WO2012023545A1 - Material for organic electroluminescent element, composition containing the material for organic electroluminescent element, film formed using the composition, and organic electroluminescent element - Google Patents

Material for organic electroluminescent element, composition containing the material for organic electroluminescent element, film formed using the composition, and organic electroluminescent element Download PDF

Info

Publication number
WO2012023545A1
WO2012023545A1 PCT/JP2011/068530 JP2011068530W WO2012023545A1 WO 2012023545 A1 WO2012023545 A1 WO 2012023545A1 JP 2011068530 W JP2011068530 W JP 2011068530W WO 2012023545 A1 WO2012023545 A1 WO 2012023545A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
organic electroluminescent
electroluminescent element
layer
organic
Prior art date
Application number
PCT/JP2011/068530
Other languages
French (fr)
Japanese (ja)
Inventor
早 高田
直之 林
浩二 高久
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Publication of WO2012023545A1 publication Critical patent/WO2012023545A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/12Light sources with substantially two-dimensional radiating surfaces
    • H05B33/14Light sources with substantially two-dimensional radiating surfaces characterised by the chemical or physical composition or the arrangement of the electroluminescent material, or by the simultaneous addition of the electroluminescent material in or onto the light source
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/631Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine
    • H10K85/633Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine comprising polycyclic condensed aromatic hydrocarbons as substituents on the nitrogen atom
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6572Polycyclic condensed heteroaromatic hydrocarbons comprising only nitrogen in the heteroaromatic polycondensed ring system, e.g. phenanthroline or carbazole
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1003Carbocyclic compounds
    • C09K2211/1007Non-condensed systems
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1003Carbocyclic compounds
    • C09K2211/1014Carbocyclic compounds bridged by heteroatoms, e.g. N, P, Si or B
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/30Coordination compounds
    • H10K85/341Transition metal complexes, e.g. Ru(II)polypyridine complexes
    • H10K85/342Transition metal complexes, e.g. Ru(II)polypyridine complexes comprising iridium
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/30Coordination compounds
    • H10K85/341Transition metal complexes, e.g. Ru(II)polypyridine complexes
    • H10K85/346Transition metal complexes, e.g. Ru(II)polypyridine complexes comprising platinum

Definitions

  • the present invention relates to an organic electroluminescent element material, a composition containing the organic electroluminescent element material, a film formed from the composition, and an organic electroluminescent element.
  • the composition of the present invention is useful as a composition for an organic electroluminescence device.
  • organic electroluminescent elements such as organic electroluminescent elements (hereinafter also referred to as OLEDs and organic EL elements) and transistors using organic semiconductors.
  • the organic electroluminescence device is expected to be developed as a lighting application as a solid light-emitting large-area full-color display device or an inexpensive large-area surface light source.
  • an organic electroluminescent element is composed of an organic layer including a light emitting layer and a pair of counter electrodes sandwiching the organic layer. When a voltage is applied to such an organic electroluminescence device, electrons are injected from the cathode and holes are injected from the anode into the organic layer. The electrons and holes recombine in the light emitting layer, and light is emitted by releasing energy as light when the energy level returns from the conduction band to the valence band.
  • An organic EL element can be produced by forming a light emitting layer and other organic layers by, for example, a dry method such as vapor deposition or a wet method such as coating.
  • a dry method such as vapor deposition
  • a wet method such as coating.
  • wet methods are attracting attention from the viewpoint of productivity. ing.
  • Patent Document 1 polymerizes by heat or light after coating a material having a polymerizable group from the viewpoint of preventing dissolution at the time of lamination coating. An element using the method is disclosed.
  • it is known that the performance of an organic EL element material is greatly deteriorated by mixing a small amount of impurities, and it has been studied to sublimate and purify the organic EL element material before film formation.
  • Patent Document 2 discloses an element that forms an organic layer with a material having a halogen-containing impurity concentration of 1000 ppm or less, and describes that the material is purified by sublimation.
  • Patent Document 3 discloses a device including an active layer, wherein a host material having an HPLC purity of 99.9% or more is used, and the absorbance of impurities is 0.01 or less.
  • Patent Documents 1 and 2 describe refining an organic electroluminescent element material, but do not disclose sublimation purification of an organic electroluminescent element material precursor.
  • the present inventors effectively removed reaction by-products having a close molecular shape by using a material for an organic electroluminescence device obtained by introducing a thermally reactive group into a sublimated and purified precursor.
  • an object of the present invention is to provide an organic electroluminescent device that satisfies the improvement in durability when the device is driven at a high temperature, the suppression of in-plane luminance unevenness, and the suppression of a decrease in initial luminance.
  • Another object of the present invention is to provide a material and a composition for an organic electroluminescence device useful for the above-mentioned organic electroluminescence device.
  • the present inventors have conducted extensive research and found that by using a material for an organic electroluminescent device obtained by introducing a thermally reactive group into a sublimated and purified precursor, It was found that there was an effect.
  • a material for an organic electroluminescent element in which a thermally reactive group is introduced into a sublimated and purified precursor is a compound having a hydrogen bonding site, and the introduction of the thermally reactive group is the introduction of a polymerizable group into the hydrogen bonding site of the compound having the hydrogen bonding site.
  • Materials for organic electroluminescent elements are a compound having a hydrogen bonding site, and the introduction of the thermally reactive group is the introduction of a polymerizable group into the hydrogen bonding site of the compound having the hydrogen bonding site.
  • each Q may be independently condensed, and represents a 6-membered aromatic hydrocarbon ring or aromatic heterocycle which may have a substituent. May combine to form a condensed ring which may have a substituent.
  • each R 1 independently represents a substituent.
  • P 1 represents a vinyl group, an acrylic group, a methacryl group, an epoxy group, or an oxetane group.
  • L independently represents an integer of 0 to 5.
  • L ′ represents an integer of 0 to 4.
  • m3 represents an integer of 0 or more, and R 1 may form a bond to form a condensed ring which may have a substituent. Good.
  • m1 and m2 each independently represents an integer of 0 or more. M1 and m2 do not represent 0 at the same time. N1 and n2 each independently represents an integer of 0 to 10.
  • P 2 and P 3 each independently represents a vinyl group, an acryl group, a methacryl group, an epoxy group or an oxetane group, and Q1 to Q4 may each independently be condensed and have a substituent. Represents a 6-membered aromatic hydrocarbon ring or aromatic heterocycle, and Q1 and Q3, Q2 and Q4 may be bonded to each other to form a condensed ring which may have a substituent.
  • a composition for an organic electroluminescence device comprising the material for an organic electroluminescence device according to any one of [1] to [7] and a solvent.
  • An organic electroluminescent device having a pair of electrodes consisting of an anode and a cathode on a substrate, and at least one organic layer including a light emitting layer between the electrodes,
  • An organic electroluminescent element comprising the organic electroluminescent element material according to any one of [1] to [7] in at least one of the organic layers.
  • the organic layer includes a hole transport layer, a hole injection layer, or an electron block layer, and any one of the hole transport layer, the hole injection layer, and the electron block layer is any one of [1] to [7]
  • [14] [14] The organic electroluminescent element as described in any one of [10] to [13], wherein at least one organic layer between the pair of electrodes is formed by a coating method.
  • the durability at the time of high temperature drive of an element improves,
  • the organic electroluminescent element material which can provide the organic electroluminescent element which satisfies the suppression of in-plane brightness nonuniformity and initial stage brightness fall is provided. Can do.
  • membrane, and organic electroluminescent element containing the said organic electroluminescent element material and this organic electroluminescent element material can be provided.
  • the hydrogen atom in the description of the following general formula (1) includes isotopes (such as deuterium atoms), and further, the atoms constituting the substituents also include the isotopes.
  • the substituent when referred to as “substituent”, the substituent may be substituted.
  • the term “alkyl group” in the present invention includes an alkyl group substituted with a fluorine atom (for example, trifluoromethyl group) and an alkyl group substituted with an aryl group (for example, triphenylmethyl group).
  • alkyl group having 1 to 6 carbon atoms it means that all groups including substituted ones have 1 to 6 carbon atoms.
  • alkyl group preferably having 1 to 10 carbon atoms, more preferably 1 to 6 carbon atoms, still more preferably 1 to 4 carbon atoms, such as methyl, ethyl, isopropyl, n-propyl, tert-butyl, isobutyl, n- Butyl, neopentyl, n-pentyl, n-hexyl, cyclopropyl, cyclopentyl, cyclohexyl, etc.), alkenyl group (preferably having 2 to 8 carbon atoms, more preferably 2 to 5 carbon atoms, such as vinyl)
  • Aryl group having 6 to 30 carbon atoms, more preferably 6 to 20 carbon atoms, such as phenyl group, naphthyl group, anthracenyl group, tetracenyl group, pyrenyl group, perylenyl group, triphenylenyl group, ch
  • the organic electroluminescent element material of the present invention is an organic electroluminescent element material in which a heat-reactive group is introduced into a sublimated and purified precursor.
  • the material for an organic electroluminescent device according to the present invention is a charge transporting material (hole transporting material, electron transporting material, host material) or a light emitting material, preferably hole transporting that can be used for forming a hole transporting layer. It is a material or a luminescent material, and more preferably a hole transport material.
  • this organic electroluminescent element material will be described.
  • the organic electroluminescent element material of the present invention is useful for producing an organic electroluminescent element in which the durability of the element during high temperature driving is improved and in-plane luminance unevenness and initial luminance decrease is suppressed is not clear. Is estimated as follows. It is already known that the device life can be improved by improving the purity of the organic EL material. In order to improve the purity, it is generally known that the final product is used after purification by sublimation. However, many materials having a heat or photopolymerizable group, which are particularly useful when forming a laminated film with a coating type EL, easily react with heat during sublimation purification and cannot be subjected to sublimation purification.
  • inorganic salts and low molecular reactants can be efficiently removed, while impurities having a molecular shape close to that of the final product are removed. It is difficult to separate. These impurities often have an energy level in the device close to that of the product, and it is considered that the impurity becomes an active radical charge when the device is driven and causes deterioration in durability.
  • the durability at the time of driving the element is improved, and even when driven at a high temperature, unwanted decomposition and sub-substances based on the impurities in the film are used.
  • the precursor is a reactive organic compound used when synthesizing a hole transport material, an electron transport material, a host material, and a light emitting material used as a material for an organic electroluminescent device, and is not particularly limited, but a hydrogen bonding site It is preferable that it is a compound which has this. This is because a compound having a hydrogen bonding site has a higher melting point and sublimation point than a compound having no hydrogen bonding site having the same molecular weight and can efficiently remove specific impurities. Moreover, it is preferable that the precursor is a compound having a hydrogen bonding site, and the introduction of the thermally reactive group is the introduction of a polymerizable group into the hydrogen bonding site of the compound.
  • the hydrogen bonding site is reactive as described above and is not desirably included in the element.
  • the hydrogen bonding site refers to a site where hydrogen is directly bonded to nitrogen, oxygen, and sulfur. Does not include hydrogen bonds in a broad sense (such as interactions between carbon-hydrogen bonding sites and electronegative elements). Examples of the hydrogen bond include OH, SH, and NH.
  • the precursor preferably has a high boiling point and a sublimation point due to having a hydrogen bonding site, but a material having a boiling point and a sublimation point satisfying the following formula is particularly preferable.
  • the hydrogen bonding site of the precursor is preferably in a primary or secondary arylamine. Materials such as primary and secondary amines have high melting points and sublimation points, and can remove specific impurities more efficiently. Further, it is already known that tertiary arylamine materials synthesized from these precursors are useful as hole transport materials.
  • the precursor is a compound represented by the following general formula (A1).
  • each Q may be independently condensed, and represents a 6-membered aromatic hydrocarbon ring or aromatic heterocycle which may have a substituent. May combine to form a condensed ring which may have a substituent.
  • the 6-membered aromatic hydrocarbon ring represented by Q may be condensed or may have a substituent.
  • substituent Z is preferably an alkyl group, an aryl group, a heteroaryl group, a silyl group, or a cyano group, a methyl group, an ethyl group, Isopropyl group, n-propyl group, tert-butyl group, isobutyl group, n-butyl group, neopentyl group, n-pentyl group, n-hexyl group, cyclopropyl group, cyclopentyl group, cyclohexyl group, phenyl group, naphthyl group, Anthracenyl group, pyrenyl group, perylenyl group, triphenylenyl group, pyridyl group, thiopheny
  • Examples of the 6-membered aromatic hydrocarbon ring represented by Q include a benzene ring.
  • Examples of the ring formed when the 6-membered aromatic hydrocarbon ring represented by Q is condensed include, for example, naphthalene ring, anthracene ring, fluorene ring, phenanthrene ring, acenaphthene ring, carbazole ring, benzoxazole ring, benzothiazole A ring, a benzimidazole ring, a benzopyrazole ring, and the like, and a naphthalene ring, a carbazole ring, and a benzimidazole ring are preferable.
  • the aromatic heterocycle represented by Q may be condensed or may have a substituent.
  • substituent in the case of having a substituent include the above-described substituent Z, and the preferred range is the same as the substituent in the case where Q is an aromatic hydrocarbon ring.
  • 6-membered aromatic heterocycle represented by Q include a pyridine ring, a pyrazine ring, a pyrimidine ring, a pyridazine ring, and a triazine ring, and a pyridine ring is preferable.
  • Q is preferably a condensed ring, a 6-membered aromatic hydrocarbon ring or an aromatic hetero ring which may have a substituent, and more preferably a condensed ring, A 6-membered aromatic hydrocarbon ring which may have a substituent.
  • Qs may be bonded to each other to form a condensed ring which may have a substituent.
  • an optionally substituted carbazole ring is preferable.
  • the substituent when the condensed ring to be formed has a substituent is the same as the substituent when Q in the general formula (A1) has a substituent, and the preferable ones are also the same. )
  • the compounds exemplified as the precursor can be synthesized by the method described in JP2009-182298A, for example.
  • a formyl group is introduced into a benzene ring, naphthalene ring or pyridine ring of an iridium complex having a phenyl pyridine, biphenyl pyridine or naphthyl pyridine which may have a substituent as a ligand.
  • the compounds are preferred.
  • Sublimation purification of precursors As a method for sublimation purification of the precursor, a conventionally known method can be used.For example, a method of putting a material in a boat and heating it under reduced pressure conditions to sublimate or evaporate the material and collect it in a low temperature part. Can be mentioned. At this time, it is preferable to employ a method in which the sublimation boat is maintained at a temperature lower than the temperature at which the target compound sublimes, and the sublimation impurities are removed in advance. Further, it is preferable to apply a temperature gradient to the portion where the sublimate is collected so that the sublimate is dispersed in the impurities and the target product. The pressure at this time is 0.001 Pa to 0.5 Pa as a general apparatus mode, but it is preferably 0.1 Pa or less from the viewpoint of suppressing thermal decomposition of the compound.
  • thermoreactive group refers to a functional group that undergoes decomposition or reaction upon heating. Heating here means heating the material to 100-400 ° C.
  • a condensable group such as silanol, a carboxyl group, an ester group, and the like can be given.
  • the introduction of the thermally reactive group is preferably addition of a compound having a polymerizable group to the hydrogen bonding site of the compound having a hydrogen bonding site.
  • the polymerizable group refers to a functional group that can react with each other by applying heat or light energy to form a polymer.
  • an oxygen-containing cyclic group such as a terminal olefin group having an olefin group at the end of a substituent, such as a vinyl group, an allyl group, an acrylic group, and a methacryl group, an epoxy group, an oxetane group, and an oxolane group.
  • a substituent such as a vinyl group, an allyl group, an acrylic group, and a methacryl group
  • a terminal olefin group is preferable, and a vinyl group is more preferable.
  • the compound having a polymerizable group is preferably a compound represented by the following general formula (B1).
  • Q represents a 6-membered aromatic hydrocarbon ring or aromatic heterocycle which may be condensed and may have a substituent.
  • K represents an integer. 1 and R 2 each independently represents a hydrogen atom or a substituent, P 4 represents a vinyl group, an acrylic group, a methacryl group, an epoxy group or an oxetane group, and X represents a substituent having a leaving ability.
  • Q represents a 6-membered aromatic hydrocarbon ring or aromatic heterocycle which may be condensed, and may have a substituent.
  • Q has the same meaning as Q in formula (A1), and preferred ones are also the same.
  • k represents an integer, preferably 0 to 6, and more preferably 0 from the viewpoint of improving the reactivity during polymerization.
  • R 1 and R 2 each independently represent a hydrogen atom or a substituent, and examples of the substituent include the above-described substituent Z.
  • the substituent Z include an alkyl group, an aryl group, a heteroaryl group, a silyl group, and a cyano group.
  • Group is preferred, methyl, ethyl, isopropyl, n-propyl, tert-butyl, isobutyl, n-butyl, neopentyl, n-pentyl, n-hexyl, cyclopropyl, cyclopentyl, cyclohexyl, phenyl group, naphthyl group, anthracenyl group, Pyrenyl group, perylenyl group, triphenylenyl group, pyridine, thiophene, furan, imidazole, pyrazole, trimethylsilyl group, triphenylsilyl group, and cyano group are more preferable.
  • CR 1 may also represent a carbonyl group, in which case R 2 is absent.
  • P 4 represents a vinyl group, an acryl group, a methacryl group, an epoxy group or an oxetane group, preferably a vinyl group.
  • X represents a substituent having a leaving ability, and is specifically preferably a halogen atom, an alkylsulfonyloxy group, or an arylsulfonyloxy group.
  • Tf represents a trifluoromethanesulfonyl group.
  • Introduction of the thermally reactive group can be roughly divided by two methods.
  • One is a functional group conversion reaction of a functional group of the precursor to a thermoreactive group
  • the other is an addition and substitution reaction of a compound having a thermoreactive group.
  • a formyl group is introduced into a benzene ring, naphthalene ring or pyridine ring of an iridium complex having a precursor of phenylpyridine, biphenylpyridine or naphthylpyridine which may have a substituent.
  • it is particularly effective when converting a formyl group into a vinyl group which is a thermally reactive group.
  • Examples of the functional group conversion reaction of the functional group of the precursor to a thermally reactive group include a reaction of converting an aldehyde described in paragraph 175 and the subsequent paragraphs of US Publication No. 2008-0220265 into a vinyl group.
  • Examples of the addition and substitution reaction of the compound having a thermally reactive group include a coupling reaction using a metal catalyst.
  • a metal catalyst include palladium, copper, nickel and platinum-containing catalyst reagents, and palladium catalyst reagents are particularly preferable.
  • a method using a zero-valent palladium catalyst such as bis (dibenzylideneacetone) palladium or tetrakis (triphenylphosphine) palladium alone, and a method using a combination of the above-mentioned zero-valent palladium catalyst and a ligand. Any of these can be suitably used.
  • any of inorganic bases such as potassium carbonate, sodium carbonate, sodium hydroxide and potassium phosphate, and organic bases such as potassium t-butoxide, triethylamine, pyridine and sodium ethoxide can be preferably used.
  • the reaction can be carried out in the presence of a solvent, and examples of the solvent include ether solvents such as tetrahydrofuran, diisopropyl ether and dioxane, and aromatic hydrocarbon solvents such as toluene, xylene and mesitylene. From the viewpoint of suppressing side reactions, toluene or xylene is preferable.
  • the compound of the general formula (A1) is preferably reacted at a concentration of 1 mol / L to 0.01 mol / L, more preferably 0.5 to 0.1 mol / L.
  • the temperature in the reaction is preferably from room temperature to 250 ° C, more preferably from 60 ° C to 150 ° C.
  • the amount of the compound represented by the general formula (B1) to be used with respect to the compound represented by the general formula (A1) is preferably 100 mol% to 500 mol%, and the compound represented by the general formula (B1) is From the viewpoint of suppressing an excessive reaction, it is more preferably 100 mol% to 120 mol%.
  • Examples of the addition and substitution reaction of a compound having a thermally reactive group include a nucleophilic substitution reaction using a base.
  • a nucleophilic substitution reaction using a base For example, the above general formula (A1) and general formula (B1) can be reacted in the presence of a base.
  • the base include alkyl metal reagents such as alkylmagnesium and alkyllithium, hydride reagents such as sodium hydride, and strong inorganic bases such as potassium hydroxide.
  • the reaction can be performed in the presence of a solvent.
  • amide solvents such as N, N-dimethylformamide and N-methylpiperidinone
  • ether solvents such as tetrahydrofuran, diisopropyl ether and dioxane, toluene, xylene, mesitylene and the like
  • the aromatic hydrocarbon solvent is preferably an amide solvent from the viewpoint of improving the reactivity.
  • the compound of the general formula (A1) is preferably reacted at a concentration of 1 mol / L to 0.01 mol / L, more preferably 0.5 to 0.1 mol / L.
  • the temperature in the reaction is preferably room temperature to 250 ° C, more preferably 100 ° C to 180 ° C.
  • the amount of the compound represented by the general formula (B1) to be used with respect to the compound represented by the general formula (A1) is preferably 100 mol% to 500 mol%, and the compound represented by the general formula (B1) From the viewpoint of sufficient reaction, it is more preferably from 120 mol% to 250 mol%.
  • the organic electroluminescent element material is preferably an organic electroluminescent element material represented by the following general formula (1).
  • the compound represented by the general formula (1) has a triarylamine moiety, and has high hole injecting property and transporting property.
  • each R 1 independently represents a substituent.
  • P 1 represents a vinyl group, an acrylic group, a methacryl group, an epoxy group, or an oxetane group.
  • L independently represents an integer of 0 to 5.
  • L ′ represents an integer of 0 to 4.
  • m3 represents an integer of 0 or more, and R 1 may form a bond to form a condensed ring which may have a substituent. Good.
  • R 1 is the same as the substituent that the ring Q of the general formula (A1) may have, and the preferred range is also the same.
  • R 1 may form a bond to form a condensed ring which may have a substituent.
  • an optionally substituted carbazole ring is preferable.
  • the substituent when the condensed ring to be formed has a substituent is the same as the substituent when Q in the general formula (A1) has a substituent, and the preferable ones are also the same.
  • P 1 represents a vinyl group, an acryl group, a methacryl group, an epoxy group or an oxetane group, preferably a vinyl group.
  • l independently represents an integer of 0 to 5
  • l ′ represents an integer of 0 to 4.
  • l and l ′ are preferably 0 or 1.
  • m3 represents an integer of 0 or more, and 0 or 1 is preferable.
  • the organic electroluminescent element material is preferably an organic electroluminescent element material represented by the following general formula (2). Since the compound represented by the general formula (2) has a plurality of arylamine units and a plurality of polymerizable sites, it is particularly excellent in uniform film forming properties and hole transportability.
  • m1 and m2 each independently represents an integer of 0 or more. M1 and m2 do not represent 0 at the same time. N1 and n2 each independently represents an integer of 0 to 10.
  • Q1 to Q4 each independently represent a condensed ring and each represents a 6-membered aromatic hydrocarbon ring or aromatic heterocycle which may have a substituent
  • P 2 and P 3 each independently Represents a vinyl group, an acrylic group, a methacryl group, an epoxy group or an oxetane group, and Q1 and Q3, Q2 and Q4 may be bonded to each other to form a condensed ring which may have a substituent.
  • L is a single bond or a divalent linking group.
  • Q1 to Q4 each independently represent a 6-membered aromatic hydrocarbon ring or aromatic heterocycle which may be condensed, and may have a substituent.
  • Q1 to Q4 have the same meanings as Q in formula (A1), and preferred ones are also the same.
  • Q1 and Q3, and Q2 and Q4 may be bonded to each other to form a condensed ring which may have a substituent.
  • an optionally substituted carbazole ring is preferable.
  • the substituent when the condensed ring to be formed has a substituent is the same as the substituent when Q in the general formula (A1) has a substituent, and the preferable ones are also the same.
  • P 2 and P 3 are each independently a vinyl group, acryl group, methacryl group, an epoxy group or an oxetane group, it is preferable that at least one of P 2 and P 3 is a vinyl group, both of P 2 and P 3 Is more preferably a vinyl group.
  • n1 and n2 each independently represents an integer of 0 to 10 and have the same meaning as m3 in formula (1), and the preferred range is also the same.
  • m1 and m2 each independently represents an integer of 0 or more, preferably 1 to 4, and more preferably 1.
  • L represents a single bond or a divalent linking group.
  • the divalent linking group represented by L is preferably a divalent hydrocarbon group that may contain an oxygen atom, a sulfur atom, or a nitrogen atom, and may contain an oxygen atom, a sulfur atom, or a nitrogen atom.
  • An alkylene group, a cycloalkylene group, a silylene group, an arylene group, and a divalent group obtained by combining these are more preferable, and a single bond is more preferable.
  • the alkylene group is preferably an alkylene group having 1 to 10 carbon atoms, and specific examples include a methylene group, an ethylene group, a propylene group, a butylene group, a pentylene group, a dimethylmethylene group, a diethylmethylene group, and a diphenylmethylene group. And preferably a dimethylmethylene group, a diethylmethylene group, or a diphenylmethylene group.
  • the cycloalkylene group is preferably a cycloalkylene group having 3 to 10 carbon atoms, and specific examples include a cyclopropylene group, a cyclobutylene group, a cyclopentylene group, a cyclohexylene group, a cycloheptylene group, and the like. , Cyclopentylene group, cyclohexylene group, and cycloheptylene group.
  • the silylene group is preferably a silylene group substituted by an alkyl group having 1 to 10 carbon atoms or an aryl group having 6 to 10 carbon atoms, more preferably a dimethylsilylene group, a diethylsilylene group or a diphenylsilylene group, A diphenylsilylene group is preferred.
  • the arylene group include a phenylene group, a naphthylene group, a biphenylene group, a fluorenylene group, a phenanthrylene group, a pyrenylene group, a triphenylenylene group, and the like.
  • a phenylene group includes a phenylene group, a naphthylene group, a biphenylene group, a fluorenylene group, a phenanthrylene group, and the like, and most preferably a phenylene group and a naphthylene group.
  • the L may include a charge transport site.
  • the charge transport site means a structural site having a hole mobility of 10 ⁇ 6 to 100 cm / Vs or an electron mobility of 10 ⁇ 6 to 100 cm / Vs.
  • Examples of the charge transport site include a hole transport site, an electron transport site, and a bipolar transport site.
  • a hole transporting site a monovalent group derived from a known compound such as a triarylamine derivative such as NPD or TPD, a carbazole derivative, a metal phthalocyanine derivative, a pyrrole derivative, or a thiophene derivative, or a divalent linkage. Groups.
  • Examples of the electron transport site include monovalent groups or divalent linking groups derived from known compounds such as oxadiazole derivatives, triazine derivatives, phenanthrene derivatives, triphenylene derivatives, silole derivatives, Al complexes, Zn complexes, and the like.
  • Examples of the bipolar transporting site include a monovalent group or a divalent linking group derived from a known compound such as a benzoxazole derivative, anthracene derivative, perylene derivative, or tetracene derivative. Specific examples of L are shown below, but the present invention is not limited thereto.
  • the material for an organic electroluminescent element of the present invention has a reactive group and may be used after being polymerized by polymerization, or may be used as a monomer.
  • the polymer film may be formed and polymerized in a monomer state to form a polymer film.
  • any conventionally known method can be suitably used, and several polymerization means may be used in combination.
  • the polymerization may be further accelerated by light irradiation. It is preferable to perform polymerization with heat from the viewpoint of simplifying the production process.
  • the polymer can be used alone or as a copolymer with other monomers.
  • the content of the structure (repeating unit) corresponding to the organic electroluminescent device material of the present invention in the polymer is preferably 5 to 99 mol%, more preferably 50 to 95 mol%, based on all repeating units in the copolymer. More preferably, it is 75 to 90 mol%.
  • the weight average molecular weight of the polymer containing the organic electroluminescent element material of the present invention is preferably in the range of 1000 to 100,000, more preferably 1200 to 50000, and still more preferably 2000 to 2000 as a polystyrene conversion value by GPC method. 30000.
  • the weight average molecular weight is preferably in the range of 1000 to 100,000, more preferably 1200 to 50000, and still more preferably 2000 to 2000 as a polystyrene conversion value by GPC method. 30000.
  • the dispersity is usually 1.1 to 3.0, preferably 1.2 to 2.0.
  • organic electroluminescent element material of the present invention is shown below, but the present invention is not limited thereto.
  • composition comprising organic electroluminescent element material and solvent
  • the content of the organic electroluminescent element material in the composition is preferably 5 to 50% by mass, more preferably 10 to 40% by mass, and still more preferably 10 to 30% by mass based on the total solid content of the composition. It is.
  • solvent examples include, for example, aromatic hydrocarbon solvents, alcohol solvents, ketone solvents, aliphatic hydrocarbon solvents. And known organic solvents such as amide solvents.
  • aromatic hydrocarbon solvent examples include benzene, toluene, xylene, trimethylbenzene, tetramethylbenzene, cumeneethylbenzene, methylpropylbenzene, methylisopropylbenzene, and the like, and toluene, xylene, cumene, and trimethylbenzene are more preferable. preferable.
  • the relative dielectric constant of the aromatic hydrocarbon solvent is usually 3 or less.
  • the alcohol solvent examples include methanol, ethanol, butanol, benzyl alcohol, cyclohexanol, and the like, butanol, benzyl alcohol, and cyclohexanol are more preferable.
  • the relative dielectric constant of the alcohol solvent is usually 10 to 40.
  • ketone solvents include 1-octanone, 2-octanone, 1-nonanone, 2-nonanone, acetone, 4-heptanone, 1-hexanone, 2-hexanone, diisobutyl ketone, cyclohexanone, methylcyclohexanone, phenylacetone, methylethylketone, methyl
  • Examples include isobutyl ketone, acetylacetone, acetonylacetone, ionone, diacetonyl alcohol, acetylcarbinol, acetophenone, methyl naphthyl ketone, isophorone, propylene carbonate, and the like, and methyl isobutyl ketone and propylene carbonate are preferred.
  • the relative permittivity of the ketone solvent is usually 10 to 90.
  • the aliphatic hydrocarbon solvent include pentane, hexane, octane, decane and the like, and octane and decane are preferable.
  • the relative dielectric constant of the aliphatic hydrocarbon solvent is usually 1.5 to 2.0.
  • Examples of amide solvents include N-methyl-2-pyrrolidone, N-ethyl-2-pyrrolidone, N, N-dimethylacetamide, N, N-dimethylformamide, 1,3-dimethyl-2-imidazolidinone and the like. N-methyl-2-pyrrolidone and 1,3-dimethyl-2-imidazolidinone are preferred.
  • the relative dielectric constant of the amide solvent is usually 30 to 40. In the present invention, the above solvents may be used alone or in combination of two or more.
  • an aromatic hydrocarbon solvent hereinafter also referred to as “first solvent”
  • a second solvent having a relative dielectric constant higher than that of the first solvent may be mixed and used.
  • first solvent an aromatic hydrocarbon solvent
  • second solvent an alcohol solvent, an amide solvent, or a ketone solvent is preferably used, and an alcohol solvent is more preferably used.
  • the mixing ratio (mass) of the first solvent and the second solvent is generally 1/99 to 99/1, preferably 10/90 to 90/10, more preferably 20/80 to 70/30. is there.
  • a mixed solvent containing 60% by mass or more of the first solvent is particularly preferable from the viewpoint of preventing polymer precipitation.
  • the present invention also relates to a film formed by applying the composition of the present invention and heating or irradiating the applied composition.
  • a film formed from the composition of the present invention is useful as a charge transport layer.
  • the charge transport layer can be formed by applying the composition of the present invention and heating the applied composition.
  • the charge transport layer is preferably used in a thickness of 5 to 50 nm, more preferably in a thickness of 5 to 40 nm.
  • Such a film thickness can be obtained by setting the solid content concentration in the composition to an appropriate range to give an appropriate viscosity and improving the coating property and film forming property.
  • the charge transport layer is preferably a hole transport layer, an electron transport layer, an exciton block layer, a hole block layer, or an electron block layer, more preferably a hole transport layer or an exciton block layer, More preferred is a hole transport layer.
  • the total solid content concentration in the composition of the present invention is generally 0.05 to 30% by mass, more preferably 0.1 to 20% by mass, and still more preferably 0.1 to 10% by mass.
  • the viscosity of the composition of the present invention is generally 1 to 30 mPa ⁇ s, more preferably 1.5 to 20 mPa ⁇ s, and still more preferably 1.5 to 15 mPa ⁇ s.
  • the composition of the present invention is used by dissolving the above components in a predetermined organic solvent, filtering the solution, and then applying the solution on a predetermined support or layer as follows.
  • the pore size of the filter used for filter filtration is 2.0 ⁇ m or less, more preferably 0.5 ⁇ m or less, and still more preferably 0.3 ⁇ m or less made of polytetrafluoroethylene, polyethylene, or nylon.
  • the coating method of the composition of the present invention is not particularly limited, and can be formed by any conventionally known coating method. Examples thereof include an ink jet method, a spray coating method, a spin coating method, a bar coating method, a transfer method, and a printing method.
  • the polymerization reaction proceeds and a polymer can be formed.
  • the heating temperature and time after coating are not particularly limited as long as the polymerization reaction proceeds, but the heating temperature is generally 100 ° C to 200 ° C, and more preferably 120 ° C to 160 ° C.
  • the heating time is generally 1 minute to 120 minutes, preferably 1 minute to 60 minutes, and more preferably 1 minute to 30 minutes.
  • a polymerization reaction by UV irradiation a polymerization reaction by a platinum catalyst, a polymerization reaction by an iron catalyst such as iron chloride, and the like can be mentioned. These polymerization methods may be used in combination with a polymerization method by heating.
  • the organic electroluminescent element in the present invention is an organic electroluminescent element having a pair of electrodes consisting of an anode and a cathode and at least one organic layer including a light emitting layer between the electrodes on a substrate, It is an organic electroluminescent element which contains the organic electroluminescent element material of this invention in at least one layer of the said organic layer.
  • the organic layer includes a hole transport layer, a hole injection layer, or an electron block layer, and the organic electroluminescent element material of the present invention may be included in any of the hole transport layer, hole injection layer, or electron block layer. preferable.
  • the present invention also relates to an organic electroluminescent device having a film formed from the composition of the present invention. Furthermore, it is preferable that at least one of the organic layers between the pair of electrodes is formed by a coating method. More specifically, the organic electroluminescent element in the present invention is an organic electroluminescent element having a pair of electrodes including an anode and a cathode and at least one organic layer including a light emitting layer between the electrodes on a substrate. The at least one organic layer has a charge transport layer formed from the composition of the present invention.
  • the light emitting layer is an organic layer, and further includes at least one organic layer between the light emitting layer and the anode, but may further have an organic layer in addition to these.
  • at least one of the anode and the cathode is preferably transparent or translucent.
  • FIG. 1 shows an example of the configuration of an organic electroluminescent device according to the present invention.
  • a light emitting layer 6 is sandwiched between an anode 3 and a cathode 9 on a support substrate 2.
  • a hole injection layer 4, a hole transport layer 5, a light emitting layer 6, a hole block layer 7, and an electron transport layer 8 are laminated in this order between the anode 3 and the cathode 9.
  • the substrate used in the present invention is preferably a substrate that does not scatter or attenuate light emitted from the organic layer.
  • a substrate that does not scatter or attenuate light emitted from the organic layer In the case of an organic material, it is preferable that it is excellent in heat resistance, dimensional stability, solvent resistance, electrical insulation, and workability.
  • the anode usually only needs to have a function as an electrode for supplying holes to the organic layer, and there is no particular limitation on the shape, structure, size, etc., depending on the use and purpose of the light-emitting element, It can select suitably from well-known electrode materials.
  • the anode is usually provided as a transparent anode.
  • the cathode usually has a function as an electrode for injecting electrons into the organic layer, and there is no particular limitation on the shape, structure, size, etc., and it is known depending on the use and purpose of the light-emitting element.
  • the electrode material can be selected as appropriate.
  • Organic layer in the present invention will be described.
  • each organic layer is formed by a solution coating process such as a dry film forming method such as an evaporation method or a sputtering method, a transfer method, a printing method, a spin coating method, a bar coating method, an ink jet method, or a spray method. Any of these can be suitably formed.
  • a solution coating process such as a dry film forming method such as an evaporation method or a sputtering method, a transfer method, a printing method, a spin coating method, a bar coating method, an ink jet method, or a spray method. Any of these can be suitably formed.
  • any one of the organic layers is particularly preferably formed by a wet method.
  • the other layers can be formed by appropriately selecting a dry method or a wet method.
  • the organic layer can be easily increased in area, and a light-emitting element having high luminance and excellent light emission efficiency can be obtained efficiently at low cost, which is preferable.
  • Vapor deposition, sputtering, etc. can be used as dry methods, and dipping, spin coating, dip coating, casting, die coating, roll coating, bar coating, gravure coating, and spray coating as wet methods.
  • An ink jet method or the like can be used.
  • These film forming methods can be appropriately selected according to the material of the organic layer.
  • the film is formed by a wet method, it may be dried after the film is formed. Drying is performed by selecting conditions such as temperature and pressure so that the coating layer is not damaged.
  • the coating solution used in the wet film-forming method (coating process) usually comprises an organic layer material and a solvent for dissolving or dispersing it.
  • a solvent is not specifically limited, What is necessary is just to select according to the material used for an organic layer.
  • Specific examples of the solvent include halogen solvents (chloroform, carbon tetrachloride, dichloromethane, 1,2-dichloroethane, chlorobenzene, etc.), ketone solvents (acetone, methyl ethyl ketone, diethyl ketone, n-propyl methyl ketone, cyclohexanone, etc.), Aromatic solvents (benzene, toluene, xylene, etc.), ester solvents (ethyl acetate, n-propyl acetate, n-butyl acetate, methyl propionate, ethyl propionate, ⁇ -butyrolactone, diethyl carbonate,
  • the light emitting layer contains a light emitting material, and the light emitting material preferably contains a phosphorescent compound.
  • the phosphorescent compound is not particularly limited as long as it is a compound that can emit light from triplet excitons.
  • an orthometalated complex or a porphyrin complex is preferably used, and an orthometalated complex is more preferably used.
  • a porphyrin platinum complex is preferred.
  • the phosphorescent compounds may be used alone or in combination of two or more.
  • the ortho-metalated complex referred to in the present invention refers to Akio Yamamoto's “Organic Metal Chemistry Fundamentals and Applications”, pages 150 and 232, Hankabo (1982), H.C. Yersin's “Photochemistry and Photophysics of Coordination Compounds”, pages 71 to 77 and pages 135 to 146, Springer-Verlag (1987), etc.
  • the ligand forming the orthometalated complex is not particularly limited, but a 2-phenylpyridine derivative, a 7,8-benzoquinoline derivative, a 2- (2-thienyl) pyridine derivative, a 2- (1-naphthyl) pyridine derivative or A 2-phenylquinoline derivative is preferred. These derivatives may have a substituent.
  • any transition metal can be used.
  • rhodium, platinum, gold, iridium, ruthenium, palladium and the like can be preferably used. Of these, iridium is particularly preferable.
  • An organic layer containing such an orthometalated complex is excellent in light emission luminance and light emission efficiency. Specific examples of ortho-metalated complexes are also described in paragraphs 0152 to 0180 of Japanese Patent Application No. 2000-254171.
  • At least one of the light emitting materials is a platinum complex material or an iridium complex material.
  • a platinum complex material or an iridium complex material is preferably included, more preferably a platinum complex material or an iridium complex material having a tetradentate ligand, and further preferably an iridium complex material.
  • the fluorescent light-emitting material and the phosphorescent light-emitting material are described in detail in paragraph numbers [0100] to [0164] of JP-A-2008-270736 and paragraph numbers [0088] to [0090] of JP-A-2007-266458, for example.
  • the matters described in these publications can be applied to the present invention.
  • the iridium complex is preferably an iridium complex represented by the following general formula (T-2). [Compound represented by formula (T-2)] The compound represented by formula (T-2) will be described.
  • R T3 ′ to R T6 ′ and R T3 to R T6 are each independently a hydrogen atom, alkyl group, alkenyl group, alkynyl group, cyano group, perfluoroalkyl group, trifluorovinyl.
  • R T3 , R T4 , R T5 and R T6 may be any two adjacent to each other to form a condensed 4- to 7-membered ring, which is a cycloalkyl, aryl or hetero ring It is aryl, and the condensed 4- to 7-membered ring may further have a substituent T.
  • R T each independently represents a hydrogen atom, an alkyl group, an alkenyl group, an alkynyl group, a heteroalkyl group, an aryl group, or a heteroaryl group, and may further have a substituent T.
  • the substituents T are each independently a fluorine atom, —R ′, —OR ′, —N (R ′) 2 , —SR ′, —C (O) R ′, —C (O) OR ′, —C ( O) represents N (R ′) 2 , —CN, —NO 2 , —SO 2 , —SOR ′, —SO 2 R ′, or —SO 3 R ′, and each R ′ independently represents a hydrogen atom, alkyl Represents a group, a perfluoroalkyl group, an alkenyl group, an alkynyl group, a heteroalkyl group, an aryl group or a heteroaryl group.
  • (XY) represents a ligand.
  • m represents an integer of 1 to 3
  • n represents an integer of 0 to 2.
  • m + n is 3.
  • the alkyl group represented by R T3 ′, R T3 , R T4 , R T5 , R T6 is preferably an alkyl group having 1 to 8 carbon atoms, more preferably an alkyl group having 1 to 6 carbon atoms.
  • Group for example, methyl group, ethyl group, i-propyl group, cyclohexyl group, t-butyl group and the like.
  • the cycloalkyl group may have a substituent, may be saturated or unsaturated, and examples of the group that may be substituted include the above-described substituent T.
  • the cycloalkyl group represented by R T3 ′, R T3 , R T4 , R T5 , R T6 is preferably a cycloalkyl group having 4 to 7 ring members, and more preferably a cycloalkyl group having 5 to 6 total carbon atoms.
  • Examples of the alkyl group include a cyclopentyl group and a cyclohexyl group.
  • the alkenyl group represented by R T3 ′, R T3 , R T4 , R T5 and R T6 preferably has 2 to 30 carbon atoms, more preferably 2 to 20 carbon atoms, and particularly preferably 2 to 10 carbon atoms.
  • alkynyl group represented by R T3 ′, R T3 , R T4 , R T5 , R T6 is preferably 2-30 carbon atoms, more preferably 2-20 carbon atoms, and particularly preferably 2-10 carbon atoms.
  • R T3 ′, R T3 , R T4 , R T5 , R T6 is preferably 2-30 carbon atoms, more preferably 2-20 carbon atoms, and particularly preferably 2-10 carbon atoms.
  • ethynyl, propargyl, 1-propynyl, 3-pentynyl and the like are examples thereof.
  • Examples of the heteroalkyl group represented by R T3 ′, R T3 , R T4 , R T5 , and R T6 include a group in which at least one carbon of the alkyl group is replaced with O, NR T , or S.
  • Examples of the halogen atom represented by R T3 ′, R T3 , R T4 , R T5 , and R T6 include a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom, and a fluorine atom is preferable.
  • the aryl group represented by R T3 ′, R T3 , R T4 , R T5 and R T6 is preferably a substituted or unsubstituted aryl group having 6 to 30 carbon atoms, more preferably 6 to 6 carbon atoms. 20 aryl groups.
  • the aryl group include a phenyl group, a naphthyl group, a biphenyl group, an anthryl group, a terphenyl group, a fluorenyl group, a phenanthryl group, a pyrenyl group, a triphenylenyl group, and a tolyl group.
  • Group, biphenyl group, anthryl group or terphenyl group is preferable, and phenyl group, fluorenyl group and naphthyl group are more preferable.
  • the heteroaryl group represented by R T3 ′, R T3 , R T4 , R T5 , R T6 is preferably a heteroaryl group having 5 to 8 carbon atoms, more preferably a 5- or 6-membered substituent.
  • an unsubstituted heteroaryl group for example, pyridyl group, pyrazinyl group, pyridazinyl group, pyrimidinyl group, triazinyl group, quinolinyl group, isoquinolinyl group, quinazolinyl group, cinnolinyl group, phthalazinyl group, quinoxalinyl group, pyrrolyl group, indolyl group , Furyl group, benzofuryl group, thienyl group, benzothienyl group, pyrazolyl group, imidazolyl group, benzimidazolyl group, triazolyl group, oxazolyl group, benzoxazolyl
  • R T3 ′, R T3 , R T4 , R T5 and R T6 are preferably a hydrogen atom, an alkyl group, a cyano group, a trifluoromethyl group, a perfluoroalkyl group, a dialkylamino group, a fluorine atom, an aryl group or a heteroaryl group. And more preferably a hydrogen atom, an alkyl group, a cyano group, a trifluoromethyl group, a fluorine atom or an aryl group, and still more preferably a hydrogen atom, an alkyl group or an aryl group.
  • substituent T an alkyl group, an alkoxy group, a fluorine atom, a cyano group, and a dialkylamino group are preferable, and a hydrogen atom is more preferable.
  • R T3 , R T4 , R T5 and R T6 may be any two adjacent to each other to form a condensed 4- to 7-membered ring, which is a cycloalkyl, aryl or hetero ring It is aryl, and the condensed 4- to 7-membered ring may further have a substituent T.
  • the condensed 4- to 7-membered ring may be further condensed with a 4- to 7-membered ring.
  • the definition and preferred range of cycloalkyl, aryl and heteroaryl formed are the same as the cycloalkyl group, aryl group and heteroaryl group defined by R T3 ′, R T3 , R T4 , R T5 and R T6 .
  • R T4 ′ is preferably a hydrogen atom, an alkyl group, an aryl group or a fluorine atom, more preferably a hydrogen atom.
  • R T5 ′ and R T6 ′ represent a hydrogen atom or are preferably bonded to each other to form a condensed 4- to 7-membered cyclic group, and the condensed 4- to 7-membered cyclic group includes cycloalkyl, cyclohetero More preferred is alkyl, aryl, or heteroaryl, and even more preferred is aryl.
  • the substituent T in R T4 ′ to R T6 ′ is preferably an alkyl group, an alkoxy group, a fluorine atom, a cyano group, an alkylamino group, or a diarylamino group, and more preferably an alkyl group.
  • One of the preferred forms of the compound represented by the general formula (T-2) is R T3 ′, R T4 ′, R T5 ′, R T6 ′, R T3 , R T4 in the general formula (T-2). , R T5 and R T6 , any two adjacent to each other are not bonded to each other to form a condensed ring.
  • M is preferably 1 to 3, and more preferably 2 or 3. That is, n is preferably 0 or 1. It is preferable that the kind of ligand in a complex is comprised from 1 or 2 types, More preferably, it is 1 type. When introducing a reactive group into the complex molecule, it is also preferred that the ligand consists of two types from the viewpoint of ease of synthesis.
  • the metal complex represented by the general formula (T-2) includes a ligand represented by the following general formula (T-1-A) in the general formula (T-2) or a tautomer thereof, and (X -Y) or a combination with a tautomer thereof, or all of the ligands of the metal complex are represented by the following general formula (T-1-A) Or a tautomer thereof.
  • R T3 ' ⁇ R T6' and R T3 ⁇ R T6 are in the general formula (T-2), and R T3 ' ⁇ R T6' and R T3 ⁇ R T6 (It is synonymous. * Represents the coordination position to iridium.)
  • a ligand used for forming a conventionally known metal complex
  • a ligand also referred to as a coordination compound
  • XY a ligand represented by (XY). You may do it.
  • ligands used in conventionally known metal complexes.
  • ligands eg, halogen ligands (preferably chlorine ligands), etc., published in 1987, published by Yersin, “Organometallic Chemistry-Fundamentals and Applications-”
  • Nitrogen heteroaryl ligands for example, bipyridyl, phenanthroline, etc.
  • diketone ligands for example, acetylacetone, etc.
  • the ligand represented by (XY) is preferably a diketone or a picolinic acid.
  • the derivative is most preferably acetylacetonate (acac) shown below from the viewpoint of obtaining stability of the complex and high luminous efficiency.
  • * represents a coordination position to iridium in the general formula (T-2).
  • Rx, Ry and Rz each independently represents a hydrogen atom or a substituent.
  • the substituent include a substituent selected from the substituent group A.
  • Rx and Rz are each independently an alkyl group, a perfluoroalkyl group, a fluorine atom or an aryl group, more preferably an alkyl group having 1 to 4 carbon atoms, a perfluoroalkyl group having 1 to 4 carbon atoms, A fluorine atom and an optionally substituted phenyl group are most preferred, and a methyl group, an ethyl group, a trifluoromethyl group, a fluorine atom and a phenyl group are most preferred.
  • Ry is preferably a hydrogen atom, an alkyl group, a perfluoroalkyl group, a fluorine atom or an aryl group, more preferably a hydrogen atom, an alkyl group having 1 to 4 carbon atoms, or an optionally substituted phenyl group. And most preferably a hydrogen atom or a methyl group. Since these ligands are considered not to be sites where electrons are transported in the device or where electrons are concentrated by excitation, Rx, Ry, and Rz may be any chemically stable substituent, and the effects of the present invention can be achieved. Also has no effect. Since complex synthesis is easy, (I-1), (I-4) and (I-5) are preferred, and (I-1) is most preferred.
  • Ligands having these ligands can be synthesized in the same manner as in known synthesis examples by using corresponding ligand precursors. For example, in the same manner as described in International Publication No. 2009-073245, page 46, it can be synthesized by the following method using commercially available difluoroacetylacetone.
  • a monoanionic ligand represented by the general formula (I-15) can also be used as the ligand.
  • R T7 to R T10 in general formula (I-15) have the same meanings as R T3 to R T6 in general formula (T-2), and the preferred ranges are also the same.
  • R T7 ′ to R T10 ′ have the same meanings as R T3 ′ to R T6 ′ in formula (T-2), and their preferred ranges are also the same as R T3 ′ to R T6 ′. * Represents a coordination position to iridium.
  • T-2 One preferred form of the compound represented by the general formula (T-2) is a case represented by the following general formula (T-3).
  • R T3 ' ⁇ R T6' in the general formula (T3) R T3 ⁇ R T6 is, R T3 in the general formula (T-2) ' ⁇ R T6', have the same meaning as R T3 ⁇ R T6, preferably The range is the same.
  • R T7 to R T10 have the same meanings as R T3 to R T6 in formula (T-2), and preferred ranges are also the same.
  • R T7 ′ to R T10 ′ have the same meanings as R T3 ′ to R T6 ′ in formula (T-2), and preferred ranges are also the same.
  • T-2 Another preferred embodiment of the compound represented by the general formula (T-2) is a compound represented by the following general formula (T-4).
  • R T3 ′ to R T6 ′, R T3 to R T6 , (XY), m and n in the general formula (T-4) are R T3 ′ to R T6 ′, R in the general formula (T-2).
  • T3 to R T6 have the same meanings as (XY), m and n, and the preferred ranges are also the same.
  • 0 to 2 are alkyl groups or phenyl groups and the rest are all hydrogen atoms
  • T-2 Another preferred embodiment of the compound represented by the general formula (T-2) is a compound represented by the following general formula (T-5).
  • R T3 ′ to R T7 ′, R T3 to R T6 , (XY), m and n in the general formula (T-5) are R T3 ′ to R T6 ′, R in the general formula (T-2).
  • T3 to R T6 have the same meanings as (XY), m and n, and the preferred ones are also the same.
  • T-6 Another preferred embodiment of the compound represented by the general formula (T-2) is a case represented by the following general formula (T-6).
  • R 1a to R 1i are the same as those in R T3 to R T6 in general formula (T-2). Further, it is particularly preferable that 0 to 2 of R 1a to R 1i are alkyl groups or aryl groups and the rest are all hydrogen atoms.
  • the definitions and preferred ranges of (XY), m, and n are the same as (XY), m, and n in formula (T-2).
  • the compounds exemplified as the compound represented by the general formula (T-2) can be synthesized by the method described in JP2009-99783A, various methods described in US Pat. No. 7,279,232 and the like. After synthesis, it is preferable to purify by sublimation purification after purification by column chromatography, recrystallization or the like. By sublimation purification, not only can organic impurities be separated, but inorganic salts and residual solvents can be effectively removed.
  • the compound represented by the general formula (T-2) is contained in the light emitting layer, but its use is not limited and may be further contained in any layer in the organic layer.
  • platinum complex examples include compounds described in [0143] to [0152], [0157] to [0158] and [0162] to [0168] of JP-A-2005-310733, and JP-A-2006-256999. Nos. [0065] to [0083], No. 2006-93542, Nos. [0065] to [0090], No. 2007-33891, Nos. [0063] to [0071]
  • platinum complexes exemplified other following can be mentioned.
  • the light emitting material in the light emitting layer is generally contained in the light emitting layer in an amount of 0.1% by mass to 50% by mass with respect to the total mass of the compound forming the light emitting layer. From the viewpoint of durability and external quantum efficiency.
  • the content is preferably 1% by mass to 50% by mass, and more preferably 2% by mass to 40% by mass.
  • the orthometalated complex used in the present invention is Inorg. Chem. 30, 1685, 1991, Inorg. Chem. 27, 3464, 1988, Inorg. Chem. 33, 545, 1994, Inorg. Chim. Acta, 181, 245, 1991; Organomet. Chem. , 335, 293, 1987; Am. Chem. Soc. , 107, 1431, 1985 and the like.
  • the content of the phosphorescent compound in the light emitting layer is not particularly limited, but is, for example, 0.1 to 70% by mass, and preferably 1 to 20% by mass. If the content of the phosphorescent compound is less than 0.1% by mass or exceeds 70% by mass, the effect may not be sufficiently exhibited.
  • the light emitting layer may contain a host compound as necessary.
  • the host compound is a compound that causes energy transfer from the excited state to the phosphorescent compound, and as a result, causes the phosphorescent compound to emit light.
  • Specific examples include carbazole derivatives, triazole derivatives, oxazole derivatives, oxadiazole derivatives, imidazole derivatives, polyarylalkane derivatives, pyrazoline derivatives, pyrazolone derivatives, phenylenediamine derivatives, arylamine derivatives, amino-substituted chalcone derivatives, styrylanthracene derivatives.
  • the thickness of the light emitting layer is preferably 10 to 200 nm, more preferably 20 to 80 nm. When the thickness exceeds 200 nm, the driving voltage may increase. When the thickness is less than 10 nm, the light emitting element may be short-circuited.
  • the charge transport layer is a layer in which charge transfer occurs when a voltage is applied to the organic electroluminescent element.
  • Specific examples include a hole injection layer, a hole transport layer, an electron block layer, a light emitting layer, a hole block layer, an electron transport layer, and an electron injection layer.
  • a hole injection layer, a hole transport layer, an electron blocking layer, or a light emitting layer is preferable. If the charge transport layer formed by the coating method is a hole injection layer, a hole transport layer, an electron blocking layer, or a light emitting layer, it is possible to manufacture an organic electroluminescent element with low cost and high efficiency.
  • the charge transport layer is more preferably a hole injection layer, a hole transport layer, or an electron block layer.
  • the organic electroluminescent element of the present invention may have a hole injection layer and a hole transport layer.
  • the hole injection layer and the hole transport layer are layers having a function of receiving holes from the anode or the anode side and transporting them to the cathode side.
  • the hole injection layer and the hole transport layer are described in detail, for example, in JP-A-2008-270736 and JP-A-2007-266458, and the matters described in these publications can be applied to the present invention.
  • the organic electroluminescent element of the present invention may have an electron injection layer and an electron transport layer.
  • the electron injection layer and the electron transport layer are layers having a function of receiving electrons from the cathode or the cathode side and transporting them to the anode side.
  • the electron injection material and the electron transport material used for these layers may be a low molecular compound or a high molecular compound.
  • the electron injection layer and the electron transport layer are described in detail, for example, in JP-A-2008-270736 and JP-A-2007-266458, and the matters described in these publications can be applied to the present invention.
  • the hole blocking layer is a layer having a function of preventing holes transported from the anode side to the light emitting layer from passing through to the cathode side.
  • a hole blocking layer can be provided as an organic layer adjacent to the light emitting layer on the cathode side.
  • organic compounds constituting the hole blocking layer include aluminum (III) bis (2-methyl-8-quinolinato) 4-phenylphenolate (Aluminum (III) bis (2-methyl-8-quinolinato) 4- aluminum complexes such as phenylphenolate (abbreviated as BAlq), triazole derivatives, 2,9-dimethyl-4,7-diphenyl-1,10-phenanthroline (2,9-Dimethyl-4,7-diphenyl-1,10-) phenanthroline derivatives such as phenanthroline (abbreviated as BCP), triphenylene derivatives, carbazole derivatives, and the like.
  • the thickness of the hole blocking layer is preferably 1 nm to 500 nm, more preferably 5 nm to 200 nm, and even more preferably 10 nm to 100 nm.
  • the hole blocking layer may have a single layer structure made of one or more of the materials described above, or may have a multilayer structure made of a plurality of layers having the same composition or different compositions.
  • the electron blocking layer is a layer having a function of preventing electrons transported from the cathode side to the light emitting layer from passing through to the anode side.
  • an electron blocking layer can be provided as an organic layer adjacent to the light emitting layer on the anode side.
  • the thickness of the electron blocking layer is preferably 1 nm to 500 nm, more preferably 5 nm to 200 nm, and even more preferably 10 nm to 100 nm.
  • the electron blocking layer may have a single layer structure composed of one or more of the above-described materials, or may have a multilayer structure composed of a plurality of layers having the same composition or different compositions.
  • the exciton blocking layer is a layer formed at one or both of the interface between the light emitting layer and the hole transport layer, or the interface between the light emitting layer and the electron transport layer, and the excitons generated in the light emitting layer are holes. It is a layer that diffuses into the transport layer and the electron transport layer and prevents deactivation without emitting light.
  • the exciton blocking layer is preferably made of a carbazole derivative.
  • the organic electroluminescence device of the present invention has a protective layer described in JP-A-7-85974, 7-192866, 8-22891, 10-275682, 10-106746, etc. Also good.
  • the protective layer is formed on the uppermost surface of the light emitting element.
  • the top surface refers to the outer surface of the back electrode, and the base material, the back electrode, the organic layer, and the transparent electrode are laminated in this order. In some cases, it refers to the outer surface of the transparent electrode.
  • the shape, size, thickness and the like of the protective layer are not particularly limited.
  • the material for forming the protective layer is not particularly limited as long as it has a function of suppressing intrusion or permeation of a light-emitting element such as moisture or oxygen into the element. Silicon, germanium oxide, germanium dioxide or the like can be used.
  • the method for forming the protective layer is not particularly limited. For example, vacuum deposition, sputtering, reactive sputtering, molecular sensing epitaxy, cluster ion beam, ion plating, plasma polymerization, plasma CVD, laser CVD Thermal CVD method, coating method, etc. can be applied.
  • the organic electroluminescent element is preferably provided with a sealing layer for preventing moisture and oxygen from entering.
  • a material for forming the sealing layer a copolymer of tetrafluoroethylene and at least one comonomer, a fluorinated copolymer having a cyclic structure in the copolymer main chain, polyethylene, polypropylene, polymethyl methacrylate, polyimide, Polyurea, polytetrafluoroethylene, polychlorotrifluoroethylene, polydichlorodifluoroethylene, chlorotrifluoroethylene or a copolymer of dichlorodifluoroethylene and another comonomer, a water-absorbing substance having a water absorption of 1% or more, a water absorption of 0.
  • moisture-proof material metal (in, Sn, Pb, Au , Cu, Ag, Al, Tl, Ni , etc.), metal oxides (MgO, SiO, SiO 2, Al 2 O 3, GeO, NiO, CaO, BaO, Fe 2 O 3 , Y 2 O 3, TiO 2 , etc.), metal fluorides (MgF 2, L F, AlF 3, CaF 2, etc.), liquid fluorinated carbon (perfluoroalkane, perfluoro amine, perfluoro ether), etc. are available that in the liquid fluorinated carbon was dispersed adsorbent moisture or oxygen It is.
  • metal in, Sn, Pb, Au , Cu, Ag, Al, Tl, Ni , etc.
  • metal oxides MgO, SiO, SiO 2, Al 2 O 3, GeO, NiO, CaO, BaO, Fe 2 O 3 , Y 2 O 3, TiO 2 , etc.
  • metal fluorides MgF 2, L F, AlF 3, CaF
  • the organic electroluminescence device of the present invention emits light by applying a direct current (which may include an alternating current component as necessary) voltage (usually 2 to 15 volts) or a direct current between the anode and the cathode. Obtainable.
  • the driving method of the organic electroluminescence device of the present invention is described in JP-A-2-148687, JP-A-6-301355, JP-A-5-290080, JP-A-7-134558, JP-A-8-234585, and JP-A-8-2441047.
  • the driving methods described in each publication, Japanese Patent No. 2784615, US Pat. Nos. 5,828,429, 6023308, and the like can be applied.
  • the element of the present invention can be suitably used for a display element, a display, a backlight, electrophotography, an illumination light source, a recording light source, an exposure light source, a reading light source, a sign, a signboard, an interior, or optical communication.
  • a device driven in a region having a high light emission luminance such as a lighting device or a display device.
  • FIG. 2 is a cross-sectional view schematically showing an example of the light emitting device of the present invention.
  • the light-emitting device 20 in FIG. 2 includes a transparent substrate (substrate) 2, an organic electroluminescent element 10, a sealing container 16, and the like.
  • the organic electroluminescent device 10 is configured by sequentially laminating an anode (first electrode) 3, an organic layer 11, and a cathode (second electrode) 9 on a substrate 2.
  • a protective layer 12 is laminated on the cathode 9, and a sealing container 16 is provided on the protective layer 12 with an adhesive layer 14 interposed therebetween.
  • a part of each electrode 3 and 9, a partition, an insulating layer, etc. are abbreviate
  • the adhesive layer 14 a photocurable adhesive such as an epoxy resin or a thermosetting adhesive can be used, and for example, a thermosetting adhesive sheet can also be used.
  • the use of the light-emitting device of the present invention is not particularly limited, and for example, it can be a display device such as a television, a personal computer, a mobile phone, and electronic paper in addition to a lighting device.
  • FIG. 3 is a cross-sectional view schematically showing an example of the illumination device of the present invention.
  • the illumination device 40 of the present invention includes the organic EL element 10 and the light scattering member 30 described above. More specifically, the lighting device 40 is configured such that the substrate 2 of the organic EL element 10 and the light scattering member 30 are in contact with each other.
  • the light scattering member 30 is not particularly limited as long as it can scatter light.
  • the light scattering member 30 is a member in which fine particles 32 are dispersed on a transparent substrate 31.
  • the transparent substrate 31 for example, a glass substrate can be preferably cited.
  • transparent resin fine particles can be preferably exemplified.
  • the glass substrate and the transparent resin fine particles known ones can be used.
  • the incident light is scattered by the light scattering member 30, and the scattered light is emitted from the light emitting surface 30B. It is emitted as illumination light.
  • Sublimation-purified compound P-1 10.0 g, p-bromostyrene 10.1 g, bis (dibenzylideneacetone) palladium 0.53 g, 2-dimethylamino-2′-dicyclohexylphosphinobiphenyl 0.39 g, t-butoxy sodium 6.6 g was stirred in toluene (115 mL) at 80 ° C. for 1.5 hours. The reaction solution was cooled and extracted with ethyl acetate. The obtained organic phase was concentrated and purified by column chromatography using hexane / ethyl acetate as a developing solvent to obtain Compound 1 (hereinafter referred to as Compound 1-1).
  • Compound HI-2 was synthesized using P-HI-1 as a precursor and synthesized by sublimation-purified P-HI-1 as a precursor, HI-2-1, and P-HI-1 not subjected to sublimation purification as a precursor Is synthesized as HI-2-2.
  • Example A-1 ⁇ Preparation of Coating Solution A for Hole Transport Layer Formation>
  • Compound 1-1 was dissolved in xylene for electronic industry to give a total solid content concentration of 0.4% by mass, and this was filtered through a PTFE (polytetrafluoroethylene) filter having a pore size of 0.22 ⁇ m to obtain a hole transport layer.
  • a forming coating solution A was prepared.
  • MEK methyl ethyl ketone
  • a transparent support substrate was obtained by depositing ITO with a thickness of 150 nm on a glass substrate of 25 mm ⁇ 25 mm ⁇ 0.7 mm. This transparent support substrate was placed in a cleaning container, subjected to ultrasonic cleaning in 2-propanol, and then subjected to UV-ozone treatment for 30 minutes.
  • the coating liquid A for forming a hole transport layer prepared as described above is spin-coated (1500 rpm, 20 seconds) and then dried at 120 ° C. for 30 minutes, so that the thickness is about 10 nm.
  • a hole transport layer was formed as described above.
  • the light emitting layer forming coating solution A prepared as described above was spin coated (1500 rpm, 20 seconds) in a glove box (dew point -68 degrees, oxygen concentration 10 ppm), and the thickness was about 30 nm.
  • a light emitting layer was formed as described above.
  • BAlq bis- (2-methyl-8-quinolinolato) -4- (phenyl-phenolato) -aluminum (III)
  • BAlq bis- (2-methyl-8-quinolinolato) -4- (phenyl-phenolato) -aluminum (III)
  • Lithium fluoride LiF was formed as an electron injection layer on the electron transport layer by a vacuum deposition method so as to have a thickness of 1 nm. Furthermore, 70 nm of metal aluminum was vapor-deposited to make a cathode.
  • the laminate produced as described above is placed in a glove box substituted with argon gas, and sealed with a stainless steel sealing can and an ultraviolet curable adhesive (XNR5516HV, manufactured by Nagase Ciba Co., Ltd.). Thus, an organic electroluminescent element of Example A-1 was produced.
  • Example A-2 Example A-3 and Comparative Examples A-1 to A-3
  • Example A-2 In the preparation of the coating liquid A for forming a hole transport layer in Example A-1, Example A-2 was prepared in the same manner as in Example A-1, except that the hole transport material shown in Table 1 below was used. Thus, organic electroluminescent elements of Example A-3 and Comparative Examples A-1 to A-3 were obtained.
  • Example A-4 Comparative Example A-4
  • Example A-4 In producing the devices of Example A-1 and Comparative Example A-1, instead of forming the light emitting layer by coating using the light emitting layer forming coating solution A, 95% by mass of the host compound H-1 and 5% A light emitting layer having a film thickness of 30 nm was formed by vapor-depositing the light emitting material E-1 in mass% by a vacuum evaporation method, and the drying time of the hole transport layer was changed to the drying time shown in Table 1.
  • the devices of Example A-4 and Comparative Example A-4 were obtained in the same manner as Example A-1 and Comparative Example A-1, except for the above.
  • Example A-5 Comparative Example A-5
  • Example A- was conducted in the same manner as in Example A-1 and Comparative Example A-1, except that the drying temperature was changed to 200 ° C. 5.
  • An organic electroluminescent device of Comparative Example A-5 was obtained.
  • Table 1 the results of the high temperature driving durability and the durability at the initial stage of driving are described as relative values when the value of Comparative Example A-1 is 1. Moreover, it described about the drying time and drying temperature at the time of forming a positive hole transport layer.
  • Example B-1 ⁇ Preparation of light emitting layer forming coating solution B> 95% by mass of the host compound H-2 and 5% by mass of the luminescent material E-2 are dissolved in methyl ethyl ketone (MEK) to a solid content concentration of 1.0% by mass, which has a pore size of 0.22 ⁇ m. It filtered with the PTFE filter and prepared the coating liquid B for light emitting layer formation.
  • MEK methyl ethyl ketone
  • a transparent support substrate was obtained by depositing ITO with a thickness of 150 nm on a glass substrate of 25 mm ⁇ 25 mm ⁇ 0.7 mm. This transparent support substrate was placed in a cleaning container, subjected to ultrasonic cleaning in 2-propanol, and then subjected to UV-ozone treatment for 30 minutes.
  • 0.5 part by mass of compound A (described in US2008 / 0220265) represented by the following structural formula was dissolved in 99.5 parts by mass of cyclohexanone and spin-coated (4000 rpm, 30 seconds). By drying at 200 ° C. for 30 minutes, a hole injection layer was formed to a thickness of about 5 nm.
  • the hole transport layer forming coating solution A used in Example A-1 was spin-coated (1500 rpm, 20 seconds), and then dried at 150 ° C. for 20 minutes to obtain a thickness of about A hole transport layer was formed to have a thickness of 10 nm.
  • the light emitting layer forming coating solution B prepared as described above is spin-coated on the hole transport layer in a glove box (dew point -68 degrees, oxygen concentration 10 ppm) to a thickness of about 30 nm (1500 rpm, 20 seconds). And a light emitting layer.
  • BAlq was formed as an electron transport layer
  • lithium fluoride (LiF) was formed as an electron injection layer
  • metallic aluminum was formed as a cathode.
  • the laminate produced as described above is placed in a glove box substituted with argon gas, and sealed with a stainless steel sealing can and an ultraviolet curable adhesive (XNR5516HV, manufactured by Nagase Ciba Co., Ltd.).
  • an organic electroluminescent element of Example B-1 was produced.
  • Example B-2 Comparative Example B-1 and Comparative Example B-2
  • Example B-2 was carried out in the same manner as Example B-1, except that the hole transport material shown in Table 2 below was used in the preparation of the coating liquid A for forming a hole transport layer in Example B-1.
  • organic electroluminescent elements of Comparative Example B-1 and Comparative Example B-2 were obtained.
  • Example B-3 Comparative Example B-3
  • Example B- was performed in the same manner as Example B-1 and Comparative Example B-1, except that the drying temperature was changed to 200 ° C. 3.
  • An organic electroluminescent device of Comparative Example B-3 was obtained.
  • Example A-1 Each element obtained as described above was evaluated in the same manner as in Example A-1, and the results are shown in Table 2.
  • Table 2 the results of the high temperature driving durability and the durability at the initial stage of movement are shown as relative values when the value of Comparative Example B-1 is 1. Moreover, it described about the drying time and drying temperature at the time of forming a positive hole transport layer.
  • Example C-1 ⁇ Preparation of Coating Solution C for Hole Transport Layer Formation>
  • MEK methyl ethyl ketone
  • the hole transport layer forming coating solution C prepared as described above is spin-coated (1500 rpm, 20 seconds), dried at 100 ° C. for 30 minutes, and annealed at 150 ° C. for 10 minutes.
  • a hole transport layer was formed to have a thickness of about 10 nm.
  • the light emitting layer forming coating solution C prepared as described above was spin-coated (1500 rpm, 20 seconds) in a glove box (dew point -68 degrees, oxygen concentration 10 ppm), and the thickness was about 30 nm.
  • a light emitting layer was formed as described above.
  • BAlq was formed as an electron transport layer
  • lithium fluoride (LiF) was formed as an electron injection layer
  • metallic aluminum was formed as a cathode.
  • the laminate produced as described above is placed in a glove box substituted with argon gas, and sealed with a stainless steel sealing can and an ultraviolet curable adhesive (XNR5516HV, manufactured by Nagase Ciba Co., Ltd.).
  • an organic electroluminescent element of Example C-1 was produced.
  • Example C-2 was carried out in the same manner as Example C-1, except that the hole transport material shown in Table 3 below was used in the preparation of the coating liquid C for forming a hole transport layer in Example C-1.
  • C-3 and organic electroluminescent elements of Comparative Examples C-1 to C-3 were obtained.
  • Example A-1 Each element obtained as described above was evaluated in the same manner as in Example A-1, and the results are shown in Table 3.
  • Table 3 the results of the high temperature driving durability and the durability in the initial stage of movement are shown as relative values when the value of Comparative Example C-1 is 1.
  • Example D-1 to D-3 Comparative Examples D-1 to D-3, Example E-4, Comparative Example E-4, Examples F-1 to F-3, Comparative Examples F-1 to F- 3
  • a device was fabricated in the same manner as in Example A-1, except that the material used for each layer was changed to the materials listed in Tables 4 to 6, respectively. Note that the element is manufactured with a constant concentration of the solvent and the solid content with respect to the solvent unless otherwise specified.
  • Example A-1 The durability at high temperature driving of each element obtained as described above was evaluated in the same manner as in Example A-1, and the results are shown in Tables 4-6.
  • the high temperature driving durability is described as a relative value when the values of Comparative Examples D-1, E-4, and F-1 are 1.
  • the durability at the time of high temperature drive of an element improves,
  • the organic electroluminescent element material which can provide the organic electroluminescent element which satisfies the suppression of in-plane brightness nonuniformity and initial stage brightness fall is provided. Can do.
  • membrane, and organic electroluminescent element containing the said organic electroluminescent element material and this organic electroluminescent element material can be provided.

Abstract

Provided is an organic electroluminescent element in which durability of the element during the driving at a high temperature is improved, the unevenness in in-plane luminance is reduced and the reduction in initial luminance is prevented. A material for an organic electroluminescent element, which is produced by introducing a thermally reactive group into a precursor that has been purified by sublimation. In the material for an organic electroluminescent element, the precursor is a compound having a hydrogen-binding moiety and the introduction of the thermally reactive group is the introduction of a polymerizable group into the hydrogen-binding moiety in the compound having the hydrogen-binding moiety. In the material for an organic electroluminescent element, the hydrogen-binding moiety in the precursor is located in a primary or secondary aryl amine. The material for an organic electroluminescent element is represented by general formula (1). (In general formula (1), R1's independently represent a substituent; P1 represents a vinyl group, an acryl group, a methacryl group, an epoxy group or an oxetane group; l's independently represent an integer of 0-5; l' represents an integer of 0-4; and m3 represents an integer of 0 or more; wherein R1's may together form a bond to thereby form a condensed ring which may have a substituent.)

Description

有機電界発光素子用材料、該有機電界発光素子用材料を含む組成物、並びに、該組成物により形成された膜、及び有機電界発光素子ORGANIC ELECTROLUMINESCENT ELEMENT MATERIAL, COMPOSITION CONTAINING THE ORGANIC ELECTROLUMINESCENT ELEMENT MATERIAL, FILM FORMED BY THE COMPOSITION, AND ORGANIC ELECTROLUMINESCENT ELEMENT
 本発明は、有機電界発光素子用材料、該有機電界発光素子用材料を含む組成物、並びに、該組成物により形成された膜、及び有機電界発光素子に関する。本発明の組成物は、有機電界発光素子用組成物として有用である。 The present invention relates to an organic electroluminescent element material, a composition containing the organic electroluminescent element material, a film formed from the composition, and an organic electroluminescent element. The composition of the present invention is useful as a composition for an organic electroluminescence device.
 有機材料を利用したデバイスとして、有機電界発光素子(以下、OLED、有機EL素子ともいう)、有機半導体を利用したトランジスタなどの研究が活発に行われている。特に、有機電界発光素子は、固体発光型の大面積フルカラー表示素子や安価な大面積な面光源としての照明用途としての発展が期待されている。一般に有機電界発光素子は発光層を含む有機層及び該有機層を挟んだ一対の対向電極から構成される。このような有機電界発光素子に電圧を印加すると、有機層に陰極から電子が注入され陽極から正孔が注入される。この電子と正孔が発光層において再結合し、エネルギー準位が伝導帯から価電子帯に戻る際にエネルギーを光として放出することにより発光が得られる。 Research has been actively conducted on devices using organic materials, such as organic electroluminescent elements (hereinafter also referred to as OLEDs and organic EL elements) and transistors using organic semiconductors. In particular, the organic electroluminescence device is expected to be developed as a lighting application as a solid light-emitting large-area full-color display device or an inexpensive large-area surface light source. In general, an organic electroluminescent element is composed of an organic layer including a light emitting layer and a pair of counter electrodes sandwiching the organic layer. When a voltage is applied to such an organic electroluminescence device, electrons are injected from the cathode and holes are injected from the anode into the organic layer. The electrons and holes recombine in the light emitting layer, and light is emitted by releasing energy as light when the energy level returns from the conduction band to the valence band.
 有機EL素子は、発光層及びその他の有機層を、例えば蒸着などの乾式法又は塗布などの湿式法により成膜することで作製することができるが、生産性などの観点から湿式法が注目されている。
 塗布法にて有機層を有する有機EL素子を作製する場合の材料として、特許文献1には積層塗布時の溶解を防ぐ観点から、重合性基を有する材料を塗布した後に熱又は光により重合させる方法を用いた素子が開示されている。
 一方、有機EL素子用材料は、微量の不純物の混入でその性能が大幅に低下することが知られており、製膜前に有機EL素子用材料を昇華精製することが検討されている。
 特許文献2にはハロゲン含有不純物の濃度が1000ppm以下の材料で有機層を形成する素子が開示されており、材料を昇華精製することが記載されている。また、特許文献3は99.9%以上のHPLC純度を有するホスト材料を用い、不純物の吸光度が0.01以下であることを特徴とする活性層を含む素子が開示されている。
An organic EL element can be produced by forming a light emitting layer and other organic layers by, for example, a dry method such as vapor deposition or a wet method such as coating. However, wet methods are attracting attention from the viewpoint of productivity. ing.
As a material for producing an organic EL element having an organic layer by a coating method, Patent Document 1 polymerizes by heat or light after coating a material having a polymerizable group from the viewpoint of preventing dissolution at the time of lamination coating. An element using the method is disclosed.
On the other hand, it is known that the performance of an organic EL element material is greatly deteriorated by mixing a small amount of impurities, and it has been studied to sublimate and purify the organic EL element material before film formation.
Patent Document 2 discloses an element that forms an organic layer with a material having a halogen-containing impurity concentration of 1000 ppm or less, and describes that the material is purified by sublimation. Patent Document 3 discloses a device including an active layer, wherein a host material having an HPLC purity of 99.9% or more is used, and the absorbance of impurities is 0.01 or less.
日本国特開2009-182298号公報Japanese Unexamined Patent Publication No. 2009-182298 日本国特開2004-327454号公報Japanese Unexamined Patent Publication No. 2004-327454 日本国特表2010-50977号公報Japan Special Table 2010-50977
 しかしながら、重合性モノマーを有機EL素子用材料として用いる場合は、昇華精製ができないため不純物の除去が十分でなく、従来の技術における重合性モノマーを有機電界発光素子用材料として用いた有機電界発光素子は、効率及び耐久性が不十分であり、それらの更なる向上が求められていた。 However, when a polymerizable monomer is used as a material for an organic EL device, impurities cannot be sufficiently removed because sublimation purification cannot be performed, and an organic electroluminescent device using a polymerizable monomer according to a conventional technique as a material for an organic electroluminescent device. However, the efficiency and durability are insufficient, and further improvement thereof has been demanded.
 従来の素子が有するこれらの問題に対し、本発明者らは、昇華精製された前駆体に、熱反応性基を導入することにより得られた有機電界発光素子用材料を用いることにより、優れた効果を奏することを見出した。特許文献1及び2には有機電界発光素子用材料を精製することについて記載があるが、有機電界発光素子用材料の前駆体を昇華精製することについての開示はない。本発明者らは昇華精製された前駆体に、熱反応性基を導入することにより得られた有機電界発光素子用材料により、分子形状の近い反応副生成物を効果的に除去したことで、素子の高温駆動時の耐久性が向上し、面内の輝度ムラ及び初期輝度低下の抑制を満足する有機電界発光素子が提供されることを見出し発明を完成するに至った。
 すなわち、本発明の目的は、素子の高温駆動時の耐久性の向上、面内の輝度ムラの抑制、初期輝度低下の抑制を満足する有機電界発光素子を提供することである。
 また、本発明の別の目的は、上述の有機電界発光素子に有用な有機電界発光素子用材料及び組成物を提供することである。
With respect to these problems of conventional devices, the present inventors have achieved excellent results by using a material for an organic electroluminescent device obtained by introducing a thermally reactive group into a sublimated and purified precursor. I found out that there was an effect. Patent Documents 1 and 2 describe refining an organic electroluminescent element material, but do not disclose sublimation purification of an organic electroluminescent element material precursor. The present inventors effectively removed reaction by-products having a close molecular shape by using a material for an organic electroluminescence device obtained by introducing a thermally reactive group into a sublimated and purified precursor. It was found that the durability of the device during high-temperature driving was improved, and an organic electroluminescent device satisfying the suppression of in-plane luminance unevenness and initial luminance reduction was found, and the invention was completed.
That is, an object of the present invention is to provide an organic electroluminescent device that satisfies the improvement in durability when the device is driven at a high temperature, the suppression of in-plane luminance unevenness, and the suppression of a decrease in initial luminance.
Another object of the present invention is to provide a material and a composition for an organic electroluminescence device useful for the above-mentioned organic electroluminescence device.
 上記状況を鑑み、本発明者らは、鋭意研究を行なったところ、昇華精製された前駆体に、熱反応性基を導入することにより得られた有機電界発光素子用材料を用いることにより、優れた効果を奏することを見出した。 In view of the above situation, the present inventors have conducted extensive research and found that by using a material for an organic electroluminescent device obtained by introducing a thermally reactive group into a sublimated and purified precursor, It was found that there was an effect.
 即ち、前記課題を解決するための手段は以下の通りである。
〔1〕
 昇華精製された前駆体に、熱反応性基が導入された有機電界発光素子用材料。
〔2〕
 前記前駆体が水素結合性部位を有する化合物であり、熱反応性基の導入が、該水素結合性部位を有する化合物の水素結合性部位への重合性基の導入である〔1〕に記載の有機電界発光素子用材料。
〔3〕
 該前駆体の水素結合性部位が、1級又は2級のアリールアミンにある〔1〕又は〔2〕に記載の有機電界発光素子用材料。
〔4〕
 前記前駆体が下記一般式(A1)で表される化合物である、〔1〕~〔3〕のいずれか一項に記載の有機電界発光素子用材料。
That is, the means for solving the problems are as follows.
[1]
A material for an organic electroluminescent element in which a thermally reactive group is introduced into a sublimated and purified precursor.
[2]
The precursor is a compound having a hydrogen bonding site, and the introduction of the thermally reactive group is the introduction of a polymerizable group into the hydrogen bonding site of the compound having the hydrogen bonding site. Materials for organic electroluminescent elements.
[3]
The material for an organic electroluminescent element according to [1] or [2], wherein the hydrogen bonding site of the precursor is in a primary or secondary arylamine.
[4]
The material for an organic electroluminescent element according to any one of [1] to [3], wherein the precursor is a compound represented by the following general formula (A1).
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000004
(一般式(A1)中、Qはそれぞれ独立に縮環していてもよく、置換基を有していてもよい6員の芳香族炭化水素環又は芳香族ヘテロ環を表す。また、Qどうしが結合して、置換基を有していてもよい縮合環を形成してもよい。)
〔5〕
 前記重合性基が、末端オレフィン基であることを特徴とする〔2〕~〔4〕のいずれか一項に記載の材料。
〔6〕
 前記有機電界発光素子用材料が、下記一般式(1)で表される有機電界発光素子用材料である〔1〕~〔5〕のいずれか一項に記載の有機電界発光素子用材料。
(In general formula (A1), each Q may be independently condensed, and represents a 6-membered aromatic hydrocarbon ring or aromatic heterocycle which may have a substituent. May combine to form a condensed ring which may have a substituent.
[5]
The material according to any one of [2] to [4], wherein the polymerizable group is a terminal olefin group.
[6]
The organic electroluminescent element material according to any one of [1] to [5], wherein the organic electroluminescent element material is an organic electroluminescent element material represented by the following general formula (1).
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000005
(一般式(1)中、R1はそれぞれ独立に置換基を表す。Pはビニル基、アクリル基、メタクリル基、エポキシ基又はオキセタン基を表す。lはそれぞれ独立に0~5の整数を表し、l’は0~4の整数を表す。m3は0以上の整数を表す。また、Rどうしが結合を形成して、置換基を有していてもよい縮合環を形成してもよい。)
〔7〕
 前記有機電界発光素子用材料が、下記一般式(2)で表される有機電界発光素子用材料である〔1〕~〔5〕のいずれか一項に記載の有機電界発光素子用材料。
(In the general formula (1), each R 1 independently represents a substituent. P 1 represents a vinyl group, an acrylic group, a methacryl group, an epoxy group, or an oxetane group. L independently represents an integer of 0 to 5. L ′ represents an integer of 0 to 4. m3 represents an integer of 0 or more, and R 1 may form a bond to form a condensed ring which may have a substituent. Good.)
[7]
The organic electroluminescent element material according to any one of [1] to [5], wherein the organic electroluminescent element material is an organic electroluminescent element material represented by the following general formula (2).
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000006
(一般式(2)中、m1、及びm2はそれぞれ独立に0以上の整数を表す。m1、及びm2が同時に0を表すことはない。n1、及びn2はそれぞれ独立に0~10の整数を表す。P及びPはそれぞれ独立にビニル基、アクリル基、メタクリル基、エポキシ基又はオキセタン基を表す。Q1~Q4はそれぞれ独立に縮環していてもよく、置換基を有していてもよい6員の芳香族炭化水素環又は芳香族ヘテロ環を表す。また、Q1とQ3、Q2とQ4は、互いに結合して、置換基を有していてもよい縮合環を形成してもよい。Lは単結合又は二価の連結基を表す。)
〔8〕
 〔1〕~〔7〕のいずれか一項に記載の有機電界発光素子用材料と、溶媒とを含む有機電界発光素子用組成物。
〔9〕
 〔8〕に記載の組成物を塗布し、塗布された該組成物を加熱又は光照射することにより形成された有機電界発光素子用膜。
〔10〕
 基板上に、陽極及び陰極からなる一対の電極と、該電極間に発光層を含む少なくとも一層の有機層とを有する有機電界発光素子であって、
 前記有機層のいずれか少なくとも一層に〔1〕~〔7〕のいずれか一項に記載の有機電界発光素子用材料を含む有機電界発光素子。
〔11〕
 前記有機層が正孔輸送層、正孔注入層又は電子ブロック層を含み、該正孔輸送層、正孔注入層、電子ブロック層のいずれかに〔1〕~〔7〕のいずれか一項に記載の有機電界発光素子用材料を含むことを特徴とする〔10〕に記載の有機電界発光素子。
〔12〕
 前記有機層が発光層を含み、該発光層がりん光性金属錯体を含むことを特徴とする〔10〕又は〔11〕に記載の有機電界発光素子。
〔13〕
 〔9〕に記載の膜を含む〔10〕~〔12〕のいずれか一項に記載の有機電界発光素子。
〔14〕
 前記一対の電極間にある有機層の少なくとも一層が、塗布法により形成されることを特徴とする〔10〕~〔13〕のいずれか一項に記載の有機電界発光素子。
(In general formula (2), m1 and m2 each independently represents an integer of 0 or more. M1 and m2 do not represent 0 at the same time. N1 and n2 each independently represents an integer of 0 to 10. P 2 and P 3 each independently represents a vinyl group, an acryl group, a methacryl group, an epoxy group or an oxetane group, and Q1 to Q4 may each independently be condensed and have a substituent. Represents a 6-membered aromatic hydrocarbon ring or aromatic heterocycle, and Q1 and Q3, Q2 and Q4 may be bonded to each other to form a condensed ring which may have a substituent. L is a single bond or a divalent linking group.)
[8]
[1] A composition for an organic electroluminescence device comprising the material for an organic electroluminescence device according to any one of [1] to [7] and a solvent.
[9]
The film | membrane for organic electroluminescent elements formed by apply | coating the composition as described in [8], and heating or light-irradiating this apply | coated composition.
[10]
An organic electroluminescent device having a pair of electrodes consisting of an anode and a cathode on a substrate, and at least one organic layer including a light emitting layer between the electrodes,
An organic electroluminescent element comprising the organic electroluminescent element material according to any one of [1] to [7] in at least one of the organic layers.
[11]
The organic layer includes a hole transport layer, a hole injection layer, or an electron block layer, and any one of the hole transport layer, the hole injection layer, and the electron block layer is any one of [1] to [7] [10] The organic electroluminescent element as described in [10] above, comprising the material for an organic electroluminescent element as described in
[12]
The organic electroluminescent device according to [10] or [11], wherein the organic layer includes a light emitting layer, and the light emitting layer includes a phosphorescent metal complex.
[13]
The organic electroluminescence device according to any one of [10] to [12], including the film according to [9].
[14]
[14] The organic electroluminescent element as described in any one of [10] to [13], wherein at least one organic layer between the pair of electrodes is formed by a coating method.
 本発明によれば、素子の高温駆動時の耐久性が向上し、面内の輝度ムラ及び初期輝度低下の抑制を満足する有機電界発光素子を提供し得る有機電界発光素子用材料を提供することができる。
 また、本発明によれば、上記有機電界発光素子用材料及び該有機電界発光素子用材料を含む組成物、膜、及び有機電界発光素子を提供することができる。
ADVANTAGE OF THE INVENTION According to this invention, the durability at the time of high temperature drive of an element improves, The organic electroluminescent element material which can provide the organic electroluminescent element which satisfies the suppression of in-plane brightness nonuniformity and initial stage brightness fall is provided. Can do.
Moreover, according to this invention, the composition, film | membrane, and organic electroluminescent element containing the said organic electroluminescent element material and this organic electroluminescent element material can be provided.
本発明に係る有機電界発光素子の層構成の一例を示す概略図である。It is the schematic which shows an example of the layer structure of the organic electroluminescent element which concerns on this invention. 本発明に係る発光装置の一例を示す概略図である。It is the schematic which shows an example of the light-emitting device which concerns on this invention. 本発明に係る照明装置の一例を示す概略図である。It is the schematic which shows an example of the illuminating device which concerns on this invention.
 以下、本発明について詳細に説明する。なお、本明細書において「~」はその前後に記載される数値をそれぞれ最小値及び最大値として含む範囲を示す。
 下記一般式(1)の説明における水素原子は同位体(重水素原子等)も含み、また更に置換基を構成する原子は、その同位体も含んでいることを表す。
 本発明において、「置換基」というとき、その置換基は置換されていてもよい。例えば、本発明で「アルキル基」と言う時、フッ素原子で置換されたアルキル基(例えばトリフルオロメチル基)やアリール基で置換されたアルキル基(例えばトリフェニルメチル基)なども含むが、「炭素数1~6のアルキル基」と言うとき、置換されたものも含めた全ての基として炭素数が1~6であることを示す。
Hereinafter, the present invention will be described in detail. In the present specification, “to” indicates a range including the numerical values described before and after the values as a minimum value and a maximum value, respectively.
The hydrogen atom in the description of the following general formula (1) includes isotopes (such as deuterium atoms), and further, the atoms constituting the substituents also include the isotopes.
In the present invention, when referred to as “substituent”, the substituent may be substituted. For example, the term “alkyl group” in the present invention includes an alkyl group substituted with a fluorine atom (for example, trifluoromethyl group) and an alkyl group substituted with an aryl group (for example, triphenylmethyl group). When the term “alkyl group having 1 to 6 carbon atoms” is used, it means that all groups including substituted ones have 1 to 6 carbon atoms.
 本発明において、置換基Zを以下のように定義する。 In the present invention, the substituent Z is defined as follows.
<置換基Z>
 アルキル基(好ましくは炭素数1~10、より好ましくは炭素数1~6、更に好ましくは炭素数1~4であり、例えばメチル、エチル、イソプロピル、n-プロピル、tert-ブチル、イソブチル、n-ブチル、ネオペンチル、n-ペンチル、n-ヘキシル、シクロプロピル、シクロペンチル、シクロヘキシルなどが挙げられる)、アルケニル基(好ましくは炭素数2~8、より好ましくは炭素数2~5であり、例えばビニル等が挙げられる)、アリール基(炭素数6~30、より好ましくは炭素数6~20であり、例えばフェニル基、ナフチル基、アントラセニル基、テトラセニル基、ピレニル基、ペリレニル基、トリフェニレニル基、クリセニル基が挙げられる)、ヘテロアリール基(好ましくは炭素数4~30、より好ましくは炭素数4~20であり、例えばピリジン、ピラジン、ピリミジン、ピリダジン、トリアジン、チオフェン、フラン、オキサゾール、チアゾール、イミダゾール、ピラゾール、トリアゾール、オキサジアゾール、チアジアゾール等が挙げられる)、アルコキシ基(好ましくは炭素数1~8、より好ましくは炭素数1~5であり、例えばメトキシ基、エトキシ基、n-プロピルオキシ基、iso-プロピルオキシ基等が挙げられる)、フェノキシ基、ハロゲン原子(好ましくはフッ素原子)、シリル基(好ましくは炭素数4~30、より好ましくは炭素数4~20であり、トリメチルシリル基、トリエチルシリル基、トリフェニルシリル基などが挙げられる)、アミノ基(好ましくは炭素数2~60、より好ましくは炭素数2~40であり、ジメチルアミノ基、ジエチルアミノ基、ジフェニルアミノ基等が挙げられる)、シアノ基又はこれらを組み合わせて成る基を表し、複数の置換基Zは互いに結合してアリール環を形成しても良い。複数の置換基Zが互いに結合して形成するアリール環としては、フェニル環、ピリジン環等が挙げられ、フェニル環が好ましい。
<Substituent Z>
An alkyl group (preferably having 1 to 10 carbon atoms, more preferably 1 to 6 carbon atoms, still more preferably 1 to 4 carbon atoms, such as methyl, ethyl, isopropyl, n-propyl, tert-butyl, isobutyl, n- Butyl, neopentyl, n-pentyl, n-hexyl, cyclopropyl, cyclopentyl, cyclohexyl, etc.), alkenyl group (preferably having 2 to 8 carbon atoms, more preferably 2 to 5 carbon atoms, such as vinyl) Aryl group (having 6 to 30 carbon atoms, more preferably 6 to 20 carbon atoms, such as phenyl group, naphthyl group, anthracenyl group, tetracenyl group, pyrenyl group, perylenyl group, triphenylenyl group, chrysenyl group) Heteroaryl group (preferably having 4 to 30 carbon atoms, more preferably carbon 4 to 20, for example, pyridine, pyrazine, pyrimidine, pyridazine, triazine, thiophene, furan, oxazole, thiazole, imidazole, pyrazole, triazole, oxadiazole, thiadiazole and the like, alkoxy group (preferably having 1 carbon atom) To 8, more preferably 1 to 5 carbon atoms, such as methoxy, ethoxy, n-propyloxy, iso-propyloxy, etc.), phenoxy, halogen (preferably fluorine), A silyl group (preferably having 4 to 30 carbon atoms, more preferably 4 to 20 carbon atoms, such as trimethylsilyl group, triethylsilyl group, triphenylsilyl group), amino group (preferably having 2 to 60 carbon atoms, More preferably, it has 2 to 40 carbon atoms, and dimethyl Amino group, a diethylamino group, and a diphenylamino group), a cyano group or a group formed by combining these groups, a plurality of substituents Z may be bonded to form an aryl ring. Examples of the aryl ring formed by bonding a plurality of substituents Z to each other include a phenyl ring and a pyridine ring, and a phenyl ring is preferable.
〔有機電界発光素子用材料〕
 本発明の有機電界発光素子用材料は、昇華精製された前駆体に、熱反応性基が導入された有機電界発光素子用材料である。
 本発明に係る有機電界発光素子用材料は、電荷輸送性材料(正孔輸送材料、電子輸送材料、ホスト材料)、又は発光材料であり、好ましくは正孔輸送層の形成に用い得る正孔輸送材料又は発光材料であり、更に好ましくは正孔輸送材料である。以下、この有機電界発光素子用材料について説明する。
 本発明の有機電界発光素子用材料が、素子の高温駆動時の耐久性が向上し、面内の輝度ムラ及び初期輝度低下を抑制した有機電界発光素子の作製に有用である理由は定かではないが、以下のように推測される。
 有機EL用材料の純度を向上させることで素子寿命の改善が可能であることは既に知られている。純度の向上には最終生成物を昇華精製して用いる事が一般に知られている。しかし、塗布型ELで特に積層膜を形成する際に有用な、熱又は光重合性基を有する材料は、昇華精製時の熱により容易に反応するため昇華精製を行う事ができないものが多い。また、最終生成物を昇華精製する従来の方法では、反応時に副生する不純物のうち、無機塩や低分子反応剤などは効率的に除去できる一方で、最終生成物と分子形状の近い不純物を分離することは難しい。これらの不純物は素子内でのエネルギー準位も生成物と近い事が多く、素子を駆動させた際に活性なラジカル電荷となって耐久性劣化の要因となる事が考えられる。
 本願では前駆体に含有される特定の不純物を昇華によって除去することによって、素子駆動時の耐久性が向上し、高温で駆動した際にも膜内での不純物を基点とする望まない分解や副反応を抑制すると考えられる。また、これにより、特に通電直後の輝度維持率に優れることが明らかとなった。有機EL素子の素子寿命のなかでも初期劣化を抑制することは、特に素子間での輝度維持が必要とされるディスプレイにおいて有用な技術である。通電初期の駆動劣化は、膜内に少量含まれる化学的に活性な不純物が電荷によって分解若しくは反応して起こるものと考えられ、これらが抑えられるためであると推測している。
[Materials for organic electroluminescent elements]
The organic electroluminescent element material of the present invention is an organic electroluminescent element material in which a heat-reactive group is introduced into a sublimated and purified precursor.
The material for an organic electroluminescent device according to the present invention is a charge transporting material (hole transporting material, electron transporting material, host material) or a light emitting material, preferably hole transporting that can be used for forming a hole transporting layer. It is a material or a luminescent material, and more preferably a hole transport material. Hereinafter, this organic electroluminescent element material will be described.
The reason why the organic electroluminescent element material of the present invention is useful for producing an organic electroluminescent element in which the durability of the element during high temperature driving is improved and in-plane luminance unevenness and initial luminance decrease is suppressed is not clear. Is estimated as follows.
It is already known that the device life can be improved by improving the purity of the organic EL material. In order to improve the purity, it is generally known that the final product is used after purification by sublimation. However, many materials having a heat or photopolymerizable group, which are particularly useful when forming a laminated film with a coating type EL, easily react with heat during sublimation purification and cannot be subjected to sublimation purification. In addition, in the conventional method for sublimation purification of the final product, among the impurities generated as a by-product during the reaction, inorganic salts and low molecular reactants can be efficiently removed, while impurities having a molecular shape close to that of the final product are removed. It is difficult to separate. These impurities often have an energy level in the device close to that of the product, and it is considered that the impurity becomes an active radical charge when the device is driven and causes deterioration in durability.
In the present application, by removing specific impurities contained in the precursor by sublimation, the durability at the time of driving the element is improved, and even when driven at a high temperature, unwanted decomposition and sub-substances based on the impurities in the film are used. It is thought to suppress the reaction. This also revealed that the luminance maintenance rate immediately after energization was excellent. Suppressing the initial deterioration in the element lifetime of the organic EL element is a useful technique particularly for a display that needs to maintain luminance between elements. It is assumed that the drive deterioration at the initial stage of energization is caused by decomposition or reaction of chemically active impurities contained in a small amount in the film due to charges, and these are suppressed.
〔前駆体〕
 前駆体は、有機電界発光素子用材料として用いられる正孔輸送材料、電子輸送材料、ホスト材料、発光材料を合成する際に用いられる反応性有機化合物であり、特に限定されないが、水素結合性部位を有する化合物であることが好ましい。水素結合性部位を有する化合物は同じ分子量の水素結合性部位を有さない化合物に比較して高い融点、昇華点を有し、効率的に特定の不純物を除くことができるためである。また、前駆体が水素結合性部位を有する化合物であり、熱反応性基の導入が、該化合物の水素結合性部位への重合性基の導入であることが好ましい。水素結合性部位は上記の通り反応性を有し、素子内に含まれることは望ましくないためである。ここで、水素結合性部位とは、窒素・酸素・硫黄に水素が直接結合した部位を指す。広義の水素結合(炭素-水素結合部位と電気的陰性元素との相互作用など)は含まない。水素結合としては、例えば、O-H、S-H、N-Hが挙げられる。
〔precursor〕
The precursor is a reactive organic compound used when synthesizing a hole transport material, an electron transport material, a host material, and a light emitting material used as a material for an organic electroluminescent device, and is not particularly limited, but a hydrogen bonding site It is preferable that it is a compound which has this. This is because a compound having a hydrogen bonding site has a higher melting point and sublimation point than a compound having no hydrogen bonding site having the same molecular weight and can efficiently remove specific impurities. Moreover, it is preferable that the precursor is a compound having a hydrogen bonding site, and the introduction of the thermally reactive group is the introduction of a polymerizable group into the hydrogen bonding site of the compound. This is because the hydrogen bonding site is reactive as described above and is not desirably included in the element. Here, the hydrogen bonding site refers to a site where hydrogen is directly bonded to nitrogen, oxygen, and sulfur. Does not include hydrogen bonds in a broad sense (such as interactions between carbon-hydrogen bonding sites and electronegative elements). Examples of the hydrogen bond include OH, SH, and NH.
 また、該前駆体は、水素結合性部位を有することにより高い沸点及び昇華点を有する事が好ましいが、その沸点及び昇華点が下記の式を満たす材料が特に好ましい。
  Ts>M/16.5+235 (℃)
(Tsは0.1Paにおける昇華点又は沸点(10%重量減少点を用いた)を表し、Mは分子量を表す。)
 該前駆体の水素結合性部位は、1級又は2級のアリールアミンにあることが好ましい。1,2級アミンなどの材料は高い融点、昇華点を有し、より効率的に特定の不純物を除くことができる。また、これらの前駆体から合成される3級アリールアミン材料は正孔輸送材料として有用である事が既に知られている。
In addition, the precursor preferably has a high boiling point and a sublimation point due to having a hydrogen bonding site, but a material having a boiling point and a sublimation point satisfying the following formula is particularly preferable.
Ts> M / 16.5 + 235 (° C.)
(Ts represents a sublimation point or boiling point (using a 10% weight reduction point) at 0.1 Pa, and M represents a molecular weight.)
The hydrogen bonding site of the precursor is preferably in a primary or secondary arylamine. Materials such as primary and secondary amines have high melting points and sublimation points, and can remove specific impurities more efficiently. Further, it is already known that tertiary arylamine materials synthesized from these precursors are useful as hole transport materials.
 前記前駆体が下記一般式(A1)で表される化合物であることが好ましい。 It is preferable that the precursor is a compound represented by the following general formula (A1).
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000007
(一般式(A1)中、Qはそれぞれ独立に縮環していてもよく、置換基を有していてもよい6員の芳香族炭化水素環又は芳香族ヘテロ環を表す。また、Qどうしが結合して、置換基を有していてもよい縮合環を形成してもよい。) (In general formula (A1), each Q may be independently condensed, and represents a 6-membered aromatic hydrocarbon ring or aromatic heterocycle which may have a substituent. May combine to form a condensed ring which may have a substituent.
 Qが表す6員の芳香族炭化水素環は、縮環していてもよく、置換基を有していてもよい。
 置換基を有する場合の置換基としては、前述の置換基Zが挙げられ、置換基Zとしては、アルキル基、アリール基、ヘテロアリール基、シリル基、シアノ基が好ましく、メチル基、エチル基、イソプロピル基、n-プロピル基、tert-ブチル基、イソブチル基、n-ブチル基、ネオペンチル基、n-ペンチル基、n-ヘキシル基、シクロプロピル基、シクロペンチル基、シクロヘキシル基、フェニル基、ナフチル基、アントラセニル基、ピレニル基、ペリレニル基、トリフェニレニル基、ピリジル基、チオフェニル基、フラニル基、イミダゾリル基、ピラゾリル基、トリメチルシリル基、トリフェニルシリル基、シアノ基がより好ましい。
 Qで表される6員の芳香族炭化水素環は、ベンゼン環、を挙げることができる。Qが表す6員の芳香族炭化水素環が縮環する場合に形成される環としては、例えば、ナフタレン環、アントラセン環、フルオレン環、フェナントレン環、アセナフテン環、カルバゾール環、ベンゾオキサゾール環、ベンゾチアゾール環、ベンゾイミダゾール環、ベンゾピラゾール環等が挙げられ、ナフタレン環、カルバゾール環、ベンゾイミダゾール環が好ましい。
 Qが表す芳香族ヘテロ環は、縮環していてもよく、置換基を有していてもよい。置換基を有する場合の置換基としては、前述の置換基Zが挙げられ、好ましい範囲はQが芳香族炭化水素環である場合の置換基と同様である。Qで表される6員の芳香族へテロ環は、ピリジン環、ピラジン環、ピリミジン環、ピリダジン環、トリアジン環を挙げることができ、ピリジン環が好ましい。Qが表す芳香族ヘテロ環が縮環する場合、好ましいものとしては前述の芳香族炭化水素環が縮環する場合で挙げた構造において、任意の6員環上の炭素が窒素に1つ以上置き換えられえたものを挙げる事ができる。
 Qとしては、好ましくは縮環していてもよく、置換基を有していてもよい6員の芳香族炭化水素環又は芳香族ヘテロ環であり、更に好ましくは縮環していてもよく、置換基を有していてもよい6員の芳香族炭化水素環である。
 また、Qどうしが結合して、置換基を有していてもよい縮合環を形成してもよい。形成される縮合環としては、置換基を有していてもよいカルバゾール環が好ましい。形成される縮合環が置換基を有する場合の置換基は、一般式(A1)におけるQが置換基を有する場合の置換基と同じであり、好ましいものも同様である。)
The 6-membered aromatic hydrocarbon ring represented by Q may be condensed or may have a substituent.
Examples of the substituent in the case of having a substituent include the above-described substituent Z, and the substituent Z is preferably an alkyl group, an aryl group, a heteroaryl group, a silyl group, or a cyano group, a methyl group, an ethyl group, Isopropyl group, n-propyl group, tert-butyl group, isobutyl group, n-butyl group, neopentyl group, n-pentyl group, n-hexyl group, cyclopropyl group, cyclopentyl group, cyclohexyl group, phenyl group, naphthyl group, Anthracenyl group, pyrenyl group, perylenyl group, triphenylenyl group, pyridyl group, thiophenyl group, furanyl group, imidazolyl group, pyrazolyl group, trimethylsilyl group, triphenylsilyl group, and cyano group are more preferable.
Examples of the 6-membered aromatic hydrocarbon ring represented by Q include a benzene ring. Examples of the ring formed when the 6-membered aromatic hydrocarbon ring represented by Q is condensed include, for example, naphthalene ring, anthracene ring, fluorene ring, phenanthrene ring, acenaphthene ring, carbazole ring, benzoxazole ring, benzothiazole A ring, a benzimidazole ring, a benzopyrazole ring, and the like, and a naphthalene ring, a carbazole ring, and a benzimidazole ring are preferable.
The aromatic heterocycle represented by Q may be condensed or may have a substituent. Examples of the substituent in the case of having a substituent include the above-described substituent Z, and the preferred range is the same as the substituent in the case where Q is an aromatic hydrocarbon ring. Examples of the 6-membered aromatic heterocycle represented by Q include a pyridine ring, a pyrazine ring, a pyrimidine ring, a pyridazine ring, and a triazine ring, and a pyridine ring is preferable. When the aromatic heterocycle represented by Q is condensed, it is preferable that one or more carbons on any six-membered ring be replaced with nitrogen in the structure described in the case where the aromatic hydrocarbon ring is condensed. You can list what you can get.
Q is preferably a condensed ring, a 6-membered aromatic hydrocarbon ring or an aromatic hetero ring which may have a substituent, and more preferably a condensed ring, A 6-membered aromatic hydrocarbon ring which may have a substituent.
Further, Qs may be bonded to each other to form a condensed ring which may have a substituent. As the condensed ring to be formed, an optionally substituted carbazole ring is preferable. The substituent when the condensed ring to be formed has a substituent is the same as the substituent when Q in the general formula (A1) has a substituent, and the preferable ones are also the same. )
 前駆体の具体例を以下に示すが、本発明においてはこれらに限定されない。 Specific examples of the precursor are shown below, but the present invention is not limited thereto.
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000008
 前駆体として例示した化合物は、例えば特開2009-182298号等に記載の方法により、合成できる。
 その他の前駆体としては、置換基を有していてもよいフェニルピリジン、ビフェニルピリジン又はナフチルピリジンを配位子とするイリジウム錯体のベンゼン環、ナフタレン環又はピリジン環に対して、ホルミル基が導入された化合物が好ましい。
The compounds exemplified as the precursor can be synthesized by the method described in JP2009-182298A, for example.
As other precursors, a formyl group is introduced into a benzene ring, naphthalene ring or pyridine ring of an iridium complex having a phenyl pyridine, biphenyl pyridine or naphthyl pyridine which may have a substituent as a ligand. The compounds are preferred.
〔前駆体の昇華精製〕
 前駆体の昇華精製方法としては、従来公知の方法を用いることができるが、例えば、ボートに材料を入れて減圧条件下で加熱し、材料を昇華又は蒸発させて低温部に捕集する方法を挙げることができる。この時、材料を目的化合物が昇華する温度より低温で昇華ボートを維持し、昇華する不純物を予め除去する方法を採用するのが好ましい。また昇華物を採集する部分に温度勾配を施し、昇華物が不純物と目的物に分散するようにするのが好ましい。この時の圧力は一般的な装置態様として0.001Pa~0.5Paであるが、化合物の熱分解を抑止する観点から0.1Pa以下である事が好ましい。
[Sublimation purification of precursors]
As a method for sublimation purification of the precursor, a conventionally known method can be used.For example, a method of putting a material in a boat and heating it under reduced pressure conditions to sublimate or evaporate the material and collect it in a low temperature part. Can be mentioned. At this time, it is preferable to employ a method in which the sublimation boat is maintained at a temperature lower than the temperature at which the target compound sublimes, and the sublimation impurities are removed in advance. Further, it is preferable to apply a temperature gradient to the portion where the sublimate is collected so that the sublimate is dispersed in the impurities and the target product. The pressure at this time is 0.001 Pa to 0.5 Pa as a general apparatus mode, but it is preferably 0.1 Pa or less from the viewpoint of suppressing thermal decomposition of the compound.
〔熱反応性基〕
 熱反応性基とは、加熱によって分解又は反応が起こる官能基を指す。ここでの加熱とは100~400℃に材料を熱することを意味する。下記に説明する重合性基の他に、シラノールなどの縮合性基、カルボキシル基、エステル基などが挙げられる。熱反応性基の導入は、該水素結合性部位を有する化合物の水素結合性部位への重合性基を有する化合物の付加であることが好ましい。
 重合性基とは、熱や光のエネルギーを与えることによって相互に反応しポリマーを形成することのできる官能基を指す。具体的には、ビニル基、アリル基、アクリル基、及びメタクリル基などの、置換基の末端にオレフィン基を有する末端オレフィン基、エポキシ基、オキセタン基、及びオキソラン基などの含酸素環状基を有する基、エポキシ基、オキセタン基、及びオキソラン基などの含酸素環状基を末端に有するアルキル基、シクロブテンなどの小員環基を有する基、ジアゾ基を有する基、並びにチオールを有する基などが挙げられる。中でも末端オレフィン基が好ましく、ビニル基であることがより好ましい。
(Thermal reactive group)
A thermoreactive group refers to a functional group that undergoes decomposition or reaction upon heating. Heating here means heating the material to 100-400 ° C. In addition to the polymerizable group described below, a condensable group such as silanol, a carboxyl group, an ester group, and the like can be given. The introduction of the thermally reactive group is preferably addition of a compound having a polymerizable group to the hydrogen bonding site of the compound having a hydrogen bonding site.
The polymerizable group refers to a functional group that can react with each other by applying heat or light energy to form a polymer. Specifically, it has an oxygen-containing cyclic group such as a terminal olefin group having an olefin group at the end of a substituent, such as a vinyl group, an allyl group, an acrylic group, and a methacryl group, an epoxy group, an oxetane group, and an oxolane group. Groups, epoxy groups, oxetane groups, alkyl groups having an oxygen-containing cyclic group such as an oxolane group, groups having a small ring group such as cyclobutene, groups having a diazo group, and groups having a thiol. . Of these, a terminal olefin group is preferable, and a vinyl group is more preferable.
 重合性基を有する化合物は下記一般式(B1)で表される化合物であることが好ましい。 The compound having a polymerizable group is preferably a compound represented by the following general formula (B1).
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000009
(一般式(B1)中、Qは縮環していてもよく、置換基を有していてもよい6員の芳香族炭化水素環又は芳香族ヘテロ環を表す。kは整数を表す。R1及びR2はそれぞれ独立に水素原子又は置換基を表す。Pはビニル基、アクリル基、メタクリル基、エポキシ基又はオキセタン基を表す。Xは脱離能を有する置換基を表す。) (In the general formula (B1), Q represents a 6-membered aromatic hydrocarbon ring or aromatic heterocycle which may be condensed and may have a substituent. K represents an integer. 1 and R 2 each independently represents a hydrogen atom or a substituent, P 4 represents a vinyl group, an acrylic group, a methacryl group, an epoxy group or an oxetane group, and X represents a substituent having a leaving ability.
 Qは縮環していてもよい6員の芳香族炭化水素環又は芳香族ヘテロ環を表し、置換基を有していてもよい。Qは一般式(A1)におけるQと同義であり、好ましいものも同様である。
 kは整数を表し、0~6が好ましく、重合時の反応性向上の観点から0がより好ましい。
 R1及びR2はそれぞれ独立に水素原子又は置換基を表し、置換基としては前述の置換基Zが挙げられ、置換基Zとしては、アルキル基、アリール基、ヘテロアリール基、シリル基、シアノ基が好ましく、メチル、エチル、イソプロピル、n-プロピル、tert-ブチル、イソブチル、n-ブチル、ネオペンチル、n-ペンチル、n-ヘキシル、シクロプロピル、シクロペンチル、シクロヘキシル、フェニル基、ナフチル基、アントラセニル基、ピレニル基、ペリレニル基、トリフェニレニル基、ピリジン、チオフェン、フラン、イミダゾール、ピラゾール、トリメチルシリル基、トリフェニルシリル基、シアノ基がより好ましい。また、CR1はカルボニル基を表していてもよく、その場合R2は存在しない。
 Pはビニル基、アクリル基、メタクリル基、エポキシ基又はオキセタン基を表し、好ましくはビニル基である。
 Xは脱離能を有する置換基を表し、具体的にはハロゲン原子、アルキルスルホニルオキシ基、アリールスルホニルオキシ基であることが好ましい。
 重合性基を有する化合物の具体例を以下に示すが、本発明においてはこれらに限定されない。
 なお、下記具体例において、Tfはトリフルオロメタンスルホニル基を表す。
Q represents a 6-membered aromatic hydrocarbon ring or aromatic heterocycle which may be condensed, and may have a substituent. Q has the same meaning as Q in formula (A1), and preferred ones are also the same.
k represents an integer, preferably 0 to 6, and more preferably 0 from the viewpoint of improving the reactivity during polymerization.
R 1 and R 2 each independently represent a hydrogen atom or a substituent, and examples of the substituent include the above-described substituent Z. Examples of the substituent Z include an alkyl group, an aryl group, a heteroaryl group, a silyl group, and a cyano group. Group is preferred, methyl, ethyl, isopropyl, n-propyl, tert-butyl, isobutyl, n-butyl, neopentyl, n-pentyl, n-hexyl, cyclopropyl, cyclopentyl, cyclohexyl, phenyl group, naphthyl group, anthracenyl group, Pyrenyl group, perylenyl group, triphenylenyl group, pyridine, thiophene, furan, imidazole, pyrazole, trimethylsilyl group, triphenylsilyl group, and cyano group are more preferable. CR 1 may also represent a carbonyl group, in which case R 2 is absent.
P 4 represents a vinyl group, an acryl group, a methacryl group, an epoxy group or an oxetane group, preferably a vinyl group.
X represents a substituent having a leaving ability, and is specifically preferably a halogen atom, an alkylsulfonyloxy group, or an arylsulfonyloxy group.
Although the specific example of the compound which has a polymeric group is shown below, in this invention, it is not limited to these.
In the following specific examples, Tf represents a trifluoromethanesulfonyl group.
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000010
〔反応性基の導入〕
 熱反応性基の導入は大別して2つの方法により行うことができる。1つは前駆体が有する官能基の熱反応性基への官能基変換反応、もう1つは熱反応性基を有する化合物の付加及び置換反応である。
 当該反応は、前駆体が置換基を有していてもよいフェニルピリジン、ビフェニルピリジン又はナフチルピリジンを配位子とするイリジウム錯体のベンゼン環、ナフタレン環又はピリジン環に対して、ホルミル基が導入された化合物である場合において、ホルミル基を熱反応性基であるビニル基に変換する際に特に有効である。
[Introduction of reactive groups]
Introduction of the thermally reactive group can be roughly divided by two methods. One is a functional group conversion reaction of a functional group of the precursor to a thermoreactive group, and the other is an addition and substitution reaction of a compound having a thermoreactive group.
In this reaction, a formyl group is introduced into a benzene ring, naphthalene ring or pyridine ring of an iridium complex having a precursor of phenylpyridine, biphenylpyridine or naphthylpyridine which may have a substituent. In particular, it is particularly effective when converting a formyl group into a vinyl group which is a thermally reactive group.
 前駆体が有する官能基の熱反応性基への官能基変換反応として、例えば米国公開2008-0220265号の175段落以降に記載のアルデヒドをビニル基に変換する反応が挙げられる。 Examples of the functional group conversion reaction of the functional group of the precursor to a thermally reactive group include a reaction of converting an aldehyde described in paragraph 175 and the subsequent paragraphs of US Publication No. 2008-0220265 into a vinyl group.
 熱反応性基を有する化合物の付加及び置換反応として、金属触媒を用いたカップリング反応を挙げる事ができる。例えば前述の一般式(A1)及び一般式(B1)を金属触媒と塩基の存在下で反応させる。金属触媒としてはパラジウム、銅、ニッケル、白金を含む触媒試薬を挙げる事ができ、パラジウム触媒試薬が特に好ましい。パラジウム触媒として、酢酸パラジウム、ジクロロパラジウムなどの2価のパラジウム触媒と配位子としてトリフェニルホスフィン、トリ(t-ブチル)ホスフィン、ジフェニルホスフィノフェロセン、ジシクロヘキシル-ビフェニルホスフィン又はこれらの類縁体を用いる方法と、ビス(ジベンジリデンアセトン)パラジウム、テトラキス(トリフェニルホスフィン)パラジウムなどの0価のパラジウム触媒を単独で用いる方法、更に前述の0価のパラジウム触媒と配位子を組み合わせて用いる方法が挙げられ、いずれも好適に用いる事ができる。塩基としては炭酸カリウム、炭酸ナトリウム、水酸化ナトリウム、りん酸カリウムなどの無機塩基や、カリウムt-ブトキシド、トリエチルアミン、ピリジン、ナトリウムエトキシドなどの有機塩基のいずれも好適に用いる事ができる。該反応は溶媒の存在下で行うことができ、溶媒としてはテトラヒドロフラン、ジイソプロピルエーテル、ジオキサンなどのエーテル溶媒、トルエン、キシレン、メシチレンなどの芳香族炭化水素溶媒が挙げられ。副反応抑制の観点からトルエン又はキシレンが好ましい。これらの溶媒を用いる場合、一般式(A1)の化合物は1mol/L~0.01mol/Lの濃度で反応させる事が好ましく、より好ましくは0.5~0.1mol/Lである。該反応における温度は室温~250℃が好ましく、60℃~150℃がより好ましい。
 一般式(A1)で表される化合物に対し一般式(B1)で表される化合物の使用量は100モル%~500モル%であることが好ましく、一般式(B1)で表される化合物が過剰に反応することを抑制する観点から100モル%~120モル%であることがより好ましい。
Examples of the addition and substitution reaction of the compound having a thermally reactive group include a coupling reaction using a metal catalyst. For example, the aforementioned general formula (A1) and general formula (B1) are reacted in the presence of a metal catalyst and a base. Examples of the metal catalyst include palladium, copper, nickel and platinum-containing catalyst reagents, and palladium catalyst reagents are particularly preferable. A method using a divalent palladium catalyst such as palladium acetate or dichloropalladium as a palladium catalyst and triphenylphosphine, tri (t-butyl) phosphine, diphenylphosphinoferrocene, dicyclohexyl-biphenylphosphine or an analog thereof as a ligand And a method using a zero-valent palladium catalyst such as bis (dibenzylideneacetone) palladium or tetrakis (triphenylphosphine) palladium alone, and a method using a combination of the above-mentioned zero-valent palladium catalyst and a ligand. Any of these can be suitably used. As the base, any of inorganic bases such as potassium carbonate, sodium carbonate, sodium hydroxide and potassium phosphate, and organic bases such as potassium t-butoxide, triethylamine, pyridine and sodium ethoxide can be preferably used. The reaction can be carried out in the presence of a solvent, and examples of the solvent include ether solvents such as tetrahydrofuran, diisopropyl ether and dioxane, and aromatic hydrocarbon solvents such as toluene, xylene and mesitylene. From the viewpoint of suppressing side reactions, toluene or xylene is preferable. When these solvents are used, the compound of the general formula (A1) is preferably reacted at a concentration of 1 mol / L to 0.01 mol / L, more preferably 0.5 to 0.1 mol / L. The temperature in the reaction is preferably from room temperature to 250 ° C, more preferably from 60 ° C to 150 ° C.
The amount of the compound represented by the general formula (B1) to be used with respect to the compound represented by the general formula (A1) is preferably 100 mol% to 500 mol%, and the compound represented by the general formula (B1) is From the viewpoint of suppressing an excessive reaction, it is more preferably 100 mol% to 120 mol%.
 また、熱反応性基を有する化合物の付加及び置換反応として、塩基を用いる求核置換反応を挙げることができる。例えば、前述の一般式(A1)及び一般式(B1)を塩基の存在下で反応させることができる。塩基としては、アルキルマグネシウム、アルキルリチウムなどのアルキル金属試薬、ナトリウムヒドリドなどのヒドリド試薬、水酸化カリウムなどの無機強塩基が挙げられる。該反応は溶媒の存在下で行うことができ、溶媒としてN,N-ジメチルホルムアミド、N-メチルピペリジノンなどのアミド溶媒、テトラヒドロフラン、ジイソプロピルエーテル、ジオキサンなどのエーテル溶媒、トルエン、キシレン、メシチレンなどの芳香族炭化水素溶媒が挙げられ、反応性向上の観点から好ましくはアミド溶媒である。これらの溶媒を用いる場合、一般式(A1)の化合物は1mol/L~0.01mol/Lの濃度で反応させる事が好ましく、より好ましくは0.5~0.1mol/Lである。該反応における温度は室温~250℃が好ましく、100℃~180℃がより好ましい。
 一般式(A1)で表される化合物に対し一般式(B1)で表される化合物の使用量は100モル%~500モル%であることが好ましく、一般式(B1)で表される化合物を充分に反応させる観点から120モル%~250モル%であることがより好ましい。
Examples of the addition and substitution reaction of a compound having a thermally reactive group include a nucleophilic substitution reaction using a base. For example, the above general formula (A1) and general formula (B1) can be reacted in the presence of a base. Examples of the base include alkyl metal reagents such as alkylmagnesium and alkyllithium, hydride reagents such as sodium hydride, and strong inorganic bases such as potassium hydroxide. The reaction can be performed in the presence of a solvent. As a solvent, amide solvents such as N, N-dimethylformamide and N-methylpiperidinone, ether solvents such as tetrahydrofuran, diisopropyl ether and dioxane, toluene, xylene, mesitylene and the like The aromatic hydrocarbon solvent is preferably an amide solvent from the viewpoint of improving the reactivity. When these solvents are used, the compound of the general formula (A1) is preferably reacted at a concentration of 1 mol / L to 0.01 mol / L, more preferably 0.5 to 0.1 mol / L. The temperature in the reaction is preferably room temperature to 250 ° C, more preferably 100 ° C to 180 ° C.
The amount of the compound represented by the general formula (B1) to be used with respect to the compound represented by the general formula (A1) is preferably 100 mol% to 500 mol%, and the compound represented by the general formula (B1) From the viewpoint of sufficient reaction, it is more preferably from 120 mol% to 250 mol%.
 本発明の一の態様において、有機電界発光素子用材料が、下記一般式(1)で表される有機電界発光素子用材料であることが好ましい。
 一般式(1)で表される化合物は、トリアリールアミン部位を有し、高い正孔注入性及び輸送性を有する。
In one embodiment of the present invention, the organic electroluminescent element material is preferably an organic electroluminescent element material represented by the following general formula (1).
The compound represented by the general formula (1) has a triarylamine moiety, and has high hole injecting property and transporting property.
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000011
(一般式(1)中、R1はそれぞれ独立に置換基を表す。Pはビニル基、アクリル基、メタクリル基、エポキシ基又はオキセタン基を表す。lはそれぞれ独立に0~5の整数を表し、l’は0~4の整数を表す。m3は0以上の整数を表す。また、Rどうしが結合を形成して、置換基を有していてもよい縮合環を形成してもよい。) (In the general formula (1), each R 1 independently represents a substituent. P 1 represents a vinyl group, an acrylic group, a methacryl group, an epoxy group, or an oxetane group. L independently represents an integer of 0 to 5. L ′ represents an integer of 0 to 4. m3 represents an integer of 0 or more, and R 1 may form a bond to form a condensed ring which may have a substituent. Good.)
 R1が表す置換基としては、一般式(A1)の環Qが有してもよい置換基と同様であり、好ましい範囲も同じである。
 また、Rどうしが結合を形成して、置換基を有していてもよい縮合環を形成してもよい。形成される縮合環としては、置換基を有していてもよいカルバゾール環が好ましい。形成される縮合環が置換基を有する場合の置換基は、一般式(A1)におけるQが置換基を有する場合の置換基と同じであり、好ましいものも同様である。
 Pはビニル基、アクリル基、メタクリル基、エポキシ基又はオキセタン基を表し、好ましくはビニル基である。
 lはそれぞれ独立に0~5の整数を表し、l’は0~4の整数を表す。l及びl’は0又は1が好ましい。
 m3は0以上の整数を表し、0又は1が好ましい。
The substituent represented by R 1 is the same as the substituent that the ring Q of the general formula (A1) may have, and the preferred range is also the same.
In addition, R 1 may form a bond to form a condensed ring which may have a substituent. As the condensed ring to be formed, an optionally substituted carbazole ring is preferable. The substituent when the condensed ring to be formed has a substituent is the same as the substituent when Q in the general formula (A1) has a substituent, and the preferable ones are also the same.
P 1 represents a vinyl group, an acryl group, a methacryl group, an epoxy group or an oxetane group, preferably a vinyl group.
l independently represents an integer of 0 to 5, and l ′ represents an integer of 0 to 4. l and l ′ are preferably 0 or 1.
m3 represents an integer of 0 or more, and 0 or 1 is preferable.
 本発明の他の態様において、有機電界発光素子用材料が、下記一般式(2)で表される有機電界発光素子用材料であることが好ましい。
 一般式(2)で表される化合物はアリールアミンユニットを複数有し、また重合性部位を複数有するため、均一な製膜性と正孔輸送性に特に優れる。
In another embodiment of the present invention, the organic electroluminescent element material is preferably an organic electroluminescent element material represented by the following general formula (2).
Since the compound represented by the general formula (2) has a plurality of arylamine units and a plurality of polymerizable sites, it is particularly excellent in uniform film forming properties and hole transportability.
Figure JPOXMLDOC01-appb-C000012
Figure JPOXMLDOC01-appb-C000012
(一般式(2)中、m1、及びm2はそれぞれ独立に0以上の整数を表す。m1、及びm2が同時に0を表すことはない。n1、及びn2はそれぞれ独立に0~10の整数を表す。Q1~Q4はそれぞれ独立に縮環していてもよく、置換基を有していてもよい6員の芳香族炭化水素環又は芳香族ヘテロ環を表す。P及びPはそれぞれ独立にビニル基、アクリル基、メタクリル基、エポキシ基又はオキセタン基を表す。また、Q1とQ3、Q2とQ4は、互いに結合して、置換基を有していてもよい縮合環を形成してもよい。Lは単結合又は二価の連結基を表す。) (In general formula (2), m1 and m2 each independently represents an integer of 0 or more. M1 and m2 do not represent 0 at the same time. N1 and n2 each independently represents an integer of 0 to 10. Q1 to Q4 each independently represent a condensed ring and each represents a 6-membered aromatic hydrocarbon ring or aromatic heterocycle which may have a substituent, and P 2 and P 3 each independently Represents a vinyl group, an acrylic group, a methacryl group, an epoxy group or an oxetane group, and Q1 and Q3, Q2 and Q4 may be bonded to each other to form a condensed ring which may have a substituent. L is a single bond or a divalent linking group.)
 Q1~Q4はそれぞれ独立に縮環していてもよい6員の芳香族炭化水素環又は芳香族ヘテロ環を表し、置換基を有していてもよい。Q1~Q4は一般式(A1)におけるQと同義であり、好ましいものも同様である。
 また、Q1とQ3、Q2とQ4は、互いに結合して、置換基を有していてもよい縮合環を形成してもよい。形成される縮合環としては、置換基を有していてもよいカルバゾール環が好ましい。形成される縮合環が置換基を有する場合の置換基は、一般式(A1)におけるQが置換基を有する場合の置換基と同じであり、好ましいものも同様である。
 P及びPはそれぞれ独立にビニル基、アクリル基、メタクリル基、エポキシ基又はオキセタン基を表し、P及びPの少なくとも一方がビニル基であることが好ましく、P及びPの両方がビニル基であることがより好ましい。
 n1、及びn2はそれぞれ独立に0~10の整数を表し、一般式(1)におけるm3と同義であり、好ましい範囲も同様である。
 m1、及びm2はそれぞれ独立に0以上の整数を表し、1~4が好ましく、1がより好ましい。
Q1 to Q4 each independently represent a 6-membered aromatic hydrocarbon ring or aromatic heterocycle which may be condensed, and may have a substituent. Q1 to Q4 have the same meanings as Q in formula (A1), and preferred ones are also the same.
Q1 and Q3, and Q2 and Q4 may be bonded to each other to form a condensed ring which may have a substituent. As the condensed ring to be formed, an optionally substituted carbazole ring is preferable. The substituent when the condensed ring to be formed has a substituent is the same as the substituent when Q in the general formula (A1) has a substituent, and the preferable ones are also the same.
P 2 and P 3 are each independently a vinyl group, acryl group, methacryl group, an epoxy group or an oxetane group, it is preferable that at least one of P 2 and P 3 is a vinyl group, both of P 2 and P 3 Is more preferably a vinyl group.
n1 and n2 each independently represents an integer of 0 to 10 and have the same meaning as m3 in formula (1), and the preferred range is also the same.
m1 and m2 each independently represents an integer of 0 or more, preferably 1 to 4, and more preferably 1.
 Lは単結合又は二価の連結基を表す。Lが表す二価の連結基としては、酸素原子、硫黄原子、又は窒素原子を含んでもよい2価の炭化水素基であることが好ましく、酸素原子、硫黄原子、又は窒素原子を含んでもよい、アルキレン基、シクロアルキレン基、シリレン基、アリーレン基、及びこれらを組み合わせて得られる2価の基であることがより好ましく、単結合であることがより好ましい。
 アルキレン基としては、炭素数1~10のアルキレン基が好ましく、具体的には、メチレン基、エチレン基、プロピレン基、ブチレン基、ペンチレン基、ジメチルメチレン基、ジエチルメチレン基、ジフェニルメチレン基などが挙げられ、好ましくは、ジメチルメチレン基、ジエチルメチレン基、ジフェニルメチレン基である。
L represents a single bond or a divalent linking group. The divalent linking group represented by L is preferably a divalent hydrocarbon group that may contain an oxygen atom, a sulfur atom, or a nitrogen atom, and may contain an oxygen atom, a sulfur atom, or a nitrogen atom. An alkylene group, a cycloalkylene group, a silylene group, an arylene group, and a divalent group obtained by combining these are more preferable, and a single bond is more preferable.
The alkylene group is preferably an alkylene group having 1 to 10 carbon atoms, and specific examples include a methylene group, an ethylene group, a propylene group, a butylene group, a pentylene group, a dimethylmethylene group, a diethylmethylene group, and a diphenylmethylene group. And preferably a dimethylmethylene group, a diethylmethylene group, or a diphenylmethylene group.
 シクロアルキレン基としては、炭素数3~10のシクロアルキレン基が好ましく、具体的には、シクロプロピレン基、シクロブチレン基、シクロペンチレン基、シクロヘキシレン基、シクロヘプチレン基、などが挙げられ、好ましくは、シクロペンチレン基、シクロヘキシレン基、シクロヘプチレン基である。 The cycloalkylene group is preferably a cycloalkylene group having 3 to 10 carbon atoms, and specific examples include a cyclopropylene group, a cyclobutylene group, a cyclopentylene group, a cyclohexylene group, a cycloheptylene group, and the like. , Cyclopentylene group, cyclohexylene group, and cycloheptylene group.
 シリレン基としては、好ましくは炭素数1~10のアルキル基又は炭素数6~10のアリール基が置換したシリレン基であり、より好ましくはジメチルシリレン基、ジエチルシリレン基、ジフェニルシリレン基であり、更に好ましくはジフェニルシリレン基である。
 アリーレン基、としては、フェニレン基、ナフチレン基、ビフェニレン基、フルオレニレン基、フェナントリレン基、ピレニレン基、トリフェニレニレン基、などが挙げられ、ペンダント基導入率、及び電荷輸送性の向上という理由から、好ましくは、フェニレン基、ナフチレン基、ビフェニレン基、フルオレニレン基、フェナントリレン基、などが挙げられ、最も好ましくはフェニレン基、ナフチレン基である。
The silylene group is preferably a silylene group substituted by an alkyl group having 1 to 10 carbon atoms or an aryl group having 6 to 10 carbon atoms, more preferably a dimethylsilylene group, a diethylsilylene group or a diphenylsilylene group, A diphenylsilylene group is preferred.
Examples of the arylene group include a phenylene group, a naphthylene group, a biphenylene group, a fluorenylene group, a phenanthrylene group, a pyrenylene group, a triphenylenylene group, and the like. Includes a phenylene group, a naphthylene group, a biphenylene group, a fluorenylene group, a phenanthrylene group, and the like, and most preferably a phenylene group and a naphthylene group.
 Lは電荷輸送部位を含んでもよい。ここで電荷輸送部位とは、正孔の移動度が10-6~100cm/Vs、若しくは、電子の移動度が10-6~100cm/Vsの構造部位を意味する。電荷輸送部位としては、正孔輸送部位、電子輸送部位、バイポーラ性輸送性部位等が挙げられる。
 正孔輸送部位としては、トリアリールアミン誘導体であるNPD、TPDなどの誘導体やカルバゾール誘導体、金属フタロシアニン誘導体、ピロール誘導体、チオフェン誘導体等の公知の化合物から誘導される1価の基又は2価の連結基が挙げられる。
 電子輸送部位としては、オキサジアゾール誘導体、トリアジン誘導体、フェナントレン誘導体、トリフェニレン誘導体、シロール誘導体、Al錯体、Zn錯体等の公知の化合物から誘導される1価の基又は2価の連結基が挙げられる。
 バイポーラ性輸送性部位としては、ベンゾオキサゾール誘導体、アントラセン誘導体、ペリレン誘導体、テトラセン誘導体等の公知の化合物から誘導される1価の基又は2価の連結基が挙げられる。
 Lの具体例を以下に示すが、本発明においてはこれらに限定されない。
L may include a charge transport site. Here, the charge transport site means a structural site having a hole mobility of 10 −6 to 100 cm / Vs or an electron mobility of 10 −6 to 100 cm / Vs. Examples of the charge transport site include a hole transport site, an electron transport site, and a bipolar transport site.
As a hole transporting site, a monovalent group derived from a known compound such as a triarylamine derivative such as NPD or TPD, a carbazole derivative, a metal phthalocyanine derivative, a pyrrole derivative, or a thiophene derivative, or a divalent linkage. Groups.
Examples of the electron transport site include monovalent groups or divalent linking groups derived from known compounds such as oxadiazole derivatives, triazine derivatives, phenanthrene derivatives, triphenylene derivatives, silole derivatives, Al complexes, Zn complexes, and the like. .
Examples of the bipolar transporting site include a monovalent group or a divalent linking group derived from a known compound such as a benzoxazole derivative, anthracene derivative, perylene derivative, or tetracene derivative.
Specific examples of L are shown below, but the present invention is not limited thereto.
Figure JPOXMLDOC01-appb-C000013
Figure JPOXMLDOC01-appb-C000013
 本発明の有機電界発光素子用材料は、反応性基を有しており、重合によりポリマー化して用いてもよく、モノマーのまま用いてもよい。また、モノマーの状態で製膜し重合させてポリマー膜としてもよい。この時の重合方法は従来公知の方法をいずれも好適に用いる事ができ、またいくつかの重合手段を併用してもよい。例えば、本発明の材料を熱により重合させた後、更に光照射によって重合を促進させてもよい。好ましくは生産工程の簡略化の観点から熱により重合させる事が好ましい。
 重合によりポリマー化して用いる場合、単独で重合体とすることも、他のモノマーとの共重合体とすることもできる。
 ポリマー中における本発明の有機電界発光素子用材料に対応する構造(繰り返し単位)の含有量は、共重合体中の全繰り返し単位に対し、5~99mol%が好ましく、より好ましくは50~95mol%、更に好ましくは75~90mol%である。
The material for an organic electroluminescent element of the present invention has a reactive group and may be used after being polymerized by polymerization, or may be used as a monomer. Alternatively, the polymer film may be formed and polymerized in a monomer state to form a polymer film. As the polymerization method at this time, any conventionally known method can be suitably used, and several polymerization means may be used in combination. For example, after the material of the present invention is polymerized by heat, the polymerization may be further accelerated by light irradiation. It is preferable to perform polymerization with heat from the viewpoint of simplifying the production process.
When polymerized by polymerization, the polymer can be used alone or as a copolymer with other monomers.
The content of the structure (repeating unit) corresponding to the organic electroluminescent device material of the present invention in the polymer is preferably 5 to 99 mol%, more preferably 50 to 95 mol%, based on all repeating units in the copolymer. More preferably, it is 75 to 90 mol%.
 本発明の有機電界発光素子用材料を含むポリマーの重量平均分子量は、GPC法によりポリスチレン換算値として、好ましくは1000~10万の範囲であり、より好ましくは1200~50000、更により好ましくは2000~30000である。重量平均分子量を、1000~10万とすることにより、溶媒への溶解性と成膜性の向上が両立できる。 The weight average molecular weight of the polymer containing the organic electroluminescent element material of the present invention is preferably in the range of 1000 to 100,000, more preferably 1200 to 50000, and still more preferably 2000 to 2000 as a polystyrene conversion value by GPC method. 30000. By setting the weight average molecular weight to 1,000 to 100,000, both solubility in a solvent and improvement in film formability can be achieved.
 分散度(分子量分布)は、通常1.1~3.0であり、好ましくは1.2~2.0の範囲のものが使用される。分子量分布の小さいものほど、電荷(正孔/電子)輸送の移動度に優れる。 The dispersity (molecular weight distribution) is usually 1.1 to 3.0, preferably 1.2 to 2.0. The smaller the molecular weight distribution, the better the mobility of charge (hole / electron) transport.
 本発明の有機電界発光素子用材料の具体例を以下に示すが、本発明においてはこれらに限定されない。 Specific examples of the organic electroluminescent element material of the present invention are shown below, but the present invention is not limited thereto.
Figure JPOXMLDOC01-appb-C000014
Figure JPOXMLDOC01-appb-C000014
Figure JPOXMLDOC01-appb-C000015
Figure JPOXMLDOC01-appb-C000015
Figure JPOXMLDOC01-appb-C000016
Figure JPOXMLDOC01-appb-C000016
〔有機電界発光素子用材料と、溶媒とを含む組成物〕
 有機電界発光素子用材料の組成物中の含有量は、組成物の全固形分を基準として、5~50質量%が好ましく、より好ましくは10~40質量%、更に好ましくは10~30質量%である。
[Composition comprising organic electroluminescent element material and solvent]
The content of the organic electroluminescent element material in the composition is preferably 5 to 50% by mass, more preferably 10 to 40% by mass, and still more preferably 10 to 30% by mass based on the total solid content of the composition. It is.
 〔溶媒〕
 前記有機電界発光素子用材料を溶解させて組成物を調製する際に使用することができる溶媒としては、例えば、芳香族炭化水素系溶媒、アルコール系溶媒、ケトン系溶媒、脂肪族炭化水素系溶媒、アミド系溶媒等の公知の有機溶媒を挙げることができる。
〔solvent〕
Examples of the solvent that can be used when preparing the composition by dissolving the material for organic electroluminescent elements include, for example, aromatic hydrocarbon solvents, alcohol solvents, ketone solvents, aliphatic hydrocarbon solvents. And known organic solvents such as amide solvents.
 芳香族炭化水素系溶媒としては、例えば、ベンゼン、トルエン、キシレン、トリメチルベンゼン、テトラメチルベンゼン、クメンエチルベンゼン、メチルプロピルベンゼン、メチルイソプロピルベンゼン、等が挙げられ、トルエン、キシレン、クメン、トリメチルベンゼンがより好ましい。芳香族炭化水素系溶媒の比誘電率は通常、3以下である。 Examples of the aromatic hydrocarbon solvent include benzene, toluene, xylene, trimethylbenzene, tetramethylbenzene, cumeneethylbenzene, methylpropylbenzene, methylisopropylbenzene, and the like, and toluene, xylene, cumene, and trimethylbenzene are more preferable. preferable. The relative dielectric constant of the aromatic hydrocarbon solvent is usually 3 or less.
 アルコール系溶媒としては、メタノール、エタノール、ブタノール、ベンジルアルコール、シクロヘキサノール等が挙げられ、ブタノール、ベンジルアルコール、シクロヘキサノールがより好ましい。アルコール系溶媒の比誘電率は通常、10~40である。
 ケトン系溶媒としては、1-オクタノン、2-オクタノン、1-ノナノン、2-ノナノン、アセトン、4-ヘプタノン、1-ヘキサノン、2-ヘキサノン、ジイソブチルケトン、シクロヘキサノン、メチルシクロヘキサノン、フェニルアセトン、メチルエチルケトン、メチルイソブチルケトン、アセチルアセトン、アセトニルアセトン、イオノン、ジアセトニルアルコール、アセチルカービノール、アセトフェノン、メチルナフチルケトン、イソホロン、プロピレンカーボネート等が挙げられ、メチルイソブチルケトン、プロピレンカーボネートが好ましい。ケトン系溶媒の比誘電率は通常、10~90である。
 脂肪族炭化水素系溶媒としては、ペンタン、ヘキサン、オクタン、デカン等が挙げられ、オクタン、デカンが好ましい。脂肪族炭化水素系溶媒の比誘電率は通常、1.5~2.0である。
 アミド系溶媒としては、N-メチル-2-ピロリドン、N-エチル-2-ピロリドン、N,N-ジメチルアセトアミド、N,N-ジメチルホルムアミド、1、3-ジメチル-2-イミダゾリジノン等が挙げられ、N-メチル-2-ピロリドン、1、3-ジメチル-2-イミダゾリジノンが好ましい。アミド系溶媒の比誘電率は通常、30~40である。
 本発明に於いては、上記溶剤を単独で使用してもよいし、2種類以上を併用してもよい。
Examples of the alcohol solvent include methanol, ethanol, butanol, benzyl alcohol, cyclohexanol, and the like, butanol, benzyl alcohol, and cyclohexanol are more preferable. The relative dielectric constant of the alcohol solvent is usually 10 to 40.
Examples of ketone solvents include 1-octanone, 2-octanone, 1-nonanone, 2-nonanone, acetone, 4-heptanone, 1-hexanone, 2-hexanone, diisobutyl ketone, cyclohexanone, methylcyclohexanone, phenylacetone, methylethylketone, methyl Examples include isobutyl ketone, acetylacetone, acetonylacetone, ionone, diacetonyl alcohol, acetylcarbinol, acetophenone, methyl naphthyl ketone, isophorone, propylene carbonate, and the like, and methyl isobutyl ketone and propylene carbonate are preferred. The relative permittivity of the ketone solvent is usually 10 to 90.
Examples of the aliphatic hydrocarbon solvent include pentane, hexane, octane, decane and the like, and octane and decane are preferable. The relative dielectric constant of the aliphatic hydrocarbon solvent is usually 1.5 to 2.0.
Examples of amide solvents include N-methyl-2-pyrrolidone, N-ethyl-2-pyrrolidone, N, N-dimethylacetamide, N, N-dimethylformamide, 1,3-dimethyl-2-imidazolidinone and the like. N-methyl-2-pyrrolidone and 1,3-dimethyl-2-imidazolidinone are preferred. The relative dielectric constant of the amide solvent is usually 30 to 40.
In the present invention, the above solvents may be used alone or in combination of two or more.
 本発明においては、芳香族炭化水素系溶媒(以下、“第一の溶媒”ともいう)と、第一の溶媒より比誘電率の高い第二の溶媒とを混合して使用してもよい。このような混合溶媒を使用することで、アルコキシシランの加水分解が促進され、縮合の反応性が向上する。
 第二の溶媒としては、アルコール系溶媒、アミド系溶媒、ケトン系溶媒を使用することが好ましく、アルコール系溶媒を使用することがより好ましい。
 第一の溶媒と第二の溶媒との混合比(質量)は、一般的に1/99~99/1、好ましくは10/90~90/10、更に好ましくは20/80~70/30である。第一の溶媒を60質量%以上含有する混合溶媒がポリマーの析出防止の観点で特に好ましい。
In the present invention, an aromatic hydrocarbon solvent (hereinafter also referred to as “first solvent”) and a second solvent having a relative dielectric constant higher than that of the first solvent may be mixed and used. By using such a mixed solvent, hydrolysis of alkoxysilane is promoted, and condensation reactivity is improved.
As the second solvent, an alcohol solvent, an amide solvent, or a ketone solvent is preferably used, and an alcohol solvent is more preferably used.
The mixing ratio (mass) of the first solvent and the second solvent is generally 1/99 to 99/1, preferably 10/90 to 90/10, more preferably 20/80 to 70/30. is there. A mixed solvent containing 60% by mass or more of the first solvent is particularly preferable from the viewpoint of preventing polymer precipitation.
 〔膜の形成〕
 本発明は、本発明の組成物を塗布し、塗布された該組成物を加熱又は光照射することにより形成された膜にも関する。また本発明の組成物から形成される膜は、電荷輸送層として有用である。本発明の組成物を塗布し、塗布された該組成物を加熱することにより、電荷輸送層を形成することができる。
 電荷輸送層としては、膜厚5~50nmで使用されることが好ましく、より好ましくは、膜厚5~40nmで使用されることが好ましい。組成物中の固形分濃度を適切な範囲に設定して適度な粘度をもたせ、塗布性、成膜性を向上させることにより、このような膜厚とすることができる。
 電荷輸送層としては、正孔輸送層、電子輸送層、励起子ブロック層、正孔ブロック層、電子フブロック層であることが好ましく、より好ましくは正孔輸送層、励起子ブロック層であり、更に好ましくは正孔輸送層である。
 本発明の組成物中の全固形分濃度は、一般的には0.05~30質量%、より好ましくは0.1~20質量%、更に好ましくは0.1~10質量%である。
 本発明の組成物中の粘度は、一般的には1~30mPa・s、より好ましくは1.5~20mPa・s、更に好ましくは1.5~15mPa・sである。
(Formation of film)
The present invention also relates to a film formed by applying the composition of the present invention and heating or irradiating the applied composition. A film formed from the composition of the present invention is useful as a charge transport layer. The charge transport layer can be formed by applying the composition of the present invention and heating the applied composition.
The charge transport layer is preferably used in a thickness of 5 to 50 nm, more preferably in a thickness of 5 to 40 nm. Such a film thickness can be obtained by setting the solid content concentration in the composition to an appropriate range to give an appropriate viscosity and improving the coating property and film forming property.
The charge transport layer is preferably a hole transport layer, an electron transport layer, an exciton block layer, a hole block layer, or an electron block layer, more preferably a hole transport layer or an exciton block layer, More preferred is a hole transport layer.
The total solid content concentration in the composition of the present invention is generally 0.05 to 30% by mass, more preferably 0.1 to 20% by mass, and still more preferably 0.1 to 10% by mass.
The viscosity of the composition of the present invention is generally 1 to 30 mPa · s, more preferably 1.5 to 20 mPa · s, and still more preferably 1.5 to 15 mPa · s.
 本発明の組成物は、上記の成分を所定の有機溶媒に溶解し、フィルター濾過した後、次のように所定の支持体又は層上に塗布して用いる。フィルター濾過に用いるフィルターのポアサイズは2.0μm以下、より好ましくは0.5μm以下、更に好ましくは0.3μm以下のポリテトラフロロエチレン製、ポリエチレン製、ナイロン製のものが好ましい。 The composition of the present invention is used by dissolving the above components in a predetermined organic solvent, filtering the solution, and then applying the solution on a predetermined support or layer as follows. The pore size of the filter used for filter filtration is 2.0 μm or less, more preferably 0.5 μm or less, and still more preferably 0.3 μm or less made of polytetrafluoroethylene, polyethylene, or nylon.
 本発明の組成物の塗布方法は特に限定されず、従来公知のいかなる塗布方法によっても形成可能である。例えば、インクジェット法、スプレーコート法、スピンコート法、バーコート法、転写法、印刷法等が挙げられる。 The coating method of the composition of the present invention is not particularly limited, and can be formed by any conventionally known coating method. Examples thereof include an ink jet method, a spray coating method, a spin coating method, a bar coating method, a transfer method, and a printing method.
 本発明の組成物の塗布後、加熱又は光照射することにより、重合反応が進行し、ポリマーを形成することができる。
 塗布後の加熱温度及び時間は、重合反応が進行する限り特に限定されないが、加熱温度は一般的に100℃~200℃であり、好ましくは120℃~160℃がより好ましい。加熱時間は一般的に1分~120分であり、1分~60分が好ましく、より好ましくは1分~30分である。
After application of the composition of the present invention, by heating or light irradiation, the polymerization reaction proceeds and a polymer can be formed.
The heating temperature and time after coating are not particularly limited as long as the polymerization reaction proceeds, but the heating temperature is generally 100 ° C to 200 ° C, and more preferably 120 ° C to 160 ° C. The heating time is generally 1 minute to 120 minutes, preferably 1 minute to 60 minutes, and more preferably 1 minute to 30 minutes.
 また、UV照射による重合反応、白金触媒による重合反応、塩化鉄などの鉄触媒による重合反応等が挙げられる。これら重合方法は、加熱による重合方法と併用してもよい。 Further, a polymerization reaction by UV irradiation, a polymerization reaction by a platinum catalyst, a polymerization reaction by an iron catalyst such as iron chloride, and the like can be mentioned. These polymerization methods may be used in combination with a polymerization method by heating.
 〔有機電界発光素子〕
 本発明における有機電界発光素子について詳細に説明する。
 本発明における有機電界発光素子は、基板上に、陽極及び陰極からなる一対の電極と、該電極間に発光層を含む少なくとも一層の有機層とを有する有機電界発光素子であって、
 前記有機層のいずれか少なくとも一層に本発明の有機電界発光素子用材料を含む有機電界発光素子である。有機層は正孔輸送層、正孔注入層又は電子ブロック層を含み、該正孔輸送層、正孔注入層又は電子ブロック層のいずれかに本発明の有機電界発光素子用材料を含むことが好ましい。
 また、本発明の組成物から形成される膜を有する有機電界発光素子にも関する。
 更に、一対の電極間にある有機層の少なくとも一層が、塗布法により形成されることが好ましい。
 より具体的には、本発明における有機電界発光素子は、基板上に、陽極及び陰極を含む一対の電極と、該電極間に発光層を含む少なくとも一層の有機層を有する有機電界発光素子であって、該少なくとも一層の有機層として本発明の組成物から形成される電荷輸送層を有する。
[Organic electroluminescence device]
The organic electroluminescent element in the present invention will be described in detail.
The organic electroluminescent element in the present invention is an organic electroluminescent element having a pair of electrodes consisting of an anode and a cathode and at least one organic layer including a light emitting layer between the electrodes on a substrate,
It is an organic electroluminescent element which contains the organic electroluminescent element material of this invention in at least one layer of the said organic layer. The organic layer includes a hole transport layer, a hole injection layer, or an electron block layer, and the organic electroluminescent element material of the present invention may be included in any of the hole transport layer, hole injection layer, or electron block layer. preferable.
The present invention also relates to an organic electroluminescent device having a film formed from the composition of the present invention.
Furthermore, it is preferable that at least one of the organic layers between the pair of electrodes is formed by a coating method.
More specifically, the organic electroluminescent element in the present invention is an organic electroluminescent element having a pair of electrodes including an anode and a cathode and at least one organic layer including a light emitting layer between the electrodes on a substrate. The at least one organic layer has a charge transport layer formed from the composition of the present invention.
 本発明の有機電界発光素子において、発光層は有機層であり、発光層と陽極の間に更に少なくとも一層の有機層を含むが、これら以外にも更に有機層を有していてもよい。
 発光素子の性質上、陽極及び陰極のうち少なくとも一方の電極は、透明若しくは半透明であることが好ましい。
 図1は、本発明に係る有機電界発光素子の構成の一例を示している。
 図1に示される本発明に係る有機電界発光素子10は、支持基板2上において、陽極3と陰極9との間に発光層6が挟まれている。具体的には、陽極3と陰極9との間に正孔注入層4、正孔輸送層5、発光層6、正孔ブロック層7、及び電子輸送層8がこの順に積層されている。
In the organic electroluminescent element of the present invention, the light emitting layer is an organic layer, and further includes at least one organic layer between the light emitting layer and the anode, but may further have an organic layer in addition to these.
In view of the properties of the light-emitting element, at least one of the anode and the cathode is preferably transparent or translucent.
FIG. 1 shows an example of the configuration of an organic electroluminescent device according to the present invention.
In the organic electroluminescent element 10 according to the present invention shown in FIG. 1, a light emitting layer 6 is sandwiched between an anode 3 and a cathode 9 on a support substrate 2. Specifically, a hole injection layer 4, a hole transport layer 5, a light emitting layer 6, a hole block layer 7, and an electron transport layer 8 are laminated in this order between the anode 3 and the cathode 9.
<有機層の構成>
 前記有機層の層構成としては、特に制限はなく、有機電界発光素子の用途、目的に応じて適宜選択することができるが、前記透明電極上に又は前記背面電極上に形成されるのが好ましい。この場合、有機層は、前記透明電極又は前記背面電極上の前面又は一面に形成される。
 有機層の形状、大きさ、及び厚み等については、特に制限はなく、目的に応じて適宜選択することができる。
<Structure of organic layer>
There is no restriction | limiting in particular as a layer structure of the said organic layer, Although it can select suitably according to the use and objective of an organic electroluminescent element, It is preferable to form on the said transparent electrode or the said back electrode. . In this case, the organic layer is formed on the front surface or one surface of the transparent electrode or the back electrode.
There is no restriction | limiting in particular about the shape of a organic layer, a magnitude | size, thickness, etc., According to the objective, it can select suitably.
 具体的な層構成として、下記が挙げられるが本発明はこれらの構成に限定されるものではない。
 ・陽極/正孔輸送層/発光層/電子輸送層/陰極
 ・陽極/正孔輸送層/発光層/ブロック層/電子輸送層/陰極
 ・陽極/正孔輸送層/発光層/ブロック層/電子輸送層/電子注入層/陰極
 ・陽極/正孔注入層/正孔輸送層/発光層/電子輸送層/電子注入層/陰極
 ・陽極/正孔注入層/正孔輸送層/発光層/ブロック層/電子輸送層/陰極
 ・陽極/正孔注入層/正孔輸送層/発光層/ブロック層/電子輸送層/電子注入層/陰極
 ・陽極/正孔注入層/正孔輸送層/励起子ブロック層/発光層/電子輸送層/電子注入層/陰極
 有機電界発光素子の素子構成、基板、陰極及び陽極については、例えば、特開2008-270736号公報に詳述されており、該公報に記載の事項を本発明に適用することができる。
Specific examples of the layer configuration include the following, but the present invention is not limited to these configurations.
Anode / hole transport layer / light-emitting layer / electron transport layer / cathode Anode / hole transport layer / light-emitting layer / block layer / electron transport layer / cathode Anode / hole transport layer / light-emitting layer / block layer / electron Transport layer / electron injection layer / cathode ・ Anode / hole injection layer / hole transport layer / light emitting layer / electron transport layer / electron injection layer / cathode ・ Anode / hole injection layer / hole transport layer / light emitting layer / block Layer / electron transport layer / cathode • anode / hole injection layer / hole transport layer / light emitting layer / blocking layer / electron transport layer / electron injection layer / cathode • anode / hole injection layer / hole transport layer / exciton Block layer / light emitting layer / electron transport layer / electron injection layer / cathode The element configuration of the organic electroluminescence device, the substrate, the cathode and the anode are described in detail in, for example, Japanese Patent Application Laid-Open No. 2008-270736. The matters described can be applied to the present invention.
<基板>
 本発明で使用する基板としては、有機層から発せられる光を散乱又は減衰させない基板であることが好ましい。有機材料の場合には、耐熱性、寸法安定性、耐溶剤性、電気絶縁性、及び加工性に優れていることが好ましい。
<Board>
The substrate used in the present invention is preferably a substrate that does not scatter or attenuate light emitted from the organic layer. In the case of an organic material, it is preferable that it is excellent in heat resistance, dimensional stability, solvent resistance, electrical insulation, and workability.
<陽極>
 陽極は、通常、有機層に正孔を供給する電極としての機能を有していればよく、その形状、構造、大きさ等については特に制限はなく、発光素子の用途、目的に応じて、公知の電極材料の中から適宜選択することができる。前述のごとく、陽極は、通常透明陽極として設けられる。
<Anode>
The anode usually only needs to have a function as an electrode for supplying holes to the organic layer, and there is no particular limitation on the shape, structure, size, etc., depending on the use and purpose of the light-emitting element, It can select suitably from well-known electrode materials. As described above, the anode is usually provided as a transparent anode.
<陰極>
 陰極は、通常、有機層に電子を注入する電極としての機能を有していればよく、その形状、構造、大きさ等については特に制限はなく、発光素子の用途、目的に応じて、公知の電極材料の中から適宜選択することができる。
<Cathode>
The cathode usually has a function as an electrode for injecting electrons into the organic layer, and there is no particular limitation on the shape, structure, size, etc., and it is known depending on the use and purpose of the light-emitting element. The electrode material can be selected as appropriate.
 基板、陽極、陰極については、特開2008-270736号公報の段落番号〔0070〕~〔0089〕に記載の事項を本発明に適用することができる。 Regarding the substrate, anode, and cathode, the matters described in paragraph numbers [0070] to [0089] of JP-A-2008-270736 can be applied to the present invention.
<有機層>
 本発明における有機層について説明する。
<Organic layer>
The organic layer in the present invention will be described.
〔有機層の形成〕
 本発明の有機電界発光素子において、各有機層は、蒸着法やスパッタ法等の乾式成膜法、転写法、印刷法、スピンコート法、バーコート法、インクジェット法、スプレー法等の溶液塗布プロセスのいずれによっても好適に形成することができる。
[Formation of organic layer]
In the organic electroluminescent device of the present invention, each organic layer is formed by a solution coating process such as a dry film forming method such as an evaporation method or a sputtering method, a transfer method, a printing method, a spin coating method, a bar coating method, an ink jet method, or a spray method. Any of these can be suitably formed.
 本発明の組成物から形成される電荷輸送層の他、有機層のいずれか一層は湿式法により成膜することが特に好ましい。また、他の層については乾式法又は湿式法を適宜選択して成膜することができる。湿式法を用いると有機層を容易に大面積化することができ、高輝度で発光効率に優れた発光素子が低コストで効率よく得られ、好ましい。乾式法としては蒸着法、スパッタ法等が使用でき、湿式法としてはディッピング法、スピンコート法、ディップコート法、キャスト法、ダイコート法、ロールコート法、バーコート法、グラビアコート法、スプレーコート法、インクジェット法等が使用可能である。これらの成膜法は有機層の材料に応じて適宜選択できる。湿式法により製膜した場合は製膜した後に乾燥してよい。乾燥は塗布層が損傷しないように温度、圧力等の条件を選択して行う。 In addition to the charge transport layer formed from the composition of the present invention, any one of the organic layers is particularly preferably formed by a wet method. The other layers can be formed by appropriately selecting a dry method or a wet method. When the wet method is used, the organic layer can be easily increased in area, and a light-emitting element having high luminance and excellent light emission efficiency can be obtained efficiently at low cost, which is preferable. Vapor deposition, sputtering, etc. can be used as dry methods, and dipping, spin coating, dip coating, casting, die coating, roll coating, bar coating, gravure coating, and spray coating as wet methods. An ink jet method or the like can be used. These film forming methods can be appropriately selected according to the material of the organic layer. When the film is formed by a wet method, it may be dried after the film is formed. Drying is performed by selecting conditions such as temperature and pressure so that the coating layer is not damaged.
 上記湿式製膜法(塗布プロセス)で用いる塗布液は通常、有機層の材料と、それを溶解又は分散するための溶剤からなる。溶剤は特に限定されず、有機層に用いる材料に応じて選択すればよい。溶剤の具体例としては、ハロゲン系溶剤(クロロホルム、四塩化炭素、ジクロロメタン、1,2-ジクロロエタン、クロロベンゼン等)、ケトン系溶剤(アセトン、メチルエチルケトン、ジエチルケトン、n-プロピルメチルケトン、シクロヘキサノン等)、芳香族系溶剤(ベンゼン、トルエン、キシレン等)、エステル系溶剤(酢酸エチル、酢酸n-プロピル、酢酸n-ブチル、プロピオン酸メチル、プロピオン酸エチル、γ-ブチロラクトン、炭酸ジエチル等)、エーテル系溶剤(テトラヒドロフラン、ジオキサン等)、アミド系溶剤(ジメチルホルムアミド、ジメチルアセトアミド等)、ジメチルスルホキシド、アルコール系溶剤(メタノール、プロパノール、ブタノールなど)、水等が挙げられる。
 なお、塗布液中の溶剤に対する固形分量は特に制限はなく、塗布液の粘度も製膜方法に応じて任意に選択することができる。
The coating solution used in the wet film-forming method (coating process) usually comprises an organic layer material and a solvent for dissolving or dispersing it. A solvent is not specifically limited, What is necessary is just to select according to the material used for an organic layer. Specific examples of the solvent include halogen solvents (chloroform, carbon tetrachloride, dichloromethane, 1,2-dichloroethane, chlorobenzene, etc.), ketone solvents (acetone, methyl ethyl ketone, diethyl ketone, n-propyl methyl ketone, cyclohexanone, etc.), Aromatic solvents (benzene, toluene, xylene, etc.), ester solvents (ethyl acetate, n-propyl acetate, n-butyl acetate, methyl propionate, ethyl propionate, γ-butyrolactone, diethyl carbonate, etc.), ether solvents (Tetrahydrofuran, dioxane, etc.), amide solvents (dimethylformamide, dimethylacetamide, etc.), dimethyl sulfoxide, alcohol solvents (methanol, propanol, butanol, etc.), water and the like.
The solid content with respect to the solvent in the coating solution is not particularly limited, and the viscosity of the coating solution can be arbitrarily selected according to the film forming method.
〔発光層〕
 本発明の有機電界発光素子において、発光層は発光材料を含有するが、該発光材料としては、燐光発光性化合物を含有することが好ましい。燐光発光性化合物は、三重項励起子から発光することができる化合物であれば特に限定されることはない。燐光発光性化合物としては、オルトメタル化錯体又はポルフィリン錯体を用いるのが好ましく、オルトメタル化錯体を用いるのがより好ましい。ポルフィリン錯体の中ではポルフィリン白金錯体が好ましい。燐光発光性化合物は単独で使用しても2種以上を併用してもよい。
[Light emitting layer]
In the organic electroluminescent device of the present invention, the light emitting layer contains a light emitting material, and the light emitting material preferably contains a phosphorescent compound. The phosphorescent compound is not particularly limited as long as it is a compound that can emit light from triplet excitons. As the phosphorescent compound, an orthometalated complex or a porphyrin complex is preferably used, and an orthometalated complex is more preferably used. Of the porphyrin complexes, a porphyrin platinum complex is preferred. The phosphorescent compounds may be used alone or in combination of two or more.
 本発明でいうオルトメタル化錯体とは、山本明夫著「有機金属化学 基礎と応用」,150頁及び232頁,裳華房社(1982年)、H. Yersin著「Photochemistry and Photophysics of Coordination Compounds」,71~77頁及び135~146頁,Springer-Verlag社(1987年)等に記載されている化合物群の総称である。オルトメタル化錯体を形成する配位子は特に限定されないが、2-フェニルピリジン誘導体、7,8-ベンゾキノリン誘導体、2-(2-チエニル)ピリジン誘導体、2-(1-ナフチル)ピリジン誘導体又は2-フェニルキノリン誘導体であるのが好ましい。これら誘導体は置換基を有してもよい。また、これらのオルトメタル化錯体形成に必須の配位子以外に他の配位子を有していてもよい。オルトメタル化錯体を形成する中心金属としては、遷移金属であればいずれも使用可能であり、本発明ではロジウム、白金、金、イリジウム、ルテニウム、パラジウム等を好ましく用いることができる。中でもイリジウムが特に好ましい。このようなオルトメタル化錯体を含む有機層は、発光輝度及び発光効率に優れている。オルトメタル化錯体については、特願2000-254171号の段落番号0152~0180にもその具体例が記載されている。 The ortho-metalated complex referred to in the present invention refers to Akio Yamamoto's “Organic Metal Chemistry Fundamentals and Applications”, pages 150 and 232, Hankabo (1982), H.C. Yersin's “Photochemistry and Photophysics of Coordination Compounds”, pages 71 to 77 and pages 135 to 146, Springer-Verlag (1987), etc. The ligand forming the orthometalated complex is not particularly limited, but a 2-phenylpyridine derivative, a 7,8-benzoquinoline derivative, a 2- (2-thienyl) pyridine derivative, a 2- (1-naphthyl) pyridine derivative or A 2-phenylquinoline derivative is preferred. These derivatives may have a substituent. Moreover, you may have another ligand other than these essential ligands for ortho metalation complex formation. As the central metal forming the orthometalated complex, any transition metal can be used. In the present invention, rhodium, platinum, gold, iridium, ruthenium, palladium and the like can be preferably used. Of these, iridium is particularly preferable. An organic layer containing such an orthometalated complex is excellent in light emission luminance and light emission efficiency. Specific examples of ortho-metalated complexes are also described in paragraphs 0152 to 0180 of Japanese Patent Application No. 2000-254171.
 発光材料の少なくとも一種が白金錯体材料又はイリジウム錯体材料であることが好ましい。
 本発明においては、白金錯体材料又はイリジウム錯体材料を含むことが好ましく、4座配位子を有する白金錯体材料又はイリジウム錯体材料を含むことがより好ましく、イリジウム錯体材料を含むことが更に好ましい。
 蛍光発光材料、燐光発光材料については、例えば、特開2008-270736の段落番号〔0100〕~〔0164〕、特開2007-266458の段落番号〔0088〕~〔0090〕に詳述されており、これらの公報に記載の事項を本発明に適用することができる。
 イリジウム錯体として好ましくは、下記一般式(T-2)で表されるイリジウム錯体である。
 〔一般式(T-2)で表される化合物〕
 一般式(T-2)で表される化合物について説明する。
It is preferable that at least one of the light emitting materials is a platinum complex material or an iridium complex material.
In the present invention, a platinum complex material or an iridium complex material is preferably included, more preferably a platinum complex material or an iridium complex material having a tetradentate ligand, and further preferably an iridium complex material.
The fluorescent light-emitting material and the phosphorescent light-emitting material are described in detail in paragraph numbers [0100] to [0164] of JP-A-2008-270736 and paragraph numbers [0088] to [0090] of JP-A-2007-266458, for example. The matters described in these publications can be applied to the present invention.
The iridium complex is preferably an iridium complex represented by the following general formula (T-2).
[Compound represented by formula (T-2)]
The compound represented by formula (T-2) will be described.
Figure JPOXMLDOC01-appb-C000017
Figure JPOXMLDOC01-appb-C000017
 (一般式(T-2)中、RT3’~RT6’及びRT3~RT6はそれぞれ独立に、水素原子、アルキル基、アルケニル基、アルキニル基、シアノ基、ペルフルオロアルキル基、トリフルオロビニル基、-CO2T、-C(O)RT、-N(RT2、-NO2、-ORT、ハロゲン原子、アリール基又はヘテロアリール基を表し、更に置換基Tを有していてもよい。
 RT3、RT4、RT5及びRT6は隣り合う任意の2つが互いに結合して縮合4~7員環を形成してもよく、該縮合4~7員環は、シクロアルキル、アリール又はヘテロアリールであり、該縮合4~7員環は更に置換基Tを有していてもよい。
 RT3’とRT6は、-C(RT2-C(RT2-、-CRT=CRT-、-C(RT2-、-O-、-NRT-、-O-C(RT2-、-NRT-C(RT2-及び-N=CRT-から選択される連結基によって連結されて環を形成してもよい。
 RTはそれぞれ独立に、水素原子、アルキル基、アルケニル基、アルキニル基、ヘテロアルキル基、アリール基、又はヘテロアリール基を表し、更に置換基Tを有していてもよい。
 置換基Tはそれぞれ独立に、フッ素原子、-R’、-OR’、-N(R’)2、-SR’、-C(O)R’、-C(O)OR’、-C(O)N(R’)2、-CN、-NO2、-SO2、-SOR’、-SO2R’、又は-SO3R’を表し、R’はそれぞれ独立に、水素原子、アルキル基、ペルフルオロアルキル基、アルケニル基、アルキニル基、ヘテロアルキル基、アリール基又はヘテロアリール基を表す。
 (X-Y)は、配位子を表す。mは1~3の整数、nは0~2の整数を表す。m+nは3である。)
(In the general formula (T-2), R T3 ′ to R T6 ′ and R T3 to R T6 are each independently a hydrogen atom, alkyl group, alkenyl group, alkynyl group, cyano group, perfluoroalkyl group, trifluorovinyl. Group, —CO 2 R T , —C (O) R T , —N (R T ) 2 , —NO 2 , —OR T , a halogen atom, an aryl group or a heteroaryl group, and further having a substituent T You may do it.
R T3 , R T4 , R T5 and R T6 may be any two adjacent to each other to form a condensed 4- to 7-membered ring, which is a cycloalkyl, aryl or hetero ring It is aryl, and the condensed 4- to 7-membered ring may further have a substituent T.
R T3 ′ and R T6 are —C (R T ) 2 —C (R T ) 2 —, —CR T = CR T —, —C (R T ) 2 —, —O—, —NR T —, A ring may be formed by linking with a linking group selected from —O—C (R T ) 2 —, —NR T —C (R T ) 2 —, and —N═CR T —.
R T each independently represents a hydrogen atom, an alkyl group, an alkenyl group, an alkynyl group, a heteroalkyl group, an aryl group, or a heteroaryl group, and may further have a substituent T.
The substituents T are each independently a fluorine atom, —R ′, —OR ′, —N (R ′) 2 , —SR ′, —C (O) R ′, —C (O) OR ′, —C ( O) represents N (R ′) 2 , —CN, —NO 2 , —SO 2 , —SOR ′, —SO 2 R ′, or —SO 3 R ′, and each R ′ independently represents a hydrogen atom, alkyl Represents a group, a perfluoroalkyl group, an alkenyl group, an alkynyl group, a heteroalkyl group, an aryl group or a heteroaryl group.
(XY) represents a ligand. m represents an integer of 1 to 3, and n represents an integer of 0 to 2. m + n is 3. )
 RT3’、RT3、RT4、RT5、RT6で表されるアルキル基として、好ましくは総炭素原子数1~8のアルキル基であり、より好ましくは総炭素原子数1~6のアルキル基であり、例えばメチル基、エチル基、i-プロピル基、シクロヘキシル基、t-ブチル基等が挙げられる。
 シクロアルキル基としては、置換基を有していてもよく、飽和であっても不飽和であってもよく、置換してもよい基としては、前述の置換基Tを挙げることができる。RT3’、RT3、RT4、RT5、RT6で表されるシクロアルキル基として、好ましくは環員数4~7のシクロアルキル基であり、より好ましくは総炭素原子数5~6のシクロアルキル基であり、例えばシクロペンチル基、シクロヘキシル基等が挙げられる。
 RT3’、RT3、RT4、RT5、RT6で表されるアルケニル基としては好ましくは炭素数2~30、より好ましくは炭素数2~20、特に好ましくは炭素数2~10であり、例えばビニル、アリル、1-プロペニル、1-イソプロペニル、1-ブテニル、2-ブテニル、3-ペンテニルなどが挙げられる。
 RT3’、RT3、RT4、RT5、RT6で表されるアルキニル基としては、好ましくは炭素数2~30、より好ましくは炭素数2~20、特に好ましくは炭素数2~10であり、例えばエチニル、プロパルギル、1-プロピニル、3-ペンチニルなどが挙げられる。
The alkyl group represented by R T3 ′, R T3 , R T4 , R T5 , R T6 is preferably an alkyl group having 1 to 8 carbon atoms, more preferably an alkyl group having 1 to 6 carbon atoms. Group, for example, methyl group, ethyl group, i-propyl group, cyclohexyl group, t-butyl group and the like.
The cycloalkyl group may have a substituent, may be saturated or unsaturated, and examples of the group that may be substituted include the above-described substituent T. The cycloalkyl group represented by R T3 ′, R T3 , R T4 , R T5 , R T6 is preferably a cycloalkyl group having 4 to 7 ring members, and more preferably a cycloalkyl group having 5 to 6 total carbon atoms. Examples of the alkyl group include a cyclopentyl group and a cyclohexyl group.
The alkenyl group represented by R T3 ′, R T3 , R T4 , R T5 and R T6 preferably has 2 to 30 carbon atoms, more preferably 2 to 20 carbon atoms, and particularly preferably 2 to 10 carbon atoms. Examples thereof include vinyl, allyl, 1-propenyl, 1-isopropenyl, 1-butenyl, 2-butenyl, 3-pentenyl and the like.
The alkynyl group represented by R T3 ′, R T3 , R T4 , R T5 , R T6 is preferably 2-30 carbon atoms, more preferably 2-20 carbon atoms, and particularly preferably 2-10 carbon atoms. For example, ethynyl, propargyl, 1-propynyl, 3-pentynyl and the like.
 RT3’、RT3、RT4、RT5、RT6で表されるヘテロアルキル基は前記アルキル基の少なくとも1つの炭素がO、NRT、又はSに置き換わった基を挙げることができる。 Examples of the heteroalkyl group represented by R T3 ′, R T3 , R T4 , R T5 , and R T6 include a group in which at least one carbon of the alkyl group is replaced with O, NR T , or S.
 RT3’、RT3、RT4、RT5、RT6で表されるハロゲン原子としては、フッ素原子、塩素原子、臭素原子、ヨウ素原子が挙げられ、フッ素原子であることが好ましい。 Examples of the halogen atom represented by R T3 ′, R T3 , R T4 , R T5 , and R T6 include a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom, and a fluorine atom is preferable.
 RT3’、RT3、RT4、RT5、RT6で表されるアリール基としては、好ましくは、炭素数6から30の置換若しくは無置換のアリール基であり、より好ましくは炭素数6~20のアリール基である。該アリール基としては、例えば、フェニル基、ナフチル基、ビフェニル基、アントリル基、ターフェニル基、フルオレニル基、フェナントリル基、ピレニル基、トリフェニレニル基、トリル基などが挙げられ、フェニル基、フルオレニル基、ナフチル基、ビフェニル基、アントリル基、又はターフェニル基が好ましく、フェニル基、フルオレニル基、ナフチル基がより好ましい。 The aryl group represented by R T3 ′, R T3 , R T4 , R T5 and R T6 is preferably a substituted or unsubstituted aryl group having 6 to 30 carbon atoms, more preferably 6 to 6 carbon atoms. 20 aryl groups. Examples of the aryl group include a phenyl group, a naphthyl group, a biphenyl group, an anthryl group, a terphenyl group, a fluorenyl group, a phenanthryl group, a pyrenyl group, a triphenylenyl group, and a tolyl group. Group, biphenyl group, anthryl group or terphenyl group is preferable, and phenyl group, fluorenyl group and naphthyl group are more preferable.
 RT3’、RT3、RT4、RT5、RT6で表されるヘテロアリール基としては、好ましくは、炭素数5~8のヘテロアリール基であり、より好ましくは、5又は6員の置換若しくは無置換のヘテロアリール基であり、例えば、ピリジル基、ピラジニル基、ピリダジニル基、ピリミジニル基、トリアジニル基、キノリニル基、イソキノリニル基、キナゾリニル基、シンノリニル基、フタラジニル基、キノキサリニル基、ピロリル基、インドリル基、フリル基、ベンゾフリル基、チエニル基、ベンゾチエニル基、ピラゾリル基、イミダゾリル基、ベンズイミダゾリル基、トリアゾリル基、オキサゾリル基、ベンズオキサゾリル基、チアゾリル基、ベンゾチアゾリル基、イソチアゾリル基、ベンズイソチアゾリル基、チアジアゾリル基、イソオキサゾリル基、ベンズイソオキサゾリル基、ピロリジニル基、ピペリジニル基、ピペラジニル基、イミダゾリジニル基、チアゾリニル基、スルホラニル基、カルバゾリル基、ジベンゾフリル基、ジベンゾチエニル基、ピリドインドリル基などが挙げられる。好ましい例としては、ピリジル基、ピリミジニル基、イミダゾリル基、チエニル基であり、より好ましくは、ピリジル基、ピリミジニル基である。 The heteroaryl group represented by R T3 ′, R T3 , R T4 , R T5 , R T6 is preferably a heteroaryl group having 5 to 8 carbon atoms, more preferably a 5- or 6-membered substituent. Or an unsubstituted heteroaryl group, for example, pyridyl group, pyrazinyl group, pyridazinyl group, pyrimidinyl group, triazinyl group, quinolinyl group, isoquinolinyl group, quinazolinyl group, cinnolinyl group, phthalazinyl group, quinoxalinyl group, pyrrolyl group, indolyl group , Furyl group, benzofuryl group, thienyl group, benzothienyl group, pyrazolyl group, imidazolyl group, benzimidazolyl group, triazolyl group, oxazolyl group, benzoxazolyl group, thiazolyl group, benzothiazolyl group, isothiazolyl group, benzisothiazolyl group , Thiadiazolyl group, isoxazoly Group, a benzisoxazolyl group, a pyrrolidinyl group, a piperidinyl group, a piperazinyl group, an imidazolidinyl group, a thiazolinyl group, a sulfolanyl group, a carbazolyl group, a dibenzofuryl group, dibenzothienyl group, a pyrido-indolyl group. Preferred examples include pyridyl group, pyrimidinyl group, imidazolyl group, and thienyl group, and more preferred are pyridyl group and pyrimidinyl group.
 RT3’、RT3、RT4、RT5及びRT6として好ましくは、水素原子、アルキル基、シアノ基、トリフルオロメチル基、ペルフルオロアルキル基、ジアルキルアミノ基、フッ素原子、アリール基、ヘテロアリール基であり、より好ましくは水素原子、アルキル基、シアノ基、トリフルオロメチル基、フッ素原子、アリール基であり、更に好ましくは、水素原子、アルキル基、アリール基である。置換基Tとしては、アルキル基、アルコキシ基、フッ素原子、シアノ基、ジアルキルアミノ基が好ましく、水素原子がより好ましい。 R T3 ′, R T3 , R T4 , R T5 and R T6 are preferably a hydrogen atom, an alkyl group, a cyano group, a trifluoromethyl group, a perfluoroalkyl group, a dialkylamino group, a fluorine atom, an aryl group or a heteroaryl group. And more preferably a hydrogen atom, an alkyl group, a cyano group, a trifluoromethyl group, a fluorine atom or an aryl group, and still more preferably a hydrogen atom, an alkyl group or an aryl group. As the substituent T, an alkyl group, an alkoxy group, a fluorine atom, a cyano group, and a dialkylamino group are preferable, and a hydrogen atom is more preferable.
 RT3、RT4、RT5及びRT6は隣り合う任意の2つが互いに結合して縮合4~7員環を形成してもよく、該縮合4~7員環は、シクロアルキル、アリール又はヘテロアリールであり、該縮合4~7員環は更に置換基Tを有していてもよい。また、該縮合4~7員環は更に4~7員環により縮合していてもよい。形成されるシクロアルキル、アリール、ヘテロアリールの定義及び好ましい範囲はRT3’、RT3、RT4、RT5、RT6で定義したシクロアルキル基、アリール基、ヘテロアリール基と同じである。 R T3 , R T4 , R T5 and R T6 may be any two adjacent to each other to form a condensed 4- to 7-membered ring, which is a cycloalkyl, aryl or hetero ring It is aryl, and the condensed 4- to 7-membered ring may further have a substituent T. The condensed 4- to 7-membered ring may be further condensed with a 4- to 7-membered ring. The definition and preferred range of cycloalkyl, aryl and heteroaryl formed are the same as the cycloalkyl group, aryl group and heteroaryl group defined by R T3 ′, R T3 , R T4 , R T5 and R T6 .
 RT4’は水素原子、アルキル基、アリール基、フッ素原子が好ましく、水素原子がより好ましい。
 RT5’及びRT6’は水素原子を表すか、又は互いに結合して縮合4~7員環式基を形成することが好ましく、該縮合4~7員環式基は、シクロアルキル、シクロヘテロアルキル、アリール、又はヘテロアリールであることがより好ましく、アリールであることが更に好ましい。
 RT4’~R T6’における置換基Tとしてはアルキル基、アルコキシ基、フッ素原子、シアノ基、アルキルアミノ基、ジアリールアミノ基が好ましく、アルキル基がより好ましい。
R T4 ′ is preferably a hydrogen atom, an alkyl group, an aryl group or a fluorine atom, more preferably a hydrogen atom.
R T5 ′ and R T6 ′ represent a hydrogen atom or are preferably bonded to each other to form a condensed 4- to 7-membered cyclic group, and the condensed 4- to 7-membered cyclic group includes cycloalkyl, cyclohetero More preferred is alkyl, aryl, or heteroaryl, and even more preferred is aryl.
The substituent T in R T4 ′ to R T6 ′ is preferably an alkyl group, an alkoxy group, a fluorine atom, a cyano group, an alkylamino group, or a diarylamino group, and more preferably an alkyl group.
 前記一般式(T-2)で表される化合物の好ましい形態の一つは、一般式(T-2)においてRT3’、RT4’、RT5’、RT6’、RT3、RT4、RT5及びRT6のうち、隣り合う任意の2つが互いに結合して縮合環を形成しない場合である。 One of the preferred forms of the compound represented by the general formula (T-2) is R T3 ′, R T4 ′, R T5 ′, R T6 ′, R T3 , R T4 in the general formula (T-2). , R T5 and R T6 , any two adjacent to each other are not bonded to each other to form a condensed ring.
 mは1~3であることが好ましく、2又は3であることがより好ましい。すなわち、nは0又は1であることが好ましい。錯体中の配位子の種類は1又は2種類から構成されることが好ましく、更に好ましくは1種類である。錯体分子内に反応性基を導入する際には合成容易性という観点から配位子が2種類からなることも好ましい。 M is preferably 1 to 3, and more preferably 2 or 3. That is, n is preferably 0 or 1. It is preferable that the kind of ligand in a complex is comprised from 1 or 2 types, More preferably, it is 1 type. When introducing a reactive group into the complex molecule, it is also preferred that the ligand consists of two types from the viewpoint of ease of synthesis.
 一般式(T-2)で表される金属錯体は、一般式(T-2)における下記一般式(T-1-A)で表される配位子若しくはその互変異性体と、(X-Y)で表される配位子若しくはその互変異性体との組み合わせを含んで構成されるか、該金属錯体の配位子の全てが下記一般式(T-1-A)で表される配位子又はその互変異性体のみで構成されていてもよい。 The metal complex represented by the general formula (T-2) includes a ligand represented by the following general formula (T-1-A) in the general formula (T-2) or a tautomer thereof, and (X -Y) or a combination with a tautomer thereof, or all of the ligands of the metal complex are represented by the following general formula (T-1-A) Or a tautomer thereof.
Figure JPOXMLDOC01-appb-C000018
Figure JPOXMLDOC01-appb-C000018
 (一般式(T-1-A)中、RT3’~RT6’及びRT3~RT6は、一般式(T-2)における、RT3’~RT6’及びRT3~RT6と同義である。*はイリジウムへの配位位置を表す。) (In the general formula (T-1-A), R T3 '~ R T6' and R T3 ~ R T6 are in the general formula (T-2), and R T3 '~ R T6' and R T3 ~ R T6 (It is synonymous. * Represents the coordination position to iridium.)
 更に従来公知の金属錯体形成に用いられる、所謂配位子として当該業者が周知の配位子(配位化合物ともいう)を必要に応じて(X-Y)で表される配位子として有していてもよい。 Further, as a so-called ligand used for forming a conventionally known metal complex, a ligand (also referred to as a coordination compound) well known by those skilled in the art is optionally used as a ligand represented by (XY). You may do it.
 従来公知の金属錯体に用いられる配位子としては、種々の公知の配位子があるが、例えば、「Photochemistry and Photophysics of Coordination Compounds」Springer-Verlag社 H.Yersin著 1987年発行、「有機金属化学-基礎と応用-」裳華房社 山本明夫著 1982年発行等に記載の配位子(例えば、ハロゲン配位子(好ましくは塩素配位子)、含窒素ヘテロアリール配位子(例えば、ビピリジル、フェナントロリンなど)、ジケトン配位子(例えば、アセチルアセトンなど)が挙げられる。(X-Y)で表される配位子として好ましくは、ジケトン類あるいはピコリン酸誘導体であり、錯体の安定性と高い発光効率が得られる観点から以下に示されるアセチルアセトネート(acac)であることが最も好ましい。 There are various known ligands used in conventionally known metal complexes. For example, “Photochemistry and Photophysics of Coordination Compounds” Springer-Verlag H. Included in ligands (eg, halogen ligands (preferably chlorine ligands), etc., published in 1987, published by Yersin, “Organometallic Chemistry-Fundamentals and Applications-” Nitrogen heteroaryl ligands (for example, bipyridyl, phenanthroline, etc.), diketone ligands (for example, acetylacetone, etc.) The ligand represented by (XY) is preferably a diketone or a picolinic acid. The derivative is most preferably acetylacetonate (acac) shown below from the viewpoint of obtaining stability of the complex and high luminous efficiency.
Figure JPOXMLDOC01-appb-C000019
Figure JPOXMLDOC01-appb-C000019
 *はイリジウムへの配位位置を表す。
 以下に、(X-Y)で表される配位子の例を具体的に挙げるが、本発明はこれらに限定されない。
* Represents a coordination position to iridium.
Specific examples of the ligand represented by (XY) are given below, but the present invention is not limited thereto.
Figure JPOXMLDOC01-appb-C000020
Figure JPOXMLDOC01-appb-C000020
 上記(X-Y)で表される配位子の例において、*は一般式(T-2)におけるイリジウムへの配位位置を表す。Rx、Ry及びRzはそれぞれ独立に水素原子又は置換基を表す。該置換基としては前記置換基群Aから選ばれる置換基が挙げられる。好ましくは、Rx、Rzはそれぞれ独立にアルキル基、ペルフルオロアルキル基、フッ素原子、アリール基のいずれかであり、より好ましくは炭素数1~4のアルキル基、炭素数1~4のペルフルオロアルキル基、フッ素原子、置換されていても良いフェニル基であり、最も好ましくはメチル基、エチル基、トリフルオロメチル基、フッ素原子、フェニル基である。Ryは好ましくは水素原子、アルキル基、ペルフルオロアルキル基、フッ素原子、アリール基のいずれかであり、より好ましくは水素原子、炭素数1~4のアルキル基、置換されていても良いフェニル基であり、最も好ましくは水素原子、メチル基のいずれかである。これら配位子は素子中で電荷を輸送したり励起によって電子が集中する部位ではないと考えられるため、Rx、Ry、Rzは化学的に安定な置換基であれば良く、本発明の効果にも影響を及ぼさない。
 錯体合成が容易であるため好ましくは(I-1)、(I-4)、(I-5)であり、最も好ましくは(I-1)である。これらの配位子を有する錯体は、対応する配位子前駆体を用いることで公知の合成例と同様に合成できる。例えば国際公開2009-073245号46ページに記載の方法と同様に、市販のジフルオロアセチルアセトンを用いて以下に示す方法で合成する事ができる。
In the example of the ligand represented by the above (XY), * represents a coordination position to iridium in the general formula (T-2). Rx, Ry and Rz each independently represents a hydrogen atom or a substituent. Examples of the substituent include a substituent selected from the substituent group A. Preferably, Rx and Rz are each independently an alkyl group, a perfluoroalkyl group, a fluorine atom or an aryl group, more preferably an alkyl group having 1 to 4 carbon atoms, a perfluoroalkyl group having 1 to 4 carbon atoms, A fluorine atom and an optionally substituted phenyl group are most preferred, and a methyl group, an ethyl group, a trifluoromethyl group, a fluorine atom and a phenyl group are most preferred. Ry is preferably a hydrogen atom, an alkyl group, a perfluoroalkyl group, a fluorine atom or an aryl group, more preferably a hydrogen atom, an alkyl group having 1 to 4 carbon atoms, or an optionally substituted phenyl group. And most preferably a hydrogen atom or a methyl group. Since these ligands are considered not to be sites where electrons are transported in the device or where electrons are concentrated by excitation, Rx, Ry, and Rz may be any chemically stable substituent, and the effects of the present invention can be achieved. Also has no effect.
Since complex synthesis is easy, (I-1), (I-4) and (I-5) are preferred, and (I-1) is most preferred. Complexes having these ligands can be synthesized in the same manner as in known synthesis examples by using corresponding ligand precursors. For example, in the same manner as described in International Publication No. 2009-073245, page 46, it can be synthesized by the following method using commercially available difluoroacetylacetone.
Figure JPOXMLDOC01-appb-C000021
Figure JPOXMLDOC01-appb-C000021
 また、配位子として一般式(I‐15)に示すモノアニオン性配位子を用いる事もできる。 In addition, a monoanionic ligand represented by the general formula (I-15) can also be used as the ligand.
Figure JPOXMLDOC01-appb-C000022
Figure JPOXMLDOC01-appb-C000022
 一般式(I-15)におけるRT7~RT10は、一般式(T-2)におけるRT3~RT6と同義であり、好ましい範囲も同様である。RT7’~RT10’は、一般式(T-2)におけるRT3’~RT6’と同義であり、好ましい範囲もRT3’~RT6’と同様である。*はイリジウムへの配位位置を表す。 R T7 to R T10 in general formula (I-15) have the same meanings as R T3 to R T6 in general formula (T-2), and the preferred ranges are also the same. R T7 ′ to R T10 ′ have the same meanings as R T3 ′ to R T6 ′ in formula (T-2), and their preferred ranges are also the same as R T3 ′ to R T6 ′. * Represents a coordination position to iridium.
 前記一般式(T-2)で表される化合物の好ましい形態の一つは、下記一般式(T-3)で表される場合である。 One preferred form of the compound represented by the general formula (T-2) is a case represented by the following general formula (T-3).
Figure JPOXMLDOC01-appb-C000023
Figure JPOXMLDOC01-appb-C000023
 一般式(T-3)におけるRT3’~RT6’、RT3~RT6は、一般式(T-2)におけるRT3’~RT6’、RT3~RT6と同義であり、好ましい範囲も同様である。
 RT7~RT10は、一般式(T-2)におけるRT3~RT6と同義であり、好ましい範囲も同様である。RT7’~R T10’は、一般式(T-2)におけるRT3’~RT6’と同義であり、好ましい範囲も同様である。
R T3 '~ R T6' in the general formula (T3), R T3 ~ R T6 is, R T3 in the general formula (T-2) '~ R T6', have the same meaning as R T3 ~ R T6, preferably The range is the same.
R T7 to R T10 have the same meanings as R T3 to R T6 in formula (T-2), and preferred ranges are also the same. R T7 ′ to R T10 ′ have the same meanings as R T3 ′ to R T6 ′ in formula (T-2), and preferred ranges are also the same.
 前記一般式(T-2)で表される化合物の好ましい別の形態は、下記一般式(T-4)で表される化合物である。 Another preferred embodiment of the compound represented by the general formula (T-2) is a compound represented by the following general formula (T-4).
Figure JPOXMLDOC01-appb-C000024
Figure JPOXMLDOC01-appb-C000024
 一般式(T-4)におけるRT3’~RT6’、RT3~RT6、(X-Y)、m及びnは、一般式(T-2)におけるRT3’~RT6’、RT3~RT6、(X-Y)、m及びnと同義であり、好ましい範囲も同様である。RT3’~RT6’及びRT3~RT6のうち、0~2つがアルキル基又はフェニル基で残りが全て水素原子である場合が特に好ましく、RT3’~RT6’及びRT3~RT6のうち、1つ又は2つがアルキル基で残りが全て水素原子である場合が更に好ましい。 R T3 ′ to R T6 ′, R T3 to R T6 , (XY), m and n in the general formula (T-4) are R T3 ′ to R T6 ′, R in the general formula (T-2). T3 to R T6 have the same meanings as (XY), m and n, and the preferred ranges are also the same. Among R T3 ′ to R T6 ′ and R T3 to R T6 , it is particularly preferred that 0 to 2 are alkyl groups or phenyl groups and the rest are all hydrogen atoms, and R T3 ′ to R T6 ′ and R T3 to R More preferably, one or two of T6 are alkyl groups and the rest are all hydrogen atoms.
 前記一般式(T-2)で表される化合物の好ましい別の形態は、下記一般式(T-5)で表される化合物である。 Another preferred embodiment of the compound represented by the general formula (T-2) is a compound represented by the following general formula (T-5).
Figure JPOXMLDOC01-appb-C000025
Figure JPOXMLDOC01-appb-C000025
 一般式(T-5)におけるRT3’~RT7’、RT3~RT6、(X-Y)、m及びnは、一般式(T-2)におけるRT3’~RT6’、RT3~RT6、(X-Y)、m及びnと同義であり、好ましいものも同様である。 R T3 ′ to R T7 ′, R T3 to R T6 , (XY), m and n in the general formula (T-5) are R T3 ′ to R T6 ′, R in the general formula (T-2). T3 to R T6 have the same meanings as (XY), m and n, and the preferred ones are also the same.
 一般式(T-2)で表される化合物の好ましい別の形態は、下記一般式(T-6)で表される場合である。 Another preferred embodiment of the compound represented by the general formula (T-2) is a case represented by the following general formula (T-6).
Figure JPOXMLDOC01-appb-C000026
Figure JPOXMLDOC01-appb-C000026
 一般式(T-6)中、R1a~R1iの定義や好ましい範囲は一般式(T-2)におけるRT3~RT6におけるものと同様である。またR1a~R1iのうち、0~2つがアルキル基又はアリール基で残りが全て水素原子である場合が特に好ましい。(X-Y)、m、及びnの定義や好ましい範囲は一般式(T-2)における(X-Y)、m、及びnと同様である。 In general formula (T-6), the definitions and preferred ranges of R 1a to R 1i are the same as those in R T3 to R T6 in general formula (T-2). Further, it is particularly preferable that 0 to 2 of R 1a to R 1i are alkyl groups or aryl groups and the rest are all hydrogen atoms. The definitions and preferred ranges of (XY), m, and n are the same as (XY), m, and n in formula (T-2).
 イリジウム錯体材料の好ましい具体例を以下に列挙するが、以下に限定されるものではない。 Preferred specific examples of the iridium complex material are listed below, but are not limited thereto.
Figure JPOXMLDOC01-appb-C000027
Figure JPOXMLDOC01-appb-C000027
Figure JPOXMLDOC01-appb-C000028
Figure JPOXMLDOC01-appb-C000028
Figure JPOXMLDOC01-appb-C000029
Figure JPOXMLDOC01-appb-C000029
Figure JPOXMLDOC01-appb-C000030
Figure JPOXMLDOC01-appb-C000030
Figure JPOXMLDOC01-appb-C000031
Figure JPOXMLDOC01-appb-C000031
 上記一般式(T-2)で表される化合物として例示した化合物は、特開2009-99783号公報に記載の方法や、米国特許7279232号等に記載の種々の方法で合成できる。合成後、カラムクロマトグラフィー、再結晶等による精製を行った後、昇華精製により精製することが好ましい。昇華精製により、有機不純物を分離できるだけでなく、無機塩や残留溶媒等を効果的に取り除くことができる。 The compounds exemplified as the compound represented by the general formula (T-2) can be synthesized by the method described in JP2009-99783A, various methods described in US Pat. No. 7,279,232 and the like. After synthesis, it is preferable to purify by sublimation purification after purification by column chromatography, recrystallization or the like. By sublimation purification, not only can organic impurities be separated, but inorganic salts and residual solvents can be effectively removed.
 一般式(T-2)で表される化合物は、発光層に含有されるが、その用途が限定されることはなく、更に有機層内のいずれの層に更に含有されてもよい。 The compound represented by the general formula (T-2) is contained in the light emitting layer, but its use is not limited and may be further contained in any layer in the organic layer.
 白金錯体としては具体的には、特開2005-310733号公報の〔0143〕~〔0152〕、〔0157〕~〔0158〕、〔0162〕~〔0168〕に記載の化合物、特開2006-256999号公報の〔0065〕~〔0083〕に記載の化合物、特開2006-93542号公報の〔0065〕~〔0090〕に記載の化合物、特開2007-73891号公報の〔0063〕~〔0071〕に記載の化合物、特開2007-324309号公報の〔0079〕~〔0083〕に記載の化合物、特開2006-93542号公報の〔0065〕~〔0090〕に記載の化合物、特開2007-96255号公報の〔0055〕~〔0071〕に記載の化合物、特開2006-313796号公報の〔0043〕~〔0046〕が挙げられ、その他以下に例示する白金錯体が挙げられる。 Specific examples of the platinum complex include compounds described in [0143] to [0152], [0157] to [0158] and [0162] to [0168] of JP-A-2005-310733, and JP-A-2006-256999. Nos. [0065] to [0083], No. 2006-93542, Nos. [0065] to [0090], No. 2007-33891, Nos. [0063] to [0071] The compounds described in [0079] to [0083] of JP-A-2007-324309, the compounds described in [0065] to [0090] of JP-A-2006-93542, and JP-A-2007-96255 Nos. [0055] to [0071], and JP-A-2006-313796 [0043] to [004] ] And the like, platinum complexes exemplified other following can be mentioned.
Figure JPOXMLDOC01-appb-C000032
Figure JPOXMLDOC01-appb-C000032
Figure JPOXMLDOC01-appb-C000033
Figure JPOXMLDOC01-appb-C000033
Figure JPOXMLDOC01-appb-C000034
Figure JPOXMLDOC01-appb-C000034
 これらの白金錯体化合物は、例えば、Journal of Organic Chemistry 53,786,(1988)、G.R.Newkome et al.)の、789頁、左段53行~右段7行に記載の方法、790頁、左段18行~38行に記載の方法、790頁、右段19行~30行に記載の方法及びその組み合わせ、Chemische Berichte 113,2749(1980)、H.Lexyほか)の、2752頁、26行~35行に記載の方法等、種々の手法で合成できる。 These platinum complex compounds are described in, for example, Journal of Organic Chemistry 53,786, (1988), G.M. R. Newkome et al. ), Page 789, method described in left column 53 to right column 7, line 790, method described in left column 18 to 38, method 790, method described in right column 19 to 30 and The combination, Chemische Berichte 113, 2749 (1980), H.C. Lexy et al.), Page 2752, lines 26 to 35, and the like.
 発光層中の発光材料は、発光層中に一般的に発光層を形成する全化合物質量に対して、0.1質量%~50質量%含有されるが、耐久性、外部量子効率の観点から1質量%~50質量%含有されることが好ましく、2質量%~40質量%含有されることがより好ましい。 The light emitting material in the light emitting layer is generally contained in the light emitting layer in an amount of 0.1% by mass to 50% by mass with respect to the total mass of the compound forming the light emitting layer. From the viewpoint of durability and external quantum efficiency. The content is preferably 1% by mass to 50% by mass, and more preferably 2% by mass to 40% by mass.
 本発明で用いるオルトメタル化錯体は、Inorg.Chem.,30,1685,1991、Inorg.Chem.,27,3464,1988、Inorg.Chem.,33,545,1994、Inorg.Chim.Acta,181,245,1991、J.Organomet.Chem.,335,293,1987、J.Am.Chem.Soc.,107,1431,1985等に記載の公知の手法で合成することができる。 The orthometalated complex used in the present invention is Inorg. Chem. 30, 1685, 1991, Inorg. Chem. 27, 3464, 1988, Inorg. Chem. 33, 545, 1994, Inorg. Chim. Acta, 181, 245, 1991; Organomet. Chem. , 335, 293, 1987; Am. Chem. Soc. , 107, 1431, 1985 and the like.
 発光層中の燐光発光性化合物の含有量は特に制限されないが、例えば0.1~70質量%であり、1~20質量%であるのが好ましい。燐光発光性化合物の含有量が0.1質量%未満であるか、又は70質量%を超えると、その効果が十分に発揮されない場合がある。 The content of the phosphorescent compound in the light emitting layer is not particularly limited, but is, for example, 0.1 to 70% by mass, and preferably 1 to 20% by mass. If the content of the phosphorescent compound is less than 0.1% by mass or exceeds 70% by mass, the effect may not be sufficiently exhibited.
 本発明において、発光層は必要に応じてホスト化合物を含有してもよい。 In the present invention, the light emitting layer may contain a host compound as necessary.
 上記ホスト化合物とは、その励起状態から燐光発光性化合物へエネルギー移動が起こり、その結果、該燐光発光性化合物を発光させる化合物である。その具体例としては、カルバゾール誘導体、トリアゾール誘導体、オキサゾール誘導体、オキサジアゾール誘導体、イミダゾール誘導体、ポリアリールアルカン誘導体、ピラゾリン誘導体、ピラゾロン誘導体、フェニレンジアミン誘導体、アリールアミン誘導体、アミノ置換カルコン誘導体、スチリルアントラセン誘導体、フルオレノン誘導体、ヒドラゾン誘導体、スチルベン誘導体、シラザン誘導体、芳香族第三級アミン化合物、スチリルアミン化合物、芳香族ジメチリデン化合物、ポルフィリン化合物、アントラキノジメタン誘導体、アントロン誘導体、ジフェニルキノン誘導体、チオピランジオキシド誘導体、カルボジイミド誘導体、フルオレニリデンメタン誘導体、ジスチリルピラジン誘導体、ナフタレンペリレン等の複素環テトラカルボン酸無水物、フタロシアニン誘導体、8-キノリノール誘導体の金属錯体、メタルフタロシアニン、ベンゾオキサゾールやベンゾチアゾール等を配位子とする金属錯体、ポリシラン化合物、ポリ(N-ビニルカルバゾール)誘導体、アニリン共重合体、チオフェンオリゴマー、ポリチオフェン等の導電性高分子、ポリチオフェン誘導体、ポリフェニレン誘導体、ポリフェニレンビニレン誘導体、ポリフルオレン誘導体等が挙げられる。ホスト化合物は1種単独で使用しても2種以上を併用してもよい。 The host compound is a compound that causes energy transfer from the excited state to the phosphorescent compound, and as a result, causes the phosphorescent compound to emit light. Specific examples include carbazole derivatives, triazole derivatives, oxazole derivatives, oxadiazole derivatives, imidazole derivatives, polyarylalkane derivatives, pyrazoline derivatives, pyrazolone derivatives, phenylenediamine derivatives, arylamine derivatives, amino-substituted chalcone derivatives, styrylanthracene derivatives. , Fluorenone derivatives, hydrazone derivatives, stilbene derivatives, silazane derivatives, aromatic tertiary amine compounds, styrylamine compounds, aromatic dimethylidene compounds, porphyrin compounds, anthraquinodimethane derivatives, anthrone derivatives, diphenylquinone derivatives, thiopyran dioxide oxide Derivatives, carbodiimide derivatives, fluorenylidenemethane derivatives, distyrylpyrazine derivatives, and heterocyclic tetra Rubonic acid anhydride, phthalocyanine derivative, metal complex of 8-quinolinol derivative, metal phthalocyanine, metal complex having benzoxazole or benzothiazole as a ligand, polysilane compound, poly (N-vinylcarbazole) derivative, aniline copolymer , Conductive polymers such as thiophene oligomers and polythiophenes, polythiophene derivatives, polyphenylene derivatives, polyphenylene vinylene derivatives, polyfluorene derivatives, and the like. A host compound may be used individually by 1 type, or may use 2 or more types together.
 発光層の厚みは10~200nmとするのが好ましく、20~80nmとするのがより好ましい。厚みが200nmを超えると駆動電圧が上昇する場合があり、10nm未満であると発光素子が短絡する場合がある。 The thickness of the light emitting layer is preferably 10 to 200 nm, more preferably 20 to 80 nm. When the thickness exceeds 200 nm, the driving voltage may increase. When the thickness is less than 10 nm, the light emitting element may be short-circuited.
(電荷輸送層)
 電荷輸送層とは、有機電界発光素子に電圧を印加した際に電荷移動が起こる層をいう。具体的には正孔注入層、正孔輸送層、電子ブロック層、発光層、正孔ブロック層、電子輸送層又は電子注入層が挙げられる。好ましくは、正孔注入層、正孔輸送層、電子ブロック層又は発光層である。塗布法により形成される電荷輸送層が正孔注入層、正孔輸送層、電子ブロック層又は発光層であれば、低コストかつ高効率な有機電界発光素子の製造が可能となる。また、電荷輸送層として、より好ましくは、正孔注入層、正孔輸送層又は電子ブロック層である。
(Charge transport layer)
The charge transport layer is a layer in which charge transfer occurs when a voltage is applied to the organic electroluminescent element. Specific examples include a hole injection layer, a hole transport layer, an electron block layer, a light emitting layer, a hole block layer, an electron transport layer, and an electron injection layer. A hole injection layer, a hole transport layer, an electron blocking layer, or a light emitting layer is preferable. If the charge transport layer formed by the coating method is a hole injection layer, a hole transport layer, an electron blocking layer, or a light emitting layer, it is possible to manufacture an organic electroluminescent element with low cost and high efficiency. The charge transport layer is more preferably a hole injection layer, a hole transport layer, or an electron block layer.
(正孔注入層、正孔輸送層)
 本発明の有機電界発光素子は、正孔注入層、及び正孔輸送層を有してもよい。正孔注入層、及び正孔輸送層は、陽極又は陽極側から正孔を受け取り陰極側に輸送する機能を有する層である。
 正孔注入層、正孔輸送層については、例えば、特開2008-270736、特開2007-266458に詳述されており、これらの公報に記載の事項を本発明に適用することができる。
(Hole injection layer, hole transport layer)
The organic electroluminescent element of the present invention may have a hole injection layer and a hole transport layer. The hole injection layer and the hole transport layer are layers having a function of receiving holes from the anode or the anode side and transporting them to the cathode side.
The hole injection layer and the hole transport layer are described in detail, for example, in JP-A-2008-270736 and JP-A-2007-266458, and the matters described in these publications can be applied to the present invention.
(電子注入層、電子輸送層)
 本発明の有機電界発光素子は、電子注入層、及び電子輸送層を有してもよい。電子注入層、及び電子輸送層は、陰極又は陰極側から電子を受け取り陽極側に輸送する機能を有する層である。これらの層に用いる電子注入材料、電子輸送材料は低分子化合物であっても高分子化合物であってもよい。
 電子注入層、電子輸送層については、例えば、特開2008-270736、特開2007-266458に詳述されており、これらの公報に記載の事項を本発明に適用することができる。
(Electron injection layer, electron transport layer)
The organic electroluminescent element of the present invention may have an electron injection layer and an electron transport layer. The electron injection layer and the electron transport layer are layers having a function of receiving electrons from the cathode or the cathode side and transporting them to the anode side. The electron injection material and the electron transport material used for these layers may be a low molecular compound or a high molecular compound.
The electron injection layer and the electron transport layer are described in detail, for example, in JP-A-2008-270736 and JP-A-2007-266458, and the matters described in these publications can be applied to the present invention.
(正孔ブロック層)
 正孔ブロック層は、陽極側から発光層に輸送された正孔が、陰極側に通りぬけることを防止する機能を有する層である。本発明において、発光層と陰極側で隣接する有機層として、正孔ブロック層を設けることができる。
 正孔ブロック層を構成する有機化合物の例としては、アルミニウム(III)ビス(2-メチル-8-キノリナト)4-フェニルフェノレート(Aluminum(III)bis(2-methyl-8-quinolinato)4-phenylphenolate(BAlqと略記する))等のアルミニウム錯体、トリアゾール誘導体、2,9-ジメチル-4,7-ジフェニル-1,10-フェナントロリン(2,9-Dimethyl-4,7-diphenyl-1,10-phenanthroline(BCPと略記する))等のフェナントロリン誘導体、トリフェニレン誘導体、カルバゾール誘導体等が挙げられる。
 正孔ブロック層の厚さとしては、1nm~500nmであるのが好ましく、5nm~200nmであるのがより好ましく、10nm~100nmであるのが更に好ましい。
 正孔ブロック層は、上述した材料の一種又は二種以上からなる単層構造であってもよいし、同一組成又は異種組成の複数層からなる多層構造であってもよい。
(Hole blocking layer)
The hole blocking layer is a layer having a function of preventing holes transported from the anode side to the light emitting layer from passing through to the cathode side. In the present invention, a hole blocking layer can be provided as an organic layer adjacent to the light emitting layer on the cathode side.
Examples of organic compounds constituting the hole blocking layer include aluminum (III) bis (2-methyl-8-quinolinato) 4-phenylphenolate (Aluminum (III) bis (2-methyl-8-quinolinato) 4- aluminum complexes such as phenylphenolate (abbreviated as BAlq), triazole derivatives, 2,9-dimethyl-4,7-diphenyl-1,10-phenanthroline (2,9-Dimethyl-4,7-diphenyl-1,10-) phenanthroline derivatives such as phenanthroline (abbreviated as BCP), triphenylene derivatives, carbazole derivatives, and the like.
The thickness of the hole blocking layer is preferably 1 nm to 500 nm, more preferably 5 nm to 200 nm, and even more preferably 10 nm to 100 nm.
The hole blocking layer may have a single layer structure made of one or more of the materials described above, or may have a multilayer structure made of a plurality of layers having the same composition or different compositions.
(電子ブロック層)
 電子ブロック層は、陰極側から発光層に輸送された電子が、陽極側に通りぬけることを防止する機能を有する層である。本発明において、発光層と陽極側で隣接する有機層として、電子ブロック層を設けることができる。
 電子ブロック層を構成する有機化合物の例としては、例えば前述の正孔輸送材料として挙げたものが適用できる。
 電子ブロック層の厚さとしては、1nm~500nmであるのが好ましく、5nm~200nmであるのがより好ましく、10nm~100nmであるのが更に好ましい。
 電子ブロック層は、上述した材料の一種又は二種以上からなる単層構造であってもよいし、同一組成又は異種組成の複数層からなる多層構造であってもよい。
(Electronic block layer)
The electron blocking layer is a layer having a function of preventing electrons transported from the cathode side to the light emitting layer from passing through to the anode side. In the present invention, an electron blocking layer can be provided as an organic layer adjacent to the light emitting layer on the anode side.
As an example of the organic compound constituting the electron blocking layer, for example, those mentioned as the hole transport material described above can be applied.
The thickness of the electron blocking layer is preferably 1 nm to 500 nm, more preferably 5 nm to 200 nm, and even more preferably 10 nm to 100 nm.
The electron blocking layer may have a single layer structure composed of one or more of the above-described materials, or may have a multilayer structure composed of a plurality of layers having the same composition or different compositions.
(励起子ブロック層の説明)
 励起子ブロック層は、発光層と正孔輸送層の界面、若しくは発光層と電子輸送層の界面のいずれか一方、又は両方に形成する層であり、発光層中で生成した励起子が正孔輸送層や電子輸送層へ拡散し、発光することなく失活するのを防止する層のことである。励起子ブロック層としては、カルバゾール誘導体からなることが好ましい。
(Description of exciton block layer)
The exciton blocking layer is a layer formed at one or both of the interface between the light emitting layer and the hole transport layer, or the interface between the light emitting layer and the electron transport layer, and the excitons generated in the light emitting layer are holes. It is a layer that diffuses into the transport layer and the electron transport layer and prevents deactivation without emitting light. The exciton blocking layer is preferably made of a carbazole derivative.
〔その他の有機層〕
 本発明の有機電界発光素子は、特開平7-85974号、同7-192866号、同8-22891号、同10-275682号、同10-106746号等に記載の保護層を有していてもよい。保護層は発光素子の最上面に形成する。ここで最上面とは、基材、透明電極、有機層及び背面電極をこの順に積層する場合には背面電極の外側表面を指し、基材、背面電極、有機層及び透明電極をこの順に積層する場合には透明電極の外側表面を指す。保護層の形状、大きさ、厚み等は特に限定されない。保護層をなす材料は、水分や酸素等の発光素子を劣化させ得るものが素子内に侵入又は透過するのを抑制する機能を有しているものであれば特に限定されず、酸化ケイ素、二酸化ケイ素、酸化ゲルマニウム、二酸化ゲルマニウム等が使用できる。
[Other organic layers]
The organic electroluminescence device of the present invention has a protective layer described in JP-A-7-85974, 7-192866, 8-22891, 10-275682, 10-106746, etc. Also good. The protective layer is formed on the uppermost surface of the light emitting element. Here, when the base material, the transparent electrode, the organic layer, and the back electrode are laminated in this order, the top surface refers to the outer surface of the back electrode, and the base material, the back electrode, the organic layer, and the transparent electrode are laminated in this order. In some cases, it refers to the outer surface of the transparent electrode. The shape, size, thickness and the like of the protective layer are not particularly limited. The material for forming the protective layer is not particularly limited as long as it has a function of suppressing intrusion or permeation of a light-emitting element such as moisture or oxygen into the element. Silicon, germanium oxide, germanium dioxide or the like can be used.
 保護層の形成方法は特に限定はなく、例えば真空蒸着法、スパッタリング法、反応性スパッタリング法、分子センエピタキシ法、クラスターイオンビーム法、イオンプレーティング法、プラズマ重合法、プラズマCVD法、レーザーCVD法、熱CVD法、コーティング法等が適用できる。 The method for forming the protective layer is not particularly limited. For example, vacuum deposition, sputtering, reactive sputtering, molecular sensing epitaxy, cluster ion beam, ion plating, plasma polymerization, plasma CVD, laser CVD Thermal CVD method, coating method, etc. can be applied.
〔封止〕
 また、有機電界発光素子には水分や酸素の侵入を防止するための封止層を設けるのが好ましい。封止層を形成する材料としては、テトラフルオロエチレンと少なくとも1種のコモノマーとの共重合体、共重合主鎖に環状構造を有する含フッ素共重合体、ポリエチレン、ポリプロピレン、ポリメチルメタクリレート、ポリイミド、ポリユリア、ポリテトラフルオロエチレン、ポリクロロトリフルオロエチレン、ポリジクロロジフルオロエチレン、クロロトリフルオロエチレン又はジクロロジフルオロエチレンと他のコモノマーとの共重合体、吸水率1%以上の吸水性物質、吸水率0.1%以下の防湿性物質、金属(In、Sn、Pb、Au、Cu、Ag、Al、Tl、Ni等)、金属酸化物(MgO、SiO、SiO2、Al23、GeO、NiO、CaO、BaO、Fe23、Y23、TiO2等)、金属フッ化物(MgF2、LiF、AlF3、CaF2等)、液状フッ素化炭素(パーフルオロアルカン、パーフルオロアミン、パーフルオロエーテル等)、該液状フッ素化炭素に水分や酸素の吸着剤を分散させたもの等が使用可能である。
[Sealing]
The organic electroluminescent element is preferably provided with a sealing layer for preventing moisture and oxygen from entering. As a material for forming the sealing layer, a copolymer of tetrafluoroethylene and at least one comonomer, a fluorinated copolymer having a cyclic structure in the copolymer main chain, polyethylene, polypropylene, polymethyl methacrylate, polyimide, Polyurea, polytetrafluoroethylene, polychlorotrifluoroethylene, polydichlorodifluoroethylene, chlorotrifluoroethylene or a copolymer of dichlorodifluoroethylene and another comonomer, a water-absorbing substance having a water absorption of 1% or more, a water absorption of 0. less than 1% moisture-proof material, metal (in, Sn, Pb, Au , Cu, Ag, Al, Tl, Ni , etc.), metal oxides (MgO, SiO, SiO 2, Al 2 O 3, GeO, NiO, CaO, BaO, Fe 2 O 3 , Y 2 O 3, TiO 2 , etc.), metal fluorides (MgF 2, L F, AlF 3, CaF 2, etc.), liquid fluorinated carbon (perfluoroalkane, perfluoro amine, perfluoro ether), etc. are available that in the liquid fluorinated carbon was dispersed adsorbent moisture or oxygen It is.
 本発明の有機電界発光素子は、陽極と陰極との間に直流(必要に応じて交流成分を含んでもよい)電圧(通常2ボルト~15ボルト)、又は直流電流を印加することにより、発光を得ることができる。 The organic electroluminescence device of the present invention emits light by applying a direct current (which may include an alternating current component as necessary) voltage (usually 2 to 15 volts) or a direct current between the anode and the cathode. Obtainable.
 本発明の有機電界発光素子の駆動方法については、特開平2-148687号、同6-301355号、同5-29080号、同7-134558号、同8-234685号、同8-241047号の各公報、特許第2784615号、米国特許5828429号、同6023308号の各明細書、等に記載の駆動方法を適用することができる。 The driving method of the organic electroluminescence device of the present invention is described in JP-A-2-148687, JP-A-6-301355, JP-A-5-290080, JP-A-7-134558, JP-A-8-234585, and JP-A-8-2441047. The driving methods described in each publication, Japanese Patent No. 2784615, US Pat. Nos. 5,828,429, 6023308, and the like can be applied.
(本発明の素子の用途)
 本発明の素子は、表示素子、ディスプレイ、バックライト、電子写真、照明光源、記録光源、露光光源、読み取り光源、標識、看板、インテリア、又は光通信等に好適に利用できる。特に、照明装置、表示装置等の発光輝度が高い領域で駆動されるデバイスに好ましく用いられる。
(Use of the element of the present invention)
The element of the present invention can be suitably used for a display element, a display, a backlight, electrophotography, an illumination light source, a recording light source, an exposure light source, a reading light source, a sign, a signboard, an interior, or optical communication. In particular, it is preferably used for a device driven in a region having a high light emission luminance, such as a lighting device or a display device.
 次に、図2を参照して本発明の発光装置について説明する。
 図2は、本発明の発光装置の一例を概略的に示した断面図である。図2の発光装置20は、透明基板(基板)2、有機電界発光素子10、封止容器16等により構成されている。
Next, the light emitting device of the present invention will be described with reference to FIG.
FIG. 2 is a cross-sectional view schematically showing an example of the light emitting device of the present invention. The light-emitting device 20 in FIG. 2 includes a transparent substrate (substrate) 2, an organic electroluminescent element 10, a sealing container 16, and the like.
 有機電界発光素子10は、基板2上に、陽極(第一電極)3、有機層11、陰極(第二電極)9が順次積層されて構成されている。また、陰極9上には、保護層12が積層されており、更に、保護層12上には接着層14を介して封止容器16が設けられている。なお、各電極3、9の一部、隔壁、絶縁層等は省略されている。
 ここで、接着層14としては、エポキシ樹脂等の光硬化型接着剤や熱硬化型接着剤を用いることができ、例えば熱硬化性の接着シートを用いることもできる。
The organic electroluminescent device 10 is configured by sequentially laminating an anode (first electrode) 3, an organic layer 11, and a cathode (second electrode) 9 on a substrate 2. A protective layer 12 is laminated on the cathode 9, and a sealing container 16 is provided on the protective layer 12 with an adhesive layer 14 interposed therebetween. In addition, a part of each electrode 3 and 9, a partition, an insulating layer, etc. are abbreviate | omitted.
Here, as the adhesive layer 14, a photocurable adhesive such as an epoxy resin or a thermosetting adhesive can be used, and for example, a thermosetting adhesive sheet can also be used.
 本発明の発光装置の用途は特に制限されるものではなく、例えば、照明装置のほか、テレビ、パーソナルコンピュータ、携帯電話、電子ペーパ等の表示装置とすることができる。 The use of the light-emitting device of the present invention is not particularly limited, and for example, it can be a display device such as a television, a personal computer, a mobile phone, and electronic paper in addition to a lighting device.
(照明装置)
 次に、図3を参照して本発明の照明装置について説明する。
 図3は、本発明の照明装置の一例を概略的に示した断面図である。本発明の照明装置40は、図3に示すように、前述した有機EL素子10と、光散乱部材30とを備えている。より具体的には、照明装置40は、有機EL素子10の基板2と光散乱部材30とが接触するように構成されている。
 光散乱部材30は、光を散乱できるものであれば特に制限されないが、図3においては、透明基板31に微粒子32が分散した部材とされている。透明基板31としては、例えば、ガラス基板を好適に挙げることができる。微粒子32としては、透明樹脂微粒子を好適に挙げることができる。ガラス基板及び透明樹脂微粒子としては、いずれも、公知のものを使用できる。このような照明装置40は、有機電界発光素子10からの発光が散乱部材30の光入射面30Aに入射されると、入射光を光散乱部材30により散乱させ、散乱光を光出射面30Bから照明光として出射するものである。
(Lighting device)
Next, the illumination device of the present invention will be described with reference to FIG.
FIG. 3 is a cross-sectional view schematically showing an example of the illumination device of the present invention. As shown in FIG. 3, the illumination device 40 of the present invention includes the organic EL element 10 and the light scattering member 30 described above. More specifically, the lighting device 40 is configured such that the substrate 2 of the organic EL element 10 and the light scattering member 30 are in contact with each other.
The light scattering member 30 is not particularly limited as long as it can scatter light. In FIG. 3, the light scattering member 30 is a member in which fine particles 32 are dispersed on a transparent substrate 31. As the transparent substrate 31, for example, a glass substrate can be preferably cited. As the fine particles 32, transparent resin fine particles can be preferably exemplified. As the glass substrate and the transparent resin fine particles, known ones can be used. In such an illuminating device 40, when light emitted from the organic electroluminescent element 10 is incident on the light incident surface 30A of the scattering member 30, the incident light is scattered by the light scattering member 30, and the scattered light is emitted from the light emitting surface 30B. It is emitted as illumination light.
 以下に実施例を挙げて本発明を更に具体的に説明する。以下の実施例に示す材料、試薬、物質量とその割合、操作等は本発明の主旨から逸脱しない限り適宜変更することができる。従って本発明の範囲は以下の具体例に制限されるものではない。 Hereinafter, the present invention will be described more specifically with reference to examples. The materials, reagents, substance amounts and ratios, operations, and the like shown in the following examples can be appropriately changed without departing from the gist of the present invention. Therefore, the scope of the present invention is not limited to the following specific examples.
 <化合物P-1の合成> <Synthesis of Compound P-1>
Figure JPOXMLDOC01-appb-C000035
Figure JPOXMLDOC01-appb-C000035
 α-ナフチルアミン25.0g、4,4’-ジブロモビフェニル22.7g、ビス(ジベンジリデンアセトン)パラジウム0.21g、ジフェニルホスフィノフェロセン0.3g、t-ブトキシナトリウム21.0gをトルエン(200mL)中8.5時間加熱還流させた。反応終了後、300mLのエタノールを加えて室温で30分攪拌し、得られた沈殿物をろ別した。これを水洗した後、エタノール150mLで洗い、次いで酢酸エチル150mLで2回洗浄し、化合物P-1を得た。乾燥後の質量は48.8g(収率64%)であった。
 化合物P-1(20g)を0.07Paで昇華精製を行った。10%質量減少点は295℃であり、昇華後、化合物P-1の質量は14.2g(71%)であった。
α-naphthylamine 25.0 g, 4,4′-dibromobiphenyl 22.7 g, bis (dibenzylideneacetone) palladium 0.21 g, diphenylphosphinoferrocene 0.3 g, and t-butoxy sodium 21.0 g in toluene (200 mL) Heated to reflux for 8.5 hours. After completion of the reaction, 300 mL of ethanol was added and stirred at room temperature for 30 minutes, and the resulting precipitate was filtered off. This was washed with water and then with 150 mL of ethanol, and then twice with 150 mL of ethyl acetate to obtain compound P-1. The mass after drying was 48.8 g (yield 64%).
Compound P-1 (20 g) was purified by sublimation at 0.07 Pa. The 10% mass reduction point was 295 ° C., and after sublimation, the mass of compound P-1 was 14.2 g (71%).
 <化合物1の合成> <Synthesis of Compound 1>
Figure JPOXMLDOC01-appb-C000036
Figure JPOXMLDOC01-appb-C000036
 昇華精製した化合物P-1 10.0g、p-ブロモスチレン10.1g、ビス(ジベンジリデンアセトン)パラジウム0.53g、2-ジメチルアミノ-2’-ジシクロヘキシルホスフィノビフェニル0.39g、t-ブトキシナトリウム6.6gをトルエン(115mL)中80℃で1.5時間攪拌した。反応溶液を冷却後酢酸エチルで抽出した。得られた有機相を濃縮し、ヘキサン/酢酸エチルを展開溶媒としてカラムクロマトグラフィーにより精製を行い化合物1を得た(以下、化合物1-1と称する)。乾燥後の質量は7.4g(収率50.2%)であった。
 また、同様に昇華精製前の化合物P-1 10.0gを用いて同様に反応を行い化合物1を得た(以下、化合物1-2と称する)。乾燥後の質量は7.0g(収率47.5%)であった。
Sublimation-purified compound P-1 10.0 g, p-bromostyrene 10.1 g, bis (dibenzylideneacetone) palladium 0.53 g, 2-dimethylamino-2′-dicyclohexylphosphinobiphenyl 0.39 g, t-butoxy sodium 6.6 g was stirred in toluene (115 mL) at 80 ° C. for 1.5 hours. The reaction solution was cooled and extracted with ethyl acetate. The obtained organic phase was concentrated and purified by column chromatography using hexane / ethyl acetate as a developing solvent to obtain Compound 1 (hereinafter referred to as Compound 1-1). The mass after drying was 7.4 g (yield 50.2%).
In the same manner, 10.0 g of compound P-1 before sublimation purification was similarly reacted to obtain compound 1 (hereinafter referred to as compound 1-2). The mass after drying was 7.0 g (yield 47.5%).
 以下の実施例及び比較例で使用した化合物の構造を以下に記載する。
 化合物1~4は全てP-1を前駆体として合成し、昇華精製したP-1を前駆体として合成したものをそれぞれ化合物1-1~4-1、昇華精製しないP-1を前駆体として合成したものをそれぞれ化合物1-2~4-2と称する。
 化合物5及び6はP-5を前駆体として合成し、昇華精製したP-5を前駆体として合成したものをそれぞれ化合物5-1及び6-1、昇華精製しないP-5を前駆体として合成したものをそれぞれ化合物5-2~及び6-2と称する。
 化合物HI-2はP-HI-1を前駆体として合成し、昇華精製したP-HI-1を前駆体として合成したものをHI-2-1、昇華精製しないP-HI-1を前駆体として合成したものをHI-2-2と称する。
The structures of the compounds used in the following examples and comparative examples are described below.
Compounds 1 to 4 were all synthesized using P-1 as a precursor, and sublimated and purified P-1 was synthesized as a compound 1-1 to 4-1, and P-1 that was not sublimated and purified was used as a precursor. The synthesized compounds are referred to as compounds 1-2 to 4-2, respectively.
Compounds 5 and 6 were synthesized using P-5 as a precursor, synthesized using sublimation-purified P-5 as a precursor, and then synthesized as compounds 5-1 and 6-1, respectively, and P-5 not sublimated and purified as a precursor. These were referred to as compounds 5-2 to 6-2, respectively.
Compound HI-2 was synthesized using P-HI-1 as a precursor and synthesized by sublimation-purified P-HI-1 as a precursor, HI-2-1, and P-HI-1 not subjected to sublimation purification as a precursor Is synthesized as HI-2-2.
Figure JPOXMLDOC01-appb-C000037
Figure JPOXMLDOC01-appb-C000037
Figure JPOXMLDOC01-appb-C000038
Figure JPOXMLDOC01-appb-C000038
〔A.実施例A-1~A-5及び比較例A-1~A-5 (緑発光素子の作製)〕
(実施例A-1)
 <正孔輸送層形成用塗布液Aの調製>
 化合物1-1を電子工業用キシレンに溶解させ、全固形分濃度0.4質量%とし、これを0.22μmのポアサイズを有するPTFE(ポリテトラフルオロエチレン)フィルターでろ過して、正孔輸送層形成用塗布液Aを調製した。
[A. Examples A-1 to A-5 and Comparative Examples A-1 to A-5 (Production of Green Light-Emitting Element)]
Example A-1
<Preparation of Coating Solution A for Hole Transport Layer Formation>
Compound 1-1 was dissolved in xylene for electronic industry to give a total solid content concentration of 0.4% by mass, and this was filtered through a PTFE (polytetrafluoroethylene) filter having a pore size of 0.22 μm to obtain a hole transport layer. A forming coating solution A was prepared.
 <発光層形成用塗布液Aの調製>
 95質量%のホスト化合物H-1と、5質量%の発光材料E-1とを、メチルエチルケトン(MEK)に溶解させ、固形分濃度1.0質量%とし、これを0.22μmのポアサイズを有するPTFEフィルターでろ過して、発光層形成用塗布液Aを調製した。
<Preparation of light emitting layer forming coating solution A>
95% by mass of the host compound H-1 and 5% by mass of the luminescent material E-1 are dissolved in methyl ethyl ketone (MEK) to a solid content concentration of 1.0% by mass, which has a pore size of 0.22 μm. It filtered with the PTFE filter and the coating liquid A for light emitting layer formation was prepared.
Figure JPOXMLDOC01-appb-C000039
Figure JPOXMLDOC01-appb-C000039
 <素子作製>
 25mm×25mm×0.7mmのガラス基板上にITOを150nmの厚みで蒸着し成膜したものを透明支持基板とした。この透明支持基板を洗浄容器に入れ、2-プロパノール中で超音波洗浄した後、30分間UV-オゾン処理を行った。
 このITO付ガラス基板上に、下記構造式で表されるPTPDES(重量平均分子量Mw=13,100、ケミプロ化成製。nは括弧内の構造の繰り返し数を意味し、整数である。)2質量部を電子工業用シクロヘキサノン(関東化学製)98質量部に溶解し、スピンコート(2500rpm、20秒間)した後、120℃で10分間乾燥と160℃で60分間アニール処理することで、厚みが約40nmとなるように正孔注入層を成膜した。
<Element fabrication>
A transparent support substrate was obtained by depositing ITO with a thickness of 150 nm on a glass substrate of 25 mm × 25 mm × 0.7 mm. This transparent support substrate was placed in a cleaning container, subjected to ultrasonic cleaning in 2-propanol, and then subjected to UV-ozone treatment for 30 minutes.
On this ITO-attached glass substrate, PTPDES represented by the following structural formula (weight average molecular weight Mw = 13,100, manufactured by Chemipro Kasei Co., Ltd., n represents the number of repetitions of the structure in parentheses and is an integer) 2 mass Part was dissolved in 98 parts by mass of cyclohexanone for electronics industry (manufactured by Kanto Chemical Co., Inc.), spin-coated (2500 rpm, 20 seconds), then dried at 120 ° C. for 10 minutes and annealed at 160 ° C. for 60 minutes, resulting in a thickness of about A hole injection layer was formed to a thickness of 40 nm.
Figure JPOXMLDOC01-appb-C000040
Figure JPOXMLDOC01-appb-C000040
 前記正孔注入層上に、上記のように調製した正孔輸送層形成用塗布液Aをスピンコート(1500rpm、20秒間)した後、120℃で30分間乾燥させることで、厚みが約10nmとなるように正孔輸送層を成膜した。 On the hole injection layer, the coating liquid A for forming a hole transport layer prepared as described above is spin-coated (1500 rpm, 20 seconds) and then dried at 120 ° C. for 30 minutes, so that the thickness is about 10 nm. A hole transport layer was formed as described above.
 前記正孔輸送層上に上記のように調製した発光層形成用塗布液Aをグローブボックス(露点-68度、酸素濃度10ppm)内でスピンコート(1500rpm、20秒間)し、厚みが約30nmとなるように発光層を成膜した。
 次いで、発光層上に、電子輸送層として、下記構造式で表されるBAlq(ビス-(2-メチル-8-キノリノラト)-4-(フェニル-フェノラト)-アルミニウム(III))を、厚みが40nmとなるように真空蒸着法にて形成した。
On the hole transport layer, the light emitting layer forming coating solution A prepared as described above was spin coated (1500 rpm, 20 seconds) in a glove box (dew point -68 degrees, oxygen concentration 10 ppm), and the thickness was about 30 nm. A light emitting layer was formed as described above.
Next, BAlq (bis- (2-methyl-8-quinolinolato) -4- (phenyl-phenolato) -aluminum (III)) represented by the following structural formula is formed on the light emitting layer as an electron transport layer with a thickness of It formed by the vacuum evaporation method so that it might become 40 nm.
Figure JPOXMLDOC01-appb-C000041
Figure JPOXMLDOC01-appb-C000041
 前記電子輸送層上に、電子注入層としてフッ化リチウム(LiF)を、厚みが1nmとなるように真空蒸着法にて形成した。更に金属アルミニウムを70nm蒸着し、陰極とした。
 以上により作製した積層体を、アルゴンガスで置換したグロ-ブボックス内に入れ、ステンレス製の封止缶及び紫外線硬化型の接着剤(XNR5516HV、長瀬チバ(株)製)を用いて封止することで、実施例A-1の有機電界発光素子を作製した。
Lithium fluoride (LiF) was formed as an electron injection layer on the electron transport layer by a vacuum deposition method so as to have a thickness of 1 nm. Furthermore, 70 nm of metal aluminum was vapor-deposited to make a cathode.
The laminate produced as described above is placed in a glove box substituted with argon gas, and sealed with a stainless steel sealing can and an ultraviolet curable adhesive (XNR5516HV, manufactured by Nagase Ciba Co., Ltd.). Thus, an organic electroluminescent element of Example A-1 was produced.
(実施例A-2、実施例A-3及び比較例A-1~A-3)
 実施例A-1における正孔輸送層形成用塗布液Aの調製において、以下の表1に記載の正孔輸送材料を使用した以外は、実施例A-1と同様にして実施例A-2、実施例A-3及び比較例A-1~A-3の有機電界発光素子を得た。
(Example A-2, Example A-3 and Comparative Examples A-1 to A-3)
In the preparation of the coating liquid A for forming a hole transport layer in Example A-1, Example A-2 was prepared in the same manner as in Example A-1, except that the hole transport material shown in Table 1 below was used. Thus, organic electroluminescent elements of Example A-3 and Comparative Examples A-1 to A-3 were obtained.
(実施例A-4、比較例A-4)
 実施例A-1及び比較例A-1の素子の作製において、発光層形成用塗布液Aを使用して塗布により発光層を形成する代わりに、95質量%のホスト化合物H-1と、5質量%の発光材料E-1とを真空蒸着法にて蒸着することにより、膜厚30nmの発光層を形成したこと、及び正孔輸送層の乾燥時間を表1に記載の乾燥時間に変更した以外は実施例A-1及び比較例A-1と同様にして、実施例A-4及び比較例A-4の素子を得た。
(Example A-4, Comparative Example A-4)
In producing the devices of Example A-1 and Comparative Example A-1, instead of forming the light emitting layer by coating using the light emitting layer forming coating solution A, 95% by mass of the host compound H-1 and 5% A light emitting layer having a film thickness of 30 nm was formed by vapor-depositing the light emitting material E-1 in mass% by a vacuum evaporation method, and the drying time of the hole transport layer was changed to the drying time shown in Table 1. The devices of Example A-4 and Comparative Example A-4 were obtained in the same manner as Example A-1 and Comparative Example A-1, except for the above.
(実施例A-5、比較例A-5)
 実施例A-1及び比較例A-1における正孔輸送層の成膜において、乾燥温度を200℃に変更した以外は実施例A-1及び比較例A-1と同様にして実施例A-5、比較例A-5の有機電界発光素子を得た。
(Example A-5, Comparative Example A-5)
In the formation of the hole transport layer in Example A-1 and Comparative Example A-1, Example A- was conducted in the same manner as in Example A-1 and Comparative Example A-1, except that the drying temperature was changed to 200 ° C. 5. An organic electroluminescent device of Comparative Example A-5 was obtained.
 <素子評価>
 (a) 高温駆動耐久性
 80℃で初期の輝度が1000cd/m2になるように直流電流を調整し、輝度が半減するまでに要した時間を耐久性の指標とした。
 (b) 駆動初期における耐久性
 室温で初期の輝度が1000cd/m2になるように直流電流を調整し、輝度が900cd/m2に達するまでに要した時間を駆動初期耐久性の指標とした。
 (c) 面内輝度ムラの評価
 作製した素子を電流密度2.5mA/cm2で発光させた際の面内輝度分布をミノルタ製CA-1500を用いて測定し、最も輝度の小さい測定点と最も輝度の高い測定点の輝度比Lmin/Lmaxを面内輝度ムラの指標とした。
<Element evaluation>
(A) High temperature driving durability The direct current was adjusted so that the initial luminance was 1000 cd / m 2 at 80 ° C., and the time taken until the luminance was reduced by half was used as an index of durability.
(B) Durability at the beginning of driving The direct current was adjusted so that the initial luminance at room temperature was 1000 cd / m 2 , and the time taken for the luminance to reach 900 cd / m 2 was used as an index of the initial driving durability. .
(C) Evaluation of in-plane luminance unevenness In-plane luminance distribution when the manufactured device was made to emit light at a current density of 2.5 mA / cm 2 was measured using CA-1500 manufactured by Minolta. The luminance ratio Lmin / Lmax at the measurement point with the highest luminance was used as an index of in-plane luminance unevenness.
 以上の結果を、表1に示す。なお表1において、高温駆動耐久性及び駆動初期における耐久性の結果は、比較例A-1の値を1とした場合の相対値でそれぞれ記載した。また、正孔輸送層を形成した際の乾燥時間及び乾燥温度について記載した。 The above results are shown in Table 1. In Table 1, the results of the high temperature driving durability and the durability at the initial stage of driving are described as relative values when the value of Comparative Example A-1 is 1. Moreover, it described about the drying time and drying temperature at the time of forming a positive hole transport layer.
Figure JPOXMLDOC01-appb-T000042
Figure JPOXMLDOC01-appb-T000042
〔B.実施例B-1~B-3及び比較例B-1~B-3 (赤発光素子の作製)〕
(実施例B-1)
 <発光層形成用塗布液Bの調製>
 95質量%のホスト化合物H-2と、5質量%の発光材料E-2とを、メチルエチルケトン(MEK)に溶解させ、固形分濃度1.0質量%とし、これを0.22μmのポアサイズを有するPTFEフィルターでろ過して、発光層形成用塗布液Bを調製した。
[B. Examples B-1 to B-3 and Comparative Examples B-1 to B-3 (Production of Red Light Emitting Element)]
Example B-1
<Preparation of light emitting layer forming coating solution B>
95% by mass of the host compound H-2 and 5% by mass of the luminescent material E-2 are dissolved in methyl ethyl ketone (MEK) to a solid content concentration of 1.0% by mass, which has a pore size of 0.22 μm. It filtered with the PTFE filter and prepared the coating liquid B for light emitting layer formation.
Figure JPOXMLDOC01-appb-C000043
Figure JPOXMLDOC01-appb-C000043
 <素子作製>
 25mm×25mm×0.7mmのガラス基板上にITOを150nmの厚みで蒸着し成膜したものを透明支持基板とした。この透明支持基板を洗浄容器に入れ、2-プロパノール中で超音波洗浄した後、30分間UV-オゾン処理を行った。
 このITO付ガラス基板上に、下記構造式で表される化合物A(US2008/0220265記載)0.5質量部をシクロヘキサノン99.5質量部に溶解し、スピンコート(4000rpm、30秒間)した後、200℃で30分間乾燥することで、厚みが約5nmとなるように正孔注入層を成膜した。
<Element fabrication>
A transparent support substrate was obtained by depositing ITO with a thickness of 150 nm on a glass substrate of 25 mm × 25 mm × 0.7 mm. This transparent support substrate was placed in a cleaning container, subjected to ultrasonic cleaning in 2-propanol, and then subjected to UV-ozone treatment for 30 minutes.
On this glass substrate with ITO, 0.5 part by mass of compound A (described in US2008 / 0220265) represented by the following structural formula was dissolved in 99.5 parts by mass of cyclohexanone and spin-coated (4000 rpm, 30 seconds). By drying at 200 ° C. for 30 minutes, a hole injection layer was formed to a thickness of about 5 nm.
Figure JPOXMLDOC01-appb-C000044
Figure JPOXMLDOC01-appb-C000044
 前記正孔注入層上に、実施例A-1で用いた正孔輸送層形成用塗布液Aをスピンコート(1500rpm、20秒間)した後、150℃で20分間乾燥することで、厚みが約10nmとなるように正孔輸送層を成膜した。 On the hole injection layer, the hole transport layer forming coating solution A used in Example A-1 was spin-coated (1500 rpm, 20 seconds), and then dried at 150 ° C. for 20 minutes to obtain a thickness of about A hole transport layer was formed to have a thickness of 10 nm.
 前記正孔輸送層上に上記のように調製した発光層形成用塗布液Bをグローブボックス(露点-68度、酸素濃度10ppm)内で厚みが約30nmとなるようにスピンコート(1500rpm、20秒間)し、発光層とした。
 次いで、発光層上に、実施例A-1と同様に、電子輸送層としてBAlq、電子注入層としてフッ化リチウム(LiF)を、陰極として金属アルミニウムを成膜した。
 以上により作製した積層体を、アルゴンガスで置換したグロ-ブボックス内に入れ、ステンレス製の封止缶及び紫外線硬化型の接着剤(XNR5516HV、長瀬チバ(株)製)を用いて封止することで、実施例B-1の有機電界発光素子を作製した。
The light emitting layer forming coating solution B prepared as described above is spin-coated on the hole transport layer in a glove box (dew point -68 degrees, oxygen concentration 10 ppm) to a thickness of about 30 nm (1500 rpm, 20 seconds). And a light emitting layer.
Next, on the light emitting layer, as in Example A-1, BAlq was formed as an electron transport layer, lithium fluoride (LiF) was formed as an electron injection layer, and metallic aluminum was formed as a cathode.
The laminate produced as described above is placed in a glove box substituted with argon gas, and sealed with a stainless steel sealing can and an ultraviolet curable adhesive (XNR5516HV, manufactured by Nagase Ciba Co., Ltd.). Thus, an organic electroluminescent element of Example B-1 was produced.
(実施例B-2、比較例B-1及び比較例B-2)
 実施例B-1における正孔輸送層形成用塗布液Aの調製において、以下の表2に記載の正孔輸送材料を使用した以外は、実施例B-1と同様にして実施例B-2、比較例B-1及び比較例B-2の有機電界発光素子を得た。
(Example B-2, Comparative Example B-1 and Comparative Example B-2)
Example B-2 was carried out in the same manner as Example B-1, except that the hole transport material shown in Table 2 below was used in the preparation of the coating liquid A for forming a hole transport layer in Example B-1. Thus, organic electroluminescent elements of Comparative Example B-1 and Comparative Example B-2 were obtained.
(実施例B-3、比較例B-3)
 実施例B-1及び比較例B-1における正孔注入層の成膜において、乾燥温度を200℃に変更した以外は実施例B-1及び比較例B-1と同様にして実施例B-3、比較例B-3の有機電界発光素子を得た。
(Example B-3, Comparative Example B-3)
In the formation of the hole injection layer in Example B-1 and Comparative Example B-1, Example B- was performed in the same manner as Example B-1 and Comparative Example B-1, except that the drying temperature was changed to 200 ° C. 3. An organic electroluminescent device of Comparative Example B-3 was obtained.
 以上のようにして得た各素子を、実施例A-1と同様に評価し、その結果を表2に示す。なお表2において、高温駆動耐久性及び動初期における耐久性の結果は、比較例B-1の値を1とした場合の相対値でそれぞれ記載した。また、正孔輸送層を形成した際の乾燥時間及び乾燥温度について記載した。 Each element obtained as described above was evaluated in the same manner as in Example A-1, and the results are shown in Table 2. In Table 2, the results of the high temperature driving durability and the durability at the initial stage of movement are shown as relative values when the value of Comparative Example B-1 is 1. Moreover, it described about the drying time and drying temperature at the time of forming a positive hole transport layer.
Figure JPOXMLDOC01-appb-T000045
Figure JPOXMLDOC01-appb-T000045
〔C.実施例C-1~C-3及び比較例C-1~C-3(緑発光素子の作製)〕(実施例C-1)
 <正孔輸送層形成用塗布液Cの調製>
 正孔輸送材料4-1を電子工業用キシレン/ベンジルアルコール(=質量比60/40)に溶解させ、全固形分濃度0.4質量%とし、これを0.22μmのポアサイズを有するPTFEフィルターでろ過して、正孔輸送層形成用塗布液Cを調製した。
[C. Examples C-1 to C-3 and Comparative Examples C-1 to C-3 (Production of Green Light-Emitting Element)] (Example C-1)
<Preparation of Coating Solution C for Hole Transport Layer Formation>
The hole transport material 4-1 was dissolved in xylene / benzyl alcohol for electronic industry (= mass ratio 60/40) to a total solid content concentration of 0.4% by mass, and this was filtered with a PTFE filter having a pore size of 0.22 μm. Filtration was performed to prepare a coating liquid C for forming a hole transport layer.
 <発光層形成用塗布液Cの調製>
 85質量%のホスト化合物H-3と、15質量%の発光材料E-3とを、メチルエチルケトン(MEK)に溶解させ、固形分濃度1.0質量%とし、これを0.22μmのポアサイズを有するPTFEフィルターでろ過して、発光層形成用塗布液Cを調製した。
<Preparation of light emitting layer forming coating solution C>
85% by mass of the host compound H-3 and 15% by mass of the luminescent material E-3 are dissolved in methyl ethyl ketone (MEK) to obtain a solid content concentration of 1.0% by mass, which has a pore size of 0.22 μm. The mixture was filtered with a PTFE filter to prepare a light emitting layer forming coating solution C.
Figure JPOXMLDOC01-appb-C000046
Figure JPOXMLDOC01-appb-C000046
 <素子作製>
 前記実施例B-1と同様に、ITO付ガラス基板上に、化合物Aを含む正孔注入層を成膜した。
<Element fabrication>
In the same manner as in Example B-1, a hole injection layer containing Compound A was formed on a glass substrate with ITO.
 前記正孔注入層上に、上記のように調製した正孔輸送層形成用塗布液Cをスピンコート(1500rpm、20秒間)した後、100℃で30分間乾燥と150℃で10分間アニール処理することで、厚みが約10nmとなるように正孔輸送層を成膜した。 On the hole injection layer, the hole transport layer forming coating solution C prepared as described above is spin-coated (1500 rpm, 20 seconds), dried at 100 ° C. for 30 minutes, and annealed at 150 ° C. for 10 minutes. Thus, a hole transport layer was formed to have a thickness of about 10 nm.
 前記正孔輸送層上に上記のように調製した発光層形成用塗布液Cをグローブボックス(露点-68度、酸素濃度10ppm)内でスピンコート(1500rpm、20秒間)し、厚みが約30nmとなるように発光層を成膜した。
 次いで、発光層上に、実施例A-1と同様に、電子輸送層としてBAlq、電子注入層としてフッ化リチウム(LiF)を、陰極として金属アルミニウムを成膜した。
 以上により作製した積層体を、アルゴンガスで置換したグロ-ブボックス内に入れ、ステンレス製の封止缶及び紫外線硬化型の接着剤(XNR5516HV、長瀬チバ(株)製)を用いて封止することで、実施例C-1の有機電界発光素子を作製した。
On the hole transport layer, the light emitting layer forming coating solution C prepared as described above was spin-coated (1500 rpm, 20 seconds) in a glove box (dew point -68 degrees, oxygen concentration 10 ppm), and the thickness was about 30 nm. A light emitting layer was formed as described above.
Next, on the light emitting layer, as in Example A-1, BAlq was formed as an electron transport layer, lithium fluoride (LiF) was formed as an electron injection layer, and metallic aluminum was formed as a cathode.
The laminate produced as described above is placed in a glove box substituted with argon gas, and sealed with a stainless steel sealing can and an ultraviolet curable adhesive (XNR5516HV, manufactured by Nagase Ciba Co., Ltd.). Thus, an organic electroluminescent element of Example C-1 was produced.
(実施例C-2、C-3比較例C-1~C-3)
 実施例C-1における正孔輸送層形成用塗布液Cの調製において、以下の表3に記載の正孔輸送材料を使用した以外は、実施例C-1と同様にして実施例C-2、C-3、比較例C-1~C-3の有機電界発光素子を得た。
(Examples C-2 and C-3 Comparative Examples C-1 to C-3)
Example C-2 was carried out in the same manner as Example C-1, except that the hole transport material shown in Table 3 below was used in the preparation of the coating liquid C for forming a hole transport layer in Example C-1. C-3 and organic electroluminescent elements of Comparative Examples C-1 to C-3 were obtained.
 以上のようにして得た各素子を、実施例A-1と同様に評価し、その結果を表3に示す。なお表3において、高温駆動耐久性及び動初期における耐久性の結果は、比較例C-1の値を1とした場合の相対値でそれぞれ記載した。 Each element obtained as described above was evaluated in the same manner as in Example A-1, and the results are shown in Table 3. In Table 3, the results of the high temperature driving durability and the durability in the initial stage of movement are shown as relative values when the value of Comparative Example C-1 is 1.
Figure JPOXMLDOC01-appb-T000047
Figure JPOXMLDOC01-appb-T000047
〔D~F.実施例D-1~D-3、比較例D-1~D-3、実施例E-4、比較例E-4、実施例F-1~F-3、比較例F-1~F-3〕
 各層に用いる材料をそれぞれ表4~6に記載する材料に変更する以外は実施例A-1と同様にして、素子を作製した。なお、特に記載のない限り溶媒及び溶媒に対する固形分の濃度は一定として素子を作製している。
[D to F. Examples D-1 to D-3, Comparative Examples D-1 to D-3, Example E-4, Comparative Example E-4, Examples F-1 to F-3, Comparative Examples F-1 to F- 3]
A device was fabricated in the same manner as in Example A-1, except that the material used for each layer was changed to the materials listed in Tables 4 to 6, respectively. Note that the element is manufactured with a constant concentration of the solvent and the solid content with respect to the solvent unless otherwise specified.
 以上のようにして得た各素子の高温駆動時の耐久性を、実施例A-1と同様に評価し、その結果を表4~6に示す。なお、高温駆動耐久性は、比較例D-1、E-4、F-1の値を1とした場合の相対値でそれぞれ記載した。 The durability at high temperature driving of each element obtained as described above was evaluated in the same manner as in Example A-1, and the results are shown in Tables 4-6. The high temperature driving durability is described as a relative value when the values of Comparative Examples D-1, E-4, and F-1 are 1.
Figure JPOXMLDOC01-appb-T000048
Figure JPOXMLDOC01-appb-T000048
Figure JPOXMLDOC01-appb-T000049
Figure JPOXMLDOC01-appb-T000049
Figure JPOXMLDOC01-appb-T000050
Figure JPOXMLDOC01-appb-T000050
 実施例で使用した上記以外の化合物の構造を以下に記載する。 The structures of compounds other than the above used in the examples are described below.
Figure JPOXMLDOC01-appb-C000051
Figure JPOXMLDOC01-appb-C000051
 上記表1~表6の結果から明らかのように、前駆体を昇華精製した後に合成した材料を素子内に含む場合、前駆体を昇華精製せずに合成した材料を用いた素子に比較して高温時の駆動耐久性に優れる事が分かる。また、駆動初期の耐久性に優れ、面内の輝度も均一になっている事がわかる。 As is clear from the results in Tables 1 to 6, when the element synthesized after sublimation purification of the precursor is included in the element, the element is compared with the element using the material synthesized without sublimation purification. It can be seen that the driving durability at high temperatures is excellent. Further, it can be seen that the durability at the initial stage of driving is excellent and the in-plane luminance is uniform.
 本発明によれば、素子の高温駆動時の耐久性が向上し、面内の輝度ムラ及び初期輝度低下の抑制を満足する有機電界発光素子を提供し得る有機電界発光素子用材料を提供することができる。
 また、本発明によれば、上記有機電界発光素子用材料及び該有機電界発光素子用材料を含む組成物、膜、及び有機電界発光素子を提供することができる。
ADVANTAGE OF THE INVENTION According to this invention, the durability at the time of high temperature drive of an element improves, The organic electroluminescent element material which can provide the organic electroluminescent element which satisfies the suppression of in-plane brightness nonuniformity and initial stage brightness fall is provided. Can do.
Moreover, according to this invention, the composition, film | membrane, and organic electroluminescent element containing the said organic electroluminescent element material and this organic electroluminescent element material can be provided.
 本発明を詳細にまた特定の実施態様を参照して説明したが、本発明の精神と範囲を逸脱することなく様々な変更や修正を加えることができることは当業者にとって明らかである。
 本出願は、2010年8月17日出願の日本特許出願(特願2010-182647)に基づくものであり、その内容はここに参照として取り込まれる。
Although the present invention has been described in detail and with reference to specific embodiments, it will be apparent to those skilled in the art that various changes and modifications can be made without departing from the spirit and scope of the invention.
This application is based on a Japanese patent application filed on Aug. 17, 2010 (Japanese Patent Application No. 2010-182647), the contents of which are incorporated herein by reference.
2・・・基板
3・・・陽極
4・・・正孔注入層
5・・・正孔輸送層
6・・・発光層
7・・・正孔ブロック層
8・・・電子輸送層
9・・・陰極
10・・・有機電界発光素子(有機EL素子)
11・・・有機層
12・・・保護層
14・・・接着層
16・・・封止容器
20・・・発光装置
30・・・光散乱部材
30A・・・光入射面
30B・・・光出射面
31・・・透明基板
32・・・微粒子
40・・・照明装置
DESCRIPTION OF SYMBOLS 2 ... Substrate 3 ... Anode 4 ... Hole injection layer 5 ... Hole transport layer 6 ... Light emitting layer 7 ... Hole block layer 8 ... Electron transport layer 9 ...・ Cathode 10: Organic electroluminescent device (organic EL device)
DESCRIPTION OF SYMBOLS 11 ... Organic layer 12 ... Protective layer 14 ... Adhesive layer 16 ... Sealing container 20 ... Light-emitting device 30 ... Light scattering member 30A ... Light incident surface 30B ... Light Output surface 31 ... Transparent substrate 32 ... Fine particle 40 ... Illumination device

Claims (14)

  1.  昇華精製された前駆体に、熱反応性基が導入された有機電界発光素子用材料。 An organic electroluminescent element material in which a thermally reactive group is introduced into a sublimated and purified precursor.
  2.  前記前駆体が水素結合性部位を有する化合物であり、熱反応性基の導入が、該水素結合性部位を有する化合物の水素結合性部位への重合性基の導入である請求項1に記載の有機電界発光素子用材料。 2. The precursor according to claim 1, wherein the precursor is a compound having a hydrogen bonding site, and the introduction of the thermally reactive group is introduction of a polymerizable group into the hydrogen bonding site of the compound having the hydrogen bonding site. Materials for organic electroluminescent elements.
  3.  該前駆体の水素結合性部位が、1級又は2級のアリールアミンにある請求項1又は2に記載の有機電界発光素子用材料。 The organic electroluminescent element material according to claim 1 or 2, wherein the hydrogen bonding site of the precursor is a primary or secondary arylamine.
  4.  前記前駆体が下記一般式(A1)で表される化合物である、請求項1~3のいずれか一項に記載の有機電界発光素子用材料。
    Figure JPOXMLDOC01-appb-C000001

    (一般式(A1)中、Qはそれぞれ独立に縮環していてもよく、置換基を有していてもよい6員の芳香族炭化水素環又は芳香族ヘテロ環を表す。また、Qどうしが結合して、置換基を有していてもよい縮合環を形成してもよい。)
    The material for an organic electroluminescent element according to any one of claims 1 to 3, wherein the precursor is a compound represented by the following general formula (A1).
    Figure JPOXMLDOC01-appb-C000001

    (In general formula (A1), each Q may be independently condensed, and represents a 6-membered aromatic hydrocarbon ring or aromatic heterocycle which may have a substituent. May combine to form a condensed ring which may have a substituent.
  5.  前記重合性基が、末端オレフィン基であることを特徴とする請求項2~4のいずれか一項に記載の材料。 The material according to any one of claims 2 to 4, wherein the polymerizable group is a terminal olefin group.
  6.  前記有機電界発光素子用材料が、下記一般式(1)で表される有機電界発光素子用材料である請求項1~5のいずれか一項に記載の有機電界発光素子用材料。
    Figure JPOXMLDOC01-appb-C000002

    (一般式(1)中、R1はそれぞれ独立に置換基を表す。Pはビニル基、アクリル基、メタクリル基、エポキシ基又はオキセタン基を表す。lはそれぞれ独立に0~5の整数を表し、l’は0~4の整数を表す。m3は0以上の整数を表す。また、Rどうしが結合を形成して、置換基を有していてもよい縮合環を形成してもよい。)
    The organic electroluminescent element material according to any one of claims 1 to 5, wherein the organic electroluminescent element material is an organic electroluminescent element material represented by the following general formula (1).
    Figure JPOXMLDOC01-appb-C000002

    (In the general formula (1), each R 1 independently represents a substituent. P 1 represents a vinyl group, an acrylic group, a methacryl group, an epoxy group, or an oxetane group. L independently represents an integer of 0 to 5. L ′ represents an integer of 0 to 4. m3 represents an integer of 0 or more, and R 1 may form a bond to form a condensed ring which may have a substituent. Good.)
  7.  前記有機電界発光素子用材料が、下記一般式(2)で表される有機電界発光素子用材料である請求項1~5のいずれか一項に記載の有機電界発光素子用材料。
    Figure JPOXMLDOC01-appb-C000003
    (一般式(2)中、m1、及びm2はそれぞれ独立に0以上の整数を表す。m1、及びm2が同時に0を表すことはない。n1、及びn2はそれぞれ独立に0~10の整数を表す。P及びPはそれぞれ独立にビニル基、アクリル基、メタクリル基、エポキシ基又はオキセタン基を表す。Q1~Q4はそれぞれ独立に縮環していてもよく、置換基を有していてもよい6員の芳香族炭化水素環又は芳香族ヘテロ環を表す。また、Q1とQ3、Q2とQ4は、互いに結合して、置換基を有していてもよい縮合環を形成してもよい。Lは単結合又は二価の連結基を表す。)
    The organic electroluminescent element material according to any one of claims 1 to 5, wherein the organic electroluminescent element material is an organic electroluminescent element material represented by the following general formula (2).
    Figure JPOXMLDOC01-appb-C000003
    (In general formula (2), m1 and m2 each independently represents an integer of 0 or more. M1 and m2 do not represent 0 at the same time. N1 and n2 each independently represents an integer of 0 to 10. P 2 and P 3 each independently represents a vinyl group, an acryl group, a methacryl group, an epoxy group or an oxetane group, and Q1 to Q4 may each independently be condensed and have a substituent. Represents a 6-membered aromatic hydrocarbon ring or aromatic heterocycle, and Q1 and Q3, Q2 and Q4 may be bonded to each other to form a condensed ring which may have a substituent. L is a single bond or a divalent linking group.)
  8.  請求項1~7のいずれか一項に記載の有機電界発光素子用材料と、溶媒とを含む有機電界発光素子用組成物。 A composition for an organic electroluminescence device comprising the material for an organic electroluminescence device according to any one of claims 1 to 7 and a solvent.
  9.  請求項8に記載の組成物を塗布し、塗布された該組成物を加熱又は光照射することにより形成された有機電界発光素子用膜。 The film | membrane for organic electroluminescent elements formed by apply | coating the composition of Claim 8, and heating or light-irradiating this apply | coated composition.
  10.  基板上に、陽極及び陰極からなる一対の電極と、該電極間に発光層を含む少なくとも一層の有機層とを有する有機電界発光素子であって、
     前記有機層のいずれか少なくとも一層に請求項1~7のいずれか一項に記載の有機電界発光素子用材料を含む有機電界発光素子。
    An organic electroluminescent device having a pair of electrodes consisting of an anode and a cathode on a substrate, and at least one organic layer including a light emitting layer between the electrodes,
    An organic electroluminescent element comprising the organic electroluminescent element material according to any one of claims 1 to 7 in at least one of the organic layers.
  11.  前記有機層が正孔輸送層、正孔注入層又は電子ブロック層を含み、該正孔輸送層、正孔注入層、電子ブロック層のいずれかに請求項1~7のいずれか一項に記載の有機電界発光素子用材料を含むことを特徴とする請求項10に記載の有機電界発光素子。 The organic layer includes a hole transport layer, a hole injection layer, or an electron block layer, and the hole transport layer, the hole injection layer, or the electron block layer is any one of claims 1 to 7. The organic electroluminescent element according to claim 10, comprising a material for an organic electroluminescent element.
  12.  前記有機層が発光層を含み、該発光層がりん光性金属錯体を含むことを特徴とする請求項10又は11に記載の有機電界発光素子。 The organic electroluminescent element according to claim 10 or 11, wherein the organic layer includes a light emitting layer, and the light emitting layer includes a phosphorescent metal complex.
  13.  請求項9に記載の膜を含む請求項10~12のいずれか一項に記載の有機電界発光素子。 The organic electroluminescent element according to any one of claims 10 to 12, comprising the film according to claim 9.
  14.  前記一対の電極間にある有機層の少なくとも一層が、塗布法により形成されることを特徴とする請求項10~13のいずれか一項に記載の有機電界発光素子。 14. The organic electroluminescence device according to claim 10, wherein at least one organic layer between the pair of electrodes is formed by a coating method.
PCT/JP2011/068530 2010-08-17 2011-08-15 Material for organic electroluminescent element, composition containing the material for organic electroluminescent element, film formed using the composition, and organic electroluminescent element WO2012023545A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-182647 2010-08-17
JP2010182647A JP2012043912A (en) 2010-08-17 2010-08-17 Material for organic electroluminescent element, composition containing the same, film formed by the composition, and organic electroluminescent element

Publications (1)

Publication Number Publication Date
WO2012023545A1 true WO2012023545A1 (en) 2012-02-23

Family

ID=45605198

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/068530 WO2012023545A1 (en) 2010-08-17 2011-08-15 Material for organic electroluminescent element, composition containing the material for organic electroluminescent element, film formed using the composition, and organic electroluminescent element

Country Status (2)

Country Link
JP (1) JP2012043912A (en)
WO (1) WO2012023545A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015039723A1 (en) * 2013-09-17 2015-03-26 Merck Patent Gmbh Polycyclic phenylpyridine iridium complexes and derivatives thereof for oleds
CN109627175A (en) * 2017-10-09 2019-04-16 北京夏禾科技有限公司 Cross-linking deuterated charge transport compound, organic electroluminescence device and solution formula comprising the compound
CN111655707A (en) * 2018-05-14 2020-09-11 株式会社Lg化学 Compound and organic light emitting device including the same

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6826031B2 (en) * 2014-09-25 2021-02-03 サイノーラ・ゲゼルシャフト・ミト・ベシュレンクテル・ハフツング Crosslinkable host material
KR102250691B1 (en) * 2014-10-06 2021-05-13 덕산네오룩스 주식회사 Compound for organic electronic element, organic electronic element using the same, and an electronic device thereof
KR102336029B1 (en) * 2015-03-27 2021-12-07 덕산네오룩스 주식회사 Compound for organic electronic element, organic electronic element using the same, and an electronic device thereof
KR102336027B1 (en) * 2015-03-27 2021-12-07 덕산네오룩스 주식회사 Compound for organic electronic element, organic electronic element using the same, and an electronic device thereof
EP3651223A4 (en) * 2017-07-04 2021-03-17 Hitachi Chemical Company, Ltd. Organic electronics material and organic electronics element
EP3626802A4 (en) 2017-09-14 2020-06-24 Sumitomo Chemical Company, Limited Method for producing liquid composition
JP6457161B1 (en) * 2017-09-14 2019-01-23 住友化学株式会社 Method for producing liquid composition
WO2019193953A1 (en) 2018-04-03 2019-10-10 富士フイルム株式会社 Organic semiconductor element, composition, method of purifying compound, and application thereof
KR102206819B1 (en) * 2018-05-14 2021-01-22 주식회사 엘지화학 Compound and organic light emitting device comprising the same
KR102443861B1 (en) * 2018-05-24 2022-09-15 주식회사 엘지화학 Organic light emitting device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11292829A (en) * 1998-04-13 1999-10-26 Chemiprokasei Kaisha Ltd Organic electroluminescent device
JP2005519429A (en) * 2002-03-04 2005-06-30 シーディーティー オックスフォード リミテッド Phosphor composition and organic light emitting device comprising the same
JP2007506237A (en) * 2003-09-17 2007-03-15 凸版印刷株式会社 EL element
WO2009063757A1 (en) * 2007-11-14 2009-05-22 Konica Minolta Holdings, Inc. Organic electroluminescent device material, organic electroluminescent device, method for manufacturing organic electroluminescent device, display device and illuminating device

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004327454A (en) * 1998-12-28 2004-11-18 Idemitsu Kosan Co Ltd Organic electroluminescent element
JP2008527086A (en) * 2004-12-30 2008-07-24 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー Charge transport material
JP5470706B2 (en) * 2007-01-25 2014-04-16 三菱化学株式会社 Hole transport material, polymer compound obtained by polymerizing the hole transport material, composition for organic electroluminescence device, and organic electroluminescence device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11292829A (en) * 1998-04-13 1999-10-26 Chemiprokasei Kaisha Ltd Organic electroluminescent device
JP2005519429A (en) * 2002-03-04 2005-06-30 シーディーティー オックスフォード リミテッド Phosphor composition and organic light emitting device comprising the same
JP2007506237A (en) * 2003-09-17 2007-03-15 凸版印刷株式会社 EL element
WO2009063757A1 (en) * 2007-11-14 2009-05-22 Konica Minolta Holdings, Inc. Organic electroluminescent device material, organic electroluminescent device, method for manufacturing organic electroluminescent device, display device and illuminating device

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015039723A1 (en) * 2013-09-17 2015-03-26 Merck Patent Gmbh Polycyclic phenylpyridine iridium complexes and derivatives thereof for oleds
CN105555792A (en) * 2013-09-17 2016-05-04 默克专利有限公司 Polycyclic phenylpyridine iridium complexes and derivatives thereof for OLEDs
CN109627175A (en) * 2017-10-09 2019-04-16 北京夏禾科技有限公司 Cross-linking deuterated charge transport compound, organic electroluminescence device and solution formula comprising the compound
CN111655707A (en) * 2018-05-14 2020-09-11 株式会社Lg化学 Compound and organic light emitting device including the same
CN111655707B (en) * 2018-05-14 2023-06-23 株式会社Lg化学 Compound and organic light emitting device comprising the same

Also Published As

Publication number Publication date
JP2012043912A (en) 2012-03-01

Similar Documents

Publication Publication Date Title
WO2012023545A1 (en) Material for organic electroluminescent element, composition containing the material for organic electroluminescent element, film formed using the composition, and organic electroluminescent element
JP6616351B2 (en) Second hole transport layer using diarylaminophenylcarbazole compound
JP6468723B2 (en) Donor-acceptor compound containing nitrogen-containing polycyclic aromatic as acceptor
TWI498411B (en) Organic electroluminescence device
JP2014208642A (en) Cross-linkable ionic dopant
JP2013543864A (en) Phosphorescent substance
TW201211201A (en) Organic electroluminescent element
JP4691611B1 (en) Organic electroluminescence device
JP7069947B2 (en) A 1,3,5-triazine compound, a composition containing the compound, and a method for producing an organic electroluminescent device.
JP2011049511A (en) Organic electroluminescent element
JP2011091356A (en) Organic electroluminescent element
JP7409428B2 (en) Method for producing iridium complex compound
TWI532719B (en) Charge transport material and organic electroluminescent device
JP5591052B2 (en) Organic electroluminescence device
JP5557624B2 (en) Composition, film using the composition, charge transport layer, organic electroluminescent device, and method for forming charge transport layer
JP5476234B2 (en) Material for organic electroluminescent element, organic electroluminescent element, and method for producing organic electroluminescent element
TWI532720B (en) Organic electroluminescent device
WO2012002399A1 (en) Organic electroluminescent element material, organic electroluminescent element and production method for organic electroluminescent element
JP2015193632A (en) Material for organic electroluminescent element, composition containing said material for organic electroluminescent element, film formed using said composition, and organic electroluminescent element
TWI507394B (en) Organic electroluminescent device
JP6059193B2 (en) Organic electroluminescent element, display device, lighting device, and manufacturing method of organic electroluminescent element.
Lorente Sánchez Synthesis of side-chain polystyrenes for all organic solution processed OLEDs
JP5642011B2 (en) Method for producing organic electroluminescent device
KR20200034519A (en) Novel copolymer and organic light emitting device comprising the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11818186

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11818186

Country of ref document: EP

Kind code of ref document: A1