JP5470706B2 - Hole transport material, polymer compound obtained by polymerizing the hole transport material, composition for organic electroluminescence device, and organic electroluminescence device - Google Patents

Hole transport material, polymer compound obtained by polymerizing the hole transport material, composition for organic electroluminescence device, and organic electroluminescence device Download PDF

Info

Publication number
JP5470706B2
JP5470706B2 JP2008007068A JP2008007068A JP5470706B2 JP 5470706 B2 JP5470706 B2 JP 5470706B2 JP 2008007068 A JP2008007068 A JP 2008007068A JP 2008007068 A JP2008007068 A JP 2008007068A JP 5470706 B2 JP5470706 B2 JP 5470706B2
Authority
JP
Japan
Prior art keywords
group
ring
hole transport
substituent
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2008007068A
Other languages
Japanese (ja)
Other versions
JP2008218983A (en
Inventor
昌義 矢部
宏一朗 飯田
朋行 緒方
一毅 岡部
英貴 五郎丸
昌子 竹内
恭子 遠藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Corp
Original Assignee
Mitsubishi Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corp filed Critical Mitsubishi Chemical Corp
Priority to JP2008007068A priority Critical patent/JP5470706B2/en
Publication of JP2008218983A publication Critical patent/JP2008218983A/en
Application granted granted Critical
Publication of JP5470706B2 publication Critical patent/JP5470706B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Polyethers (AREA)
  • Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)
  • Electroluminescent Light Sources (AREA)
  • Epoxy Compounds (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Description

本発明は、湿式成膜法による成膜が可能な、架橋基を有する有機化合物からなる正孔輸送材料と、該正孔輸送材料を重合させてなる高分子化合物と、該正孔輸送材料を含有する有機電界発光素子用組成物と、該高分子化合物を含有する層を有する、発光効率が高く、駆動安定性に優れた有機電界発光素子に関するものである。   The present invention relates to a hole transport material composed of an organic compound having a crosslinking group, which can be formed by a wet film formation method, a polymer compound obtained by polymerizing the hole transport material, and the hole transport material. The present invention relates to an organic electroluminescent device having a composition containing an organic electroluminescent device and a layer containing the polymer compound, having high luminous efficiency and excellent driving stability.

近年、有機薄膜を用いた電界発光素子(有機電界発光素子)の開発が行われている。有機電界発光素子における有機薄膜の形成方法としては、真空蒸着法と湿式成膜法が挙げられる。
真空蒸着法は積層化が可能であるため、陽極および/または陰極からの電荷注入の改善、励起子の発光層封じ込めが容易であるという利点を有する。湿式成膜法は真空プロセスが要らず、大面積化が容易で、1つの層(塗布液)に様々な機能をもった複数の材料を混合して入れることが容易である等の利点がある。
In recent years, an electroluminescent element (organic electroluminescent element) using an organic thin film has been developed. Examples of the method for forming the organic thin film in the organic electroluminescence device include a vacuum deposition method and a wet film formation method.
Since the vacuum deposition method can be laminated, it has an advantage that the charge injection from the anode and / or the cathode is improved and the exciton light-emitting layer can be easily contained. The wet film formation method does not require a vacuum process, is easy to increase in area, and has an advantage that it is easy to mix a plurality of materials having various functions into one layer (coating liquid). .

しかしながら、湿式成膜法は積層化が困難であるため、真空蒸着法による素子に比べて駆動安定性に劣り、一部を除いて実用レベルに至っていないのが現状である。特に、湿式成膜法での積層化は、有機溶媒と水系溶媒を使用するなどして二層の積層は可能であるが、三層以上の積層化は困難であった。   However, since the wet film forming method is difficult to stack, the driving stability is inferior to that of the element by the vacuum vapor deposition method, and the present state is that it has not reached a practical level except for a part. In particular, the layering by the wet film forming method can be performed by stacking two layers by using an organic solvent and an aqueous solvent, but it is difficult to stack three or more layers.

このような積層化における問題点を解決するために、例えば特許文献1では、エポキシ基を有するジアミン化合物を使用して成膜を行っている。   In order to solve such problems in lamination, for example, in Patent Document 1, a film is formed using a diamine compound having an epoxy group.

また、特許文献2には、下記の様な架橋基を有する芳香族アミン化合物が提案されている。

Figure 0005470706
Patent Document 2 proposes an aromatic amine compound having the following crosslinking group.
Figure 0005470706

上記の化合物は、アミンのp−位全てが電子供与性の強い置換基であるため、非常に酸化されやすく保存安定性に問題があった。
特開平7−85973号公報 特開平7−114987号公報
In the above compound, all the p-positions of the amine are substituents having a strong electron donating property, so that they are very easily oxidized and have a problem in storage stability.
JP-A-7-85973 Japanese Unexamined Patent Publication No. 7-114987

本発明は、湿式成膜法に適した正孔輸送材料、特に電子および励起子を発光層側に封じ込める効果が高く、保存安定性に優れる正孔輸送材料を提供することを課題とする。
本発明はまた、発光効率が高く、駆動安定性が高い有機電界発光素子を提供することを課題とする。
An object of the present invention is to provide a hole transport material suitable for a wet film-forming method, in particular, a hole transport material having a high effect of confining electrons and excitons on the light emitting layer side and excellent in storage stability.
Another object of the present invention is to provide an organic electroluminescent device having high luminous efficiency and high driving stability.

本発明者らは、上記課題を解決するために鋭意検討した結果、下記の特定構造を有する架橋基を有する有機化合物が、高い正孔輸送能、高い電子および励起子阻止能を有し、保存安定性にも優れる、湿式成膜法に適した化合物であることを見出し、本発明に到達した。   As a result of intensive studies to solve the above problems, the present inventors have found that an organic compound having a crosslinking group having the following specific structure has high hole transport ability, high electron and exciton blocking ability, and is preserved. It has been found that the compound is excellent in stability and suitable for a wet film-forming method, and has reached the present invention.

[1] 下記一般式(I)で表され、分子量が300〜5000であることを特徴とする正孔輸送材料。

Figure 0005470706
[式(I)中、R〜Rは、各々独立に、水素原子、連結基Zへの直接結合または1価の基を示す。
nは、〜4の整数を示す。
連結基Z、各々独立に、直接結合、エーテル基、置換基を有していてもよい芳香族炭化水素基または置換基を有していてもよい芳香族複素環基である。
は、水素原子または下記式(IA)で表される架橋基を示す。但し、一分子中において、少なくとも1つのAは下記式(IA)で表される架橋基である。
は、下記式(IE−1)または(IE−2)で表される基を示す。
一分子中に存在する、複数の、R〜R、AおよびEは、それぞれ同一であっても異なっていてもよい。
−G−J (IA)
{式(IA)中、Gは、−O−基、−C(=O)−基、または置換基を有していてもよい−CH−基から選ばれる基を1〜30個連結してなる2価の基を示す。Jは、架橋基群Tの中から選ばれる一価の基を表す。
<架橋基群T>
Figure 0005470706
(式J−1、J−3〜J−5中、R〜Rは、各々独立に、水素原子またはアルキル基を示す。式J−7において、Arは、置換基を有していてもよい芳香族炭化水素基または置換基を有していてもよい芳香族複素環基を示す。但し、式J−1の基は、カルボニル基に直接連結されることはない。)}
−O−R (IE−1)
−Ar (IE−2)
{式(IE−1)中、Rは1価の基を示す。式(IE−2)中、Arは置換基を有していてもよい芳香族炭化水素基または置換基を有していてもよい芳香族複素環基を示す。}] [1] A hole transport material represented by the following general formula (I) and having a molecular weight of 300 to 5,000.
Figure 0005470706
[In Formula (I), R 1 to R 4 each independently represent a hydrogen atom, a direct bond to the linking group Z 1 or a monovalent group.
n shows the integer of 2-4 .
Linking groups Z 1 is each independently a direct bond, an ether group, which may have an aromatic optionally substituted hydrocarbon group or an optionally substituted aromatic heterocyclic group.
A 1 represents a hydrogen atom or a bridging group represented by the following formula (IA). However, in one molecule, at least one A 1 is a crosslinking group represented by the following formula (IA).
E 1 represents a group represented by the following formula (IE-1) or (IE-2).
A plurality of R 1 to R 4 , A 1 and E 1 present in one molecule may be the same or different from each other.
-G 1 -J 1 (IA)
{In Formula (IA), G 1 is connected to 1 to 30 groups selected from an —O— group, a —C (═O) — group, or an optionally substituted —CH 2 — group. The bivalent group formed is shown. J 1 represents a monovalent group selected from the bridging group T.
<Crosslinking group T>
Figure 0005470706
(In formulas J-1, J-3 to J-5, R 5 to R 8 each independently represents a hydrogen atom or an alkyl group. In formula J-7, Ar 1 has a substituent. An aromatic hydrocarbon group that may be substituted or an aromatic heterocyclic group that may have a substituent, provided that the group of formula J-1 is not directly linked to a carbonyl group.}
-O-R 0 (IE-1)
-Ar 2 (IE-2)
{In Formula (IE-1), R 0 represents a monovalent group. In formula (IE-2), Ar 2 represents an aromatic hydrocarbon group which may have a substituent or an aromatic heterocyclic group which may have a substituent. }]

[2] nが2であることを特徴とする[1]に記載の正孔輸送材料。 [2] The hole transport material according to [1], wherein n is 2 .

] 一分子内における架橋基の数が、1、2または3であることを特徴とする[1]または]のいずれかに記載の正孔輸送材料。 [ 3 ] The hole transport material according to any one of [1] or [ 2 ], wherein the number of crosslinking groups in one molecule is 1, 2 or 3.

] Eが下記式(IE)で表されることを特徴とする[1]ないし[]のいずれかに記載の正孔輸送材料。

Figure 0005470706
(式(IE)中、Qは直接結合または酸素原子を示す。R10〜R15は、各々独立に、水素原子、連結基Zへの直接結合または1価の基を示す。) [4] the hole transport material according to any one of [1], characterized in that E 1 is represented by the following formula (IE) [3].
Figure 0005470706
(In Formula (IE), Q 1 represents a direct bond or an oxygen atom. R 10 to R 15 each independently represent a hydrogen atom, a direct bond to the linking group Z 1 or a monovalent group.)

] 一分子内に、ビフェニル骨格を有することを特徴とする[1]ないし[]のいずれかに記載の正孔輸送材料。 [ 5 ] The hole transport material according to any one of [1] to [ 4 ], which has a biphenyl skeleton in one molecule.

] [1]ないし[]のいずれかに記載の正孔輸送材料と溶剤とを含有することを特徴とする有機電界発光素子用組成物。 [ 6 ] A composition for an organic electroluminescence device comprising the hole transport material according to any one of [1] to [ 5 ] and a solvent.

] [1]ないし[]のいずれかに記載の正孔輸送材料を重合させて得られる高分子化合物。 [ 7 ] A polymer compound obtained by polymerizing the hole transport material according to any one of [1] to [ 5 ].

] 基板上に、陽極、陰極、およびこれら両極間に設けられた有機発光層を有する有機電界発光素子において、[]に記載の高分子化合物を含有する層を有することを特徴とする有機電界発光素子。 [ 8 ] An organic electroluminescent device having an anode, a cathode, and an organic light emitting layer provided between both electrodes on a substrate, characterized by having a layer containing the polymer compound described in [ 7 ]. Organic electroluminescent device.

] 有機発光層が、湿式成膜法で形成されることを特徴とする[]に記載の有機電界発光素子。 [ 9 ] The organic electroluminescent element as described in [ 8 ], wherein the organic light emitting layer is formed by a wet film forming method.

10] 高分子化合物を含有する層が、正孔輸送層であることを特徴とする[]または[]に記載の有機電界発光素子。
[ 10 ] The organic electroluminescence device as described in [ 8 ] or [ 9 ], wherein the layer containing a polymer compound is a hole transport layer.

本発明の正孔輸送材料は、高い正孔輸送能、高い電子および励起子阻止能を有し、保存安定性にも優れる。また、この正孔輸送材料は湿式成膜法に適しており、この正孔輸送材料を用いて有機電界発光素子の有機層を湿式成膜法で積層して形成することが可能となる。   The hole transport material of the present invention has high hole transport ability, high electron and exciton blocking ability, and is excellent in storage stability. Moreover, this hole transport material is suitable for a wet film-forming method, and an organic layer of an organic electroluminescent element can be laminated by the wet film-forming method using this hole transport material.

また、この正孔輸送材料を含む有機電界発光素子用組成物を用いて、湿式成膜法により形成される有機電界発光素子は、大面積化が可能である。
また、この正孔輸送材料を含む有機電界発光素子用組成物を用いて、有機溶剤に不溶な有機薄膜を形成することも可能であり、有機電界発光素子の湿式成膜法による積層化が容易となる。
さらに、本発明の正孔輸送材料を重合させて得られる高分子化合物を含有する層を有する有機電界発光素子によれば、高い効率で発光させることが可能となり、かつ素子の安定性、特に駆動安定性が向上する。
また、本発明の正孔輸送材料は、優れた製膜性、電荷輸送性、発光特性、耐熱性から、素子の層構成に合わせて、正孔注入材料、正孔輸送材料、発光材料、ホスト材料、電子注入材料、電子輸送材料などとしても適用可能である。
Moreover, the organic electroluminescent element formed by the wet film-forming method using the composition for organic electroluminescent elements containing this hole transport material can be enlarged in area.
It is also possible to form an organic thin film insoluble in an organic solvent using the composition for organic electroluminescence device containing the hole transport material, and it is easy to stack the organic electroluminescence device by a wet film forming method. It becomes.
Furthermore, according to the organic electroluminescent device having a layer containing a polymer compound obtained by polymerizing the hole transport material of the present invention, it is possible to emit light with high efficiency, and the stability of the device, particularly driving. Stability is improved.
In addition, the hole transport material of the present invention has excellent film-forming properties, charge transport properties, light emission characteristics, and heat resistance, so that a hole injection material, a hole transport material, a light emitting material, and a host are used according to the layer structure of the device. It can also be applied as a material, an electron injection material, an electron transport material, and the like.

本発明の正孔輸送材料を重合させて得られる高分子化合物を含有する層を有する有機電界発光素子は、フラットパネル・ディスプレイ(例えばOAコンピュータ用や壁掛けテレビ)、車載表示素子、携帯電話表示や面発光体としての特徴を生かした光源(例えば、複写機の光源、液晶ディスプレイや計器類のバックライト光源)、表示板、標識灯への応用が考えられ、その技術的価値は大きいものである。
なお、本発明の正孔輸送材料は、本質的に優れた耐酸化還元安定性を有することから、有機電界発光素子に限らず、電子写真感光体にも有用である。
An organic electroluminescent device having a layer containing a polymer compound obtained by polymerizing the hole transport material of the present invention is a flat panel display (for example, for OA computers or wall-mounted televisions), an in-vehicle display device, a mobile phone display, It can be applied to light sources (for example, light sources for copying machines, backlight sources for liquid crystal displays and instruments), display panels, and marker lamps that make use of the characteristics of surface emitters, and their technical value is great. .
In addition, since the hole transport material of the present invention has excellent redox stability, it is useful not only for organic electroluminescence devices but also for electrophotographic photoreceptors.

以下に本発明の実施の形態を詳細に説明するが、以下に記載する構成要件の説明は、本発明の実施態様の一例(代表例)であり、本発明はその要旨を超えない限り、これらの内容に特定されない。   Embodiments of the present invention will be described in detail below, but the description of the constituent elements described below is an example (representative example) of an embodiment of the present invention, and the present invention does not exceed the gist thereof. It is not specified in the contents.

[正孔輸送材料]
本発明の正孔輸送材料は、下記一般式(I)で表され、分子量が300〜5000のものである。
[Hole transport material]
The hole transport material of the present invention is represented by the following general formula (I) and has a molecular weight of 300 to 5,000.

Figure 0005470706
Figure 0005470706

[式(I)中、R〜Rは、各々独立に、水素原子、連結基Zへの直接結合または1価の基を示す。
nは、1〜4の整数を示す。
連結基Zは、nが1のときは存在せず、nが2以上のときは直接結合またはn価の連結基を示す。
は、水素原子または下記式(IA)で表される架橋基を示す。但し、一分子中において、少なくとも1つのAは下記式(IA)で表される架橋基である。
は、下記式(IE−1)または(IE−2)で表される基を示す。
一分子中に存在する、複数の、R〜R、AおよびEは、それぞれ同一であっても異なっていてもよい。
−G−J (IA)
{式(IA)中、Gは、−O−基、−C(=O)−基、または置換基を有していてもよい−CH−基から選ばれる基を1〜30個連結してなる2価の基を示す。Jは、架橋基群Tの中から選ばれる一価の基を表す。
<架橋基群T>

Figure 0005470706
(式J−1、J−3〜J−5中、R〜Rは、各々独立に、水素原子またはアルキル基を示す。式J−7において、Arは、置換基を有していてもよい芳香族炭化水素基または置換基を有していてもよい芳香族複素環基を示す。但し、式J−1の基は、カルボニル基に直接連結されることはない。)}
−O−R (IE−1)
−Ar (IE−2)
{式(IE−1)中、Rは1価の基を示す。式(IE−2)中、Arは置換基を有していてもよい芳香族炭化水素基または置換基を有していてもよい芳香族複素環基を示す。}] [In Formula (I), R 1 to R 4 each independently represent a hydrogen atom, a direct bond to the linking group Z 1 or a monovalent group.
n shows the integer of 1-4.
The linking group Z 1 is not present when n is 1, and represents a direct bond or an n-valent linking group when n is 2 or more.
A 1 represents a hydrogen atom or a bridging group represented by the following formula (IA). However, in one molecule, at least one A 1 is a crosslinking group represented by the following formula (IA).
E 1 represents a group represented by the following formula (IE-1) or (IE-2).
A plurality of R 1 to R 4 , A 1 and E 1 present in one molecule may be the same or different from each other.
-G 1 -J 1 (IA)
{In Formula (IA), G 1 is connected to 1 to 30 groups selected from an —O— group, a —C (═O) — group, or an optionally substituted —CH 2 — group. The bivalent group formed is shown. J 1 represents a monovalent group selected from the bridging group T.
<Crosslinking group T>
Figure 0005470706
(In formulas J-1, J-3 to J-5, R 5 to R 8 each independently represents a hydrogen atom or an alkyl group. In formula J-7, Ar 1 has a substituent. An aromatic hydrocarbon group that may be substituted or an aromatic heterocyclic group that may have a substituent, provided that the group of formula J-1 is not directly linked to a carbonyl group.}
-O-R 0 (IE-1)
-Ar 2 (IE-2)
{In Formula (IE-1), R 0 represents a monovalent group. In formula (IE-2), Ar 2 represents an aromatic hydrocarbon group which may have a substituent or an aromatic heterocyclic group which may have a substituent. }]

[1]構造上の特徴
本発明の正孔輸送材料は、トリフェニルアミン骨格の少なくとも1つのフェニル基の4−位に、置換基Eを有しているため、電気的酸化耐性に優れ、かつ、架橋基Aがフェニル基の4−位にないため、電気的還元耐性にも優れる。また、該部分構造の非対称性ゆえに、非晶質性に優れ、かつ、未重合時の融点やガラス転移点が低いことから、高温下での重合によって、優れて高い重合度が得られ、結果、未反応残基の低減も可能となるため、湿式成膜法により形成した膜を穏和な条件で有機溶剤に不溶とすることが可能であり、これにより得られる不溶性の膜は、電気的耐性に優れたものとなる。
[1] Structural features Since the hole transport material of the present invention has a substituent E 1 at the 4-position of at least one phenyl group of the triphenylamine skeleton, it has excellent electrical oxidation resistance, and the bridging group a 1 is because there the 4-position of the phenyl group, is excellent in electrical reduction resistance. In addition, because of the asymmetry of the partial structure, it is excellent in amorphousness, and since the melting point and glass transition point at the time of unpolymerization are low, an excellent high degree of polymerization is obtained by polymerization at a high temperature. Since it is possible to reduce unreacted residues, it is possible to make a film formed by a wet film-forming method insoluble in an organic solvent under mild conditions. It will be excellent.

[2]分子量範囲
本発明の正孔輸送材料の分子量は、通常5000以下、好ましくは2500以下であり、また通常300以上、好ましくは500以上である。分子量がこの上限値を超えると、溶解性が低下して、湿式製膜が困難になるため、付加的に溶解性向上手段を講ずる必要性が生じる。また不純物の高分子量化によって精製が困難となる場合がある。また、分子量がこの下限値を下回ると、架橋基に対する電荷輸送性基の割合が著しく低下するため、電荷輸送性が低下し、あるいは未反応残基の割合が増加して、電気的耐性を損ねるおそれがある。またガラス転移温度および、融点、気化温度などが低下するため、耐熱性が著しく損なわれるおそれがある。
[2] Molecular Weight Range The molecular weight of the hole transport material of the present invention is usually 5000 or less, preferably 2500 or less, and usually 300 or more, preferably 500 or more. If the molecular weight exceeds this upper limit, the solubility is lowered and wet film formation becomes difficult, so that it is necessary to additionally take a solubility improving means. Further, purification may be difficult due to the high molecular weight of impurities. On the other hand, if the molecular weight is below this lower limit value, the ratio of the charge transporting group to the cross-linking group is remarkably lowered, so that the charge transportability is lowered or the ratio of the unreacted residue is increased to impair the electrical resistance. There is a fear. Further, since the glass transition temperature, the melting point, the vaporization temperature and the like are lowered, the heat resistance may be significantly impaired.

[3]R〜R
〜Rは、各々独立に、水素原子、連結基Zへの直接結合または1価の基を表す。1価の基は、連結基Zへ結合したものであってもよい。R〜Rの1価の基としては次のようなものが挙げられる。
[3] R 1 to R 4
R 1 to R 4 each independently represents a hydrogen atom, a direct bond to the linking group Z 1 or a monovalent group. Monovalent group may be those bound to the linking group Z 1. Examples of the monovalent group of R 1 to R 4 include the following.

<1価の基の具体例>
置換基を有していてもよいアルキル基(好ましくは炭素数1から8の直鎖または分岐のアルキル基であり、例えばメチル、エチル、n−プロピル、2−プロピル、n−ブチル、イソブチル、tert−ブチル基などが挙げられる。)
置換基を有していてもよいアルケニル基(好ましくは炭素数2から9のアルケニル基であり、例えばビニル、アリル、1−ブテニル基などが挙げられる。)
置換基を有していてもよいアルキニル基(好ましくは炭素数2から9のアルキニル基で
あり、例えばエチニル、プロパルギル基などが挙げられる。)
置換基を有していてもよいアラルキル基(好ましくは炭素数7から15のアラルキル基であり、例えばベンジル基などが挙げられる。)
置換基を有していてもよいアルコキシ基(好ましくは置換基を有していてもよい炭素数1〜8のアルコキシ基であり、たとえばメトキシ、エトキシ、ブトキシ基などが挙げられる。)
置換基を有していてもよいアリールオキシ基(好ましくは炭素数6〜12の芳香族炭化水素基を有するものであり、例えばフェニルオキシ、1−ナフチルオキシ、2−ナフチルオキシ基などが挙げられる。)
置換基を有していてもよいヘテロアリールオキシ基(好ましくは5または6員環の芳香族複素環基を有するものであり、例えばピリジルオキシ、チエニルオキシ基などが挙げられる。)
置換基を有していてもよいアシル基(好ましくは置換基を有していてもよい炭素数2〜10のアシル基であり、例えばホルミル、アセチル、ベンゾイル基などが挙げられる。)
置換基を有していてもよいアルコキシカルボニル基(好ましくは置換基を有していてもよい炭素数2〜10のアルコキシカルボニル基であり、例えばメトキシカルボニル、エトキシカルボニル基などが挙げられる。)
置換基を有していてもよいアリールオキシカルボニル基(好ましくは置換基を有していてもよい炭素数7〜13のアリールオキシカルボニル基であり、例えばフェノキシカルボニル基などが挙げられる。)
置換基を有していてもよいアルキルカルボニルオキシ基(好ましくは置換基を有していてもよい炭素数2〜10のアルキルカルボニルオキシ基であり、例えばアセトキシ基などが挙げられる。)
ハロゲン原子(特に、フッ素原子または塩素原子)、
カルボキシ基
シアノ基
水酸基
メルカプト基
置換基を有していてもよいアルキルチオ基(好ましくは炭素数1〜8のアルキルチオ基であり、例えば、メチルチオ基、エチルチオ基などが挙げられる。)
置換基を有していてもよいアリールチオ基(好ましくは炭素数6〜12のアリールチオ基であり、例えば、フェニルチオ基、1−ナフチルチオ基などが挙げられる。)
置換基を有していてもよいスルホニル基(例えばメシル基、トシル基などが挙げられる。)
置換基を有していてもよいシリル基(例えばトリメチルシリル基、トリフェニルシリル基などが挙げられる。)
置換基を有していてもよいボリル基(例えばジメシチルボリル基などが挙げられる。)
置換基を有していてもよいホスフィノ基(例えばジフェニルホスフィノ基などが挙げられる。)
置換基を有していてもよい芳香族炭化水素基(例えばベンゼン環、ナフタレン環、アントラセン環、フェナントレン環、ペリレン環、テトラセン環、ピレン環、ベンズピレン環、クリセン環、トリフェニレン環、フルオランテン環などの、5または6員環の単環または2〜5縮合環由来の1価の基が挙げられる。)
置換基を有していてもよい芳香族複素環基(例えばフラン環、ベンゾフラン環、チオフェン環、ベンゾチオフェン環、ピロール環、ピラゾール環、イミダゾール環、オキサジアゾール環、インドール環、カルバゾール環、ピロロイミダゾール環、ピロロピラゾール環、ピロロピロール環、チエノピロール環、チエノチオフェン環、フロピロール環、フロフラン環、チエノフラン環、ベンゾイソオキサゾール環、ベンゾイソチアゾール環、ベンゾイミダゾール環、ピリジン環、ピラジン環、ピリダジン環、ピリミジン環、トリアジン環、キノリン環、イソキノリン環、シノリン環、キノキサリン環、ベンゾイミダゾール環、
ペリミジン環、キナゾリン環などの、5または6員環の単環または2〜4縮合環由来の1価の基が挙げられる。)
<Specific examples of monovalent groups>
An alkyl group which may have a substituent (preferably a linear or branched alkyl group having 1 to 8 carbon atoms, such as methyl, ethyl, n-propyl, 2-propyl, n-butyl, isobutyl, tert, -A butyl group etc. are mentioned.)
An alkenyl group which may have a substituent (preferably an alkenyl group having 2 to 9 carbon atoms, such as vinyl, allyl, 1-butenyl group, etc.).
An alkynyl group which may have a substituent (preferably an alkynyl group having 2 to 9 carbon atoms, such as ethynyl and propargyl groups).
An aralkyl group which may have a substituent (preferably an aralkyl group having 7 to 15 carbon atoms, such as a benzyl group).
An alkoxy group which may have a substituent (preferably an alkoxy group having 1 to 8 carbon atoms which may have a substituent, such as methoxy, ethoxy and butoxy groups).
An aryloxy group which may have a substituent (preferably an aromatic hydrocarbon group having 6 to 12 carbon atoms, such as phenyloxy, 1-naphthyloxy, 2-naphthyloxy group and the like. .)
A heteroaryloxy group which may have a substituent (preferably has a 5- or 6-membered aromatic heterocyclic group, and examples thereof include a pyridyloxy and thienyloxy group).
An acyl group which may have a substituent (preferably an acyl group having 2 to 10 carbon atoms which may have a substituent, such as formyl, acetyl and benzoyl groups).
An alkoxycarbonyl group which may have a substituent (preferably an alkoxycarbonyl group having 2 to 10 carbon atoms which may have a substituent, such as methoxycarbonyl and ethoxycarbonyl groups).
An aryloxycarbonyl group which may have a substituent (preferably an aryloxycarbonyl group having 7 to 13 carbon atoms which may have a substituent, such as a phenoxycarbonyl group).
An alkylcarbonyloxy group which may have a substituent (preferably an alkylcarbonyloxy group having 2 to 10 carbon atoms which may have a substituent, such as an acetoxy group).
Halogen atoms (especially fluorine or chlorine atoms),
Carboxy group Cyano group Hydroxyl group Mercapto group Alkylthio group which may have a substituent (preferably an alkylthio group having 1 to 8 carbon atoms, such as methylthio group and ethylthio group).
An arylthio group which may have a substituent (preferably an arylthio group having 6 to 12 carbon atoms, such as a phenylthio group and a 1-naphthylthio group).
A sulfonyl group which may have a substituent (for example, a mesyl group, a tosyl group, etc.).
A silyl group which may have a substituent (for example, a trimethylsilyl group, a triphenylsilyl group, etc.).
An optionally substituted boryl group (eg, a dimesitylboryl group).
A phosphino group which may have a substituent (for example, a diphenylphosphino group).
An aromatic hydrocarbon group which may have a substituent (for example, benzene ring, naphthalene ring, anthracene ring, phenanthrene ring, perylene ring, tetracene ring, pyrene ring, benzpyrene ring, chrysene ring, triphenylene ring, fluoranthene ring, etc. And monovalent groups derived from 5- or 6-membered monocyclic rings or 2 to 5 condensed rings.)
An aromatic heterocyclic group which may have a substituent (for example, furan ring, benzofuran ring, thiophene ring, benzothiophene ring, pyrrole ring, pyrazole ring, imidazole ring, oxadiazole ring, indole ring, carbazole ring, pyrrolo) Imidazole ring, pyrrolopyrazole ring, pyrrolopyrrole ring, thienopyrrole ring, thienothiophene ring, furopyrrole ring, furofuran ring, thienofuran ring, benzisoxazole ring, benzoisothiazole ring, benzimidazole ring, pyridine ring, pyrazine ring, pyridazine ring, Pyrimidine ring, triazine ring, quinoline ring, isoquinoline ring, sinoline ring, quinoxaline ring, benzimidazole ring,
And monovalent groups derived from a 5- or 6-membered monocyclic ring or a 2-4 condensed ring, such as a perimidine ring and a quinazoline ring. )

上記各基が有していてもよい置換基としては、上記1価の基として例示した基が挙げられる。   Examples of the substituent that each of the groups may have include the groups exemplified as the monovalent group.

〜Rとしては、上記各基の中で好ましくは、各々独立に、アルキル基、アルキルオキシ基、芳香族炭化水素基、芳香族複素環基である。
〜Rの1価基としては下記に例示する架橋基であってもよい。
である。
R 1 to R 4 are preferably each independently an alkyl group, an alkyloxy group, an aromatic hydrocarbon group, or an aromatic heterocyclic group among the above groups.
The monovalent group of R 1 to R 4 may be a crosslinking group exemplified below.
It is.

[4]n
nは、1〜4の整数を表す。nは、好ましくは、1または2である。
[4] n
n represents an integer of 1 to 4. n is preferably 1 or 2.

[5]Z
は、n=1であるときは、存在せず、nが2以上であるときは、直接結合またはn価の連結基を表す。
n価の連結基としては、上記<1価の基の具体例>に対応するn価基やエーテル基が挙げられる。より詳しくは、n価の連結基の具体例としては、以下の連結基が挙げられ、単独もしくは(同一あるいは異なる)2以上を連結して適用可能である。ただし、以下の具体例において、L、L及びLはそれぞれ独立に、水素原子又は任意の置換基を表す。また、ここで例示した基は、L、L及びL以外にも置換基を有していても良い。
[5] Z 1
Z 1 is not present when n = 1, and represents a direct bond or an n-valent linking group when n is 2 or more.
Examples of the n-valent linking group include an n-valent group and an ether group corresponding to the above <Specific example of monovalent group>. More specifically, specific examples of the n-valent linking group include the following linking groups, which can be used alone or in combination of two or more (identical or different). However, in the following specific examples, L 1 , L 2 and L 3 each independently represent a hydrogen atom or an arbitrary substituent. Moreover, the group illustrated here may have a substituent other than L 1 , L 2 and L 3 .

Figure 0005470706
Figure 0005470706

Figure 0005470706
Figure 0005470706

Figure 0005470706
Figure 0005470706

Figure 0005470706
Figure 0005470706

nが2〜4の整数であるとき、Zは、直接結合、エーテル基、芳香族炭化水素基または芳香族複素環基であることが好ましい。芳香族炭化水素基及び芳香族複素環基は置換基を有していてもよい。芳香族炭化水素基では、ベンゼン環由来のn価基、芳香族複素環基では、ピリジン環由来のn価基であることが好ましい。 When n is an integer of 2 to 4, Z 1 is preferably a direct bond, an ether group, an aromatic hydrocarbon group or an aromatic heterocyclic group. The aromatic hydrocarbon group and the aromatic heterocyclic group may have a substituent. The aromatic hydrocarbon group is preferably an n-valent group derived from a benzene ring, and the aromatic heterocyclic group is preferably an n-valent group derived from a pyridine ring.

[6]A
は、水素原子または下記式(IA)で表される架橋基を示す。但し、一分子中において、少なくとも1つのAは下記式(IA)で表される架橋基である。また、一分子内における架橋基の数は、1以上12以下であることが好ましく、さらに好ましくは1〜3である。
−G−J (IA)
[6] A 1
A 1 represents a hydrogen atom or a bridging group represented by the following formula (IA). However, in one molecule, at least one A 1 is a crosslinking group represented by the following formula (IA). Further, the number of crosslinking groups in one molecule is preferably 1 or more and 12 or less, more preferably 1 to 3.
-G 1 -J 1 (IA)

{式(IA)中、Gは、−O−基、−C(=O)−基、または置換基を有していてもよい−CH−基から選ばれる基を1〜30個連結してなる2価の基を示す。Jは、架橋基群Tの中から選ばれる一価の基を表す。
<架橋基群T>

Figure 0005470706
(式J−1、J−3〜J−5中、R〜Rは、各々独立に、水素原子またはアルキル基を示す。式J−7において、Arは、置換基を有していてもよい芳香族炭化水素基または置換基を有していてもよい芳香族複素環基を示す。但し、式J−1の基は、カルボニル基に直接連結されることはない。)} {In Formula (IA), G 1 is connected to 1 to 30 groups selected from an —O— group, a —C (═O) — group, or an optionally substituted —CH 2 — group. The bivalent group formed is shown. J 1 represents a monovalent group selected from the bridging group T.
<Crosslinking group T>
Figure 0005470706
(In formulas J-1, J-3 to J-5, R 5 to R 8 each independently represents a hydrogen atom or an alkyl group. In formula J-7, Ar 1 has a substituent. An aromatic hydrocarbon group that may be substituted or an aromatic heterocyclic group that may have a substituent, provided that the group of formula J-1 is not directly linked to a carbonyl group.}

なお、式J−1、J−3〜J−5において、R〜Rのアルキル基としては、好ましくは炭素数1から8の直鎖または分岐のアルキル基であり、例えばメチル、エチル、n−プロピル、2−プロピル、n−ブチル、イソブチル、tert−ブチル基などが挙げられる。該アルキル基は置換基を有していてもよく、該置換基としては、上記R〜Rの1価の基として例示した基が挙げられる。 In formulas J-1, J-3 to J-5, the alkyl group of R 5 to R 8 is preferably a linear or branched alkyl group having 1 to 8 carbon atoms, such as methyl, ethyl, Examples include n-propyl, 2-propyl, n-butyl, isobutyl, and tert-butyl group. The alkyl group may have a substituent, and examples of the substituent include the groups exemplified as the monovalent groups of R 1 to R 4 .

式J−7において、Arの置換基を有していてもよい芳香族炭化水素基としては、例えばベンゼン環、ナフタレン環、アントラセン環、フェナントレン環、ペリレン環、テトラセン環、ピレン環、ベンズピレン環、クリセン環、トリフェニレン環、フルオランテン環などの、5または6員環の単環または2〜5縮合環由来の1価の基が挙げられる。また、置換基を有していてもよい芳香族複素環基としては、例えばフラン環、ベンゾフラン環、チオフェン環、ベンゾチオフェン環、ピロール環、ピラゾール環、イミダゾール環、オキサジアゾール環、インドール環、カルバゾール環、ピロロイミダゾール環、ピロロピラゾール環、ピロロピロール環、チエノピロール環、チエノチオフェン環、フロピロール環、フロフラン環、チエノフラン環、ベンゾイソオキサゾール環、ベンゾイソチアゾール環、ベンゾイミダゾール環、ピリジン環、ピラジン環、ピリダジン環、ピリミジン環、トリアジン環、キノリン環、イソキノリン環、シノリン環、キノキサリン環、ベンゾイミダゾール環、ペリミジン環、キナゾリン環などの、5または6員環の単環または2〜4縮合環由来の1価の基が挙げられる。
上記各基が有していてもよい置換基としては、上記R〜Rの1価の基として例示した基が挙げられる。
In the formula J-7, examples of the aromatic hydrocarbon group optionally having a substituent for Ar 1 include a benzene ring, a naphthalene ring, an anthracene ring, a phenanthrene ring, a perylene ring, a tetracene ring, a pyrene ring, and a benzpyrene ring. , A monovalent group derived from a 5- or 6-membered monocyclic ring or a 2-5 condensed ring, such as a chrysene ring, a triphenylene ring or a fluoranthene ring. Examples of the aromatic heterocyclic group that may have a substituent include a furan ring, a benzofuran ring, a thiophene ring, a benzothiophene ring, a pyrrole ring, a pyrazole ring, an imidazole ring, an oxadiazole ring, an indole ring, Carbazole ring, pyrroloimidazole ring, pyrrolopyrazole ring, pyrrolopyrrole ring, thienopyrrole ring, thienothiophene ring, furopyrrole ring, furofuran ring, thienofuran ring, benzisoxazole ring, benzisothiazole ring, benzimidazole ring, pyridine ring, pyrazine ring , Pyridazine ring, pyrimidine ring, triazine ring, quinoline ring, isoquinoline ring, sinoline ring, quinoxaline ring, benzimidazole ring, perimidine ring, quinazoline ring, etc. Examples of monovalent groups That.
Examples of the substituent that each of the groups may have include the groups exemplified as the monovalent group of R 1 to R 4 .

Arとして好ましくは、置換基を有していてもよいベンゼン環由来の基または置換基を有していてもよいピリジン環由来の基である。 Ar 1 is preferably a group derived from a benzene ring which may have a substituent or a group derived from a pyridine ring which may have a substituent.

の架橋基は、熱や光などの電磁エネルギーにより、互いに結合を形成し得る基であれば特に制限されないが、不飽和二重結合、環状エーテル、ベンゾシクロブタンなどを含む基が好ましい。 The crosslinking group for A 1 is not particularly limited as long as it is a group capable of forming a bond with each other by electromagnetic energy such as heat or light, but a group containing an unsaturated double bond, a cyclic ether, benzocyclobutane, or the like is preferable.

の架橋基は、特に上記一般式(IA)で表されるものであることが、不溶化しやすいため好ましく、Aは、とりわけ、上記一般式(IA)におけるJが下記架橋基群T’から選ばれる基であることが、電気化学的耐久性に優れるため、好ましい。 Bridging group A 1 is preferred because is easily insolubilized be particularly those represented by the general formula (IA), A 1, inter alia, J 1 is the following crosslinking group group in the general formula (IA) A group selected from T ′ is preferable because of excellent electrochemical durability.

<架橋基群T’>

Figure 0005470706
<Crosslinking group T '>
Figure 0005470706

[7]E
は、下記式(IE−1)または(IE−2)で表される基を示す。
[7] E 1
E 1 represents a group represented by the following formula (IE-1) or (IE-2).

−O−R (IE−1)
−Ar (IE−2)
(式(IE−1)中、Rは1価の基を示す。式(IE−2)中、Arは置換基を有していてもよい芳香族炭化水素基または置換基を有していてもよい芳香族複素環基を示す。)
-O-R 0 (IE-1)
-Ar 2 (IE-2)
(In Formula (IE-1), R 0 represents a monovalent group. In Formula (IE-2), Ar 2 has an optionally substituted aromatic hydrocarbon group or substituent. An aromatic heterocyclic group that may be present.

式(IE−1)において、Rの1価の基としては、上記R〜Rの1価の基として例示した基が挙げられる。好ましくは、Rは炭素数1〜30のアルキル基または炭素数6〜30の芳香族炭化水素基である。 In the formula (IE-1), examples of the monovalent group for R 0 include the groups exemplified as the monovalent groups for R 1 to R 4 . Preferably, R 0 is an alkyl group having 1 to 30 carbon atoms or an aromatic hydrocarbon group having 6 to 30 carbon atoms.

式(IE−2)において、Arの置換基を有していてもよい芳香族炭化水素基または置換基を有していてもよい芳香族複素環基としては、上記架橋基群Tの式J−7のArの置換基を有していてもよい芳香族炭化水素基または置換基を有していてもよい芳香族複素環基と同様である。 In the formula (IE-2), the aromatic hydrocarbon group which may have a substituent of Ar 2 or the aromatic heterocyclic group which may have a substituent includes the above-mentioned formula of the bridging group T have a J-7 substituents of Ar 1 which is the same as also an aromatic heterocyclic group optionally having an aromatic hydrocarbon group or a substituent.

Arは好ましくは、置換基を有していてもよいベンゼン環由来の1価基(フェニル基)である。 Ar 2 is preferably a monovalent group (phenyl group) derived from a benzene ring which may have a substituent.

特に、Eは下記式(IE)で表されることが正孔輸送性及び電気的酸化耐久性の点で好ましい。 In particular, E 1 is preferably represented by the following formula (IE) from the viewpoint of hole transportability and electrical oxidation durability.

Figure 0005470706
(式(IE)中、Qは直接結合または酸素原子を示す。R10〜R15は、各々独立に、水素原子、連結基Zへの直接結合または1価の基を示す。)
Figure 0005470706
(In Formula (IE), Q 1 represents a direct bond or an oxygen atom. R 10 to R 15 each independently represent a hydrogen atom, a direct bond to the linking group Z 1 or a monovalent group.)

上記式(IE)において、R10〜R15の1価の基としては、上記R〜Rの1価の基として例示した基が挙げられる。R10〜R15は好ましくは各々独立に、アルキル基、アルキルオキシ基、芳香族炭化水素基、芳香族複素環基である。 In the above formula (IE), examples of the monovalent group of R 10 to R 15 include the groups exemplified as the monovalent group of R 1 to R 4 . R 10 to R 15 are preferably each independently an alkyl group, an alkyloxy group, an aromatic hydrocarbon group, or an aromatic heterocyclic group.

[8]ビフェニル骨格
一般式(I)で表される本発明の正孔輸送材料は、一分子内に、下記式で表されるビフェニル骨格を有することが電気的還元耐久性向上のため好ましい。
[8] Biphenyl skeleton The hole transport material of the present invention represented by the general formula (I) preferably has a biphenyl skeleton represented by the following formula in one molecule for improving the electrical reduction durability.

Figure 0005470706
Figure 0005470706

[9]例示
以下に、本発明の正孔輸送材料として好ましい具体的な例を示すが、本発明はこれらに限定されるものではない。
まず、一般式(I)で表される化合物の具体例を示す。以下の具体例において、A〜Aはそれぞれ、一般式(I)におけるAと同義である。
[9] Illustrative Examples Preferred specific examples of the hole transport material of the present invention are shown below, but the present invention is not limited thereto.
First, specific examples of the compound represented by the general formula (I) are shown. In the following embodiment, A 1 to A 3 are each the same meaning as A 1 in the general formula (I).

Figure 0005470706
Figure 0005470706

Figure 0005470706
Figure 0005470706

Figure 0005470706
Figure 0005470706

Figure 0005470706
Figure 0005470706

Figure 0005470706
Figure 0005470706

Figure 0005470706
Figure 0005470706

Figure 0005470706
Figure 0005470706

Figure 0005470706
Figure 0005470706

Figure 0005470706
Figure 0005470706

Figure 0005470706
Figure 0005470706

Figure 0005470706
Figure 0005470706

Figure 0005470706
Figure 0005470706

上記一般式(I)で表される化合物の具体例のうち、好ましいものとしては、以下に示すものが挙げられる。   Among the specific examples of the compound represented by the general formula (I), the following are preferable.

Figure 0005470706
Figure 0005470706

次に、架橋基A(上記例示化合物におけるA〜A)の具体例を示すが、本発明はこれらに限定されるものではない。 Next, specific examples of bridging group A 1 (A 1 ~A 3 in the exemplary compounds), the present invention is not limited thereto.

Figure 0005470706
Figure 0005470706

Figure 0005470706
Figure 0005470706

Figure 0005470706
Figure 0005470706

Figure 0005470706
Figure 0005470706

Figure 0005470706
Figure 0005470706

上記架橋基A(上記例示化合物におけるA〜A)の具体例のうち、好ましいものとしては、以下のものが挙げられる。 Of the specific examples of the crosslinking group A 1 (A 1 to A 3 in the above exemplary compounds), the following are preferable.

Figure 0005470706
Figure 0005470706

前記一般式(I)で表され、分子量が300〜5000である本発明の正孔輸送材料として、より具体的には、後述の合成例1〜18で合成された目的物3、6、10、15、17、18、20、23、25、30、34、38、42、43、47、50、51、53が挙げられるが、その他、次のような化合物も挙げられる。ただし、本発明の正孔輸送材料は、以下の例示化合物に何ら限定されるものではない。   As the hole transport material of the present invention represented by the above general formula (I) and having a molecular weight of 300 to 5,000, more specifically, target products 3, 6, and 10 synthesized in Synthesis Examples 1 to 18 described later. 15, 17, 18, 20, 23, 25, 30, 34, 38, 42, 43, 47, 50, 51, 53, and the following compounds are also included. However, the hole transport material of the present invention is not limited to the following exemplary compounds.

Figure 0005470706
Figure 0005470706

Figure 0005470706
Figure 0005470706

Figure 0005470706
Figure 0005470706

Figure 0005470706
Figure 0005470706

Figure 0005470706
Figure 0005470706

Figure 0005470706
Figure 0005470706

[10]合成法
本発明の正孔輸送材料は、目的とする化合物の構造に応じて原料を選択し、公知の手法を用いて合成することができる。
代表的な合成スキームを以下に示す。
[10] Synthesis Method The hole transport material of the present invention can be synthesized using a known method by selecting raw materials according to the structure of the target compound.
A typical synthesis scheme is shown below.

Figure 0005470706
Figure 0005470706

ここで、X〜Xは、脱離基(例えば、Br、I、−B(OH)など)を表す。
〜Yは、A21の前駆体(例えば、ビニル基の前駆体は−CHO基であり、−O−(CH−O−CH−メチルオキセタン基の前駆体は、−OH基である)、または、脱離基(例えば、Br、I、−B(OH)など)を表す。
21〜R23は、R〜Rと同義の架橋基を表す。
21は、Aと同義の架橋基を表す。
はEと同義の基を表す。
各原料化合物は、適宜、試薬として入手可能であり、反応は、公知のカップリング手法を用いて、容易に実現可能である。
尚、ArNH系化合物(例えば、化合物a,e)からArNH系化合物(例えば、化合物b,c)を合成する反応においては、一旦、アシル化し、ArNHAc体にしてから、ArNAc体を得、その後、脱アセチル化してArNH体を得ることも選択可能である。ここで、Arは、それぞれ独立に、任意の1価の芳香族炭化水素基を表し、Acは、アセチル基を表す。
Here, X 1 to X 9 represent a leaving group (for example, Br, I, —B (OH) 2, etc.).
Y 1 to Y 2 are A 21 precursors (for example, a vinyl group precursor is a —CHO group, and a —O— (CH 2 ) 4 —O—CH 2 -methyloxetane group precursor is — Represents an OH group) or a leaving group (for example, Br, I, -B (OH) 2 and the like).
R 21 to R 23 represent a crosslinking group having the same meaning as R 2 to R 4 .
A 21 represents a cross-linking group having the same meaning as A 1 .
E 2 represents a group having the same meaning as E 1 .
Each raw material compound can be appropriately obtained as a reagent, and the reaction can be easily realized using a known coupling method.
In the reaction of synthesizing an Ar 2 NH compound (eg, compounds b and c) from an ArNH 2 compound (eg, compounds a and e), the reaction is once acylated to form an ArNHAc isomer, and then the Ar 2 NAc isomer. And then deacetylating to obtain the Ar 2 NH form. Here, Ar independently represents an arbitrary monovalent aromatic hydrocarbon group, and Ac represents an acetyl group.

化合物の精製方法としては、「分離精製技術ハンドブック」(1993年、(財)日本化学会編)、「化学変換法による微量成分および難精製物質の高度分離」(1988年、(株)アイ ピー シー発行)、あるいは「実験化学講座(第4版)1」(1990年、(財)日本化学会編)の「分離と精製」の項に記載の方法をはじめとし、公知の技術を利用可能である。具体的には、抽出(懸濁洗浄、煮沸洗浄、超音波洗浄、酸塩基洗浄を含む)、吸着、吸蔵、融解、晶析(溶媒からの再結晶、再沈殿を含む)、蒸留(常圧蒸留、減圧蒸留)、蒸発、昇華(常圧昇華、減圧昇華)、イオン交換、透析、濾過、限外濾過、逆浸透、圧浸透、帯域溶解、電気泳動、遠心分離、浮上分離、沈降分離、磁気分離、各種クロマトグラフィー(形状分類:カラム、ペーパー、薄層、キャピラリー、移動相分類:ガス、液体、ミセル、超臨界流体。分離機構:吸着、分配、イオン交換、分子ふるい、キレート、ゲル濾過、排除、アフィニティー)などが挙げられる。   Methods for purifying compounds include “Separation and Purification Technology Handbook” (1993, edited by The Chemical Society of Japan), “Advanced separation of trace components and difficult-to-purify substances by chemical conversion method” (1988, IP Corporation). Issued by C.), or the methods described in the section “Separation and purification” of “Experimental Chemistry Course (4th edition) 1” (1990, edited by The Chemical Society of Japan) can be used. It is. Specifically, extraction (including suspension washing, boiling washing, ultrasonic washing, acid-base washing), adsorption, occlusion, melting, crystallization (including recrystallization from solvent, reprecipitation), distillation (atmospheric pressure) Distillation, vacuum distillation), evaporation, sublimation (atmospheric pressure sublimation, vacuum sublimation), ion exchange, dialysis, filtration, ultrafiltration, reverse osmosis, pressure osmosis, zone lysis, electrophoresis, centrifugation, flotation separation, sedimentation separation, Magnetic separation, various chromatography (shape classification: column, paper, thin layer, capillary, mobile phase classification: gas, liquid, micelle, supercritical fluid. Separation mechanism: adsorption, distribution, ion exchange, molecular sieve, chelate, gel filtration , Exclusion, affinity) and the like.

生成物の確認や純度の分析方法としては、ガスクロマトグラフ(GC)、高速液体クロマトグラフ(HPLC)、高速アミノ酸分析計(有機化合物)、キャピラリー電気泳動測定(CE)、サイズ排除クロマトグラフ(SEC)、ゲル浸透クロマトグラフ(GPC)、交差分別クロマトグラフ(CFC)、質量分析(MS、LC/MS,GC/MS,MS/MS)、核磁気共鳴装置(NMR(1HNMR,13CNMR))、フーリエ変換赤外分光高度計(FT−IR)、紫外可視近赤外分光高度計(UV.VIS,NIR)、電子スピン共鳴装置(ESR)、透過型電子顕微鏡(TEM−EDX)電子線マイクロアナライザー(EPMA)、金属元素分析(イオンクロマトグラフ、誘導結合プラズマ−発光分光(ICP−AES)原子吸光分析(AAS)、蛍光X線分析装置(XRF))、非金属元素分析、微量成分分析(ICP−MS,GF−AAS,GD−MS)等を必要に応じ、適用可能である。   Product confirmation and purity analysis methods include gas chromatograph (GC), high performance liquid chromatograph (HPLC), high speed amino acid analyzer (organic compound), capillary electrophoresis measurement (CE), size exclusion chromatograph (SEC). , Gel permeation chromatography (GPC), cross-fractionation chromatography (CFC), mass spectrometry (MS, LC / MS, GC / MS, MS / MS), nuclear magnetic resonance apparatus (NMR (1HNMR, 13CNMR)), Fourier transform Infrared spectrophotometer (FT-IR), UV-visible near-infrared spectrophotometer (UV.VIS, NIR), electron spin resonance apparatus (ESR), transmission electron microscope (TEM-EDX), electron beam microanalyzer (EPMA), Metal element analysis (ion chromatography, inductively coupled plasma-emission spectroscopy (ICP-AES) atomic absorption) Analysis (AAS), fluorescent X-ray analyzer (XRF)), nonmetal element analysis, trace analysis (ICP-MS, GF-AAS, optionally a GD-MS), etc., it is applicable.

[高分子化合物]
本発明の高分子化合物は、本発明の正孔輸送材料を重合させて得られるものであり、例えば、後述の本発明の有機電界発光素子の製造において、本発明の有機電界発光素子用組成物を用いて形成される。
[Polymer compound]
The polymer compound of the present invention is obtained by polymerizing the hole transport material of the present invention. For example, in the production of the organic electroluminescent element of the present invention described later, the composition for an organic electroluminescent element of the present invention is used. It is formed using.

本発明における高分子化合物は、熱硬化性である場合、架橋度がゲル分率で通常10%以上、好ましくは50%以上、最も好ましくは80%以上のものである。ここで、ゲル分率とは、特定の溶剤(本発明の正孔輸送材料が、未架橋時に、0.5重量%以上溶解可能な溶剤を指す)に浸せきしたときに、溶かされずに残存した部分をゲル(架橋部分はゲルとして残る)とし、このゲル部分の重量と溶剤で溶かす前の重量との比(百分率)を指す。
一方、本発明の高分子化合物が、熱可塑性である場合、GPC等の公知の手段を用いた測定手法から得られた重量平均分子量が、架橋前の正孔輸送材料の分子量の通常3倍以上、好ましくは5倍以上、最も好ましくは10倍以上に変化することと定義できる。
When the polymer compound in the present invention is thermosetting, the degree of cross-linking is usually 10% or more, preferably 50% or more, and most preferably 80% or more in gel fraction. Here, the gel fraction means that it remained undissolved when immersed in a specific solvent (the hole transport material of the present invention indicates a solvent that can be dissolved by 0.5% by weight or more when uncrosslinked). The portion is a gel (the cross-linked portion remains as a gel), and refers to the ratio (percentage) between the weight of the gel portion and the weight before dissolving with a solvent.
On the other hand, when the polymer compound of the present invention is thermoplastic, the weight average molecular weight obtained from a measurement method using a known means such as GPC is usually at least 3 times the molecular weight of the hole transport material before crosslinking. , Preferably 5 times or more, most preferably 10 times or more.

[有機電界発光素子用組成物]
本発明の有機電界発光素子用組成物は、陽極と陰極とに挟持された有機層を有する有機電界発光素子において、通常、該有機層を湿式成膜法により形成する際の塗布液として用いられる。本発明の有機電界発光素子用組成物は、該有機層のうち、正孔輸送層を形成するために用いられることが好ましい。
[Composition for organic electroluminescence device]
The composition for organic electroluminescent elements of the present invention is usually used as a coating solution for forming an organic layer by a wet film-forming method in an organic electroluminescent element having an organic layer sandwiched between an anode and a cathode. . It is preferable that the composition for organic electroluminescent elements of the present invention is used for forming a hole transport layer in the organic layer.

なお、ここでは、有機電界発光素子における陽極−発光層間の層が1つの場合には、これを「正孔輸送層」と称し、2つ以上の場合は、陽極に接している層を「正孔注入層」、それ以外の層を総称して「正孔輸送層」と称す。また、陽極−発光層間に設けられた層を総称して「正孔注入・輸送層」と称する場合がある。   Here, when there is one layer between the anode and the light emitting layer in the organic electroluminescent element, this is referred to as a “hole transport layer”, and when there are two or more layers, the layer in contact with the anode is The “hole injection layer” and the other layers are collectively referred to as “hole transport layer”. In addition, layers provided between the anode and the light emitting layer may be collectively referred to as a “hole injection / transport layer”.

本発明の有機電界発光素子用組成物は、前記本発明の正孔輸送材料と溶剤とを含有することを特徴とする。
該溶剤は、本発明の正孔輸送材料を溶解するものが好ましく、通常、本発明の正孔輸送材料を0.05重量%以上、好ましくは0.5重量%以上、さらに好ましくは1重量%以上溶解する溶剤である。
The composition for organic electroluminescent elements of the present invention comprises the hole transport material of the present invention and a solvent.
The solvent preferably dissolves the hole transport material of the present invention. Usually, the hole transport material of the present invention is 0.05% by weight or more, preferably 0.5% by weight or more, more preferably 1% by weight. It is a solvent that dissolves above.

なお、本発明の有機電界発光素子用組成物は、本発明の正孔輸送材料の1種のみを含むものであってもよく、2種以上を含むものであってもよいが、架橋基が未反応残基として残存する割合を低減することが容易であり、非結晶性の向上が期待できることから、正孔輸送材料を2種以上含むことが好ましく、4種以下含むことがさらに好ましい。また、本発明の組成物は、本発明の正孔輸送材料を通常0.01重量%以上、好ましくは0.05重量%以上、さらに好ましくは0.1重量%以上含有し、通常90重量%以下、好ましくは70重量%以下、さらに好ましくは50重量%以下含有する。   In addition, the composition for organic electroluminescent elements of the present invention may contain only one kind of the hole transport material of the present invention or may contain two or more kinds, but the crosslinking group Since it is easy to reduce the ratio of remaining as an unreacted residue and an improvement in non-crystallinity can be expected, it is preferable to include two or more hole transport materials, and more preferably four or less. The composition of the present invention contains the hole transport material of the present invention in an amount of usually 0.01% by weight or more, preferably 0.05% by weight or more, more preferably 0.1% by weight or more, and usually 90% by weight. The content is preferably 70% by weight or less, more preferably 50% by weight or less.

また、本発明の有機電界発光素子用組成物は、必要に応じ、電子受容性化合物や、後述の正孔輸送層の溶解性を低下させ、正孔輸送層上へ他の層を塗布することを可能とする架橋反応を促進するための添加物等の添加剤を含んでいてもよい。この場合は、溶剤としては、本発明の正孔輸送材料と添加剤の双方を0.05重量%以上、好ましくは0.5重量%以上、さらに好ましくは1重量%以上溶解する溶剤を使用することが好ましい。   In addition, the composition for an organic electroluminescent device of the present invention may reduce the solubility of an electron-accepting compound and a hole transport layer described later, if necessary, and apply another layer on the hole transport layer. An additive such as an additive for accelerating the cross-linking reaction that enables the reaction may be included. In this case, a solvent that dissolves both the hole transport material and the additive of the present invention by 0.05% by weight or more, preferably 0.5% by weight or more, more preferably 1% by weight or more is used as the solvent. It is preferable.

本発明の有機電界発光素子用組成物に含まれる、本発明の正孔輸送材料の架橋反応を促進する添加物としては、アルキルフェノン化合物、アシルホスフィンオキサイド化合物、メタロセン化合物、オキシムエステル化合物、アゾ化合物、オニウム塩などの重合開始剤や重合促進剤、縮合多環炭化水素、ポルフィリン化合物、ジアリールケトン化合物などの光増感剤等が挙げられる。これらは1種を単独で用いてもよく、2種以上を併用してもよい。
ただし、本発明の有機電界発光素子用組成物は、十分に優れた重合性を有しており、電気的耐性を損なわない観点からは、重合開始剤を含まないことが好ましい。尚、該組成物を製膜する際の下地層に、重合開始剤を保持させておき、下地層との界面近傍から重合を促進せしめるなどの手法に関しては、好ましい重合促進手法の一例である。
Additives that promote the crosslinking reaction of the hole transport material of the present invention contained in the composition for organic electroluminescent elements of the present invention include alkylphenone compounds, acylphosphine oxide compounds, metallocene compounds, oxime ester compounds, and azo compounds. And photoinitiators such as polymerization initiators and polymerization accelerators such as onium salts, condensed polycyclic hydrocarbons, porphyrin compounds, and diaryl ketone compounds. These may be used alone or in combination of two or more.
However, it is preferable that the composition for organic electroluminescent elements of the present invention has sufficiently excellent polymerizability and does not contain a polymerization initiator from the viewpoint of not impairing electrical resistance. In addition, regarding the technique of holding a polymerization initiator in the underlayer when forming the composition and promoting the polymerization from the vicinity of the interface with the underlayer, it is an example of a preferable polymerization acceleration technique.

また、本発明の有機電界発光素子用組成物に含まれる電子受容性化合物としては、本発明の有機電界発光素子の正孔注入層に含有される電子受容性化合物として後述したものの1種または2種以上を使用することができる。   Moreover, as an electron-accepting compound contained in the composition for organic electroluminescent elements of this invention, it is 1 type or 2 of what was mentioned later as an electron-accepting compound contained in the positive hole injection layer of the organic electroluminescent element of this invention. More than seeds can be used.

本発明の有機電界発光素子用組成物に含有される溶剤としては、特に制限されるものではないが、本発明の正孔輸送材料を溶解させる必要があることから、好ましくは、トルエン、キシレン、メチシレン、シクロヘキシルベンゼン等の芳香族化合物;1,2−ジクロロエタン、クロロベンゼン、o−ジクロロベンゼン等の含ハロゲン溶剤;エチレングリコールジメチルエーテル、エチレングリコールジエチルエーテル、プロピレングリコール−1−モノメチルエーテルアセタート(PGMEA)等の脂肪族エーテル、1,2−ジメトキシベンゼン、1,3−ジメトキシベンゼン、アニソール、フェネトール、2−メトキシトルエン、3−メトキシトルエン、4−メトキシトルエン、2,3−ジメチルアニソール、2,4−ジメチルアニソール等の芳香族エーテル等のエーテル系溶剤;酢酸エチル、酢酸n−ブチル、乳酸エチル、乳酸n−ブチル等の脂肪族エステル;酢酸フェニル、プロピオン酸フェニル、安息香酸メチル、安息香酸エチル、安息香酸イソプロピル、安息香酸プロピル、安息香酸n−ブチル等のエステル系溶剤等の有機溶剤が挙げられる。これらは1種を単独で用いてもよく、2種以上を併用してもよい。   The solvent contained in the composition for organic electroluminescent elements of the present invention is not particularly limited, but preferably, since it is necessary to dissolve the hole transport material of the present invention, toluene, xylene, Aromatic compounds such as methicylene and cyclohexylbenzene; halogen-containing solvents such as 1,2-dichloroethane, chlorobenzene and o-dichlorobenzene; ethylene glycol dimethyl ether, ethylene glycol diethyl ether, propylene glycol-1-monomethyl ether acetate (PGMEA), etc. Aliphatic ether, 1,2-dimethoxybenzene, 1,3-dimethoxybenzene, anisole, phenetole, 2-methoxytoluene, 3-methoxytoluene, 4-methoxytoluene, 2,3-dimethylanisole, 2,4-dimethyl Anisole Ether solvents such as aromatic ethers; aliphatic esters such as ethyl acetate, n-butyl acetate, ethyl lactate and n-butyl lactate; phenyl acetate, phenyl propionate, methyl benzoate, ethyl benzoate, isopropyl benzoate, Examples thereof include organic solvents such as ester solvents such as propyl benzoate and n-butyl benzoate. These may be used alone or in combination of two or more.

本発明の有機電界発光素子用組成物に含有される溶剤の組成物中の濃度は、通常10重量%以上、好ましくは50重量%以上、より好ましくは80重量%以上である。   The concentration of the solvent contained in the composition for organic electroluminescent elements of the present invention is usually 10% by weight or more, preferably 50% by weight or more, more preferably 80% by weight or more.

なお、水分は有機電界発光素子の性能劣化、中でも特に連続駆動時の輝度低下を促進する可能性があることが広く知られており、塗膜中に残留する水分をできる限り低減するために、これらの溶剤の中でも、25℃における水の溶解度が1重量%以下であるものが好ましく、0.1重量%以下である溶剤がより好ましい。   In addition, it is widely known that moisture may promote deterioration of the performance of the organic electroluminescent element, particularly brightness reduction during continuous driving, in order to reduce moisture remaining in the coating film as much as possible. Among these solvents, those having a water solubility at 25 ° C. of 1% by weight or less are preferred, and solvents having a solubility of 0.1% by weight or less are more preferred.

本発明の有機電界発光素子用組成物に含有される溶剤として、20℃における表面張力が40dyn/cm未満、好ましくは36dyn/cm以下、より好ましくは33dyn/cm以下である溶剤が挙げられる。   Examples of the solvent contained in the composition for organic electroluminescent elements of the present invention include a solvent having a surface tension at 20 ° C. of less than 40 dyn / cm, preferably 36 dyn / cm or less, more preferably 33 dyn / cm or less.

即ち、本発明の正孔輸送材料を重合させて得られる高分子化合物を含有する層を湿式成膜法により形成する場合、下地との親和性が重要である。膜質の均一性は有機電界発光素子の発光の均一性、安定性に大きく影響するため、湿式成膜法に用いる塗布液には、よりレベリング性が高く均一な塗膜を形成しうるように表面張力が低いことが求められる。このような溶剤を使用することにより、本発明の正孔輸送材料を重合させて得られる高分子化合物を含む均一な層を形成することができる。   That is, when a layer containing a polymer compound obtained by polymerizing the hole transport material of the present invention is formed by a wet film forming method, the affinity with the base is important. The uniformity of the film quality greatly affects the uniformity and stability of the light emission of the organic electroluminescence device. Therefore, the coating solution used in the wet film-forming method has a surface that can form a uniform coating film with higher leveling properties. Low tension is required. By using such a solvent, a uniform layer containing a polymer compound obtained by polymerizing the hole transport material of the present invention can be formed.

このような低表面張力の溶剤の具体例としては、前述したトルエン、キシレン、メチシレン、シクロヘキシルベンゼン等の芳香族系溶剤、安息香酸エチル等のエステル系溶剤、アニソール等のエーテル系溶剤、トリフルオロメトキシアニソール、ペンタフルオロメトキシベンゼン、3−(トリフルオロメチル)アニソール、エチル(ペンタフルオロベンゾエート)等が挙げられる。   Specific examples of such a low surface tension solvent include the aforementioned aromatic solvents such as toluene, xylene, methicylene and cyclohexylbenzene, ester solvents such as ethyl benzoate, ether solvents such as anisole, trifluoromethoxy, and the like. Anisole, pentafluoromethoxybenzene, 3- (trifluoromethyl) anisole, ethyl (pentafluorobenzoate) and the like can be mentioned.

これらの溶剤の組成物中の濃度は、通常10重量%以上、好ましくは30重量%以上、より好ましくは50重量%以上である。   The concentration of these solvents in the composition is usually 10% by weight or more, preferably 30% by weight or more, more preferably 50% by weight or more.

本発明の有機電界発光素子用組成物に含有される溶剤としてはまた、25℃における蒸気圧が10mmHg以下、好ましくは5mmHg以下で、通常0.1mmHg以上の溶剤が挙げられる。このような溶剤を使用することにより、有機電界発光素子を湿式成膜法により製造するプロセスに好適な、また、本発明の正孔輸送材料の性質に適した組成物を調製することができる。このような溶剤の具体例としては、前述したトルエン、キシレン、メチシレン等の芳香族系溶剤、エーテル系溶剤およびエステル系溶剤が挙げられる。これらの溶剤の組成物中の濃度は、通常10重量%以上、好ましくは30重量%以上、より好ましくは50重量%以上である。   Examples of the solvent contained in the composition for organic electroluminescence device of the present invention include a solvent having a vapor pressure at 25 ° C. of 10 mmHg or less, preferably 5 mmHg or less and usually 0.1 mmHg or more. By using such a solvent, it is possible to prepare a composition suitable for a process for producing an organic electroluminescent device by a wet film-forming method and suitable for the properties of the hole transport material of the present invention. Specific examples of such a solvent include the above-mentioned aromatic solvents such as toluene, xylene and methicylene, ether solvents and ester solvents. The concentration of these solvents in the composition is usually 10% by weight or more, preferably 30% by weight or more, more preferably 50% by weight or more.

本発明の有機電界発光素子用組成物に含有される溶剤として、25℃における蒸気圧が2mmHg以上、好ましくは3mmHg以上、より好ましくは4mmHg以上(但し、上限は好ましくは10mmHg以下である。)である溶剤と、25℃における蒸気圧が2mmHg未満、好ましくは1mmHg以下、より好ましくは0.5mmHg以下である溶剤との混合溶剤が挙げられる。このような混合溶剤を使用することにより、湿式製膜法により本発明の正孔輸送材料、更には電子受容性化合物を含む均質な層を形成することができる。このような混合溶剤の組成物中の濃度は、通常10重量%以上、好ましくは30重量%以上、より好ましくは50重量%以上である。   As a solvent contained in the composition for organic electroluminescent elements of the present invention, the vapor pressure at 25 ° C. is 2 mmHg or more, preferably 3 mmHg or more, more preferably 4 mmHg or more (however, the upper limit is preferably 10 mmHg or less). A mixed solvent of a certain solvent and a solvent having a vapor pressure at 25 ° C. of less than 2 mmHg, preferably 1 mmHg or less, more preferably 0.5 mmHg or less. By using such a mixed solvent, a homogeneous layer containing the hole transport material of the present invention and further an electron accepting compound can be formed by a wet film forming method. The concentration of the mixed solvent in the composition is usually 10% by weight or more, preferably 30% by weight or more, more preferably 50% by weight or more.

有機電界発光素子は、多数の有機化合物からなる層を積層して形成するため、膜質が均一であることが非常に重要である。湿式成膜法で層形成する場合、その材料や、下地の性質によって、スピンコート法、スプレー法などの塗布法や、インクジェット法、スクリーン法などの印刷法等、公知の成膜方法が採用できる。例えばスプレー法は、凹凸のある面への均一な膜形成に有効であるため、パターニングされた電極や画素間の隔壁による凹凸が残る面に、有機化合物からなる層を設ける場合に、好ましい。スプレー法による塗布の場合、ノズルから塗布面へ噴射された塗布液の液滴はできる限り小さい方が 、均一な膜質が得られるため好ましい。そのためには、塗布液に蒸気圧の高い溶剤を混合し、塗布雰囲気中において噴射後の塗布液滴から溶剤の一部が揮発することにより、基板に付着する直前に細かい液滴が生成する状態が好ましい。また、より均一な膜質を得るためには、塗布直後に基板上に生成した液膜がレベリングする時間を確保することが必要で、この目的を達成するためにはより乾燥の遅い溶剤、すなわち蒸気圧の低い溶剤をある程度含有させる手法が用いられる。   Since the organic electroluminescent element is formed by laminating a plurality of layers made of organic compounds, it is very important that the film quality is uniform. When a layer is formed by a wet film formation method, a known film formation method such as a coating method such as a spin coating method or a spray method, or a printing method such as an ink jet method or a screen method can be adopted depending on the material and properties of the base. . For example, since the spray method is effective for forming a uniform film on a surface with unevenness, it is preferable when a layer made of an organic compound is provided on a surface where unevenness due to a patterned electrode or a partition between pixels remains. In the case of coating by the spray method, it is preferable that the coating liquid droplets sprayed from the nozzle to the coating surface be as small as possible because uniform film quality can be obtained. For that purpose, a solvent with high vapor pressure is mixed with the coating liquid, and a part of the solvent is volatilized from the sprayed coating droplet in the coating atmosphere, so that fine droplets are generated immediately before adhering to the substrate. Is preferred. Also, in order to obtain a more uniform film quality, it is necessary to secure time for the liquid film generated on the substrate to be leveled immediately after coating. In order to achieve this purpose, a slower drying solvent, that is, a vapor A technique in which a solvent having a low pressure is contained to some extent is used.

具体例としては、25℃における蒸気圧が2mmHg以上10mmHg以下である溶剤としては、例えば、キシレン、アニソール、シクロヘキサノン、トルエン等の有機溶剤が挙げられる。25℃における蒸気圧が2mmHg未満である溶剤としては、安息香酸エチル、安息香酸メチル、テトラリン、フェネトール等が挙げられる。   Specific examples of the solvent having a vapor pressure of 2 mmHg to 10 mmHg at 25 ° C. include organic solvents such as xylene, anisole, cyclohexanone, and toluene. Examples of the solvent having a vapor pressure of less than 2 mmHg at 25 ° C. include ethyl benzoate, methyl benzoate, tetralin, and phenetole.

混合溶剤の比率は、25℃における蒸気圧が2mmHg以上である溶剤が、混合溶剤総量中、5重量%以上、好ましくは25重量%以上、但し50重量%未満であり、25℃における蒸気圧が2mmHg未満である溶剤が、混合溶剤総量中、30重量%以上、好ましくは50重量%以上、特に好ましくは75重量%以上、但し、95重量%未満である。   The ratio of the mixed solvent is such that the solvent whose vapor pressure at 25 ° C. is 2 mmHg or more is 5% by weight or more, preferably 25% by weight or more, but less than 50% by weight, and the vapor pressure at 25 ° C. The solvent which is less than 2 mmHg is 30% by weight or more, preferably 50% by weight or more, particularly preferably 75% by weight or more, but less than 95% by weight in the total mixed solvent.

なお、有機電界発光素子は、多数の有機化合物からなる層を積層して形成するため、各層がいずれも均一な層であることが要求される。湿式成膜法で層形成する場合、層形成用の溶液(組成物)に水分が混入することにより、塗膜に水分が混入して膜の均一性が損なわれるおそれがあるため、溶液中の水分含有量はできるだけ少ない方が好ましい。具体的には、有機電界発光素子組成物中に含まれる水分量は、好ましくは1重量%以下、より好ましくは0.1重量%以下、さらに好ましくは0.05重量%以下である。   In addition, since an organic electroluminescent element is formed by laminating a plurality of layers made of organic compounds, each layer is required to be a uniform layer. In the case of forming a layer by a wet film forming method, moisture may be mixed into the coating solution (composition) for forming the layer, so that moisture may be mixed into the coating film and the uniformity of the film may be impaired. It is preferable that the water content is as low as possible. Specifically, the amount of water contained in the organic electroluminescent element composition is preferably 1% by weight or less, more preferably 0.1% by weight or less, and still more preferably 0.05% by weight or less.

また、一般に、有機電界発光素子は、陰極等の水分により著しく劣化する材料が多く使用されているため、素子の劣化の観点からも、水分の存在は好ましくない。溶液中の水分量を低減する方法としては、例えば、窒素ガスシール、乾燥剤の使用、溶剤を予め脱水する、水の溶解度が低い溶剤を使用する等が挙げられる。なかでも、水の溶解度が低い溶剤を使用する場合は、塗布工程中に、溶液塗膜が大気中の水分を吸収して白化する現象を防ぐことができるため好ましい。
この様な観点からは、本発明の有機電界発光素子用組成物は、例えば25℃における水の溶解度が1重量%以下(好ましくは0.1重量%以下)である溶剤を、該組成物中10重量%以上含有することが好ましい。なお、上記溶解度条件を満たす溶剤が30重量%以上であればより好ましく、50重量%以上であれば特に好ましい。
In general, since organic electroluminescent elements use many materials such as cathodes that deteriorate significantly due to moisture, the presence of moisture is not preferable from the viewpoint of element degradation. Examples of the method for reducing the amount of water in the solution include nitrogen gas sealing, use of a desiccant, dehydration of the solvent in advance, use of a solvent with low water solubility, and the like. Among these, the use of a solvent having low water solubility is preferable because the solution coating film can prevent whitening by absorbing moisture in the atmosphere during the coating process.
From such a viewpoint, the composition for organic electroluminescent elements of the present invention contains, for example, a solvent having a water solubility at 25 ° C. of 1% by weight or less (preferably 0.1% by weight or less) in the composition. It is preferable to contain 10% by weight or more. The solvent satisfying the above solubility condition is more preferably 30% by weight or more, and particularly preferably 50% by weight or more.

なお、本実施の形態が適用される有機電界発光素子用組成物に含有される溶剤として、前述した溶剤以外にも、必要に応じて、各種の他の溶剤を含んでいてもよい。このような他の溶剤としては、例えば、N,N−ジメチルホルムアミド、N,N−ジメチルアセトアミド等のアミド類;ジメチルスルホキシド等がある。
また、本発明の有機電界発光素子用組成物は、レベリング剤や消泡剤等の塗布性改良剤などの各種添加剤を含んでいてもよい。
In addition, as a solvent contained in the composition for organic electroluminescent elements to which this embodiment is applied, various other solvents may be included as necessary in addition to the solvents described above. Examples of such other solvents include amides such as N, N-dimethylformamide and N, N-dimethylacetamide; dimethyl sulfoxide and the like.
Moreover, the composition for organic electroluminescent elements of this invention may contain various additives, such as coating property improving agents, such as a leveling agent and an antifoamer.

[成膜方法]
前述の如く、有機電界発光素子は、多数の有機化合物からなる層を積層して形成するため、膜質が均一であることが非常に重要である。湿式成膜法で層形成する場合、その材料や、下地の性質によって、スピンコート法、スプレー法などの塗布法や、インクジェット法、スクリーン法などの印刷法等、公知の成膜方法が採用できる。
[Film formation method]
As described above, since the organic electroluminescent element is formed by laminating a plurality of layers made of organic compounds, it is very important that the film quality is uniform. When a layer is formed by a wet film formation method, a known film formation method such as a coating method such as a spin coating method or a spray method, or a printing method such as an ink jet method or a screen method can be adopted depending on the material and properties of the base. .

湿式成膜法を用いる場合、本発明の正孔輸送材料および必要に応じて用いられるその他の成分(電子受容性化合物、架橋反応を促進する添加物や塗布性改良剤等)を、適切な溶剤に溶解させ、上記有機電界発光素子用組成物を調製する。この組成物を、スピンコート法やディップコート法等の手法により、形成する層の下層に該当する層上に塗布し、乾燥することにより、本発明の正孔輸送材料を含有する層を形成する。
通常、本発明の有機電界発光素子用組成物を用いて形成される層は、正孔輸送層として用いられる。そのため、通常は、この層は正孔注入層上に形成されるか、陽極上に形成される。
When using a wet film-forming method, the hole transport material of the present invention and other components used as necessary (electron-accepting compounds, additives that promote crosslinking reaction, coatability improvers, etc.) are used in an appropriate solvent. The organic electroluminescent element composition is prepared by dissolving in an organic electroluminescent element. The composition containing the hole transport material of the present invention is formed by applying this composition onto a layer corresponding to the lower layer of the layer to be formed by a method such as spin coating or dip coating, and drying. .
Usually, the layer formed using the composition for organic electroluminescent elements of the present invention is used as a hole transport layer. Therefore, this layer is usually formed on the hole injection layer or on the anode.

また、本発明の有機電界発光素子用組成物を用いて形成された層に引き続き発光層を形成するためには、発光層成膜用の塗布組成物に、形成された正孔輸送層が溶解しないことが好ましい。このため、本発明の有機電界発光素子用組成物を成膜後、加熱および/または光などの電磁エネルギー照射により、本発明の正孔輸送材料が重合反応を起こし、反応後の膜の溶解性を低下させることが好ましい。   In addition, in order to form a light emitting layer subsequent to the layer formed using the composition for organic electroluminescent elements of the present invention, the formed hole transport layer is dissolved in the coating composition for forming the light emitting layer. Preferably not. For this reason, after film-forming the composition for organic electroluminescent elements of the present invention, the hole transport material of the present invention undergoes a polymerization reaction by heating and / or irradiation with electromagnetic energy such as light, and the solubility of the film after the reaction Is preferably reduced.

加熱の手法は特に限定されないが、例としては加熱乾燥、減圧乾燥等が挙げられる。加熱乾燥の場合の条件としては、通常120℃以上、好ましくは400℃以下に本発明の有機電界発光素子用組成物を用いて形成された層を加熱する。加熱時間としては、通常1分以上、好ましくは24時間以下である。加熱手段としては特に限定されないが、形成された層を有する積層体をホットプレート上に載せたり、オーブン内で加熱するなどの手段が用いられる。例えば、ホットプレート上で120℃以上、1分間以上加熱する等の条件を用いることができる。   The heating method is not particularly limited, and examples thereof include heat drying and reduced pressure drying. As a condition in the case of heat drying, the layer formed using the composition for organic electroluminescent elements of the present invention is usually heated to 120 ° C. or higher, preferably 400 ° C. or lower. The heating time is usually 1 minute or longer, preferably 24 hours or shorter. Although it does not specifically limit as a heating means, Means, such as mounting the laminated body which has the formed layer on a hotplate, or heating in oven, is used. For example, conditions such as heating on a hot plate at 120 ° C. or more for 1 minute or more can be used.

光などの電磁エネルギー照射による場合には、超高圧水銀ランプ、高圧水銀ランプ、ハロゲンランプ、赤外ランプ等の紫外・可視・赤外光源を直接用いて照射する方法、あるいは前述の光源を内蔵するマスクアライナ、コンベア型光照射装置を用いて照射する方法などが挙げられる。光以外の電磁エネルギー照射では、例えばマグネトロンにより発生させたマイクロ波を照射する装置、いわゆる電子レンジを用いて照射する方法が挙げられる。   In the case of irradiation with electromagnetic energy such as light, a method of irradiating directly using an ultraviolet / visible / infrared light source such as an ultra-high pressure mercury lamp, a high-pressure mercury lamp, a halogen lamp or an infrared lamp, or the above-mentioned light source is incorporated. Examples include a mask aligner and a method of irradiation using a conveyor type light irradiation device. In electromagnetic energy irradiation other than light, for example, there is a method of irradiation using a device that irradiates a microwave generated by a magnetron, a so-called microwave oven.

照射時間としては、膜の溶解性を低下させるために必要な条件を設定することが好ましいが、通常、0.1秒以上、好ましくは10時間以下照射される。   As the irradiation time, it is preferable to set conditions necessary for reducing the solubility of the film, but irradiation is usually performed for 0.1 seconds or longer, preferably 10 hours or shorter.

加熱および光などの電磁エネルギー照射は、それぞれ単独、あるいは組み合わせて行ってもよい。組み合わせる場合、実施する順序は特に限定されない。   Heating and irradiation of electromagnetic energy such as light may be performed individually or in combination. When combined, the order of implementation is not particularly limited.

加熱および光を含む電磁エネルギー照射は、実施後に層に含有する水分および/または表面に吸着する水分の量を低減するために、窒素ガス雰囲気等の水分を含まない雰囲気で行うことが好ましい。同様の目的で、加熱および/または光などの電磁エネルギー照射を組み合わせて行う場合には、少なくとも有機発光層の形成直前の工程を窒素ガス雰囲気等の水分を含まない雰囲気で行うことが特に好ましい。   In order to reduce the amount of moisture contained in the layer and / or moisture adsorbed on the surface after implementation, the electromagnetic energy irradiation including heating and light is preferably performed in an atmosphere containing no moisture such as a nitrogen gas atmosphere. For the same purpose, when combined with heating and / or irradiation with electromagnetic energy such as light, it is particularly preferable to perform at least the step immediately before the formation of the organic light emitting layer in an atmosphere containing no moisture such as a nitrogen gas atmosphere.

[有機電界発光素子]
本発明の有機電界発光素子は、基板上に陽極および陰極を有するとともに、陽極と陰極との間に有機層を有し、好ましくは有機層が複数の有機層を積層してなる積層型の構造である。そして、複数の有機層のうちの何れかの有機層、好ましくは正孔輸送層が、上述の本発明の正孔輸送材料を重合させて得られる高分子化合物を含有する層であり、この層は、例えば、前述の本発明の正孔輸送材料を含有する有機電界発光素子用組成物を用いて形成される。
[Organic electroluminescence device]
The organic electroluminescent device of the present invention has an anode and a cathode on a substrate, an organic layer between the anode and the cathode, and preferably a laminated structure in which an organic layer is formed by laminating a plurality of organic layers. It is. Any one of the plurality of organic layers, preferably the hole transport layer, is a layer containing a polymer compound obtained by polymerizing the hole transport material of the present invention, and this layer Is formed using, for example, the composition for organic electroluminescent elements containing the above-described hole transport material of the present invention.

図1は、本発明の有機電界発光素子の構造の一例を模式的に示す断面図である。図1に示す有機電界発光素子は、基板1の上に、陽極2、正孔注入層3、正孔輸送層4、有機発光層5、正孔阻止層6、電子輸送層7、電子注入層8および陰極9を、この順に積層して構成される。この構成の場合、通常は正孔輸送層4が上述の正孔輸送材料を重合させて得られる高分子化合物を含有する層に該当することになる。   FIG. 1 is a cross-sectional view schematically showing an example of the structure of the organic electroluminescent element of the present invention. The organic electroluminescent device shown in FIG. 1 includes an anode 2, a hole injection layer 3, a hole transport layer 4, an organic light emitting layer 5, a hole blocking layer 6, an electron transport layer 7, and an electron injection layer on a substrate 1. 8 and the cathode 9 are laminated in this order. In the case of this configuration, the hole transport layer 4 usually corresponds to a layer containing a polymer compound obtained by polymerizing the above hole transport material.

[1]基板
基板1は有機電界発光素子の支持体となるものであり、石英やガラスの板、金属板や金属箔、プラスチックフィルムやシートなどが用いられる。特にガラス板や、ポリエステル、ポリメタクリレート、ポリカーボネート、ポリスルホンなどの透明な合成樹脂の板が好ましい。合成樹脂基板を使用する場合にはガスバリア性に留意する必要がある。基板のガスバリア性が小さすぎると、基板を通過した外気により有機電界発光素子が劣化することがあるので好ましくない。このため、合成樹脂基板の少なくとも片面に緻密なシリコン酸化膜等を設けてガスバリア性を確保する方法も好ましい方法の一つである。
[1] Substrate The substrate 1 serves as a support for the organic electroluminescent element, and quartz or glass plates, metal plates, metal foils, plastic films, sheets, and the like are used. In particular, a glass plate or a transparent synthetic resin plate such as polyester, polymethacrylate, polycarbonate, or polysulfone is preferable. When using a synthetic resin substrate, it is necessary to pay attention to gas barrier properties. If the gas barrier property of the substrate is too small, the organic electroluminescent element may be deteriorated by the outside air that has passed through the substrate, which is not preferable. For this reason, a method of providing a gas barrier property by providing a dense silicon oxide film or the like on at least one surface of the synthetic resin substrate is also a preferable method.

[2]陽極
陽極2は、後述する有機発光層側の層(正孔注入層3または有機発光層5など)への正孔注入の役割を果たすものである。この陽極2は、通常、アルミニウム、金、銀、ニッケル、パラジウム、白金等の金属、インジウムおよび/またはスズの酸化物などの金属酸化物、ヨウ化銅などのハロゲン化金属、カーボンブラック、或いは、ポリ(3−メチルチオフェン)、ポリピロール、ポリアニリン等の導電性高分子などにより構成される。陽極2の形成は通常、スパッタリング法、真空蒸着法などにより行われることが多い。また、銀などの金属微粒子、ヨウ化銅などの微粒子、カーボンブラック、導電性の金属酸化物微粒子、導電性高分子微粉末などの場合には、適当なバインダー樹脂溶液に分散し、基板1上に塗布することにより陽極2を形成することもできる。更に、導電性高分子の場合は、電解重合により直接基板1上に薄膜を形成したり、基板1上に導電性高分子を塗布して陽極2を形成することもできる(Applied Physics Letters,1992年,Vol.60,pp.2711参照)。陽極2は異なる物質で積層して形成することも可能である。
[2] Anode The anode 2 plays the role of hole injection into a layer (hole injection layer 3 or organic light emitting layer 5) on the organic light emitting layer side described later. This anode 2 is usually a metal such as aluminum, gold, silver, nickel, palladium, platinum, a metal oxide such as an oxide of indium and / or tin, a metal halide such as copper iodide, carbon black, or A conductive polymer such as poly (3-methylthiophene), polypyrrole, or polyaniline is used. In general, the anode 2 is often formed by sputtering, vacuum deposition, or the like. Further, in the case of metal fine particles such as silver, fine particles such as copper iodide, carbon black, conductive metal oxide fine particles, and conductive polymer fine powders, they are dispersed in an appropriate binder resin solution and placed on the substrate 1. It is also possible to form the anode 2 by applying to. Further, in the case of a conductive polymer, a thin film can be directly formed on the substrate 1 by electrolytic polymerization, or the anode 2 can be formed by applying a conductive polymer on the substrate 1 (Applied Physics Letters, 1992). Year, Vol.60, pp.2711). The anode 2 can also be formed by stacking different materials.

陽極2の厚みは、必要とする透明性により異なる。透明性が必要とされる場合は、可視光の透過率を、通常60%以上、好ましくは80%以上とすることが望ましく、この場合、厚みは、通常5nm以上、好ましくは10nm以上、また、通常1000nm以下、好ましくは500nm以下の範囲である。不透明で良い場合、陽極2は基板1と同一でもよい。また、更には上記の陽極2の上に異なる導電材料を積層することも可能である。   The thickness of the anode 2 varies depending on the required transparency. When transparency is required, it is desirable that the visible light transmittance is usually 60% or more, preferably 80% or more. In this case, the thickness is usually 5 nm or more, preferably 10 nm or more, Usually, it is 1000 nm or less, preferably 500 nm or less. If opaque, the anode 2 may be the same as the substrate 1. Furthermore, it is also possible to laminate different conductive materials on the anode 2 described above.

なお、陽極に付着した不純物を除去し、イオン化ポテンシャルを調整して正孔注入性を向上させることを目的として、陽極表面を紫外線(UV)/オゾン処理したり、酸素プラズマ、アルゴンプラズマ処理することが好ましい。また、正孔注入の効率を更に向上させ、かつ、有機層全体の陽極への付着力を改善させる目的で、正孔注入層3と陽極2との間に公知の陽極バッファ層を挿入してもよい。   In addition, the surface of the anode is treated with ultraviolet (UV) / ozone, oxygen plasma, or argon plasma for the purpose of removing impurities adhering to the anode and adjusting the ionization potential to improve the hole injection property. Is preferred. In addition, a known anode buffer layer is inserted between the hole injection layer 3 and the anode 2 for the purpose of further improving the efficiency of hole injection and improving the adhesion of the entire organic layer to the anode. Also good.

[3]正孔注入層
正孔注入層3は、陽極2から有機発光層5へ正孔を輸送する層である。通常はこの正孔注入層3が、陽極2上に形成される。よって、正孔注入層3は、好ましくは正孔注入性化合物および電子受容性化合物を含有して構成されることになる。更に、正孔注入層3は、本発明の趣旨を逸脱しない範囲で、その他の成分を含有していてもよい。
[3] Hole Injection Layer The hole injection layer 3 is a layer that transports holes from the anode 2 to the organic light emitting layer 5. Usually, this hole injection layer 3 is formed on the anode 2. Therefore, the hole injection layer 3 is preferably configured to contain a hole injection compound and an electron accepting compound. Furthermore, the hole injection layer 3 may contain other components without departing from the spirit of the present invention.

正孔注入層3を陽極2上に形成する手法としては、湿式成膜法、真空蒸着法が挙げられるが、上述したように、均質で欠陥がない薄膜を容易に得られる点や、形成のための時間が短くて済む点から、湿式成膜法が好ましい。また、陽極2として一般的に用いられるITO(インジウム・スズ酸化物)は、その表面が10nm程度の表面粗さ(Ra)を有するのに加えて、局所的に突起を有することが多く、短絡欠陥を生じ易いという課題があった。陽極2の上の正孔注入層3を湿式成膜法により形成することは、真空蒸着法で形成する場合と比較して、陽極2表面の凹凸に起因する素子の欠陥の発生を低減するという利点をも有する。   Examples of the method for forming the hole injection layer 3 on the anode 2 include a wet film formation method and a vacuum deposition method. As described above, a uniform and defect-free thin film can be easily obtained. The wet film-forming method is preferable from the viewpoint that the time required for the preparation is short. In addition, ITO (indium tin oxide), which is generally used as the anode 2, has a surface roughness (Ra) of about 10 nm in addition to its surface, and often has local protrusions. There was a problem that defects were easily generated. Forming the hole injection layer 3 on the anode 2 by the wet film formation method reduces the occurrence of device defects due to the unevenness of the surface of the anode 2 as compared with the case of forming by the vacuum deposition method. It also has advantages.

正孔注入性化合物としての芳香族アミン化合物としては、トリアリールアミン構造を含む化合物が好ましく、従来有機電界発光素子における正孔注入層の形成材料として利用されてきた化合物の中から適宜選択してもよい。芳香族アミン化合物として、例えば、下記一般式(1)で表されるビナフチル系化合物が挙げられる。   As the aromatic amine compound as the hole-injecting compound, a compound having a triarylamine structure is preferable, and a compound selected from compounds conventionally used as a material for forming a hole-injecting layer in an organic electroluminescent device is appropriately selected. Also good. As an aromatic amine compound, the binaphthyl type compound represented by following General formula (1) is mentioned, for example.

Figure 0005470706
Figure 0005470706

一般式(1)中、Ar〜Arは各々独立に、置換基を有していてもよい5または6員環の芳香族炭化水素環または芳香族複素環の単環基または縮合環基であり、ArとAr、ArとArは、各々結合して環を形成していてもよい。W1およびW2は各々0〜4の整数を表し、W1+W2≧1である。X11およびX12は各々独立に、直接結合または2価の連結基を表す。また、一般式(1)中のナフタレン環は、−(X11NArAr)および−(X12NArAr)に加えて、任意の置換基を有していてもよい。 In the general formula (1), Ar a to Ar d are each independently a 5- or 6-membered aromatic hydrocarbon ring or aromatic heterocyclic monocyclic group or condensed ring group which may have a substituent. Ar a and Ar b , Ar c and Ar d may be bonded to each other to form a ring. W1 and W2 each represent an integer of 0 to 4, and W1 + W2 ≧ 1. X 11 and X 12 each independently represent a direct bond or a divalent linking group. Further, a naphthalene ring in the general formula (1), - (X 11 NAr a Ar b) and - in addition to the (X 12 NAr c Ar d) , may have an arbitrary substituent.

一般式(1)中、Ar〜Arの置換基を有していてもよい5または6員環の芳香族炭化水素環または芳香族複素環の単環基または縮合環基としては、各々独立に、例えば5または6員環の単環または2〜3縮合環であり、具体的には、フェニル基、ナフチル基、アントリル基等の芳香族炭化水素環由来の基;ピリジル基、チエニル基等の芳香族複素環由来の基が挙げられる。これらはいずれも置換基を有していてもよい。 In the general formula (1), as the monocyclic group or condensed ring group of a 5- or 6-membered aromatic hydrocarbon ring or aromatic heterocyclic ring which may have a substituent of Ar a to Ar d , respectively. Independently, for example, a 5- or 6-membered monocyclic ring or a 2-3 condensed ring, specifically, a group derived from an aromatic hydrocarbon ring such as a phenyl group, a naphthyl group, an anthryl group; a pyridyl group, a thienyl group A group derived from an aromatic heterocycle such as Any of these may have a substituent.

Ar〜Arの有することがある置換基としては、Ar〜Arが有することがある置換基として後述するもの、および、アリールアミノ基(即ち、後述の−(NArAr),−(NArAr)に相当する)が挙げられる。 As the substituent that Ar a to Ar d may have, those described later as the substituent that Ar e to Ar l may have, and an arylamino group (that is,-(NAr e Ar f ) described later, -(Corresponding to NAr g Ar h )).

また、ArとAr、および/または、ArとArは、各々結合して環を形成していてもよい。この場合、形成する環の具体例としては、それぞれ、置換基を有することがあるカルバゾール環、フェノキサジン環、イミノスチルベン環、フェノチアジン環、アクリドン環、アクリジン環、イミノジベンジル環等が挙げられる。中でもカルバゾール環が好ましい。 Ar a and Ar b and / or Ar c and Ar d may be bonded to each other to form a ring. In this case, specific examples of the ring to be formed include a carbazole ring, a phenoxazine ring, an iminostilbene ring, a phenothiazine ring, an acridone ring, an acridine ring, an iminodibenzyl ring and the like that may have a substituent. Of these, a carbazole ring is preferred.

一般式(1)において、W1およびW2は各々0〜4の整数を表し、W1+W2≧1である。特に好ましいものは、W1=1かつW2=1である。なお、W1および/またはW2が2以上の場合のアリールアミノ基は、各々同一であっても異なっていても良い。   In the general formula (1), W1 and W2 each represent an integer of 0 to 4, and W1 + W2 ≧ 1. Particularly preferred are W1 = 1 and W2 = 1. The arylamino groups in the case where W1 and / or W2 is 2 or more may be the same or different.

11およびX12は各々独立に直接結合または2価の連結基を表す。2価の連結基としては特に制限はないが、例えば、下記に示すもの等が挙げられる。X11およびX12として、直接結合が特に好ましい。 X 11 and X 12 each independently represent a direct bond or a divalent linking group. Although there is no restriction | limiting in particular as a bivalent coupling group, For example, what is shown below etc. are mentioned. As X 11 and X 12 , a direct bond is particularly preferable.

Figure 0005470706
Figure 0005470706

一般式(1)におけるナフタレン環は、−(X11NArAr)および−(X12NArAr)に加えて、任意の位置に任意の置換基を1個または2個以上有していてもよい。このような置換基として好ましいものは、ハロゲン原子、水酸基、置換基を有していてもよいアルキル基、置換基を有していてもよいアルコキシ基、置換基を有していてもよいアルケニル基、置換基を有していてもよいアルコキシカルボニル基よりなる群から選ばれる1種または2種以上の置換基である。これらのうち、アルキル基が特に好ましい。 In addition to — (X 11 NAr a Ar b ) and — (X 12 NAr c Ar d ), the naphthalene ring in the general formula (1) has one or more arbitrary substituents at an arbitrary position. It may be. Preferred examples of such a substituent include a halogen atom, a hydroxyl group, an alkyl group which may have a substituent, an alkoxy group which may have a substituent, and an alkenyl group which may have a substituent. , One or more substituents selected from the group consisting of optionally substituted alkoxycarbonyl groups. Of these, an alkyl group is particularly preferred.

また、正孔注入性化合物として使用する、分子中に正孔輸送部位を有する高分子化合物としては、例えば芳香族三級アミノ基を構成単位として主骨格に含む高分子化合物が挙げられる。具体例として、以下の一般式(2)で表される構造を繰り返し単位として有する正孔注入性化合物が挙げられる。   Moreover, as a high molecular compound which has a positive hole transport site | part in a molecule | numerator used as a hole injectable compound, the high molecular compound which contains an aromatic tertiary amino group in a main skeleton as a structural unit is mentioned, for example. Specific examples thereof include a hole injecting compound having a structure represented by the following general formula (2) as a repeating unit.

Figure 0005470706
(式(2)中、Ar44〜Ar48は、各々独立して置換基を有していてもよい2価の芳香族環基を示し、R31〜R32は、各々独立して置換基を有していてもよい1価の芳香族環基を示し、Qは直接結合、または下記の連結基から選ばれる。なお、「芳香族環基」とは、「芳香族炭化水素環由来の基」および「芳香族複素環由来の基」の両方を含む。)
Figure 0005470706
(式(3)中、Ar49は置換基を有していてもよい2価の芳香族環基を示し、Ar50は置換基を有していてもよい1価の芳香族環基を示す。)
Figure 0005470706
(In the formula (2), Ar 44 to Ar 48 each independently represents a divalent aromatic ring group which may have a substituent, and R 31 to R 32 each independently represents a substituent. And Q is selected from a direct bond or the following linking group, wherein “aromatic ring group” means “derived from an aromatic hydrocarbon ring” Including "group" and "group derived from an aromatic heterocycle")
Figure 0005470706
(In formula (3), Ar 49 represents a divalent aromatic ring group which may have a substituent, and Ar 50 represents a monovalent aromatic ring group which may have a substituent. .)

一般式(2)において、Ar44〜Ar48は、好ましくは、各々独立して置換基を有していてもよい2価のベンゼン環、ナフタレン環、アントラセン環由来の基またはビフェニル基であり、好ましくはベンゼン環由来の基である。前記置換基としてはハロゲン原子;メチル基、エチル基等の炭素数1〜6の直鎖または分岐のアルキル基;ビニル基等のアルケニル基;メトキシカルボニル基、エトキシカルボニル基等の炭素数2〜7の直鎖または分岐のアルコキシカルボニル基;メトキシ基、エトキシ基等の炭素数1〜6の直鎖または分岐のアルコキシ基;フェノキシ基、ベンジルオキシ基などの炭素数6〜12のアリールオキシ基;ジエチルアミノ基、ジイソプロピルアミノ基等の、炭素数1〜6のアルキル鎖を有するジアルキルアミノ基、などが挙げられる。これらのうち、好ましくは炭素数1〜3のアルキル基が挙げられ、特に好ましくはメチル基が挙げられる。Ar44〜Ar48がいずれも無置換の芳香族環基である場合が、最も好ましい。 In the general formula (2), Ar 44 to Ar 48 are each preferably a group derived from a divalent benzene ring, naphthalene ring, anthracene ring or biphenyl group which may each independently have a substituent, A group derived from a benzene ring is preferred. Examples of the substituent include a halogen atom; a linear or branched alkyl group having 1 to 6 carbon atoms such as a methyl group and an ethyl group; an alkenyl group such as a vinyl group; and a C 2-7 such as a methoxycarbonyl group and an ethoxycarbonyl group. A linear or branched alkoxycarbonyl group of 1 to 6 carbon atoms such as a methoxy group or an ethoxy group; an aryloxy group of 6 to 12 carbon atoms such as a phenoxy group or a benzyloxy group; And a dialkylamino group having an alkyl chain having 1 to 6 carbon atoms such as a diisopropylamino group. Of these, an alkyl group having 1 to 3 carbon atoms is preferable, and a methyl group is particularly preferable. Most preferably, Ar 44 to Ar 48 are each an unsubstituted aromatic ring group.

31およびR32として好ましくは、各々独立して、置換基を有することがあるフェニル基、ナフチル基、アントリル基、ピリジル基、トリアジル基、ピラジル基、キノキサリル基、チエニル基、またはビフェニル基であり、好ましくはフェニル基、ナフチル基またはビフェニル基であり、より好ましくはフェニル基である。該置換基としては、Ar44〜Ar48における芳香族環が有しうる基として、前述した基と同様の基が挙げられる。 R 31 and R 32 are preferably each independently a phenyl group, naphthyl group, anthryl group, pyridyl group, triazyl group, pyrazyl group, quinoxalyl group, thienyl group, or biphenyl group, which may have a substituent. Preferably a phenyl group, a naphthyl group or a biphenyl group, more preferably a phenyl group. Examples of the substituent include a group in which an aromatic ring in Ar 44 to Ar 48 may have include the same groups as previously described.

一般式(3)において、Ar49は、置換基を有していてもよい2価の芳香族環基、好ましくは正孔輸送性の面からは芳香族炭化水素環基であり、具体的には置換基を有していてもよい2価のベンゼン環、ナフタレン環、アントラセン環由来の基、ビフェニレン基、およびターフェニレン基等が挙げられる。また、該置換基としては、Ar44〜Ar48における芳香族環が有しうる基として、前述した基と同様の基が挙げられる。これらのうち、好ましくは炭素数1〜3のアルキル基が挙げられ、特に好ましくはメチル基が挙げられる。 In the general formula (3), Ar 49 is a divalent aromatic ring group which may have a substituent, preferably an aromatic hydrocarbon ring group from the viewpoint of hole transportability. Includes an optionally substituted divalent benzene ring, naphthalene ring, anthracene ring-derived group, biphenylene group, and terphenylene group. Further, examples of the substituent include a group in which an aromatic ring may have at Ar 44 to Ar 48, include the same groups as previously described. Of these, an alkyl group having 1 to 3 carbon atoms is preferable, and a methyl group is particularly preferable.

Ar50は、置換基を有していてもよい芳香族環基、好ましくは正孔輸送性の面からは芳香族炭化水素環基であり、具体的には、置換基を有することがあるフェニル基、ナフチル基、アントリル基、ピリジル基、トリアジル基、ピラジル基、キノキサリル基、チエニル基、およびビフェニル基等が挙げられる。該置換基としては、一般式(2)のAr44〜Ar48における芳香族環が有しうる基として、前述した基と同様の基が挙げられる。 Ar 50 is an aromatic ring group which may have a substituent, preferably an aromatic hydrocarbon ring group from the viewpoint of hole transportability, and specifically, phenyl which may have a substituent. Group, naphthyl group, anthryl group, pyridyl group, triazyl group, pyrazyl group, quinoxalyl group, thienyl group, biphenyl group and the like. As this substituent, the group similar to the group mentioned above is mentioned as a group which the aromatic ring in Ar < 44 > -Ar < 48 > of General formula (2) may have.

一般式(3)において、Ar49およびAr50がいずれも無置換の芳香族環基である場合が、最も好ましい。 In the general formula (3), it is most preferable that Ar 49 and Ar 50 are both unsubstituted aromatic ring groups.

芳香族三級アミノ基を側鎖として含む正孔注入性化合物としては、例えば、以下の一般式(4)および(5)で表される構造を有する繰り返し単位として有する化合物が挙げられる。   Examples of the hole-injecting compound containing an aromatic tertiary amino group as a side chain include compounds having a repeating unit having a structure represented by the following general formulas (4) and (5).

Figure 0005470706
(式(4)中、Ar51は置換基を有していてもよい2価の芳香族環基を示し、Ar52〜Ar53は、各々独立して置換基を有していてもよい1価の芳香族環基を示し、R33〜R35は、各々独立して水素原子、ハロゲン原子、アルキル基、アルコキシ基、置換基を有していてもよい1価の芳香族環基を示す。)
Figure 0005470706
(In formula (4), Ar 51 represents a divalent aromatic ring group which may have a substituent, and Ar 52 to Ar 53 may each independently have a substituent 1. R 33 to R 35 each independently represent a hydrogen atom, a halogen atom, an alkyl group, an alkoxy group, or a monovalent aromatic ring group which may have a substituent. .)

Figure 0005470706
(式(5)中、Ar54〜Ar58は、各々独立して置換基を有していてもよい2価の芳香族環基を示し、R36およびR37は、各々独立して置換基を有していてもよい芳香族環基を示し、Yは直接結合、または下記の連結基から選ばれる。)
Figure 0005470706
Figure 0005470706
(In the formula (5), Ar 54 to Ar 58 each independently represent a divalent aromatic ring group which may have a substituent, and R 36 and R 37 each independently represent a substituent. And Y is selected from a direct bond or the following linking group.)
Figure 0005470706

一般式(4)において、Ar51は、好ましくは、各々置換基を有していてもよい2価のベンゼン環、ナフタレン環、アントラセン環由来の基、ビフェニレン基であり、また、置換基としては、例えば、前述した一般式(2)のAr44〜Ar48における芳香族環が有しうる基として、前述した基と同様の基が挙げられ、好ましい基も同様である。 In the general formula (4), Ar 51 is preferably a divalent benzene ring, a naphthalene ring, a group derived from an anthracene ring, or a biphenylene group each optionally having a substituent. For example, examples of the group that the aromatic ring in Ar 44 to Ar 48 in the general formula (2) described above may have include the same groups as those described above, and preferred groups are also the same.

Ar52およびAr53として、好ましくは、各々独立してフェニル基、ナフチル基、アントリル基、ピリジル基、トリアジル基、ピラジル基、キノキサリル基、チエニル基、およびビフェニル基が挙げられ、これらは置換基を有することがある。該置換基としては例えば、一般式(2)のAr44〜Ar48における芳香族環が有しうる基として、前述した基と同様の基が挙げられ、好ましい基も同様である。 Ar 52 and Ar 53 are preferably each independently a phenyl group, a naphthyl group, an anthryl group, a pyridyl group, a triazyl group, a pyrazyl group, a quinoxalyl group, a thienyl group, and a biphenyl group, and these include a substituent group. May have. Examples of the substituent include the same groups as those described above as the group that the aromatic ring in Ar 44 to Ar 48 of the general formula (2) may have, and preferred groups are also the same.

33〜R35は、好ましくは、各々独立して、水素原子;ハロゲン原子;メチル基、エチル基等の炭素数1〜6の直鎖または分岐のアルキル基;メトキシ基、エトキシ基等の炭素数1〜6の直鎖または分岐のアルコキシ基;フェニル基;またはトリル基である。 R 33 to R 35 are preferably each independently a hydrogen atom; a halogen atom; a linear or branched alkyl group having 1 to 6 carbon atoms such as a methyl group or an ethyl group; a carbon such as a methoxy group or an ethoxy group. A linear or branched alkoxy group of 1 to 6; a phenyl group; or a tolyl group.

一般式(5)において、Ar54〜Ar58は、好ましくは、各々独立して置換基を有することがある2価のベンゼン環、ナフタレン環、アントラセン環由来の基、ビフェニレン基であり、好ましくはベンゼン環由来の基である。該置換基としては、一般式(2)のAr44〜Ar48における芳香族環が有しうる基として、前述した基と同様の基が挙げられ、好ましい基も同様である。 In the general formula (5), Ar 54 to Ar 58 are preferably a divalent benzene ring, a naphthalene ring, a group derived from an anthracene ring, or a biphenylene group, each of which may have a substituent. A group derived from a benzene ring. Examples of the substituent include the same groups as those described above as the groups that the aromatic ring in Ar 44 to Ar 48 of formula (2) may have, and preferred groups are also the same.

36およびR37は、好ましくは、各々独立して置換基を有することがあるフェニル基、ナフチル基、アントリル基、ピリジル基、トリアジル基、ピラジル基、キノキサリル基、チエニル基、またはビフェニル基である。該置換基としては、一般式(2)のAr44〜Ar48における芳香族環が有しうる基として、前述した基と同様の基が挙げられ、好ましい基も同様である。 R 36 and R 37 are each preferably a phenyl group, a naphthyl group, an anthryl group, a pyridyl group, a triazyl group, a pyrazyl group, a quinoxalyl group, a thienyl group, or a biphenyl group, each of which may have a substituent. . Examples of the substituent include the same groups as those described above as the groups that the aromatic ring in Ar 44 to Ar 48 of formula (2) may have, and preferred groups are also the same.

一般式(2)〜(5)で示される構造のうち好ましい例を以下に示すが、何らこれらに限定されない。   Preferred examples of the structures represented by the general formulas (2) to (5) are shown below, but are not limited thereto.

Figure 0005470706
Figure 0005470706

分子中に正孔輸送部位を有する高分子化合物である正孔注入性化合物は、一般式(2)〜(5)のいずれかで表される構造のホモポリマーであることが最も好ましいが、他の任意のモノマーとの共重合体(コポリマー)であってもよい。共重合体である場合、一般式(2)〜(5)で表される構成単位を50モル%以上、特に70モル%以上含有することが好ましい。なお、高分子化合物である正孔注入性材料は、一化合物中に、一般式(2)〜(5)で表される構造を複数種含有していてもよい。また、一般式(2)〜(5)で表される構造を含む化合物を、複数種併用して用いてもよい。一般式(2)〜(5)のうち、特に好ましくは、一般式(2)で表される繰り返し単位からなるホモポリマーである。   The hole injecting compound which is a polymer compound having a hole transporting site in the molecule is most preferably a homopolymer having a structure represented by any one of the general formulas (2) to (5). It may be a copolymer (copolymer) with any monomer. When it is a copolymer, it is preferable to contain 50 mol% or more, especially 70 mol% or more of the structural units represented by the general formulas (2) to (5). In addition, the hole injectable material which is a high molecular compound may contain multiple types of structures represented by the general formulas (2) to (5) in one compound. Moreover, you may use in combination of multiple types of the compound containing the structure represented by General formula (2)-(5). Of the general formulas (2) to (5), a homopolymer composed of a repeating unit represented by the general formula (2) is particularly preferable.

高分子化合物からなる正孔注入性材料としては、さらに、共役系高分子が挙げられる。この目的のために、ポリフルオレン、ポリピロール、ポリアニリン、ポリチオフェン、ポリパラフェニレンビニレンが好適である。   Examples of the hole injecting material made of a polymer compound further include conjugated polymers. For this purpose, polyfluorene, polypyrrole, polyaniline, polythiophene, polyparaphenylene vinylene are preferred.

次に、電子受容性化合物について説明する。
正孔注入層に含有される電子受容性化合物としては、例えば、トリアリールホウ素化合物、ハロゲン化金属、ルイス酸、有機酸、オニウム塩、アリールアミンとハロゲン化金属との塩、アリールアミンとルイス酸との塩よりなる群から選ばれる1種または2種以上の化合物等が挙げられる。これらの電子受容性化合物は、正孔注入性材料と混合して用いられ、正孔注入性材料を酸化することにより正孔注入層の導電率を向上させることができる。
Next, the electron accepting compound will be described.
Examples of the electron accepting compound contained in the hole injection layer include triaryl boron compounds, metal halides, Lewis acids, organic acids, onium salts, salts of arylamines and metal halides, arylamines and Lewis acids. And one or more compounds selected from the group consisting of salts with These electron-accepting compounds are used by mixing with a hole-injecting material, and the conductivity of the hole-injecting layer can be improved by oxidizing the hole-injecting material.

電子受容性化合物として、トリアリールホウ素化合物としては、下記一般式(6)に示したホウ素化合物が挙げられる。一般式(6)で表されるホウ素化合物は、ルイス酸であることが好ましい。また、このホウ素化合物の電子親和力は、通常4eV以上、好ましく、5eV以上である。   Examples of the triarylboron compound as the electron-accepting compound include boron compounds represented by the following general formula (6). The boron compound represented by the general formula (6) is preferably a Lewis acid. The electron affinity of the boron compound is usually 4 eV or more, preferably 5 eV or more.

Figure 0005470706
Figure 0005470706

一般式(6)において、好ましくは、Ar101〜Ar103は、各々独立に、置換基を有することがあるフェニル基、ナフチル基、アントリル基、ビフェニル基等の5または6員環の単環、またはこれらが2〜3個縮合および/または直接結合してなる芳香族炭化水素環基;或いは置換基を有することがあるチエニル基、ピリジル基、トリアジル基、ピラジル基、キノキサリル基等の5または6員環の単環、またはこれらが2〜3個縮合および/または直接結合してなる芳香族複素環基を表す。 In the general formula (6), preferably, Ar 101 to Ar 103 are each independently a monocyclic 5- or 6-membered ring such as a phenyl group, a naphthyl group, an anthryl group, or a biphenyl group that may have a substituent, Or an aromatic hydrocarbon ring group formed by condensing and / or directly bonding 2 to 3 of these; or 5 or 6 such as a thienyl group, pyridyl group, triazyl group, pyrazyl group, quinoxalyl group, etc., which may have a substituent. It represents a single-membered ring or an aromatic heterocyclic group formed by condensing 2 or 3 of these and / or directly bonding them.

Ar101〜Ar103が有することがある置換基としては、例えば、ハロゲン原子;アルキル基;アルケニル基;アルコキシカルボニル基;アルコキシ基;アリールオキシ基;アシル基;ハロアルキル基;シアノ基等が挙げられる。 Examples of the substituent that Ar 101 to Ar 103 may have include a halogen atom; an alkyl group; an alkenyl group; an alkoxycarbonyl group; an alkoxy group; an aryloxy group; an acyl group; a haloalkyl group;

特に、Ar101〜Ar103の少なくとも1つが、ハメット定数(σおよび/またはσ)が正の値を示す置換基であることが好ましく、Ar101〜Ar103が、いずれもハメット定数(σおよび/またはσ)が正の値を示す置換基であることが特に好ましい。このような、電子吸引性の置換基を有することにより、これらの化合物の電子受容性が向上する。また、Ar101〜Ar103がいずれも、ハロゲン原子で置換された芳香族炭化水素基または芳香族複素環基であることがさらに好ましい。 In particular, at least one of Ar 101 to Ar 103 is preferably a substituent having a positive Hammett constant (σ m and / or σ p ), and Ar 101 to Ar 103 are all Hammet constants (σ It is particularly preferred that m and / or σ p ) is a substituent showing a positive value. By having such an electron-withdrawing substituent, the electron acceptability of these compounds is improved. Ar 101 to Ar 103 are more preferably an aromatic hydrocarbon group or an aromatic heterocyclic group substituted with a halogen atom.

一般式(6)で表されるホウ素化合物の好ましい具体例を以下の6−1〜6−17に示すが、これらに限定するものではない。   Although the preferable specific example of the boron compound represented by General formula (6) is shown to the following 6-1 to 6-17, it is not limited to these.

Figure 0005470706
Figure 0005470706

Figure 0005470706
Figure 0005470706

これらの中、以下に示す化合物が特に好ましい。   Of these, the following compounds are particularly preferred.

Figure 0005470706
Figure 0005470706

電子受容性化合物として、オニウム塩としては、WO2005/089024号公報に記載のものが挙げられ、その好適例も同様であるが、特に好ましくは以下の化合物である。   Examples of the electron-accepting compound include onium salts described in WO2005 / 089024, and preferred examples thereof are the same, but the following compounds are particularly preferred.

Figure 0005470706
Figure 0005470706

正孔注入層3の膜厚は、通常5nm以上、好ましくは10nm以上、また、通常1000nm以下、好ましくは500nm以下の範囲である。   The thickness of the hole injection layer 3 is usually 5 nm or more, preferably 10 nm or more, and usually 1000 nm or less, preferably 500 nm or less.

なお、正孔注入層3における電子受容性化合物の正孔注入性化合物に対する含有量は、通常0.1モル%以上、好ましくは1モル%以上である。但し、通常100モル%以下、好ましくは40モル%以下である。   The content of the electron-accepting compound in the hole-injecting layer 3 with respect to the hole-injecting compound is usually 0.1 mol% or more, preferably 1 mol% or more. However, it is usually 100 mol% or less, preferably 40 mol% or less.

[4]正孔輸送層
正孔輸送層4は、陽極2、正孔注入層3の順に注入された正孔を有機発光層5に注入する機能を有すると共に、発光層5から電子が陽極2側に注入されることによる発光効率の低下を抑制する機能を有する。
[4] Hole transport layer The hole transport layer 4 has a function of injecting holes injected in the order of the anode 2 and the hole injection layer 3 into the organic light emitting layer 5, and electrons from the light emitting layer 5 are anode 2. It has a function of suppressing a decrease in luminous efficiency caused by being injected into the side.

この機能を発現するため、正孔輸送層4は、本発明の正孔輸送材料を重合させて得られる高分子化合物よりなる層であることが好ましい。   In order to exhibit this function, the hole transport layer 4 is preferably a layer made of a polymer compound obtained by polymerizing the hole transport material of the present invention.

この正孔輸送層4は、好ましくは、本発明の有機電界発光素子用組成物を用いて、前記[成膜方法]に記載の方法で形成される。
その膜厚は、通常5nm以上、好ましくは10nm以上、また、通常1000nm以下、好ましくは500nm以下の範囲である。
The hole transport layer 4 is preferably formed by the method described in [Film Forming Method] using the composition for organic electroluminescent elements of the present invention.
The film thickness is usually in the range of 5 nm or more, preferably 10 nm or more, and usually 1000 nm or less, preferably 500 nm or less.

[5]有機発光層
正孔輸送層4の上には、通常有機発光層5が設けられる。有機発光層5は、電界を与えられた電極間において、陽極2から正孔注入層3および正孔輸送層4を通じて注入された正孔と、陰極9から電子注入層8,正孔阻止層6を通じて注入された電子との再結合により励起されて、主たる発光源となる層である。
[5] Organic Light-Emitting Layer The organic light-emitting layer 5 is usually provided on the hole transport layer 4. The organic light-emitting layer 5 includes holes injected from the anode 2 through the hole injection layer 3 and the hole transport layer 4 between the electrodes to which an electric field is applied, and from the cathode 9 to the electron injection layer 8 and the hole blocking layer 6. It is a layer that is excited by recombination with electrons injected through and becomes a main light emitting source.

有機発光層5は、少なくとも、発光の性質を有する材料(発光材料)を含有するとともに、好ましくは、正孔輸送の性質を有する材料(正孔輸送性化合物)、或いは、電子輸送の性質を有する材料(電子輸送性化合物)とを含有する。更に、有機発光層5は、本発明の趣旨を逸脱しない範囲で、その他の成分を含有していてもよい。これらの材料としては、後述のように湿式成膜法で有機発光層5を形成する観点から、何れも低分子系の材料を使用することが好ましい。   The organic light emitting layer 5 contains at least a material having a light emitting property (light emitting material), and preferably has a material having a hole transporting property (hole transporting compound) or an electron transporting property. Material (electron transporting compound). Furthermore, the organic light emitting layer 5 may contain other components without departing from the spirit of the present invention. As these materials, from the viewpoint of forming the organic light emitting layer 5 by a wet film formation method as described later, it is preferable to use any low molecular weight materials.

発光材料としては、任意の公知の材料を適用可能である。例えば、蛍光発光材料であってもよく、燐光発光材料であってもよいが、内部量子効率の観点から、好ましくは燐光発光材料である。   Any known material can be applied as the light emitting material. For example, a fluorescent material or a phosphorescent material may be used, but a phosphorescent material is preferable from the viewpoint of internal quantum efficiency.

なお、溶剤への溶解性を向上させる目的で、発光材料の分子の対称性や剛性を低下させたり、或いはアルキル基などの親油性置換基を導入したりすることも、重要である。   In order to improve the solubility in a solvent, it is also important to reduce the symmetry and rigidity of the molecules of the luminescent material, or to introduce a lipophilic substituent such as an alkyl group.

青色発光を与える蛍光色素としては、ペリレン、ピレン、アントラセン、クマリン、p−ビス(2−フェニルエテニル)ベンゼンおよびそれらの誘導体等が挙げられる。緑色蛍光色素としては、キナクリドン誘導体、クマリン誘導体等が挙げられる。黄色蛍光色素としては、ルブレン、ペリミドン誘導体等が挙げられる。赤色蛍光色素としては、DCM(4-(dicyanomethylene)-2-methyl-6-(p-dimethylaminostyryl)-4H-pyran)系化合物、ベンゾピラン誘導体、ローダミン誘導体、ベンゾチオキサンテン誘導体、アザベンゾチオキサンテン等が挙げられる。   Examples of fluorescent dyes that emit blue light include perylene, pyrene, anthracene, coumarin, p-bis (2-phenylethenyl) benzene, and derivatives thereof. Examples of the green fluorescent dye include quinacridone derivatives and coumarin derivatives. Examples of yellow fluorescent dyes include rubrene and perimidone derivatives. Red fluorescent dyes include DCM (4- (dicyanomethylene) -2-methyl-6- (p-dimethylaminostyryl) -4H-pyran) compounds, benzopyran derivatives, rhodamine derivatives, benzothioxanthene derivatives, azabenzothioxanthene, etc. Can be mentioned.

燐光発光材料としては、例えば、長周期型周期表(以下、特に断り書きの無い限り「周期表」という場合には、長周期型周期表を指すものとする。)第7〜11族から選ばれる金属を含む有機金属錯体が挙げられる。   As the phosphorescent material, for example, a long-period type periodic table (hereinafter referred to as a long-period type periodic table when referred to as “periodic table” unless otherwise specified) is selected from the seventh to eleventh groups. And an organometallic complex containing a metal.

燐光性有機金属錯体に含まれる、周期表第7〜11族から選ばれる金属として、好ましくは、ルテニウム、ロジウム、パラジウム、銀、レニウム、オスミウム、イリジウム、白金、金等が挙げられる。これらの有機金属錯体として、好ましくは下記式(III)または式(IV)で表される化合物が挙げられる。   Preferred examples of the metal selected from Groups 7 to 11 of the periodic table contained in the phosphorescent organometallic complex include ruthenium, rhodium, palladium, silver, rhenium, osmium, iridium, platinum, and gold. Preferred examples of these organometallic complexes include compounds represented by the following formula (III) or formula (IV).

ML(q−j)L′ (III)
(式(III)中、Mは金属を表し、qは上記金属の価数を表す。また、LおよびL′は二座配位子を表す。jは0、1または2の数を表す。)
ML (q−j) L ′ j (III)
(In formula (III), M represents a metal, q represents the valence of the metal, L and L ′ represent a bidentate ligand, and j represents a number of 0, 1 or 2. )

Figure 0005470706
(式(IV)中、Mは金属を表し、Tは炭素原子または窒素原子を表す。R92〜R95は、それぞれ独立に置換基を表す。但し、Tが窒素原子の場合は、R94およびR95は無い。)
Figure 0005470706
(In the formula (IV), M 7 represents a metal, T represents a carbon atom or a nitrogen atom. R 92 to R 95 each independently represents a substituent. However, when T is a nitrogen atom, R 7 94 and R 95 are not.)

以下、まず、式(III)で表される化合物について説明する。
式(III)中、Mは任意の金属を表し、好ましいものの具体例としては、周期表第7〜11族から選ばれる金属として前述した金属が挙げられる。
Hereinafter, the compound represented by the formula (III) will be described first.
In formula (III), M represents an arbitrary metal, and specific examples of preferable ones include the metals described above as metals selected from Groups 7 to 11 of the periodic table.

また、式(III)中、二座配位子Lは、以下の部分構造を有する配位子を示す。

Figure 0005470706
(上記Lの部分構造において、環A1は、置換基を有していてもよい、芳香族炭化水素基または芳香族複素環基を表す。) Moreover, in formula (III), the bidentate ligand L shows the ligand which has the following partial structures.
Figure 0005470706
(In the partial structure of L, ring A1 represents an aromatic hydrocarbon group or an aromatic heterocyclic group which may have a substituent.)

該芳香族炭化水素基としては、5または6員環の単環または2〜5縮合環が挙げられる。具体例としては、ベンゼン環、ナフタレン環、アントラセン環、フェナントレン環、ペリレン環、テトラセン環、ピレン環、ベンズピレン環、クリセン環、トリフェニレン環、アセナフテン環、フルオランテン環、フルオレン環由来の1価の基などが挙げられる。   Examples of the aromatic hydrocarbon group include a 5- or 6-membered monocyclic ring or a 2-5 condensed ring. Specific examples include monovalent groups derived from a benzene ring, naphthalene ring, anthracene ring, phenanthrene ring, perylene ring, tetracene ring, pyrene ring, benzpyrene ring, chrysene ring, triphenylene ring, acenaphthene ring, fluoranthene ring, fluorene ring, etc. Is mentioned.

該芳香族複素環基としては、5または6員環の単環または2〜4縮合環が挙げられる。具体例としては、フラン環、ベンゾフラン環、チオフェン環、ベンゾチオフェン環、ピロール環、ピラゾール環、イミダゾール環、オキサジアゾール環、インドール環、カルバゾール環、ピロロイミダゾール環、ピロロピラゾール環、ピロロピロール環、チエノピロール環、チエノチオフェン環、フロピロール環、フロフラン環、チエノフラン環、ベンゾイソオキサゾール環、ベンゾイソチアゾール環、ベンゾイミダゾール環、ピリジン環、ピラジン環、ピリダジン環、ピリミジン環、トリアジン環、キノリン環、イソキノリン環、シノリン環、キノキサリン環、フェナントリジン環、ベンゾイミダゾール環、ペリミジン環、キナゾリン環、キナゾリノン環、アズレン環由来の1価の基などが挙げられる。   Examples of the aromatic heterocyclic group include a 5- or 6-membered monocyclic ring or a 2-4 condensed ring. Specific examples include furan ring, benzofuran ring, thiophene ring, benzothiophene ring, pyrrole ring, pyrazole ring, imidazole ring, oxadiazole ring, indole ring, carbazole ring, pyrroloimidazole ring, pyrrolopyrazole ring, pyrrolopyrrole ring, Thienopyrrole ring, thienothiophene ring, furopyrrole ring, furofuran ring, thienofuran ring, benzoisoxazole ring, benzisothiazole ring, benzimidazole ring, pyridine ring, pyrazine ring, pyridazine ring, pyrimidine ring, triazine ring, quinoline ring, isoquinoline ring , Sinoline ring, quinoxaline ring, phenanthridine ring, benzimidazole ring, perimidine ring, quinazoline ring, quinazolinone ring, monovalent group derived from an azulene ring, and the like.

また、上記Lの部分構造において、環A2は、置換基を有していてもよい、含窒素芳香族複素環基を表す。   In the partial structure of L, ring A2 represents a nitrogen-containing aromatic heterocyclic group which may have a substituent.

該含窒素芳香族複素環基としては、5または6員環の単環または2〜4縮合環由来の基が挙げられる。具体例としては、ピロール環、ピラゾール環、イミダゾール環、オキサジアゾール環、インドール環、カルバゾール環、ピロロイミダゾール環、ピロロピラゾール環、ピロロピロール環、チエノピロール環、フロピロール環、チエノフラン環、ベンゾイソオキサゾール環、ベンゾイソチアゾール環、ベンゾイミダゾール環、ピリジン環、ピラジン環、ピリダジン環、ピリミジン環、トリアジン環、キノリン環、イソキノリン環、キノキサリン環、フェナントリジン環、ベンゾイミダゾール環、ペリミジン環、キナゾリン環、キナゾリノン環由来の1価の基などが挙げられる。   Examples of the nitrogen-containing aromatic heterocyclic group include groups derived from a 5- or 6-membered monocyclic ring or a 2-4 condensed ring. Specific examples include pyrrole ring, pyrazole ring, imidazole ring, oxadiazole ring, indole ring, carbazole ring, pyrroloimidazole ring, pyrrolopyrazole ring, pyrrolopyrrole ring, thienopyrrole ring, furopyrrole ring, thienofuran ring, benzoisoxazole ring. , Benzisothiazole ring, benzimidazole ring, pyridine ring, pyrazine ring, pyridazine ring, pyrimidine ring, triazine ring, quinoline ring, isoquinoline ring, quinoxaline ring, phenanthridine ring, benzimidazole ring, perimidine ring, quinazoline ring, quinazolinone Examples thereof include a monovalent group derived from a ring.

環A1または環A2がそれぞれ有していてもよい置換基の例としては、ハロゲン原子;アルキル基;アルケニル基;アルコキシカルボニル基;アルコキシ基;アリールオキシ基;ジアルキルアミノ基;ジアリールアミノ基;カルバゾリル基;アシル基;ハロアルキル基;シアノ基;芳香族炭化水素基等が挙げられる。   Examples of the substituent that each of ring A1 and ring A2 may have include a halogen atom; an alkyl group; an alkenyl group; an alkoxycarbonyl group; an alkoxy group; an aryloxy group; a dialkylamino group; Acyl group; haloalkyl group; cyano group; aromatic hydrocarbon group and the like.

また、式(III)中、二座配位子L′は、以下の部分構造を有する配位子を示す。但し、以下の式において、「Ph」はフェニル基を表す。   In the formula (III), the bidentate ligand L ′ represents a ligand having the following partial structure. However, in the following formulae, “Ph” represents a phenyl group.

Figure 0005470706
Figure 0005470706

中でも、L′としては、錯体の安定性の観点から、以下に挙げる配位子が好ましい。   Among these, as L ′, the following ligands are preferable from the viewpoint of the stability of the complex.

Figure 0005470706
Figure 0005470706

式(III)で表される化合物として、更に好ましくは、下記式(IIIa),(IIIb),(IIIc)で表される化合物が挙げられる。   More preferable examples of the compound represented by the formula (III) include compounds represented by the following formulas (IIIa), (IIIb), and (IIIc).

Figure 0005470706
(式(IIIa)中、Mは、Mと同様の金属を表し、wは、上記金属の価数を表し、環A1は、置換基を有していてもよい芳香族炭化水素基を表し、環A2は、置換基を有していてもよい含窒素芳香族複素環基を表す。)
Figure 0005470706
(In formula (IIIa), M 4 represents the same metal as M, w represents the valence of the metal, and ring A1 represents an aromatic hydrocarbon group which may have a substituent. Ring A2 represents a nitrogen-containing aromatic heterocyclic group which may have a substituent.

Figure 0005470706
(式(IIIb)中、Mは、Mと同様の金属を表し、wは、上記金属の価数を表し、環A1は、置換基を有していてもよい芳香族炭化水素基または芳香族複素環基を表し、環A2は、置換基を有していてもよい含窒素芳香族複素環基を表す。)
Figure 0005470706
(In formula (IIIb), M 5 represents the same metal as M, w represents the valence of the metal, and ring A1 represents an aromatic hydrocarbon group or aromatic group which may have a substituent. Represents a heterocyclic group, and ring A2 represents a nitrogen-containing aromatic heterocyclic group which may have a substituent.)

Figure 0005470706
(式(IIIc)中、Mは、Mと同様の金属を表し、wは、上記金属の価数を表し、jは、0、1または2を表し、環A1および環A1′は、それぞれ独立に、置換基を有していてもよい芳香族炭化水素基または芳香族複素環基を表し、環A2および環A2′は、それぞれ独立に、置換基を有していてもよい含窒素芳香族複素環基を表す。)
Figure 0005470706
(In formula (IIIc), M 6 represents the same metal as M, w represents the valence of the metal, j represents 0, 1 or 2, and ring A1 and ring A1 ′ each represent Independently represents an optionally substituted aromatic hydrocarbon group or aromatic heterocyclic group, and ring A2 and ring A2 ′ are each independently a nitrogen-containing aromatic optionally having a substituent. Represents a heterocyclic group.)

上記式(IIIa),(IIIb),(IIIc)において、環A1および環A1′の好ましい
例としては、フェニル基、ビフェニル基、ナフチル基、アントリル基、チエニル基、フリル基、ベンゾチエニル基、ベンゾフリル基、ピリジル基、キノリル基、イソキノリル基、カルバゾリル基等が挙げられる。
In the above formulas (IIIa), (IIIb) and (IIIc), preferred examples of ring A1 and ring A1 ′ include phenyl group, biphenyl group, naphthyl group, anthryl group, thienyl group, furyl group, benzothienyl group, benzofuryl group. Group, pyridyl group, quinolyl group, isoquinolyl group, carbazolyl group and the like.

上記式(IIIa)〜(IIIc)において、環A2および環A2′の好ましい例としては、ピリジル基、ピリミジル基、ピラジル基、トリアジル基、ベンゾチアゾール基、ベンゾオキサゾール基、ベンゾイミダゾール基、キノリル基、イソキノリル基、キノキサリル基、フェナントリジル基等が挙げられる。   In the above formulas (IIIa) to (IIIc), preferred examples of ring A2 and ring A2 ′ include pyridyl group, pyrimidyl group, pyrazyl group, triazyl group, benzothiazole group, benzoxazole group, benzimidazole group, quinolyl group, An isoquinolyl group, a quinoxalyl group, a phenanthridyl group, and the like can be given.

上記式(IIIa)〜(IIIc)で表される化合物が有していてもよい置換基としては、ハロゲン原子;アルキル基;アルケニル基;アルコキシカルボニル基;アルコキシ基;アリールオキシ基;ジアルキルアミノ基;ジアリールアミノ基;カルバゾリル基;アシル基;ハロアルキル基;シアノ基等が挙げられる。   Examples of the substituent that the compounds represented by the formulas (IIIa) to (IIIc) may have include a halogen atom; an alkyl group; an alkenyl group; an alkoxycarbonyl group; an alkoxy group; an aryloxy group; A diarylamino group; a carbazolyl group; an acyl group; a haloalkyl group; a cyano group, and the like.

なお、これら置換基は互いに連結して環を形成してもよい。具体例としては、環A1が有する置換基と環A2が有する置換基とが結合するか、または、環A1′が有する置換基と環A2′が有する置換基とが結合するかして、一つの縮合環を形成してもよい。このような縮合環としては、7,8−ベンゾキノリン基等が挙げられる。   These substituents may be connected to each other to form a ring. As a specific example, a substituent of the ring A1 and a substituent of the ring A2 are bonded, or a substituent of the ring A1 ′ and a substituent of the ring A2 ′ are bonded. Two fused rings may be formed. Examples of such a condensed ring include a 7,8-benzoquinoline group.

中でも、環A1、環A1′、環A2および環A2′の置換基として、より好ましくは、アルキル基、アルコキシ基、芳香族炭化水素基、シアノ基、ハロゲン原子、ハロアルキル基、ジアリールアミノ基、カルバゾリル基が挙げられる。   Among these, as a substituent for ring A1, ring A1 ′, ring A2 and ring A2 ′, an alkyl group, alkoxy group, aromatic hydrocarbon group, cyano group, halogen atom, haloalkyl group, diarylamino group, carbazolyl are more preferable. Groups.

また、式(IIIa)〜(IIIc)におけるM〜Mの好ましい例としては、ルテニウム、ロジウム、パラジウム、銀、レニウム、オスミウム、イリジウム、白金または金が挙げられる。 In addition, preferable examples of M 4 to M 6 in the formulas (IIIa) to (IIIc) include ruthenium, rhodium, palladium, silver, rhenium, osmium, iridium, platinum, or gold.

上記式(III)および(IIIa)〜(IIIc)で示される有機金属錯体の具体例を以下に示すが、下記の化合物に限定されるものではない。   Specific examples of the organometallic complexes represented by the above formulas (III) and (IIIa) to (IIIc) are shown below, but are not limited to the following compounds.

Figure 0005470706
Figure 0005470706
Figure 0005470706
Figure 0005470706
Figure 0005470706
Figure 0005470706

上記式(III)で表される有機金属錯体の中でも、特に、配位子Lおよび/またはL′として2−アリールピリジン系配位子、即ち、2−アリールピリジン、これに任意の置換基が結合したもの、および、これに任意の基が縮合してなるものを有する化合物が好ましい。   Among the organometallic complexes represented by the above formula (III), in particular, as the ligand L and / or L ′, a 2-arylpyridine-based ligand, that is, 2-arylpyridine, there is an optional substituent. The compound which has what was couple | bonded and the thing formed by arbitrary groups condensing to this is preferable.

また、国際特許公開第2005/019373号明細書に記載の化合物も、発光材料として使用することが可能である。   The compounds described in International Patent Publication No. 2005/019373 can also be used as the light emitting material.

次に、式(IV)で表される化合物について説明する。
式(IV)中、Mは金属を表す。具体例としては、周期表第7〜11族から選ばれる金属として前述した金属が挙げられる。中でも好ましくは、ルテニウム、ロジウム、パラジウム、銀、レニウム、オスミウム、イリジウム、白金または金が挙げられ、特に好ましくは、白金、パラジウム等の2価の金属が挙げられる。
Next, the compound represented by formula (IV) will be described.
In formula (IV), M 7 represents a metal. Specific examples include the metals described above as the metal selected from Groups 7 to 11 of the periodic table. Among these, ruthenium, rhodium, palladium, silver, rhenium, osmium, iridium, platinum or gold is preferable, and divalent metals such as platinum and palladium are particularly preferable.

また、式(IV)において、R92およびR93は、それぞれ独立に、水素原子、ハロゲン原子、アルキル基、アラルキル基、アルケニル基、シアノ基、アミノ基、アシル基、アルコキシカルボニル基、カルボキシル基、アルコキシ基、アルキルアミノ基、アラルキルアミノ基、ハロアルキル基、水酸基、アリールオキシ基、芳香族炭化水素基または芳香族複素環基を表す。 In the formula (IV), R 92 and R 93 each independently represent a hydrogen atom, a halogen atom, an alkyl group, an aralkyl group, an alkenyl group, a cyano group, an amino group, an acyl group, an alkoxycarbonyl group, a carboxyl group, Represents an alkoxy group, an alkylamino group, an aralkylamino group, a haloalkyl group, a hydroxyl group, an aryloxy group, an aromatic hydrocarbon group or an aromatic heterocyclic group;

更に、Tが炭素原子の場合、R94およびR95は、それぞれ独立に、R92およびR93と同様の例示物で表される置換基を表す。また、Tが窒素原子の場合は、R94およびR95は無い。 Further, when T is carbon atom, R 94 and R 95 each independently represents a substituent represented by the same exemplary compounds and R 92 and R 93. Also, if T is a nitrogen atom, R 94 and R 95 is not.

また、R92〜R95は、更に置換基を有していてもよい。置換基を有する場合、その種類に特に制限はなく、任意の基を置換基とすることができる。
更に、R92〜R95のうち任意の2つ以上の基が互いに連結して環を形成してもよい。
R 92 to R 95 may further have a substituent. When it has a substituent, there is no restriction | limiting in particular in the kind, Arbitrary groups can be made into a substituent.
Further, any two or more groups of R 92 to R 95 may be connected to each other to form a ring.

式(IV)で表される有機金属錯体の具体例(T−1、T−10〜T−15)を以下に示すが、下記の例示物に限定されるものではない。また、以下の化学式において、Meはメチル基を表し、Etはエチル基を表す。   Specific examples (T-1, T-10 to T-15) of the organometallic complex represented by the formula (IV) are shown below, but are not limited to the following examples. In the following chemical formulae, Me represents a methyl group, and Et represents an ethyl group.

Figure 0005470706
Figure 0005470706

本発明において、発光材料として用いる化合物の分子量は、通常10000以下、好ましくは5000以下、より好ましくは4000以下、更に好ましくは3000以下、また、通常100以上、好ましくは200以上、より好ましくは300以上、更に好ましくは400以上の範囲である。分子量が100未満であると、耐熱性が著しく低下したり、ガス発生の原因となったり、膜を形成した際の膜質の低下を招いたり、或いはマイグレーションなどによる有機電界発光素子のモルフォロジー変化を来したりするため、好ましくない。分子量が10000を超えると、有機化合物の精製が困難となったり、溶媒に溶解させる際に時間を要する可能性が高いため、好ましくない。   In the present invention, the molecular weight of the compound used as the light emitting material is usually 10,000 or less, preferably 5000 or less, more preferably 4000 or less, still more preferably 3000 or less, and usually 100 or more, preferably 200 or more, more preferably 300 or more. More preferably, the range is 400 or more. If the molecular weight is less than 100, the heat resistance is remarkably reduced, gas is generated, the film quality is deteriorated when the film is formed, or the morphology of the organic electroluminescent element is changed due to migration or the like. This is not preferable. If the molecular weight exceeds 10,000, it is not preferable because it is difficult to purify the organic compound or it takes time to dissolve the organic compound in a solvent.

なお、発光層は、上に説明した各種の発光材料のうち、何れか一種を単独で含有していてもよく、二種以上を任意の組み合わせおよび比率で併有していてもよい。   The light emitting layer may contain any one of the various light emitting materials described above alone, or may contain two or more kinds in any combination and ratio.

低分子系の正孔輸送性化合物の例としては、前述の正孔輸送層の正孔輸送性化合物として例示した各種の化合物の他、4,4’−ビス[N−(1−ナフチル)−N−フェニルアミノ]ビフェニルに代表される、2個以上の3級アミンを含み2個以上の縮合芳香族環が窒素原子に置換した芳香族ジアミン(特開平5−234681号公報)、4,4’,4”−トリス(1−ナフチルフェニルアミノ)トリフェニルアミン等のスターバースト構造を有する芳香族アミン化合物(Journal of Luminescence,1997年,Vol.72-74,pp.985)、トリフェニルアミンの四量体から成る芳香族アミン化合物(Chemical Communications,1996年,pp.2175)、2,2’,7,7’−テトラキス−(ジフェニルアミノ)−9,9’−スピロビフルオレン等のスピロ化合物(Synthetic Metals,1997年,Vol.91,pp.209)等が挙げられる。   Examples of the low molecular weight hole transporting compound include various compounds exemplified as the hole transporting compound of the hole transporting layer, and 4,4′-bis [N- (1-naphthyl)- N-phenylamino] biphenyl, an aromatic diamine containing two or more tertiary amines and having two or more condensed aromatic rings substituted with nitrogen atoms (Japanese Patent Laid-Open No. 5-234811), 4,4 An aromatic amine compound having a starburst structure such as', 4 "-tris (1-naphthylphenylamino) triphenylamine (Journal of Luminescence, 1997, Vol.72-74, pp.985), Spiro compounds such as aromatic amine compounds comprising tetramers (Chemical Communications, 1996, pp. 2175), 2,2 ′, 7,7′-tetrakis- (diphenylamino) -9,9′-spirobifluorene (Synthetic Metals, 1 997, Vol.91, pp.209).

低分子系の電子輸送性化合物の例としては、2,5−ビス(1−ナフチル)−1,3,4−オキサジアゾール(BND)や、2,5−ビス(6’−(2’,2”−ビピリジル))−1,1−ジメチル−3,4−ジフェニルシロール(PyPySPyPy)や、バソフェナントロリン(BPhen)や、2,9−ジメチル−4,7−ジフェニル−1,10−フェナントロリン(BCP、バソクプロイン)、2−(4−ビフェニリル)−5−(p−ターシャルブチルフェニル)−1,3,4−オキサジアゾール(tBu−PBD)や、4,4’−ビス(9−カルバゾール)−ビフェニル(CBP)等がある。   Examples of low molecular weight electron transport compounds include 2,5-bis (1-naphthyl) -1,3,4-oxadiazole (BND) and 2,5-bis (6 ′-(2 ′). , 2 "-bipyridyl))-1,1-dimethyl-3,4-diphenylsilole (PyPySPyPy), bathophenanthroline (BPhen), 2,9-dimethyl-4,7-diphenyl-1,10-phenanthroline ( BCP, bathocuproine), 2- (4-biphenylyl) -5- (p-tertiarybutylphenyl) -1,3,4-oxadiazole (tBu-PBD), 4,4′-bis (9-carbazole) ) -Biphenyl (CBP) and the like.

これら正孔輸送性化合物や電子輸送性化合物は発光層においてホスト材料として使用されることが好ましいが、ホスト材料として具体的には以下のような化合物を使用することができる。   These hole transporting compounds and electron transporting compounds are preferably used as host materials in the light-emitting layer, but specifically, the following compounds can be used as host materials.

Figure 0005470706
Figure 0005470706

有機発光層5の形成法としては、湿式成膜法、真空蒸着法が挙げられるが、上述したように、均質で欠陥がない薄膜を容易に得られる点や、形成のための時間が短くて済む点、更には、本発明の有機化合物による正孔輸送層4の不溶化の効果を享受できる点から、湿式成膜法が好ましい。湿式成膜法により有機発光層5を形成する場合、上述の材料を適切な溶剤に溶解させて塗布溶液を調製し、それを上述の形成後の正孔輸送層4の上に塗布・成膜し、乾燥して溶剤を除去することにより形成する。その形成方法としては、前記正孔輸送層の形成方法と同様である。   Examples of the method for forming the organic light emitting layer 5 include a wet film forming method and a vacuum evaporation method. As described above, a homogeneous and defect-free thin film can be easily obtained, and the time for formation is short. The wet film-forming method is preferable from the viewpoint that the effect of insolubilization of the hole transport layer 4 by the organic compound of the present invention can be enjoyed. When the organic light emitting layer 5 is formed by a wet film formation method, the above-described material is dissolved in an appropriate solvent to prepare a coating solution, which is applied and formed on the hole transport layer 4 after the above formation. And drying to remove the solvent. The formation method is the same as the formation method of the hole transport layer.

有機発光層5の膜厚は、通常3nm以上、好ましくは5nm以上、また、通常200nm以下、好ましくは100nm以下の範囲である。   The film thickness of the organic light emitting layer 5 is usually 3 nm or more, preferably 5 nm or more, and usually 200 nm or less, preferably 100 nm or less.

[6]正孔阻止層
図1では、有機発光層5と電子輸送層7の間に、正孔阻止層6が設けられているが、正孔阻止層6はこれを省略してもよい。
正孔阻止層6は、有機発光層5の上に、有機発光層5の陰極9側の界面に接するように積層されるが、陽極2から移動してくる正孔が陰極9に到達するのを阻止する役割と、陰極9から注入された電子を効率よく有機発光層5の方向に輸送することができる化合物より形成される。
[6] Hole blocking layer In FIG. 1, the hole blocking layer 6 is provided between the organic light emitting layer 5 and the electron transport layer 7, but the hole blocking layer 6 may be omitted.
The hole blocking layer 6 is laminated on the organic light emitting layer 5 so as to be in contact with the interface of the organic light emitting layer 5 on the cathode 9 side, but the holes moving from the anode 2 reach the cathode 9. And a compound capable of efficiently transporting electrons injected from the cathode 9 toward the organic light emitting layer 5.

正孔阻止層6を構成する材料に求められる物性としては、電子移動度が高く正孔移動度が低いこと、エネルギーギャップ(HOMO、LUMOの差)が大きいこと、励起三重項準位(T1)が高いことが挙げられる。   The physical properties required for the material constituting the hole blocking layer 6 include high electron mobility, low hole mobility, a large energy gap (difference between HOMO and LUMO), and excited triplet level (T1). Is high.

このような条件を満たす正孔阻止材料としては、ビス(2−メチル−8−キノリノラト),(フェノラト)アルミニウム、ビス(2−メチル−8−キノリノラト),(トリフェニルシラノラト)アルミニウム等の混合配位子錯体、ビス(2−メチル−8−キノラト)アルミニウム−μ−オキソ−ビス−(2−メチル−8−キノリラト)アルミニウム二核金属錯体等の金属錯体、ジスチリルビフェニル誘導体等のスチリル化合物(特開平11−242996号公報)、3−(4−ビフェニルイル)−4−フェニル−5(4−tert−ブチルフェニル)−1,2,4−トリアゾール等のトリアゾール誘導体(特開平7−41759号公報)、バソクプロイン等のフェナントロリン誘導体(特開平10−79297号公報)が挙げられる。更に、国際公開第2005−022962号公報に記載の2,4,6位が置換されたピリジン環を少なくとも1個有する化合物も、正孔阻止材料として好ましい。   As hole blocking materials satisfying such conditions, mixed materials such as bis (2-methyl-8-quinolinolato), (phenolato) aluminum, bis (2-methyl-8-quinolinolato), (triphenylsilanolato) aluminum, etc. Ligand complexes, metal complexes such as bis (2-methyl-8-quinolato) aluminum-μ-oxo-bis- (2-methyl-8-quinolinato) aluminum binuclear metal complexes, and styryl compounds such as distyrylbiphenyl derivatives (JP-A-11-242996), triazole derivatives such as 3- (4-biphenylyl) -4-phenyl-5 (4-tert-butylphenyl) -1,2,4-triazole (JP-A-7-41759) And phenanthroline derivatives such as bathocuproine (Japanese Patent Laid-Open No. 10-79297). Furthermore, compounds having at least one pyridine ring substituted at the 2,4,6-position described in International Publication No. 2005-022962 are also preferable as the hole blocking material.

具体的には以下に記載の化合物が挙げられる。

Figure 0005470706
Specific examples include the compounds described below.
Figure 0005470706

正孔阻止層6も、正孔注入層3や有機発光層5と同様、湿式成膜法を用いて形成することもできるが、通常は真空蒸着法により形成される。真空蒸着法の手順の詳細は、後述の電子注入層8の場合と同様である。   Similarly to the hole injection layer 3 and the organic light emitting layer 5, the hole blocking layer 6 can also be formed by a wet film formation method, but is usually formed by a vacuum deposition method. The details of the procedure of the vacuum deposition method are the same as those of the electron injection layer 8 described later.

正孔阻止層6の膜厚は、通常0.5nm以上、好ましくは1nm以上、また、通常100nm以下、好ましくは50nm以下である。   The film thickness of the hole blocking layer 6 is usually 0.5 nm or more, preferably 1 nm or more, and usually 100 nm or less, preferably 50 nm or less.

[7]電子輸送層
電子輸送層7は素子の発光効率をさらに向上させることを目的として、正孔阻止層6と電子注入層8との間に設けられる。
[7] Electron Transport Layer The electron transport layer 7 is provided between the hole blocking layer 6 and the electron injection layer 8 for the purpose of further improving the light emission efficiency of the device.

電子輸送層7は、電界を与えられた電極間において陰極9から注入された電子を効率よく発光層5の方向に輸送することができる化合物より形成される。電子輸送層7に用いられる電子輸送性化合物としては、電子注入層8からの電子注入効率が高く、かつ、高い電子移動度を有し注入された電子を効率よく輸送することができる化合物であることが必要である。
このような条件を満たす材料としては、8−ヒドロキシキノリンのアルミニウム錯体などの金属錯体(特開昭59−194393号公報)、10−ヒドロキシベンゾ[h]キノリンの金属錯体、オキサジアゾール誘導体、ジスチリルビフェニル誘導体、シロール誘導体、3−または5−ヒドロキシフラボン金属錯体、ベンズオキサゾール金属錯体、ベンゾチアゾール金属錯体、トリスベンズイミダゾリルベンゼン(米国特許第5,645,948号)、キノキサリン化合物(特開平6−207169号公報)、フェナントロリン誘導体(特開平5−331459号公報)、2−t−ブチル−9,10−N,N’−ジシアノアントラキノンジイミン、n型水素化非晶質炭化シリコン、n型硫化亜鉛、n型セレン化亜鉛などが挙げられる。
The electron transport layer 7 is formed of a compound that can efficiently transport electrons injected from the cathode 9 between electrodes to which an electric field is applied in the direction of the light emitting layer 5. The electron transporting compound used for the electron transport layer 7 is a compound that has high electron injection efficiency from the electron injection layer 8 and has high electron mobility and can efficiently transport injected electrons. It is necessary.
Materials satisfying such conditions include metal complexes such as aluminum complexes of 8-hydroxyquinoline (Japanese Patent Laid-Open No. 59-194393), metal complexes of 10-hydroxybenzo [h] quinoline, oxadiazole derivatives, Styryl biphenyl derivative, silole derivative, 3- or 5-hydroxyflavone metal complex, benzoxazole metal complex, benzothiazole metal complex, trisbenzimidazolylbenzene (US Pat. No. 5,645,948), quinoxaline compound No. 207169), phenanthroline derivatives (Japanese Patent Laid-Open No. 5-331459), 2-t-butyl-9,10-N, N′-dicyanoanthraquinonediimine, n-type hydrogenated amorphous silicon carbide, n-type sulfide Examples include zinc and n-type zinc selenide.

電子輸送層7の膜厚は、通常下限は1nm、好ましくは5nm程度であり、上限は通常300nm、好ましくは100nm程度である。   The lower limit of the thickness of the electron transport layer 7 is usually 1 nm, preferably about 5 nm, and the upper limit is usually about 300 nm, preferably about 100 nm.

電子輸送層7は、正孔注入層3と同様にして湿式製膜法、或いは真空蒸着法により発光層4上に積層することにより形成される。通常は、真空蒸着法が用いられる。   The electron transport layer 7 is formed by laminating on the light emitting layer 4 by a wet film forming method or a vacuum deposition method in the same manner as the hole injection layer 3. Usually, a vacuum deposition method is used.

[8]電子注入層
電子注入層8は、陰極9から注入された電子を効率良く有機発光層5へ注入する役割を果たす。
電子注入を効率よく行うには、電子注入層8を形成する材料は、仕事関数の低い金属が好ましい。例としては、ナトリウムやセシウム等のアルカリ金属、バリウムやカルシウムなどのアルカリ土類金属等が用いられる。その膜厚は通常0.1nm以上、5nm以下が好ましい。
[8] Electron Injection Layer The electron injection layer 8 serves to efficiently inject electrons injected from the cathode 9 into the organic light emitting layer 5.
In order to perform electron injection efficiently, the material for forming the electron injection layer 8 is preferably a metal having a low work function. Examples include alkali metals such as sodium and cesium, and alkaline earth metals such as barium and calcium. The film thickness is usually preferably from 0.1 nm to 5 nm.

更に、後述するバソフェナントロリン等の含窒素複素環化合物や8−ヒドロキシキノリンのアルミニウム錯体などの金属錯体に代表される有機電子輸送材料に、ナトリウム、カリウム、セシウム、リチウム、ルビジウム等のアルカリ金属をドープする(特開平10−270171号公報、特開2002−100478号公報、特開2002−100482号公報などに記載)ことにより、電子注入・輸送性が向上し優れた膜質を両立させることが可能となるため好ましい。この場合の膜厚は通常、5nm以上、好ましくは10nm以上、また、通常200nm以下、好ましくは100nm以下の範囲である。   Further, organic electron transport materials represented by metal complexes such as nitrogen-containing heterocyclic compounds such as bathophenanthroline and aluminum complexes of 8-hydroxyquinoline described later are doped with alkali metals such as sodium, potassium, cesium, lithium and rubidium. (Described in JP-A-10-270171, JP-A 2002-1000047, JP-A 2002-1000048, and the like) makes it possible to improve electron injection / transport properties and achieve excellent film quality. Therefore, it is preferable. The film thickness in this case is usually in the range of 5 nm or more, preferably 10 nm or more, and usually 200 nm or less, preferably 100 nm or less.

電子注入層8は、湿式成膜法或いは真空蒸着法により、有機発光層5またはその上の正孔阻止層6上に積層することにより形成される。   The electron injection layer 8 is formed by laminating on the organic light emitting layer 5 or the hole blocking layer 6 thereon by a wet film formation method or a vacuum deposition method.

湿式成膜法の場合の詳細は、正孔注入層3および有機発光層5の場合と同様である。
一方、真空蒸着法の場合には、真空容器内に設置されたるつぼまたは金属ボートに蒸着源を入れ、真空容器内を適当な真空ポンプで10−4Pa程度にまで排気した後、るつぼまたは金属ボートを加熱して蒸発させ、るつぼまたは金属ボートと向き合って置かれた基板上の有機発光層5または正孔阻止層6または電子輸送層7上に電子注入層8を形成する。
Details of the wet film forming method are the same as those of the hole injection layer 3 and the organic light emitting layer 5.
On the other hand, in the case of the vacuum vapor deposition method, the vapor deposition source is put into a crucible or a metal boat installed in the vacuum vessel, and the inside of the vacuum vessel is evacuated to about 10 −4 Pa with an appropriate vacuum pump, and then the crucible or metal The boat is heated and evaporated to form an electron injection layer 8 on the organic light-emitting layer 5 or the hole blocking layer 6 or the electron transport layer 7 on the substrate placed facing the crucible or the metal boat.

電子注入層としてのアルカリ金属の蒸着は、クロム酸アルカリ金属と還元剤をニクロムに充填したアルカリ金属ディスペンサーを用いて行う。このディスペンサーを真空容器内で加熱することにより、クロム酸アルカリ金属が還元されてアルカリ金属が蒸発される。有機電子輸送材料とアルカリ金属とを共蒸着する場合は、有機電子輸送材料を真空容器内に設置されたるつぼに入れ、真空容器内を適当な真空ポンプで10−4Pa程度にまで排気した後、各々のるつぼおよびディスペンサーを同時に加熱して蒸発させ、るつぼおよびディスペンサーと向き合って置かれた基板上に電子注入層8を形成する。
このとき、電子注入層8の膜厚方向において均一に共蒸着されるが、膜厚方向において濃度分布があっても構わない。
The alkali metal as the electron injection layer is deposited by using an alkali metal dispenser in which nichrome is filled with an alkali metal chromate and a reducing agent. By heating the dispenser in a vacuum container, the alkali metal chromate is reduced and the alkali metal is evaporated. In the case of co-evaporating the organic electron transport material and the alkali metal, the organic electron transport material is put in a crucible installed in a vacuum vessel, and the inside of the vacuum vessel is evacuated to about 10 −4 Pa with a suitable vacuum pump. Each crucible and dispenser are simultaneously heated and evaporated to form the electron injection layer 8 on the substrate placed facing the crucible and dispenser.
At this time, co-evaporation is uniformly performed in the film thickness direction of the electron injection layer 8, but there may be a concentration distribution in the film thickness direction.

[8]陰極
陰極9は、有機発光層5側の層(電子注入層8または有機発光層5など)に電子を注入する役割を果たす。陰極9の材料としては、前記の陽極2に使用される材料を用いることが可能であるが、効率良く電子注入を行うには、仕事関数の低い金属が好ましく、スズ、マグネシウム、インジウム、カルシウム、アルミニウム、銀等の適当な金属またはそれらの合金が用いられる。具体例としては、マグネシウム−銀合金、マグネシウム−インジウム合金、アルミニウム−リチウム合金等の低仕事関数合金電極が挙げられる。
[8] Cathode The cathode 9 plays a role of injecting electrons into a layer (such as the electron injection layer 8 or the organic light emitting layer 5) on the organic light emitting layer 5 side. As the material of the cathode 9, the material used for the anode 2 can be used. However, in order to perform electron injection efficiently, a metal having a low work function is preferable, and tin, magnesium, indium, calcium, A suitable metal such as aluminum or silver or an alloy thereof is used. Specific examples include low work function alloy electrodes such as magnesium-silver alloy, magnesium-indium alloy, and aluminum-lithium alloy.

陰極9の膜厚は通常、陽極2と同様である。   The film thickness of the cathode 9 is usually the same as that of the anode 2.

低仕事関数金属から成る陰極を保護する目的で、この上に更に、仕事関数が高く大気に対して安定な金属層を積層すると、素子の安定性が増すので好ましい。この目的のために、アルミニウム、銀、銅、ニッケル、クロム、金、白金等の金属が使われる。   For the purpose of protecting the cathode made of a low work function metal, it is preferable to further stack a metal layer having a high work function and stable to the atmosphere because the stability of the device is increased. For this purpose, metals such as aluminum, silver, copper, nickel, chromium, gold, platinum are used.

[9]その他
以上、図1に示す層構成の有機電界発光素子を中心に説明してきたが、本発明の有機電界発光素子は、その趣旨を逸脱しない範囲において、別の構成を有していてもよい。例えば、その性能を損なわない限り、陽極2と陰極9との間に、上記説明にある層の他に任意の層を有していてもよく、また、任意の層が省略されていてもよい。
[9] Others Although the organic electroluminescent element having the layer configuration shown in FIG. 1 has been described above, the organic electroluminescent element of the present invention has another configuration without departing from the gist thereof. Also good. For example, as long as the performance is not impaired, an arbitrary layer may be provided between the anode 2 and the cathode 9 in addition to the layers described above, and an arbitrary layer may be omitted. .

なお、本発明においては、正孔輸送層4に本発明の有機化合物を使用することにより、正孔注入層3、正孔輸送層4および有機発光層5を全て湿式成膜法により積層形成することができる。これにより、大面積のディスプレイを製造することが可能となる。   In the present invention, by using the organic compound of the present invention for the hole transport layer 4, the hole injection layer 3, the hole transport layer 4 and the organic light emitting layer 5 are all laminated by a wet film formation method. be able to. This makes it possible to manufacture a large area display.

次に、本発明を実施例によって更に具体的に説明するが、本発明はその要旨を超えない限り、以下の実施例の記載に限定されるものではない。   EXAMPLES Next, although an Example demonstrates this invention further more concretely, this invention is not limited to description of a following example, unless the summary is exceeded.

[合成例]
以下に本発明の正孔輸送材料の合成例を示す。
なお、以下の合成例において、ガラス転移温度はDSC測定により、重量減少開始温度はTG−DTA測定により、融点はDSC測定またはTG−DTA測定によりそれぞれ求めた。
[Synthesis example]
The synthesis example of the hole transport material of the present invention is shown below.
In the following synthesis examples, the glass transition temperature was determined by DSC measurement, the weight loss start temperature was determined by TG-DTA measurement, and the melting point was determined by DSC measurement or TG-DTA measurement.

(合成例1)
<目的物1の合成>

Figure 0005470706
(Synthesis Example 1)
<Synthesis of Target 1>
Figure 0005470706

窒素気流中、m−ヨードアニソール(40.06g)、N,N’−ジフェニルベンジジン(10.09g)、銅粉(3.81g)、炭酸カリウム(16.59g)、およびテトラグライム(20ml)を、180℃で8時間攪拌した後、放冷し、銅粉(1.39g)を加え、200℃で6時間攪拌した。放冷後、反応混合物にクロロホルムと活性白土を加えて攪拌し、不溶物を濾別し、濾液を濃縮した。得られた油状物をシリカゲルカラムクロマトグラフィー(ヘキサン/塩化メチレン=7/3)で精製することにより、目的物1(13.8g)を得た。   In a nitrogen stream, m-iodoanisole (40.06 g), N, N′-diphenylbenzidine (10.09 g), copper powder (3.81 g), potassium carbonate (16.59 g), and tetraglyme (20 ml) were added. After stirring at 180 ° C. for 8 hours, the mixture was allowed to cool, copper powder (1.39 g) was added, and the mixture was stirred at 200 ° C. for 6 hours. After allowing to cool, chloroform and activated clay were added to the reaction mixture and stirred, insoluble matters were filtered off, and the filtrate was concentrated. The obtained oil was purified by silica gel column chromatography (hexane / methylene chloride = 7/3) to give the intended product 1 (13.8 g).

<目的物2の合成>

Figure 0005470706
<Synthesis of Target 2>
Figure 0005470706

窒素気流中、目的物1(13.72g)と塩化メチレン(200ml)の混合物を攪拌し、氷浴により0℃に冷却した。ここに、三臭化ホウ素(1mol/lジクロロメタン溶液 100ml)を滴下し、滴下終了後は室温で攪拌して一晩反応させた。氷水100mlを入れたビーカーにこれを添加し、油層を濃縮した。得られた固形分をシリカゲルカラムクロマトグラフィー(ヘキサン/酢酸エチル=7/3)で精製することにより、目的物2(8.85g)を得た。   In a nitrogen stream, a mixture of the target compound 1 (13.72 g) and methylene chloride (200 ml) was stirred and cooled to 0 ° C. with an ice bath. Boron tribromide (100 ml of 1 mol / l dichloromethane solution) was added dropwise thereto, and after completion of the addition, the mixture was stirred at room temperature and reacted overnight. This was added to a beaker containing 100 ml of ice water, and the oil layer was concentrated. The obtained solid was purified by silica gel column chromatography (hexane / ethyl acetate = 7/3) to obtain the desired product 2 (8.85 g).

<目的物3の合成>

Figure 0005470706
<Synthesis of Target 3>
Figure 0005470706

目的物2(3.5g)をテトラヒドロフラン(50ml)に溶解し、トリエチルアミン(2.7g)を加え、4℃の冷却下、DCスターラーで攪拌しながらシンナモイルクロライド(4.44g)のテトラヒドロフラン溶液(20ml)を滴下し、冷却下で3時間攪拌した。室温にもどして2時間攪拌後、出てきた結晶を濾別し、得られた溶液を濃縮した。残留20mlまで溶媒を濃縮し、その後メタノールに添加すると結晶が得られた。その結晶をシリカゲルカラムクロマトグラフィー(酢酸エチル/ヘキサン=3/7)にて精製し、目的物3(3.9g)を得た。   The target product 2 (3.5 g) was dissolved in tetrahydrofuran (50 ml), triethylamine (2.7 g) was added, and cinnamoyl chloride (4.44 g) in a tetrahydrofuran solution (4.44 g) was stirred with a DC stirrer under cooling at 4 ° C. 20 ml) was added dropwise and stirred for 3 hours under cooling. After returning to room temperature and stirring for 2 hours, the crystals that emerged were filtered off, and the resulting solution was concentrated. When the solvent was concentrated to the remaining 20 ml and then added to methanol, crystals were obtained. The crystals were purified by silica gel column chromatography (ethyl acetate / hexane = 3/7) to obtain the desired product 3 (3.9 g).

このもののガラス転移温度は77.8℃、融点は197℃、窒素気流下での重量減少開始温度は394℃であった。
DEI−MS(m/z=780(M))により目的物3であることを確認した。
This had a glass transition temperature of 77.8 ° C., a melting point of 197 ° C., and a weight loss starting temperature under a nitrogen stream of 394 ° C.
It was confirmed to be the target product 3 by DEI-MS (m / z = 780 (M + )).

(合成例2)
<目的物4の合成>

Figure 0005470706
(Synthesis Example 2)
<Synthesis of Target 4>
Figure 0005470706

窒素気流中、トリス(ジベンジリデンアセトン)ジパラジウム(0)クロロホルム錯体(1.79g)と脱水トルエン(30ml)の混合溶液に、トリス(tert−ブチル)フォスフィン(3.5ml)を加え、50℃で1時間攪拌して得られた溶液を、N,N’−ジフェニルベンジジン(14.53g)、3−ベンジロキシフェニルブロマイド(25g)、tert−ブトキシナトリウム(18.26g)、および脱水トルエン(200ml)の混合溶液に投入し、加熱還流条件下で、4.3時間攪拌した。得られた溶液から、ジクロロメタン(200ml×2回)で有機固形分を抽出し、得られた抽出溶液に、無水硫酸マグネシウムおよび活性白土を加えて振り混ぜた後、濾過した。これを濃縮して得られた固形分から、ジクロロメタン(200ml)で有機固形分を抽出し、得られた抽出溶液を濃縮後、シリカゲルカラムクロマトグラフィー(ジクロロメタン)、酢酸エチル/エタノールによる熱懸洗およびクロロホルム/酢酸エチルからの再結晶で精製し、目的物4(23.39g;LC純度99.89%)を得た。   In a nitrogen stream, tris (tert-butyl) phosphine (3.5 ml) was added to a mixed solution of tris (dibenzylideneacetone) dipalladium (0) chloroform complex (1.79 g) and dehydrated toluene (30 ml) at 50 ° C. The resulting solution was stirred for 1 hour with N, N′-diphenylbenzidine (14.53 g), 3-benzyloxyphenyl bromide (25 g), tert-butoxy sodium (18.26 g), and dehydrated toluene (200 ml). ) And stirred for 4.3 hours under heating under reflux. From the obtained solution, organic solid content was extracted with dichloromethane (200 ml × 2 times), and anhydrous magnesium sulfate and activated clay were added to the obtained extracted solution, shaken and filtered. From the solid content obtained by concentrating this, organic solid content was extracted with dichloromethane (200 ml), and the obtained extracted solution was concentrated, followed by silica gel column chromatography (dichloromethane), hot washing with ethyl acetate / ethanol and chloroform. The product was purified by recrystallization from ethyl acetate to obtain the target compound 4 (23.39 g; LC purity 99.89%).

<目的物5の合成>

Figure 0005470706
<Synthesis of Target 5>
Figure 0005470706

目的物4(23.39g)、5%Pd担持カーボン(3.93g)、およびテトラヒドロフラン(350ml)を仕込み、系内を窒素置換した後に水素で置換し、水素を常圧に保ったまま55℃で5,5時間反応した。反応終了後、放冷し、系内を窒素置換した。触媒を濾別し、濾液をさらにセライト濾過し、得られた濾液を濃縮した。得られた固形分をシリカゲルカラムクロマトグラフィー(塩化メチレン/酢酸エチル)で2回精製することにより、目的物5(7.80g)を得た。   The target product 4 (23.39 g), 5% Pd-supported carbon (3.93 g), and tetrahydrofuran (350 ml) were charged, the inside of the system was purged with nitrogen and then replaced with hydrogen, and the hydrogen was maintained at atmospheric pressure at 55 ° C. For 5 to 5 hours. After completion of the reaction, the reaction system was allowed to cool and the system was purged with nitrogen. The catalyst was filtered off, the filtrate was further filtered through Celite, and the resulting filtrate was concentrated. The obtained solid was purified twice by silica gel column chromatography (methylene chloride / ethyl acetate) to obtain the desired product 5 (7.80 g).

<目的物6の合成>

Figure 0005470706
<Synthesis of Target 6>
Figure 0005470706

窒素気流中、水酸化カリウム(7.70g)のジメチルスルホキシド(14.4ml)溶液に、目的物5(7.26g)を加え、そのまま約30分攪拌した。さらに、3−メチル−3−(4−ブロモブチル)オキシメチルオキセタン(13.66g)を、ゆっくりと滴下した。室温で2.5時間攪拌し、さらに60℃で2時間反応した。反応液を水に滴下し、塩化メチレンで抽出した。有機層を水洗して濃縮し、濃縮残渣をシリカゲルカラムクロマトグラフィー(塩化メチレン/酢酸エチル)で精製することにより、目的物6(4.96g)を得た。   The target product 5 (7.26 g) was added to a dimethyl sulfoxide (14.4 ml) solution of potassium hydroxide (7.70 g) in a nitrogen stream, and the mixture was stirred as it was for about 30 minutes. Further, 3-methyl-3- (4-bromobutyl) oxymethyloxetane (13.66 g) was slowly added dropwise. The mixture was stirred at room temperature for 2.5 hours, and further reacted at 60 ° C. for 2 hours. The reaction solution was added dropwise to water and extracted with methylene chloride. The organic layer was washed with water and concentrated, and the concentrated residue was purified by silica gel column chromatography (methylene chloride / ethyl acetate) to give the intended product 6 (4.96 g).

このもののガラス転移温度は3℃であった。
DEI−MS(m/z=833(M))により目的物6であることを確認した。
The glass transition temperature of this product was 3 ° C.
It was confirmed to be the target product 6 by DEI-MS (m / z = 833 (M + )).

(合成例3)
<目的物7の合成>

Figure 0005470706
(Synthesis Example 3)
<Synthesis of Target 7>
Figure 0005470706

氷冷下、2−(3−ブロモフェニル)エタノール(25g,116mmol)とイミダゾール(10.25g、150.8mmol)の塩化メチレン溶液(50mL)にt−ブチルジメチルクロロシラン(24.5g,163mmol)の塩化メチレン溶液(50mL)を滴下した。滴下終了後、室温まで温度を上昇させ、さらに3時間攪拌した。反応混合物を水にあけ、有機層を分離し、飽和塩化ナトリウム水溶液で洗浄後、硫酸マグネシウムで乾燥させた。溶媒を減圧下に留去し、残渣をシリカゲルカラムクロマトグラフィーに処し、目的物7(15.5g、収率40%)を得た。   Under ice-cooling, t-butyldimethylchlorosilane (24.5 g, 163 mmol) was added to a methylene chloride solution (50 mL) of 2- (3-bromophenyl) ethanol (25 g, 116 mmol) and imidazole (10.25 g, 150.8 mmol). Methylene chloride solution (50 mL) was added dropwise. After completion of the dropwise addition, the temperature was raised to room temperature and further stirred for 3 hours. The reaction mixture was poured into water, the organic layer was separated, washed with a saturated aqueous sodium chloride solution, and dried over magnesium sulfate. The solvent was distilled off under reduced pressure, and the residue was subjected to silica gel column chromatography to obtain the intended product 7 (15.5 g, yield 40%).

<目的物8の合成>

Figure 0005470706
<Synthesis of Target 8>
Figure 0005470706

窒素気流中、N,N’−ジフェニルベンジジン(7.40g)、目的物7(15.26g)、tert−ブトキシナトリウム(5.07g)、およびトルエン(100ml)の溶液に、トリス(ジベンジリデンアセトン)ジパラジウム(0)クロロホルム錯体(0.91g)、トリ−tert−ブチルホスフィン(1.06g)およびトルエン(30ml)を窒素雰囲気下、50℃で15分間攪拌して調製した溶液を加えて、加熱還流下、4時間半攪拌した。放冷後、クロロホルム及び活性白土を加え1時間攪拌した後、不溶物を濾別、濾液を濃縮し、シリカゲルカラムクロマトグラフィー(ヘキサン:酢酸エチル=30:1)で精製し、析出物を濾取することにより、目的物8(9.44g)を得た。   To a solution of N, N′-diphenylbenzidine (7.40 g), target product 7 (15.26 g), sodium tert-butoxy (5.07 g), and toluene (100 ml) in a nitrogen stream, tris (dibenzylideneacetone ) A solution prepared by stirring dipalladium (0) chloroform complex (0.91 g), tri-tert-butylphosphine (1.06 g) and toluene (30 ml) at 50 ° C. for 15 minutes under a nitrogen atmosphere, The mixture was stirred for 4 hours and a half while heating under reflux. After allowing to cool, chloroform and activated clay were added, and the mixture was stirred for 1 hour. The insoluble material was filtered off, the filtrate was concentrated and purified by silica gel column chromatography (hexane: ethyl acetate = 30: 1), and the precipitate was collected by filtration. This gave the target product 8 (9.44 g).

<目的物9の合成>

Figure 0005470706
<Synthesis of Target 9>
Figure 0005470706

窒素気流中、目的物8(9.26g)、テトラブチルアンモニウムフルオライド水和物(TBAF)(10.52g)、およびテトラヒドロフラン(THF)(100ml)を加えて室温で4時間半攪拌した。ここへ水(150ml)を加え、酢酸エチル(100ml)で抽出して油層を濃縮し、シリカゲルカラムクロマトグラフィー(ヘキサン:酢酸エチル=2:1)で精製することにより、目的物9(4.60g)を得た。   In a nitrogen stream, target product 8 (9.26 g), tetrabutylammonium fluoride hydrate (TBAF) (10.52 g), and tetrahydrofuran (THF) (100 ml) were added, and the mixture was stirred at room temperature for 4 and a half hours. Water (150 ml) was added thereto, and the mixture was extracted with ethyl acetate (100 ml). The oil layer was concentrated and purified by silica gel column chromatography (hexane: ethyl acetate = 2: 1) to give the desired product 9 (4.60 g). )

<目的物10の合成>

Figure 0005470706
<Synthesis of Target Product 10>
Figure 0005470706

窒素気流中、目的物9(4.21g)にテトラヒドロフラン(50ml)を加えて氷浴により0℃に冷却し、30分間攪拌した。ここへシンナモイルクロライド(4.86g)とトリエチルアミン(2.95g)を加えて0℃でさらに30分間攪拌した。そこへジメチルアミノピリジンを加え、酢酸エチル(100ml)で抽出して油層を濃縮し、シリカゲルカラムクロマトグラフィー(ヘキサン:酢酸エチル=2:1)で精製することにより、目的物10(4.60g)を得た。   In a nitrogen stream, tetrahydrofuran (50 ml) was added to target product 9 (4.21 g), cooled to 0 ° C. with an ice bath, and stirred for 30 minutes. Cinnamoyl chloride (4.86 g) and triethylamine (2.95 g) were added thereto, and the mixture was further stirred at 0 ° C. for 30 minutes. Dimethylaminopyridine was added thereto, extraction was performed with ethyl acetate (100 ml), the oil layer was concentrated, and purified by silica gel column chromatography (hexane: ethyl acetate = 2: 1) to obtain the target product 10 (4.60 g). Got.

このもののガラス転移温度は43℃、融点は観測されず、窒素気流下での重量減少開始温度は360℃であった。
DEI−MS(m/z=836(M))により目的物10であることを確認した。
The glass transition temperature of this product was 43 ° C., no melting point was observed, and the weight loss starting temperature under a nitrogen stream was 360 ° C.
It was confirmed to be the target product 10 by DEI-MS (m / z = 836 (M + )).

(合成例4)
<目的物11の合成>

Figure 0005470706
(Synthesis Example 4)
<Synthesis of Target 11>
Figure 0005470706

窒素気流中、トルエン(400ml)に、トリス(ジベンジリデンアセトン)ジパラジウム(0)クロロホルム錯体(0.166g)、ビス(トリフェニルフォスフィノ)フェロセン(0.356g)を室温で10分間攪拌し、ジフェニルアミン(10.15g)、4、4’−ジブロモビフェニル(61.78g)、およびtert−ブトキシナトリウム(6.92g)を加えて、100℃で5時間半攪拌した。放冷後、活性白土を加えて15分間攪拌した後、不溶物を濾別し、濾液の約1/3を濃縮し、析出物を濾取した。さらに濾液を濃縮し、シリカゲルカラムクロマトグラフィー(ヘキサン:トルエン=10:1)で精製することにより、目的物11(16.20g)を得た。   In a nitrogen stream, toluene (400 ml) was stirred with tris (dibenzylideneacetone) dipalladium (0) chloroform complex (0.166 g) and bis (triphenylphosphino) ferrocene (0.356 g) at room temperature for 10 minutes, Diphenylamine (10.15 g), 4,4′-dibromobiphenyl (61.78 g), and tert-butoxy sodium (6.92 g) were added, and the mixture was stirred at 100 ° C. for 5 and a half hours. After allowing to cool, activated clay was added and stirred for 15 minutes, insoluble matter was filtered off, about 1/3 of the filtrate was concentrated, and the precipitate was collected by filtration. Further, the filtrate was concentrated and purified by silica gel column chromatography (hexane: toluene = 10: 1) to obtain the target product 11 (16.20 g).

<目的物12の合成>

Figure 0005470706
<Synthesis of Target 12>
Figure 0005470706

窒素気流中、トルエン(200ml)に、トリス(ジベンジリデンアセトン)ジパラジウム(0)クロロホルム錯体(0.16g)とビス(トリフェニルフォスフィノ)フェロセン(0.145g)を加えて室温で10分間攪拌し、さらに目的物11(8.01g)、アニリン(6.15g)、およびtert−ブトキシナトリウム(2.31g)を加えて、100℃で6時間攪拌した。放冷後不溶物を濾別し、濾液を濃縮し、シリカゲルカラムクロマトグラフィー(ヘキサン:酢酸エチル=25:1)で精製することにより、目的物12(6.40g)を得た。   Tris (dibenzylideneacetone) dipalladium (0) chloroform complex (0.16 g) and bis (triphenylphosphino) ferrocene (0.145 g) were added to toluene (200 ml) in a nitrogen stream and stirred at room temperature for 10 minutes. Furthermore, the target product 11 (8.01 g), aniline (6.15 g), and tert-butoxy sodium (2.31 g) were added, and the mixture was stirred at 100 ° C. for 6 hours. After standing to cool, the insoluble material was filtered off, and the filtrate was concentrated and purified by silica gel column chromatography (hexane: ethyl acetate = 25: 1) to give the intended product 12 (6.40 g).

<目的物13の合成>

Figure 0005470706
<Synthesis of Target Product 13>
Figure 0005470706

DCスターラー、滴下漏斗、および冷却管を装備した4口フラスコに50重量%NaOH水溶液(300g)とヘキサン(250mL)の混合溶液を加え、テトラn−ブチルアンモニウムブロマイド(TBABr)(4.98g,15.5mmol)を添加した。混合物を5℃まで冷却後、オキセタン(31g)とジブロモブタン(200g)の混合物を激しく攪拌しながら滴下した。滴下終了後、室温で15分間攪拌し、さらに還流下、15分間攪拌し、室温まで放冷しながら15分間攪拌した。有機層を分離し、有機層を水洗して硫酸マグネシウムで乾燥させ、溶媒を減圧下に除去し、減圧蒸留(0.42mmHg、72℃)にて目的物13(52.2g、収率71.2%)を得た。   A mixed solution of 50 wt% NaOH aqueous solution (300 g) and hexane (250 mL) was added to a four-necked flask equipped with a DC stirrer, a dropping funnel, and a condenser tube, and tetra n-butylammonium bromide (TBABr) (4.98 g, 15 0.5 mmol) was added. After the mixture was cooled to 5 ° C., a mixture of oxetane (31 g) and dibromobutane (200 g) was added dropwise with vigorous stirring. After completion of dropping, the mixture was stirred for 15 minutes at room temperature, further stirred for 15 minutes under reflux, and stirred for 15 minutes while being allowed to cool to room temperature. The organic layer is separated, the organic layer is washed with water and dried over magnesium sulfate, the solvent is removed under reduced pressure, and the product 13 (52.2 g, yield 71. 71) is obtained by distillation under reduced pressure (0.42 mmHg, 72 ° C.). 2%).

<目的物14の合成>

Figure 0005470706
<Synthesis of Target Product 14>
Figure 0005470706

窒素気流中、ジメチルスルホキシド(50ml)に粉砕した水酸化カリウム(8.98g)を加え、m−ブロモフェノール(6.92g)を加えて30分間攪拌後、目的物13(12.33g)を加えて室温で6時間攪拌した。析出物を濾取した後、濾液を塩化メチレンで抽出して油層を濃縮し、シリカゲルカラムクロマトグラフィー(ヘキサン:塩化メチレン=2:1)で精製することにより、目的物14(11.4g)を得た。   In a nitrogen stream, pulverized potassium hydroxide (8.98 g) was added to dimethyl sulfoxide (50 ml), m-bromophenol (6.92 g) was added, and the mixture was stirred for 30 minutes, and then target product 13 (12.33 g) was added. And stirred at room temperature for 6 hours. After the precipitate was collected by filtration, the filtrate was extracted with methylene chloride, the oil layer was concentrated, and purified by silica gel column chromatography (hexane: methylene chloride = 2: 1) to give the desired product 14 (11.4 g). Obtained.

<目的物15の合成>

Figure 0005470706
<Synthesis of Target 15>
Figure 0005470706

窒素気流中、目的物12(3.30g)、目的物14(3.16g)、tert−ブトキシナトリウム(0.92g)、およびトルエン(30ml)の溶液に、トリス(ジベンジリデンアセトン)ジパラジウム(0)クロロホルム錯体(0.083g)、トリ−tert−ブチルフォスフィン(0.16g)、およびトルエン(5ml)を窒素雰囲気下、60℃で15分間攪拌して調製した溶液を加えて、100℃で4時間攪拌した。放冷後、不溶物を濾別し、濾液を濃縮した。シリカゲルカラムクロマトグラフィー(塩化メチレン:酢酸エチル=20:1)で精製することにより、目的物15(1.18g)を得た。
DEI−MS(m/z=660(M))により目的物15であることを確認した。
In a nitrogen stream, a solution of target 12 (3.30 g), target 14 (3.16 g), tert-butoxy sodium (0.92 g), and toluene (30 ml) was added to tris (dibenzylideneacetone) dipalladium ( 0) A solution prepared by stirring chloroform complex (0.083 g), tri-tert-butylphosphine (0.16 g), and toluene (5 ml) at 60 ° C. for 15 minutes under a nitrogen atmosphere was added, For 4 hours. After standing to cool, the insoluble material was filtered off and the filtrate was concentrated. Purification by silica gel column chromatography (methylene chloride: ethyl acetate = 20: 1) gave the target product 15 (1.18 g).
It was confirmed to be the target product 15 by DEI-MS (m / z = 660 (M + )).

(合成例5)
<目的物16の合成>

Figure 0005470706
(Synthesis Example 5)
<Synthesis of Target 16>
Figure 0005470706

窒素気流中、4,4’−ジアミノジフェニルエーテル(6.44g)、4−ブロモビフェニル(15.0g)、tert−ブトキシナトリウム(8.66g)、およびトルエン(120ml)の溶液に、トリス(ジベンジリデンアセトン)ジパラジウム(0)クロロホルム錯体(0.166g)、ビス(トリフェニルフォスフィノ)フェロセン(0.356g)、およびトルエン(5ml)を窒素雰囲気下、60℃で15分間攪拌して調製した溶液を加えて、加熱還流下、4時間攪拌した。放冷後、トルエン及び活性白土を加え15分間攪拌した後、不溶物を濾別し、濾液を濃縮し、エタノールを加えた。析出物を濾取した後、エタノール、メタノール、トルエン、メタノールの順で懸濁洗浄することにより、目的物16(7.48g)を得た。   To a solution of 4,4′-diaminodiphenyl ether (6.44 g), 4-bromobiphenyl (15.0 g), sodium tert-butoxy (8.66 g), and toluene (120 ml) in a nitrogen stream was added tris (dibenzylidene). Acetone) dipalladium (0) chloroform complex (0.166 g), bis (triphenylphosphino) ferrocene (0.356 g), and toluene (5 ml) prepared by stirring at 60 ° C. for 15 minutes in a nitrogen atmosphere Was added and stirred for 4 hours under reflux with heating. After allowing to cool, toluene and activated clay were added and stirred for 15 minutes, the insoluble material was filtered off, the filtrate was concentrated, and ethanol was added. The precipitate was collected by filtration and then suspended and washed in the order of ethanol, methanol, toluene, and methanol to obtain the desired product 16 (7.48 g).

<目的物17の合成>

Figure 0005470706
<Synthesis of Target 17>
Figure 0005470706

窒素気流中、目的物16(2.52g)、目的物14(3.95g)、tert−ブトキシナトリウム(1.15g)、およびトルエン(50ml)の溶液に、トリス(ジベンジリデンアセトン)ジパラジウム(0)クロロホルム錯体(0.207g)、トリ−tert−ブチルホスフィン(0.243g)、およびトルエン(20ml)を窒素雰囲気下、60℃で15分間攪拌して調製した溶液を加えて、80℃で4時間攪拌した。放冷後、塩化メチレン(50ml)を加え30分間攪拌した後、不溶物を濾別し、濾液を濃縮した。塩化メチレン/酢酸エチル混合液でカラム精製し、トルエン溶媒で活性白土処理を行うことにより、目的物17(1.74g)を得た。   In a nitrogen stream, tris (dibenzylideneacetone) dipalladium (disulfide) was added to a solution of target 16 (2.52 g), target 14 (3.95 g), tert-butoxy sodium (1.15 g), and toluene (50 ml). 0) A solution prepared by stirring chloroform complex (0.207 g), tri-tert-butylphosphine (0.243 g), and toluene (20 ml) at 60 ° C. for 15 minutes in a nitrogen atmosphere was added at 80 ° C. Stir for 4 hours. After allowing to cool, methylene chloride (50 ml) was added, and the mixture was stirred for 30 minutes. The insoluble material was filtered off, and the filtrate was concentrated. Column purification was performed using a mixed solution of methylene chloride / ethyl acetate, and active clay was treated with a toluene solvent to obtain the target compound 17 (1.74 g).

このもののガラス転移温度は27℃、融点は観測されず、窒素気流下での重量減少開始温度は432℃であった。
DEI−MS(m/z=1000(M))により目的物17であることを確認した。
The glass transition temperature of this product was 27 ° C., no melting point was observed, and the weight loss starting temperature under a nitrogen stream was 432 ° C.
It was confirmed to be the target product 17 by DEI-MS (m / z = 1000 (M + )).

(合成例6)
<目的物18の合成>

Figure 0005470706
(Synthesis Example 6)
<Synthesis of Target 18>
Figure 0005470706

窒素気流中、N,N’−ビス(p−フェニルフェニル)アミン(4.69g)、目的物14(4.00g)、tert−ブトキシナトリウム(1.63g)、およびトルエン(90ml)の溶液に、トリス(ジベンジリデンアセトン)ジパラジウム(0)クロロホルム錯体(0.063g)、トリ−tert−ブチルホスフィン(0.098g)、およびトルエン(10ml)を窒素雰囲気下、60℃で15分間攪拌して調製した溶液を加えて、85℃に加熱下、4時間攪拌した。放冷後、トルエン及び活性白土を加え、室温で15分間攪拌した後、不溶物を濾別し、濾液を濃縮し、シリカゲルカラムクロマトグラフィー(塩化メチレン溶媒)で精製し、トルエン溶媒で活性白土処理を行うことにより、目的物18(2.61g)を得た。   In a nitrogen stream, a solution of N, N′-bis (p-phenylphenyl) amine (4.69 g), target product 14 (4.00 g), tert-butoxy sodium (1.63 g), and toluene (90 ml) was added. , Tris (dibenzylideneacetone) dipalladium (0) chloroform complex (0.063 g), tri-tert-butylphosphine (0.098 g), and toluene (10 ml) were stirred at 60 ° C. for 15 minutes in a nitrogen atmosphere. The prepared solution was added and stirred at 85 ° C. for 4 hours. After allowing to cool, toluene and activated clay are added, and the mixture is stirred at room temperature for 15 minutes. Insoluble matters are filtered off, the filtrate is concentrated, purified by silica gel column chromatography (methylene chloride solvent), and treated with activated clay. To obtain the target product 18 (2.61 g).

このもののガラス転移温度は14℃、融点は観測されず、窒素気流下での重量減少開始温度は404℃であった。
DEI−MS(m/z=569(M))により目的物18であることを確認した。
The glass transition temperature of this product was 14 ° C., the melting point was not observed, and the temperature of starting weight reduction under a nitrogen stream was 404 ° C.
It was confirmed to be the target product 18 by DEI-MS (m / z = 569 (M + )).

(合成例7)
<目的物19の合成>

Figure 0005470706
(Synthesis Example 7)
<Synthesis of Target 19>
Figure 0005470706

窒素気流下、ジフェニルホスフィノフェロセン(166mg,0.30mmol)、トリスジベンジリデンアセトンジパラジウムクロロホルム付加物(155mg、0.15mmol)の脱水トルエン溶液(50mL)を30℃で10分間攪拌し、目的物11(6.0g、14.99mmol)、4,4’−ジアミノジフェニルエーテル(1.5g、7.49mmol)、およびtert−ブトキシナトリウム(1.73g、18mmol)を添加した。温度を100℃まで上昇させ、8時間攪拌した。反応混合物を水にあけ、有機層を分離し、飽和塩化ナトリウム水溶液で洗浄後、硫酸マグネシウムで乾燥させた。溶媒を減圧下に留去し、残渣をシリカゲルカラムクロマトグラフィーに処し、目的物19(4.24g、収率67%)を得た。   Under a nitrogen stream, a dehydrated toluene solution (50 mL) of diphenylphosphinoferrocene (166 mg, 0.30 mmol) and trisdibenzylideneacetone dipalladium chloroform adduct (155 mg, 0.15 mmol) was stirred at 30 ° C. for 10 minutes to obtain the desired product. 11 (6.0 g, 14.99 mmol), 4,4′-diaminodiphenyl ether (1.5 g, 7.49 mmol), and sodium tert-butoxy (1.73 g, 18 mmol) were added. The temperature was raised to 100 ° C. and stirred for 8 hours. The reaction mixture was poured into water, the organic layer was separated, washed with a saturated aqueous sodium chloride solution, and dried over magnesium sulfate. The solvent was distilled off under reduced pressure, and the residue was subjected to silica gel column chromatography to obtain the intended product 19 (4.24 g, yield 67%).

<目的物20の合成>

Figure 0005470706
<Synthesis of Target 20>
Figure 0005470706

窒素気流下、トリ−tert−ブチルホスフィン(174mg,0.86mmol)、トリスジベンジリデンアセトンジパラジウムクロロホルム付加物(148mg、0.14mmol)の脱水トルエン溶液(20mL)を30℃で10分間攪拌し、触媒を調製した。ここへ目的物19(4.0g、4.77mmol)、目的物20(3.45g、10.5mmol)、およびtert−ブトキシナトリウム(1.21g、12.6mmol)を添加した。温度を90℃まで上昇させ、8時間攪拌した。反応混合物を水にあけ、有機層を分離し、飽和塩化ナトリウム水溶液で洗浄後、硫酸マグネシウムで乾燥させた。溶媒を減圧下に留去し、残渣をシリカゲルカラムクロマトグラフィーに処し、目的物20(2.47g、収率39%)を得た。   Under a nitrogen stream, a dehydrated toluene solution (20 mL) of tri-tert-butylphosphine (174 mg, 0.86 mmol), trisdibenzylideneacetone dipalladium chloroform adduct (148 mg, 0.14 mmol) was stirred at 30 ° C. for 10 minutes, A catalyst was prepared. The target product 19 (4.0 g, 4.77 mmol), the target product 20 (3.45 g, 10.5 mmol), and sodium tert-butoxy (1.21 g, 12.6 mmol) were added thereto. The temperature was raised to 90 ° C. and stirred for 8 hours. The reaction mixture was poured into water, the organic layer was separated, washed with a saturated aqueous sodium chloride solution, and dried over magnesium sulfate. The solvent was distilled off under reduced pressure, and the residue was subjected to silica gel column chromatography to obtain the intended product 20 (2.47 g, yield 39%).

DEI−MS(m/z=1334(M))により目的物20であることを確認した。 It was confirmed to be the target product 20 by DEI-MS (m / z = 1334 (M + )).

(合成例8)
<目的物21の合成>

Figure 0005470706
(Synthesis Example 8)
<Synthesis of Target 21>
Figure 0005470706

窒素気流中、トリス(ジベンジリデンアセトン)ジパラジウム(0)クロロホルム錯体(0.673g)、ビス(トリフェニルフォスフィノ)フェロセン(0.708g)、およびトルエン(455ml)を、室温で10分間攪拌して得た溶液に、3,4’−ジアミノジフェニルエーテル(13.02g)、3−ブロモ−1−(n−ヘキシルオキシ)ベンゼン(33.10g)、tert−ブトキシナトリウム(14.99g)を順次投入し、90℃の油浴中、6時間攪拌した。放冷後、酢酸エチル1リットルと食塩水500mlを加え、振り混ぜた後、有機層を無水硫酸マグネシウムで乾燥し、次いで濃縮し、シリカゲルカラムクロマトグラフィー(ヘキサン/塩化メチレン混合液)および塩化メチレン/メタノールからの再結晶により精製し、目的物21の白色結晶(21.44g)を得た。   In a nitrogen stream, tris (dibenzylideneacetone) dipalladium (0) chloroform complex (0.673 g), bis (triphenylphosphino) ferrocene (0.708 g), and toluene (455 ml) were stirred at room temperature for 10 minutes. 3,4'-diaminodiphenyl ether (13.02 g), 3-bromo-1- (n-hexyloxy) benzene (33.10 g), and tert-butoxy sodium (14.99 g) were sequentially added to the obtained solution. And stirred in a 90 ° C. oil bath for 6 hours. After allowing to cool, 1 liter of ethyl acetate and 500 ml of brine were added and shaken. The organic layer was dried over anhydrous magnesium sulfate, then concentrated, silica gel column chromatography (hexane / methylene chloride mixture) and methylene chloride / The product was purified by recrystallization from methanol to obtain white crystals (21.44 g) of the target compound 21.

<目的物22,23の合成>

Figure 0005470706
<Synthesis of objects 22 and 23>
Figure 0005470706

トリス(ジベンジリデンアセトン)ジパラジウム(0)クロロホルム錯体(0.078g)、ビス(トリフェニルフォスフィノ)フェロセン(0.082g)、およびトルエン(100ml)を窒素雰囲気下、室温で30分間攪拌して得た溶液に、目的物21(5.528g)、4,4’−ジブロモビフェニル(2.340g)、tert−ブトキシナトリウム(1.922g)を順次投入し、加熱還流下、6時間攪拌した。放冷後、濾過し、塩化メチレンによる振りかけ洗浄を行い、得られた濾液を濃縮後、塩化メチレンに溶解させ、これをメタノール中に投入して再沈殿させ、析出した固形分を、シリカゲルカラムクロマトグラフィー(塩化メチレン)で精製し、目的物22(4.6g)を得た。   Tris (dibenzylideneacetone) dipalladium (0) chloroform complex (0.078 g), bis (triphenylphosphino) ferrocene (0.082 g), and toluene (100 ml) were stirred at room temperature for 30 minutes under a nitrogen atmosphere. The target product 21 (5.528 g), 4,4′-dibromobiphenyl (2.340 g), and tert-butoxy sodium (1.922 g) were sequentially added to the obtained solution, and the mixture was stirred for 6 hours while heating under reflux. After cooling, the mixture is filtered and washed with sprinkling with methylene chloride. The obtained filtrate is concentrated and dissolved in methylene chloride. This is poured into methanol and reprecipitated. Purification by chromatography (methylene chloride) gave the target product 22 (4.6 g).

窒素気流中、目的物14(4.15g)、目的物22(4.6g)およびトルエン(85ml)の溶液に、トリス(ジベンジリデンアセトン)ジパラジウム(0)クロロホルム錯体(0.179g)、トリ−tert−ブチルフォスフィン(0.35ml)およびトルエン(15ml)を窒素雰囲気下、55℃で30分間攪拌して調製した溶液を加え、さらにtert−ブトキシナトリウム(1.33g)を加え、加熱還流下、4時間攪拌した。氷冷後、活性白土を加えてよく撹拌した後、濾過し、濾液を濃縮後、ゲルパーミエーションクロマトグラフィー(クロロホルム溶媒)で精製した。その後、得られた不揮発成分をトルエンに溶解させた溶液に、活性白土を加え、撹拌後、濾過し、濾液を濃縮した。これを塩化メチレンに溶解させたものを、エタノール/メタノールの混合溶液に投入して、再沈殿させた後、減圧下、70℃で乾燥し、無定形固体の目的物23(2.10g)を得た。この高分子化合物のポリスチレン換算の重量平均分子量(Mw)は4480、数平均分子量(Mn)3380であった(n=1〜20)。   In a nitrogen stream, a solution of target 14 (4.15 g), target 22 (4.6 g) and toluene (85 ml) was added to tris (dibenzylideneacetone) dipalladium (0) chloroform complex (0.179 g), tris. -A solution prepared by stirring tert-butylphosphine (0.35 ml) and toluene (15 ml) at 55 ° C for 30 minutes under a nitrogen atmosphere was added, and tert-butoxy sodium (1.33 g) was further added, followed by heating to reflux. The mixture was stirred for 4 hours. After ice cooling, activated clay was added and stirred well, followed by filtration. The filtrate was concentrated and purified by gel permeation chromatography (chloroform solvent). Thereafter, activated clay was added to a solution obtained by dissolving the obtained non-volatile components in toluene, and the mixture was stirred and then filtered, and the filtrate was concentrated. A solution obtained by dissolving this in methylene chloride is poured into a mixed solution of ethanol / methanol and reprecipitated, followed by drying at 70 ° C. under reduced pressure to obtain the target product 23 (2.10 g) as an amorphous solid. Obtained. The weight average molecular weight (Mw) in terms of polystyrene of this polymer compound was 4480, and the number average molecular weight (Mn) was 3380 (n = 1 to 20).

(合成例9)
<目的物24の合成>

Figure 0005470706
(Synthesis Example 9)
<Synthesis of Target 24>
Figure 0005470706

トリス(ジベンジリデンアセトン)ジパラジウム(0)クロロホルム錯体(0.046g)、ビス(トリフェニルフォスフィノ)フェロセン(0.048g)、およびトルエン(10ml)を窒素雰囲気下、室温で30分間攪拌して得た溶液を、目的物21(3.663g)、4,4’−ジブロモビフェニル(1.378g)、およびtert−ブトキシナトリウム(1.02g)の混合溶液に投入し、加熱還流下、4.5時間攪拌した。ここに、中間体1(0.922g)、tert−ブトキシナトリウム(1.02g)を投入して4時間後、トリス(ジベンジリデンアセトン)ジパラジウム(0)クロロホルム錯体(0.065g)、ビス(トリフェニルフォスフィノ)フェロセン(0.072g)、およびトルエン(7ml)を窒素雰囲気下、室温で15分間攪拌して得た溶液を加え、1時間撹拌後、さらに中間体1(3g)を投入し、1.5時間撹拌し、ここに、トリス(ジベンジリデンアセトン)ジパラジウム(0)クロロホルム錯体(0.100g)、ビス(トリフェニルフォスフィノ)フェロセン(0.115g)、およびトルエン(8ml)を窒素雰囲気下、50℃で15分間攪拌して得た溶液を加え、1.5時間撹拌した。放冷後、活性白土を加えてよく撹拌した後、濾過し、濾液を2規定塩酸水溶液、次いで食塩水で洗浄後、無水硫酸マグネシウムで乾燥して濃縮した。これをシリカゲルカラムクロマトグラフィー(塩化メチレン/ヘキサンおよび塩化メチレン/酢酸エチル)で精製後、トルエンに溶解させた溶液に、活性白土を加え、よく撹拌後、濾過し、濾液を濃縮し、減圧下、加熱乾燥して、目的物24(4.44g)を得た。   Tris (dibenzylideneacetone) dipalladium (0) chloroform complex (0.046 g), bis (triphenylphosphino) ferrocene (0.048 g), and toluene (10 ml) were stirred at room temperature for 30 minutes under a nitrogen atmosphere. The obtained solution was put into a mixed solution of the target compound 21 (3.663 g), 4,4′-dibromobiphenyl (1.378 g), and tert-butoxy sodium (1.02 g), and heated under reflux. Stir for 5 hours. 4 hours after adding intermediate 1 (0.922 g) and tert-butoxy sodium (1.02 g) to this, tris (dibenzylideneacetone) dipalladium (0) chloroform complex (0.065 g), bis ( A solution obtained by stirring triphenylphosphino) ferrocene (0.072 g) and toluene (7 ml) at room temperature for 15 minutes under a nitrogen atmosphere was added, and after stirring for 1 hour, intermediate 1 (3 g) was further added. , 1.5 hours, and tris (dibenzylideneacetone) dipalladium (0) chloroform complex (0.100 g), bis (triphenylphosphino) ferrocene (0.115 g), and toluene (8 ml) were added. A solution obtained by stirring at 50 ° C. for 15 minutes in a nitrogen atmosphere was added and stirred for 1.5 hours. After allowing to cool, activated clay was added and stirred well, followed by filtration. The filtrate was washed with 2N aqueous hydrochloric acid and then with brine, dried over anhydrous magnesium sulfate and concentrated. This was purified by silica gel column chromatography (methylene chloride / hexane and methylene chloride / ethyl acetate), and then activated clay was added to the solution dissolved in toluene. After stirring well, the mixture was filtered, and the filtrate was concentrated under reduced pressure. Heat drying was performed to obtain the target compound 24 (4.44 g).

<目的物25の合成>

Figure 0005470706
<Synthesis of Target 25>
Figure 0005470706

窒素気流中、メチルトリフェニルフォスフォニウムヨージド(2.292g)とテトラヒドロフラン(10ml)の溶液に、氷冷下、tert−ブトキシカリウム(0.668g)のテトラヒドロフラン溶液(10ml)を、10分間かけて滴下した後、15分間撹拌して得た溶液を、氷冷下で、目的物24(4.44g)のテトラヒドロフラン溶液(20ml)に投入し、1時間撹拌後、室温下でさらに1時間撹拌した。得られた溶液に氷水および食塩を投入後、塩化メチレンで抽出し、抽出液を無水硫酸マグネシウムで乾燥後、濃縮し、シリカゲルカラムクロマトグラフィー(塩化メチレン/ヘキサン)で精製後、トルエンに溶解させた溶液に、活性白土を加えてよく撹拌後、不溶分を除去後、濃縮した。これを再びシリカゲルカラムクロマトグラフィー(塩化メチレン/ヘキサン)で精製し、得られた固形分を減圧下、70℃で加熱乾燥し、目的物25(1.40g)を得た。この高分子化合物のポリスチレン換算の重量平均分子量(Mw)は2690、数平均分子量(Mn)は2000であった(n=1〜15)。   In a nitrogen stream, a solution of methyltriphenylphosphonium iodide (2.292 g) and tetrahydrofuran (10 ml) was added with a solution of tert-butoxypotassium (0.668 g) in tetrahydrofuran (10 ml) under ice cooling for 10 minutes. The solution obtained by stirring for 15 minutes was poured into a tetrahydrofuran solution (20 ml) of the target compound 24 (4.44 g) under ice cooling, stirred for 1 hour, and further stirred at room temperature for 1 hour. did. Ice water and sodium chloride were added to the resulting solution, followed by extraction with methylene chloride. The extract was dried over anhydrous magnesium sulfate, concentrated, purified by silica gel column chromatography (methylene chloride / hexane), and then dissolved in toluene. Activated clay was added to the solution and stirred well. After removing insolubles, the solution was concentrated. This was purified again by silica gel column chromatography (methylene chloride / hexane), and the resulting solid was heat-dried at 70 ° C. under reduced pressure to obtain the intended product 25 (1.40 g). This polymer compound had a weight average molecular weight (Mw) in terms of polystyrene of 2690 and a number average molecular weight (Mn) of 2000 (n = 1 to 15).

(合成例10)
<目的物26の合成>

Figure 0005470706
(Synthesis Example 10)
<Synthesis of Target 26>
Figure 0005470706

窒素気流中、トルエン(400ml)に、トリス(ジベンジリデンアセトン)ジパラジウム(0)クロロホルム錯体(0.166g)、およびビス(トリフェニルフォスフィノ)フェロセン(0.356g)を室温で10分間撹拌し、ジフェニルアミン(10.15g)、4、4’−ジブロモビフェニル(61.78g)、およびtert−ブトキシナトリウム(6.92g)を加えて、100℃で5時間半撹拌した。放冷後、活性白土を加え、15分間撹拌した後、不溶物を濾別し、濾液の約1/3を濃縮し、析出物を濾取した。さらに濾液を濃縮し、シリカゲルカラムクロマトグラフィー(ヘキサン/トルエン)で精製し、メタノールで再沈殿させることにより、目的物26(16.20g)を得た。   In a nitrogen stream, tris (dibenzylideneacetone) dipalladium (0) chloroform complex (0.166 g) and bis (triphenylphosphino) ferrocene (0.356 g) were stirred at room temperature for 10 minutes in toluene (400 ml). , Diphenylamine (10.15 g), 4,4′-dibromobiphenyl (61.78 g), and tert-butoxy sodium (6.92 g) were added, and the mixture was stirred at 100 ° C. for 5 and a half hours. After allowing to cool, activated clay was added, and the mixture was stirred for 15 minutes. The insoluble material was filtered off, about 1/3 of the filtrate was concentrated, and the precipitate was collected by filtration. Further, the filtrate was concentrated, purified by silica gel column chromatography (hexane / toluene), and reprecipitated with methanol to obtain target product 26 (16.20 g).

<目的物27の合成>

Figure 0005470706
<Synthesis of Target 27>
Figure 0005470706

窒素気流中、トルエン(200ml)に、トリス(ジベンジリデンアセトン)ジパラジウム(0)クロロホルム錯体(0.14g)、およびビス(トリフェニルフォスフィノ)フェロセン(0.145g)を室温で10分間撹拌し、化合物26(8.01g)、アニリン(6.15g)、およびtert−ブトキシナトリウム(2.31g)を加えて、100℃で6時間撹拌した。放冷後、不溶物を濾別し、濾液に活性白土を入れて30分撹拌後に吸引濾過して濾液を濃縮し、シリカゲルカラムクロマトグラフィー(ヘキサン/塩化メチレン)で精製することにより、目的物27(7.36g)を得た。   In a nitrogen stream, tris (dibenzylideneacetone) dipalladium (0) chloroform complex (0.14 g) and bis (triphenylphosphino) ferrocene (0.145 g) were stirred at room temperature for 10 minutes in toluene (200 ml). , Compound 26 (8.01 g), aniline (6.15 g), and tert-butoxy sodium (2.31 g) were added, and the mixture was stirred at 100 ° C. for 6 hr. After standing to cool, the insoluble material was filtered off, activated clay was added to the filtrate, the mixture was stirred for 30 minutes, filtered with suction, concentrated by filtration, and purified by silica gel column chromatography (hexane / methylene chloride) to give the target compound 27 (7.36 g) was obtained.

<目的物28の合成>

Figure 0005470706
<Synthesis of Target 28>
Figure 0005470706

窒素雰囲気下、m−ブロモフェノール(9.52g)、p−フルオロベンズアルデヒド(6.21g)、炭酸カリウム(8.98g)、およびN,N−ジメチルホルムアミド(80ml)を混合し、180℃で2時間反応させた。放冷後、水を加え、塩化メチレンで抽出し、油層を濃縮し、シリカゲルクロマトグラフィー(ヘキサン/塩化メチレン)で精製することにより、目的物28(10.5g)を得た。   Under a nitrogen atmosphere, m-bromophenol (9.52 g), p-fluorobenzaldehyde (6.21 g), potassium carbonate (8.98 g), and N, N-dimethylformamide (80 ml) were mixed and mixed at 180 ° C. for 2 hours. Reacted for hours. After allowing to cool, water was added and the mixture was extracted with methylene chloride. The oil layer was concentrated and purified by silica gel chromatography (hexane / methylene chloride) to give the intended product 28 (10.5 g).

<目的物29の合成>

Figure 0005470706
<Synthesis of Target 29>
Figure 0005470706

窒素雰囲気下、目的物27(2.68g)、目的物28(2.56g)、炭酸セシウム(3.81g)、トルエン(40ml)、および酢酸パラジウム(0.04g)を仕込み、系内を十分に窒素置換して、50℃まで加温した。トリ−tert−ブチルホスフィン(0.07g)を加え、窒素気流中、6時間加熱還流して反応させた。放冷後、反応液を吸引濾過して濾液を濃縮し、シリカゲルカラムクロマトグラフィー(ヘキサン/酢酸エチル)にて精製し、目的物29(2.35g)を得た。   In a nitrogen atmosphere, the target product 27 (2.68 g), the target product 28 (2.56 g), cesium carbonate (3.81 g), toluene (40 ml), and palladium acetate (0.04 g) were charged, and the system was fully charged. The mixture was purged with nitrogen and heated to 50 ° C. Tri-tert-butylphosphine (0.07 g) was added, and the reaction was carried out by heating under reflux in a nitrogen stream for 6 hours. After allowing to cool, the reaction mixture was filtered with suction, and the filtrate was concentrated and purified by silica gel column chromatography (hexane / ethyl acetate) to obtain the desired product 29 (2.35 g).

<目的物30の合成>

Figure 0005470706
<Synthesis of Target 30>
Figure 0005470706

窒素気流中、目的物29(2.31g)、メチルトリフェニルフォスフォニウムヨージド(1.69g)、および脱水テトラヒドロフラン(46ml)を加え、0℃で撹拌しているところへt−ブトキシカリウム(0.47g)を加えて4時間撹拌後、室温で1時間撹拌した。氷冷しながら、反応混合物に水を加え、酢酸エチルで抽出し、有機層を水で洗浄、硫酸ナトリウムで乾燥し、減圧下で濃縮した。残渣をシリカゲルカラムクロマトグラフィー(ヘキサン/塩化メチレン)にて精製することで目的物30(1.56g)を得た。   In a nitrogen stream, the target compound 29 (2.31 g), methyltriphenylphosphonium iodide (1.69 g), and dehydrated tetrahydrofuran (46 ml) were added, and the mixture was stirred at 0 ° C. to t-butoxypotassium ( 0.47 g) was added and the mixture was stirred for 4 hours and then stirred at room temperature for 1 hour. While cooling with ice, water was added to the reaction mixture, and the mixture was extracted with ethyl acetate. The organic layer was washed with water, dried over sodium sulfate, and concentrated under reduced pressure. The residue was purified by silica gel column chromatography (hexane / methylene chloride) to give the intended product 30 (1.56 g).

DEI−MS(m/z=606(M))により目的物30であることを確認した。このもののガラス転移温度は104℃であった。 It was confirmed to be the target product 30 by DEI-MS (m / z = 606 (M + )). This had a glass transition temperature of 104.degree.

(合成例11)
<目的物31の合成>

Figure 0005470706
(Synthesis Example 11)
<Synthesis of Target 31>
Figure 0005470706

反応容器にtert−ブチル−(4−ヨードブトキシ)−ジメチルシラン(15.09g)、m−ブロモフェノール(6.92g)、炭酸カリウム(7.19g)、およびN,N−ジメチルホルムアミド(70ml)を入れ、130℃で4時間半反応させた。室温まで放冷後、水(100ml)を加え、塩化メチレン(100ml)で抽出して油層を濃縮し、シリカゲルカラムクロマトグラフィー(ヘキサン/酢酸エチル)で精製することにより、目的物31(10.5g)を得た。   In a reaction vessel, tert-butyl- (4-iodobutoxy) -dimethylsilane (15.09 g), m-bromophenol (6.92 g), potassium carbonate (7.19 g), and N, N-dimethylformamide (70 ml) And reacted at 130 ° C. for 4 and a half hours. After allowing to cool to room temperature, water (100 ml) was added, extraction was performed with methylene chloride (100 ml), the oil layer was concentrated, and purified by silica gel column chromatography (hexane / ethyl acetate) to obtain the target compound 31 (10.5 g). )

<目的物32の合成>

Figure 0005470706
<Synthesis of the object 32>
Figure 0005470706

目的物31(5.15g)、N,N−ビス−(p−ビフェニリル)−アミン(5.27g)、tert−ブトキシナトリウム(3.15g)、およびトルエン(65ml)を入れ、十分に窒素置換し、50℃で撹拌した。そこへトリス(ジベンジリデンアセトン)ジパラジウム(0)クロロホルム錯体(0.31g)のトルエン(10ml)溶液に、トリ−t−ブチルホスフィン(0.48g)を加え、50℃まで加温した溶液を添加し、5時間還流した。室温まで放冷後、反応混合物を濾過し、濾液を減圧下で濃縮した。これをシリカゲルカラムクロマトグラフィー(ヘキサン/塩化メチレン)にて精製し、目的物32(6.24g)を得た。   The target product 31 (5.15 g), N, N-bis- (p-biphenylyl) -amine (5.27 g), tert-butoxy sodium (3.15 g), and toluene (65 ml) were added, and nitrogen substitution was sufficiently performed. And stirred at 50 ° C. Tri-t-butylphosphine (0.48 g) was added to a toluene (10 ml) solution of tris (dibenzylideneacetone) dipalladium (0) chloroform complex (0.31 g), and the solution heated to 50 ° C. Added and refluxed for 5 hours. After cooling to room temperature, the reaction mixture was filtered and the filtrate was concentrated under reduced pressure. This was purified by silica gel column chromatography (hexane / methylene chloride) to obtain the desired product 32 (6.24 g).

<目的物33の合成>

Figure 0005470706
<Synthesis of Target 33>
Figure 0005470706

窒素気流中、目的物32(6.23g)、テトラブチルアンモニウムフルオライド(TBAF)(12.88g)、およびテトラヒドロフラン(62ml)を加えて室温で6時間半撹拌した。水(150ml)を加え、酢酸エチル(100ml)で抽出して油層を濃縮し、シリカゲルカラムクロマトグラフィー(ヘキサン/酢酸エチル)で精製することにより、目的物33(3.91g)を得た。   In a nitrogen stream, target product 32 (6.23 g), tetrabutylammonium fluoride (TBAF) (12.88 g), and tetrahydrofuran (62 ml) were added, and the mixture was stirred at room temperature for 6 and a half hours. Water (150 ml) was added, extraction was performed with ethyl acetate (100 ml), the oil layer was concentrated, and purified by silica gel column chromatography (hexane / ethyl acetate) to obtain the desired product 33 (3.91 g).

<目的物34の合成>

Figure 0005470706
<Synthesis of target product 34>
Figure 0005470706

窒素気流中、目的物33(3.88g)に、テトラヒドロフラン(58ml)を加えて氷浴で0℃に冷却しながら撹拌し、トリエチルアミン(TEA)(3.24g)を加えた後、アクリル酸クロライド(1.09g)を滴下し、室温にて3時間反応させた。不溶物を濾別し、濾液を濃縮して、メタノールにより再沈殿を行った後、シリカゲルカラムクロマトグラフィー(ヘキサン/塩化メチレン)で精製することにより、無色で油状の目的物34(2.69g)を得た。   Tetrahydrofuran (58 ml) was added to the target compound 33 (3.88 g) in a nitrogen stream, stirred while cooling to 0 ° C. in an ice bath, triethylamine (TEA) (3.24 g) was added, and then acrylic acid chloride. (1.09 g) was added dropwise and reacted at room temperature for 3 hours. The insoluble material was filtered off, the filtrate was concentrated, reprecipitated with methanol, and purified by silica gel column chromatography (hexane / methylene chloride) to give the colorless desired product 34 (2.69 g). Got.

DEI−MS(m/z=539(M))により目的物34であることを確認した。このもののガラス転移温度は21℃、窒素気流下での重量減少開始温度は397℃であった。 It was confirmed to be the target product 34 by DEI-MS (m / z = 539 (M + )). This had a glass transition temperature of 21 ° C. and a weight loss starting temperature of 397 ° C. under a nitrogen stream.

(合成例12)
<目的物35の合成>

Figure 0005470706
(Synthesis Example 12)
<Synthesis of Target 35>
Figure 0005470706

窒素雰囲気下、3−ブロモフェノール(16.9g)、炭酸カリウム(53.8g)、N,N−ジメチルホルムアミド(97.4ml)、および1,4−ジブロモブタン(63.1g)を加え、室温で3.5時間撹拌した。反応混合物をトルエンで抽出し、有機層を食塩水で洗浄後、硫酸マグネシウムで乾燥し、減圧下で濃縮した。残渣を蒸留(4.8mmHg(47kPa)/60℃)し、1,4−ジブロモブタンを除去した後に、シリカゲルカラムクロマトグラフィー(ヘキサン/塩化メチレン=3/1)にて精製することで目的物35(9.7g)を得た。   Under a nitrogen atmosphere, 3-bromophenol (16.9 g), potassium carbonate (53.8 g), N, N-dimethylformamide (97.4 ml), and 1,4-dibromobutane (63.1 g) were added at room temperature. For 3.5 hours. The reaction mixture was extracted with toluene, and the organic layer was washed with brine, dried over magnesium sulfate, and concentrated under reduced pressure. The residue was distilled (4.8 mmHg (47 kPa) / 60 ° C.) to remove 1,4-dibromobutane, and then purified by silica gel column chromatography (hexane / methylene chloride = 3/1) to obtain the target compound 35. (9.7 g) was obtained.

<目的物36の合成>

Figure 0005470706
<Synthesis of Target 36>
Figure 0005470706

窒素雰囲気下、m−ヒドロキシベンズアルデヒド(4.06g)、炭酸カリウム(17.5g)、N,N−ジメチルホルムアミド(38.5ml)、および目的物35(9.77g)を加え、60℃で7時間撹拌した。室温まで放冷後、反応混合物をトルエンで抽出し、有機層を食塩水で洗浄して、硫酸マグネシウムで乾燥し、減圧下で濃縮した。残渣をシリカゲルカラムクロマトグラフィー(ヘキサン/塩化メチレン=5/1)にて精製することで目的物36(10.3g)を得た。   Under a nitrogen atmosphere, m-hydroxybenzaldehyde (4.06 g), potassium carbonate (17.5 g), N, N-dimethylformamide (38.5 ml), and target compound 35 (9.77 g) were added, and 7 ° C. was added at 7 ° C. Stir for hours. After cooling to room temperature, the reaction mixture was extracted with toluene, and the organic layer was washed with brine, dried over magnesium sulfate, and concentrated under reduced pressure. The residue was purified by silica gel column chromatography (hexane / methylene chloride = 5/1) to give the intended product 36 (10.3 g).

<目的物37の合成>

Figure 0005470706
<Synthesis of Target 37>
Figure 0005470706

窒素雰囲気下、N,N−ビス−(p−フェニルフェニル)アミン(3.54g)、目的物36(384g)、炭酸セシウム(6.45g)、およびトルエン(100ml)を仕込み、系内を十分に窒素置換して、50℃まで加温した(溶液A)。酢酸パラジウム(0.07g)のトルエン10ml溶液に、トリ−tert−ブチルホスフィン(0.13g)を加え、50℃まで加温した(溶液B)。窒素気流中、溶液Aに溶液Bを添加し、4時間加熱還流して反応させた。放冷後、反応液を濾過して濾液を濃縮し、シリカゲルカラムクロマトグラフィー(ヘキサン/塩化メチレン)にて精製し、目的物37(5.5g)を得た。   In a nitrogen atmosphere, N, N-bis- (p-phenylphenyl) amine (3.54 g), target product 36 (384 g), cesium carbonate (6.45 g), and toluene (100 ml) were charged, and the system was fully charged. The solution was heated to 50 ° C. (solution A). Tri-tert-butylphosphine (0.13 g) was added to a 10 ml toluene solution of palladium acetate (0.07 g) and heated to 50 ° C. (solution B). In a nitrogen stream, solution B was added to solution A and reacted by heating under reflux for 4 hours. After allowing to cool, the reaction solution was filtered and the filtrate was concentrated and purified by silica gel column chromatography (hexane / methylene chloride) to obtain the desired product 37 (5.5 g).

<目的物38の合成>

Figure 0005470706
<Synthesis of target product 38>
Figure 0005470706

窒素気流中、目的物37(4.72g)、メチルトリフェニルホスホニウムヨージド(3.56g)、および脱水テトラヒドロフラン(50ml)を加え、0℃で撹拌しているところへtert−ブトキシカリウム(0.47g)を加えて4時間撹拌後、室温で1時間撹拌した。氷冷しながら、反応混合物に水を加え、塩化メチレンで抽出し、有機層を水で洗浄して、硫酸ナトリウムで乾燥した。この有機層を濃縮し、シリカゲルカラムクロマトグラフィー(ヘキサン/塩化メチレン)にて精製することで目的物38(2.67g)を得た。   In a nitrogen stream, the target compound 37 (4.72 g), methyltriphenylphosphonium iodide (3.56 g) and dehydrated tetrahydrofuran (50 ml) were added, and the mixture was stirred at 0 ° C. to tert-butoxy potassium (0. 47 g) was added, and the mixture was stirred for 4 hours and then stirred at room temperature for 1 hour. While cooling with ice, water was added to the reaction mixture, and the mixture was extracted with methylene chloride. The organic layer was washed with water and dried over sodium sulfate. The organic layer was concentrated and purified by silica gel column chromatography (hexane / methylene chloride) to obtain the desired product 38 (2.67 g).

DEI−MS(m/z=587(M))により目的物38であることを確認した。このものの融点は87℃、ガラス転移温度は73℃であった。 It was confirmed to be the target product 38 by DEI-MS (m / z = 587 (M + )). This had a melting point of 87 ° C. and a glass transition temperature of 73 ° C.

(合成例13)
<目的物39の合成>

Figure 0005470706
(Synthesis Example 13)
<Synthesis of Target 39>
Figure 0005470706

3,4’−ジフェニルアミノエーテル(24.03g)、ブロモベンゼン(37.68g)、tert−ブトキシナトリウム(25.37g)、およびトルエン(190ml)を仕込み、系内を十分に窒素置換して、50℃まで加温した(溶液A)。トリス(ジベンジリデンアセトン)ジパラジウム(0)クロロホルム錯体(0.62g)のトルエン10ml溶液に、ビス(トリフェニルフォスフィノ)フェロセン(1.35g)を加え、50℃まで加温した(溶液B)。窒素気流中、溶液Aに溶液Bを添加し、100℃で6時間半、加熱反応した。放冷後、吸引濾過をして濾液を濃縮した。シリカゲルカラムクロマトグラフィー(ヘキサン/塩化メチレン=1:1)にて精製し、目的物39(23.60g)を得た。   3,4'-diphenylaminoether (24.03 g), bromobenzene (37.68 g), sodium tert-butoxy (25.37 g), and toluene (190 ml) were charged, and the system was sufficiently purged with nitrogen. Warmed to 50 ° C. (Solution A). Bis (triphenylphosphino) ferrocene (1.35 g) was added to a 10 ml toluene solution of tris (dibenzylideneacetone) dipalladium (0) chloroform complex (0.62 g) and heated to 50 ° C. (solution B) . In a nitrogen stream, solution B was added to solution A, and heated and reacted at 100 ° C. for 6 and a half hours. After allowing to cool, the filtrate was concentrated by suction filtration. Purification by silica gel column chromatography (hexane / methylene chloride = 1: 1) gave the target product 39 (23.60 g).

<目的物40の合成>

Figure 0005470706
<Synthesis of Target 40>
Figure 0005470706

目的物39(7.8g)、1−ベンジロキシ−3−ブロモベンゼン(12.88g)、t−ブトキシナトリウム(9.36g)、トルエン(190ml)を仕込み、系内を十分に窒素置換して、60℃まで加温した(溶液C)。トリス(ジベンジリデンアセトン)ジパラジウム(0)クロロホルム錯体(0.92g)のトルエン15ml溶液に、トリ−tert−ブチルホスフィン(1.1g)を加え、60℃まで加温した(溶液D)。窒素気流中、溶液Cに溶液Dを添加し、5時間加熱還流した。室温まで放冷し、セライト濾過し、濾液を濃縮した。得られた粗生成物を、シリカゲルカラムクロマトグラフィー(ヘキサン/塩化メチレン)にて精製し、目的物40(14.8g)を得た。   The target product 39 (7.8 g), 1-benzyloxy-3-bromobenzene (12.88 g), sodium t-butoxy (9.36 g) and toluene (190 ml) were charged, and the inside of the system was sufficiently purged with nitrogen. Warmed to 60 ° C. (Solution C). Tri-tert-butylphosphine (1.1 g) was added to a 15 ml toluene solution of tris (dibenzylideneacetone) dipalladium (0) chloroform complex (0.92 g) and heated to 60 ° C. (solution D). In a nitrogen stream, solution D was added to solution C and heated to reflux for 5 hours. The mixture was allowed to cool to room temperature, filtered through celite, and the filtrate was concentrated. The resulting crude product was purified by silica gel column chromatography (hexane / methylene chloride) to obtain the desired product 40 (14.8 g).

<目的物41の合成>

Figure 0005470706
<Synthesis of Target 41>
Figure 0005470706

目的物40(14.8g)をテトラヒドロフラン(100ml)に溶解し、5重量%Pd担持活性炭(2.20g)を加え、系内を水素置換した後、60℃で7時間還元反応を行った。反応終了後、系内を窒素置換し、触媒を濾別し、さらに濾液にセライトを通し、濾液を濃縮した。シリカゲルカラムクロマトグラフィー(ヘキサン/塩化メチレン)にて精製し、目的物41(10.00g)を得た。   The target product 40 (14.8 g) was dissolved in tetrahydrofuran (100 ml), 5 wt% Pd-supported activated carbon (2.20 g) was added, and the system was purged with hydrogen, followed by a reduction reaction at 60 ° C. for 7 hours. After completion of the reaction, the system was purged with nitrogen, the catalyst was filtered off, celite was passed through the filtrate, and the filtrate was concentrated. Purification by silica gel column chromatography (hexane / methylene chloride) gave the target product 41 (10.00 g).

<目的物42の合成>

Figure 0005470706
<Synthesis of the target product 42>
Figure 0005470706

目的物41(3.05g)、2−クロロエチルビニルエーテル(2.42g)、炭酸カリウム(3.53g)、およびN,N−ジメチルホルムアミド(25ml)を仕込み、少量のヨウ化カリムを加え、80℃で5時間、さらに100℃で2.5時間加熱して反応させた。反応終了後、反応液に水を加え、酢酸エチルで抽出した。得られた有機層を2回水洗し、さらに飽和食塩水で洗浄した。有機層に硫酸ナトリウムを加えて脱水乾燥し、濃縮した。粗生成物をシリカゲルカラムクロマトグラフィー(ヘキサン/塩化メチレン、2回目はヘキサン/酢酸エチル)にて精製し、目的物42(1.91g)を得た。   The target product 41 (3.05 g), 2-chloroethyl vinyl ether (2.42 g), potassium carbonate (3.53 g), and N, N-dimethylformamide (25 ml) were charged, and a small amount of kalim iodide was added. The reaction was conducted by heating at 100 ° C. for 5 hours and further at 100 ° C. for 2.5 hours. After completion of the reaction, water was added to the reaction solution and extracted with ethyl acetate. The obtained organic layer was washed twice with water and further with saturated saline. Sodium sulfate was added to the organic layer, dehydrated and dried, and concentrated. The crude product was purified by silica gel column chromatography (hexane / methylene chloride, second time hexane / ethyl acetate) to obtain the desired product 42 (1.91 g).

DEI−MS(m/z=676(M))により目的物42であることを確認した。このもののガラス転移温度は9℃であった。 It was confirmed to be the target product 42 by DEI-MS (m / z = 676 (M + )). The glass transition temperature of this product was 9 ° C.

(合成例14)
<目的物43の合成>

Figure 0005470706
(Synthesis Example 14)
<Synthesis of the target product 43>
Figure 0005470706

目的物41(13.1g)、6−ブロモ−1−ヘキセン(7.42g)、炭酸カリウム(11.44g)、およびN,N−ジメチルホルムアミド(110ml)を仕込み、70℃で7.5時間加熱して反応させた。原料となる目的物41がほぼ消失したので、反応液に水を加え、塩化メチレンで抽出した。得られた有機層を3回水洗し、濃縮した。粗生成物をシリカゲルカラムクロマトグラフィー(ヘキサン/塩化メチレン)にて精製し、目的物43(10.80g)を得た。   The target product 41 (13.1 g), 6-bromo-1-hexene (7.42 g), potassium carbonate (11.44 g), and N, N-dimethylformamide (110 ml) were charged and the mixture was charged at 70 ° C. for 7.5 hours. Heated to react. Since the target product 41 as a raw material almost disappeared, water was added to the reaction solution and extracted with methylene chloride. The obtained organic layer was washed with water three times and concentrated. The crude product was purified by silica gel column chromatography (hexane / methylene chloride) to obtain the desired product 43 (10.80 g).

DEI−MS(m/z=700(M))により目的物43であることを確認した。このもののガラス転移温度は−11℃であった。 It was confirmed to be the target product 43 by DEI-MS (m / z = 700 (M + )). The glass transition temperature of this product was -11 ° C.

(合成例15)
<目的物44の合成>

Figure 0005470706
(Synthesis Example 15)
<Synthesis of object 44>
Figure 0005470706

窒素雰囲気下、3−ブロモフェノール(16.9g)、炭酸カリウム(53.8g)、N,N−ジメチルホルムアミド(97.4ml)、および1,4−ジブロモブタン(63.1g)を加え、室温で5時間半撹拌した。反応混合物をトルエンで抽出し、有機層を食塩水で洗浄して、硫酸マグネシウムで乾燥し、減圧下で濃縮した。残渣を蒸留(4.8mmHg(47kPa)/60℃)し、1,4−ジブロモブタンを除去した後に、シリカゲルカラムクロマトグラフィー(ヘキサン/塩化メチレン=3/1)にて精製することで目的物44(9.7g)を得た。   Under a nitrogen atmosphere, 3-bromophenol (16.9 g), potassium carbonate (53.8 g), N, N-dimethylformamide (97.4 ml), and 1,4-dibromobutane (63.1 g) were added at room temperature. For 5 and a half hours. The reaction mixture was extracted with toluene, and the organic layer was washed with brine, dried over magnesium sulfate, and concentrated under reduced pressure. The residue was distilled (4.8 mmHg (47 kPa) / 60 ° C.) to remove 1,4-dibromobutane, and then purified by silica gel column chromatography (hexane / methylene chloride = 3/1) to obtain the target compound 44. (9.7 g) was obtained.

<目的物45の合成>

Figure 0005470706
<Synthesis of object 45>
Figure 0005470706

窒素雰囲気下、m−ヒドロキシベンズアルデヒド(4.06g)、炭酸カリウム(17.5g)、N,N−ジメチルホルムアミド(38.5ml)、および目的物44(9.77g)を加え、60℃で7時間撹拌した。室温まで放冷後、反応混合物をトルエンで抽出し、有機層を食塩水で洗浄して、硫酸マグネシウムで乾燥し、減圧下で濃縮した。残渣をシリカゲルカラムクロマトグラフィー(ヘキサン/塩化メチレン=5/1)にて精製することで目的物45(10.3g)を得た。   Under a nitrogen atmosphere, m-hydroxybenzaldehyde (4.06 g), potassium carbonate (17.5 g), N, N-dimethylformamide (38.5 ml), and target product 44 (9.77 g) were added, and 7 ° C. was added. Stir for hours. After cooling to room temperature, the reaction mixture was extracted with toluene, and the organic layer was washed with brine, dried over magnesium sulfate, and concentrated under reduced pressure. The residue was purified by silica gel column chromatography (hexane / methylene chloride = 5/1) to give the intended product 45 (10.3 g).

<目的物46の合成>

Figure 0005470706
<Synthesis of target product 46>
Figure 0005470706

窒素気流中、目的物39(3g)、目的物45(5.94g)、炭酸セシウム(13.8g)、およびトルエン(38ml)を加えて60℃で撹拌した。そこへパラジウム(II)アセテート(0.304g)のトルエン溶液(20ml)にトリ−tert−ブチルホスフィン(1.1g)を添加し、50℃まで加温した溶液を加え、7時間還流した。室温まで放冷後、反応混合物を濾過し、濾液を減圧下で濃縮した。残渣をシリカゲルカラムクロマトグラフィー(塩化メチレン/酢酸エチル=70/1)にて精製することで目的物46(2.99g)を得た。   In a nitrogen stream, the target product 39 (3 g), the target product 45 (5.94 g), cesium carbonate (13.8 g), and toluene (38 ml) were added and stirred at 60 ° C. Tri-tert-butylphosphine (1.1 g) was added to a toluene solution (20 ml) of palladium (II) acetate (0.304 g), and a solution heated to 50 ° C. was added, and the mixture was refluxed for 7 hours. After cooling to room temperature, the reaction mixture was filtered and the filtrate was concentrated under reduced pressure. The residue was purified by silica gel column chromatography (methylene chloride / ethyl acetate = 70/1) to obtain the target product 46 (2.99 g).

<目的物47の合成>

Figure 0005470706
<Synthesis of Target 47>
Figure 0005470706

窒素気流中、目的物46(2.52g)、メチルトリフェニルホスホニウムヨージド(2.41g)、および脱水テトラヒドロフラン(50ml)を加え、0℃で撹拌しているところへtert−ブトキシカリウム(0.67g)を加え、4時間撹拌後、室温で1時間撹拌した。氷冷しながら、反応混合物に水を加え、酢酸エチルで抽出し、有機層を水で洗浄して、硫酸マグネシウムで乾燥し、減圧下で濃縮した。残渣をシリカゲルカラムクロマトグラフィー(ヘキサン/塩化メチレン=1/2)にて精製することで目的物47(1.7g)を得た。   In a nitrogen stream, the target compound 46 (2.52 g), methyltriphenylphosphonium iodide (2.41 g), and dehydrated tetrahydrofuran (50 ml) were added, and the mixture was stirred at 0 ° C. to tert-butoxypotassium (0. 67 g) was added, and the mixture was stirred for 4 hours and then stirred at room temperature for 1 hour. While cooling with ice, water was added to the reaction mixture, and the mixture was extracted with ethyl acetate. The organic layer was washed with water, dried over magnesium sulfate, and concentrated under reduced pressure. The residue was purified by silica gel column chromatography (hexane / methylene chloride = 1/2) to give the intended product 47 (1.7 g).

DEI−MS(m/z=884(M))により目的物47であることを確認した。このもののガラス転移温度は73℃、窒素気流下での重量減少開始温度は447℃であった。 It was confirmed to be the target compound 47 by DEI-MS (m / z = 884 (M + )). This had a glass transition temperature of 73 ° C. and a weight loss starting temperature under a nitrogen stream of 447 ° C.

(合成例16)
<目的物48の合成>

Figure 0005470706
(Synthesis Example 16)
<Synthesis of object 48>
Figure 0005470706

N,N−ビス−(p−フェニルフェニル)アミン(16.5g)、1−ベンジロキシ−3−ブロモベンゼン(14.86g)、t−ブトキシナトリウム(10.85g)、およびトルエン(220ml)を仕込み、系内を十分に窒素置換して、60℃まで加温した(溶液A)。トリス(ジベンジリデンアセトン)ジパラジウム(0)クロロホルム錯体(1.06g)のトルエン20ml溶液に、トリ−tert−ブチルホスフィン(1.25g)を加え、60℃まで加温した(溶液B)。窒素気流中、溶液Aに溶液Bを添加し、3.5時間、加熱還流した。室温まで放冷し、セライト濾過し、濾液を濃縮した。得られた粗生成物を、ヘキサン/塩化メチレン(1/1)溶液で2回懸洗し、さらにメタノールで懸洗し、目的物48(18.4g)を得た。   Charge N, N-bis- (p-phenylphenyl) amine (16.5 g), 1-benzyloxy-3-bromobenzene (14.86 g), sodium t-butoxy (10.85 g), and toluene (220 ml). The system was sufficiently purged with nitrogen and heated to 60 ° C. (solution A). Tri-tert-butylphosphine (1.25 g) was added to a toluene 20 ml solution of tris (dibenzylideneacetone) dipalladium (0) chloroform complex (1.06 g), and the mixture was heated to 60 ° C. (solution B). In a nitrogen stream, solution B was added to solution A and heated to reflux for 3.5 hours. The mixture was allowed to cool to room temperature, filtered through celite, and the filtrate was concentrated. The obtained crude product was washed twice with a hexane / methylene chloride (1/1) solution and further washed with methanol to obtain the target product 48 (18.4 g).

<目的物49の合成>

Figure 0005470706
<Synthesis of Target 49>
Figure 0005470706

目的物48(18g)をテトラヒドロフラン(120ml)に溶解し、5重量%Pd担持活性炭(1.52g)を加え、系内を水素置換した。常温常圧にて6時間還元反応を行ったが、反応の進行が遅かったので、さらに5重量%Pd担持活性炭(1.0g)を加え、水素置換し、55℃で6時間還元反応を行った。反応終了後、系内を窒素置換し、触媒を濾別し、さらに濾液にセライトを通し、濾液を濃縮した。シリカゲルカラムクロマトグラフィー(ヘキサン/塩化メチレン)にて精製し、目的物49(14.33g)を得た。   The target product 48 (18 g) was dissolved in tetrahydrofuran (120 ml), 5 wt% Pd-supported activated carbon (1.52 g) was added, and the inside of the system was replaced with hydrogen. Although the reduction reaction was carried out at normal temperature and pressure for 6 hours, the progress of the reaction was slow, so 5% by weight Pd-supported activated carbon (1.0 g) was further added and replaced with hydrogen, and the reduction reaction was carried out at 55 ° C. for 6 hours. It was. After completion of the reaction, the system was purged with nitrogen, the catalyst was filtered off, celite was passed through the filtrate, and the filtrate was concentrated. Purification by silica gel column chromatography (hexane / methylene chloride) gave the target product 49 (14.33 g).

DEI−MS(m/z=413(M))により目的物49であることを確認した。 It was confirmed to be the target product 49 by DEI-MS (m / z = 413 (M + )).

<目的物50の合成>

Figure 0005470706
<Synthesis of target product 50>
Figure 0005470706

目的物49(3.06g)、2−クロロエチルビニルエーテル(0.9g)、炭酸カリウム(2.05g)、およびN,N−ジメチルホルムアミド(30ml)を仕込み、少量のヨウ化カリムを加え、70℃で10時間加熱して反応させた。原料となる目的物49の消失は見られなかったが、反応液に水を加え、酢酸エチルで抽出した。得られた有機層を2回水洗し、さらに飽和食塩水で洗浄した。有機層に硫酸ナトリウムを加えて脱水乾燥し、濃縮した。粗生成物をシリカゲルカラムクロマトグラフィー(ヘキサン/塩化メチレン)にて精製し、目的物50(1.46g)を得た。   The target product 49 (3.06 g), 2-chloroethyl vinyl ether (0.9 g), potassium carbonate (2.05 g), and N, N-dimethylformamide (30 ml) were charged, and a small amount of kalim iodide was added. The reaction was carried out by heating at 0 ° C. for 10 hours. Although disappearance of the target product 49 as a raw material was not observed, water was added to the reaction solution, and the mixture was extracted with ethyl acetate. The obtained organic layer was washed twice with water and further with saturated saline. Sodium sulfate was added to the organic layer, dehydrated and dried, and concentrated. The crude product was purified by silica gel column chromatography (hexane / methylene chloride) to obtain the desired product 50 (1.46 g).

DEI−MS(m/z=483(M))により目的物50であることを確認した。このもののガラス転移温度は31℃であった。 It was confirmed to be the target product 50 by DEI-MS (m / z = 483 (M + )). The glass transition temperature of this product was 31 ° C.

(合成例17)
<目的物51の合成>

Figure 0005470706
(Synthesis Example 17)
<Synthesis of Target 51>
Figure 0005470706

目的物49(7.33g)、6−ブロモ−1−ヘキセン(3.18g)、炭酸カリウム(4.90g)、およびN,N−ジメチルホルムアミド(70ml)を仕込み、70〜80℃で16時間加熱反応した。原料となる目的物49が消失したので、反応液に水を加え、塩化メチレンで抽出した。得られた有機層を3回水洗し、濃縮した。粗生成物をシリカゲルカラムクロマトグラフィー(ヘキサン/塩化メチレン)にて精製し、目的物51(8.45g)を得た。   The target product 49 (7.33 g), 6-bromo-1-hexene (3.18 g), potassium carbonate (4.90 g), and N, N-dimethylformamide (70 ml) were charged, and the mixture was charged at 70-80 ° C. for 16 hours. The reaction was heated. Since the target product 49 as a raw material disappeared, water was added to the reaction solution and extracted with methylene chloride. The obtained organic layer was washed with water three times and concentrated. The crude product was purified by silica gel column chromatography (hexane / methylene chloride) to obtain the desired product 51 (8.45 g).

DEI−MS(m/z=495(M))により目的物51であることを確認した。このもののガラス転移温度は11℃であった。 It was confirmed to be the target product 51 by DEI-MS (m / z = 495 (M + )). The glass transition temperature of this product was 11 ° C.

(合成例18)
<目的物52の合成>

Figure 0005470706
(Synthesis Example 18)
<Synthesis of Target 52>
Figure 0005470706

3−ヒドロキシジフェニルアミン(5.0g)、2−クロロエチルビニルエーテル(5.75g)、炭酸カリウム(7.46g)、およびN,N−ジメチルホルムアミド(45ml)を仕込み、少量のヨウ化カリムを加え、100℃で2時間、加熱して反応させた。反応終了後、反応液に水を加え、酢酸エチルで抽出した。得られた有機層を2回水洗し、さらに飽和食塩水で洗浄した。有機層に硫酸ナトリウムを加えて脱水乾燥し、濃縮した。粗生成物をシリカゲルカラムクロマトグラフィー(ヘキサン/塩化メチレン)にて精製し、目的物52(5.41g)を得た。   Charge 3-hydroxydiphenylamine (5.0 g), 2-chloroethyl vinyl ether (5.75 g), potassium carbonate (7.46 g), and N, N-dimethylformamide (45 ml), add a small amount of kalim iodide, The reaction was conducted by heating at 100 ° C. for 2 hours. After completion of the reaction, water was added to the reaction solution and extracted with ethyl acetate. The obtained organic layer was washed twice with water and further with saturated saline. Sodium sulfate was added to the organic layer, dehydrated and dried, and concentrated. The crude product was purified by silica gel column chromatography (hexane / methylene chloride) to obtain the desired product 52 (5.41 g).

<目的物53の合成>

Figure 0005470706
<Synthesis of Target 53>
Figure 0005470706

目的物26(2.41g)、目的物52(1.69g)、tert−ブトキシナトリウム(1.27g)、およびトルエン(40ml)を仕込み、系内を十分に窒素置換して、50℃まで加温した(溶液A)。トリス(ジベンジリデンアセトン)ジパラジウム(0)クロロホルム錯体(0.12g)のトルエン10ml溶液に、トリ−tert−ブチルホスフィン(0.15g)を加え、50℃まで加温した(溶液B)。窒素気流中、溶液Aに溶液Bを添加し、4時間加熱還流して反応させた。放冷後、反応液をセライト濾過して濾液を濃縮した。シリカゲルカラムクロマトグラフィー(ヘキサン/塩化メチレン、2回目はヘキサン/酢酸エチル)にて精製し、目的物53(1.57g)を得た。
DEI−MS(m/z=606(M))により目的物53であることを確認した。
The target product 26 (2.41 g), target product 52 (1.69 g), tert-butoxy sodium (1.27 g), and toluene (40 ml) were charged, and the system was thoroughly purged with nitrogen and heated to 50 ° C. Warmed (Solution A). Tri-tert-butylphosphine (0.15 g) was added to a 10 ml toluene solution of tris (dibenzylideneacetone) dipalladium (0) chloroform complex (0.12 g) and heated to 50 ° C. (solution B). In a nitrogen stream, solution B was added to solution A and reacted by heating under reflux for 4 hours. After allowing to cool, the reaction solution was filtered through Celite, and the filtrate was concentrated. Purification by silica gel column chromatography (hexane / methylene chloride, second time hexane / ethyl acetate) gave the target compound 53 (1.57 g).
It was confirmed to be the target compound 53 by DEI-MS (m / z = 606 (M + )).

[有機電界発光素子の作製]
(実施例1)
図1に示す構造を有する有機電界発光素子を以下の方法で作製した。
[Production of organic electroluminescence device]
Example 1
An organic electroluminescent element having the structure shown in FIG. 1 was produced by the following method.

ガラス基板1の上にインジウム・スズ酸化物(ITO)透明導電膜を150nm堆積したもの(スパッター成膜品;シート抵抗15Ω)を通常のフォトリソグラフィ技術と塩酸エッチングを用いて2mm幅のストライプにパターニングして陽極2を形成した。パターン形成したITO基板を、アセトンによる超音波洗浄、純水による水洗、イソプロピルアルコールによる超音波洗浄の順で洗浄後、窒素ブローで乾燥させ、最後に紫外線オゾン洗浄を行った。   An indium tin oxide (ITO) transparent conductive film deposited on a glass substrate 1 having a thickness of 150 nm (sputtered film; sheet resistance 15 Ω) is patterned into a 2 mm wide stripe using normal photolithography and hydrochloric acid etching. Thus, an anode 2 was formed. The patterned ITO substrate was cleaned in the order of ultrasonic cleaning with acetone, water with pure water, and ultrasonic cleaning with isopropyl alcohol, then dried with nitrogen blow, and finally subjected to ultraviolet ozone cleaning.

正孔注入層3を以下のように湿式塗布法によって形成した。
正孔注入層3の材料として、下記に示す構造式の芳香族アミノ基を有する高分子化合物(P−1(重量平均分子量:29400,数平均分子量:12600))と下記に示す構造式の電子受容性化合物(A−1)とを用い、下記の条件でスピンコートした。

Figure 0005470706
The hole injection layer 3 was formed by a wet coating method as follows.
As a material for the hole injection layer 3, a polymer compound having an aromatic amino group represented by the structural formula shown below (P-1 (weight average molecular weight: 29400, number average molecular weight: 12600)) and an electron having the structural formula shown below. Using the accepting compound (A-1), spin coating was performed under the following conditions.
Figure 0005470706

スピンコート条件
塗布環境 大気中
溶媒 安息香酸エチル
塗布液濃度 P−1 2.0重量%
A−1 0.8重量%
スピナ回転数 1500rpm
スピナ回転時間 30秒
乾燥条件 230℃×3時間
上記のスピンコートにより膜厚30nmの均一な薄膜が形成された。
Spin coating conditions Application environment Air Solvent Ethyl benzoate Coating solution concentration P-1 2.0% by weight
A-1 0.8% by weight
Spinner speed 1500rpm
Spinner rotation time 30 seconds Drying conditions 230 ° C. × 3 hours A uniform thin film having a thickness of 30 nm was formed by the above spin coating.

続いて、正孔輸送層4を以下のように湿式塗布法によって形成した。正孔輸送層4の材料として、下記に示す本発明の正孔輸送材料(H−1)(合成例2で合成した目的物6)を下記の条件でスピンコートした。   Subsequently, the hole transport layer 4 was formed by a wet coating method as follows. As a material for the hole transport layer 4, the following hole transport material (H-1) of the present invention (target product 6 synthesized in Synthesis Example 2) was spin-coated under the following conditions.

Figure 0005470706
Figure 0005470706

スピンコート条件
塗布環境 窒素グローブボックス中
溶媒 トルエン
塗布液濃度 H−1 0.4重量%
スピナ回転数 1500rpm
スピナ回転時間 30秒
Spin coating conditions Application environment In nitrogen glove box Solvent Toluene Coating solution concentration H-1 0.4% by weight
Spinner speed 1500rpm
Spinner rotation time 30 seconds

上記のスピンコート膜に紫外光を積算光量で5J/cm照射し、真空中、130℃で1時間加熱することにより膜厚20nmの均一な薄膜を得た。 The spin coat film was irradiated with ultraviolet light at an integrated light amount of 5 J / cm 2 and heated in vacuum at 130 ° C. for 1 hour to obtain a uniform thin film having a thickness of 20 nm.

続いて、発光層5を以下のように湿式塗布法によって形成した。発光層5の材料として、下記の化合物(E−1)と(E−2)を、下記に示す構造式のイリジウム錯体(D−1)と共に用い、下記の条件でスピンコートした。   Subsequently, the light emitting layer 5 was formed by a wet coating method as follows. As the material for the light emitting layer 5, the following compounds (E-1) and (E-2) were used together with an iridium complex (D-1) having the structural formula shown below and spin-coated under the following conditions.

Figure 0005470706
Figure 0005470706

スピンコート条件
塗布環境 窒素グローブボックス中
溶媒 キシレン
塗布液濃度 E−1 1.0重量%
E−2 1.0重量%
D−1 0.1重量%
スピナ回転数 1500rpm
スピナ回転時間 30秒
乾燥条件 130℃×60分(減圧下)
上記のスピンコートにより膜厚40nmの均一な薄膜が形成された。
Spin coating conditions Application environment Nitrogen glove box Solvent Xylene Coating solution concentration E-1 1.0% by weight
E-2 1.0% by weight
D-1 0.1% by weight
Spinner speed 1500rpm
Spinner rotation time 30 seconds Drying conditions 130 ° C x 60 minutes (under reduced pressure)
A uniform thin film having a thickness of 40 nm was formed by the above spin coating.

発光層5までを成膜した基板を窒素グローブボックスに連結されたマルチチャンバー型真空蒸着装置に大気に曝すことなく搬入し、装置内を真空度3.8×10−5Paまで排気した後、正孔阻止層6および電子輸送層7を真空蒸着法によって成膜した。 The substrate on which the light emitting layer 5 was formed was carried into a multi-chamber vacuum deposition apparatus connected to a nitrogen glove box without exposure to the atmosphere, and the inside of the apparatus was evacuated to a vacuum degree of 3.8 × 10 −5 Pa. The hole blocking layer 6 and the electron transport layer 7 were formed by a vacuum deposition method.

正孔阻止層6として、下記に示すピリジン誘導体(HB−1)を蒸着速度0.07〜0.1nm/秒で5nmの膜厚で積層した。蒸着時の真空度は3.5×10−5Paであった。 As the hole blocking layer 6, a pyridine derivative (HB-1) shown below was laminated with a film thickness of 5 nm at a deposition rate of 0.07 to 0.1 nm / second. The degree of vacuum at the time of vapor deposition was 3.5 × 10 −5 Pa.

Figure 0005470706
Figure 0005470706

続いて、正孔阻止層6の上に、電子輸送層7として下記に示すアルミニウムの8−ヒドロキシキノリン錯体(ET−1)を同様にして蒸着した。蒸着時の真空度は3.1〜3.2×10−5Pa、蒸着速度は0.09〜0.11nm/秒で膜厚は30nmとした。 Subsequently, an aluminum 8-hydroxyquinoline complex (ET-1) shown below was deposited as an electron transport layer 7 on the hole blocking layer 6 in the same manner. The degree of vacuum during deposition was 3.1 to 3.2 × 10 −5 Pa, the deposition rate was 0.09 to 0.11 nm / sec, and the film thickness was 30 nm.

Figure 0005470706
Figure 0005470706

上記の正孔阻止層6および電子輸送層7を真空蒸着する時の基板温度は室温に保持した。
ここで、電子輸送層7までの蒸着を行った素子を電子輸送層までを蒸着した有機層蒸着チャンバーから金属蒸着チャンバーへと真空中で搬送し、陰極蒸着用のマスクとして2mm幅のストライプ状シャドーマスクを、陽極2のITOストライプとは直交するように素子に密着させて、装置内の真空度が4.0×10−5Pa以下になるまで排気した後、電子注入層8と陰極9からなる2層型陰極を真空蒸着法によって形成した。電子注入層8として、先ず、フッ化リチウム(LiF)を、モリブデンボートを用いて、蒸着速度0.015〜0.014nm/秒、真空度4.9〜5.2×10−5Paで、0.5nmの膜厚で電子輸送層7の上に成膜した。次に、アルミニウムを同様にモリブデンボートにより加熱して、蒸着速度0.1〜1.3nm/秒、真空度7.5〜9.1×10−5Paで膜厚85nmのアルミニウム層を形成して陰極9を完成させた。以上の電子注入層8と陰極9の蒸着時の基板温度は室温に保持した。
The substrate temperature during vacuum deposition of the hole blocking layer 6 and the electron transport layer 7 was kept at room temperature.
Here, the element on which the electron transport layer 7 has been deposited is transported in vacuum from the organic layer deposition chamber on which the electron transport layer has been deposited to the metal deposition chamber, and a 2 mm wide striped shadow is used as a mask for cathode deposition. After the mask was brought into close contact with the element so as to be orthogonal to the ITO stripe of the anode 2 and evacuated until the degree of vacuum in the apparatus was 4.0 × 10 −5 Pa or less, the electron injection layer 8 and the cathode 9 A two-layer cathode was formed by vacuum evaporation. As the electron injection layer 8, first, lithium fluoride (LiF) is deposited at a deposition rate of 0.015 to 0.014 nm / second and a degree of vacuum of 4.9 to 5.2 × 10 −5 Pa using a molybdenum boat. A film having a thickness of 0.5 nm was formed on the electron transport layer 7. Next, aluminum is similarly heated by a molybdenum boat to form an aluminum layer having a film thickness of 85 nm at a deposition rate of 0.1 to 1.3 nm / second and a degree of vacuum of 7.5 to 9.1 × 10 −5 Pa. Thus, the cathode 9 was completed. The substrate temperature during the deposition of the electron injection layer 8 and the cathode 9 was kept at room temperature.

以上の様にして、2mm×2mmのサイズの発光面積部分を有する有機電界発光素子が得られた。この素子の発光特性は以下の通りである。
輝度/電流:32.9[cd/A]@100cd/m
電圧:5.6[V] @100cd/m
発光効率:18.7[1m/w]@100cd/m
素子の発光スペクトルの極大波長は512nmであり、イリジウム錯体(D−1)からのものと同定された。色度はCIE(x,y)=(0.296,0.627)であった。
As described above, an organic electroluminescent element having a light emitting area portion having a size of 2 mm × 2 mm was obtained. The light emission characteristics of this element are as follows.
Luminance / current: 32.9 [cd / A] @ 100 cd / m 2
Voltage: 5.6 [V] @ 100 cd / m 2
Luminous efficiency: 18.7 [1 m / w] @ 100 cd / m 2
The maximum wavelength of the emission spectrum of the device was 512 nm, which was identified as that from the iridium complex (D-1). The chromaticity was CIE (x, y) = (0.296, 0.627).

(実施例2)
正孔輸送層4を以下に示す方法で製膜したほかは実施例1と同様にして有機電界発光素子を得た。
実施例1と同様の方法で正孔注入層3を成膜したITO基板上に、正孔輸送層4の材料として、下記に示す本発明の正孔輸送材料(H−2)(合成例3で合成した目的物10)を下記の条件でスピンコートした。
(Example 2)
An organic electroluminescent element was obtained in the same manner as in Example 1 except that the hole transport layer 4 was formed by the following method.
On the ITO substrate on which the hole injection layer 3 was formed in the same manner as in Example 1, the hole transport material (H-2) of the present invention shown below as a material for the hole transport layer 4 (Synthesis Example 3) The target product 10) synthesized in (1) was spin-coated under the following conditions.

Figure 0005470706
Figure 0005470706

スピンコート条件
塗布環境 窒素グローブボックス中
溶媒 キシレン
塗布液濃度 H−2 1.0重量%
スピナ回転数 1500rpm
スピナ回転時間 30秒
Spin coating conditions Application environment Nitrogen glove box Solvent Xylene Coating solution concentration H-2 1.0% by weight
Spinner speed 1500rpm
Spinner rotation time 30 seconds

上記のスピンコート膜に紫外光を積算光量で30J/cm照射し、窒素中、230℃で1時間加熱することにより、膜厚22nmの均一な薄膜を得た。
その後、実施例1と同様の手順で有機電界発光素子を作製した。
The spin coat film was irradiated with ultraviolet light at an integrated light amount of 30 J / cm 2 and heated at 230 ° C. for 1 hour in nitrogen to obtain a uniform thin film having a thickness of 22 nm.
Then, the organic electroluminescent element was produced in the same procedure as Example 1.

このようにして得られた2mm×2mmのサイズの発光面積部分を有する有機電界発光素子の発光特性は以下に示す通りである。
輝度/電流:27.6[cd/A]@100cd/m
電圧:6.0[V] @100cd/m
発光効率:14.5[1m/w]@100cd/m
素子の発光スペクトルの極大波長は512nmであり、イリジウム錯体(D−1)からのものと同定された。色度はCIE(x,y)=(0.285,0.630)であった。
The light emission characteristics of the organic electroluminescence device having a light emission area portion of 2 mm × 2 mm obtained in this way are as follows.
Luminance / current: 27.6 [cd / A] @ 100 cd / m 2
Voltage: 6.0 [V] @ 100 cd / m 2
Luminous efficiency: 14.5 [1 m / w] @ 100 cd / m 2
The maximum wavelength of the emission spectrum of the device was 512 nm, which was identified as that from the iridium complex (D-1). The chromaticity was CIE (x, y) = (0.285, 0.630).

(実施例3)
正孔輸送層4を以下に示す方法で製膜したほかは実施例1と同様にして有機電界発光素子を得た。
実施例1と同様の方法で正孔注入層3を成膜したITO基板上に、正孔輸送層4の材料として、下記に示す本発明の正孔輸送材料(H−3)(合成例5で合成した目的物17)を下記の条件でスピンコートした。
(Example 3)
An organic electroluminescent element was obtained in the same manner as in Example 1 except that the hole transport layer 4 was formed by the following method.
A hole transport material (H-3) of the present invention shown below as a material of the hole transport layer 4 on the ITO substrate on which the hole injection layer 3 was formed in the same manner as in Example 1 (Synthesis Example 5) The target product 17) synthesized in (1) was spin-coated under the following conditions.

Figure 0005470706
Figure 0005470706

スピンコート条件
塗布環境 窒素グローブボックス中
溶媒 キシレン
塗布液濃度 H−3 0.9重量%
スピナ回転数 1500rpm
スピナ回転時間 30秒
Spin coating conditions Application environment Nitrogen glove box Solvent Xylene Coating solution concentration H-3 0.9% by weight
Spinner speed 1500rpm
Spinner rotation time 30 seconds

上記のスピンコート膜に紫外光を積算光量で5J/cm照射し、窒素中、150℃で1時間加熱することにより、膜厚19nmの均一な薄膜を得た。
その後、実施例1と同様の手順で有機電界発光素子を作製した。
The spin coat film was irradiated with ultraviolet light at an integrated light amount of 5 J / cm 2 and heated at 150 ° C. for 1 hour in nitrogen to obtain a uniform thin film having a thickness of 19 nm.
Then, the organic electroluminescent element was produced in the same procedure as Example 1.

このようにして得られた2mm×2mmのサイズの発光面積部分を有する有機電界発光素子の発光特性は以下に示す通りである。
輝度/電流:34.5[cd/A]@100cd/m
電圧:6.1[V] @100cd/m
発光効率:17.8[1m/w]@100cd/m
素子の発光スペクトルの極大波長は513nmであり、イリジウム錯体(D−1)からのものと同定された。色度はCIE(x,y)=(0.302,0.625)であった。
The light emission characteristics of the organic electroluminescence device having a light emission area portion of 2 mm × 2 mm obtained in this way are as follows.
Luminance / current: 34.5 [cd / A] @ 100 cd / m 2
Voltage: 6.1 [V] @ 100 cd / m 2
Luminous efficiency: 17.8 [1 m / w] @ 100 cd / m 2
The maximum wavelength of the emission spectrum of the device was 513 nm, which was identified as from the iridium complex (D-1). The chromaticity was CIE (x, y) = (0.302, 0.625).

(実施例4)
正孔輸送層4を以下に示す方法で製膜したほかは実施例1と同様にして有機電界発光素子を得た。
実施例1と同様の方法で正孔注入層3を成膜したITO基板上に、正孔輸送層4の材料として、下記に示す本発明の正孔輸送材料(H−6)(合成例8で合成した目的物23)を下記の条件でスピンコートした。
Example 4
An organic electroluminescent element was obtained in the same manner as in Example 1 except that the hole transport layer 4 was formed by the following method.
A hole transport material (H-6) of the present invention shown below as a material for the hole transport layer 4 on the ITO substrate on which the hole injection layer 3 was formed in the same manner as in Example 1 (Synthesis Example 8) The target product 23) synthesized in (1) was spin-coated under the following conditions.

Figure 0005470706
Figure 0005470706

スピンコート条件
塗布環境 窒素グローブボックス中
溶媒 キシレン
塗布液濃度 H−6 0.8重量%
スピナ回転数 1500rpm
スピナ回転時間 30秒
Spin coating condition Application environment In nitrogen glove box Solvent Xylene Coating solution concentration H-6 0.8% by weight
Spinner speed 1500rpm
Spinner rotation time 30 seconds

上記のスピンコート膜に紫外光を積算光量で2J/cm照射し、窒素中、200℃で1時間加熱することにより、膜厚20nmの均一な薄膜を得た。
その後、実施例1と同様の手順で有機電界発光素子を作製した。
The spin coat film was irradiated with ultraviolet light at an integrated light amount of 2 J / cm 2 and heated at 200 ° C. for 1 hour in nitrogen to obtain a uniform thin film having a thickness of 20 nm.
Then, the organic electroluminescent element was produced in the same procedure as Example 1.

このようにして得られた2mm×2mmのサイズの発光面積部分を有する有機電界発光素子の発光特性は以下に示す通りである。
輝度/電流:30.7[cd/A]@100cd/m
電圧:6.7[V] @100cd/m
発光効率:14.5[1m/w]@100cd/m
素子の発光スペクトルの極大波長は512nmであり、イリジウム錯体(D−1)からのものと同定された。色度はCIE(x,y)=(0.285,0.634)であった。
The light emission characteristics of the organic electroluminescence device having a light emission area portion of 2 mm × 2 mm obtained in this way are as follows.
Luminance / current: 30.7 [cd / A] @ 100 cd / m 2
Voltage: 6.7 [V] @ 100 cd / m 2
Luminous efficiency: 14.5 [1 m / w] @ 100 cd / m 2
The maximum wavelength of the emission spectrum of the device was 512 nm, which was identified as that from the iridium complex (D-1). The chromaticity was CIE (x, y) = (0.285, 0.634).

(実施例5)
正孔輸送層4および発光層5を以下に示す方法で製膜したほかは実施例1と同様にして有機電界発光素子を得た。
実施例1と同様の方法で正孔注入層3を成膜したITO基板上に、正孔輸送層4の材料として、下記に示す本発明の正孔輸送材料(H−7)(合成例15で合成した目的物47)を下記の条件でスピンコートした。
(Example 5)
An organic electroluminescent element was obtained in the same manner as in Example 1 except that the hole transport layer 4 and the light emitting layer 5 were formed by the following method.
On the ITO substrate on which the hole injection layer 3 was formed in the same manner as in Example 1, as the material of the hole transport layer 4, the following hole transport material (H-7) of the present invention (Synthesis Example 15) The target product 47) synthesized in (1) was spin-coated under the following conditions.

Figure 0005470706
Figure 0005470706

スピンコート条件
塗布環境 窒素グローブボックス中
溶媒 キシレン
塗布液濃度 H−7 1.2重量%
スピナ回転数 1500rpm
スピナ回転時間 30秒
Spin coating conditions Application environment In nitrogen glove box Solvent Xylene Coating solution concentration H-7 1.2% by weight
Spinner speed 1500rpm
Spinner rotation time 30 seconds

上記のスピンコート膜に紫外光を積算光量で5J/cm照射し、真空中、200℃で1時間加熱することにより、膜厚21nmの均一な薄膜を得た。 The spin coat film was irradiated with ultraviolet light at an integrated light amount of 5 J / cm 2 and heated in vacuum at 200 ° C. for 1 hour to obtain a uniform thin film having a thickness of 21 nm.

続いて、発光層5を以下のように湿式塗布法によって形成した。発光層5の材料として、下記の化合物(E−1)と(E−2)を、下記に示す構造式のイリジウム錯体(D−1)と共に用い、下記の条件でスピンコートした。   Subsequently, the light emitting layer 5 was formed by a wet coating method as follows. As the material for the light emitting layer 5, the following compounds (E-1) and (E-2) were used together with an iridium complex (D-1) having the structural formula shown below and spin-coated under the following conditions.

Figure 0005470706
Figure 0005470706

スピンコート条件
塗布環境 窒素グローブボックス中
溶媒 キシレン
塗布液濃度 E−1 1.8重量%
E−2 0.2重量%
D−1 0.1重量%
スピナ回転数 1500rpm
スピナ回転時間 30秒
乾燥条件 130℃×60分(減圧下)
上記のスピンコートにより膜厚40nmの均一な薄膜が形成された。
その後、実施例1と同様の手順で有機電界発光素子を作製した。
Spin coating conditions Application environment Nitrogen glove box Solvent Xylene Coating solution concentration E-1 1.8% by weight
E-2 0.2% by weight
D-1 0.1% by weight
Spinner speed 1500rpm
Spinner rotation time 30 seconds Drying conditions 130 ° C x 60 minutes (under reduced pressure)
A uniform thin film having a thickness of 40 nm was formed by the above spin coating.
Then, the organic electroluminescent element was produced in the same procedure as Example 1.

このようにして得られた2mm×2mmのサイズの発光面積部分を有する有機電界発光素子の発光特性は以下に示す通りである。
輝度/電流:23.3[cd/A]@100cd/m
電圧:8.4[V] @100cd/m
発光効率:8.8[1m/w]@100cd/m
素子の発光スペクトルの極大波長は510nmであり、イリジウム錯体(D−1)からのものと同定された。色度はCIE(x,y)=(0.281,0.629)であった。
The light emission characteristics of the organic electroluminescence device having a light emission area portion of 2 mm × 2 mm obtained in this way are as follows.
Luminance / current: 23.3 [cd / A] @ 100 cd / m 2
Voltage: 8.4 [V] @ 100 cd / m 2
Luminous efficiency: 8.8 [1 m / w] @ 100 cd / m 2
The maximum wavelength of the emission spectrum of the device was 510 nm, which was identified as that from the iridium complex (D-1). The chromaticity was CIE (x, y) = (0.281, 0.629).

(比較例1)
正孔輸送層4を以下に示す方法で製膜したほかは実施例1と同様にして有機電界発光素子を得た。
実施例1と同様の方法で正孔注入層3を成膜したITO基板上に、正孔輸送層4の材料として、下記に示す化合物(H−4)を下記の条件でスピンコートした。
(Comparative Example 1)
An organic electroluminescent element was obtained in the same manner as in Example 1 except that the hole transport layer 4 was formed by the following method.
On the ITO substrate on which the hole injection layer 3 was formed in the same manner as in Example 1, the following compound (H-4) as a material for the hole transport layer 4 was spin coated under the following conditions.

Figure 0005470706
Figure 0005470706

スピンコート条件
塗布環境 窒素グローブボックス中
溶媒 キシレン
塗布液濃度 H−4 1.2重量%
スピナ回転数 1500rpm
スピナ回転時間 30秒
Spin coating conditions Application environment In nitrogen glove box Solvent Xylene Coating solution concentration H-4 1.2% by weight
Spinner speed 1500rpm
Spinner rotation time 30 seconds

上記のスピンコート膜に紫外光を積算光量で2J/cm照射し、真空中、130℃で1時間加熱することにより、膜厚25nmの均一な薄膜を得た。
その後、実施例1と同様の手順で有機電界発光素子を作製した。
The spin coat film was irradiated with 2 J / cm 2 of ultraviolet light with an integrated light amount and heated in vacuum at 130 ° C. for 1 hour to obtain a uniform thin film with a thickness of 25 nm.
Then, the organic electroluminescent element was produced in the same procedure as Example 1.

このようにして得られた2mm×2mmのサイズの発光面積部分を有する有機電界発光素子の発光特性は以下に示す。
輝度/電流:19.1[cd/A]@100cd/m
電圧:7.1[V] @100cd/m
発光効率:8.5[1m/w]@100cd/m
素子の発光スペクトルの極大波長は512nmであり、イリジウム錯体(D−1)からのものと同定された。色度はCIE(x,y)=(0.294,0.628)であった。
The light emission characteristics of the organic electroluminescence device having a light emission area portion of 2 mm × 2 mm obtained in this way are shown below.
Luminance / current: 19.1 [cd / A] @ 100 cd / m 2
Voltage: 7.1 [V] @ 100 cd / m 2
Luminous efficiency: 8.5 [1 m / w] @ 100 cd / m 2
The maximum wavelength of the emission spectrum of the device was 512 nm, which was identified as that from the iridium complex (D-1). The chromaticity was CIE (x, y) = (0.294, 0.628).

(比較例2)
正孔輸送層4を以下に示す方法で製膜したほかは実施例1と同様にして有機電界発光素子を得た。
実施例1と同様の方法で正孔注入層3を成膜したITO基板上に、正孔輸送層4の材料として、下記に示す化合物(H−5)を下記の条件でスピンコートした。
(Comparative Example 2)
An organic electroluminescent element was obtained in the same manner as in Example 1 except that the hole transport layer 4 was formed by the following method.
A compound (H-5) shown below as a material for the hole transport layer 4 was spin-coated on the ITO substrate on which the hole injection layer 3 was formed in the same manner as in Example 1 under the following conditions.

Figure 0005470706
Figure 0005470706

スピンコート条件
塗布環境 窒素グローブボックス中
溶媒 トルエン
塗布液濃度 H−5 0.5重量%
スピナ回転数 1500rpm
スピナ回転時間 30秒
Spin coating conditions Application environment In nitrogen glove box Solvent Toluene Coating solution concentration H-5 0.5% by weight
Spinner speed 1500rpm
Spinner rotation time 30 seconds

上記のスピンコート膜を窒素中、200℃で1時間加熱することにより、膜厚20nmの均一な薄膜を得た。
その後、実施例1と同様の手順で有機電界発光素子を作製した。
The spin coat film was heated in nitrogen at 200 ° C. for 1 hour to obtain a uniform thin film having a thickness of 20 nm.
Then, the organic electroluminescent element was produced in the same procedure as Example 1.

このようにして得られた2mm×2mmのサイズの発光面積部分を有する有機電界発光素子の発光特性は以下に示す。
輝度/電流:17.1[cd/A]@100cd/m
電圧:6.2[V] @100cd/m
発光効率:8.8[1m/w]@100cd/m
素子の発光スペクトルの極大波長は513nmであり、イリジウム錯体(D−1)からのものと同定された。色度はCIE(x,y)=(0.300,0.624)であった。
The light emission characteristics of the organic electroluminescence device having a light emission area portion of 2 mm × 2 mm obtained in this way are shown below.
Luminance / current: 17.1 [cd / A] @ 100 cd / m 2
Voltage: 6.2 [V] @ 100 cd / m 2
Luminous efficiency: 8.8 [1 m / w] @ 100 cd / m 2
The maximum wavelength of the emission spectrum of the device was 513 nm, which was identified as from the iridium complex (D-1). The chromaticity was CIE (x, y) = (0.300, 0.624).

(駆動寿命試験)
実施例1〜5、および比較例1,2で作製した素子について、初期輝度2500cd/cmでの規格化半減寿命(比較例1のものを1.0とした場合の規格化半減寿命)を調べた。
(Driving life test)
About the element produced in Examples 1-5 and Comparative Examples 1 and 2 , normalized half life (initialized half life when 1.0 of Comparative Example 1 is 1.0) at an initial luminance of 2500 cd / cm 2 Examined.

以上のようにして作製した有機電界発光素子の発光特性と駆動寿命試験結果を表1にまとめる。   Table 1 summarizes the light emission characteristics and the drive life test results of the organic electroluminescence device produced as described above.

Figure 0005470706
Figure 0005470706

表1から明らかなように、本発明の正孔輸送材料を用いて作製された有機電界発光素子は、発光効率に優れ、長寿命を達成できることがわかる。   As can be seen from Table 1, the organic electroluminescent device produced using the hole transport material of the present invention is excellent in luminous efficiency and can achieve a long lifetime.

本発明は、有機電界発光素子が使用される各種の分野、例えば、フラットパネル・ディスプレイ(例えばOAコンピュータ用や壁掛けテレビ)や面発光体としての特徴を生かした光源(例えば、複写機の光源、液晶ディスプレイや計器類のバックライト光源)、表示板、標識灯等の分野において、好適に使用することが出来る。   The present invention relates to various fields in which organic electroluminescent elements are used, for example, light sources (for example, light sources of copiers, flat panel displays (for example, for OA computers and wall-mounted televisions) and surface light emitters). It can be suitably used in the fields of liquid crystal displays and backlights of instruments), display panels, indicator lamps and the like.

本発明の有機電界発光素子の構造の一例を模式的に示す断面図である。It is sectional drawing which shows typically an example of the structure of the organic electroluminescent element of this invention.

符号の説明Explanation of symbols

1 基板
2 陽極
3 正孔注入層
4 正孔輸送層
5 発光層
6 正孔阻止層
7 電子輸送層
8 電子注入層
9 陰極
DESCRIPTION OF SYMBOLS 1 Substrate 2 Anode 3 Hole injection layer 4 Hole transport layer 5 Light emitting layer 6 Hole blocking layer 7 Electron transport layer 8 Electron injection layer 9 Cathode

Claims (10)

下記一般式(I)で表され、分子量が300〜5000であることを特徴とする正孔輸送材料。
Figure 0005470706
[式(I)中、R〜Rは、各々独立に、水素原子、連結基Zへの直接結合または1価の基を示す。
nは、〜4の整数を示す。
連結基Z、各々独立に、直接結合、エーテル基、置換基を有していてもよい芳香族炭化水素基または置換基を有していてもよい芳香族複素環基である。
は、水素原子または下記式(IA)で表される架橋基を示す。但し、一分子中において、少なくとも1つのAは下記式(IA)で表される架橋基である。
は、下記式(IE−1)または(IE−2)で表される基を示す。
一分子中に存在する、複数の、R〜R、AおよびEは、それぞれ同一であっても異なっていてもよい。
−G−J (IA)
{式(IA)中、Gは、−O−基、−C(=O)−基、または置換基を有していてもよい−CH−基から選ばれる基を1〜30個連結してなる2価の基を示す。Jは、架橋基群Tの中から選ばれる一価の基を表す。
<架橋基群T>
Figure 0005470706
(式J−1、J−3〜J−5中、R〜Rは、各々独立に、水素原子またはアルキル基を示す。式J−7において、Arは、置換基を有していてもよい芳香族炭化水素基または置換基を有していてもよい芳香族複素環基を示す。但し、式J−1の基は、カルボニル基に直接連結されることはない。)}
−O−R (IE−1)
−Ar (IE−2)
{式(IE−1)中、Rは1価の基を示す。式(IE−2)中、Arは置換基を有していてもよい芳香族炭化水素基または置換基を有していてもよい芳香族複素環基を示す。}]
A hole transport material represented by the following general formula (I) and having a molecular weight of 300 to 5,000.
Figure 0005470706
[In Formula (I), R 1 to R 4 each independently represent a hydrogen atom, a direct bond to the linking group Z 1 or a monovalent group.
n shows the integer of 2-4 .
Linking groups Z 1 is each independently a direct bond, an ether group, which may have an aromatic optionally substituted hydrocarbon group or an optionally substituted aromatic heterocyclic group.
A 1 represents a hydrogen atom or a bridging group represented by the following formula (IA). However, in one molecule, at least one A 1 is a crosslinking group represented by the following formula (IA).
E 1 represents a group represented by the following formula (IE-1) or (IE-2).
A plurality of R 1 to R 4 , A 1 and E 1 present in one molecule may be the same or different from each other.
-G 1 -J 1 (IA)
{In Formula (IA), G 1 is connected to 1 to 30 groups selected from an —O— group, a —C (═O) — group, or an optionally substituted —CH 2 — group. The bivalent group formed is shown. J 1 represents a monovalent group selected from the bridging group T.
<Crosslinking group T>
Figure 0005470706
(In formulas J-1, J-3 to J-5, R 5 to R 8 each independently represents a hydrogen atom or an alkyl group. In formula J-7, Ar 1 has a substituent. An aromatic hydrocarbon group that may be substituted or an aromatic heterocyclic group that may have a substituent, provided that the group of formula J-1 is not directly linked to a carbonyl group.}
-O-R 0 (IE-1)
-Ar 2 (IE-2)
{In Formula (IE-1), R 0 represents a monovalent group. In formula (IE-2), Ar 2 represents an aromatic hydrocarbon group which may have a substituent or an aromatic heterocyclic group which may have a substituent. }]
が2であることを特徴とする請求項1に記載の正孔輸送材料。 2. The hole transport material according to claim 1, wherein n is 2 . 一分子内における架橋基の数が、1、2または3であることを特徴とする請求項1または2に記載の正孔輸送材料。   The hole transport material according to claim 1 or 2, wherein the number of crosslinking groups in one molecule is 1, 2 or 3. が下記式(IE)で表されることを特徴とする請求項1ないし3のいずれか1項に記載の正孔輸送材料。
Figure 0005470706
(式(IE)中、Qは直接結合または酸素原子を示す。R10〜R15は、各々独立に、水素原子、連結基Zへの直接結合または1価の基を示す。)
The hole transport material according to any one of claims 1 to 3, wherein E 1 is represented by the following formula (IE).
Figure 0005470706
(In Formula (IE), Q 1 represents a direct bond or an oxygen atom. R 10 to R 15 each independently represent a hydrogen atom, a direct bond to the linking group Z 1 or a monovalent group.)
一分子内に、ビフェニル骨格を有することを特徴とする請求項1ないし4のいずれか1項に記載の正孔輸送材料。   The hole transport material according to any one of claims 1 to 4, wherein the hole transport material has a biphenyl skeleton in one molecule. 請求項1ないし5のいずれか1項に記載の正孔輸送材料と溶剤とを含有することを特徴とする有機電界発光素子用組成物。   An organic electroluminescent element composition comprising the hole transport material according to any one of claims 1 to 5 and a solvent. 請求項1ないし5のいずれか1項に記載の正孔輸送材料を重合させて得られる高分子化合物。   A polymer compound obtained by polymerizing the hole transport material according to claim 1. 基板上に、陽極、陰極、およびこれら両極間に設けられた有機発光層を有する有機電界発光素子において、請求項7に記載の高分子化合物を含有する層を有することを特徴とする有機電界発光素子。   An organic electroluminescent device comprising an organic electroluminescent device having an anode, a cathode, and an organic light emitting layer provided between both electrodes on a substrate, wherein the organic electroluminescent device comprises the layer containing the polymer compound according to claim 7. element. 有機発光層が、湿式成膜法で形成されることを特徴とする請求項8に記載の有機電界発光素子。   The organic electroluminescent device according to claim 8, wherein the organic light emitting layer is formed by a wet film forming method. 高分子化合物を含有する層が、正孔輸送層であることを特徴とする請求項8または9に記載の有機電界発光素子。   The organic electroluminescent element according to claim 8 or 9, wherein the layer containing the polymer compound is a hole transport layer.
JP2008007068A 2007-01-25 2008-01-16 Hole transport material, polymer compound obtained by polymerizing the hole transport material, composition for organic electroluminescence device, and organic electroluminescence device Active JP5470706B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008007068A JP5470706B2 (en) 2007-01-25 2008-01-16 Hole transport material, polymer compound obtained by polymerizing the hole transport material, composition for organic electroluminescence device, and organic electroluminescence device

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2007015213 2007-01-25
JP2007015213 2007-01-25
JP2008007068A JP5470706B2 (en) 2007-01-25 2008-01-16 Hole transport material, polymer compound obtained by polymerizing the hole transport material, composition for organic electroluminescence device, and organic electroluminescence device

Publications (2)

Publication Number Publication Date
JP2008218983A JP2008218983A (en) 2008-09-18
JP5470706B2 true JP5470706B2 (en) 2014-04-16

Family

ID=39838606

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008007068A Active JP5470706B2 (en) 2007-01-25 2008-01-16 Hole transport material, polymer compound obtained by polymerizing the hole transport material, composition for organic electroluminescence device, and organic electroluminescence device

Country Status (1)

Country Link
JP (1) JP5470706B2 (en)

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6360310A (en) * 1986-08-29 1988-03-16 芝浦メカトロニクス株式会社 Track cleaning vehicle
JP5298524B2 (en) * 2006-12-27 2013-09-25 三菱化学株式会社 Organic compound having a crosslinking group, organic electroluminescent element material, composition for organic electroluminescent element, and organic electroluminescent element
JP4985441B2 (en) * 2007-02-13 2012-07-25 三菱化学株式会社 Polymer compound, organic electroluminescent device material, composition for organic electroluminescent device, and organic electroluminescent device
JP5644041B2 (en) * 2008-10-15 2014-12-24 コニカミノルタ株式会社 Manufacturing method of organic photoelectric conversion element
US8283002B2 (en) * 2008-11-18 2012-10-09 Plextronics, Inc. Aminobenzene compositions and related devices and methods
CN102300890B (en) 2009-01-30 2014-03-26 惠普开发有限公司 Block copolymers and block copolymer nanoparticle compositions
WO2010087840A1 (en) * 2009-01-30 2010-08-05 Hewlett-Packard Development Company Uv light-emissive fluorene-based copolymers
JP2010239125A (en) * 2009-03-10 2010-10-21 Mitsubishi Chemicals Corp Organic electroluminescent element, organic el display, and organic el illumination
WO2010103765A1 (en) 2009-03-11 2010-09-16 出光興産株式会社 Novel polymerizable monomer, and material for organic device, hole injection/transport material, material for organic electroluminescent element and organic electroluminescent element each comprising polymer (polymeric compound) of the polymerizable monomer
CN106957410B (en) 2009-06-01 2019-06-18 日立化成工业株式会社 Organic electronic material, composition, film, organic electronic element, organic electroluminescent device, lighting device and display device
JP2012043912A (en) * 2010-08-17 2012-03-01 Fujifilm Corp Material for organic electroluminescent element, composition containing the same, film formed by the composition, and organic electroluminescent element
JP5560155B2 (en) 2010-09-30 2014-07-23 富士フイルム株式会社 Composition, film using the composition, charge transport layer, organic electroluminescent device, and method for forming charge transport layer
JP2013023491A (en) 2011-07-26 2013-02-04 Idemitsu Kosan Co Ltd Aromatic amine derivative and organic electroluminescent element including the same
JP6221029B2 (en) * 2013-02-13 2017-11-01 黒金化成株式会社 Novel compound, polymer using the same, curing agent and cross-linking agent
JP5894945B2 (en) * 2013-02-18 2016-03-30 信越化学工業株式会社 Fluorescent compound, method for producing the same, and fluorescent resin composition
EP3124563B1 (en) * 2014-03-27 2019-01-23 Nissan Chemical Corporation Charge-transporting varnish
JP2015193632A (en) * 2015-06-02 2015-11-05 ユー・ディー・シー アイルランド リミテッド Material for organic electroluminescent element, composition containing said material for organic electroluminescent element, film formed using said composition, and organic electroluminescent element
EP3138858B1 (en) 2015-09-01 2019-10-30 Samsung Electronics Co., Ltd. Amino fluorene polymer and organic light-emitting device including the same
US10040887B2 (en) 2015-12-28 2018-08-07 Samsung Electronics Co., Ltd. Copolymer, organic light-emitting device material including the same, and organic light-emitting device including the organic light-emitting device material
US10050205B2 (en) 2015-12-28 2018-08-14 Samsung Electronics Co., Ltd. Polymer, organic light-emitting device material including the same, and organic light-emitting device including the organic light-emitting device material
KR102496418B1 (en) * 2018-01-16 2023-02-06 덕산네오룩스 주식회사 Compound for organic electronic element, organic electronic element comprising the same, and electronic device thereof
WO2019177410A1 (en) * 2018-03-16 2019-09-19 주식회사 엘지화학 Method for producing ink compositon and organic light emitting device

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3157589B2 (en) * 1992-03-25 2001-04-16 凸版印刷株式会社 Tetraaryldiamine compound
JP2848207B2 (en) * 1993-09-17 1999-01-20 凸版印刷株式会社 Organic thin film EL device
JP2000012882A (en) * 1998-06-25 2000-01-14 Fuji Photo Film Co Ltd Photosensor having contg. reactive aromatic amine in hole transport layer and manufacture thereof
JP4325185B2 (en) * 2002-12-17 2009-09-02 富士ゼロックス株式会社 Organic electroluminescence device
JP2007110097A (en) * 2005-09-14 2007-04-26 Konica Minolta Holdings Inc Organic electroluminescence element, method of manufacturing same, display, and lighting fixture
JP2008034786A (en) * 2006-07-06 2008-02-14 Konica Minolta Holdings Inc Organic electroluminescence device, method of manufacturing the same, illuminator, and display apparatus
JP5298524B2 (en) * 2006-12-27 2013-09-25 三菱化学株式会社 Organic compound having a crosslinking group, organic electroluminescent element material, composition for organic electroluminescent element, and organic electroluminescent element
JP4946923B2 (en) * 2007-03-07 2012-06-06 三菱化学株式会社 Organic electroluminescence device

Also Published As

Publication number Publication date
JP2008218983A (en) 2008-09-18

Similar Documents

Publication Publication Date Title
JP5470706B2 (en) Hole transport material, polymer compound obtained by polymerizing the hole transport material, composition for organic electroluminescence device, and organic electroluminescence device
JP5125480B2 (en) Hole transport material, polymer compound obtained by polymerizing the hole transport material, composition for organic electroluminescence device, and organic electroluminescence device
JP5707672B2 (en) Polymer compound, network polymer compound obtained by crosslinking polymer compound, composition for organic electroluminescence device, organic electroluminescence device, organic EL display and organic EL lighting
JP4947219B2 (en) Organic electroluminescence device
JP5434088B2 (en) Crosslinkable organic compound, composition for organic electroluminescence device, organic electroluminescence device and organic EL display
JP5206907B2 (en) Organic compound, charge transport material, composition containing the compound, organic electroluminescent element, display device and lighting device
JP4935952B2 (en) Charge transporting polymer, composition for organic electroluminescent device, organic electroluminescent device, organic EL display and organic EL lighting
JP5262014B2 (en) Organic compound having a crosslinking group, composition for organic electroluminescence device, and organic electroluminescence device
JP5298524B2 (en) Organic compound having a crosslinking group, organic electroluminescent element material, composition for organic electroluminescent element, and organic electroluminescent element
JP5168840B2 (en) Charge transport material, composition for organic electroluminescence device, and organic electroluminescence device
JP5417750B2 (en) Charge transport material for wet film formation, charge transport material composition for wet film formation method, organic electroluminescence device, and organic EL display
JP2011051936A (en) Organic compound, charge transport material, composition for organic electroluminescent element, organic electroluminescent element, organic el display and organic el illumination
JP4985441B2 (en) Polymer compound, organic electroluminescent device material, composition for organic electroluminescent device, and organic electroluminescent device
JP5151812B2 (en) Organic compound, polymer compound, cross-linked polymer compound, composition for organic electroluminescence device, and organic electroluminescence device
JP5343818B2 (en) Arylamine polymer, organic electroluminescent element material, composition for organic electroluminescent element, organic electroluminescent element, organic EL display device, and organic EL lighting
JP5028934B2 (en) Hydrocarbon compound, charge transport material, charge transport material composition, and organic electroluminescent device
JP2008115131A (en) Organic compound, charge-transporting material, composition for charge-transporting material, and organic electroluminescent element
JP5617202B2 (en) Organic compound, charge transport material, composition for organic electroluminescence device, organic electroluminescence device, organic EL display and organic EL lighting
JP2009096771A (en) Diarylpyrene compound, material for organic electroluminescent device, composition for organic electroluminescent device, and organic electroluminescent device
JP5549051B2 (en) Anthracene compound, charge transport material for wet film formation, charge transport material composition for wet film formation, and organic electroluminescence device
JP5685882B2 (en) Charge transport material, composition for charge transport film, organic electroluminescence device, organic electroluminescence device display device, and organic electroluminescence device illumination device
JP2008024698A (en) Organic compound, charge transport material, charge transport material composition and organic electroluminescent device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100820

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130226

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130322

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130730

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130918

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140107

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140120

R150 Certificate of patent or registration of utility model

Ref document number: 5470706

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350