WO2012022270A1 - 控制光学系统倾斜或转动中心的装置及致动器 - Google Patents

控制光学系统倾斜或转动中心的装置及致动器 Download PDF

Info

Publication number
WO2012022270A1
WO2012022270A1 PCT/CN2011/078613 CN2011078613W WO2012022270A1 WO 2012022270 A1 WO2012022270 A1 WO 2012022270A1 CN 2011078613 W CN2011078613 W CN 2011078613W WO 2012022270 A1 WO2012022270 A1 WO 2012022270A1
Authority
WO
WIPO (PCT)
Prior art keywords
spring
spring system
lens
plane
tilt
Prior art date
Application number
PCT/CN2011/078613
Other languages
English (en)
French (fr)
Other versions
WO2012022270A9 (zh
Inventor
林小军
Original Assignee
爱佩仪光电技术(深圳)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 爱佩仪光电技术(深圳)有限公司 filed Critical 爱佩仪光电技术(深圳)有限公司
Priority to US13/817,455 priority Critical patent/US20130208369A1/en
Publication of WO2012022270A1 publication Critical patent/WO2012022270A1/zh
Publication of WO2012022270A9 publication Critical patent/WO2012022270A9/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B7/00Mountings, adjusting means, or light-tight connections, for optical elements
    • G02B7/02Mountings, adjusting means, or light-tight connections, for optical elements for lenses
    • G02B7/04Mountings, adjusting means, or light-tight connections, for optical elements for lenses with mechanism for focusing or varying magnification
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B7/00Mountings, adjusting means, or light-tight connections, for optical elements
    • G02B7/02Mountings, adjusting means, or light-tight connections, for optical elements for lenses
    • G02B7/023Mountings, adjusting means, or light-tight connections, for optical elements for lenses permitting adjustment
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B17/00Details of cameras or camera bodies; Accessories therefor
    • G03B17/02Bodies
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B3/00Focusing arrangements of general interest for cameras, projectors or printers
    • G03B3/02Focusing arrangements of general interest for cameras, projectors or printers moving lens along baseboard

Definitions

  • the present invention relates to a device for controlling the tilt/rotation center of an optical system optical axis, and more particularly to a method for controlling the tilt/rotation center position of an optical axis of a camera lens and causing tilt/rotation motion of the optical system Actuator.
  • the technical problem to be solved by the present invention is that the actuator of the prior art cannot control the defect of the center position of the lens rotation, and provides an optical axis tilt of the control optical system. / Turn the device at the center position.
  • the present invention provides a device for controlling the tilt/rotation center position of an optical system (see FIG. 2). ) the device includes a housing;
  • any one of the spring systems is a planar spring system and is comprised of at least one leaf spring, and the plane of each leaf spring Roughly parallel to the plane of the spring system it is composed of;
  • a spring plane of the first spring system and a spring plane of the second spring system are substantially parallel, and a normal direction of each of the planar spring systems is substantially parallel to a central axis of the lens mount or a lens optical axis;
  • the first spring system has an effective elastic modulus in the direction along the lens axis that is much smaller than its effective elastic modulus in a direction perpendicular to the lens axis; the effective spring coefficient of the second spring system in each direction is much smaller than the first The effective spring rate of the spring system in the same direction.
  • the lens holder connecting arm refers to the portion of the spring system or the sub-spring for connecting the lens holder, as shown in FIG. 1a. Shown.
  • the lens holder connecting arm does not deform and no elastic force occurs. It only functions to connect the lens holder and the spring system or the sub-spring.
  • Housing connecting arm Or a fixed arm means a part of the spring system or the sub-spring for connecting the outer casing and/or the attachment fixed to the outer casing, as shown in FIG. 1a Shown.
  • the fixed arm is also like the bracket connecting arm, no deformation, and no elastic force occurs.
  • the spring arm is the part that connects the connecting arm of the lens holder to the fixed arm, as shown in Figure 1a. Shown. It is the position where the deformation produces elastic force.
  • the effective spring rate of the spring system is defined as follows:
  • Figure 1a Shown is a planar spring system consisting of four sub-chip springs.
  • the coordinate system is defined as shown in the figure, in which the spring system is in a state of no deformation, and the geometric center or center of the connecting ring composed of the lens bracket connecting arms is taken as the coordinate origin.
  • the lens holder has a circular hole for the lens to pass through and be mounted thereon. Therefore, the bracket connecting arms of the spring system are generally symmetrically distributed at the center of the circular hole. (Note: Symmetry is only convenient for the description here, and is not a necessary condition in the present invention).
  • XY plane and spring plane coincide, and Z The shaft is in a direction perpendicular to the plane of the spring.
  • all of the bracket attachment arms of the spring system are attached to the lens mount, and since the lens mount is rigid, all of the bracket attachment arms move or move in unison.
  • the housing connecting arms of the spring system are connected to the housing or to the attachments that are attached to the housing, so that all housing connecting arms of the spring system are stationary.
  • the lens holder moves in the direction of the force, resulting in the uniform displacement of all the bracket connecting arms of the spring system to the lens holder, so that the spring arms of all the sub-springs are correspondingly deformed, generating elastic force. .
  • the resultant force of the elastic forces generated by all spring arms f and force F are equal in magnitude and opposite in direction.
  • k z is defined as the effective spring constant of the spring system in the Z direction.
  • the displacement of the lens holder connecting arm in this direction can be decomposed into displacements in the X and Y directions.
  • the force can also be decomposed into the component forces in the X and Y directions, and the component force can be obtained by Hooke's law.
  • k x and k y are defined as the effective spring constant of the spring system in the X and Y directions.
  • f x , f y are the components of the elastic force in the X and Y directions, respectively.
  • the bracket connecting arms of the respective leaf springs of the first spring system are connected to the respective portions of the lens holder, and may be in the same plane perpendicular to the optical axis of the lens, or may be different on the plane. .
  • the respective leaf springs of the first spring system may be in the same plane as the optical axis of the lens or may be different in the plane connected to the outer casing.
  • the same characteristic conditions described above are also true. As shown 4 is shown.
  • the spring system may be composed of various materials having certain elasticity, such as plastic sheets, metal sheets, film or thick film materials, ceramic sheets, etc., or may be composed of a plurality of materials. Composite material, but with a certain amount of elastic material, such as flexible circuit boards. See the figure 5 .
  • the first spring system may be comprised of more than one planar spring system, and all of the sub-planar spring systems are substantially parallel to one another and generally perpendicular to the axial direction of the lens.
  • the combined effect of all sub-planar spring systems can be equivalent to a virtual planar spring system with the spring plane position at the spring plane position of the first spring system rather than a solid object plane.
  • the same features can be applied to the second spring system. See the figure 6 .
  • the second spring system may be composed of a spring system other than a leaf spring, and the effective spring rate of the second spring system formed in each direction is significantly smaller than that of the first spring system.
  • the effective elastic coefficient in the corresponding direction See the figure 7 .
  • Another object of the present invention is to provide a control for tilting/rotating the center of the optical system and causing the optical system to tilt/rotate.
  • An actuator, the actuator (see Fig. 8) comprising an outer casing;
  • a lens holder at least partially disposed within the outer casing
  • At least one actuator comprises at least one magnet, at least one coil, and at least one actuator comprises at least one yoke;
  • any one of the spring systems is a planar spring system and is composed of at least one leaf spring, and the plane of each leaf spring is substantially The plane of the spring system formed by it is parallel;
  • a spring plane of the first spring system and a spring plane of the second spring system are substantially parallel, and a normal direction of each of the planar spring systems is substantially parallel to a central axis of the lens mount or a lens optical axis;
  • the first spring system has an effective elastic modulus in the direction along the lens axis that is significantly smaller than its effective elastic modulus in a direction perpendicular to the lens axis; the effective spring coefficient of the second spring system in each direction is remarkably Less than the effective spring rate of the first spring system in the same direction.
  • the yoke may be composed of one or more magnetizers. At least one of the actuators may be independently provided with at least one yoke, or at least with another actuator with at least one yoke. And the actuators can be independently controlled to produce independent motion. If the actuators are accurately controlled to independently move in a coordinated manner during the control of each actuator so that the movements of the actuators are relatively uniform, linear motion of the lens holder can be achieved, and if the direction of linear motion It is along the axis of the lens holder, and this linear motion can be used to adjust the relative distance between the lens and the image sensor for focusing.
  • the lens holder can be rotated or tilted, which can be used for the image stabilization function of the camera system or the vibration compensation function of the camera system.
  • the actuators can be independently and precisely controlled, so that the actuators can achieve consistent independent motion or inconsistent independent motion at any time, and switch between the two motion modes, thereby achieving independent lens holder.
  • the linear motion or independent rotation or swing, or the combined motion of the two movements can achieve independent autofocus, independent vibration compensation, or both functions simultaneously.
  • the bracket connecting arms of the respective leaf springs of the first spring system are connected to the respective portions of the lens holder, and may be in the same plane perpendicular to the optical axis of the lens, or may be different on the plane.
  • the respective leaf springs of the first spring system may be in the same plane as the optical axis of the lens or may be different in the plane connected to the outer casing.
  • the same characteristic conditions described above are also true. As shown 4 is shown.
  • the spring system may be composed of various materials having certain elasticity, such as plastic sheets, metal sheets, film or thick film materials, ceramic sheets, etc., or a composite material composed of a plurality of materials, but having It consists of a certain elastic material, such as a flexible circuit board. See the figure 5 .
  • the elastomeric material selected is a metal or other electrically conductive material or a conductive composite
  • the spring system can also be used as an electrode or electrical connection to direct current or voltage to the coil or actuator.
  • the first spring system may be comprised of more than one planar spring system, and all of the sub-planar spring systems are substantially parallel to one another and generally perpendicular to the axial direction of the lens.
  • the combined effect of all sub-planar spring systems can be equivalent to a virtual planar spring system with the spring plane position at the spring plane position of the first spring system rather than a solid object plane.
  • the same features can be applied to the second spring system. See the figure 6 .
  • the second spring system may be composed of a spring system other than a leaf spring, and the effective spring rate of the second spring system formed in each direction is significantly less than that of the first spring system in the corresponding direction. Elastic coefficient. See the figure 7 .
  • At least one of the actuators therein may be a piezoelectric actuator or a transducer.
  • Figure 1 is a schematic view showing the definition of the effective spring constant of the spring system of the present invention.
  • the XY axis shown in Figure a divides the above spring into ABCD 4 identical parts, there are 4 identical connecting arms, spring arms, and housing connecting arms.
  • the geometric center or center of the connecting ring composed of the lens bracket connecting arms is the coordinate origin; Taking the geometric center or center of the connecting ring formed by the lens bracket connecting arm as the coordinate origin)
  • Figure 2 is a schematic view showing the assembly structure of the device for controlling the tilt/rotation center of the optical system of the present invention
  • FIG 4 Schematic diagram of the connection of the bracket connecting arm and the housing connecting arm of the spring system (the lens bracket connecting arm and Holder of the spring in Figure a) The same end face is connected to the position indicated by the arrow. In this illustration, there are four places. The actual connection may be greater or less than four bond positions. In Figure b, the spring lens mount arm and Holder The non-end end is connected at any position. In this column, it is the H older side cylindrical surface. In this illustration, there are four places, and the actual connection may be larger or smaller than four bonding positions);
  • Figure 5 Schematic diagram of the material structure of the spring system (a is made of plastic; b is made of ceramic; c is made of metal);
  • Figure 6 is a schematic structural view of a composite spring system
  • Figure 7 is a schematic view showing the structure of a possible embodiment of a spring system other than the leaf spring system
  • Figure 8 is a schematic view showing the structure of an actuator for controlling the tilt/rotation center of the optical system according to the present invention
  • FIG. c is a view of the present invention Schematic diagram of an actuator that controls the tilt/rotation of the optical system and causes the optical system to tilt/turn;
  • Figure 2 shows the tilt of the control optical system according to the present invention / A schematic structural view of one embodiment of a device for rotating a center.
  • a device for controlling the tilt/rotation center of an optical system according to the present invention comprising a housing 200; a bracket for loading the lens 201 The bracket is disposed in the housing; in some embodiments, the lens bracket 201 can extend partially out of the housing; further comprising a first spring system 202 and a second spring system 203 The spring system is fixed to the bracket 201 and the outer casing 200.
  • the spring system in the device of the present invention has an effective modulus of elasticity in the axial direction of the lens holder (or the direction of the optical axis) is significantly smaller than the effective elastic modulus in the plane of the axis (or X and Y) Effective elastic coefficient in the direction), so when a force is applied to the lens holder, the bracket is easily generated along the axial direction (ie, along the Z direction)
  • the displacement is difficult to produce displacement in all directions (or in the X and Y directions) on a plane perpendicular to the axis.
  • the displacement of the stent in the direction along the axis of the stent will be significantly greater than along the X and The displacement in the Y direction.
  • the effective spring constant of the second spring system in each direction is significantly smaller than the effective elastic modulus of the first spring system in the corresponding direction, so the bracket of the lens holder at the end of the second spring system Part of The displacement produced by the X and Y directions will be significantly greater than the displacement of the lens holder in the X and Y directions at the end portion of the first spring system.
  • the result of the combination of the two movements is that the lens holder is tilted or rotated.
  • 301 and 306 are the first spring system and the second spring system respectively;
  • 302 and 304 are spring arms;
  • 303 is the tilt/rotation center of the lens holder; 305 For the lens mount.
  • the first spring system is X and Y
  • the effective elastic coefficient of the direction is designed to be very large, and the effective elastic system of the second spring system in the corresponding direction is very small, so the effect of the synthetic motion is like the first spring system end is fixed, and the second spring The system side then rotates around the end of the first spring system.
  • the overall result is that the lens holder is wound around a center 303 is tilted/rotated and the center is positioned near the first spring system.
  • the effective spring rate of the first spring system is much greater than the effective spring rate of the second spring system, the tilt / The center of rotation is substantially on the spring plane of the first spring system.
  • the control optical system of the present invention is tilted /
  • the effective spring constant of the first and second spring systems in the direction along the axis of the lens holder (or in the Z direction) is significantly smaller than in the vertical direction (ie, along X and Y).
  • the effective elastic modulus of the direction so the lens holder can be moved along Z with a small force Directional displacement. This displacement is especially important because we can use this displacement to adjust the relative distance between the optical lens and the image sensor for focus (either manual focus or auto focus).
  • FIG. 4 is an embodiment of a connection manner of a bracket connecting arm and a housing connecting arm of the spring system according to the present invention.
  • Figure 4a As shown, four separate leaf springs form a spring system, 401 is the housing connecting arm, 402 is the spring arm, 403 is the bracket connecting arm, and 404 is the lens bracket.
  • the bracket connecting arm The connecting portion of the 403 and the lens holder 404 is on the same plane.
  • the plane is one of the end faces of the lens holder. In practical applications, the plane is not necessarily on the end face of the lens holder.
  • Figure 4b Is another embodiment in which the bracket connecting arm 403 is not attached to the end face of the lens holder but a part of the lens holder.
  • Dotted line 405 is the bracket connecting arm 403 The connected face on the lens mount. As shown, each piece of spring 403 Some of the connecting faces on the lens holder are not in the same plane. As long as the planes are not far apart, the overall effect of the individual leaf springs can be replaced by a virtual planar spring. All of the above embodiments are applicable to the first and second spring systems. Can be applied at the same time or at different times.
  • Figure 5 is a various embodiment of a spring material.
  • the spring material described in the present invention can be selected from any material having a certain elasticity to be formed into a sheet shape, as shown in the figure. 5a, 5b, and 5c.
  • Materials that may be selected include, but are not limited to, plastics, ceramics, metals, high molecular polymers, and the like.
  • any material as long as the designed spring working range is within the elastic deformation zone of its material, can be used in the spring system of the present invention.
  • some composite materials can also be used as spring systems.
  • the composite method (but not limited to) is to coat a layer of insulating material with a metal film to make it conductive. If the spring system employs a metal or electrically conductive material (including composite materials), the spring system can also be used for electrodes or electrical connection components to connect current or voltage to the actuator.
  • any of the spring systems may be comprised of a plurality of sub-planar spring systems.
  • 601 and 602 There are two actual planar spring systems that are both attached to the lens mount 604.
  • a plane spring 603 can be placed at position 603, and its mechanical effect will be 601 plus 602. The same. Therefore, in some other embodiments of the present invention, for planar springs beyond two or more embodiments, the first and second spring systems refer to image 603
  • a virtual planar spring is a mathematical concept spring rather than a solid spring.
  • FIG. 7 also shows additional embodiments of the second spring system of the present invention.
  • 701 and 703 is the lens holder
  • 702 is the ring spring
  • 704 It is a cylindrical coil spring.
  • These springs can perform the functions required for the second spring system as long as the design and materials are properly selected. That is, the effective elastic modulus in each direction is significantly smaller than the effective spring constant of the first spring system in the same direction.
  • Figure 8 is a tiltable/rotating center position of the controllable optical system and tilting/rotating of the optical system according to the present invention; An embodiment of an actuator. The specific embodiment is as follows.
  • Figure 8a shows an external view of the actuator.
  • Figure 8b is a cross-sectional view of the appearance of the appearance in a diagonal direction.
  • Figure 8c It is a schematic diagram of structural assembly.
  • the lens actuator includes housings 801 and 802; lens holder 803 Positioned within the housing; in some embodiments, the lens holder can extend partially out of the housing; the lens holder has a through hole (with or without a screw) for mounting a lens or other optical device; More than one actuator is installed around the actuator, each actuator is separately coiled 804, a magnet 805, and a yoke 806, wherein the coil 804 is fixed to the lens holder 803, and the magnet 805 is fixed in the yoke 806, and the yoke is fixed to the outer casing. 801 or / and 802.
  • the coil and the magnet are side by side and are generated along the axis of the lens holder (ie, the Z direction) when energized. Force.
  • a plurality of actuators may be symmetrically mounted around the lens holder or may be asymmetrically mounted around the lens holder.
  • any of the spring systems is a planar spring system and is composed of at least one leaf spring, and the plane of each leaf spring is substantially parallel to the plane of the spring system it constitutes; it is also characterized by the 807
  • the spring plane is substantially parallel to the spring plane of 808, and the normal direction of each of the planar spring systems is substantially parallel to the central axis of the lens holder or the optical axis of the lens; further characterized by the spring 807 , the effective elastic coefficient in the direction along the lens axis is much smaller than its effective elastic coefficient in the direction perpendicular to the lens axis; the effective elastic coefficient of the 808 spring system in all directions is much smaller than 807
  • 809 and 810 are insulating spacers.
  • the edge can be independently generated.
  • the lens holder can be rotated or tilted, which can be used for the image stabilization function of the camera system or the vibration compensation function of the camera system.
  • the foregoing various embodiments relating to the spring system can be applied to the controllable optical system tilt according to the present invention. Rotate the center position and cause the optical system to tilt/rotate on the actuator.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Lens Barrels (AREA)
  • Adjustment Of Camera Lenses (AREA)
  • Studio Devices (AREA)

Description

控制光学系统倾斜或转动中心的装置及致动器 技术领域
本发明涉及一种用于控制光学系统光轴倾斜/转动中心的装置,更具体地说,涉及一种用于控制相机镜头光轴倾斜/转动中心位置并使光学系统产生倾斜/转动运动的致动器。
背景技术
手机照相功能日趋完善,手机照相机目前已具备自动对焦功能,手机照相机如何具备光学防抖动功能是一个急待解决的问题。光学防抖动的物理原理非常简单,就是利用光学镜头相对于图像传感器坐横向平动或绕镜头光轴倾斜运动 / 转动来实现防抖动功能。尽管传统的相机早已具备光学防抖动功能,且相关的技术和器件早已成熟并在市场出售,然而能够用于手机照相机里的光学防抖动技术依然还不成熟。主要原因是手机里的空间限制,使实现光学防抖动异常困难。已经公开的 US7725014 和 CN101384954A ,其技术重点是描述如何能够同时产生线性和倾斜运动(或称为转动)的致动器,并利用这两种运动来实现自动对焦和光学防抖动功能。专利 US2010/0080545A1 其技术发明的重点仍是关于如何利用致动器中的弹簧来做电极,为致动器提供电能。虽然上述的技术专利各自解决了一些问题,但还是存在很多其它问题。其中, US7725014 技术专利所描述的利用倾斜运动来实现防抖动功能,其光学镜头倾斜时的倾斜中心(或倾斜参考点,或称转动中心或转动轴)的位置是一个很重要的参数,其位置会严重影响防抖动功能的各个控制参数和防抖动效果。因此,需要知道其位置,这样才能实施精确的防抖控制。可是上述各个技术专利,并没有提出任何方法来控制倾斜时的倾斜中心(或倾斜参考点,或称转动中心或转动轴)位置。因此无法知道倾斜(或称转动)的中心位置,使利用倾斜(或称转动)来实现防抖动的难度大大提高,需要非常精密的软件来计算其瞬时的倾斜(或称转动)中心的位置,且防抖动的效果也相对较差;另外由于中心位置无法控制,使得许多情况下控制镜头转动时所需要的力矩很大,从而所需电能也很大,有时甚至会大到无法提供该所需电能(在手机应用的环境下),出现无法运动的情况。
发明内容
本发明要解决的技术问题在于,针对现有技术的致动器无法控制镜头转动中心位置的缺陷,提供一种控制光学系统光轴倾斜 / 转动中心位置的装置。
本发明的目的在于提供一种控制光学系统倾斜 / 转动中心位置的装置。本发明的另一目的在于 提供一个可以控制光学系统倾斜 / 转动中心位置并 使光学系统产生 倾斜 / 转动 的 致动器
为了实现上述目标,本发明提供了一种控制光学系统倾斜 / 转动中心位置的装置(见图 2 ),该装置包括外壳;
设置在所述外壳中的用于装载镜头的支架;
还包括两个连接在外壳和镜头支架上的第一弹簧系统和第二弹簧系统,其中所述任一弹簧系统皆为平面状弹簧系统并由至少一个片弹簧所组成,并且各个片弹簧的平面大致和其所组成的弹簧系统的平面平行;
所述第一弹簧系统的弹簧平面和第二弹簧系统的弹簧平面大致平行,且所述各平面弹簧系统的法线方向基本和镜头支架的中心轴线或镜头光学轴线平行;
所述第一弹簧系统,在沿镜头轴线方向的有效弹性系数远小于其在垂直于镜头轴线方向上的有效弹性系数;所述第二弹簧系统在各个方向上的有效弹性系数则远小于第一弹簧系统在相同方向上的有效弹性系数。
在本发明所述的控制光学系统 倾斜 / 转动中心的装置中,镜头支架连接臂是指所述弹簧系统或所述子弹簧用于连接镜头支架的部分,如图 1a 所示。镜头支架连接臂不发生形变,也没有弹性力发生。仅仅起连接镜头支架和所述弹簧系统或所述子弹簧的作用。外壳连接臂 ( 或称固定臂)是指所述弹簧系统或所述子弹簧用于连接外壳和 / 或固定于外壳的附件上的部分,如图 1a 所示。固定臂也如同支架连接臂一样,不发生形变,也没有弹性力发生。弹簧臂是指连接镜头支架连接臂和固定臂之间的部分,如图 1a 所示。是发生形变产生弹性力的位置。
弹簧系统的有效弹性系数定义如下:如图 1a 所示为一个由四个子片弹簧所组成的平面弹簧系统。坐标系统如图所定义,是以弹簧系统在没有变形的状况下,以镜头支架连接臂所组成的连接环的几何中心或圆心为坐标原点。一般地镜头支架上有一个圆孔以使镜头可以通过并安装其上。所以,弹簧系统的支架连接臂一般以该圆孔的圆心呈对称分布。(注:对称性在这里仅为叙述方便,在本发明里并不是一个必要的条件)。 XY 平面和弹簧平面重合,而 Z 轴在垂直于弹簧平面的方向上。在本发明装置中,弹簧系统的所有支架连接臂会连接在镜头支架上,由于镜头支架是刚性的,从而所有支架连接臂是一致地运动或移动。弹簧系统的外壳连接臂都会连接到外壳或连接到固定在外壳的附件上,所以弹簧系统的所有外壳连接臂都是固定不动的。当有力作用于镜头支架时,镜头支架会沿力的方向移动,从而导致弹簧系统的所有支架连接臂产生于镜头支架一致的位移,致使所有子弹簧的弹簧臂产生相对应的形变,产生弹性力。在静力学平衡的情况下,所有弹簧臂产生的弹性力的合力 f 和作用力 F 的大小相等而方向相反。在这情况下,我们可按胡克定律来定义有效弹性系数。如图 1b 示,当作用力沿弹簧系统平面法线 z 方向时,镜头支架在该力作用下带动弹簧系统的所有支架连接臂沿 z 移动距离 Z, 由胡克定律得到
Fz=-fz=-kz
则 kz 定义为弹簧系统沿 Z 向的有效弹性系数。同理,如图 1c 所示,当作用力是沿弹簧系统平面上任一方向时,镜头支架连接臂沿该方向的位移可以分解为由 X 和 Y 方向的位移来组成。按力的分解规律,作用力也可分解为在 X 和 Y 方向的分力,并且该分力可由胡克定律得到
Fx=-fx=-kx ( X 方向)
Fy=-fy=-ky ( Y 方向)
则 kx 和 ky 定义为弹簧系统沿 X 和 Y 方向上的有效弹性系数。 fx , fy 分别为弹性力合力在 X 和 Y 方向上的分量。
在本发明所述的控制光学系统倾斜 / 转动中心的装置中,所述第一弹簧系统的各个片弹簧的支架连接臂,其连接在镜头支架的各部分,可以同在一垂直于镜头光轴的平面上,也可以不同在该平面上。对于第二弹簧系统,上述同样的特征条件也成立。如图 4 所示。在本发明所述的控制光学系统倾斜 / 转动中心的装置中,所述第一弹簧系统的各个片弹簧在连接到外壳的部分,可以同在一垂直于镜头光轴的平面上,也可以不同在该平面上。对于第二弹簧系统,上述同样的特征条件也成立。如图 4 所示。
在本发明所述的控制光学系统倾斜 / 转动中心的装置中,所述弹簧系统可以由各种具备一定弹性的材料所组成,如塑料片,金属片,薄膜或厚膜材料,陶瓷片等;也可以由一些多种材料结合而成的复合材料,但具备一定弹性的材料所组成,如柔系电路板等。见图 5 。
在本发明所述的控制光学系统倾斜 / 转动中心位置的装置中,所述第一弹簧系统可以由一个以上平面弹簧系统所组成,并且所有子平面弹簧系统都大致互相平行且大致垂直于镜头的轴线方向。在此情况下,所有子平面弹簧系统的合成效果可以等效于一个虚拟的平面弹簧系统,其弹簧平面位置在第一弹簧系统的弹簧平面位置上,而不是一个实在的物体平面。同样的特征可应用于第二弹簧系统。见图 6 。
在本发明所述的控制光学系统倾斜 / 转动中心的装置中,所述第二弹簧系统可以由片弹簧以外其它形式的弹簧系统所组成,并且所组成的第二弹簧系统在各个方向上的有效弹性系数显着地小于第一弹簧系统在对应方向上的有效弹性系数。见图 7 。
本发明的另一个目的是提供一个可以控制光学系统倾斜 / 转动中心位置并 使光学系统产生 倾斜 / 转动 的 致动器,该致动器(见图 8 )包括 外壳;
一个镜头支架,至少部分地被安置在所述外壳内;
以及多个致动器,设置在所述镜头支架周围,与所述镜头支架耦合;
其中至少一个致动器包含至少一个磁铁、至少一个线圈,且至少一个致动器包含至少一个轭铁;
两个连接在外壳和镜头支架上的第一弹簧系统和第二弹簧系统,其中所述任一弹簧系统皆为平面状弹簧系统并由至少一个片弹簧所组成,并且各个片弹簧的平面大致和其所组成的弹簧系统的平面平行;
所述第一弹簧系统的弹簧平面和第二弹簧系统的弹簧平面大致平行,且所述各平面弹簧系统的法线方向基本和镜头支架的中心轴线或镜头光学轴线平行;
所述第一弹簧系统,在沿镜头轴线方向的有效弹性系数显着地小于其在垂直于镜头轴线方向上的有效弹性系数;所述第二弹簧系统在各个方向上的有效弹性系数则显着地小于第一弹簧系统在相同方向上的有效弹性系数。
在本发明所述的控制光学系统倾斜 / 转动中心位置并 使光学系统产生 倾斜 / 转动的致动器中, 所述轭铁可以由一个或多个导磁体组成。所述致动器中至少一个致动器可以独立配有至少一个轭铁,或至少与另一个致动器共同配有至少一个轭铁。并且所述致动器可以被独立控制,产生独立的运动。如果在对各致动器实施控制的过程中,准确地控制各致动器协调地独立运动,使各致动器的运动相对一致,则可实现镜头支架的线性运动,而如果线性运动的方向是沿着镜头支架的轴线方向,则此线性运动可用于调整镜头和图像传感器的相对距离,从而实现对焦功能。如果各致动器的独立运动不一致,则可使镜头支架出现转动或倾斜运动,该转动或倾斜运动可用于照相系统的图像稳定功能或照相系统的振动补偿功能。另外,所述致动器还可以被独立地精确控制,使各致动器可随时实现一致性的独立运动或不一致性的独立运动,并在两种运动模式间转换,从而实现镜头支架的独立的线性运动或独立转动或摆动,或两种运动的复合运动,从而可以实现独立自动对焦,独立振动补偿,或两种功能同时进行。
在本发明所述的控制光学系统倾斜 / 转动中心位置并 使光学系统产生 倾斜 / 转动的的致动器中 ,所述第一弹簧系统的各个片弹簧的支架连接臂,其连接在镜头支架的各部分,可以同在一垂直于镜头光轴的平面上,也可以不同在该平面上。对于第二弹簧系统,上述同样的特征条件也成立。如图 4 所示。在本发明所述的控制光学系统倾斜 / 转动中心的装置中,所述第一弹簧系统的各个片弹簧在连接到外壳的部分,可以同在一垂直于镜头光轴的平面上,也可以不同在该平面上。对于第二弹簧系统,上述同样的特征条件也成立。如图 4 所示。
在本发明所述的控制光学系统倾斜 / 转动中心位置并 使光学系统产生 倾斜 / 转动的的致动器中 ,所述弹簧系统可以由各种具备一定弹性的材料所组成,如塑料片,金属片,薄膜或厚膜材料,陶瓷片等;也可以由一些多种材料结合而成的复合材料,但具备一定弹性的材料所组成,如柔系电路板等。见图 5 。另外,如果所选用的弹性材料为金属或其它导电材料或导电复合材料,则此弹簧系统还可用来作为电极或电连接部件,引导电流或电压到线圈或致动器上。
在本发明所述的控制光学系统倾斜 / 转动中心位置并 使光学系统产生 倾斜 / 转动的的致动器中 ,所述第一弹簧系统可以由一个以上平面弹簧系统所组成,并且所有子平面弹簧系统都大致互相平行且大致垂直于镜头的轴线方向。在此情况下,所有子平面弹簧系统的合成效果可以等效于一个虚拟的平面弹簧系统,其弹簧平面位置在第一弹簧系统的弹簧平面位置上,而不是一个实在的物体平面。同样的特征可应用于第二弹簧系统。见图 6 。
在本发明所述的控制光学系统倾斜 / 转动中心位置并 使光学系统产生 倾斜 / 转动的致动器中 ,所述第二弹簧系统可以由片弹簧以外其它形式的弹簧系统所组成,并且所组成的第二弹簧系统在各个方向上的有效弹性系数显着地小于第一弹簧系统在对应方向上的有效弹性系数。见图 7 。
在本发明所述的控制光学系统倾斜 / 转动中心的致动器中, 其中的致动器可以至少一个是压电致动器或换能器。
附图说明
下面将结合附图及实施例对本发明作进一步说明,附图中 :
图 1 是本发明中弹簧系统的有效弹性系数的定义示意图; ( 图 a 所示 XY 轴把以上弹簧分为 ABCD4 个相同部分,有 4 个相同的连接支臂,弹簧臂,外壳连接臂,图 a 中以镜头支架连接臂所组成的连接环的几何中心或圆心为坐标原点 ; 图 d 中 以镜头支架连接臂所组成的连接环的几何中心或圆心为坐标原点)
图 2 本发明控制光学系统倾斜 / 转动中心的装置的装配结构示意图
图 3 镜头支架的旋转中心
图 4 弹簧系统的支架连接臂和外壳连接臂的连接方式示意图( 图 a 中弹簧的镜头支架连接臂与 Holder 同一端面连接箭头所示位置,在此图示中为四处,实际连接有可能大于或小于四处粘接位;图 b 中,弹簧的镜头支架连接臂与 Holder 非端面的任意位置连接,在此列中为 H older 侧方向圆柱面,在此图示中为四处,实际连接有可能大于或者小于四处粘接位 );
图 5 弹簧系统的材料结构示意图( a 的材质为塑料; b 的材质为陶瓷; c 的材质为金属);
图 6 复合弹簧系统的结构示意图;
图 7 片弹簧系统以外的其它弹簧系统的可能实施例结构示意图;
图 8 本发明所述的控制光学系统倾斜 / 转动中心的致动器 结构示意图(图 c 为 本发明所述的 控制光学系统倾斜 / 转动中心位置并使光学系统产生倾斜 / 转动的致动器 结构示意图 );
具体实施方式
为了对本发明的目的,技术特征和效果有更加清楚的理解,现对照附图详细说明本发明的具体实施方式。
如图 2 为本发明所述控制光学系统倾斜 / 转动中心的装置的一个实施例的结构示意图。本发明所述的一种控制光学系统倾斜 / 转动中心的装置,包括外壳 200 ;用于装载镜头的支架 201 ,支架设置在外壳中;在某些实施方式里,所述镜头支架 201 可部分地延伸出外壳外;还包括第一弹簧系统 202 和第二弹簧系统 203 ,所述弹簧系统固定在所述支架 201 和外壳 200 上。
由于本发明装置中的弹簧系统在镜头支架的轴线方向上(或光轴方向)的有效弹性系数显著地小于垂直该轴平面上的有效弹性系数(或说 X 和 Y 方向上的有效弹性系数),所以当有力作用于所述镜头支架上时,所述支架很容易产生沿轴线方向 ( 即沿 Z 方向 ) 的位移,然而在垂直于轴线方向的平面上的各方向上(或说沿 X 和 Y 方向上)则难于产生位移。换句话说,所述支架在沿支架轴线方向上的位移会显着地大于沿 X 和 Y 方向上的位移。
又由于本发明装置中,第二弹簧系统在各个方向上的有效弹性系数都显着地小于第一弹簧系统在对应方向上的有效弹性系数,所以所述镜头支架在所述第二弹簧系统端的支架部分在 X 和 Y 方向产生的位移将会显着地大于所述镜头支架在所述第一弹簧系统端部分在 X 和 Y 方向产生的位移。两个运动的合成结果是镜头支架发生倾斜或称转动。如图 3 所示, 301 和 306 分别为第一弹簧系统和第二弹簧系统; 302 和 304 为弹簧臂; 303 为镜头支架的倾斜 / 转动中心; 305 为镜头支架。如果第一弹簧系统的 X 和 Y 方向的有效弹性系数设计成非常大,而第二弹簧系统在对应方向上的有效弹性系则非常小,那么合成运动的效果,就好比是第一弹簧系统端是固定不动,而第二弹簧系统端则这绕第一弹簧系统端转动。其总的结果是镜头支架绕一中心 303 作倾斜 / 转动而该中心的位置在第一弹簧系统附近。在第一弹簧系统的有效弹性系数远远大于第二弹簧系统的有效弹性系数时,该倾斜 / 转动中心就基本上在第一弹簧系统的弹簧平面上。反之,若第二弹簧系统的有效弹性系数比第一弹簧系统的有效弹性系数大,则倾斜 / 转动中心就会偏向第二弹簧系统。所以通过精心调整两个弹簧系统的有效弹性系数的比例,我们可以按需要设计出镜头支架的倾斜 / 转动中心的位置。
前面仅就本发明装置的功能和原理做一定性描述。按力学方程,在把作用力所产生的力矩效应考虑进后,详细的仿真计算也揭示了和前述相同的镜头支架倾斜 / 转动的物理图像。
从前面的描述可见,本发明的控制光学系统倾斜 / 转动中心的装置中,由于第一和第二弹簧系统在沿镜头支架轴线方向上(或称沿 Z 方向)的有效弹性系数显着地小于其在垂直方向(即沿 X 和 Y 方向)的有效弹性系数,所以用很小的力就可以使镜头支架沿 Z 方向位移。这个位移特别重要,因为,我们可以利用这个位移来调整光学镜头和图像传感器的相对距离,从而实现对焦功能(无论是手动对焦还是自动对焦)。另一方面,由于镜头支架的倾斜 / 转动中心的位置变成可设计的,因此,我们可以预知该位置,使得镜头支架的倾斜 / 转动运动模式变得简单得多而且可以预测。这一点对利用镜头倾斜 / 转动运动来实现防抖动功能的相机来说很重要,因为镜头倾斜 / 转动的可预测性减低了控制的难度,提高了可靠性,省却了计算其瞬时 倾斜(或称转动)中心的位置的程序,使控制速度更快更准确。另外,根据计算的结果显示,如果采用两个相同的第一第二弹簧系统,其产生倾斜 / 转动所需的能量将显着地大于本发明装置为产生相同倾斜 / 转动所需的能量。
图 4 是本发明所述的弹簧系统的支架连接臂和外壳连接臂的连接方式实施例子。如图 4a 所示,四个独立的片弹簧组成一个弹簧系统, 401 为外壳连接臂, 402 为弹簧臂, 403 为支架连接臂, 404 为镜头支架。如图所示,其中支架连接臂 403 和镜头支架 404 的连接部分在同一平面上。在本实施例中,该平面为镜头支架的其中一个端面。在实际应用中,该平面不必然在镜头支架的端面上。图 4b 是另一个实施例子,其中支架连接臂 403 并没有连接到镜头支架的端面上,而是镜头支架上的一部分。虚线 405 是支架连接臂 403 在镜头支架上的所连接的面。如图所示,各个片弹簧的 403 部分在镜头支架上的连接面不在同一平面。只要这些平面相距不是很远,各个片弹簧的总效果还是可以用一个虚拟平面弹簧来代替。上述所有实施方式都可应用于第一和第二弹簧系统。可同时应用,也可不同时应用。
图 5 是弹簧材料的各种实施例子。本发明中所述的弹簧材料,可以选用任何具备一定弹性的材料,制作成片状,如图 5a , 5b, 和 5c 所示 , 可选用材料包括但不限于塑料,陶瓷,金属,高分子聚合物等。换句话说,任何材料,只要设计的弹簧工作范围在其材料的弹性形变区内,都可用于本发明所述弹簧系统。特别地,一些复合材料也可用来做弹簧系统。如图 5d 所示,是其中一种复合材料,其复合方式(但不限于)是在一层绝缘层材料上镀上一层金属膜,使其上方可导电。如果弹簧系统采用金属或可导电材料(包括复合材料),则弹簧系统还可用于电极或电连接部件,为致动器接入电流或电压。
图 6 是复合弹簧系统的一个实施例子。本发明所述的第一第二弹簧系统中,任一弹簧系统都可有数个子平面弹簧系统所组成。如图所示, 601 和 602 是两个实际存在的平面弹簧系统,两者都连接到镜头支架 604 上。在弹性形变范围内,数学上可证明这个弹簧系统的总效应等效于另外一个平面弹簧 603 ,见图。即可以在 603 的位置放置一个平面弹簧 603 ,而其力学效果将和 601 加 602 一样。所以,在本发明所述的一些其它实施例中,对于平面弹簧超出两个以上实施例子,第一和第二弹簧系统是指像 603 这样的虚拟平面弹簧,是一个数学上的概念弹簧,而不是一个实体弹簧。
除了上述各种弹簧系统的实施例子,图 7 还显示了本发明所述第二弹簧系统的另外一些实施例子。 701 和 703 是镜头支架, 702 是环状回旋弹簧, 704 是柱状螺旋弹簧。只要设计和材料选用适当,这些弹簧都可以实现第二弹簧系统所需要的功能。即在各个方向上的有效弹性系数显着地小于第一弹簧系统在相同方向上的有效弹性系数。
图 8 是本发明所述的一种可控制光学系统倾斜 / 转动中心位置并使光学系统产生 倾斜 / 转动 的 致动器的一个实施例子。其具体实施方式如下。图 8a 所述致动器的外观图。图 8b 是所述外观图沿对角线方向的横切面图。图 8c 是结构装配示意图。图中可见,所述 镜头致动器包括外壳 801 和 802 ;镜头支架 803 被安置在所述外壳内;在某些实施方式中,镜头支架可部分地延伸出外壳;镜头支架内有通孔(可带螺旋或不带)用于安装镜头或其它光学器件;在镜头支架的周围安装有一个以上致动器,每个致动器分别由线圈 804 ,磁铁 805 ,和轭铁 806 所组成,其中所述线圈 804 固定于镜头支架 803 上,而磁铁 805 则固定轭铁 806 内,轭铁又固定在外壳 801 或 / 和 802 上。线圈和磁铁面对面地并排着,而且在通电时会产生沿着镜头支架轴线方向 ( 即 Z 方向 ) 的力。多个致动器可以对称地安装在镜头支架周围,也可以不对称地安装在镜头支架的周围。在镜头支架的两端或靠近边端地带,有两个弹簧系统 807 和 808 于所述镜头支架和外壳相连接 , 其特征在于,所述任一弹簧系统皆为平面状弹簧系统并由至少一个片弹簧所组成,并且各个片弹簧的平面大致和其所组成的弹簧系统的平面平行;其特征还在于所述 807 的弹簧平面和 808 的弹簧平面大致平行,且所述各平面弹簧系统的法线方向基本和镜头支架的中心轴线或镜头光学轴线大致平行;其特征还在于所述弹簧 807 ,在沿镜头轴线方向的有效弹性系数远小于其在垂直于镜头轴线方向上的有效弹性系数;所述 808 弹簧系统在各个方向上的有效弹性系数则远小于 807 弹簧系统在相同方向上的有效弹性系数。 809 和 810 是绝缘垫片。
在本实施例中,由于多个致动器安置在镜头支架四周,可独立产生沿 Z 方向的力,并推动镜头支架与致动器的耦合部分运动。所以通过细致地控制所述致动器,可以使原本各自独立的致动器的运动变成协调一致的运动。从而实现镜头支架的线性运动,而如果线性运动的方向是沿着镜头支架的轴线方向,则此线性运动可用于调整镜头和图像传感器的相对距离,从而实现对焦功能。另外,通过细致地控制各个致动器,可以使镜头支架出现转动或倾斜运动,该转动或倾斜运动可用于照相系统的图像稳定功能或照相系统的振动补偿功能。
在本实施例中,前述各种关于弹簧系统的实施例子都可应用于本发明所述的可以控制光学系统倾斜 / 转动中心位置并使光学系统产生 倾斜 / 转动 的 致动器上。
上面结合附图对本发明的实施例进行了描述,但是本发明并不局限于上述的具体实施方式,上述的具体实施方式仅仅是示意性的,而不是限制性的,本领域的普通技术人员在本发明的启示下,在不脱离本发明宗旨和权利要求所保护的范围情况下,还可做出很多形式,这些均属于本发明的保护之内。

Claims (23)

  1. 一种控制光学系统倾斜/转动中心的装置,包括
    一个外壳;
    至少部分地被安置在所述外壳中的用于装载镜头的支架;
    其特征在于,还包括两个连接在外壳和镜头支架上的第一弹簧系统和第二弹簧系统,其中所述任一弹簧系统皆为平面状弹簧系统并由至少一个片弹簧所组成,并且各个片弹簧的平面大致和其所组成的弹簧系统的平面平行;
    所述第一弹簧系统的弹簧平面和第二弹簧系统的弹簧平面大致平行,且所述各平面弹簧系统的法线方向基本和镜头支架的中心轴线或镜头光学轴线平行;
    所述第一弹簧系统,在沿镜头轴线方向的有效弹性系数显着地小于其在垂直于镜头轴线方向上的有效弹性系数;所述第二弹簧系统在沿各个方向上的有效弹性系数则显着地小于第一弹簧系统在相同方向上的有效弹性系数。
  2. 根据权利要求1所述的控制光学系统倾斜/转动中心的装置,其特征在于所述第一弹簧系统(和/或第二弹簧系统)的各个片弹簧在连接到镜头支架的部分,可以同在一垂直于镜头光轴的平面上,也可以不同在该平面上。
  3. 根据权利要求1所述的控制光学系统倾斜/转动中心的装置,其特征在于所述第一弹簧系统(和/或第二弹簧系统)的各个片弹簧在连接到外壳的部分,可以同在一垂直于镜头光轴的平面上,也可以不同在该平面上。
  4. 根据权利要求1所述的控制光学系统倾斜/转动中心的装置,其特征在于所述弹簧系统可以由各种具备一定弹性的材料所组成,如塑料片,金属片,薄膜或厚膜材料,陶瓷片,高分子聚合物等;也可以由一些多种材料结合而成的复合材料,但具备一定弹性的材料所组成,如柔性电路板等。
  5. 根据权利要求1所述的控制光学系统倾斜/转动中心的装置,其特征在于所述第一和/或第二弹簧系统皆由一个以上平面弹簧系统所组成。
  6. 根据权利要求5所述的控制光学系统倾斜/转动中心的装置,其特征在于所述第一弹簧系统和/或第二弹簧系统的所有子平面弹簧系统都大致互相平行且大致垂直于镜头的轴线方向。
  7. 根据权利要求5所述的控制光学系统倾斜/转动中心的装置,其特征还在于所述第一弹簧系统和/或第二弹簧系统的弹簧平面是一概念性的虚拟平面,并不是一实在的物体平面。
  8. 根据权利要求1所述的控制光学系统倾斜/转动中心的装置,其特征在于所述第二弹簧系统可以由片弹簧以外其它形式的弹簧系统所组成,并且所组成的第二弹簧系统在各个方向上的有效弹性系数显着地小于第一弹簧系统在对应方向上的有效弹性系数。
  9. 一种可以控制光学系统倾斜/转动中心位置并使光学系统产生倾斜/转动的致动器,包括
    一个外壳;
    一个镜头支架,至少部分地被安置在所述外壳内;以及
    多个致动器,设置在所述镜头支架周围,与所述镜头支架耦合;
    其中至少一个致动器包含至少一个磁铁、至少一个线圈,且至少一个致动器包含至少一个轭铁;
    两个连接在外壳和镜头支架上的第一弹簧系统和第二弹簧系统,其中所述任一弹簧系统皆为平面状弹簧系统并由至少一个片弹簧所组成,并且各个片弹簧的平面大致和其所组成的弹簧系统的平面平行;
    其特征还在于所述第一弹簧系统的弹簧平面和第二弹簧系统的弹簧平面大致平行,且所述各平面弹簧系统的法线方向基本和镜头支架的中心轴线或镜头光学轴线平行;
    其特征还在于所述第一弹簧系统,在沿镜头轴线方向的有效弹性系数显着地小于其在垂直于镜头轴线方向上的有效弹性系数;所述第二弹簧系统在各个方向上的有效弹性系数则显着地小于第一弹簧系统在相同方向上的有效弹性系数。
  10. 根据权利要求9所述的致动器,其特征在于,所述致动器可以被独立控制,产生独立的运动,从而使镜头支架可以实现倾斜/转动或摆动。
  11. 根据权利要求9至10中任一权利要求所述的致动器,其特征在于,所述各致动器可以被协调控制,使所述各致动器独立地进行基本相同的运动以带动所述镜头支架作线性运动。
  12. 根据权利要求9至10中任一权利要求所述的致动器,其特征在于,所述致动器可以被精确控制,使各致动器可随时实现一致性的独立运动或不一致的独立运动,并在两种运动模式间转换,从而实现镜头支架的独立的线性运动或独立倾斜/转动或摆动,或两种运动的复合运动。
  13. 根据权利要求8所述的致动器,其特征在于,所述致动器中至少一个致动器独立配有至少一个轭铁,或与至少另一个致动器共同配有至少一个轭铁。
  14. 根据权利要求8所述的致动器,其特征在于,所述轭铁由一个或多个导磁体组成。
  15. 根据权利要求9至14中任一权利要求所述的控制光学系统倾斜/转动中心的装置,其特征在于所述第一弹簧系统(和/或第二弹簧系统)的各个片弹簧在连接到镜头支架的部分,可以同在一垂直于镜头光轴的平面上,也可以不同在该平面上。
  16. 根据权利要求9至14中任一权利要求所述的控制光学系统倾斜/转动中心的装置,其特征在于所述第一弹簧系统(和/或第二弹簧系统)的各个片弹簧在连接到外壳的部分,可以同在一垂直于镜头光轴的平面上,也可以不同在该平面上。
  17. 根据权利要求9至14中任一权利要求所述的控制光学系统倾斜/转动中心的装置,其特征在于所述弹簧系统可以由各种具备一定弹性的材料所组成,如塑料片,金属片,薄膜或厚膜材料,陶瓷片等;也可以由一些多种材料结合而成的复合材料,但具备一定弹性的材料所组成,如柔系电路板等。
  18. 根据权利要求9至14中任一权利要求所述的控制光学系统倾斜/转动中心的装置,其特征在于所述第一和/或第二弹簧系统皆由一个以上平面弹簧系统所组成。
  19. 根据权利要求18所述的控制光学系统倾斜/转动中心的装置,其特征在于所述第一弹簧系统和/或第二弹簧系统的所有子平面弹簧系统都大致互相平行且大致垂直于镜头的轴线方向。
  20. 根据权利要求18所述的控制光学系统倾斜/转动中心的装置,其特征还在于所述第一弹簧系统和/或第二弹簧系统的弹簧平面是一概念性的物理平面,并不是一实在的物体平面。
  21. 根据权利要求9至14中任一权利要求所述的控制光学系统倾斜/转动中心的装置,其特征在于所述第二弹簧系统可以由片弹簧以外其它形式的弹簧系统所组成,并且所组成的第二弹簧系统在各个方向上的有效弹性系数显着地小于第一弹簧系统在对应方向上的有效弹性系数。
  22. 根据权利要求17所述的致动器,其特征在于,其中所述具备一定弹性材料为金属或其它具备导电性能的材料时,可被用作为所述致动器或线圈的电极或电连接部件,导引电流或电压。
  23. 根据权利要求9至22中任一权利要求所述的致动器,其特征在于,所述致动器可以至少一个是压电致动器或换能器。
PCT/CN2011/078613 2010-08-20 2011-08-19 控制光学系统倾斜或转动中心的装置及致动器 WO2012022270A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US13/817,455 US20130208369A1 (en) 2010-08-20 2011-08-19 Apparatus and actuator for controlling the inclination or rotation center of an optical system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201010258699.3A CN102375292B (zh) 2010-08-20 2010-08-20 控制光学系统倾斜或转动中心的装置及致动器
CN201010258699.3 2010-08-20

Publications (2)

Publication Number Publication Date
WO2012022270A1 true WO2012022270A1 (zh) 2012-02-23
WO2012022270A9 WO2012022270A9 (zh) 2012-05-10

Family

ID=45604785

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2011/078613 WO2012022270A1 (zh) 2010-08-20 2011-08-19 控制光学系统倾斜或转动中心的装置及致动器

Country Status (3)

Country Link
US (1) US20130208369A1 (zh)
CN (1) CN102375292B (zh)
WO (1) WO2012022270A1 (zh)

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9134503B2 (en) * 2012-07-06 2015-09-15 Apple Inc. VCM OIS actuator module
CN102829953B (zh) * 2012-09-14 2015-03-18 爱佩仪光电技术(深圳)有限公司 一种快速及全面检测镜头致动器的方法
CN103869577B (zh) * 2012-12-11 2017-12-15 新思考电机有限公司 透镜驱动装置、照相机及携带式终端装置
CN103454750A (zh) * 2013-08-29 2013-12-18 上海比路电子有限公司 一种光学防抖马达
CN105492952A (zh) * 2013-09-27 2016-04-13 郑国星 镜头驱动装置
CN103855903B (zh) * 2014-03-18 2016-07-06 深圳市世尊科技有限公司 马达
CN103905704A (zh) * 2014-04-10 2014-07-02 惠州友华微电子科技有限公司 一种电子设备、摄像头及光学图像稳定驱动装置
WO2016004561A1 (zh) * 2014-07-07 2016-01-14 爱佩仪光电技术(深圳)有限公司 防抖驱动马达中螺丝座的线圈生产方法
CN106707659A (zh) * 2015-07-17 2017-05-24 三鸣科技(香港)有限公司 微型镜头驱动装置及电子影像捕捉设备
US11536930B2 (en) * 2016-05-24 2022-12-27 Microsoft Licensing Technology, LLC. Suspended actuator
CN208143351U (zh) * 2017-06-07 2018-11-23 台湾东电化股份有限公司 光学系统
CN107315302B (zh) * 2017-08-25 2020-03-31 高瞻创新科技有限公司 一种具有多自由度的电路板及防抖微型致动器
CN107450251B (zh) * 2017-08-25 2022-12-02 高瞻创新科技有限公司 一种弹簧系统及采用该弹簧系统的镜头防抖装置
US10948682B2 (en) * 2018-03-23 2021-03-16 Amazon Technologies, Inc. Self-aligning lens holder and camera assembly
KR102508530B1 (ko) 2018-05-09 2023-03-09 삼성전자주식회사 떨림 보정 기능을 제공하는 카메라 모듈 및 이를 포함하는 전자 장치
TWI681424B (zh) * 2018-06-11 2020-01-01 海華科技股份有限公司 光學元件、光學組件及光學模組
TWI697019B (zh) 2018-06-11 2020-06-21 海華科技股份有限公司 支架、光學組件及光學模組
GB201816544D0 (en) * 2018-10-10 2018-11-28 Cambridge Mechatronics Ltd Sma actuators for optical image stabilisation
TWI668381B (zh) * 2018-11-19 2019-08-11 國立成功大學 平面彈簧及旋轉式串聯彈性致動器
WO2020258093A1 (zh) * 2019-06-26 2020-12-30 瑞声光学解决方案私人有限公司 镜头组件
EP3837583B1 (en) * 2019-10-03 2022-02-09 Actuator Solutions GmbH Cylindrical actuator subassembly with flexure-based linear guidance mechanism

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1831576A (zh) * 2005-03-11 2006-09-13 株式会社思考技研 透镜驱动装置
CN1952713A (zh) * 2005-10-20 2007-04-25 株式会社理光 透镜镜筒,照相机以及携带型信息终端装置
CN101359084A (zh) * 2008-07-31 2009-02-04 宁波金诚泰电子有限公司 一种照相机透镜驱动机构用簧片
US7640741B2 (en) * 2005-11-16 2010-01-05 Konica Minolta Holdings, Inc. Driving apparatus
WO2010029316A2 (en) * 2008-09-12 2010-03-18 Cambridge Mechatronics Limited Optical image stabilisation

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100252009B1 (ko) * 1997-09-25 2000-04-15 윤종용 마이크로 진동구조물과 그 공진주파수 조절방법 및 이를 이용한 마이크로 엑츄에이터
US8009371B2 (en) * 2005-09-02 2011-08-30 Nidec Sankyo Corporation Lens driving apparatus
US7725014B2 (en) * 2007-08-29 2010-05-25 Hong Kong Applied Science and Technology Research Institute Company Limited Actuator for linear motion and tilting motion
JP2010066286A (ja) * 2008-09-08 2010-03-25 Nidec Sankyo Corp レンズ駆動装置
JP5181208B2 (ja) * 2008-12-01 2013-04-10 セイコーインスツル株式会社 駆動モジュールおよび電子機器

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1831576A (zh) * 2005-03-11 2006-09-13 株式会社思考技研 透镜驱动装置
CN1952713A (zh) * 2005-10-20 2007-04-25 株式会社理光 透镜镜筒,照相机以及携带型信息终端装置
US7640741B2 (en) * 2005-11-16 2010-01-05 Konica Minolta Holdings, Inc. Driving apparatus
CN101359084A (zh) * 2008-07-31 2009-02-04 宁波金诚泰电子有限公司 一种照相机透镜驱动机构用簧片
WO2010029316A2 (en) * 2008-09-12 2010-03-18 Cambridge Mechatronics Limited Optical image stabilisation

Also Published As

Publication number Publication date
WO2012022270A9 (zh) 2012-05-10
US20130208369A1 (en) 2013-08-15
CN102375292A (zh) 2012-03-14
CN102375292B (zh) 2016-05-11

Similar Documents

Publication Publication Date Title
WO2012022270A1 (zh) 控制光学系统倾斜或转动中心的装置及致动器
CN110784650B (zh) 防抖摄像模组及电子设备
CN211266959U (zh) 摄像头模组、摄像装置及电子设备
JP7369275B2 (ja) 光学式手ぶれ補正モジュール及び電子装置
WO2021159391A1 (zh) 摄像头模组、摄像装置及电子设备
WO2015192786A1 (zh) 一种可同时实现光学变焦和光学防抖的对焦马达
WO2014029296A1 (zh) 一种可实现镜头可控倾斜的音圈马达结构
CN110958374A (zh) 多轴光学防抖对焦装置、摄像模块以及电子设备
WO2006119693A1 (fr) Systeme de focalisation automatique
KR102106525B1 (ko) 카메라 액추에이터 및 이를 포함하는 카메라 모듈
WO2008029671A1 (fr) Unité de lentille d'imagerie et dispositif d'imagerie
CN109495679A (zh) 防抖结构、防抖系统及具有其的摄像装置
CN113114901B (zh) 拍摄装置及电子设备
CN113259548A (zh) 摄像头模组、摄像装置及电子设备
WO2022161242A1 (zh) 摄像模组和电子设备
CN110955095A (zh) 多轴光学防抖和对焦装置、摄像模块和电子设备
JP5843760B2 (ja) レンズ制御装置
CN211577628U (zh) 多轴光学防抖和对焦装置、摄像模块和电子设备
WO2023280222A1 (zh) 镜头组件和电子设备
US20220229266A1 (en) Lens autofocus actuating device
WO2023221334A1 (zh) 光学元件驱动装置、摄像装置及移动终端
WO2022257341A1 (zh) 一种连续变焦光学镜头驱动装置
CN212029014U (zh) 一种微型防抖云台
WO2023226276A1 (zh) 一种微型防抖云台相机模组
CN211180364U (zh) 多轴光学防抖和对焦装置、相机模块和电子设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11817797

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 13817455

Country of ref document: US

122 Ep: pct application non-entry in european phase

Ref document number: 11817797

Country of ref document: EP

Kind code of ref document: A1