounts ranges with z.
  • rubbers such as polyacrylates or polydienes, z.
  • styrene-butadiene block copolymers or biodegradable aliphatic or aliphatic / aromatic copolyesters possible.
  • Suitable compatibilizers are e.g. Maleic anhydride-modified
  • Styrene copolymers polymers containing epoxy groups or organosilanes.
  • halogenated organic compounds having a bromine content greater than 50% by weight are used.
  • Known examples thereof are hexabromocyclododecane, brominated styrene copolymers (for example styrene-butadiene copolymers) or pentabromo- nonchlorocyclohexane.
  • all other halogenated, but also halogen-free flame retardants can be used. Possible representatives of these substances are, for example, red phosphorus, organic phosphorus compounds, e.g.
  • DOP (9,10-dihydro-9-oxa-10-phospha-phenanthrene-10-oxide); DOPS-SH (9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-thione or -10-sulfide), organic and inorganic N-compounds (e.g., ammonium polyphosphate), inorganic compounds, e.g. Magnesium hydroxide, aluminum hydroxide, water glass or expanded graphite.
  • DOPS-SH 9,10-dihydro-9-oxa-10-phospha-phenanthrene-10-thione or -10-sulfide
  • organic and inorganic N-compounds e.g., ammonium polyphosphate
  • inorganic compounds e.g. Magnesium hydroxide, aluminum hydroxide, water glass or expanded graphite.
  • the polymer melt thus obtained was conveyed through a die plate at a rate of 20 kg / h and granulated with a pressurized underwater granulator to form compact EPS granules.
  • the resulting granules were coated with customary for this purpose coating materials (glycerol or zinc stearates) to prevent sticking during the foaming and then prefoamed in a batch prefoamer to a density of about 15 kg / m 3 .
  • the cell structure of the foam beads thus obtained was homogeneous. After an intermediate storage of 24 hours, blocks were made. From these blocks molded parts for a fire test according to DIN 4102 were produced.
  • the moldings produced in this way had a density of 15 kg / m 3 and the class B1 according to DIN 4102 could be achieved.
  • Example 2 The preparation of the granules and the processing into moldings was carried out analogously to Example 1 with the difference that 4 wt .-% petroleum coke (with a content of 1, 2 wt .-% sulfur), and 1, 2 wt.% HBCD were used.
  • the plates thus produced had a density of 15 kg / m 3 and class B1 according to DIN 4102 could be achieved.
  • Example 2 The preparation of the granules and the processing into moldings was carried out analogously to Example 1 with the difference that 4 wt .-% coal dust (with a content of 4.0 wt .-% sulfur), and 1, 2 wt.% HBCD were used.
  • the plates thus produced had a density of 15 kg / m 3 and class B1 according to DIN 4102 could be achieved.
  • Example 2 The preparation of the granules and the processing into moldings was carried out analogously to Example 1 with the difference that 4 wt .-% large-crystalline natural graphite (with a content of 0 wt .-% sulfur), and 1, 4 wt .-% HBCD were used.
  • the plates thus produced had a density of 15 kg / m 3 and class B1 according to DIN 4102 could not be achieved.
  • the carbon solids used in Examples 1 to 4 had a particle size with a d 50 less than 10 pm.
  • the moldings produced according to Examples 1 to 3 could reach the thermal conductivity group (WLG) according to DIN 18164 and thus showed in comparison to EPS without these solids (WLG 040) a significantly improved thermal insulation property.
  • WLG thermal conductivity group

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

L'invention concerne des polymères expansibles ignifugés, contenant au moins un produit ignifuge, renfermant un ou plusieurs solides, notamment présent(s) sous la forme de particules athermanes, constitué(s) de plus de 70% en poids d'atomes de carbone. Selon l'invention, ce ou ces solides présente(nt) une teneur en soufre de 0,2 à 30 % en poids, de préférence de 0,3 à 15 % en poids, de préférence de 0,6 à 10 % en poids, de préférence encore de 1,2 à 7 % en poids, sous forme de soufre et/ou de composés sulfurés.
PCT/AT2011/000347 2010-08-27 2011-08-17 Polymères thermo-isolants ignifugés et leur procédé de production WO2012024709A1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP11752455.3A EP2609144A1 (fr) 2010-08-27 2011-08-17 Polymères thermo-isolants ignifugés et leur procédé de production

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
ATA1442/2010 2010-08-27
ATA1442/2010A AT510311B1 (de) 2010-08-27 2010-08-27 Flammgeschützte, wärmedämmende polymerisate und verfahren zu deren herstellung
DE202010013851U DE202010013851U1 (de) 2010-08-27 2010-10-01 Flammgeschützte, expandierbare Polymerisate
DE202010013851.5 2010-10-01
FR1058322 2010-10-13
FR1058322A FR2964113B3 (fr) 2010-08-27 2010-10-13 Polymeres expansibles ignifuges et leurs procedes de production

Publications (1)

Publication Number Publication Date
WO2012024709A1 true WO2012024709A1 (fr) 2012-03-01

Family

ID=43383189

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/AT2011/000347 WO2012024709A1 (fr) 2010-08-27 2011-08-17 Polymères thermo-isolants ignifugés et leur procédé de production

Country Status (5)

Country Link
EP (1) EP2609144A1 (fr)
AT (1) AT510311B1 (fr)
DE (1) DE202010013851U1 (fr)
FR (1) FR2964113B3 (fr)
WO (1) WO2012024709A1 (fr)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2733165A1 (fr) 2012-11-20 2014-05-21 Basf Se Procédé pour la préparation de mousses de polystyrène retardateurs de flamme et libre d'halogène
WO2016113328A1 (fr) 2015-01-14 2016-07-21 Synthos S.A. Utilisation de minéraux de structure pérovskite dans une mousse de polymère aromatique vinylique
US10639829B2 (en) 2015-01-14 2020-05-05 Synthos S.A. Process for the production of expandable vinyl aromatic polymer granulate having decreased thermal conductivity
US10808093B2 (en) 2015-01-14 2020-10-20 Synthos S.A. Combination of silica and graphite and its use for decreasing the thermal conductivity of vinyl aromatic polymer foam
US10961154B2 (en) 2015-01-14 2021-03-30 Synthos S.A. Geopolymer composite and expandable vinyl aromatic polymer granulate and expanded vinyl aromatic polymer foam comprising the same

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AT510311B1 (de) * 2010-08-27 2013-02-15 Sunpor Kunststoff Gmbh Flammgeschützte, wärmedämmende polymerisate und verfahren zu deren herstellung
AT511509A1 (de) * 2011-04-18 2012-12-15 Sunpor Kunststoff Gmbh Expandierbare polymerisate aus celluloseacetatbutyrat und styrolpolymerisat
KR101782702B1 (ko) 2013-02-05 2017-09-27 에스지엘 카본 에스이 경성 발포 폴리스티렌
DE102014213685A1 (de) 2014-07-15 2016-01-21 Sgl Carbon Se Neuartige Polystyrolhartschaumstoffe
CN106033845B (zh) * 2015-03-20 2021-06-04 深圳光启高等理工研究院 超材料及超材料的导电微结构制作方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0374812A1 (fr) 1988-12-23 1990-06-27 BASF Aktiengesellschaft Procédé de préparation de polymères expansibles de styrène
EP0668139A1 (fr) 1994-02-21 1995-08-23 Sulzer Chemtech AG Procédé pour la préparation de granules plastiques expansibles
WO2006007995A2 (fr) 2004-07-15 2006-01-26 Basf Aktiengesellschaft Procede pour produire du polystyrene expansible ignifuge
WO2009033200A1 (fr) 2007-09-14 2009-03-19 Sunpor Kunststoff Ges.M.B.H. Procédé de production de polymérisats de styrène expansibles et leur utilisation
WO2009135695A1 (fr) * 2008-05-07 2009-11-12 Polimeri Europa S.P.A. Compositions de polymères vinyliques aromatiques expansibles avec une capacité d'isolation thermique améliorée, leur procédé de fabrication et articles expansés obtenus à partir de celles-ci
WO2010031537A1 (fr) * 2008-09-17 2010-03-25 H.C. Carbon Gmbh Corps, en particulier corps moulé en polystyrène
DE202010013851U1 (de) * 2010-08-27 2010-12-16 Sunpor Kunststoff Gesellschaft M.B.H. Flammgeschützte, expandierbare Polymerisate

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102007053652A1 (de) * 2007-11-08 2009-05-14 BAM Bundesanstalt für Materialforschung und -prüfung Expandierter Graphit und Verfahren zu seiner Herstellung
DE102008033280A1 (de) * 2008-07-11 2010-01-14 BAM Bundesanstalt für Materialforschung und -prüfung Verfahren zur Modifizierung von expandiertem Graphit und Verwendung des modifizierten expandierten Graphits

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0374812A1 (fr) 1988-12-23 1990-06-27 BASF Aktiengesellschaft Procédé de préparation de polymères expansibles de styrène
EP0668139A1 (fr) 1994-02-21 1995-08-23 Sulzer Chemtech AG Procédé pour la préparation de granules plastiques expansibles
WO2006007995A2 (fr) 2004-07-15 2006-01-26 Basf Aktiengesellschaft Procede pour produire du polystyrene expansible ignifuge
WO2009033200A1 (fr) 2007-09-14 2009-03-19 Sunpor Kunststoff Ges.M.B.H. Procédé de production de polymérisats de styrène expansibles et leur utilisation
WO2009135695A1 (fr) * 2008-05-07 2009-11-12 Polimeri Europa S.P.A. Compositions de polymères vinyliques aromatiques expansibles avec une capacité d'isolation thermique améliorée, leur procédé de fabrication et articles expansés obtenus à partir de celles-ci
WO2010031537A1 (fr) * 2008-09-17 2010-03-25 H.C. Carbon Gmbh Corps, en particulier corps moulé en polystyrène
DE202010013851U1 (de) * 2010-08-27 2010-12-16 Sunpor Kunststoff Gesellschaft M.B.H. Flammgeschützte, expandierbare Polymerisate

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
MARK W. BEACH ET AL.: "Studies of degradation enhancement of polystyrene by flame retardant additives", POLYMER DEGRADATION AND STABILITY, vol. 93, no. 9, September 2008 (2008-09-01), pages 1664 - 1673, XP025349820

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2733165A1 (fr) 2012-11-20 2014-05-21 Basf Se Procédé pour la préparation de mousses de polystyrène retardateurs de flamme et libre d'halogène
WO2016113328A1 (fr) 2015-01-14 2016-07-21 Synthos S.A. Utilisation de minéraux de structure pérovskite dans une mousse de polymère aromatique vinylique
US10639829B2 (en) 2015-01-14 2020-05-05 Synthos S.A. Process for the production of expandable vinyl aromatic polymer granulate having decreased thermal conductivity
US10808093B2 (en) 2015-01-14 2020-10-20 Synthos S.A. Combination of silica and graphite and its use for decreasing the thermal conductivity of vinyl aromatic polymer foam
US10961154B2 (en) 2015-01-14 2021-03-30 Synthos S.A. Geopolymer composite and expandable vinyl aromatic polymer granulate and expanded vinyl aromatic polymer foam comprising the same
US11267170B2 (en) 2015-01-14 2022-03-08 Synthos S.A. Process for the production of expandable vinyl aromatic polymer granulate having decreased thermal conductivity
US11447614B2 (en) 2015-01-14 2022-09-20 Synthos S.A. Combination of silica and graphite and its use for decreasing the thermal conductivity of vinyl aromatic polymer foam
US11708306B2 (en) 2015-01-14 2023-07-25 Synthos S.A. Geopolymer composite and expandable vinyl aromatic polymer granulate and expanded vinyl aromatic polymer foam comprising the same
US11859066B2 (en) 2015-01-14 2024-01-02 Synthos S.A. Use of a mineral having perovskite structure in vinyl aromatic polymer foam

Also Published As

Publication number Publication date
FR2964113A3 (fr) 2012-03-02
DE202010013851U1 (de) 2010-12-16
AT510311A1 (de) 2012-03-15
EP2609144A1 (fr) 2013-07-03
AT510311B1 (de) 2013-02-15
FR2964113B3 (fr) 2012-08-24

Similar Documents

Publication Publication Date Title
WO2012024709A1 (fr) Polymères thermo-isolants ignifugés et leur procédé de production
EP2480598B1 (fr) Polymères de styrène expansés à l'épreuve du feu
EP0981574B1 (fr) Polymerisats de styrene expansibles contenant des particules de graphite
AT511395B1 (de) Flammgeschützte expandierbare polymerisate
EP2513209A1 (fr) Mousses polymères ignifugées
EP1694754A1 (fr) Piece moulee en mousse particulaire composee de granules polymeres expansibles contenant une charge
EP1791896A1 (fr) Mousses polymeres ignifuges sans halogene
WO2009065880A2 (fr) Polymères styréniques expansibles ignifugés et leur procédé de production
EP2519569B1 (fr) Polymères expansibles d' acétobutyrate de cellulose
AT511090B1 (de) Flammgeschützte expandierbare polymerisate
AT508304A1 (de) Flammgeschützte expandierbare polymerisate
EP2531552A2 (fr) Mousses polymères ignifugées contenant du phosphore et exemptes d'halogène
WO2009033200A1 (fr) Procédé de production de polymérisats de styrène expansibles et leur utilisation
DE102012217665A1 (de) Verfahren zur Herstellung von SAN-basierten expandierbaren Polymerpartikeln
EP4077481B1 (fr) Copolymères et composés de moulage ignifuges
DE102004034527A1 (de) Verfahren zur Herstellung von expandierbaren Styrolpolymeren mit verbesserter Expandierbarkeit
AT511509A1 (de) Expandierbare polymerisate aus celluloseacetatbutyrat und styrolpolymerisat
EP2565225B1 (fr) Particule de polymère extensible revêtue
AT508303A1 (de) Flammgeschützte expandierbare polymerisate
DE102004034515A1 (de) Selbstverlöschender Styrolpolymer-Partikelschaumstoff
WO2011095552A1 (fr) Agents ignifuges
EP2062935A2 (fr) Procédé destiné à l'introduction de particules solides dans des masses fondues polymères
WO2014049061A1 (fr) Particules expansibles en polymère
EP2733165A1 (fr) Procédé pour la préparation de mousses de polystyrène retardateurs de flamme et libre d'halogène
EP2733166A1 (fr) Procédé de fabrication de granulés de polymère de styrène expansibles et de mousses de polymère de styrène à teneur réduite en monomères résiduels

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11752455

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011752455

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE