WO2012022904A1 - Miroir bombe par pressage - Google Patents

Miroir bombe par pressage Download PDF

Info

Publication number
WO2012022904A1
WO2012022904A1 PCT/FR2011/051867 FR2011051867W WO2012022904A1 WO 2012022904 A1 WO2012022904 A1 WO 2012022904A1 FR 2011051867 W FR2011051867 W FR 2011051867W WO 2012022904 A1 WO2012022904 A1 WO 2012022904A1
Authority
WO
WIPO (PCT)
Prior art keywords
sheet
bending
mirror
solid form
glass
Prior art date
Application number
PCT/FR2011/051867
Other languages
English (en)
Inventor
Anne Dros
Arnaud Borderiou
Olivier Cadier
Loïc CROGUENNEC
Guénaël BOUILLÉ
Original Assignee
Saint-Gobain Glass France
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Saint-Gobain Glass France filed Critical Saint-Gobain Glass France
Priority to CN2011800403331A priority Critical patent/CN103052602A/zh
Priority to EP11757382.4A priority patent/EP2606010A1/fr
Publication of WO2012022904A1 publication Critical patent/WO2012022904A1/fr

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B23/00Re-forming shaped glass
    • C03B23/02Re-forming glass sheets
    • C03B23/023Re-forming glass sheets by bending
    • C03B23/025Re-forming glass sheets by bending by gravity
    • C03B23/0252Re-forming glass sheets by bending by gravity by gravity only, e.g. sagging
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B23/00Re-forming shaped glass
    • C03B23/02Re-forming glass sheets
    • C03B23/023Re-forming glass sheets by bending
    • C03B23/03Re-forming glass sheets by bending by press-bending between shaping moulds
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B23/00Re-forming shaped glass
    • C03B23/02Re-forming glass sheets
    • C03B23/023Re-forming glass sheets by bending
    • C03B23/035Re-forming glass sheets by bending using a gas cushion or by changing gas pressure, e.g. by applying vacuum or blowing for supporting the glass while bending
    • C03B23/0352Re-forming glass sheets by bending using a gas cushion or by changing gas pressure, e.g. by applying vacuum or blowing for supporting the glass while bending by suction or blowing out for providing the deformation force to bend the glass sheet
    • C03B23/0357Re-forming glass sheets by bending using a gas cushion or by changing gas pressure, e.g. by applying vacuum or blowing for supporting the glass while bending by suction or blowing out for providing the deformation force to bend the glass sheet by suction without blowing, e.g. with vacuum or by venturi effect
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S23/00Arrangements for concentrating solar-rays for solar heat collectors
    • F24S23/70Arrangements for concentrating solar-rays for solar heat collectors with reflectors
    • F24S23/74Arrangements for concentrating solar-rays for solar heat collectors with reflectors with trough-shaped or cylindro-parabolic reflective surfaces
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/40Solar thermal energy, e.g. solar towers

Definitions

  • the invention relates to a curved mirror whose shape has been made by hot pressing and its use as a solar mirror.
  • a solar mirror has the function of receiving sunlight and returning it to a heat collector.
  • Different systems for collecting sunlight exist and rely in particular on the use of a set of large mirrors that can especially be cylindrically parabolic.
  • a cylindrico-parabolic mirror has two parallel linear edges and two other parallel edges curved in a substantially parabolic shape.
  • the mirror according to the invention is intended to act as a solar mirror. It is generally an element forming part of a set of mirror elements arranged so as to constitute a parabolic mirror. This set converges the sunlight to a heat collector.
  • this manifold consists of a tube traversed by a coolant (water, molten salts, synthetic oils, or steam). This fluid is heated by solar energy and it is made to return this energy in the form of electricity by any suitable method such as the so-called "Rankine Cycle”.
  • the heat collected can also be used directly without converting it into electricity, especially for heating buildings, water desalination or any process of converting heat into mechanical energy and / or electrical energy.
  • the different mirror elements have a large area, greater than 2 m 2 and even greater than 2.3 m 2 , and even greater than 2.5 m 2 , and even greater than 3 m 2 .
  • the areas given here are those of a single main face of the glass sheet and therefore of the mirror element.
  • the different Mirror elements have an area less than 25 m 2 (area of a single main face).
  • the parabola in the plane perpendicular to the axis of the collector may consist of 2 or 4 juxtaposed plates.
  • the plates have a shape that approaches the parabolic shape without necessarily completely corresponding to it, the essential being that the maximum of light rays reaches the collector at home.
  • the different juxtaposed plates can have different shapes, and are generally asymmetrical. One can also choose to make them identical by placing them so that their shape approaches the parable as well as possible.
  • the gravity bending support comprises a multiplicity of parallel metal strips preventing the glass sheet from collapsing too deeply in its center during its bending.
  • these metal strips caused a slight undulation of the sheet, practically imperceptible to the naked eye, and that this undulation was at the origin of imperfect convergence of solar rays to the collector.
  • These first bending tests were performed at 640 ° C. The ripples would have been even more marked if the bending had been done at a higher temperature. This is how we realized that we do not could not soak the glass if it was bombarded by a purely gravity bending process. Indeed, quenching requires that the glass is at least 660 ° C at the beginning of cooling.
  • the glass If the glass is to be thermally tempered, it must be done when it has first been heated to at least 660 ° C, usually between 660 and 730 ° C. At such a temperature, a glass sheet collapses rapidly and is very sensitive to marking by the bending tool.
  • the convex sheet is evacuated.
  • Such a method has the disadvantage of being discontinuous and therefore slow.
  • the invention relates to a method of manufacturing a curved mirror comprising a glass sheet, comprising bending the sheet by pressing against a solid form and then applying a layer of silver on said sheet.
  • the bending of the glass sheet to be mirror is formed by forming on a solid bending form
  • the plating force of the glass against said shape may be of a mechanical or pneumatic nature. If the force is of a mechanical nature it can be applied by a full or frame-shaped counter-form.
  • a counter-shaped frame has a recess in the frame.
  • it may be a frame as shown under the reference (4) of Figure 1 of WO95 / 01938 or the segmented frame referenced (9,10,1 1, 12) in Figures 1 and 2 of US5974836.
  • a frame comprising parallel strips connecting two opposite edges of the frame is used, said strips also pressing the inside of the sheet against the solid shape.
  • the force is of a pneumatic nature, it may be applied by suction through the solid shape through holes in the contact surface of said solid form as shown in Figure 2 of WO2006 / 072721.
  • a pneumatic force may also be applied via a skirt surrounding the solid shape on the model of the skirt referenced 16 in Figure 2 of WO04087590.
  • the skirt provides a suction force generating a flow of air surrounding the sheet by licking its edge.
  • the pneumatic force exerted by a skirt is generally insufficient and is preferably completed by a force of a mechanical nature or pneumatic through the solid form. Suitable solid forms are shown in the figures of WO02 / 06170.
  • the method according to the invention avoids the formation of undulations observed when the gravity bending supports of the prior art are used. This eliminates hot spots on the receiver tube for the parabolic mirror application.
  • the bending against a solid form occurs at least at the end of bending, that is to say just before cooling.
  • This bending against a solid form is followed directly (that is to say without additional special bending step) by a cooling step.
  • This cooling can be a natural cooling (the mirror is then usually placed on a frame) or a little faster without it hardening, or hardening or quenching.
  • Forming against a solid form may be preceded by bending by another method, such as gravity bending.
  • This gravity bending is carried out on a support of the frame or skeleton type.
  • This optional preliminary gravity bending is preferably carried out so that the glass is at a temperature between 610 and 660 ° C.
  • the bending by pressing against a solid form is preferably carried out so that the glass is at a temperature of between 620 and 730 ° C. If the glass is to be hardened after this bending by pressing against a solid form, it is preferred to carry out this bending by pressing against a solid form between 660 and 730 ° C.
  • the glass sheet generally has a thickness ranging from 1 to 6 mm and more generally from 2 to 5 mm.
  • the curved glass sheet After bending, the curved glass sheet is cooled by cooling, which may be a curing cooling or quenching. We can then proceed to the deposition of the metal layer, usually silver, transforming the curved glass sheet into a mirror.
  • the curved sheet has a concave side and a convex side.
  • the glass sheet may have curvatures in two directions orthogonal to each other. However, it can also have a curvature in only one direction as is the case of so-called cylindrical or cylindrical-parabolic shape mirrors.
  • the invention is more particularly suitable for mirrors whose radius of curvature in at least one direction is between 0.2 m and 10 m and in particular between 1 m and 8 m and more particularly between 3 m and 8 m, and this, in n ' any point of its surface.
  • the silver layer is generally applied on the convex side of the sheet, the mirror generally intended to return the light by its concave side.
  • the manufacturing steps of the reflective metal layer are not described in detail here because techniques known to those skilled in the art are used.
  • a mirror without copper may in particular be manufactured by the following succession of steps:
  • a fine sub-layer one to a few molecular layers
  • a priming agent which is generally of the silane type, in particular aminosilane.
  • a reflective metal layer such as silver, especially from a solution of silvering, then depositing a layer of copper from an aqueous solution of copper sulphate.
  • One or more other layers of protection may be added to the back of the mirror, in particular of the painting type.
  • the mirror may especially have one of the following structures:
  • the method according to the invention allows the realization of mirrors with curvatures in all directions (3D shape), which can be even quite pronounced. This makes it possible to use them to return sunlight by focusing it in many types of systems such as a heat collector, a photo voltaic solar receiver ("Concentrated Photo Voltaics” application) or a so-called Sterling motor system.
  • the invention also relates to a method for capturing solar energy comprising the manufacture of a mirror by the method according to the invention and then placing the mirror outside in position to return the sunlight to a heat collector.
  • FIG. 1 represents a cylindrical or cylindrical-parabolic mirror comprising two parallel linear edges 1 and 2 and two cylindrical or parabolic parallel edges 3 and 4.
  • the visible side of the mirror in the figure is the concave main face.
  • FIG. 2 represents an assembly comprising 4 mirrors 10, 1 1, 12, 13, as represented in FIG. 1, forming together a large parabola and reflecting solar radiation 14 to a heat collector 15 placed at the focal length of the parable.
  • This heat collector 15 is a tube whose axis is perpendicular to the plane of the figure and is traversed by a heat transfer fluid.
  • Figure 3 shows a gravity bending support according to the prior art, the bending support comprises a frame 31 and a multiplicity of parallel metal strips 32 preventing the glass sheet from collapsing too deeply during its bending. These parallel strips connect two opposite edges of the frame.
  • Figure 4 shows bending tools for the implementation of the invention.
  • a frame 40 comprising parallel strips 41 and 42 connecting the two longitudinal longitudinal edges squeezes a sheet of glass (not shown) against a solid form 43.
  • the strips 41 and 42 press the sheet of glass inside its peripheral zone.
  • the frame here comprises three recesses.
  • a 4 m 2 area mirror (surface of a single main face) is produced by bending it by gravity at 640 ° C. on a support as shown in FIG. 3 and then by applying to it a layer of 100 nm silver. thickness, followed by the application of a protective layer comprising a layer of alkyd paint followed by a layer of polyurethane paint.
  • a protective layer comprising a layer of alkyd paint followed by a layer of polyurethane paint.
  • Example 1 The procedure is as for Example 1 except that the bending is carried out by pressing against a solid form at 680 ° C. It is visually apparent that the image returned by the mirror is free of ripples.

Abstract

L'invention concerne un procédé de fabrication d'un miroir bombé comprenant une feuille de verre, comprenant le bombage de la feuille par pressage contre une forme pleine puis l'application d'une couche d'argent sur ladite feuille. Le miroir est particulièrement adapté en tant que miroir solaire. Le miroir ainsi fabriqué est particulièrement adapté pour capter l'énergie solaire en le plaçant en extérieur pour le faire renvoyer la lumière solaire vers un collecteur de chaleur.

Description

MIROIR BOMBE PAR PRESSAGE
L'invention concerne un miroir bombé dont la forme a été réalisée par pressage à chaud et son utilisation comme miroir solaire.
Un miroir solaire a pour fonction de recevoir la lumière solaire et de la renvoyer vers un collecteur de chaleur. Différents systèmes pour collecter la lumière solaire existent et reposent notamment sur l'utilisation d'un ensemble de grands miroirs pouvant notamment être de forme cylindrico-parabolique. Un miroir de forme cylindrico-parabolique présente deux bords linéaires parallèles et deux autres bords parallèles mais courbe selon une forme sensiblement parabolique.
Le miroir selon l'invention est destiné à faire office de miroir solaire. Il est généralement un élément faisant partie d'un ensemble d'éléments miroirs disposés de sorte à constituer un miroir parabolique. Cet ensemble fait converger la lumière solaire vers un collecteur de chaleur. Généralement, ce collecteur est constitué d'un tube parcouru par un fluide caloporteur (eau, sels fondus, huiles synthétiques, ou de la vapeur). Ce fluide est chauffé par l'énergie solaire et on lui fait restituer cette énergie sous forme d'électricité par tout procédé adapté comme par exemple celui dit de « Rankine Cycle ». La chaleur collectée peut aussi être utilisée directement sans la convertir en électricité, notamment pour le chauffage des bâtiments, la désalinisation de l'eau ou tout procédé de transformation de la chaleur en énergie mécanique et/ou en énergie électrique. Les problèmes liés aux fluctuations d'énergie inhérentes à l'énergie solaire (alternance du jour et de la nuit, passage de nuages) peuvent être contournées soit en stockant de la chaleur (avec un réservoir de fluide chaud ou bien de l'air ou un solide comme une céramiques) soit en hybridant les concentrateurs solaires avec une centrale thermique classique (la chaudière et la chaleur solaire alimentant la même turbine à vapeur).
Les différents éléments miroirs présentent une grande aire, supérieure à 2 m2 et même supérieure à 2,3 m2, et même supérieure à 2,5 m2, et même supérieure à 3 m2. Les aires données ici sont celles d'une seule face principale de la feuille de verre et donc de l'élément miroir. Généralement, les différents éléments miroirs présentent une aire inférieure à 25 m2 (aire d'une seule face principale).
Dans le cas d'un miroir cylindro-parabolique, notamment, la parabole dans le plan perpendiculaire à l'axe du collecteur peut être constituée de 2 ou 4 plaques juxtaposées. Les plaques ont une forme qui approche la forme parabolique sans nécessairement lui correspondre totalement, l'essentiel étant que le maximum de rayons lumineux atteigne le collecteur au foyer. Pour mieux approcher la parabole, les différentes plaques juxtaposées peuvent avoir des formes différentes, et sont généralement asymétriques. On peut aussi choisir de les faire identiques en les plaçant de sorte que leur forme approche le mieux possible la parabole.
Ces miroirs sont posés en extérieur et leur forme est généralement ajustée à froid (dans la mesure du possible) pour renvoyer le plus précisément possible la lumière vers le collecteur de chaleur. Les défauts de forme des miroirs entraînent une mauvaise focalisation des rayons lumineux qui ratent alors la cible devant collecter l'énergie, ou forment des points chauds à la surface du collecteur. Ces points chauds sont des endroits sur le tube récepteur recevant de plus fortes concentration d'énergie que sur les parties avoisinantes. Ce phénomène peut endommager le tube récepteur, notamment les couches (pouvant comprendre de l'argent ou autre) présentes sur son enveloppe en verre. Ces ondulations sont d'autant plus fortes que le verre a été porté à haute température pendant son bombage ou en vue de sa trempe.
Dans un premier temps, on a essayé de réaliser le bombage par gravité sur des supports du type cadre. En raison de la grande dimension des feuilles de verre, le support de bombage par gravité comprend une multiplicité de bandes métalliques parallèles empêchant la feuille de verre de s'effondrer trop profondément en son centre lors de son bombage. On s'est cependant aperçu que ces bandes métalliques provoquaient une légère ondulation de la feuille, pratiquement imperceptible à l'œil nu, et que cette ondulation était à l'origine d'une convergence imparfaite des rayons solaires vers le collecteur. Ces premiers essais de bombage étaient réalisés à 640°C. Les ondulations auraient été encore plus marquées si le bombage avait été réalisé à plus haute température. C'est ainsi que l'on s'est notamment rendu compte que l'on ne pourrait pas tremper le verre si on le bombait par un procédé de bombage purement gravitaire. En effet, la trempe requiert que le verre soit à au moins 660°C au début du refroidissement.
Si l'on veut tremper thermiquement le verre, il faut le faire alors qu'on l'a d'abord porté à au moins 660°C, généralement entre 660 et 730°C. A une telle température, une feuille de verre s'effondre rapidement et est très sensible au marquage par l'outil de bombage.
On s'aperçoit que les miroirs solaires commercialisés sont généralement non-trempés sans doute pour éviter de devoir les chauffer trop fortement pour la trempe.
Le bombage par passage de feuilles de verre en continu (sans s'arrêter) entre des lits de rouleaux à géométrie fixe est difficile à réaliser, notamment en raison de l'asymétrie et de la taille des feuilles de verre à bomber.
On peut aussi bomber les feuilles de verre entre des rouleaux en procédant ainsi :
- on engage la feuille alors que les rouleaux forment une faible concavité, puis
- on immobilise la feuille, puis
- on modifie la concavité des rouleaux pour cintrer la feuille, puis
- on évacue la feuille bombée.
Un tel procédé présente l'inconvénient d'être discontinu et donc lent.
On a maintenant trouvé que l'on pouvait avantageusement bomber les feuilles de verre par pressage pour éviter ces ondulations parasites et améliorer la convergence et la collecte du rayonnement solaire. De plus, ce procédé permet de tremper ensuite les feuilles bombées.
De nombreux procédés de bombage ont déjà été décrits comme le bombage par gravité selon les EP0448447, EP0705798 et WO2004/103922, le bombage par défilement entre des rouleaux de convoyage comme dans les WO2004/033381 ou WO2005/047198, le bombage par pressage contre une forme pleine, ledit pressage étant réalisé soit à l'aide d'un cadre comme dans US5974836, WO95/01938, WO02/06170 ou WO2004/087590, soit par aspiration comme dans les WO02/064519 ou WO2006/072721 . L'invention concerne un procédé de fabrication d'un miroir bombé comprenant une feuille de verre, comprenant le bombage de la feuille par pressage contre une forme pleine puis l'application d'une couche d'argent sur ladite feuille.
Selon l'invention, le bombage de la feuille de verre devant devenir miroir est réalisé par formage sur une forme de bombage pleine, la force de plaquage du verre contre ladite forme pouvant être de nature mécanique ou pneumatique. Si la force est de nature mécanique elle peut être appliquée par une contre- forme pleine ou en forme de cadre. Une contre-forme en forme de cadre présente un évidement à l'intérieur du cadre. Notamment, il peut s'agir d'un cadre comme représenté sous la référence (4) de la figure 1 du WO95/01938 ou le cadre segmenté référencé (9,10,1 1 ,12) aux figures 1 et 2 du US5974836. De préférence, on utilise un cadre comprenant des bandes parallèles reliant deux bords opposés du cadre lesdites bandes venant aussi presser l'intérieur de la feuille contre la forme pleine. Ces bandes de la contre-forme en forme de cadre sont généralement métalliques et viennent au contact de la feuille de verre à l'intérieur de sa zone périphérique. De façon surprenante, ces bandes ne génèrent pas de marque alors qu'elles en génèrent pour un procédé de bombage par gravité. On suppose que cette différence de comportement provient de la différence de dynamique du procédé. Dans le cas du procédé gravitaire, on attend que le verre s'effondre suffisamment pour toucher tous les éléments du support. Dans le cas du procédé selon l'invention, on impose la forme par une force et cela est plus rapide.
Si la force est de nature pneumatique, elle peut-être appliquée par aspiration au travers de la forme pleine grâce à des orifices dans la surface de contact de ladite forme pleine comme représenté sur la figure 2 du WO2006/072721 . Une force pneumatique peut également être appliquée par l'intermédiaire d'une jupe entourant la forme pleine sur le modèle de la jupe référencée 16 à la figure 2 du WO04087590. La jupe procure une force d'aspiration générant un flux d'air entourant la feuille en léchant sa tranche. Cependant la force pneumatique exercée par une jupe est généralement insuffisante et est de préférence complétée par une force de nature mécanique ou pneumatique au travers de la forme pleine. Des formes pleines adaptées sont représentées sur les figures du WO02/06170.
Le procédé selon l'invention évite la formation d'ondulations observées lorsque les supports de bombage par gravité de l'art antérieur sont utilisés. Ceci élimine les points chauds (« hot spots ») sur le tube récepteur pour l'application miroir parabolique.
Le bombage contre une forme pleine intervient au moins en fin de bombage, c'est à-dire juste avant le refroidissement. Ainsi, ce bombage contre une forme pleine est-il suivi directement (c'est-à-dire sans étape particulière supplémentaire de bombage) par une étape de refroidissement. Ce refroidissement peut être un refroidissement naturel (le miroir est alors généralement posé sur un cadre) ou un peu plus rapide sans que cela ne le durcisse, ou un durcissement ou une trempe.
Le formage contre une forme pleine peut être précédé d'un bombage par un autre procédé, comme un bombage par gravité. Ce bombage par gravité est réalisé sur un support du type cadre ou squelette. Cet éventuel bombage préliminaire par gravité est de préférence réalisé de sorte que le verre est à une température comprise entre 610 et 660 °C.
Le bombage par pressage contre une forme pleine est de préférence réalisé de sorte que le verre, est à une température comprise entre 620 et 730 °C. Si le verre doit être trempé après ce bombage par pressage contre une forme pleine, il est préféré de réaliser ce bombage par pressage contre une forme pleine entre 660 et 730°C.
La feuille de verre présente généralement une épaisseur allant de 1 à 6 mm et plus généralement de 2 à 5 mm.
Après bombage, la feuille de verre bombée est refroidie par un refroidissement, lequel peut-être un refroidissement de durcissement ou une trempe. On peut alors procéder au dépôt de la couche métallique, généralement en argent, transformant la feuille de verre bombée en miroir. La feuille bombée présente un côté concave et un côté convexe. La feuille de verre peut présenter des courbures dans deux directions orthogonales entre elles. Cependant, elle peut aussi ne présenter une courbure que dans une seule direction comme c'est le cas des miroirs à forme dite cylindrique ou cylindrico-parabolique. L'invention est plus particulièrement adaptée aux miroirs dont le rayon de courbure selon au moins une direction est compris entre 0,2 m et 10 m et notamment entre 1 m et 8 m et plus particulièrement entre 3 m et 8 m, et ce, en n'importe quel point de sa surface.
La couche d'argent est généralement appliqué sur le côté convexe de la feuille, le miroir ayant généralement vocation à renvoyer la lumière par son côté concave.
On ne décrit pas en détail ici les étapes de fabrication de la couche métallique réfléchissante car il est fait appel aux techniques connues de l'homme du métier. Notamment, on peut appliquer une couche d'argent suivi ou non d'une couche de cuivre. Un miroir sans cuivre peut notamment être fabriqué par la succession des étapes suivantes :
- avivage de la surface du verre (par exemple par une suspension d'une poudre d'oxyde de cérium dans l'eau)
- sensibilisation d'une première face d'une feuille de verre, par exemple par une solution de chlorure stanneux, puis
- éventuellement activation sur la même face par une solution de chlorure de Palladium PdC , puis,
- dépôt sur la même face d'une couche métallique réfléchissante comme l'argent, notamment à partir d'une solution d'argenture, puis
- passivation par une solution de chlorure stanneux, puis,
- application par pulvérisation d'une sous-couche fine (une à quelques couches moléculaires) d'un primaire d'accrochage généralement du type silane, notamment aminosilane.
On peut aussi fabriquer le miroir avec une couche de cuivre notamment selon le procédé suivant :
- avivage de la surface du verre,
- sensibilisation d'une première face d'une feuille de verre, par exemple par une solution de chlorure stanneux, puis
- éventuellement activation sur la même face par une solution de chlorure de Palladium PdC , puis,
- dépôt sur la même face d'une couche métallique réfléchissante comme l'argent, notamment à partir d'une solution d'argenture, puis - dépôt d'une couche de cuivre à partir d'une solution aqueuse de sulfate de cuivre.
Dans ce dernier cas qui prévoit d'appliquer une couche de cuivre, il n'est pas nécessaire d'appliquer une sous-couche d'un primaire d'accrochage (comme un silane).
On peut ajouter au dos du miroir une ou plusieurs autres couches de protection, notamment du type peinture.
Le miroir peut notamment avoir l'une des structures suivantes :
- Verre/argent/cuivre/acrylate/epoxy/acrylate
- Verre/argent/cuivre/acrylate/acrylate/PU
- Verre/argent/alkyde/polyuréthane
la dernière structure étant plus particulièrement décrite dans la demande de brevet internationale PCT/FR2009/051778 du 22 septembre 2009.
Le procédé selon l'invention permet la réalisation de miroirs présentant des courbures dans toutes les directions (forme 3D), lesquelles peuvent être même assez prononcées. Cela permet de les utiliser pour renvoyer la lumière solaire en la focalisant dans de nombreux types de système comme un collecteur de chaleur, un récepteur solaire photo-voltaïque (application « Concentrated Photo Voltaics ») ou un système dit du moteur Sterling.
L'invention concerne également un procédé pour capter l'énergie solaire comprenant la fabrication d'un miroir par le procédé selon l'invention puis le placement du miroir en extérieur en position pour renvoyer la lumière solaire vers un collecteur de chaleur.
La figure 1 représente un miroir de forme cylindrique ou cylindrico- parabolique comprenant deux bords linéaires parallèles 1 et 2 et deux bords parallèles cylindrique ou paraboliques 3 et 4. Le côté visible du miroir sur la figure est la face principale concave.
La figure 2 représente un ensemble comprenant 4 miroirs 10, 1 1 , 12, 13, tels que représentés sur la figure 1 , formant ensemble une grande parabole et réfléchissant le rayonnement solaire 14 vers un collecteur de chaleur 15 placé à la distance focale de la parabole. Ce collecteur de chaleur 15 est un tube dont l'axe est perpendiculaire au plan de la figure et est parcouru par un fluide caloporteur. La figure 3 représente un support de bombage par gravité selon l'art antérieur, le support de bombage comprend un cadre 31 et une multiplicité de bandes métalliques parallèles 32 empêchant la feuille de verre de s'effondrer trop profondément lors de son bombage. Ces bandes parallèles relient deux bords opposés du cadre.
La figure 4 représente des outils de bombage pour la mise en œuvre de l'invention. Un cadre 40 comprenant des bandes parallèles 41 et 42 reliant leux deux bords droits longitudinaux vient presser une feuille de verre (non représentée) contre une forme pleine 43. Les bandes 41 et 42 pressent la feuille de verre à l'intérieur de sa zone périphérique. Le cadre comprend ici trois évidements.
Exemple 1 (comparatif)
On fabrique un miroir d'aire 4 m2 (aire d'une seule face principale) en le bombant par gravité à 640°C sur un support comme représenté à la figure 3 puis en lui appliquant une couche d'argent de 100 nm d'épaisseur, suivi de l'application d'une couche de protection comprenant une couche de peinture alkyde suivie d'une couche de peinture en polyuréthane. Pour réaliser cette combinaison de couches, on peut notamment procéder comme dans la demande internationales PCT/FR2009/051778 déposée le 22 septembre 2009. On a donné à ce miroir une forme sensiblement cylindroparabolique. On constate visuellement que l'image renvoyée par le miroir comporte des ondulations dans le même sens que les bandes du support de bombage. Exemple 2
On procède comme pour l'exemple 1 sauf que le bombage est réalisé par pressage contre une forme pleine à 680°C. On constate visuellement que l'image renvoyée par le miroir est exempt d'ondulations.

Claims

REVENDICATIONS
1 . Procédé de fabrication d'un miroir bombé comprenant une feuille de verre, comprenant le bombage de la feuille par pressage contre une forme pleine puis l'application d'une couche d'argent sur ladite feuille.
2. Procédé selon la revendication précédente, caractérisé en ce que l'aire d'une face principale de la feuille est supérieure à 2 m2.
3. Procédé selon l'une des revendications précédentes, caractérisé en ce que l'aire d'une face principale de la feuille est supérieure à 2,3 m2, voire supérieure à 2,5 m2, voire supérieure à 3 m2.
4. Procédé selon l'une des revendications précédente caractérisé en ce que le miroir comprend deux bords parallèles linéaires et deux bords parallèles cylindrico-paraboliques.
5. Procédé selon l'une des revendications précédentes caractérisé en ce que le rayon de courbure selon au moins une direction en n'importe quel point de la surface concave du miroir est compris entre 0,2 m et
10 m et notamment entre 1 m et 8 m et plus particulièrement entre 3 m et 8 m.
6. Procédé selon l'une des revendications précédente caractérisé en ce que la couche d'argent est appliqué sur la face principale convexe de la feuille.
7. Procédé selon l'une des revendications précédentes, caractérisé en ce que le bombage de la feuille par pressage contre une forme pleine est réalisé entre 660 et 730°C.
8. Procédé selon la revendication précédente, caractérisé en ce que le bombage de la feuille par pressage contre une forme pleine est suivi d'une trempe thermique avant l'application de la couche d'argent.
9. Procédé selon l'une des revendications précédentes, caractérisé en ce que le bombage de la feuille par pressage contre une forme pleine est précédé par un bombage par gravité.
10. Procédé selon la revendication précédente, caractérisé en ce que le bombage par gravité est réalisé à une température comprise entre 610 et 660 °C.
1 1 . Procédé selon l'une des revendications précédentes, caractérisé en ce que le pressage contre la forme pleine est réalisé par une contre- forme en forme de cadre.
12. Procédé selon la revendication précédente, caractérisé en ce que la contre-forme en forme de cadre comprend des bandes reliant des bords parallèles du cadre et venant au contact de la feuille de verre à l'intérieur de sa zone périphérique.
13. Procédé pour capter l'énergie solaire comprenant la fabrication d'un miroir par le procédé de l'une des revendications précédentes puis le placement du miroir en extérieur en position pour renvoyer la lumière solaire vers un collecteur de chaleur.
PCT/FR2011/051867 2010-08-20 2011-08-03 Miroir bombe par pressage WO2012022904A1 (fr)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN2011800403331A CN103052602A (zh) 2010-08-20 2011-08-03 压制而成的曲面镜
EP11757382.4A EP2606010A1 (fr) 2010-08-20 2011-08-03 Miroir bombe par pressage

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1056695A FR2963933B1 (fr) 2010-08-20 2010-08-20 Miroir bombe par pressage
FR1056695 2010-08-20

Publications (1)

Publication Number Publication Date
WO2012022904A1 true WO2012022904A1 (fr) 2012-02-23

Family

ID=44062231

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2011/051867 WO2012022904A1 (fr) 2010-08-20 2011-08-03 Miroir bombe par pressage

Country Status (4)

Country Link
EP (1) EP2606010A1 (fr)
CN (1) CN103052602A (fr)
FR (1) FR2963933B1 (fr)
WO (1) WO2012022904A1 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11773011B1 (en) 2022-07-08 2023-10-03 Agc Automotive Americas Co. Glass assembly including a conductive feature and method of manufacturing thereof

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103359919B (zh) * 2013-06-26 2017-02-08 中国建筑材料科学研究总院 玻璃热弯模具及其制造方法及应用
CN107329197A (zh) * 2017-06-14 2017-11-07 杨毅 凹面结构上贴反射镜阵列的方法、凹面反射镜阵列和灯具
CN107143756B (zh) * 2017-06-14 2020-05-08 上海安茗科技中心(有限合伙) 灯具

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE744232C (de) * 1941-01-02 1944-01-12 Schlesische Spiegelglas Manufa Verfahren und Vorrichtung zum Herstellen von Glasgegenstaenden
EP0448447A1 (fr) 1990-03-20 1991-09-25 Saint Gobain Vitrage International Procédé et dispositif pour le bombage de feuilles de verre
EP0613864A1 (fr) * 1993-03-03 1994-09-07 Pilkington Glass Limited Bombage de feuille de verre
WO1995001938A1 (fr) 1993-07-09 1995-01-19 Saint Gobain Vitrage Procede et dispositif de formage de plaques de verre et application de ce procede a l'obtention de vitrages de formes complexes
EP0705798A1 (fr) 1994-10-04 1996-04-10 Saint-Gobain Vitrage Procédé et dispositif pour le bombage de feuilles de verre
US5974836A (en) 1997-06-14 1999-11-02 Saint-Gobain Vitrage Device used for the bending of plate glass into convex shapes
WO2002006170A1 (fr) 2000-07-13 2002-01-24 Saint-Gobain Glass France Procede et dispositif de bombage d'une feuille de verre
WO2002064519A1 (fr) 2001-02-06 2002-08-22 Saint-Gobain Glass France Procede et dispositif pour cintrer des vitres par paires
WO2004033381A1 (fr) 2002-10-10 2004-04-22 Saint-Gobain Glass France Procede et machine d'obtention de feuilles de verre bombees dissymetriques
FR2852951A1 (fr) * 2003-03-26 2004-10-01 Saint Gobain Procede de bombage de feuilles de verre par pressage et aspiration
WO2004103922A1 (fr) 2003-05-19 2004-12-02 Saint-Gobain Glass France Bombage de vitrages par gravite sur une multiplicite de supports
WO2005047198A1 (fr) 2003-11-12 2005-05-26 Saint-Gobain Glass France Procede et machine d'obtention de feuilles de verre bombees
WO2006072721A1 (fr) 2004-12-31 2006-07-13 Saint-Gobain Glass France Procede de bombage de feuilles de verre par aspiration
FR2936240A1 (fr) * 2008-09-22 2010-03-26 Saint Gobain Miroir resistant a la corrosion

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10314267B3 (de) * 2003-03-29 2004-08-19 Saint-Gobain Sekurit Deutschland Gmbh & Co. Kg Verfahren und Vorrichtung zum Biegen von Glasscheiben

Patent Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE744232C (de) * 1941-01-02 1944-01-12 Schlesische Spiegelglas Manufa Verfahren und Vorrichtung zum Herstellen von Glasgegenstaenden
EP0448447A1 (fr) 1990-03-20 1991-09-25 Saint Gobain Vitrage International Procédé et dispositif pour le bombage de feuilles de verre
EP0613864A1 (fr) * 1993-03-03 1994-09-07 Pilkington Glass Limited Bombage de feuille de verre
WO1995001938A1 (fr) 1993-07-09 1995-01-19 Saint Gobain Vitrage Procede et dispositif de formage de plaques de verre et application de ce procede a l'obtention de vitrages de formes complexes
EP0705798A1 (fr) 1994-10-04 1996-04-10 Saint-Gobain Vitrage Procédé et dispositif pour le bombage de feuilles de verre
US5974836A (en) 1997-06-14 1999-11-02 Saint-Gobain Vitrage Device used for the bending of plate glass into convex shapes
WO2002006170A1 (fr) 2000-07-13 2002-01-24 Saint-Gobain Glass France Procede et dispositif de bombage d'une feuille de verre
WO2002064519A1 (fr) 2001-02-06 2002-08-22 Saint-Gobain Glass France Procede et dispositif pour cintrer des vitres par paires
WO2004033381A1 (fr) 2002-10-10 2004-04-22 Saint-Gobain Glass France Procede et machine d'obtention de feuilles de verre bombees dissymetriques
FR2852951A1 (fr) * 2003-03-26 2004-10-01 Saint Gobain Procede de bombage de feuilles de verre par pressage et aspiration
WO2004087590A2 (fr) 2003-03-26 2004-10-14 Saint-Gobain Glass France Procede et dispositif de bombage de feuilles de verre par pressage et aspiration
WO2004103922A1 (fr) 2003-05-19 2004-12-02 Saint-Gobain Glass France Bombage de vitrages par gravite sur une multiplicite de supports
WO2005047198A1 (fr) 2003-11-12 2005-05-26 Saint-Gobain Glass France Procede et machine d'obtention de feuilles de verre bombees
WO2006072721A1 (fr) 2004-12-31 2006-07-13 Saint-Gobain Glass France Procede de bombage de feuilles de verre par aspiration
FR2936240A1 (fr) * 2008-09-22 2010-03-26 Saint Gobain Miroir resistant a la corrosion

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11773011B1 (en) 2022-07-08 2023-10-03 Agc Automotive Americas Co. Glass assembly including a conductive feature and method of manufacturing thereof

Also Published As

Publication number Publication date
FR2963933A1 (fr) 2012-02-24
EP2606010A1 (fr) 2013-06-26
FR2963933B1 (fr) 2012-08-17
CN103052602A (zh) 2013-04-17

Similar Documents

Publication Publication Date Title
CA2642372C (fr) Procede pour fabriquer un reflecteur pour collecteur solaire ou similaire et produit correspondant
US20070223121A1 (en) Method of making reflector for solar collector or the like and corresponding product
US20070291384A1 (en) Method of making reflector for solar collector or the like, and corresponding product, including reflective coating designed for improved adherence to laminating layer
US10427976B2 (en) Glass tube with infrared light reflective coating, method for manufacturing the glass tube, heat receiver tube with the glass tube, parabolic trough collector with the heat receiver tube and use of the parabolic trough collector
EP2165372A2 (fr) Procede d'obtention d'un substrat texture pour panneau photovoltaïque
EP2606010A1 (fr) Miroir bombe par pressage
US20110242647A1 (en) Reflector element for a solar heat refelctor and the method for producing the same
CN101304055B (zh) 太阳能聚光型高效发电制热器
FR2962596A1 (fr) Systeme photovoltaique en panneaux avec reflecteurs de fresnel
EP2676164A1 (fr) Procede de fabrication ameliore d'un reflecteur, de preference pour le domaine de l'energie solaire
WO2012049433A1 (fr) Procede de bombage et support de trempe thermique
AU2011364489B2 (en) Heat receiver tube, method for manufacturing the heat receiver tube, parabolic trough collector with the receiver tube and use of the parabolic trough collector
EP2897180B1 (fr) Dispositif photovoltaïque avec réseau de fibres pour suivi du soleil
Alcañiz et al. Study of the influence of specularity on the efficiency of solar reflectors
FR2975195A1 (fr) Miroir a fine feuille de verre
WO2012097863A1 (fr) Tube récepteur de chaleur, procédé de fabrication de tube récepteur de chaleur, collecteur à miroir parabolique comprenant le tube récepteur de chaleur et utilisation du collecteur à miroir parabolique
KR101203042B1 (ko) 이중 진공관형 태양열 집열기
EP2606289B1 (fr) Tube récepteur de chaleur, procédé de fabrication du tube récepteur de chaleur, collecteur en auget parabolique équipé du tube récepteur, et utilisation du collecteur en auget parabolique
CN201038176Y (zh) 太阳能聚光型高效发电制热器
EP2758560B1 (fr) Miroir a couche argent par magnetron
WO2013110997A1 (fr) Équipements et systèmes de concentration / récupération de l'énergie solaire et applications industrielles et domestiques
CN102790555B (zh) 一种太阳能发电装置
CN108802985A (zh) 一种柔性聚光反射镜
WO2020043973A1 (fr) Vitrage texture et isolant pour serre
US9857098B2 (en) Heat receiver tube, method for manufacturing the heat receiver tube, parabolic trough collector with the receiver tube and use of the parabolic trough collector

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180040333.1

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11757382

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011757382

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE