WO2012022849A1 - Procede d'hydrogenation selective d une coupe essence en presence d'un catalyseur sulfure supporte prepare au moyen d'au moins un oligosaccharide cyclique - Google Patents

Procede d'hydrogenation selective d une coupe essence en presence d'un catalyseur sulfure supporte prepare au moyen d'au moins un oligosaccharide cyclique Download PDF

Info

Publication number
WO2012022849A1
WO2012022849A1 PCT/FR2011/000367 FR2011000367W WO2012022849A1 WO 2012022849 A1 WO2012022849 A1 WO 2012022849A1 FR 2011000367 W FR2011000367 W FR 2011000367W WO 2012022849 A1 WO2012022849 A1 WO 2012022849A1
Authority
WO
WIPO (PCT)
Prior art keywords
selective hydrogenation
catalyst
process according
metal
hydrogenation process
Prior art date
Application number
PCT/FR2011/000367
Other languages
English (en)
Inventor
Fabrice Diehl
Elodie Devers
Original Assignee
IFP Energies Nouvelles
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IFP Energies Nouvelles filed Critical IFP Energies Nouvelles
Priority to EP11743261.7A priority Critical patent/EP2598613A1/fr
Priority to KR1020137005061A priority patent/KR101886454B1/ko
Priority to BR112013002162-4A priority patent/BR112013002162B1/pt
Priority to US13/813,021 priority patent/US9206094B2/en
Publication of WO2012022849A1 publication Critical patent/WO2012022849A1/fr

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G45/00Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds
    • C10G45/32Selective hydrogenation of the diolefin or acetylene compounds
    • C10G45/34Selective hydrogenation of the diolefin or acetylene compounds characterised by the catalyst used
    • C10G45/36Selective hydrogenation of the diolefin or acetylene compounds characterised by the catalyst used containing nickel or cobalt metal, or compounds thereof
    • C10G45/38Selective hydrogenation of the diolefin or acetylene compounds characterised by the catalyst used containing nickel or cobalt metal, or compounds thereof in combination with chromium, molybdenum or tungsten metals, or compounds thereof
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C5/00Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms
    • C07C5/02Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms by hydrogenation
    • C07C5/03Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms by hydrogenation of non-aromatic carbon-to-carbon double bonds
    • C07C5/05Partial hydrogenation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/54Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/56Platinum group metals
    • B01J23/64Platinum group metals with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/652Chromium, molybdenum or tungsten
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/84Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/85Chromium, molybdenum or tungsten
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/84Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/85Chromium, molybdenum or tungsten
    • B01J23/88Molybdenum
    • B01J23/881Molybdenum and iron
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/84Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/85Chromium, molybdenum or tungsten
    • B01J23/88Molybdenum
    • B01J23/882Molybdenum and cobalt
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/84Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/85Chromium, molybdenum or tungsten
    • B01J23/88Molybdenum
    • B01J23/883Molybdenum and nickel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/84Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/85Chromium, molybdenum or tungsten
    • B01J23/888Tungsten
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/02Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/61Surface area
    • B01J35/61310-100 m2/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/61Surface area
    • B01J35/615100-500 m2/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/63Pore volume
    • B01J35/633Pore volume less than 0.5 ml/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/63Pore volume
    • B01J35/6350.5-1.0 ml/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/63Pore volume
    • B01J35/638Pore volume more than 1.0 ml/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0201Impregnation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0201Impregnation
    • B01J37/0203Impregnation the impregnation liquid containing organic compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/20Sulfiding
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G45/00Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/10Feedstock materials
    • C10G2300/1037Hydrocarbon fractions
    • C10G2300/104Light gasoline having a boiling range of about 20 - 100 °C
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/10Feedstock materials
    • C10G2300/1037Hydrocarbon fractions
    • C10G2300/1044Heavy gasoline or naphtha having a boiling range of about 100 - 180 °C
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/20Characteristics of the feedstock or the products
    • C10G2300/201Impurities
    • C10G2300/202Heteroatoms content, i.e. S, N, O, P
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/20Characteristics of the feedstock or the products
    • C10G2300/30Physical properties of feedstocks or products
    • C10G2300/301Boiling range
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/40Characteristics of the process deviating from typical ways of processing
    • C10G2300/4018Spatial velocity, e.g. LHSV, WHSV

Definitions

  • the present invention relates to the field of petrol cutting hydrotreatment, including petrol cuts from fluidized bed catalytic cracking units (FCC).
  • Hydroprocessing is a general term used to designate all processes allowing the elimination of polyunsaturated compounds, especially diolefins (hydrogenation), as well as the elimination of organic compounds containing heteroatoms, in particular sulfur ( hydrodesulfurization, HDS), the presence of these compounds being undesirable in gasolines, which must meet ever more stringent automobile pollution standards.
  • the present invention relates to a process for the selective hydrogenation of a gasoline cut, mainly of a gasoline cut from a fluidized catalytic cracking unit, containing sulfur-containing organic compounds, in particular sulfur-containing organic compounds.
  • the selective hydrogenation process according to the invention allows elimination of light sulfur compounds generally having from 1 to 3 carbon atoms per molecule by increasing the weight of said compounds without affecting the heavier sulfur compounds also present in the petrol fraction to be treated, said compounds heavier sulfur which can be converted to H 2 S in a subsequent hydrodesulfurization step.
  • the selective hydrogenation process according to the invention advantageously integrates into a technological complex in which the reaction unit carrying out said process of selective hydrogenation is placed upstream of a separation column making it possible to obtain a first stream formed of a light fuel cut, hydrogenated and substantially sulfur-depleted, having a good octane number and directly recoverable in the pool gasoline and a second stream formed of a heavy gasoline cut very enriched in sulfur, subsequently treated in a hydrodesulfurization unit, so as to obtain a gasoline also recoverable in the gasoline pool.
  • the conversion gasolines and more particularly those resulting from fluidized catalytic cracking (FCC gasoline, Fluid Catalytic Cracking according to English terminology), have high mono-olefin and sulfur contents and can represent 30 to 50% by volume. gasoline pool.
  • the sulfur present in petrol is for this reason attributable, to nearly 90%, to gasolines resulting from fluidized catalytic cracking processes.
  • the gasoline fractions, and more particularly the FCC gasolines contain a large proportion of unsaturated compounds in the form of mono-olefins (approximately 20 to 50% by weight) and diolefins (0.5 to 5% by weight).
  • Diolefins are unstable compounds which tend to form gums by polymerization and must therefore generally be removed by hydrogenation prior to any treatment of these species, in particular hydrodesulfurization (HDS) treatments intended to meet the specifications on the sulfur content in the species.
  • HDS hydrodesulfurization
  • the gasoline cuts and more particularly the FCC gasolines contain a significant part of sulfur in the form of sulfur-containing organic compounds (200 ppm to 0.5% by weight) which need to be eliminated in order to valorize said gasoline cuts in accordance with current regulations in terms of automotive pollution standards.
  • Said sulfur-containing organic compounds are partly formed of saturated light sulfur compounds whose boiling point is below the boiling point of thiophene, which has a boiling point of 84 ° C., such as methanethiol, ethanethiol, sodium hydroxide and thiophene. dimethyl sulfide. It has already been proposed to eliminate such light sulfur compounds by weighing said compounds into sulfur compounds having a higher molecular weight which can be removed in a subsequent hydrodesulfurization step (EP 1 077.247 A1).
  • An effective way to increase the activity of the supported catalysts is to increase the amount of active phase in sulphide form, which results in prior to a maximum deposition of the active phase in oxide form associated with the surface of the support.
  • this maximum amount (usually deposited by dry impregnation) is limited by the textural properties of the support and in particular its specific surface and its pore volume.
  • this high concentration of deposited oxide phase favors the formation of crystalline oxide phases of the type AI 2 (MoO 4 ) 3, CoAl 2 O 4 , NiAl 2 O 4 etc. which prove to be refractory to the sulphurization step.
  • composition and use of hydrogenation hydrotreatment catalysts are particularly well described in the article by B. S Clausen, HT Topsoe, and FE Massoth, from Catalysis Science and Technology, 1996, Volume 11, Springer-Verlag.
  • these catalysts generally comprise at least one Group VI B metal and / or at least one Group VIII metal of the periodic table of the elements.
  • the most common formulations are cobalt-molybdenum (CoMo), nickel-molybdenum (Ni o) and nickel-tungsten (NiW). These catalysts can be in mass form or in the supported state.
  • the porous matrix is generally an amorphous or poorly crystallized oxide (alumina, silica-alumina, etc.) optionally combined with a zeolitic or non-zeolitic molecular sieve.
  • alumina alumina, silica-alumina, etc.
  • zeolitic or non-zeolitic molecular sieve a zeolitic or non-zeolitic molecular sieve.
  • said catalysts are often in oxide form. Their active and stable form for the hydrotreatment processes and in particular for the hydrogenation processes being the sulfurized form, these catalysts are subjected to a sulphurization step.
  • the dispersion of the active phase or of these precursors oxide or oxy-hydroxide is directly related to the specific surface offered by the support: for high densities in molybdenum, the formation of refractory phases to sintering sulfurization has indeed been reported.
  • New catalyst preparation techniques need to be developed to further improve the performance of these catalysts and meet future legislation.
  • it is necessary to control the interactions between the support and the precursors of the active phase which result in species refractory to sulphidation (for example, ⁇ 2 ( ⁇ 0 4 ) 3 , CoAI 2 0 4 or NiAl 2 0 4 ) , useless in the catalytic reaction and having undesirable effects on the catalytic activity.
  • the present invention proposes to develop a novel process for the selective hydrogenation of petrol cuts, particularly petrol cuts from the FCC, containing saturated light sulfur compounds and polyunsaturated compounds, especially diolefins, in the presence of a supported catalyst. whose preparation in the presence of an organic compound formed of at least one cyclic oligosaccharide leads to obtaining improved catalytic performance, especially in terms of activity.
  • the subject of the present invention is a process for selective hydrogenation of an essence cut containing polyunsaturated hydrocarbons having at least 2 carbon atoms per molecule and having a final boiling point of less than or equal to 250 ° C., said cut having a weight content of polyunsaturated hydrocarbons of between 0.5 and 5% and a weight content of sulfur of between 200 and 5000 ppm, said method consisting in bringing said gasoline cut into contact with at least one catalyst whose active phase comprises at least a group VIII metal and at least one group VI B metal deposited on a support formed of at least one oxide, said catalyst being prepared according to a process comprising at least:
  • steps i) and ii) can be performed separately, in any order, or simultaneously.
  • said group VIII metal present in the active phase is preferably nickel and said group VIB metal present in the active phase is preferably molybdenum.
  • said catalyst is preferably prepared in the presence of a cyclodextrin as an organic compound.
  • a sulfide catalyst whose active phase comprises at least one Group VIII metal, preferably a non-noble group VIII metal, and at least one Group VI B metal and prepared in the presence of at least one organic compound formed from at least one cyclic oligosaccharide composed of at least 6 ⁇ - (1,4) -linked glucopyranose subunits, preferably a cyclodextrin, which, when used in a process for selectively hydrogenating a gasoline cut, improved catalytic performance, especially in terms of catalytic activity and / or in terms of selectivity.
  • such a catalyst has a substantially improved activity for conversion to polyunsaturated compounds, especially diolefins.
  • said catalyst prepared in the presence of at least one organic compound formed from at least one cyclic oligosaccharide composed of at least 6 ⁇ - (1,4) -linked glucopyranose subunits has, in addition to a substantially improved activity for the conversion towards the polyunsaturated compounds, a slightly improved selectivity towards the selective hydrogenation of said polyunsaturated compounds, especially diolefinic compounds, at the expense of the hydrogenation of the mono-olefinic compounds.
  • the selective hydrogenation process according to the invention also makes it possible, in addition to the selective hydrogenation of the polyunsaturated compounds, for the joint transformation of the sulfur-containing, light and saturated organic compounds present in the petrol fraction to be hydrotreated: said compounds are weighed down by in contact with the monoolefinic compounds present in said cut so as to form sulfur compounds, especially sulphides, of higher molecular weight.
  • the sulfur compounds formed by weighing said sulfur compounds, light and saturated, are thus easily separated from the hydrogenated and sulfur-depleted gasoline cut by injection of the effluent of the selective hydrogenation process according to the invention into a separation train which leads to obtaining a first stream formed of said light gasoline fraction, hydrogenated and substantially sulfur-depleted, having a good octane number and directly recoverable in the gasoline pool without further treatment and a second stream consisting of a heavy gasoline fraction which is highly enriched in sulfur by the presence of said weighed sulfur compounds, said second stream being subsequently treated in a unit hydrodesulfurization, so as to obtain a gasoline also recoverable in the gasoline pool.
  • the selective hydrogenation process according to the invention thus makes it possible to obtain a light gasoline having a content of polyunsaturated compounds, in particular diolefins, and a content of light sulfur compounds, especially mercaptans, reduced.
  • the gasoline thus produced, after separation, contains less than 1% by weight of polyunsaturated compounds, especially diolefins, and preferably less than 0.5% by weight of diolefins. It has an end point of less than 120 ° C, and preferably less than 100 ° C and very preferably less than 80 ° C.
  • the light sulfur compounds whose boiling point is lower than that of thiophene (84 ° C.), present in the initial gasoline fraction to be hydrotreated according to the hydrogenation process according to the invention, are converted to more than 50%.
  • the subject of the present invention is a process for selective hydrogenation of an essence cut containing polyunsaturated hydrocarbons having at least 2 carbon atoms per molecule and having a final boiling point of less than or equal to 250 ° C., said cut having a weight content of polyunsaturated hydrocarbons of between 0.5 and 5% and a weight content of sulfur of between 200 and 5000 ppm, said method consisting in bringing said gasoline cut into contact with at least one catalyst whose active phase comprises at least a Group VIII metal and at least one Group VIB metal deposited on a support formed of at least one oxide, said catalyst being prepared by a process comprising at least:
  • the gasoline cut, treated in the selective hydrogenation process according to the invention has a lower final boiling point 250 ° C. It contains polyunsaturated hydrocarbons having at least 2 carbon atoms per molecule, and preferably at least 3 carbon atoms per molecule.
  • Said gasoline cut is selected from gasolines from a coker unit, a visbreaking unit and a fluidized catalytic cracking unit (Fluid Cracking catalyst, FCC according to English terminology).
  • said gasoline cut, treated in the selective hydrogenation process according to the invention comes from a catalytic cracking unit in a fluidized bed.
  • said polyunsaturated hydrocarbons present in said gasoline fraction treated according to the process of the invention are in particular compounds comprising at least one diene function, that is to say at least two double bonds.
  • said polyunsaturated hydrocarbons are diolefinic compounds, in particular isoprene, 2,4-butadiene and 1,3-pentadiene.
  • the gasoline cut, treated in the selective hydrogenation process according to the invention preferably the gasoline cut from a fluidized catalytic cracking unit, also contains monoolefinic compounds, for example 2,3-dimethyl- 1-butene, 4,4-dimethylcyclopentene, 2-methyl-2-heptene, 1-hexene, aromatic compounds, for example ethylbenzene and orthoxylene and saturated paraffin and / or naphthene compounds, for example, 2-methylhexane and 1-methylcyclopentane.
  • monoolefinic compounds for example 2,3-dimethyl- 1-butene, 4,4-dimethylcyclopentene, 2-methyl-2-heptene, 1-hexene
  • aromatic compounds for example ethylbenzene and orthoxylene and saturated paraffin and / or naphthene compounds, for example, 2-methylhexane and 1-methylcyclopentane.
  • Said essence cut, treated in the selective hydrogenation process according to the invention, and preferably said petrol cut resulting from a fluidized catalytic cracking unit has a weight content of sulfur of between 200 and 5000 ppm, preferably between 500 and 2000 ppm.
  • the sulfur present in said gasoline cut, preferably in said gasoline fluidized catalytic cracking gasoline cut is in the form of sulfur-containing organic compounds, especially thiophene compounds, benzothiophenic compounds and sulfur compounds, light and saturated.
  • the thiophene compounds are, for example, 3-methylthiophene and 3,4-dimethylthiophene. Of the benzothiophene compounds, benzothiophene is preferred.
  • the sulfur compounds, light and saturated, present in said gasoline cut are chosen from mercaptans (non-cyclic sulfur compounds having an SH bond) and light sulphides (compounds having an RS-R 'group, where R and R' are hydrocarbon groups).
  • the most frequently encountered mercaptans in the gasoline cut, in particular in the gasoline catalytic cracking fluidized bed fraction, treated in the selective hydrogenation process according to the invention, are ethanethiol and propanethiol.
  • Said mercaptans are concentrated in the light fraction of the gasoline to be hydrogenated and more precisely in the fraction whose boiling point is below 120 ° C.
  • the light sulphides most frequently encountered in the gasoline cut, in particular in the fluidized catalytic cracking gasoline fraction, treated in the selective hydrogenation process according to the invention, are dimethylsulfide, methylethylsulfide and diethylsulphide, CS 2 , COS, thiophane, methylthiophane.
  • a gasoline cut obtained from a catalytic cracking unit in a fluidized bed, advantageously used for carrying out the selective hydrogenation process according to the invention, has, for example, the following weight composition: from 0.5 to 5% by weight of di-olefinic compounds, from 20 to 50% by weight of monoolefinic compounds, from 30 to 60% by weight of aromatic compounds, from 20 to 50% by weight of saturated compounds (paraffins + naphthenes) and from 200 to 0.5% by weight sulfur weight.
  • the content of light and saturated mercaptans having a boiling point below 84 ° C. preferably represents less than 300 ppm of said gasoline cut.
  • the selective hydrogenation process according to the invention consists mainly of selectively hydrogenating the polyunsaturated compounds, mainly diolefins, to mono-olefins and to convert the saturated light sulfur compounds, mainly mercaptans and light sulfides, into sulphides or mercaptans more heavy by reaction with monoolefins.
  • the selective hydrogenation reaction of the polyunsaturated compounds, mainly diolefins aims at eliminating said compounds present in said gasoline cut by converting said polyunsaturated compounds to the corresponding alkenes, avoiding the total saturation of said compounds so as to avoid the formation of the corresponding alkanes.
  • the sulfur-containing, light and saturated organic compounds which are to be converted in the process according to the invention are mainly mercaptans and light sulfides.
  • the main transformation reaction of the mercaptans consists of thioetherification of the mono-olefins by the mercaptans. This reaction is illustrated below in the specific case of the addition of propane-2-thiol to pent-2-ene to form a propylpentylsulfide.
  • the light sulfides that can be converted and weighed according to the process of the invention are mainly dimethylsulfide, methylethylsulfide and diethylsulfide, CS 2 , COS, thiophane, methylthiophane.
  • the technological implementation of the selective hydrogenation process according to the invention is carried out, for example, by injecting the petrol cut and hydrogen into at least one fixed bed, moving bed or bubbling bed reactor, in a preferred manner. in a fixed bed reactor.
  • the entire gasoline fraction, treated according to the selective hydrogenation process according to the invention is preferably injected at the reactor inlet where the selective hydrogenation reaction occurs.
  • the selective hydrogenation process according to the invention is carried out under the following operating conditions: a temperature of between 80 ° C. and 220 ° C., and preferably between 90 ° C. and 200 ° C., with a volume hourly velocity ( LHSV) of between 1 h "1 and 10 h -1, (the ratio of volume flow of gasoline cut on the volume of catalyst charged to the reactor in l / lh), a total pressure of between 0.5 MPa and 5 Pa and preferably between 1 and 4 MPa The pressure is adjusted so that the reaction mixture is predominantly in liquid form in the reactor
  • the quantity of hydrogen introduced and injected is such that the molar ratio between hydrogen and the polyunsaturated compounds, preferably the diolefins to be hydrogenated is greater than 1 mol / mol and less than 10 mol / mol, and preferably between 1 and 5 mol / mol.
  • the catalyst used for the implementation of the selective hydrogenation process according to the invention comprises an active metal phase deposited on a support, said active phase comprising at least one metal of group VIII of the periodic table of the elements and at least one metal of group VI B of the periodic table of elements.
  • said catalyst contains no alkali metal or alkaline earth metal.
  • the metal content (ux) of group VIB in said oxide catalyst resulting from said step iii) is between 1 and 20% by weight of metal oxide (s) (ux) of group VIB, preferably between 5 and 15% by weight of Group VIB metal oxide (s).
  • the Group VIB metal is molybdenum or tungsten or a mixture of these two elements and more preferably the Group VIB metal consists solely of molybdenum or tungsten.
  • the Group VIB metal is very preferably molybdenum.
  • the metal content (ux) of group VIII in said oxide catalyst resulting from said step iii) is between 1 and 15% by weight of metal oxide (s) (ux) of group VIII, preferably between 1 and 10% by weight of Group VIII metal oxide (s).
  • the Group VIII metal is a non-noble metal of Group VIII of the Periodic Table of Elements.
  • the Group VIII metal is selected from nickel, iron, cobalt and the mixture of at least two of these elements. More preferably, said Group VIII metal consists solely of cobalt or nickel.
  • the Group VIII metal is very preferably nickel.
  • the molar ratio of metal (ux) of group VIII to metal (ux) of group VIB in the oxide catalyst from said step iii) is preferably between 1 and 2.5.
  • the catalyst obtained at the end of said step iv) has a total pore volume, measured by mercury porosimetry, of between 0.3 and 1.4 cm 3 / g, and very preferably between 0 , 4 and 1, 4 cm 3 / g.
  • the mercury porosimetry is measured according to ASTM standard D4284-92 with a wetting angle of 140 °, for example by means of an Autopore III model apparatus of the Microméritics brand.
  • the specific surface area of said catalyst is preferably between 40 and 300 m 2 / g, preferably between 60 and 280 m 2 / g.
  • the support on which the active phase is deposited is advantageously formed of at least one porous solid in oxide form selected from the group consisting of aluminas, silicas, silica-alumina or titanium or magnesium oxides used (s). ) alone or in admixture with alumina or silica-alumina.
  • the support consists essentially of a transition alumina.
  • a support consisting essentially of a transition alumina comprises at least 51% by weight, preferably at least 60% by weight, very preferably at least 80% by weight, or even at least 90% by weight of said transition alumina.
  • transition alumina is meant for example an alpha phase alumina, a delta phase alumina, a gamma phase alumina.
  • said support consists entirely of a transition alumina.
  • Said support formed of at least one oxide has a total pore volume, measured by mercury porosimetry, of between 0.4 and 1.4 cm 3 / g and preferably between 0.5 and 1.3 cm 3 / g.
  • the specific surface area of said support is preferably between 40 and 350 m 2 / g, preferably between 60 and 300 m 2 / g.
  • Said porous support is advantageously in the form of balls, extrudates, pellets, or irregular and non-spherical agglomerates, the specific shape of which may result from a crushing step.
  • said support is in the form of balls or extrudates.
  • the catalyst used in the selective hydrogenation process according to the invention is prepared according to a process comprising at least:
  • steps i) and ii) can be performed separately, in any order, or simultaneously.
  • the deposition of at least one of said group VIII metal and at least one of said group VIB metal on said support, in accordance with the implementation of said step i), may be carried out by any method well known to the man of the job.
  • Said step i) is preferably carried out by impregnation of the support with at least one solution containing at least one precursor of said group VIII metal and at least one precursor of the group VIB metal.
  • said step i) can be carried out by dry impregnation, by excess impregnation, or by deposition - precipitation according to methods well known to those skilled in the art.
  • said step i) is carried out by dry impregnation, which consists in bringing the support of the catalyst into contact with a solution containing at least one precursor of said group VIII metal and at least one precursor of said group VIB metal, whose volume is equal to the pore volume of the support to be impregnated.
  • This solution contains the metal precursors of Group VIII metal (s) and Group VIB metal (s) at the desired concentration.
  • Group VIII metal (s) and group VIB metal (s) are brought into contact with said support via any aqueous phase-soluble metal precursor or in the organic phase.
  • the said precursor (s) of the group VIII metal (s) and the precursor (s) precursor (s) of the metal (s) of the group VIB are introduced in aqueous solution.
  • the group VIII metal is cobalt, cobalt nitrate, cobalt hydroxide or cobalt carbonate are advantageously used as precursors.
  • the group VIII metal is nickel, nickel nitrate, nickel hydroxide or nickel carbonate are advantageously used as precursors.
  • said group VIB metal is molybdenum, it is advantageous to use ammonium heptamolybdate or molybdenum oxide.
  • said group VIB metal is tungsten, it is advantageous to use ammonium metatungstate. Any other salt known to those skilled in the art having sufficient solubility in aqueous solution and decomposable during a calcination step, in particular during the calcination step according to said step iii), can also be used.
  • the bringing into contact of said organic compound used for the implementation of said step ii) with said support is carried out by impregnation, in particular by dry impregnation or excess impregnation, preferably by dry impregnation.
  • Said organic compound is preferably impregnated on said support after solubilization in aqueous solution.
  • the impregnation solution advantageously comprises an acid, for example acetic acid.
  • Said organic compound is formed of at least one cyclic oligosaccharide composed of at least 6 ⁇ - (1,4) -linked glucopyranose subunits.
  • a spatial representation of a subunit glucopyranose is given below:
  • Said organic compound is preferably chosen from cyclodextrins, substituted cyclodextrins, polymerized cyclodextrins and mixtures of cyclodextrins.
  • Cyclodextrins are a family of cyclic oligosaccharides composed of ⁇ - (1,4) -linked glucopyranose subunits. It is about molecules-cages.
  • the preferred cyclodextrins are ⁇ -cyclodextrin, ⁇ -cyclodextrin and ⁇ -cyclodextrin. respectively composed of 6, 7 and 8 ⁇ - (1,4) -linked glucopyranose subunits.
  • ⁇ -cyclodextrin composed of 7 ⁇ - (1,4) -linked glucopyranose subunits.
  • Cyclodextrins are marketed compounds.
  • the substituted cyclodextrins advantageously employed for carrying out said step ii) consist of 6, 7 or 8 ⁇ - (1,4) -linked glucopyranose subunits, at least one of which is mono- or polysubstituted.
  • Substituents can be attached to one or several hydroxyl group (s) present in the molecule, namely on the hydroxyl groups directly linked to the ring of a glucopyranose unit and / or on the hydroxyl bonded to the CH 2 group itself linked to the ring of a glucopyranose unit.
  • said substituted cyclodextrins carry one or more substituent (s), identical (s) or different (s), selected (s) from saturated or unsaturated alkyl radicals, functionalized or not, and the functions ester, carbonyl, carboxyls, carboxylates, phosphates, ethers, polyethers, ureas, amides, amino, triazoles, ammoniums.
  • the mono- or polysubstituent groups of the cyclodextrin may also be a monosaccharide or disaccharide molecule such as a maltose, glucose, fructose or sucrose molecule.
  • the substituted cyclodextrins that are particularly advantageous for the implementation of said step ii) are hydroxypropyl beta-cyclodextrin and methylated beta-cyclodextrins.
  • the polymerized cyclodextrins advantageously employed for the implementation of said step ii) are polymers whose monomers each consist of a cyclic oligosaccharide composed of 6, 7 or 8 ⁇ - (1,4) -linked glucopyranose subunits. substituted or not.
  • a cyclodextrin in polymerized form, crosslinked or otherwise, which can be advantageously used for the implementation of said step ii) is for example of the type obtained by polymerization of beta-cyclodextrin monomers with epichlorohydrin or a polyacid.
  • cyclodextrin mixtures advantageously employed for the implementation of said step ii) use substituted or unsubstituted cyclodextrins.
  • Said mixtures may, by way of example, contain jointly and in variable proportions, each of the three types of cyclodextrins (alpha, beta and gamma).
  • the introduction of said organic compound, preferentially a cyclodextrin and very preferably beta-cyclodextrin, for the implementation of said step ii) is such that the molar ratio ⁇ (metal (ux) groups (VIII + VI B ) in the form of oxide present in the active phase of the catalyst obtained at the end of said step iii) / organic compound ⁇ is between 10 and 300 and preferably between 25 and 180.
  • the metal (s) of the groups VIII and VIB taken into account for the calculation of said molar ratio are the metal (s) introduced for the implementation of said step i) and being in the form of oxide in the active phase of the catalyst resulting from said step iii).
  • the said group VIII metal (s) and the group VIB metal (s) may consequently be in sulphide form: they will be sulphured prior to the implementation of the selective hydrogenation process according to the invention.
  • the process for preparing the catalyst used in the selective hydrogenation process according to the invention comprises several modes of implementation.
  • a first embodiment consists of carrying out said steps i) and ii) simultaneously so that said organic compound, preferably a cyclodextrin, and at least said precursor of at least said group VIII metal and at least said precursor of at least said group VIB metal present in the active phase are co-impregnated on said support (co-impregnation step).
  • Said first embodiment advantageously comprises the implementation of one or more steps i).
  • one or more steps i) advantageously (nt) and / or follow (nt) said co-impregnation step.
  • each of the (co) impregnation steps performed is preferably immediately followed by a maturation step and then at least one drying step and then at least one calcination step.
  • said co-impregnation step is followed by at least one drying step and then at least one calcination step.
  • Said first embodiment may comprise several steps of co-impregnation.
  • Said step iii) of calcination is at least carried out when all the steps of deposition of at least said group VIII metal and at least said group VIB metal on the catalyst support have been carried out.
  • a second mode of implementation consists in performing said step i) prior to said step ii).
  • one or more steps i) of deposition of at least said group VIII metal and at least said group VIB metal present in the active phase of the catalyst precedes said step ii ).
  • each of said steps i) is immediately followed by a maturation step and then at least one drying step and optionally at least one calcination step.
  • the last step i) is advantageously followed by at least one drying step, and possibly at least one calcination step, before the implementation of said step ii).
  • Said step ii) is advantageously followed by a maturation step and then at least one drying step and very preferably at least one calcination step.
  • Said calcination step according to said step iii) is at least carried out either following said step i) subsequent to the drying or following said ii) subsequently drying.
  • a third mode of implementation consists in performing said step ii) prior to said step i).
  • Said step ii) is preferably immediately followed by a maturation step and then at least one drying step and optionally at least one calcination step before the implementation of said step i).
  • said step ii) is followed by several steps i).
  • the preparation of the catalyst according to said third embodiment is advantageously terminated by said calcining step iii).
  • each of the three implementation modes described above can be carried out independently so that the catalyst used in the process according to the invention is prepared either according to said first embodiment or according to said second embodiment. implemented again according to said third embodiment.
  • Said drying steps, carried out for the preparation of the catalyst, prepared according to at least one embodiment described above, are carried out at a temperature of between 80 and 160 ° C. They are preferably carried out for a period of between 1 and 15 hours.
  • the calcination step iii) is carried out at a temperature of between 200 and 660 ° C., preferably between 300 and 550 ° C. It is preferably carried out for a period of between 1 and 6 hours.
  • the calcination steps used for the preparation of the catalyst, prepared according to at least one embodiment described above, are advantageously carried out under the same conditions as said step iii).
  • the catalyst obtained after said step iii), after implementing steps i) and ii) according to at least one of the three embodiments described above, is in the oxide state .
  • the preparation of the catalyst, used in the selective hydrogenation process according to the invention comprises at least one sulphurization step iv) so that said active phase is in sulphide form.
  • the catalysts Before contacting with the feedstock to be treated, the catalysts undergo a sulphurization step.
  • the sulphurization is preferably carried out in a sulforeductive medium, ie in the presence of H 2 S and hydrogen, in order to convert the metal oxides to sulphides, by for example, molybdenum oxides in MoS 2 and nickel oxides in Ni 3 S 2 .
  • Sulfurization is carried out by injecting onto the oxide catalyst a stream containing H 2 S and hydrogen, or a sulfur compound capable of decomposing into H 2 S in the presence of the catalyst and hydrogen.
  • the H 2 S precursors preferentially used for the implementation of said step iv) are polysulfides such as dimethyl disulphide.
  • Said step iv) of sulfurization can be carried out in situ (after loading the catalyst in the reaction unit of the selective hydrogenation process according to the invention) or ex situ (before loading the catalyst into the reaction unit of the hydrogenation process selective according to the invention) at a temperature between 200 and 600 ° C and more preferably between 300 and 500 ° C.
  • Said sulphurization step iv) is carried out so that the Group VIII and Group VIB metals are substantially sulphurized.
  • An element is considered to be substantially sulphurated when the molar ratio between the sulfur (S) present on the catalyst resulting from said step iv) and said element is at least 60% (sulphidation ratio of at least 60%) of the ratio theoretical molar corresponding to the total sulphurisation of the element under consideration: (S / element) cataiyseur ⁇ 0.6 x (S / element), héorique
  • the catalyst comprising several metals, the molar ratio between the sulfur present on the catalyst resulting from said step iv) and all the elements must also be at least equal to 60% of the theoretical molar ratio corresponding to the total sulfurization of each element in sulphide, the calculation being made in proportion to the relative molar fractions of each element.
  • the sulphidation rate of the metals is greater than 80%.
  • the catalyst resulting from said step iv) is before the implementation of the selective hydrogenation process according to the invention, at least partially in sulphide form. It may also comprise an oxide metal phase, which has not been converted during said sulphurization step iv). Said catalyst may be completely or partially freed from said organic compound formed of at least one cyclic oligosaccharide composed of at least 6 ⁇ - (1,4) -linked glucopyranose subunits.
  • the catalysts A, B, C and D respectively prepared in Examples 1, 2, 3 and 4 are prepared with iso-content of molybdenum and nickel elements.
  • the support used for the preparation of each of the catalysts A, B, C and D is a gamma alumina support having a pore volume of 0.7 ml / g and a BET surface area of 280 m 2 / g.
  • Catalyst A is obtained by dry impregnation of an aqueous solution prepared from ammonium heptamolybdate and nickel nitrate, the volume of the solution containing the molybdenum and nickel precursors being strictly equal to the pore volume of the alumina support mass.
  • concentrations of precursors in the aqueous solution are adjusted so as to deposit on the alumina support the weight contents of Ni and Mo desired.
  • the solid is dried for 12 hours at 120 ° C. and then calcined under air at 500 ° C. for 2 hours.
  • the catalyst A thus obtained in the oxide state, of NiMo / Al 2 O 3 formulation has a molybdenum content of 7.2 expressed as a% by weight of MoO 3 oxide, and a nickel content of 5.6 expressed as a% NiO oxide weight.
  • the Ni / Mo molar ratio of this catalyst A is 1.50.
  • Catalyst A is sulfurized ex situ at atmospheric pressure in a sulfurization bench under a H 2 S / H 2 mixture consisting of 15% by volume of H 2 S to 1 1 / g of catalyst at 400 ° C. for two hours.
  • a catalyst A ' is obtained in sulphide form (sulfidation rate greater than 60%).
  • Example 2 Preparation of a supported catalyst B (oxide catalyst) and a supported catalyst B '(sulfide catalyst) of the formula Ni o / AlgOa in the presence of B-cyclodextrin (co-impregnation)
  • Catalyst B is obtained by dry impregnation of an aqueous solution prepared from ammonium heptamolybdate and nickel nitrate, the volume of the solution containing the nickel and molybdenum precursors being strictly equal to the pore volume of the alumina support mass.
  • concentrations of precursors in the aqueous solution are adjusted so as to deposit on the alumina support the weight contents of Ni and Mo desired.
  • Said aqueous solution also contains ⁇ -cyclodextrin (SIGMA-ALDRICH, purity of 98%) in a molar ratio (Ni + Mo) / p-cyclodextrin of 30. After a maturation step for 12 hours, the solid is then dried for 12 hours at 120 ° C and then calcined under air at 500 ° C for 2 hours.
  • the catalyst B thus obtained in the oxide state, of NiMo formulation has a molybdenum content of 7.1 expressed as% by weight of MoO 3 oxide and a nickel content of 5.4 expressed in% by weight of NiO oxide.
  • the Ni / Mo molar ratio of this catalyst B is 1.47.
  • Catalyst B is sulphurized ex situ at atmospheric pressure in a sulfurization bench under a H 2 S / H 2 mixture consisting of 15% by volume of H 2 S to 1 1 / g of catalyst at 400 ° C. for two hours.
  • a catalyst B 'in sulphide form (sulfidation rate greater than 60%) is obtained.
  • Example 3 Preparation of a supported catalyst C (oxide catalyst) and a supported catalyst C (sulfide catalyst) of the formula NiMo / AlgQg in the presence of B-cyclodextrin (co-impregnation of Ni and Mo and subsequent impregnation Catalyst C is obtained by dry impregnation of an aqueous solution prepared from ammonium heptamolybdate and nickel nitrate, the volume of the solution containing the molybdenum and nickel precursors being rigorously equal. to the pore volume of the alumina support mass. The concentrations of precursors in the aqueous solution are adjusted so as to deposit on the alumina support the weight contents of Ni and Mo desired.
  • the solid After a 12 hour maturation step, the solid is dried for 12 hours at 120 ° C. A second dry impregnation stage makes it possible to add the ⁇ -cyclodextrin (SIGMA-ALDRICH, purity of 98%) dissolved in water to the dried solid obtained beforehand.
  • the molar ratio (Ni + Mo) / -cyclodextrin is 30.
  • the catalyst After a maturation step for 12 hours, the catalyst is dried for 12 hours at 120 ° C. and then calcined in air at 500 ° C. for 2 hours to obtain the catalyst C.
  • the catalyst C thus obtained in the oxide state, of NiMo formulation has a molybdenum content of 7.0 expressed as% by weight of MoO 3 oxide, and a nickel content of 5.5 expressed in% by weight of NiO oxide. .
  • the molar ratio Ni / Mo of this catalyst C is 1.50.
  • Catalyst C is sulphurized ex situ at atmospheric pressure in a sulfurization bench under a H 2 S / H 2 mixture consisting of 15% by volume of H 2 S at 1 1 / g of catalyst at 400 ° C. for two hours.
  • a catalyst C in sulphide form (sulfidation rate greater than 60%) is obtained.
  • D-glucopyranose is the product of cellulose degradation. It is a diholoside of formula C 12 H 22 On. It is not a cyclic oligosaccharide.
  • the structural formula of cellobiose is given below:
  • Catalyst D is obtained by dry impregnation of an aqueous solution prepared from ammonium heptamolybdate and nickel nitrate, the volume of the solution containing the molybdenum and nickel precursors being strictly equal to the pore volume of the alumina support mass.
  • the concentrations of precursors in the aqueous solution are adjusted so as to deposit on the alumina support the weight contents of Ni and Mo desired.
  • the solution also contains cellobiose (marketed by WWR) in a molar ratio (Ni + Mo) / cellobiose of 30. After a maturation step for 12 hours, the catalyst is dried for 12 hours at 120 ° C. and then calcined in air at room temperature. 500 ° C for 2 hours.
  • the catalyst D thus obtained in the oxide state, of NiMo formulation has a molybdenum content of 7.1 expressed in% by weight of MoO 3 oxide, and a nickel content of 5.6 expressed in% by weight of NiO oxide. .
  • the Ni / Mo molar ratio of this catalyst D is 1.52.
  • the catalyst D is sulphurized ex situ at atmospheric pressure in a sulfurization bench under a H 2 S / H 2 mixture consisting of 15% by volume of H 2 S to 1 1 / g of catalyst at 400 ° C. for two hours.
  • a catalyst D 'in sulfide form is obtained (sulfidation rate greater than 60%).
  • EXAMPLE 5 Catalytic Performance of Catalysts A ', B', C and D 'in a Selective Hydrogenation Test of a Gasoline Cut from Model Molecules Representative of a Catalytic Cracking Gasoline
  • a representative model charge of a catalytic cracking gasoline (FCC) containing 1000 ppm by weight of sulfur in methyl-3-thiophene form, 100 ppm by weight of sulfur in the form of propane-2-thiol (mercaptan), 10% by weight of mono olefin in the form of hexene-1 and 1% by weight of diolefins in the form of isoprene in n-heptane is used to evaluate the catalytic performance of the various catalysts.
  • the selective hydrogenation reaction is carried out in a 500 ml stirred autoclave reactor.
  • Each of the catalysts A ', B', C and D ' is successively placed in said reactor in contact with 250 ml of said model charge under a total pressure of 1.5 MPa and a temperature of 160 ° C.
  • the pressure is kept constant during the test by adding hydrogen.
  • the duration of the test is set at 45 minutes and the gas phase chromatographic analysis of the liquid effluents collected on a regular basis makes it possible to evaluate the activities of each of the catalysts in hydrogenation of isoprene (selective formation of methylbutenes) and in hydrogenation of hexene-1 (formation of n-hexane).
  • the activity of each catalyst for each of these two hydrogenation reactions is defined with respect to the rate constant obtained for each normalized hydrogenation reaction per gram of catalyst. The rate constant is calculated by considering an order 1 for the hydrogenation reaction.
  • the selectivity of the catalyst with respect to the hydrogenation of isoprene is equal to the ratio of the activities of the catalyst in hydrogenation of isoprene and hexene 1. It is noted as A (isoprene) / A (hexene-1).
  • the catalysts B 'and C are slightly more selective than the catalysts A' and D 'with respect to the hydrogenation of isoprene: the catalysts B' and C therefore favor slightly the selective hydrogenation of the isoprene to methylbutenes at the expense of the hydrogenation of hexene-1 to hexane.
  • the chromatographic analyzes made it possible to prove that the conversion of the mercaptans present in the form of propane-2-thiol is rapid and total on all the catalysts A ', B ", C and D'.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • General Chemical & Material Sciences (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)
  • Catalysts (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

On décrit un procédé d'hydrogénation sélective d'une coupe essence contenant des hydrocarbures polyinsaturés ayant au moins 2 atomes de carbone par molécule et ayant un point d'ébullition final inférieur ou égal à 250°C, consistant en la mise en contact de ladite coupe essence avec au moins un catalyseur dont la phase active comprend au moins un métal du groupe VIII et au moins un métal du groupe VI B déposés sur un support, ledit catalyseur étant préparé selon un procédé comprenant au moins : i) une étape de mise en contact d'au moins dudit support avec au moins une solution contenant au moins un précurseur d'au moins dudit métal du groupe VIII et au moins un précurseur d'au moins dudit métal du groupe VI B, ii) une étape de mise en contact d'au moins dudit support avec au moins un composé organique formé d'au moins un oligosaccharide cyclique composé d'au moins 6 sous-unités glucopyranose liées en α-(1,4), iii) une étape de calcination pour obtenir au moins ledit métal du groupe VIII et au moins ledit métal du groupe VI B sous forme oxyde, puis iv) une étape de sulfuration de sorte que ladite phase active se présente sous forme sulfure, les étapes i) et ii) pouvant être réalisées séparément, dans un ordre indifférent, ou simultanément.

Description

PROCEDE D'HYDROGENATION SELECTIVE D'UNE COUPE ESSENCE EN PRESENCE D'UN CATALYSEUR SULFURE SUPPORTE PREPARE AU MOYEN D'AU MOINS UN OLIGOSACCHARIDE CYCLIQUE
Domaine de l'invention
La présente invention se rapporte au domaine de l'hydrotraitement de coupe essence, notamment de coupes essence issues des unités de craquage catalytique en lit fluidisé (FCC). L'hydrotraitement (HDT) est un terme général employé pour désigner l'ensemble des procédés permettant l'élimination des composés polyinsaturés, notamment des dioléfines (hydrogénation), ainsi que l'élimination des composés organiques contenant des hétéroatomes, en particulier le soufre (hydrodésulfuration, HDS), la présence de ces composés étant indésirable dans les essences, lesquelles doivent satisfaire à des normes de pollution automobile de plus en plus sévères. Plus précisément, la présente invention se rapporte à un procédé d'hydrogénation sélective d'une coupe essence, principalement d'une coupe essence issue d'une unité de craquage catalytique en lit fluidisé, contenant des composés organiques soufrés, notamment des composés organiques soufrés légers et saturés, et des composés polyinsaturés, notamment des dioléfines. La teneur en composés polyinsaturés, notamment en dioléfines, ainsi que celle en soufre nécessitent d'être réduite afin de pouvoir valoriser ladite coupe essence dans le pool essence une fois qu'elle aura été hydrotraitée. Le procédé d'hydrogénation sélective selon l'invention permet une élimination des composés soufrés légers présentant généralement de 1 à 3 atomes de carbone par molécule par alourdissement desdits composés sans affecter les composés soufrés plus lourds également présents dans la coupe essence à traiter, lesdits composés soufrés plus lourds pouvant être transformés en H2S lors d'une étape d'hydrodésulfuration subséquente. Pour mieux situer le procédé d'hydrogénation sélective selon l'invention dans un schéma plus global, on précise que le procédé d'hydrogénation sélective selon l'invention s'intègre avantageusement dans un complexe technologique dans lequel l'unité réactionnelle réalisant ledit procédé d'hydrogénation sélective est placée en amont d'une colonne de séparation permettant l'obtention d'un premier flux formé d'une coupe essence légère, hydrogénée et substantiellement appauvrie en soufre, présentant un bon indice d'octane et directement valorisable dans le pool essence et d'un second flux formé d'une coupe essence lourde très enrichie en soufre, traité de manière subséquente dans une unité d'hydrodésulfuration, de manière à obtenir une essence également valorisable dans le pool essence.
Art antérieur
Le durcissement des normes de pollution automobile en 2009 dans la communauté européenne contraint les raffineurs à réduire très fortement la teneur en soufre dans les essences, au maximum à 10 parties par million poids (ppm) de soufre depuis le 1 er janvier 2009, contre 50 ppm au 1 er janvier 2005 (mesurée par la méthode ASTM D-4294). D'autre part, ces nouvelles normes sont également accompagnées de contrainte en terme d'indice d'octane.
Les essences de conversion, et plus particulièrement celles provenant du craquage catalytique en lit fluidisé (essence de FCC, Fluid Catalytic Cracking selon la terminologie anglosaxonne), présentent des teneurs en mono-oléfines et en soufre élevées et peuvent représenter 30 à 50 % volumique du pool essence. Le soufre présent dans les essences est pour cette raison imputable, à près de 90 %, aux essences issues des procédés de craquage catalytique en lit fluidisé. Les coupes essences et plus particulièrement les essences issues du FCC, contiennent une part importante de composés insaturés sous forme de mono-oléfines (environ 20 à 50 % poids) et de dioléfines (0,5 à 5 % poids). Les dioléfines sont des composés instables qui ont tendance à former des gommes par polymérisation et doivent en conséquence, généralement, être éliminées par hydrogénation avant tout traitement de ces essences, en particulier les traitements d'hydrodésulfuration (HDS) destinés à répondre aux spécifications sur les teneurs en soufre dans les essences. Toutefois, il est essentiel que l'hydrogénation s'applique sélectivement aux dioléfines afin de limiter l'hydrogénation des mono-oléfines qui conduirait à une perte de l'indice d'octane et de limiter la consommation d'hydrogène. Par ailleurs, les coupes essences et plus particulièrement les essences issues du FCC, contiennent une part non négligeable de soufre sous forme de composés organiques soufrés (200 ppm à 0,5 % poids) qui nécessitent d'être éliminés pour valoriser lesdites coupes essence conformément à la réglementation en vigueur en termes de normes de pollution automobile. Lesdits composés organiques soufrés sont en partie formés de composés soufrés légers saturés dont le point d'ébullition est inférieur au point d'ébullition du thiophène lequel présente un point d'ébullition de 84°C, tels que le méthanethiol, l'éthanethiol, le diméthylsulfure. Il a déjà été proposé d'éliminer de tels composés soufrés légers par alourdissement desdits composés en des composés soufrés présentant une masse moléculaire plus élevée pouvant être éliminés dans une étape ultérieure d'hydrodésulfuration (EP 1. 077.247 A1 ).
Dans le but constant d'obtenir des essences de meilleure qualité et répondant aux exigences environnementales, il a déjà été décrit des formulations catalytiques et des procédés permettant d'hydrogéner sélectivement les dioléfines en mono-oléfines et/ou de transformer des composés soufrés légers tels que les mercaptans par alourdissement. Par exemple, le brevet européen EP 0.685.552 B1 propose un procédé d'hydrogénation des dioléfines et de réduction de la teneur en mercaptans contenus dans une essence de craquage catalytique basé sur un catalyseur contenant entre 0,1 et 1% poids de palladium déposé sur un support à base d'alumine. Toutefois, les performances catalytiques de ces catalyseurs antérieurs ne donnent pas entière satisfaction en terme d'activité notamment.
Un moyen efficace pour augmenter l'activité des catalyseurs supportés est d'augmenter la quantité de phase active sous forme sulfure, ce qui se traduit préalablement par un dépôt maximal de la phase active sous forme oxyde associée à la surface du support. Toutefois, cette quantité maximale (habituellement déposée par imprégnation à sec) est limitée par les propriétés texturales du support et en particulier sa surface spécifique et son volume poreux. De plus, dans le cas particulier où le support utilisé comporte l'élément aluminium, cette concentration importante en phase oxyde déposée favorise la formation de phases oxydes cristallisées du type AI2(Mo04)3, CoAI204, NiAI204, etc. qui s'avèrent être réfractaires à l'étape de sulfuration. Ceci se traduit logiquement par une perte indirecte de l'activité catalytique puisque toute la phase oxyde déposée n'est pas utilisée au maximum de son potentiel. D'autre part, une augmentation de la teneur en phase active peut conduire à la formation de cristallites de o03, NiO, CoO, Co30 ou de CoMo04 de taille suffisamment importante pour être détectables en DRX. Ces espèces sont également connues pour diminuer le taux de sulfuration des catalyseurs d'hydrotraitement, et donc leurs performances.
La composition et l'utilisation des catalyseurs d'hydrotraitement d'hydrogénation sont particulièrement bien décrits dans l'article de B. S Clausen, H. T. Topsoe, et F. E. Massoth, issu de l'ouvrage Catalysis Science and Technology, 1996, volume 11 , Springer-Verlag. Ainsi, ces catalyseurs comprennent généralement au moins un métal du groupe VI B et/ou au moins un métal du groupe VIII du tableau périodique des éléments. Les formulations les plus courantes sont de type cobalt-molybdène (CoMo), nickel-molybdène (Ni o) et nickel- tungstène (NiW). Ces catalyseurs peuvent se présenter sous forme massique ou bien à l'état supporté. Dans ce dernier cas, la matrice poreuse est généralement un oxyde amorphe ou mal cristallisé (alumine, silice-alumine, etc.) éventuellement associé à un tamis moléculaire zéolithique ou non zéolithique. Après préparation, lesdits catalyseurs se présentent souvent sous forme d'oxyde. Leur forme active et stable pour les procédés d'hydrotraitement et notamment pour les procédés d'hydrogénation étant la forme sulfurée, ces catalyseurs sont soumis à une étape de sulfuration.
Cependant la dispersion de la phase active ou de ces précurseurs oxyde ou oxy-hydroxyde est directement liée à la surface spécifique offerte par le support : pour de fortes densités surfaciques en molybdène, la formation de phases réfractaires à la sulfuration par frittage a en effet été rapportée. De nouvelles techniques de préparation des catalyseurs ont besoin d'être développées pour améliorer encore les performances de ces catalyseurs et satisfaire les législations à venir. En particulier, il convient de contrôler les interactions entre le support et les précurseurs de la phase active qui aboutissent à des espèces réfractaires à la sulfuration (par exemple, ΑΙ2(Μο04)3, CoAI204 ou NiAI204), inutiles à la réaction catalytique et ayant des effets indésirables sur l'activité catalytique.
La présente invention se propose de mettre au point un nouveau procédé d'hydrogénation sélective de coupes essence, particulièrement de coupes essence issues du FCC, contenant des composés soufrés légers saturés et des composés polyinsaturés, notamment des dioiéfines, en présence d'un catalyseur supporté dont la préparation en présence d'un composé organique formé d'au moins un oligosaccharide cyclique conduit à l'obtention de performances catalytiques améliorées, notamment en terme d'activité.
Résumé et intérêt de l'invention
La présente invention a pour objet un procédé d'hydrogénation sélective d'une coupe essence contenant des hydrocarbures polyinsaturés ayant au moins 2 atomes de carbone par molécule et ayant un point d'ébullition final inférieur ou égal à 250°C, ladite coupe présentant une teneur pondérale en hydrocarbures polyinsaturés comprise entre 0,5 et 5 % et une teneur pondérale en soufre comprise entre 200 et 5000 ppm, ledit procédé consistant en la mise en contact de ladite coupe essence avec au moins un catalyseur dont la phase active comprend au moins un métal du groupe VIII et au moins un métal du groupe VI B déposés sur un support formé d'au moins un oxyde, ledit catalyseur étant préparé selon un procédé comprenant au moins :
i) au moins une étape de mise en contact d'au moins dudit support avec au moins une solution contenant au moins un précurseur d'au moins dudit métal du groupe VIII et au moins un précurseur d'au moins dudit métal du groupe VIB,
ii) au moins une étape de mise en contact d'au moins dudit support avec au moins un composé organique formé d'au moins un oligosaccharide cyclique composé d'au moins 6 sous-unités glucopyranose liées en a-(1 ,4),
iii) au moins une étape de calcination pour obtenir au moins ledit métal du groupe VIII et au moins ledit métal du groupe VIB sous forme oxyde, puis
iv) au moins une étape de sulfuration de sorte que ladite phase active se présente sous forme sulfure,
les étapes i) et ii) pouvant être réalisées séparément, dans un ordre indifférent, ou simultanément.
Conformément au procédé d'hydrogénation sélective selon l'invention, ledit métal du groupe VIII présent dans la phase active est préférentiellement le nickel et ledit métal du groupe VIB présent dans la phase active est préférentiellement le molybdène. Conformément au procédé d'hydrogénation sélective selon l'invention, ledit catalyseur est préférentiellement préparé en présence d'une cyclodextrine en tant que composé organique. De manière surprenante, il a été découvert qu'un catalyseur sulfuré dont la phase active comprend au moins un métal du groupe VIII, préférentiellement un métal non-noble du groupe VIII, et au moins un métal du groupe VI B et préparé en présence d'au moins un composé organique formé d'au moins un oligosaccharide cyclique composé d'au moins 6 sous-unités glucopyranose liées en a-(1 ,4), préférentiellement d'une cyclodextrine, présente, lorsqu'il est mis en œuvre dans un procédé d'hydrogénation sélective d'une coupe essence, des performances catalytiques améliorées, notamment en terme d'activité catalytique et/ou en terme de sélectivité. En particulier, un tel catalyseur présente une activité sensiblement améliorée pour la conversion envers les composés polyinsaturés, notamment les dioléfines. Il en résulte ainsi une meilleure stabilité dudit catalyseur vis-à-vis de la formation des polymères, générés par la présence des composés polyinsaturés. De plus, la sélectivité vis- à-vis de l'hydrogénation sélective desdits composés polyinsaturés, notamment de composés dioléfiniques, n'est en rien affectée, voire légèrement améliorée : ledit catalyseur préparé en présence d'au moins un composé organique formé d'au moins un oligosaccharide cyclique composé d'au moins 6 sous-unités glucopyranose liées en a-(1 ,4) présente, outre une activité sensiblement améliorée pour la conversion envers les composés polyinsaturés, une sélectivité légèrement améliorée vis-à-vis de l'hydrogénation sélective desdits composés polyinsaturés, notamment de composés dioléfiniques, aux dépens de l'hydrogénation des composés mono-oléfiniques.
Le procédé d'hydrogénation sélective selon l'invention permet également, en plus de l'hydrogénation sélective des composés polyinsaturés, la transformation conjointe des composés organiques soufrés, légers et saturés, présents dans la coupe essence à hydrotraiter : lesdits composés sont alourdis par mise en contact avec les composés mono- oléfiniques présents dans ladite coupe de manière à former des composés soufrés, notamment des sulfures, de masse moléculaire plus élevée. Les composés soufrés formés par alourdissement desdits composés soufrés, légers et saturés, sont ainsi facilement séparés de la coupe essence hydrogénée et appauvrie en soufre par injection de l'effluent du procédé d'hydrogénation sélective selon l'invention dans un train de séparation qui conduit à l'obtention d'un premier flux formé de ladite coupe essence légère, hydrogénée et substantiellement appauvrie en soufre, présentant un bon indice d'octane et directement valorisable dans le pool essence sans traitement complémentaire et d'un second flux formé d'une coupe essence lourde très enrichie en soufre par la présence desdits composés soufrés alourdis, ledit second flux étant traité de manière subséquente dans une unité d'hydrodésulfuration, de manière à obtenir une essence également valorisable dans le pool essence.
Le procédé d'hydrogénation sélective selon l'invention permet donc l'obtention d'une essence légère présentant une teneur en composés polyinsaturés, notamment en dioléfines, et une teneur en composés soufrés légers, notamment en mercaptans, réduites. L'essence ainsi produite, après avoir été séparée, contient moins de 1 % poids de composés polyinsaturés, notamment de dioléfines, et de préférence moins de 0,5 % poids de dioléfines. Elle présente un point final inférieur à 120°C, et de préférence inférieur à 100°C et de façon très préférée inférieur à 80°C. Les composés soufrés légers dont la température d'ébullition est inférieure à celle du thiophène (84°C), présents dans la coupe essence initiale à hydrotraiter conformément selon le procédé d'hydrogénation selon l'invention, sont convertis à plus de 50%. Description détaillée de l'invention
La présente invention a pour objet un procédé d'hydrogénation sélective d'une coupe essence contenant des hydrocarbures polyinsaturés ayant au moins 2 atomes de carbone par molécule et ayant un point d'ébullition final inférieur ou égal à 250°C, ladite coupe présentant une teneur pondérale en hydrocarbures polyinsaturés comprise entre 0,5 et 5 % et une teneur pondérale en soufre comprise entre 200 et 5000 ppm, ledit procédé consistant en la mise en contact de ladite coupe essence avec au moins un catalyseur dont la phase active comprend au moins un métal du groupe VIII et au moins un métal du groupe VIB déposés sur un support formé d'au moins un oxyde, ledit catalyseur étant préparé selon un procédé comprenant au moins :
i) au moins une étape de mise en contact d'au moins dudit support avec au moins une solution contenant au moins un précurseur d'au moins dudit métal du groupe VIII et au moins un précurseur d'au moins dudit métal du groupe VIB,
ii) au moins une étape de mise en contact d'au moins dudit support avec au moins un composé organique formé d'au moins un oligosaccharide cyclique composé d'au moins 6 sous-unités glucopyranose liées en o(1 ,4),
iii) au moins une étape de calcination pour obtenir au moins ledit métal du groupe VIII et au moins ledit métal du groupe VIB sous forme oxyde, puis
iv) au moins une étape de sulfuration de sorte que ladite phase active se présente sous forme sulfure,
les étapes i) et ii) pouvant être réalisées séparément, dans un ordre indifférent, ou simultanément. La coupe essence, traitée dans le procédé d'hydrogénation sélective selon l'invention, présente un point d'ébullition final inférieur 250°C. Elle contient des hydrocarbures polyinsaturés ayant au moins 2 atomes de carbone par molécule, et préférentiellement au moins 3 atomes de carbone par molécule. Ladite coupe essence est choisie parmi les essences issues d'une unité de cokéfaction, d'une unité de viscoréduction et d'une unité de craquage catalytique en lit fluidisé (Fluid Cracking catalyst, FCC selon la terminologie anglosaxonne). De manière préférée, ladite coupe essence, traitée dans le procédé d'hydrogénation sélective selon l'invention, provient d'une unité de craquage catalytique en lit fluidisé. Plus précisément, lesdits hydrocarbures polyinsaturés présents dans ladite coupe essence traitée selon le procédé de l'invention sont en particulier des composés comportant au moins une fonction diénique, c'est-à-dire au moins deux doubles liaisons. De manière préférée, lesdits hydrocarbures polyinsaturés sont des composés di-oléfiniques, en particulier l'isoprène, le 2,4-butadiène, le 1 ,3-pentadiène. La coupe essence, traitée dans le procédé d'hydrogénation sélective selon l'invention, de préférence la coupe essence issue d'une unité de craquage catalytique en lit fluidisé contient également des composés mono- oléfiniques, par exemple le 2,3-diméthyl-1 -butène, le 4,4-diméthylcyclopentène, le 2-méthyl- 2-heptène, le 1 -hexène, des composés aromatiques, par exemple l'éthylbenzène et l'orthoxylène et des composés saturés de type paraffine et / ou naphtène, par exemple le 2- méthylhexane et le 1 -méthylcyclopentane. Ladite coupe essence, traitée dans le procédé d'hydrogénation sélective selon l'invention, et de préférence ladite coupe essence issue d'une unité de craquage catalytique en lit fluidisé, présente une teneur pondérale en soufre comprise entre 200 et 5000ppm, de préférence entre 500 et 2000 ppm. Le soufre présent dans ladite coupe essence, de préférence dans ladite coupe essence de craquage catalytique en lit fluidisé, se trouve sous la forme de composés organiques soufrés, notamment de composés thiophéniques, benzothiophéniques et de composés soufrés, légers et saturés. Les composés thiophéniques sont par exemple le 3-méthylthiophène et le 3,4-diméthylthiophène. Parmi les composés benzothiophéniques, le benzothiophène est préféré. Les composés soufrés, légers et saturés, présents dans ladite coupe essence, sont choisis parmi les mercaptans (composés soufrés non cycliques présentant une liaison S-H) et les sulfures légers (composés présentant un groupement R-S-R', où R et R' sont des groupements hydrocarbonés). Les mercaptans les plus fréquemment rencontrés dans la coupe essence, en particulier dans la coupe essence de craquage catalytique en lit fluidisé, traitée dans le procédé d'hydrogénation sélective selon l'invention, sont l'éthanethiol et le propanethiol. Lesdits mercaptans se concentrent dans la fraction légère de l'essence à hydrogéner et plus précisément dans la fraction dont la température d'ébullition est inférieure à 120°C. Les sulfures légers les plus fréquemment rencontrés dans la coupe essence, en particulier dans la coupe essence de craquage catalytique en lit fluidisé, traitée dans le procédé d'hydrogénation sélective selon l'invention, sont le diméthylsulfure, méthyléthylsulfure et diéthylsulfure, le CS2, le COS, le thiophane, le méthylthiophane.
Une coupe essence issue d'une unité de craquage catalytique en lit fluidisé, avantageusement utilisée pour la mise en œuvre du procédé d'hydrogénation sélective selon l'invention, présente par exemple la composition pondérale suivante : de 0,5 à 5 % poids de composés di-oléfiniques, de 20 à 50 % poids de composés mono-oléfiniques, de 30 à 60 % poids de composés aromatiques, de 20 à 50 % poids de composés saturés (paraffines + naphtènes) et de 200 ppm à 0,5 % poids de soufre. La teneur en mercaptans légers et saturés ayant un point d'ébullition inférieur à 84°C représentent préférentiellement moins de 300 ppm de ladite coupe essence.
Le procédé d'hydrogénation sélective selon l'invention consiste principalement à hydrogéner sélectivement les composés polyinsaturés, principalement les dioléfines, en mono-oléfines et à transformer les composés soufrés légers saturés, principalement les mercaptans et les sulfures légers, en sulfures ou en mercaptans plus lourds par réaction avec les mono- oléfines. La réaction d'hydrogénation sélective des composés polyinsaturés, principalement des dioléfines, vise à éliminer lesdits composés présents dans ladite coupe essence en procédant à la conversion desdits composés polyinsaturés vers les alcènes correspondants en évitant la saturation totale desdits composés de manière à éviter la formation des alcanes correspondants.
Les composés organiques soufrés, légers et saturés, que l'on cherche à transformer dans le procédé selon l'invention sont principalement des mercaptans et des sulfures légers. La réaction principale de transformation des mercaptans consiste en une thioéthérification des mono-oléfines par les mercaptans. Cette réaction est illustrée ci-dessous dans le cas précis de l'addition du propane-2-thiol sur le pent-2-ène pour former un propylpentylsulfure.
Figure imgf000009_0001
Le procédé selon l'invention étant réalisé en présence d'hydrogène, la transformation des composés soufrés présents dans la coupe essence peut également passer par la formation intermédiaire d'H2S qui peut ensuite s'additionner sur les composés insaturés présents dans la coupe. Cette voie est toutefois minoritaire dans les conditions de la réaction .
Les sulfures légers pouvant être ainsi transformés et alourdis selon le procédé de l'invention sont principalement le diméthylsulfure, le méthyléthylsulfure et le diéthylsulfure, le CS2, le COS, le thiophane, le méthylthiophane.
La mise en œuvre technologique du procédé d'hydrogénation sélective selon l'invention est par exemple réalisée par injection de la coupe essence et de l'hydrogène dans au moins un réacteur à lit fixe, à lit mobile ou à lit bouillonnant, de manière préférée dans un réacteur à lit fixe. La totalité de la coupe essence, traitée conformément au procédé d'hydrogénation sélective selon l'invention, est préférentiellement injectée à l'entrée du réacteur où se produit la réaction d'hydrogénation sélective. Toutefois, il peut être avantageux, dans certains cas, d'injecter une fraction ou la totalité de ladite coupe essence entre deux lits catalytiques consécutifs placés dans ledit réacteur. Ce mode de réalisation permet notamment de continuer à maintenir le réacteur opérationnel même lorsque l'entrée dudit réacteur se trouve bouchée par dépôts de polymères, de particules ou de gommes présentes dans la coupe essence.
Le procédé d'hydrogénation sélective selon l'invention est mis en œuvre dans les conditions opératoires suivantes : une température comprise entre 80°C et 220°C, et de préférence entre 90°C et 200°C, avec une vitesse volumique horaire (VVH) comprise entre 1 h"1 et 10 h' 1, (rapport du débit volumique de coupe essence sur le volume de catalyseur chargé dans le réacteur en l/l.h), une pression totale comprise entre 0,5 MPa et 5 Pa et de préférence entre 1 et 4 MPa. La pression est ajustée afin que le mélange réactionnel soit majoritairement sous forme liquide dans le réacteur. La quantité d'hydrogène introduite et injectée est telle que le rapport molaire entre l'hydrogène et les composés polyinsaturés, préférentiellement les dioléfines, à hydrogéner soit supérieur à 1 mol/mol et inférieur à 10 mol/mol, et de préférence compris entre 1 et 5 mol/mol.
Le catalyseur employé pour la mise en œuvre du procédé d'hydrogénation sélective selon l'invention comprend une phase métallique active déposée sur un support, ladite phase active comprenant au moins un métal du groupe VIII de la classification périodique des éléments et au moins un métal du groupe VI B de la classification périodique des éléments. De manière préférée, ledit catalyseur ne contient ni métal alcalin ni métal alcalino-terreux. De manière générale, la teneur en métal(ux) du groupe VIB dans ledit catalyseur oxyde issu de ladite étape iii) est comprise entre 1 et 20% poids d'oxyde(s) de métal(ux) du groupe VIB, de manière préférée entre 5 et 15 % poids d'oxyde(s) de métal(ux) du groupe VIB. De préférence, le métal du groupe VIB est le molybdène ou le tungstène ou un mélange de ces deux éléments et de manière plus préférée le métal du groupe VIB est constitué uniquement de molybdène ou de tungstène. Le métal du groupe VIB est de manière très préférée le molybdène.
De manière générale, la teneur en métal(ux) du groupe VIII dans ledit catalyseur oxyde issu de ladite étape iii) est comprise entre 1 et 15% poids d'oxyde(s) de métal(ux) du groupe VIII, de manière préférée entre 1 et 10% poids d'oxyde(s) de métal(ux) du groupe VIII. De préférence, le métal du groupe VIII est un métal non noble du groupe VIII de la classification périodique des éléments. De manière très préférée, le métal du groupe VIII est choisi parmi le nickel, le fer, le cobalt et le mélange d'au moins deux de ces éléments. De manière plus préférée, ledit métal du groupe VIII est constitué uniquement de cobalt ou de nickel. Le métal du groupe VIII est de manière très préférée le nickel.
Le rapport molaire métal(ux) du groupe VIII sur métal(ux) du groupe VIB dans le catalyseur oxyde issu de ladite étape iii) est préférentiellement compris entre 1 et 2,5.
De manière avantageuse, le catalyseur obtenu à l'issue de ladite étape iv) présente un volume poreux total, mesuré par porosimétrie au mercure, compris entre 0,3 et 1 ,4 cm3/g, et de manière très préférée compris entre 0,4 et 1 ,4 cm3/g. La porosimétrie au mercure est mesurée selon la norme ASTM D4284-92 avec un angle de mouillage de 140°, par exemple au moyen d'un appareil modèle Autopore III de la marque Microméritics. La surface spécifique dudit catalyseur est de préférence comprise entre 40 et 300 m2/g, de manière préférée entre 60 et 280 m2/g.
Le support sur lequel est déposée la phase active est avantageusement formé d'au moins un solide poreux sous forme oxyde choisi dans le groupe constitué par les alumines, les silices, les silices-alumine ou encore les oxydes de titane ou de magnésium utilisé(s) seul ou en mélange avec l'alumine ou la silice-alumine. De manière très préférée, le support est essentiellement constitué d'une alumine de transition. Un support essentiellement constitué d'une alumine de transition comprend au moins 51 % poids, de préférence au moins 60 % poids, de manière très préféré au moins 80 % poids, voire au moins 90 % poids de ladite alumine de transition. Par alumine de transition, on entend par exemple une alumine phase alpha, une alumine phase delta, une alumine phase gamma. De manière encore plus préférée, ledit support est entièrement constitué d'une alumine de transition. Ledit support formé d'au moins un oxyde présente un volume poreux total, mesuré par porosimétrie au mercure, compris entre 0,4 et 1 ,4 cm3/g et préférentiellement compris entre 0,5 et 1 ,3 cm3/g. La surface spécifique dudit support est de préférence comprise entre 40 et 350 m2/g, de manière préférée entre 60 et 300 m2/g. Ledit support poreux se présente avantageusement sous forme de billes, d'extrudés, de pastilles, ou d'agglomérats irréguliers et non sphériques dont la forme spécifique peut résulter d'une étape de concassage. De manière très avantageuse, ledit support se présente sous forme de billes ou d'extrudés. Le catalyseur mis en oeuvre dans le procédé d'hydrogénation sélective selon l'invention est préparé selon un procédé comprenant au moins :
i) au moins une étape de mise en contact d'au moins dudit support avec au moins une solution contenant au moins un précurseur d'au moins dudit métal du groupe VIII et au moins un précurseur d'au moins dudit métal du groupe VIB,
ii) au moins une étape de mise en contact d'au moins dudit support avec au moins un composé organique formé d'au moins un oligosaccharide cyclique composé d'au moins 6 sous-unités glucopyranose liées en a-(1 ,4),
iii) au moins une étape de calcination pour obtenir au moins ledit métal du groupe VIII et au moins ledit métal du groupe VIB sous forme oxyde, puis,
iv) au moins une étape de suifuration de sorte que ladite phase active se présente sous forme sulfure,
les étapes i) et ii) pouvant être réalisées séparément, dans un ordre indifférent, ou simultanément. Le dépôt d'au moins dudit métal du groupe VIII et d'au moins dudit métal du groupe VIB sur ledit support, conformément à la mise en oeuvre de ladite étape i), peut être réalisé par toute méthode bien connue de l'Homme du métier. Ladite étape i) est préférentiellement réalisée par imprégnation du support par au moins une solution contenant au moins un précurseur dudit métal du groupe VIII et au moins un précurseur du métal du groupe VIB. En particulier, ladite étape i) peut être réalisée par imprégnation à sec, par imprégnation en excès, ou encore par dépôt - précipitation selon des méthodes bien connues de l'Homme du métier. De manière préférée, ladite étape i) est réalisée par imprégnation à sec, laquelle consiste à mettre en contact le support du catalyseur avec une solution, contenant au moins un précurseur dudit métal du groupe VIII et au moins un précurseur dudit métal du groupe VIB, dont le volume est égal au volume poreux du support à imprégner. Cette solution contient les précurseurs métalliques du ou des métaux du groupe VIII et du ou des métaux du groupe VIB à la concentration voulue. Le(s)dit(s) métal(ux) du groupe VIII et le(s)dit(s) métal(ux) du groupe VIB sont mis au contact dudit support par l'intermédiaire de tout précurseur métallique soluble en phase aqueuse ou en phase organique. De manière préférée, le(s)dit(s) précurseur(s) du(es) métal(ux) du groupe VIII et le(s)dit(s) précurseur(s) du(es) métal(ux) du groupe VIB sont introduits en solution aqueuse. Lorsque le métal du groupe VIII est le cobalt, on utilise avantageusement comme précurseur le nitrate de cobalt, l'hydroxyde de cobalt ou le carbonate de cobalt. Lorsque le métal du groupe VIII est le nickel, on utilise avantageusement comme précurseur le nitrate de nickel, l'hydroxyde de nickel ou le carbonate de nickel. Lorsque ledit métal du groupe VIB est le molybdène, on utilise avantageusement l'heptamolybdate d'ammonium ou l'oxyde de molybdène. Lorsque ledit métal du groupe VIB est le tungstène, on utilise avantageusement le métatungstate d'ammonium. Tout autre sel connu de l'homme du métier présentant une solubilité suffisante en solution aqueuse et décomposable lors d'une étape de calcination, en particulier lors de l'étape de calcination selon ladite étape iii), peut également être utilisé.
La mise en contact dudit composé organique employé pour la mise en œuvre de ladite étape ii) avec ledit support est réalisée par imprégnation, notamment par imprégnation à sec ou imprégnation en excès, préférentiellement par imprégnation à sec. Ledit composé organique est préférentiellement imprégné sur ledit support après solubilisation en solution aqueuse. La solution d'imprégnation comprend avantageusement un acide, par exemple de l'acide acétique.
Ledit composé organique est formé d'au moins un oligosaccharide cyclique composé d'au moins 6 sous-unités glucopyranose liées en a-(1 ,4). Une représentation spatiale d'une sous- unité glucopyranose est donnée ci-dessous :
Figure imgf000013_0001
Ledit composé organique est préférentiellement choisi parmi les cyclodextrines, les cyclodextrines substituées, les cyclodextrines polymérisées et les mélanges de cyclodextrines. Les cyclodextrines sont une famille d'oligosaccharides cycliques composés de sous-unités glucopyranose liées en a-(1 ,4). Il s'agit de molécules-cages. Selon l'invention, les cyclodextrines préférées sont Ρα-cyclodextrine, la β-cyclodextrine et la y-cyclodextrine respectivement composée de 6, 7 et 8 sous-unités glucopyranose liées en a-(1 ,4). Les représentations développées de Γα-cyclodextrine, de la β-cyclodextrine et de la γ- cyclodextrine sont données ci-dessous. On utilise préférentiellement pour la mise en oeuvre de ladite étape ii) la β-cyclodextrine composée de 7 sous-unités glucopyranose liées en a- (1 ,4). Les cyclodextrines sont des composés commercialisés.
Figure imgf000014_0001
γ-cyclodextrine
Les cyclodextrines substituées avantageusement employées pour la mise en oeuvre de ladite étape ii) sont constituées de 6, 7 ou 8 sous-unités glucopyranose liées en a-(1 ,4), dont l'une au moins est mono- ou polysubstituée. Les substituants peuvent être fixés sur un ou plusieurs groupe(s) hydroxyle(s) présent(s) dans la molécule, à savoir sur les groupes hydroxyles directement liés au cycle d'une unité glucopyranose et/ou sur l'hydroxyle lié au groupement CH2 lui-même lié au cycle d'une unité glucopyranose. De manière plus préférée, lesdites cyclodextrines substituées portent un ou plusieurs substituant(s), identique(s) ou différent(s), choisi(s) parmi les radicaux alkyles saturés ou non, fonctionnalisés ou non, et les fonctions esters, carbonyles, carboxyles, carboxylates, phosphates, éthers, polyéthers, urées, amide, amino, triazole, ammonium. Les cyclodextrines substituées préférées sont les cyclodextrines méthylées, éthylées, propylées, allylées (c'est-à-dire possédant une fonction ayant pour formule semi-développée -CH2-CH=CH2), succinylées (c'est-à-dire possédant une fonction ayant pour formule semi-développée R-OCO-CH2-CH2COOH), carboxylées, carboxyméthylées, acétylées, 2-hydroxypropylées et polyoxyéthylénées. Les groupements mono- ou polysubstituants de la cyclodextrine peuvent aussi être une molécule de monosaccharide ou disaccharide telle qu'une molécule de maltose, glucose, fructose ou saccharose.
Les cyclodextrines substituées particulièrement avantageuses pour la mise en oeuvre de ladite étape ii) sont l'hydroxypropyl bêta-cyclodextrine et les bêta-cyclodextrines méthylées.
Les cyclodextrines polymérisées avantageusement employées pour la mise en oeuvre de ladite étape ii) sont des polymères dont les monomères sont chacun constitué d'un oligosaccharide cyclique composé de 6, 7 ou 8 sous-unités glucopyranose liées en a-(1 ,4), substituées ou non. Une cyclodextrine sous forme polymérisée, réticulée ou non, pouvant être avantageusement utilisée pour la mise en oeuvre de ladite étape ii) est par exemple du type de celle obtenue par polymérisation de monomères de bêta-cyclodextrine avec de l'épichlorhydrine ou un polyacide.
Les mélanges de cyclodextrines avantageusement employés pour la mise en oeuvre de ladite étape ii) mettent en oeuvre des cyclodextrines substituées ou non. Lesdits mélanges pourront, à titre d'exemple, contenir conjointement et dans des proportions variables, chacun des trois types de cyclodextrines (alpha, bêta et gamma).
L'introduction dudit composé organique, préférentiellement d'une cyclodextrine et très préférentiellement de la bêta-cyclodextrine, pour la mise en oeuvre de ladite étape ii) est telle que le rapport molaire {(métal(ux) des groupes (VIII + VI B) sous forme d'oxyde présents dans phase active du catalyseur obtenu à l'issue de ladite étape iii)/composé organique} est compris entre 10 et 300 et de préférence entre 25 et 180. Le(s) métal(ux) des groupes VIII et VIB pris en compte pour le calcul dudit rapport molaire sont le(s) métal(ux) introduit(s) pour la mise en oeuvre de ladite étape i) et se trouvant sous la forme d'oxyde dans la phase active du catalyseur issu de ladite étape iii). Le(s)dit(s) métal(ux) du groupe VIII et le(s)dit(s) métal(ux) du groupe VIB peuvent en conséquence se trouver sous forme sulfure : ils seront sulfurés préalablement à la mise en oeuvre du procédé d'hydrogénation sélective selon l'invention.
Le procédé de préparation du catalyseur utilisé dans le procédé d'hydrogénation sélective selon l'invention comporte plusieurs modes de mises en oeuvre.
Un premier mode de mise en oeuvre consiste à effectuer lesdites étapes i) et ii) de façon simultanée de sorte que ledit composé organique, de préférence une cyclodextrine, et au moins ledit précurseur d'au moins dudit métal du groupe VIII et au moins ledit précurseur d'au moins dudit métal du groupe VIB présents dans la phase active sont co-imprégnés sur ledit support (étape de co-imprégnation). Ledit premier mode de mise en oeuvre comprend avantageusement la mise en oeuvre d'une ou plusieurs étapes i). En particulier, une ou plusieurs étapes i) précède(nt) et/ou suive(nt) avantageusement ladite étape de co- imprégnation. Conformément audit premier mode de mise en oeuvre, chacune des étapes de (co)-imprégnation réalisées est préférentiellement immédiatement suivie d'une étape de maturation puis d'au moins une étape de séchage puis d'au moins une étape de calcination. En particulier, ladite étape de co-imprégnation est suivie d'au moins une étape de séchage puis d'au moins une étape de calcination. Ledit premier mode de mise en oeuvre peut comprendre plusieurs étapes de co-imprégnation. Ladite étape iii) de calcination est au moins réalisée lorsque toutes les étapes de dépôt d'au moins dudit métal du groupe VIII et d'au moins dudit métal du groupe VIB sur le support du catalyseur ont été effectuées.
Un deuxième mode de mise en oeuvre consiste à effectuer ladite étape i) préalablement à ladite étape ii). Conformément audit deuxième mode de mise en oeuvre, une ou plusieurs étapes i) de dépôt d'au moins dudit métal du groupe VIII et d'au moins dudit métal du groupe VIB présents dans la phase active du catalyseur précède(nt) ladite étape ii). De préférence, chacune desdites étapes i) est immédiatement suivie d'une étape de maturation puis d'au moins une étape de séchage et éventuellement d'au moins une étape de calcination. En particulier, la dernière étape i) est avantageusement suivie d'au moins une étape de séchage, et éventuellement d'au moins une étape de calcination, avant la mise en oeuvre de ladite étape ii). Ladite étape ii) est avantageusement suivie d'une étape de maturation puis d'au moins une étape de séchage et très préférentiellement d'au moins une étape de calcination. Ladite étape de calcination conformément à ladite étape iii) est au moins réalisée soit à la suite de ladite étape i) de manière subséquente au séchage soit à la suite de ladite ii) de manière subséquente au séchage. Un troisième mode de mise en oeuvre consiste à effectuer ladite étape ii) préalablement à ladite étape i). Ladite étape ii) est préférentiellement immédiatement suivie d'une étape de maturation puis d'au moins une étape de séchage et éventuellement d'au moins une étape de calcination avant la mise en oeuvre de ladite étape i). De manière avantageuse, ladite étape ii) est suivie de plusieurs étapes i). La préparation du catalyseur conformément audit troisième mode de réalisation se termine avantageusement par ladite étape iii) de calcination.
Chacun des trois modes de mises en oeuvre décrits ci-dessus peut être effectué de manière indépendante de sorte que le catalyseur utilisé dans le procédé selon l'invention est préparé soit selon ledit premier mode de mise en oeuvre, soit selon ledit deuxième mode de mise en oeuvre soit encore selon ledit troisième mode de mise en oeuvre. Toutefois, il peut être avantageux d'associer ledit premier mode avec ledit deuxième mode ou avec ledit troisième mode : aussi bien les métaux du groupe VIII et du groupe VIB présents dans la phase active que le composé organique, préférentiellement une cyclodextrine, sont déposés au moins à deux reprises sur le support du catalyseur, à savoir au moins une fois par co-imprégnation et au moins une fois par imprégnation successive.
Lesdites étapes de séchage, mises en oeuvre pour la préparation du catalyseur, préparé selon au moins un mode de mise en oeuvre décrit ci-dessus, sont réalisées à une température comprise entre 80 et 160°C. Elles sont préférentiellement réalisées pendant une durée comprise entre 1 et 15 heures. L'étape iii) de calcination est réalisée à une température comprise entre 200 et 660°C, de préférence entre 300 et 550°C. Elle est préférentiellement réalisée pendant une durée comprise entre 1 et 6 heures. Les étapes de calcination, mises en œuvre pour la préparation du catalyseur, préparé selon au moins un mode de mise en œuvre décrit ci-dessus, sont avantageusement réalisées dans les mêmes conditions que ladite étape iii).
Le catalyseur, obtenu à l'issue de ladite étape iii), après mise en œuvre des étapes i) et ii) selon au moins l'un des trois modes de mises en œuvre décrits ci-dessus, se trouve à l'état oxyde.
La préparation du catalyseur, utilisé dans le procédé d'hydrogénation sélective selon l'invention, comprend au moins une étape iv) de sulfuration de sorte que ladite phase active se présente sous forme sulfure.
Avant mise en contact avec la charge à traiter, les catalyseurs subissent une étape de sulfuration. La sulfuration est de préférence réalisée en milieu sulforéducteur, c'est à dire en présence d'H2S et d'hydrogène, afin de transformer les oxydes métalliques en sulfures, par exemple les oxydes de molybdène en MoS2 et les oxydes de nickel en Ni3S2. La sulfuration est réalisée en injectant sur le catalyseur oxyde un flux contenant de l'H2S et de l'hydrogène, ou bien un composé soufré susceptible de se décomposer en H2S en présence du catalyseur et de l'hydrogène. Les précurseurs d'H2S préférentiellement utilisés pour la mise en oeuvre de ladite étape iv) sont des polysulfures tel que le diméthyldisulfure. La température de ladite étape de sulfuration est ajustée afin que l'H2S réagisse avec les oxydes métalliques pour former des sulfures métalliques. Ladite étape iv) de sulfuration peut être réalisée in situ (après chargement du catalyseur dans l'unité réactionnelle du procédé d'hydrogénation sélective selon l'invention) ou ex situ (avant chargement du catalyseur dans l'unité réactionnelle du procédé d'hydrogénation sélective selon l'invention) à une température comprise entre 200 et 600°C et plus préférentiellement entre 300 et 500°C.
Ladite étape de sulfuration iv) est mise en oeuvre de sorte que les métaux du groupe VIII et du groupe VIB soient substantiellement sulfurés. Un élément est considéré comme substantiellement sulfuré lorsque le rapport molaire entre le soufre (S) présent sur le catalyseur issu de ladite étape iv) et ledit élément est au moins égal à 60% (taux de sulfuration d'au moins 60%) du rapport molaire théorique correspondant à la sulfuration totale de l'élément considéré: (S/élément)cataiyseur≥ 0,6 x (S/élement),héorique
avec:
(S/élément)cataiyseur = rapport molaire entre le soufre (S) et l'élément présent sur le catalyseur issu de ladite étape iv)
(S/élément)théorique = rapport molaire entre le soufre et l'élément correspondant à la sulfuration totale de l'élément en sulfure.
Ce rapport molaire théorique varie selon l'élément considéré:
(S/Fe)théorique = 1
(S/Co)théorique = 8/9
- (S/Ni)théoripue = 2/3
- (S/M0),hé0rique =2/1
- (S/W)théorique =2/1
Le catalyseur comprenant plusieurs métaux, le rapport molaire entre le soufre présent sur le catalyseur issu de ladite étape iv) et l'ensemble des éléments doit également être au moins égal à 60% du rapport molaire théorique correspondant à la sulfuration totale de chaque élément en sulfure, le calcul étant effectué au prorata des fractions molaires relatives de chaque élément. Par exemple, pour un catalyseur comprenant du molybdène et du nickel avec une fraction molaire respective de 0,7 et 0,3, le rapport molaire minimal (S/ Mo + Ni) est donné par la relation : (S/Mo+Ni)cataiyseur = 0,6 x {(0,7 x 2)+ (0,3 x (2/3)}
De façon très préférée, le taux de sulfuration des métaux est supérieur à 80%. Le catalyseur, issu de ladite étape iv), se trouve avant la mise en oeuvre du procédé d'hydrogénation sélective selon l'invention, au moins partiellement sous forme sulfurée. Il peut également comprendre une phase métallique oxyde, qui n'a pas été transformée lors de ladite étape de sulfuration iv). Ledit catalyseur peut être entièrement ou partiellement débarrassé dudit composé organique formé d'au moins un oligosaccharide cyclique composé d'au moins 6 sous-unités glucopyranose liées en a-(1 ,4).
Les exemples qui suivent précisent l'invention sans toutefois en limiter la portée.
EXEMPLES
Les catalyseurs A, B, C et D préparés respectivement dans les exemples 1 , 2, 3 et 4 sont préparés à iso-teneur en éléments molybdène et nickel. Le support utilisé pour la préparation de chacun des catalyseurs A, B, C et D est un support d'alumine gamma, ayant un volume poreux de 0,7 ml/g et une surface BET égale à 280 m2/g. Exemple 1 (comparatif) : Préparation d'un catalyseur supporté A (catalyseur oxyde) et d'un catalyseur supporté A' (catalyseur sulfure) de formule NiMo/AlgQ3
Le catalyseur A est obtenu par imprégnation à sec d'une solution aqueuse préparée à partir d'heptamolybdate d'ammonium et de nitrate de nickel, le volume de la solution contenant les précurseurs de molybdène et de nickel étant rigoureusement égal au volume poreux de la masse de support d'alumine. Les concentrations en précurseurs dans la solution aqueuse sont ajustées de manière à déposer sur le support d'alumine les teneurs pondérales en Ni et Mo souhaitées. Après une étape de maturation pendant 12 heures, le solide est séché pendant 12 heures à 120°C puis calciné sous air à 500°C pendant 2 heures.
Le catalyseur A ainsi obtenu à l'état oxyde, de formulation NiMo/AI203 présente une teneur en molybdène de 7,2 exprimé en % poids d'oxyde Mo03, et une teneur en nickel de 5,6 exprimé en % poids d'oxyde NiO. Le rapport molaire Ni/Mo de ce catalyseur A est de 1 ,50. Le catalyseur A est sulfuré ex situ à pression atmosphérique en banc de sulfuration sous un mélange H2S/H2 constitué de 15% volumique d'H2S à 1 l/g.h de catalyseur, à 400°C durant deux heures. On obtient un catalyseur A' sous forme sulfure (taux de sulfuration supérieur à 60%). Exemple 2 (invention) : Préparation d'un catalyseur supporté B (catalyseur oxyde) et d'un catalyseur supporté B' (catalyseur sulfure) de formule Ni o/AlgOa en présence de B- cyclodextrine (co-impréqnation)
Le catalyseur B est obtenu par imprégnation à sec d'une solution aqueuse préparée à partir d'heptamolybdate d'ammonium et de nitrate de nickel, le volume de la solution contenant les précurseurs de nickel et de molybdène étant rigoureusement égal au volume poreux de la masse de support d'alumine. Les concentrations en précurseurs dans la solution aqueuse sont ajustées de manière à déposer sur le support d'alumine les teneurs pondérales en Ni et Mo souhaitées. Ladite solution aqueuse contient également de la β-cyclodextrine (SIGMA- ALDRICH, pureté de 98%), dans un rapport molaire (Ni+Mo)/p-cyclodextrine de 30. Après une étape de maturation pendant 12 heures, le solide est ensuite séché pendant 12 heures à 120°C puis calciné sous air à 500°C pendant 2 heures.
Le catalyseur B ainsi obtenu à l'état oxyde, de formulation NiMo présente une teneur en molybdène de 7,1 exprimé en % poids d'oxyde Mo03 et une teneur en nickel de 5,4 exprimé en % poids d'oxyde NiO. Le rapport molaire Ni/Mo de ce catalyseur B est de 1 ,47.
Le catalyseur B est sulfuré ex situ à pression atmosphérique en banc de sulfuration sous un mélange H2S/H2 constitué de 15% volumique d'H2S à 1 l/g.h de catalyseur, à 400°C durant deux heures. On obtient un catalyseur B' sous forme sulfure (taux de sulfuration supérieur à 60%).
Exemple 3 (invention) : Préparation d'un catalyseur supporté C (catalyseur oxyde) et d'un catalyseur supporté C (catalyseur sulfure) de formule NiMo/AlgQg en présence de B- cvclodextrine (co-impréqnation de Ni et Mo puis imprégnation successive de B-cvclodextrine) Le catalyseur C est obtenu par imprégnation à sec d'une solution aqueuse préparée à partir d'heptamolybdate d'ammonium et de nitrate de nickel, le volume de la solution contenant les précurseurs de molybdène et de nickel étant rigoureusement égal au volume poreux de la masse de support d'alumine. Les concentrations en précurseurs dans la solution aqueuse sont ajustées de manière à déposer sur le support d'alumine les teneurs pondérales en Ni et Mo souhaitées. Après une étape de maturation pendant 12 heures, le solide est séché pendant 12 heures à 120°C. Une deuxième étape d'imprégnation à sec permet d'ajouter la β- cyclodextrine (SIGMA-ALDRICH, pureté de 98%) dissoute dans l'eau au solide séché obtenu préalablement. Le rapport molaire (Ni+Mo)/ -cyclodextrine est de 30. Après une étape de maturation pendant 12 heures, le catalyseur est séché pendant 12 heures à 120°C puis est calciné sous air à 500°C pendant 2 heures pour obtenir le catalyseur C. Le catalyseur C ainsi obtenu à l'état oxyde, de formulation NiMo présente une teneur en molybdène de 7,0 exprimé en % poids d'oxyde Mo03, et une teneur en nickel de 5,5 exprimé en % poids d'oxyde NiO. Le rapport molaire Ni/Mo de ce catalyseur C est de 1.50.
Le catalyseur C est sulfuré ex situ à pression atmosphérique en banc de sulfuration sous un mélange H2S/H2 constitué de 15% volumique d'H2S à 1 l/g.h de catalyseur, à 400°C durant deux heures. On obtient un catalyseur C sous forme sulfure (taux de sulfuration supérieur à 60%).
Exemple 4 (non conforme) : Préparation d'un catalyseur supporté D (catalyseur oxyde) et d'un catalyseur D' supporté (catalyseur sulfure) de formule NiMo/AI?Qg en présence de cellobiose
Le cellobiose ou -D-glucopyrannosyl(1— >4)D-glucopyrannose est le produit de la dégradation de la cellulose. Il s'agit d'un diholoside de formule brute C12H22On. Il ne s'agit pas d'un oligosaccharide cyclique. La formule développée du cellobiose est donnée ci- dessous :
Figure imgf000021_0001
Le catalyseur D est obtenu par imprégnation à sec d'une solution aqueuse préparée à partir d'heptamolybdate d'ammonium et de nitrate de nickel, le volume de la solution contenant les précurseurs de molybdène et de nickel étant rigoureusement égal au volume poreux de la masse de support d'alumine. Les concentrations en précurseurs dans la solution aqueuse sont ajustées de manière à déposer sur le support d'alumine les teneurs pondérales en Ni et Mo souhaitées. La solution contient également du cellobiose (commercialisée par WWR) dans un rapport molaire (Ni+Mo)/cellobiose de 30. Après une étape de maturation pendant 12 heures, le catalyseur est séché pendant 12 heures à 120°C puis calciné sous air à 500°C pendant 2 heures.
Le catalyseur D ainsi obtenu à l'état oxyde, de formulation NiMo présente une teneur en molybdène de 7,1 exprimé en % poids d'oxyde Mo03, et une teneur en nickel de 5,6 exprimé en % poids d'oxyde NiO. Le rapport molaire Ni/Mo de ce catalyseur D est de 1.52.
Le catalyseur D est sulfuré ex situ à pression atmosphérique en banc de sulfuration sous un mélange H2S/H2 constitué de 15% volumique d'H2S à 1 l/g.h de catalyseur, à 400°C durant deux heures. On obtient un catalyseur D' sous forme sulfure (taux de sulfuration supérieur à 60%). Exemple 5 : Performances catalvtiques des catalyseurs A', B', C et D' en test d'hydrogénation sélective d'une coupe essence à partir de molécules modèles représentatives d'une essence de craquaqe catalytique
Une charge modèle représentative d'une essence de craquage catalytique (FCC) contenant 1000 ppm poids de soufre sous forme méthyl-3-thiophène, 100 ppm poids de soufre sous forme de propane-2-thiol (mercaptan), 10% poids de mono-oléfine sous forme d'hexène-1 et 1 % poids de dioléfines sous forme d'isoprène dans du n-heptane est utilisée pour l'évaluation des performances catalytiques des différents catalyseurs.
La réaction d'hydrogénation sélective est opérée dans un réacteur autoclave agité de 500 ml. Chacun des catalyseurs A', B', C et D' est placé successivement dans ledit réacteur au contact de 250 ml de ladite charge modèle sous une pression totale de 1 ,5 MPa et une température de 160°C. Le temps t=0 du test correspond à la mise en contact du catalyseur avec la charge et l'hydrogène. La pression est maintenue constante durant le test par apport d'hydrogène. La durée du test est fixée à 45 minutes et l'analyse chromatographique en phase gaz des effluents liquides prélevés de façon régulière permet d'évaluer les activités de chacun des catalyseurs en hydrogénation de l'isoprène (formation sélective des méthylbutènes) et en hydrogénation de l'hexène-1 (formation du n-hexane). L'activité de chaque catalyseur pour chacune de ces deux réactions d'hydrogénation est définie par rapport à la constante de vitesse obtenue pour chaque réaction d'hydrogénation normalisée par gramme de catalyseur. La constante de vitesse est calculée en considérant un ordre 1 pour la réaction d'hydrogénation. L'activité de chaque catalyseur pour chacune des deux réactions d'hydrogénation est donnée par la formule : A(X) = k(X) / m
avec A(X) = activité du catalyseur pour la réaction d'hydrogénation du composé X, en min"1 / g de catalyseur (sous forme sulfure) ; k = constante de vitesse pour la réaction d'hydrogénation considérée, en min"1. La constante k est calculée selon la formule k(X) = (1/45) * In (100 / (100 - Conv(X) )), avec 45 = durée du test en minutes et Conv(X) = conversion du composé X, X étant l'isoprène ou l'héxène-1 ; m = masse de catalyseur (forme sulfure) engagée dans le test La sélectivité du catalyseur vis-à-vis de l'hydrogénation de l'isoprène est égale au rapport des activités du catalyseur en hydrogénation de l'isoprène et de l'hexène-1. Elle est notée A(isoprène)/A(héxène-1 ).
Les performances des catalyseurs A', B', C et D' sont données dans le tableau 1. Performances des catalyseurs en test d'hydrogénation sélective
d'une charge modèle.
Figure imgf000023_0001
Les résultats figurant dans le tableau 1 démontrent que les catalyseurs B' et C, préparés en présence de β-cyclodextrine, sont sensiblement plus actifs en hydrogénation de l'isoprène que le catalyseur A' préparé en l'absence de tout composé organique et que le catalyseur D' préparé en présence de cellobiose, qui n'appartient pas à la famille des oligosaccharides cycliques. Les résultats démontrent également que la préparation des catalyseurs en présence de β-cyclodextrine conduit à l'obtention de catalyseurs bien plus actifs envers l'hydrogénation de l'isoprène sans que la sélectivité vis-à-vis de l'hydrogénation de l'isoprène n'en soit affectée ; au contraire, les catalyseurs B' et C sont légèrement plus sélectifs que les catalyseurs A' et D' vis-à-vis de l'hydrogénation de l'isoprène : les catalyseurs B' et C favorisent donc légèrement l'hydrogénation sélective de l'isoprène en méthylbutènes aux dépens de l'hydrogénation de l'hexène-1 en hexane.
De plus, les analyses chromatographiques ont permis de prouver que la conversion des mercaptans présents sous la forme de propane-2-thiol est rapide et totale sur tous les catalyseurs A', B", C et D'.

Claims

Revendications
1. Procédé d'hydrogénation sélective d'une coupe essence contenant des hydrocarbures polyinsaturés ayant au moins 2 atomes de carbone par molécule et ayant un point d'ébullition final inférieur ou égal à 250°C, ladite coupe présentant une teneur pondérale en hydrocarbures polyinsaturés comprise entre 0,5 et 5 % et une teneur pondérale en soufre comprise entre 200 et 5000 pprri, ledit procédé consistant en la mise en contact de ladite coupe essence avec au moins un catalyseur dont la phase active comprend au moins un métal du groupe VIII et au moins un métal du groupe VIB déposés sur un support formé d'au moins un oxyde, ledit catalyseur étant préparé selon un procédé comprenant au moins : i) au moins une étape de mise en contact d'au moins dudit support avec au moins une solution contenant au moins un précurseur d'au moins dudit métal du groupe VIII et au moins un précurseur d'au moins dudit métal du groupe VIB,
ii) au moins une étape de mise en contact d'au moins dudit support avec au moins un composé organique formé d'au moins un oligosaccharide cyclique composé d'au moins 6 sous-unités glucopyranose liées en a-(1 ,4),
iii) au moins une étape de calcination pour obtenir au moins ledit métal du groupe VIII et au moins ledit métal du groupe VIB sous forme oxyde, puis
iv) au moins une étape de sulfuration de sorte que ladite phase active se présente sous forme sulfure,
les étapes i) et ii) pouvant être réalisées séparément, dans un ordre indifférent, ou simultanément.
2. Procédé d'hydrogénation sélective selon la revendication 1 tel que ladite coupe essence contient des hydrocarbures polyinsaturés ayant au moins 3 atomes de carbone par molécule.
3. Procédé d'hydrogénation sélective selon la revendication 1 ou la revendication 2 tel que ladite coupe essence provient d'une unité de craquage catalytique en lit fluidisé.
4. Procédé d'hydrogénation sélective selon l'une des revendications 1 à 3 tel que le soufre présent dans ladite coupe essence se trouve sous la forme de composés thiophéniques, benzothiophéniques et de composés soufrés, légers et saturés.
5. Procédé d'hydrogénation sélective selon la revendication 4 tel que lesdits composés soufrés, légers et saturés, présents dans ladite coupe essence, sont choisis parmi les mercaptans et les sulfures légers.
6. Procédé d'hydrogénation sélective selon l'une des revendications 1 à 5 tel que le métal du groupe VIB est le molybdène ou le tungstène ou un mélange de ces deux éléments.
7. Procédé d'hydrogénation sélective selon l'une des revendications 1 à 6 tel que le métal du groupe VIII est choisi parmi le nickel, le fer, le cobalt et le mélange d'au moins deux de ces éléments.
8. Procédé d'hydrogénation sélective selon l'une des revendications 1 à 7 tel que le support est essentiellement constitué d'une alumine de transition.
9. Procédé d'hydrogénation sélective selon l'une des revendications 1 à 8 tel que ledit composé organique est choisi parmi les cyclodextrines, les cyclodextrines substituées, les cyclodextrines polymérisées et les mélanges de cyclodextrines.
10. Procédé d'hydrogénation sélective selon la revendication 9 tel que les cyclodextrines sont Γα-cyclodextrine, la β-cyclodextrine et la γ-cyclodextrine respectivement composée de
6, 7 et 8 sous-unités glucopyranose liées en a-(1 ,4).
1 1. Procédé d'hydrogénation sélective selon la revendication 9 tel que les cyclodextrines substituées sont l'hydroxypropyl bêta-cyclodextrine et les bêta-cyclodextrines méthylées.
12. Procédé d'hydrogénation sélective selon l'une des revendications 1 à 11 tel que ladite étape iii) de calcination est réalisée à une température comprise entre 200 et 660°C.
13. Procédé d'hydrogénation sélective selon l'une des revendication 1 à 12 tel qu'il est mis en œuvre dans les conditions opératoires suivantes : une température comprise entre 80°C et 220°C, avec une vitesse volumique horaire (VVH) comprise entre 1 h~1 et 10 h"1, une pression totale comprise entre 0,5 MPa et 5 MPa, une quantité d'hydrogène introduite et injectée telle que le rapport molaire entre l'hydrogène et les composés polyinsaturés à hydrogéner soit supérieur à 1 mol/mol et inférieur à 10 mol/mol.
PCT/FR2011/000367 2010-07-29 2011-06-24 Procede d'hydrogenation selective d une coupe essence en presence d'un catalyseur sulfure supporte prepare au moyen d'au moins un oligosaccharide cyclique WO2012022849A1 (fr)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP11743261.7A EP2598613A1 (fr) 2010-07-29 2011-06-24 Procede d'hydrogenation selective d une coupe essence en presence d'un catalyseur sulfure supporte prepare au moyen d'au moins un oligosaccharide cyclique
KR1020137005061A KR101886454B1 (ko) 2010-07-29 2011-06-24 하나 이상의 시클릭 올리고당을 사용하여 제조된 지지형 황화물 촉매의 존재 하에서의 가솔린 분획의 선택적 수소화 방법
BR112013002162-4A BR112013002162B1 (pt) 2010-07-29 2011-06-24 processo de hidrogenação seletiva de um corte gasolina em presença de um catalisador sulfeto suportado preparado por meio de pelo menos um oligossacarídeo cíclico
US13/813,021 US9206094B2 (en) 2010-07-29 2011-06-24 Process for selectively hydrogenating a gasoline cut in the presence of a supported sulphide catalyst prepared using at least one cyclic oligosaccharide

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1003190A FR2963359B1 (fr) 2010-07-29 2010-07-29 Procede d'hydrogenation selective d'une coupe essence en presence d'un catalyseur sulfure supporte prepare au moyen d'au moins un oligosaccharide cyclique
FR1003190 2010-07-29

Publications (1)

Publication Number Publication Date
WO2012022849A1 true WO2012022849A1 (fr) 2012-02-23

Family

ID=43707982

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2011/000367 WO2012022849A1 (fr) 2010-07-29 2011-06-24 Procede d'hydrogenation selective d une coupe essence en presence d'un catalyseur sulfure supporte prepare au moyen d'au moins un oligosaccharide cyclique

Country Status (7)

Country Link
US (1) US9206094B2 (fr)
EP (1) EP2598613A1 (fr)
KR (1) KR101886454B1 (fr)
BR (1) BR112013002162B1 (fr)
FR (1) FR2963359B1 (fr)
SA (1) SA111320647B1 (fr)
WO (1) WO2012022849A1 (fr)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2963344B1 (fr) * 2010-07-29 2012-07-27 IFP Energies Nouvelles Procede d'hydrogenation selective en presence d'un catalyseur a base d'un metal du groupe viii prepare au moyen d'au moins un oligosaccharide cyclique
FR3054556B1 (fr) * 2016-07-27 2019-12-20 IFP Energies Nouvelles Procede d'hydrogenation selective d'une charge essence de pyrolyse avec un reacteur triphasique
FR3054555B1 (fr) * 2016-07-27 2019-12-20 IFP Energies Nouvelles Procede d'hydrogenation selective d'une charge essence de pyrolyse avec un reacteur triphasique en presence d'une coupe d'hydrocarbures paraffiniques lourde

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1996041848A1 (fr) * 1995-06-08 1996-12-27 Sumitomo Metal Mining Company Limited Catalyseur d'hydrotraitement: composition, preparation et utilisation
EP0685552B1 (fr) 1994-06-01 2000-02-09 Institut Francais Du Petrole Procédé et installation pour le traitement par hydrogénation sélective d'une essence de craquage catalytique
EP1077247A1 (fr) 1999-08-19 2001-02-21 Institut Francais Du Petrole Procédé de production d'essences à faible teneur en soufre
FR2864102A1 (fr) * 2003-12-22 2005-06-24 China Petroleum & Chemical Catalyseur d'hydrogenation selective d'olefines et sa preparation ainsi que son utilisation

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120093703A1 (en) * 2010-10-13 2012-04-19 General Electric Company Catalyst and method of manufacture

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0685552B1 (fr) 1994-06-01 2000-02-09 Institut Francais Du Petrole Procédé et installation pour le traitement par hydrogénation sélective d'une essence de craquage catalytique
WO1996041848A1 (fr) * 1995-06-08 1996-12-27 Sumitomo Metal Mining Company Limited Catalyseur d'hydrotraitement: composition, preparation et utilisation
EP1077247A1 (fr) 1999-08-19 2001-02-21 Institut Francais Du Petrole Procédé de production d'essences à faible teneur en soufre
FR2864102A1 (fr) * 2003-12-22 2005-06-24 China Petroleum & Chemical Catalyseur d'hydrogenation selective d'olefines et sa preparation ainsi que son utilisation

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
B. S CLAUSEN, H. T. TOPSOE, F. E. MASSOTH: "Catalysis Science and Technology", vol. 11, 1996, SPRINGER-VERLAG
JONG-TAE LEE AND HOWARD ALPER: "Regioselective hydrogenation of conjugated dienes catalyzed by hydridopentacyanocobaltate anion using b-cyclodextrin as the phase-transfer agent and lanthanide halides as promoters", J. ORG. CHEM, vol. 55, 31 December 1990 (1990-12-31), pages 1854 - 1856, XP002628319 *

Also Published As

Publication number Publication date
US20130211163A1 (en) 2013-08-15
KR101886454B1 (ko) 2018-08-07
SA111320647B1 (ar) 2014-07-02
KR20130099017A (ko) 2013-09-05
FR2963359A1 (fr) 2012-02-03
BR112013002162B1 (pt) 2018-12-18
EP2598613A1 (fr) 2013-06-05
FR2963359B1 (fr) 2012-07-27
US9206094B2 (en) 2015-12-08
BR112013002162A2 (pt) 2016-09-20

Similar Documents

Publication Publication Date Title
EP2598612B1 (fr) Procede d'hydrotraitement d'une coupe hydrocarbonee de point d'ebullition superieur a 250 °c en presence d'un catalyseur sulfure prepare au moyen d'un oligosaccharide cyclique
EP1800748B1 (fr) Procédé d'hydrogénation sélective mettant en oeuvre un catalyseur sulfuré
EP2161076B1 (fr) Procédé d'hydrogénation sélective mettant en oeuvre un catalyseur sulfuré de composition spécifique
EP3288679B1 (fr) Catalyseur a base d'acide y-cetovalerique et son utilisation dans un procede d'hydrotraitement et/ou d'hydrocraquage
EP3490707A1 (fr) Catalyseur a base d'un compose organique et son utilisation dans un procede d'hydrotraitement et/ou d'hydrocraquage
FR2895415A1 (fr) Procede d'hydrogenation selective mettant en oeuvre un catalyseur presentant un support specifique
CA2510668A1 (fr) Procede d'hydrodesulfuration des essences mettant en oeuvre un catalyseur a porosite controlee
EP1800750B1 (fr) Procédé d'hydrogénation sélective mettant en oeuvre un catalyseur présentant une porosité controlée
FR2963344A1 (fr) Procede d'hydrogenation selective en presence d'un catalyseur a base d'un metal du groupe viii prepare au moyen d'au moins un oligosaccharide cyclique
EP3436190A1 (fr) Catalyseur a base de catecholamine et son utilisation dans un procede d'hydrotraitement et/ou d'hydrocraquage
FR2988732A1 (fr) Procede d'hydrogenation selective d'une essence
EP3897979A1 (fr) Procede de rejuvenation d'un catalyseur use non regenere d'un procede d'hydrodesulfuration d'essences
WO2012022849A1 (fr) Procede d'hydrogenation selective d une coupe essence en presence d'un catalyseur sulfure supporte prepare au moyen d'au moins un oligosaccharide cyclique
EP2598611B1 (fr) Procede d'hydrodesulfuration d'une coupe essence en presence d'un catalyseur sulfure supporte prepare au moyen d'au moins un oligosaccharide cyclique
EP3490708A1 (fr) Catalyseur a base de 2-acetylbutyrolactone et/ou de ses produits d'hydrolyse et son utilisation dans un procede d'hydrotraitement et/ou d'hydrocraquage
EP4146383A1 (fr) Catalyseur d'hydrogenation comprenant un support et un ratio nimo specifique
EP4146384A1 (fr) Catalyseur d'hydrogenation selective comprenant un support specifique en partie sous forme aluminate

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11743261

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011743261

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20137005061

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 13813021

Country of ref document: US

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112013002162

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112013002162

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20130129