WO2012022422A1 - Verfahren zur herstellung von hydroxypropylcellulose-formteilen sowie deren verwendung - Google Patents

Verfahren zur herstellung von hydroxypropylcellulose-formteilen sowie deren verwendung Download PDF

Info

Publication number
WO2012022422A1
WO2012022422A1 PCT/EP2011/003809 EP2011003809W WO2012022422A1 WO 2012022422 A1 WO2012022422 A1 WO 2012022422A1 EP 2011003809 W EP2011003809 W EP 2011003809W WO 2012022422 A1 WO2012022422 A1 WO 2012022422A1
Authority
WO
WIPO (PCT)
Prior art keywords
hydroxypropyl cellulose
hydroxypropylcellulose
polymer
blend
esters
Prior art date
Application number
PCT/EP2011/003809
Other languages
English (en)
French (fr)
Inventor
Wiebke Voigt
Julia Schmidt
Bernd Schlesselmann
Gunter Scharfenberger
Original Assignee
Carl Freudenberg Kg
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Carl Freudenberg Kg filed Critical Carl Freudenberg Kg
Publication of WO2012022422A1 publication Critical patent/WO2012022422A1/de

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L1/00Compositions of cellulose, modified cellulose or cellulose derivatives
    • C08L1/08Cellulose derivatives
    • C08L1/26Cellulose ethers
    • C08L1/28Alkyl ethers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L15/00Chemical aspects of, or use of materials for, bandages, dressings or absorbent pads
    • A61L15/16Bandages, dressings or absorbent pads for physiological fluids such as urine or blood, e.g. sanitary towels, tampons
    • A61L15/22Bandages, dressings or absorbent pads for physiological fluids such as urine or blood, e.g. sanitary towels, tampons containing macromolecular materials
    • A61L15/28Polysaccharides or their derivatives
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/14Macromolecular materials
    • A61L27/20Polysaccharides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08BPOLYSACCHARIDES; DERIVATIVES THEREOF
    • C08B11/00Preparation of cellulose ethers
    • C08B11/20Post-etherification treatments of chemical or physical type, e.g. mixed etherification in two steps, including purification
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08BPOLYSACCHARIDES; DERIVATIVES THEREOF
    • C08B15/00Preparation of other cellulose derivatives or modified cellulose, e.g. complexes
    • C08B15/005Crosslinking of cellulose derivatives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/18Plasticising macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/28Treatment by wave energy or particle radiation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/0008Organic ingredients according to more than one of the "one dot" groups of C08K5/01 - C08K5/59
    • C08K5/0016Plasticisers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/0008Organic ingredients according to more than one of the "one dot" groups of C08K5/01 - C08K5/59
    • C08K5/0025Crosslinking or vulcanising agents; including accelerators
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L1/00Compositions of cellulose, modified cellulose or cellulose derivatives
    • C08L1/08Cellulose derivatives
    • C08L1/26Cellulose ethers
    • C08L1/28Alkyl ethers
    • C08L1/286Alkyl ethers substituted with acid radicals, e.g. carboxymethyl cellulose [CMC]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2300/00Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2301/00Characterised by the use of cellulose, modified cellulose or cellulose derivatives
    • C08J2301/08Cellulose derivatives
    • C08J2301/26Cellulose ethers
    • C08J2301/28Alkyl ethers

Definitions

  • the present invention relates to the production of hydroxypropylcellulose moldings, in particular of fibers, nonwovens, fibrous sheets, sponges and / or films of hydroxypropylcellulose, as well as their
  • a fibrous sheet is understood here to mean, in particular, an ordered or disordered one-layer or multi-layer assembly of a plurality of fibers.
  • Hydroxypropylcellulose is known as a material in medical applications, in particular for wound care.
  • the method comprises mixing a water-soluble polymer of hydroxyethylcellulose or hydroxypropylmethylcellulose and a photosensitive or photodegradable catalyst and coating
  • the object of the present invention has been made to provide a process for the preparation of hydroxypropyl cellulose molded parts, wherein the hydroxypropyl cellulose is used, preferably pure
  • Hydroxypropylcellulose but also hydroxypropylcellulose blends or
  • Blends with other polymers or additives and the process is particularly efficient and environmentally friendly.
  • the moldings produced by the process should have a particularly high intake of 0.9% strength aqueous sodium chloride solution
  • the uptake of 0.9% strength aqueous sodium chloride solution is determined on the basis of DIN 53923. Instead of uptake of water, the uptake is determined on 0.9% strength aqueous sodium chloride solution.
  • Hydroxypropylcellulose moldings in particular of nonwovens, fibers, fibrous structures, sponges and / or films, the following steps: a) the use of pure hydroxypropylcellulose polymer or of a hydroxypropylcellulose blend or of a mixture with others
  • thermoplastic processing from the melt that is not from the solution, the hydroxypropyl cellulose polymer or the
  • thermoplastic melt processing of hydroxypropyl cellulose or hydroxypropyl cellulose blends or mixtures is characterized as a solvent-free process by efficiency and a better environmental balance. It will be higher
  • Solvent is used, which would have to be separated and purified. Furthermore, for example, those incurred during processing
  • Hydroxypropylcellulose polymer or the same hydroxypropylcellulose mixture can be used for the production of various molded parts.
  • crosslinking is carried out only in the molded product, that is, the specification of the shape is simpler and more accurate than if the product precipitated by the crosslinking from the solution.
  • Hydroxypropylcelluloses are preferably used for the thermoplastic processing with molecular weights of between 20,000 and 200,000 g / mol, preferably between 50,000 and 500,000 g / mol.
  • the thermoplastic processing is carried out from the melt of the hydroxypropyl cellulose polymer or the hydroxypropyl cellulose blends at a temperature between 50 ° C and 270 ° C, preferably between 80 ° C and 230 ° C.
  • Hydroxypropylcellulose blends for the production of fibers or nonwoven fabrics preferably 100 Pas to 2900 Pas, more preferably 150 Pas to 1400 Pas.
  • the viscosity of the hydroxypropyl cellulose melt can over the
  • Composition of the mixture are preferably adjusted by means of plasticizers as an additive.
  • the plasticizers are preferably selected from citric acid esters, such as triethyl citrate, tributyl 2-acetyl citrate, etc., triacetines, glycol derivatives, such as polyethylene glycol (PEG), phthalates, especially diethyl phthalate, dibutyl phthalate, etc., sebacic acid esters, such as dibutyl sebacate, fatty acids, fatty acid alcohols,
  • Fatty acid alcohol esters and / or oils such as stearic acid and salts thereof, stearyl alcohol, stearic acid butyl esters, alkanesulfonic acid phenyl esters,
  • the hydroxypropylcellulose polymer or the hydroxypropylcellulose blend is used as an additive
  • Crosslinking initiator added in particular a photoinitiator, preferably selected from synthetic initiators or from biochemical initiators, such as riboflavin derivatives.
  • At least one additive is preferably added to the hydroxypropylcellulose polymer or the hydroxypropylcellulose blend.
  • Polyethylene glycol for example, reduces the surface tension or the viscosity of the melt, so that processing at lower temperatures makes it possible to protect the substances.
  • additives or blends can the
  • Hydroxypropylcellulose polymer or the hydroxypropylcellulose blend preferably the following synthetic polymers, biopolymers, active ingredients and / or special additives are added:
  • polyoxymethylenes for example, polyoxymethylenes
  • Polyamides such as polyamide-66, polyurethanes, polyvinylpyrrolidones, and the like.
  • Polyvinylamines polyethyleneimines, polyesters such as polyethylene terephthalate, polycarbonates, polysiloxanes such as polydimethylsiloxane, polyolefins such as
  • Polyacrylates such as polymethyl methacrylate or poly (2-hydroxyethyl methacrylate), polyalkylene oxides, such as polyethylene oxide, polystyrenes, polyvinyl acetates, polyvinyl chloride, polycaprolactones, polylactides, polyglycolides or polyhydroxy butyric be used.
  • biopolymers are proteins, such as collagens, silks, keratins, albumins, polysaccharides, such as starch, modified starch,
  • Celluloses such as cellulose ethers, cellulose esters, bacterial celluloses, viscoses, chitins, chitosans, caseins, pectins, agar, guar gums, hyaluronic acid or alginates.
  • cellulose derivatives such as cellulose ethers, cellulose esters, bacterial celluloses, viscoses, chitins, chitosans, caseins, pectins, agar, guar gums, hyaluronic acid or alginates.
  • medicaments such as antibiotics, analgesics, wound healing agents, antibacterial, antiviral or antimicrobial preparations, organic acids, enzymes, vitamins, nicotine, proteins that positively influence wound healing, growth factors, such as purines or pyrimidines, foam additives, Stabilizers, such as adjuvants stabilizing hydroxypropylcellulose against thermal degradation,
  • Carbon compounds such as activated carbons, graphenes, carbon nanotubes, metals, such as gold or silver, fillers, cyclodextrins, inorganic particles, silicone particles, ceramics, such as silica or silicates are used.
  • the above-mentioned polymers can be used as homopolymers, as copolymers, for example as block copolymers, graft copolymers, random or alternating systems, or in any mixture with one another.
  • the abovementioned active substances or additives may be added in pure form, in any mixture with one another and / or in encapsulated form or
  • additives are polyvinyl alcohols, polyolefins, and
  • thermoplastic processing is preferably carried out by means of extrusion.
  • the fibers are preferably produced by means of extrusion (melt-blow process).
  • the sponges are also preferably extruded, with additives such as blowing agents or gases being added to realize the porous structure.
  • Hydroxypropylcellulose is preferably carried out by irradiation or curing, in particular by means of a photoinitiator, with UV, e-radiation or ⁇ radiation.
  • the hydroxypropyl cellulose molded parts according to the invention preferably have an uptake of 0.9% aqueous sodium chloride solution in a range of 400 wt .-% to 10,000 wt. %, more preferably in a range from 400 wt .-% to, 5000 wt .-%, most preferably a recording of 0.9% aqueous
  • Sodium chloride solution in a range of 400 wt .-% to 3500 wt .-%.
  • the hydroxypropylcellulose moldings can be further processed in any form. Thus, they can be brought into any three-dimensional form and also used in combination with carriers, in particular by application to a carrier or by introduction into a carrier, for example so-called sandwich structures.
  • the hydroxypropyl cellulose fibers produced according to the invention are preferably solidified into nonwovens.
  • Hydroxypropylcellulose molded parts such as by coatings, in particular sol-gel coatings or biocompatible coatings, take place or a subsequent connection or equipment with
  • the cellulose nonwoven fabrics, fibers, fiber fabrics, sponges and / or films produced by the process according to the invention are preferably used for the medical sector, particularly preferably for or as wound dressings, fabric constructions or
  • Tissue engineering or implants but also for packaging, cosmetics, hygiene or household products, in particular cleaning utensils, and / or for filters, films, insulation materials and / or
  • Support materials in particular for catalysts, furniture, clothing, in particular as intermediate lining or insert, for sound and / or
  • Hydroxypropyl cellulose (20 g HPC, molecular weight 370000 g / mol)
  • the polymer mixture was compressed at 170 ° C to form a film which was irradiated with a UV lamp (Uvahand 250 GS H1, with an intensity of 60 mW / cm 2 and a wavelength of 350 to 600 nm) for 1 minute.
  • a UV lamp Uvahand 250 GS H1, with an intensity of 60 mW / cm 2 and a wavelength of 350 to 600 nm
  • the uptake of 0.9% aqueous sodium chloride solution of the film was 400 wt .-% to 3500 wt .-%, depending on the degree of crosslinking.
  • Hydroxypropylcellulose (HPC, molecular weight 80,000 g / mol)
  • a plasticizer in particular 10 wt .-% stearic acid.
  • Fibers were made by thermal extrusion, with the spinning tester ("Melt Spinning Tester” from Fuji (Tokyo, Japan) divided into three heating zones (1: 190 ° C, 2: 190 ° C, 3: 210 ° C).
  • the uptake of 0.9% aqueous sodium chloride solution of the crosslinked fibers was in the range of 400 wt .-% to 3500 wt .-%, depending on the degree of crosslinking.
  • the uptake of 0.9% strength aqueous sodium chloride solution was determined on the basis of DIN 53923. Instead of the intake of water described in DIN 53923, the uptake was determined on 0.9% strength aqueous sodium chloride solution.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Epidemiology (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Biochemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Hematology (AREA)
  • Dermatology (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Transplantation (AREA)
  • Materials For Medical Uses (AREA)

Abstract

Es soll ein Verfahren zur Herstellung von Hydroxypropylcellulose-Formteilen bereitgestellt werden, bei dem Hydroxypropylcellulose eingesetzt wird, bevorzugt reine Hydroxypropylcellulose, aber auch Hydroxypropylcellulose- Blends bzw. Mischungen mit anderen Polymeren oder Additiven, und wobei das Verfahren besonders effizient und umweltfreundlich ist. Des Weiteren sollen die nach dem Verfahren hergestellten Formteile eine besonders hohe Aufnahme an 0,9%iger, wässriger Natriumchloridlösung aufweisen, wasserunlöslich sein und für eine vielfache Verwendung geeignet sein, insbesondere in medizinischen Anwendungen, bevorzugt zur Wundversorgung bzw. als Wundauflage. Erfindungsgemäß umfasst das Verfahren zur Herstellung von Hydroxypropylcellulose-Formteilen, insbesondere von -Fasern, -Vliesstoffen, - Faserflächengebilden, -Schwämmen und/oder -Filmen, folgende Schritte: a) den Einsatz von reinem Hydroxypropylcellulose-Polymer oder von einem Hydroxypropylcellulose-Blend bzw. einer Mischung mit anderen Polymeren oder Additiven, insbesondere mit einem Weichmacher, b) die thermoplastische Verarbeitung aus der Schmelze des Hydroxypropylcellulose-Polymers oder des Hydroxypropylcellulose- Blends und c) die chemische Vernetzung der Hydroxypropylcellulose, insbesondere durch Bestrahlen bzw. strahlungsinduziert oder elektrochemisch oder thermisch.

Description

Anmelderin: Carl Freudenberg KG, 69469 Weinheim
Verfahren zur Herstellung von Hydroxypropylcellulose-Formteilen
sowie deren Verwendung Beschreibung
Die vorliegende Erfindung betrifft die Herstellung von Hydroxypropylcellulose- Formteilen, insbesondere von Fasern, Vliesstoffen, Faserflächengebilden, Schwämmen und/oder Filmen aus Hydroxypropylcellulose, sowie deren
Verwendung, insbesondere als Wundauflage.
Unter einem Faserflächengebilde wird hier insbesondere eine geordnete oder ungeordnete ein- oder mehrlagige Zusammenlagerung einer Vielzahl von Fasern verstanden.
Stand der Technik
Hydroxypropylcellulose (HPC) ist als Werkstoff in medizinischen Anwendungen, insbesondere zur Wundversorgung, bekannt.
Das Patent US 5,545,442 beansprucht ein Verfahren zur Beschichtung einer pharmazeutischen Darreichungsform mit einem hydrophilen vernetzten
Polymer. Das Verfahren umfasst das Mischen eines wasserlöslichen Polymers aus Hydroxyethylcellulose oder Hydroxypropylmethylcellulose und eines lichtempfindlichen oder lichtabbaubaren Katalysators sowie das Beschichten
BESTÄTIGUNGSKOPIE dieser Mischung aus wässriger Lösung über eine pharmazeutische
Darreichungsform und das Aussetzen der beschichteten Form einer elektromagnetischen Energiequelle. Darstellung der Erfindung
Die vorliegende Erfindung hat sich die Aufgabe gestellt, ein Verfahren zur Herstellung von Hydroxypropylcellulose-Formteilen anzugeben, bei dem Hydroxypropylcellulose eingesetzt wird, bevorzugt reine
Hydroxypropylcellulose, aber auch Hydroxypropylcellulose-Blends bzw.
Mischungen mit anderen Polymeren oder Additiven, und wobei das Verfahren besonders effizient und umweltfreundlich ist.
Des Weiteren sollen die nach dem Verfahren hergestellten Formteile eine besonders hohe Aufnahme an 0,9%iger, wässriger Natriumchloridlösung
(physiologische Kochsalzlösung) aufweisen, wasserunlöslich sein und für eine vielfache Verwendung geeignet sein, insbesondere in medizinischen
Anwendungen, bevorzugt zur Wundversorgung bzw. als Wundauflage. Die Aufnahme an 0,9%iger, wässriger Natriumchloridlösung wird in Anlehnung an die DIN 53923 ermittelt. Statt der Aufnahme an Wasser wird die Aufnahme an 0,9%iger, wässriger Natriumchloridlösung bestimmt.
Erfindungsgemäß umfasst das Verfahren zur Herstellung von
Hydroxypropylcellulose-Formteilen, insbesondere von -Vliesstoffen, -Fasern, - Faserflächengebilden, -Schwämmen und/oder -Filmen, folgende Schritte: a) den Einsatz von reinem Hydroxypropylcellulose-Polymer oder von einem Hydroxypropylcellulose-Blend bzw. einer Mischung mit anderen
Polymeren oder Additiven, insbesondere mit einem Weichmacher, b) die thermoplastische Verarbeitung aus der Schmelze, das heißt nicht aus der Lösung, des Hydroxypropylcellulose-Polymers oder des
Hydroxypropylcellulose-Blends und
c) die chemische Vernetzung der Hydroxypropylcellulose, insbesondere durch Bestrahlen bzw. strahlungsinduziert, elektrochemisch oder thermisch.
Dieses Verfahren ermöglicht die thermoplastische Verarbeitung aus der Schmelze von Hydroxypropylcellulose oder von Hydroxypropylcellulose-Blends bzw. Mischungen und zeichnet sich als lösungsmittelfreies Verfahren durch Effizienz und durch eine bessere Umweltbilanz aus. Es werden höhere
Durchsätze und ein geringerer Energieverbrauch erreicht, da kein
Lösungsmittel verwendet wird, das abgetrennt und gereinigt werden müsste. Ferner können beispielsweise die bei der Verarbeitung anfallenden
Abfallprodukte aufgrund der thermoplastischen Eigenschaften des
Rohmaterials wieder für die Produktion verwendet werden.
Des Weiteren ist das Verfahren besonders flexibel, da das gleiche
Hydroxypropylcellulose-Polymer oder die gleiche Hydroxypropylcellulose- Mischung für die Herstellung verschiedener Formteile verwendet werden kann.
Zudem wird die Vernetzung erst im geformten Produkt durchgeführt, das heißt, die Vorgabe der Form ist einfacher und präziser, als wenn das Produkt durch das Vernetzen aus der Lösung ausfällt.
Insbesondere im Hinblick auf eine bevorzugte Verwendung der nach dem erfindungsgemäßen Verfahren hergestellten vernetzten Formteile als
Wundauflage werden angesichts der Vernetzung auch keine Teile des
Materials herausgelöst, die die Wunde verunreinigen könnten. Vorzugsweise werden Hydroxypropylcellulosen für die thermoplastische Verarbeitung mit Molekulargewichten zwischen 20000 und 2000000 g/mol, bevorzugt zwischen 50000 und 500000 g/mol, eingesetzt. Vorteilhafterweise wird die thermoplastische Verarbeitung aus der Schmelze des Hydroxypropylcellulose-Polymers oder des Hydroxypropylcellulose-Blends bei einer Temperatur zwischen 50°C und 270°C, bevorzugt zwischen 80°C und 230°C, vorgenommen. Für eine bessere thermoplastische Verarbeitbarkeit beträgt die Viskosität des eingesetzten Hydroxypropylcellulose-Polymers bzw. des eingesetzten
Hydroxypropylcellulose-Blends für die Herstellung der Fasern bzw. Vliesstoffe bevorzugt 100 Pas bis 2900 Pas, besonders bevorzugt 150 Pas bis 1400 Pas. Die Viskosität der Hydroxypropylcellulose-Schmelze kann über die
Zusammensetzung der Mischung vorzugsweise mit Hilfe von Weichmachern als Additiv eingestellt werden.
Die Weichmacher sind dabei bevorzugt ausgewählt aus Zitronensäureestern, wie Zitronensäuretriethylester, Zitronensäuretributylester, Tributyl-2-acetylcitrat etc., Triacetinen, Glykolderivaten, wie Polyethylenglykol (PEG), Phthalaten, insbesondere Diethylphthalat, Dibutylphthalat etc., Sebacinsäureestern, wie Sebacinsäuredibutylester, Fettsäuren, Fettsäurealkoholen,
Fettsäurealkoholestern und/oder Ölen, wie Stearinsäure sowie deren Salze, Stearylalkohol, Stearinsäurebutylester, Alkansulfonsäurephenylestern,
Alkandisulfonsäurediphenylestern, 1 ,2-Cyclohexandicarbonsäurediisononyl- estern. Abhängig vom Anwendungsgebiet werden vorteilhafterweise
arzneimittelrechtlich oder zumindest für bzw. als Medizinprodukte zugelassene Weichmacher verwendet. In bevorzugter Ausgestaltung des Verfahrens wird dem Hydroxypropylcellulose- Polymer oder dem Hydroxypropylcellulose-Blend als Additiv ein
Vernetzungsinitiator zugesetzt, insbesondere ein Photoinitiator, bevorzugt ausgewählt aus synthetischen Initiatoren oder aus biochemischen Initiatoren, wie Riboflavinderivate.
Um bestimmte Funktionalitäten zu erreichen, wird dem Hydroxypropylcellulose- Polymer oder dem Hydroxypropylcellulose-Blend bevorzugt zumindest ein Additiv beigefügt.
So kann beispielsweise die Einarbeitung von Polyvinylalkohol die
Wasseraufnahme im Vergleich zu reiner Hydroxypropylcellulose verbessern. Polyethylenglykol verringert beispielsweise die Oberflächenspannung oder die Viskosität der Schmelze, so dass eine Verarbeitung bei tieferen Temperaturen die Schonung der Substanzen ermöglicht.
Als weitere oder alternative Additive bzw. Blends können dem
Hydroxypropylcellulose-Polymer oder dem Hydroxypropylcellulose-Blend vorzugsweise folgende synthetische Polymere, Biopolymere, Wirkstoffe und/oder spezielle Additive zugesetzt werden:
Als synthetische Polymere können beispielsweise Polyoxymethylene,
Polyamide, wie Polyamid-66, Polyurethane, Polyvinylpyrrolidone,
Polyvinylamine, Polyethylenimine, Polyester, wie Polyethylenterephthalat, Polycarbonate, Polysiloxane, wie Polydimethylsiloxan, Polyolefine, wie
Polyethylen oder Polypropylen, Polycarbonsäuren, wie Polyacrylsäure,
Polyacrylate, Polymethacrylate, wie Polymethylmethacrylat oder Poly-(2- hydroxyethyl-methacrylat), Polyalkylenoxide, wie Polyethylenoxid, Polystyrole, Polyvinylacetate, Polyvinylchlorid, Polycaprolactone, Polylactide, Polyglykolide oder Polyhydroxybuttersäuren eingesetzt werden. Als Biopolymere kommen beispielsweise Proteine, wie Kollagene, Seiden, Keratine, Albumine, Polysaccharide, wie Stärke, modifizierte Stärke,
Cellulosen, Cellulosederivate, wie Celluloseether, Celluloseester, bakterielle Cellulosen, Viskosen, Chitine, Chitosane, Caseine, Pektine, Agar, Guarmehle, Hyaluronsäure oder Alginate in Betracht.
Als Wirkstoffe oder spezielle Additive können beispielsweise Medikamente, wie Antibiotika, Analgetika, wundheilungsfördernde Mittel, antibakterielle, antivirale oder antimikrobielle Präparate, organische Säuren, Enzyme, Vitamine, Nikotin, Proteine, die die Wundheilung positiv beeinflussen, Wachstumsfaktoren, wie Purine oder Pyrimidine, Schaumadditive, Stabilisatoren, wie Hilfsstoffe, die Hydroxypropylcellulose gegen den thermischen Abbau stabilisieren,
Kohlenstoffverbindungen, wie Aktivkohlen, Graphene, Carbon nanotubes, Metalle, wie Gold oder Silber, Füllstoffe, Cyclodextrine, anorganische Partikel, Silikonpartikel, Keramiken, wie Kieselgele oder Silicate, eingesetzt werden.
Die oben genannten Polymere können als Homopolymere, als Copolymere, zum Beispiel als Blockcopolymere, Pfropfcopolymere, statistische oder alternierende Systeme, oder in jeglicher Mischung untereinander eingesetzt werden.
Die oben genannten Wirkstoffe oder Additive können in reiner Form, in jeglicher Mischung untereinander und/oder in verkapselter Form zugesetzt bzw.
adsorbiert werden.
Besonders bevorzugt sind als Additive Polyvinylalkohole, Polyolefine,
Polyethylenglykole, Polyester, Medikamente sowie wundheilungsfördernde Mittel.
Die thermoplastische Verarbeitung erfolgt vorzugsweise mittels Extrusion. Die Fasern werden bevorzugt mittels Extrusion (Melt-Blow-Verfahren) hergestellt. Die Schwämme werden vorzugsweise auch extrudiert, wobei Additive, wie zum Beispiel Treibmittel oder Gase, zugesetzt werden, um die poröse Struktur zu realisieren.
Die chemische Vernetzung der thermoplastisch verarbeiteten
Hydroxypropylcellulose erfolgt bevorzugt durch Bestrahlen bzw. Härten, insbesondere mittels eines Photoinitiators, mit UV-, e-Strahlung oder γ- Strahlung.
Die erfindungsgemäßen Hydroxypropylcellulose-Formteile, insbesondere - Fasern, -Vliesstoffe, -Faserflächengebilde, -Schwämme und/oder -Filme, weisen bevorzugt eine Aufnahme an 0,9%iger, wässriger Natriumchloridlösung in einem Bereich von 400 Gew.-% bis 10000 Gew.-% auf, besonders bevorzugt in einem Bereich von 400 Gew.-% bis, 5000 Gew.-%, ganz besonders bevorzugt eine Aufnahme an 0,9%iger, wässriger
Natriumchloridlösung in einem Bereich von 400 Gew.-% bis 3500 Gew.-%.
Die Hydroxypropylcellulose-Formteile können in jeglicher Form weiter verarbeitet werden. So können sie in jegliche dreidimensionale Form gebracht und auch in Kombination mit Trägern verwendet werden, wie insbesondere durch Aufbringen auf einen Träger oder durch Einbringen in einen Träger, zum Beispiel sogenannte Sandwich-Strukturen. Die erfindungsgemäß hergestellten Hydroxypropylcellulose-Fasern werden bevorzugt zu Vliesstoffen verfestigt.
Selbstverständlich kann auch eine nachträgliche Modifizierung der
Hydroxypropylcellulose-Formteile, wie zum Beispiel durch Beschichtungen, insbesondere Sol-Gel-Beschichtungen oder biokompatible Beschichtungen, stattfinden oder eine nachträgliche Anbindung bzw. Ausstattung mit
Wirkstoffen, beispielsweise auch durch eine chemische Modifizierung. Die nach dem erfindungsgemäßen Verfahren hergestellten Cellulose- Vliesstoffe, -Fasern, -Faserflächengebilde, -Schwämme und/oder -Filme werden bevorzugt verwendet für den medizinischen Bereich, besonders bevorzugt für bzw. als Wundauflagen, Gewebekonstruktionen bzw.
Gewebezüchtungen (Tissue Engineering) oder Implantate, jedoch auch für Verpackungen, Kosmetik-, Hygiene- oder Haushaltsprodukte, insbesondere Reinigungsutensilien, und/oder für Filter, Folien, Dämmstoffe und/oder
Trägermaterialien, insbesondere für Katalysatoren, Möbel, Bekleidung, insbesondere als Zwischenfutter oder Einlage, zur Schall- und/oder
Hitzeprotektion.
Ausführung der Erfindung Der Gegenstand der Erfindung wird nachfolgend anhand von Beispielen näher erläutert.
Beispiel 1 :
Hydroxypropylcellulose (20 g HPC, Molekulargewicht 370000 g/mol)
wurde mit einem Weichmacher, insbesondere Polyethylenglykol (1 ,4 g PEG 400) vermischt. Dazu wurde ein Photoinitiator zugesetzt.
Die Polymermischung wurde bei 170°C zu einem Film verpresst, welcher mit einer UV-Lampe (Uvahand 250 GS H1 , mit einer Intensität von 60 mW/cm2 und einer Wellenlänge von 350 bis 600 nm) 1 Minute bestrahlt wurde.
Die Aufnahme an 0,9%iger, wässriger Natriumchloridlösung des Films betrug abhängig vom Vernetzungsgrad 400 Gew.-% bis 3500 Gew.-%.
Die Aufnahme an 0,9%iger, wässriger Natriumchloridlösung wurde in
Anlehnung an die DIN 53923 ermittelt. Statt der in der DIN 53923 beschriebenen Aufnahme an Wasser wurde die Aufnahme an 0,9%iger, wässriger Natriumchloridlösung bestimmt.
Beispiel 2:
Hydroxypropylcellulose (HPC, Molekulargewicht 80000 g/mol)
wurde mit einem Weichmacher, insbesondere 10 Gew.-% Stearinsäure, vermischt.
Fasern wurden mittels thermischer Extrusion hergestellt, wobei der Spinntester („Melt Spinning Tester" von Fuji (Tokyo, Japan) in drei Heizzonen (1 : 190°C, 2: 190°C; 3: 210°C) unterteilt war.
Eine anschließende Vernetzung der Hydroxypropylcellulose erfolgte bevorzugt mittels eines Photoinitiators.
Die Aufnahme an 0,9%iger, wässriger Natriumchloridlösung der vernetzten Fasern lag abhängig vom Vernetzungsgrad im Bereich von 400 Gew.-% bis 3500 Gew.-%. Die Aufnahme an 0,9%iger, wässriger Natriumchloridlösung wurde in Anlehnung an die DIN 53923 ermittelt. Statt der in der DIN 53923 beschriebenen Aufnahme an Wasser wurde die Aufnahme an 0,9%iger, wässriger Natriumchloridlösung bestimmt.

Claims

Patentansprüche
1. Verfahren zur Herstellung von Hydroxypropylcellulose-Formteilen,
insbesondere von -Fasern, -Vliesstoffen, -Faserflächengebilden, - Schwämmen und/oder -Filmen, umfassend die Schritte:
a) Einsatz von reinem Hydroxypropylcellulose-Polymer oder von einem Hydroxypropylcellulose-Blend bzw. einer Mischung mit anderen Polymeren oder Additiven, insbesondere mit einem Weichmacher,
b) thermoplastische Verarbeitung aus der Schmelze des
Hydroxypropylcellulose-Polymers oder des
Hydroxypropylcellulose-Blends und
c) chemische Vernetzung der Hydroxypropylcellulose, insbesondere durch Bestrahlen bzw. strahlungsinduziert oder elektrochemisch oder thermisch.
2. Verfahren nach Anspruch 1 , wobei Hydroxypropylcellulose mit einem
Molekulargewicht zwischen 20000 und 2000000 g/mol, bevorzugt zwischen 50000 und 500000 g/mol, eingesetzt wird.
3. Verfahren nach einem der vorhergehenden Ansprüche, wobei die
thermoplastische Verarbeitung aus der Schmelze des
Hydroxypropylcellulose-Polymers oder des Hydroxypropylcellulose-Blends bei einer Temperatur zwischen 50°C und 270°C, bevorzugt zwischen 80°C und 230°C, vorgenommen wird.
4. Verfahren nach einem der vorhergehenden Ansprüche, wobei dem
Hydroxypropylcellulose-Polymer oder dem Hydroxypropylcellulose-Blend als Additiv zumindest ein Weichmacher zugesetzt wird, ausgewählt aus Zitronensäureestern, Triacetinen, Glykolderivaten, wie Polyethylenglykol, Phthalaten, Sebacinsäureestern, Fettsäuren, Fettsäurealkoholen, Fettsäurealkoholestern und/oder Ölen, wie Stearinsäure sowie deren Salze, Alkansulfonsäurephenylestern, Alkandisulfonsäurediphenylestern, 1 ,2-Cyclohexandicarbonsäurediisononylestern.
Verfahren nach einem der vorhergehenden Ansprüche, wobei dem Hydroxypropylcellulose-Polymer oder dem Hydroxypropylcellulose-Blend als Additiv ein Vernetzungsinitiator zugesetzt wird, insbesondere ein Photoinitiator, bevorzugt ausgewählt aus synthetischen Initiatoren oder aus biochemischen Initiatoren.
Verfahren nach einem der vorhergehenden Ansprüche, wobei dem Hydroxypropylcellulose-Polymer oder dem Hydroxypropylcellulose-Blend als Additiv synthetische Polymere, Biopolymere, Wirkstoffe und/oder spezielle Additive zugesetzt werden.
Verfahren nach einem der vorhergehenden Ansprüche, wobei dem Hydroxypropylcellulose-Polymer oder dem Hydroxypropylcellulose-Blend als Additiv Polyvinylalkohole, Polyolefine, Polyethylenglykole, Polyester, Medikamente und/oder wundheilungsfördernde Mittel zugesetzt werden.
Verfahren nach einem der vorhergehenden Ansprüche, wobei die thermoplastische Verarbeitung mittels Extrusion erfolgt.
Verfahren nach einem der vorhergehenden Ansprüche, wobei die
Vernetzung der Hydroxypropylcellulose durch Bestrahlen oder
strahlungsinduziert mit UV-, e- oder γ-Strahlung erfolgt.
Hydroxypropylcellulose-Formteile, insbesondere -Fasern, -Vliesstoffe, - Faserflächengebilde, -Schwämme und/oder -Filme, hergestellt nach einem Verfahren nach einem der vorhergehenden Ansprüche, die eine Aufnahme an 0,9%iger, wässriger Natriumchloridlösung in einem Bereich von 400 Gew.-% bis 10000 Gew.-% aufweisen.
Verwendung der nach dem Verfahren nach einem der vorhergehenden Ansprüche hergestellten Hydroxypropylcellulose-Formteile, insbesondere der -Fasern, -Vliesstoffe, -Faserflächengebilde, -Schwämme und/oder - Filme, für den medizinischen Bereich, bevorzugt für bzw. als
Wundauflagen, Gewebekonstruktionen bzw. Gewebezüchtungen (Tissue Engineering) oder Implantate, für Verpackungen, Kosmetik-, Hygieneoder Haushaltsprodukte, insbesondere Reinigungsutensilien, und/oder für Filter, Folien, Dämmstoffe und/oder Trägermaterialien, insbesondere für Katalysatoren, Möbel, Bekleidung, insbesondere als Zwischenfutter oder Einlage, zur Schall- und/oder Hitzeprotektion.
PCT/EP2011/003809 2010-08-18 2011-07-29 Verfahren zur herstellung von hydroxypropylcellulose-formteilen sowie deren verwendung WO2012022422A1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102010034783.3 2010-08-18
DE102010034783A DE102010034783A1 (de) 2010-08-18 2010-08-18 Verfahren zur Herstellung von Hydroxypropylcellulose-Formteilen sowie deren Verwendung

Publications (1)

Publication Number Publication Date
WO2012022422A1 true WO2012022422A1 (de) 2012-02-23

Family

ID=44545627

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2011/003809 WO2012022422A1 (de) 2010-08-18 2011-07-29 Verfahren zur herstellung von hydroxypropylcellulose-formteilen sowie deren verwendung

Country Status (2)

Country Link
DE (1) DE102010034783A1 (de)
WO (1) WO2012022422A1 (de)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102012224379A1 (de) 2012-12-27 2014-07-03 Aesculap Ag Faserprodukt und Verfahren zu seiner Herstellung
DE102014202578A1 (de) 2014-02-12 2015-08-13 Aesculap Ag Medizinisches Produkt und Verfahren zu seiner Herstellung
CN110656390A (zh) * 2019-09-27 2020-01-07 武汉轻工大学 纤维素衍生物纤维及其制备方法和在食用油加工中的应用
CN113599565A (zh) * 2021-09-29 2021-11-05 诺一迈尔(山东)医学科技有限公司 梯度降解的医用海绵及其制备方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109721770A (zh) * 2018-12-24 2019-05-07 华南理工大学 氧化还原改性植物纤维的热塑性和韧性调控方法及其应用

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5545442A (en) 1994-05-04 1996-08-13 Ciba-Geigy Corporation Method for using a radiation cured drug release controlling membrane
WO2002003967A1 (en) * 2000-07-07 2002-01-17 Societe D'exploitation De Produits Pour Les Industries Chimiques (S.E.P.P.I.C.) Film-coating composition based on cellulose derivatives and sugar alcohols

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA987159A (en) * 1972-03-10 1976-04-13 Hercules Incorporated Photopolymer composition
US6375963B1 (en) * 1999-06-16 2002-04-23 Michael A. Repka Bioadhesive hot-melt extruded film for topical and mucosal adhesion applications and drug delivery and process for preparation thereof

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5545442A (en) 1994-05-04 1996-08-13 Ciba-Geigy Corporation Method for using a radiation cured drug release controlling membrane
WO2002003967A1 (en) * 2000-07-07 2002-01-17 Societe D'exploitation De Produits Pour Les Industries Chimiques (S.E.P.P.I.C.) Film-coating composition based on cellulose derivatives and sugar alcohols

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
HERCULES INCORPORATED - AQUALON DIVISION: "Klucel hydroxypropylcellulose", 2001, pages 2FP,1 - 24, XP002662885, Retrieved from the Internet <URL:http://www.ashland.com/Ashland/Static/Documents/AAFI/PRO_250-2F_Klucel_HPC.pdf> [retrieved on 20111107] *
SUNEELA PRODDUTURI ET AL: "Water vapor sorption of hot-melt extruded hydroxypropyl cellulose films: Effect on physico-mechanical properties, release characteristics, and stability", JOURNAL OF PHARMACEUTICAL SCIENCES, vol. 93, no. 12, 1 December 2004 (2004-12-01), pages 3047 - 3056, XP055011404, ISSN: 0022-3549, DOI: 10.1002/jps.20222 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102012224379A1 (de) 2012-12-27 2014-07-03 Aesculap Ag Faserprodukt und Verfahren zu seiner Herstellung
DE102014202578A1 (de) 2014-02-12 2015-08-13 Aesculap Ag Medizinisches Produkt und Verfahren zu seiner Herstellung
US10736985B2 (en) 2014-02-12 2020-08-11 Aesculap Ag Medical device and method for the production thereof
CN110656390A (zh) * 2019-09-27 2020-01-07 武汉轻工大学 纤维素衍生物纤维及其制备方法和在食用油加工中的应用
CN113599565A (zh) * 2021-09-29 2021-11-05 诺一迈尔(山东)医学科技有限公司 梯度降解的医用海绵及其制备方法
CN113599565B (zh) * 2021-09-29 2021-12-31 诺一迈尔(山东)医学科技有限公司 梯度降解的医用海绵及其制备方法

Also Published As

Publication number Publication date
DE102010034783A1 (de) 2012-02-23

Similar Documents

Publication Publication Date Title
Wang et al. Advances in electrospinning of natural biomaterials for wound dressing
Ahamed et al. Evaluation of biomaterial containing regenerated cellulose and chitosan incorporated with silver nanoparticles
Mary et al. Centrifugal spun ultrafine fibrous web as a potential drug delivery vehicle
Zarghami et al. Fabrication of PEO/chitosan/PCL/olive oil nanofibrous scaffolds for wound dressing applications
Kikionis et al. Electrospun biocomposite nanofibers of ulvan/PCL and ulvan/PEO
Rao et al. Fungal-derived carboxymethyl chitosan blended with polyvinyl alcohol as membranes for wound dressings
Sagitha et al. In-vitro evaluation on drug release kinetics and antibacterial activity of dextran modified polyurethane fibrous membrane
WO2012022421A1 (de) Verfahren zur herstellung von oxidierten cellulose-fasern, oxidierten cellulose-faserflächengebilden oder oxidierten cellulose-vliesstoffen sowie deren verwendung
Amalorpava Mary et al. Centrifugal spun ultrafine fibrous web as a potential drug delivery vehicle.
Yin et al. Facile fabrication of sandwich structural membrane with a hydrogel nanofibrous mat as inner layer for wound dressing application
WO2012022422A1 (de) Verfahren zur herstellung von hydroxypropylcellulose-formteilen sowie deren verwendung
RU2487701C2 (ru) Раствор для получения материала на основе хитозана, способ получения гемостатического материала из этого раствора (варианты) и медицинское изделие с использованием волокон на основе хитозана
Zhou et al. Quaternized chitin/tannic acid bilayers layer-by-layer deposited poly (lactic acid)/polyurethane nanofibrous mats decorated with photoresponsive complex and silver nanoparticles for antibacterial activity
Jeckson et al. Formulation and characterisation of deferoxamine nanofiber as potential wound dressing for the treatment of diabetic foot ulcer
KR20070118730A (ko) 보습성이 우수한 창상피복재 및 그의 제조방법
DE202007019670U1 (de) Bioresorbierbare Wundauflagen
Singh et al. Application of tragacanth gum and alginate in hydrogel wound dressing's formation using gamma radiation
Dwivedi et al. Fabrication and assessment of gentamicin loaded electrospun nanofibrous scaffolds as a quick wound healing dressing material
Liu et al. Fabrication of antimicrobial multilayered nanofibrous scaffolds-loaded drug via electrospinning for biomedical application
Badshah et al. Development and evaluation of drug loaded regenerated bacterial cellulose-based matrices as a potential dosage form
Deshmukh et al. A review on biopolymer-derived electrospun nanofibers for biomedical and antiviral applications
Latiyan et al. Perspectives of nanofibrous wound dressings based on glucans and galactans-A review
Vega-Cázarez et al. Overview of electrospinned chitosan nanofiber composites for wound dressings
Tamilarasi et al. Advances in electrospun chitosan nanofiber biomaterials for biomedical applications
Sadeghi et al. Matrix–drug interactions for the development of pH-sensitive alginate-based nanofibers as an advanced wound dressing

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11751810

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11751810

Country of ref document: EP

Kind code of ref document: A1