WO2012022128A1 - 多天线系统下上行控制信令的发送方法和装置 - Google Patents

多天线系统下上行控制信令的发送方法和装置 Download PDF

Info

Publication number
WO2012022128A1
WO2012022128A1 PCT/CN2011/070079 CN2011070079W WO2012022128A1 WO 2012022128 A1 WO2012022128 A1 WO 2012022128A1 CN 2011070079 W CN2011070079 W CN 2011070079W WO 2012022128 A1 WO2012022128 A1 WO 2012022128A1
Authority
WO
WIPO (PCT)
Prior art keywords
uplink control
control signaling
antenna
terminal
time domain
Prior art date
Application number
PCT/CN2011/070079
Other languages
English (en)
French (fr)
Inventor
杨维维
梁春丽
戴博
王瑜新
喻斌
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Publication of WO2012022128A1 publication Critical patent/WO2012022128A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0014Three-dimensional division
    • H04L5/0023Time-frequency-space
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0023Systems modifying transmission characteristics according to link quality, e.g. power backoff characterised by the signalling
    • H04L1/0027Scheduling of signalling, e.g. occurrence thereof
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/02Arrangements for detecting or preventing errors in the information received by diversity reception
    • H04L1/06Arrangements for detecting or preventing errors in the information received by diversity reception using space diversity
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals

Definitions

  • the present invention relates to the field of communications, and in particular to a method and apparatus for transmitting uplink control signaling in a multi-antenna system. Background technique
  • FIG. 1 is a schematic structural diagram of a basic frame structure in an LTE system according to the related art. As shown in FIG. 1, the frame structure is divided into radio frames. Four levels of half frame, subframe, time slot and symbol, wherein one radio frame has a length of 10 ms, and one radio frame is composed of two fields, each half frame has a length of 5 ms, and one field has five sub-frames. Frame composition, the length of each subframe is lms, - one subframe consists of two slots, each slot has a length of 0.5ms.
  • one slot contains seven uplink/downlink symbols of length 66.7 ⁇ ⁇ , where the cyclic prefix length of the first symbol is 5.21 ⁇ ⁇ , and the cyclic prefix length of the other six symbols It is 4.69 (xs.)
  • one slot contains six lengths of 66.7 ⁇ ⁇ .
  • LTE defines a plurality of PUCCH formats (formats; format;), including PUCCH format 1/la/lb and format 2/2a/2b, where format 1 is used to send a UE's SR (Scheduling Request) signal, format la And lb are respectively used to feed back a 1-bit ACK/NACK response message and a 2-bit ACK/NACK response message, and format 2 is used to transmit CSI (Channel States Information; including CQI (Channel Quality Information); ), PMI (Precoding Matrix Indicator), and RI ( Rank Indication); 2a is used to send CSI and 1-bit ACK/NACK response message, format2b is used to send CSI information and 2-bit ACK/NACK response message, and format 2a/2b is only used for scenes with cyclic prefix as regular cyclic prefix.
  • format 1 is used to send a UE's SR (Scheduling Request) signal
  • format la And lb are respectively used to feed back a 1-
  • the UE In the LTE system, in the FDD (Frequency Division Duplex) system, since the uplink and downlink subframes are corresponding, when the PDSCH contains only one transport block, the UE needs to feed back a 1-bit ACK/NACK response. The message, when the PDSCH includes two transport blocks, the UE needs to feed back a 2-bit ACK/NACK response message. In the TDD (Time Division Duplex) system, since the uplink and downlink subframes are not corresponding, That is, the ACK/NACK response message corresponding to the multiple downlink subframes needs to be sent on the PUCCH channel of one uplink subframe, and the downlink subframe set corresponding to the uplink subframe constitutes a "bundling window".
  • TDD Time Division Duplex
  • the core idea of the method is to ACK/NACK the transport block corresponding to each downlink subframe that needs to be fed back in the uplink subframe. The message is logically ANDed. If a downlink subframe has 2 transport blocks, the UE should feed back a 2-bit ACK/NACK response message. If each subframe has only one transport block, the UE should feed back a 1-bit ACK/NACK response message.
  • the other is the multiplexing (channel with channel selection) method.
  • the core idea of the method is to use different PUCCH channels and different modulation symbols on the channel to indicate different downlink subframes that need to be fed back in the uplink subframe.
  • the ACK/NACK fed back by the multiple transport blocks of the downlink subframe is logically ANDed (channel Bundling) and then channel selected, and then transmitted using PUCCH format lb.
  • channel Bundling channel Bundling
  • LTE-A Long Term Evolution Advanced
  • CA Carrier Aggregation
  • the LTE-A uses the carrier aggregation technology
  • the UE when the UE configures four downlink component carriers, the UE needs to feed back the ACK/NACK of the four downlink component carriers. If the UE needs to feed back the ACK/NACK of each codeword in the case of MIMO, when the UE configures 4 downlink component carriers, the UE needs to feed back 8 ACK/NACKs.
  • ACK/NACK response message feedback For LTE-A terminals: If the 4-bit ACK/NACK response message is supported at most, the channel selection method is used; if the feedback of more than 4 bits ACK/NACK response message is supported, A method of using a DFT-S-OFDM structure. For the convenience of the following description, this is based on this
  • the DFT-s-OFDM structure is called the physical uplink control channel format 3.
  • the inventors have found that, in the current LTE-A system, a method of transmitting uplink control signaling using the physical uplink control channel format 3 under a multi-antenna system is not given.
  • a primary object of the present invention is to provide a method and apparatus for transmitting uplink control signaling in a multi-antenna system, to at least solve the problem that the physical uplink control channel format 3 cannot be transmitted in a multi-antenna system in the prior art. The problem of uplink control signaling.
  • a method for transmitting uplink control signaling in a multi-antenna system including: acquiring, by a terminal, a time domain orthogonal resource indicated by an index; The domain orthogonal resource sends uplink control signaling. Further, the uplink control signaling includes: acknowledgment/negative ACK/NACK response information and/or channel state information sent by the DFT-s-OFDM structure.
  • the foregoing uplink control signaling includes: the terminal uses the time domain orthogonal resource indicated by the first index to extend the uplink control signaling to an OFDM symbol for transmitting the uplink control signaling in a current time slot, And transmitting, by using the first antenna, the foregoing terminal, by using the time domain orthogonal resource indicated by the second index, to extend the uplink control signaling to the OFDM symbol used for transmitting the uplink control signaling in the current time slot, and using the Two antennas are sent.
  • the uplink control signaling further includes: the terminal uses different time domain orthogonal resources or different frequency domain orthogonal resources to obtain uplink demodulation reference signals on the first antenna and the second antenna; and the terminal demodulates the uplink The reference signal is mapped to an OFDM symbol for transmitting a demodulation reference signal corresponding to the first antenna and the second antenna described above for transmission.
  • the uplink control signaling further includes: if the uplink measurement reference signal needs to be sent at the same time, the terminal mapping the uplink measurement reference signal to the OFDM symbol corresponding to the first antenna and the second antenna for transmitting the measurement reference signal send.
  • the acquiring, by the terminal, the time domain orthogonal resource indicated by the index includes: the terminal acquiring the index from the received signaling; and the terminal locally searching for the time domain orthogonal resource corresponding to the index.
  • the obtaining, by the terminal, the index from the received signaling includes: obtaining, by the terminal, all required indexes by using signaling, or acquiring, by using the foregoing signaling, one index of all the required indexes, and The other indexes in all the foregoing indexes are obtained by using the index and the predetermined offset value; wherein the signaling is one of the following: high-level configuration signaling, implicit signaling, or displayed signaling.
  • the foregoing time domain orthogonal resource includes one of the following: a DFT sequence, a Walsh sequence, or a CAZAC sequence.
  • the foregoing uplink control signaling includes: if the terminal uses the 4 antennas to transmit the uplink control signaling, the transmission of the 4 antennas is implemented by 2 antenna virtualization.
  • a terminal for a multi-antenna system comprising: an obtaining unit, configured to acquire a time domain orthogonal resource indicated by an index; and a sending unit, configured to use on a different antenna Different time domain orthogonal resources are used to send uplink control signaling.
  • the sending unit includes: a first sending module, configured to extend, by using a time domain orthogonal resource indicated by the first index, the uplink control signaling to an OFDM symbol used by the current time slot for transmitting the uplink control signaling, And transmitting, by using the first antenna, the second sending module, configured to extend, by using the time domain orthogonal resource indicated by the second index, the uplink control signaling to the OFDM symbol used to transmit the uplink control signaling in the current time slot. Up, and send using the second antenna.
  • the foregoing sending unit further includes: a third sending module, configured to acquire uplink demodulation reference signals on the first antenna and the second antenna by using different time domain orthogonal resources or different frequency domain orthogonal resources, and Mapping the uplink demodulation reference signal to an OFDM symbol corresponding to the first antenna and the second antenna for transmitting a demodulation reference signal for transmission; if And measuring the reference signal, and mapping the uplink measurement reference signal to the OFDM symbol corresponding to the first antenna and the second antenna for transmitting the measurement reference signal for transmitting.
  • the acquiring unit includes: an obtaining module, configured to obtain the index from the received signaling; and a searching module, configured to locally search for the time domain orthogonal resource corresponding to the index.
  • the present invention uses different time domain orthogonal resources to transmit uplink control signaling using the physical uplink control channel format 3 on different antennas, and solves the problem that the physical uplink control channel format cannot be transmitted in the multi-antenna system.
  • the problem of the uplink control signaling of 3, and the technical effect of accurately reporting the uplink control signaling of the physical uplink control channel format 3 is achieved.
  • FIG. 1 is a schematic diagram of a basic frame structure in an LTE system according to the related art
  • FIG. 2 is a preferred flowchart of a method for transmitting uplink control signaling in a multi-antenna system according to an embodiment of the present invention
  • 3 is another preferred flowchart of a method for transmitting uplink control signaling in a multi-antenna system according to an embodiment of the present invention
  • FIG. 1 is a schematic diagram of a basic frame structure in an LTE system according to the related art
  • FIG. 2 is a preferred flowchart of a method for transmitting uplink control signaling in a multi-antenna system according to an embodiment of the present invention
  • 3 is another preferred flowchart of a method for transmitting uplink control signaling in a multi-antenna system according to an embodiment of the present invention
  • FIG. 1 is a schematic diagram of a basic frame structure in an LTE system according to the related art
  • FIG. 2 is a preferred flowchart of a method
  • FIG. 4 is a flowchart of a method for transmitting uplink control signaling in a multi-antenna system according to an embodiment of the present invention
  • a preferred flow chart
  • FIG. 5 is a further preferred flowchart of a method for transmitting uplink control signaling in a multi-antenna system according to an embodiment of the present invention
  • FIG. 6 is a DFT-S according to an embodiment of the present invention.
  • a preferred schematic diagram of symbols in an OFDM structure (physical uplink control channel format 3);
  • Figure 7 is a DFT-S-OFDM structure (physical uplink control channel format according to an embodiment of the present invention)
  • FIG. 8 is still another preferred schematic diagram of symbols in the DFT-S-OFDM structure (physical uplink control channel format 3) according to an embodiment of the present invention
  • FIG. 9 is a DFT-S according to an embodiment of the present invention.
  • FIG. 10 is a symbol in the DFT-s-OFDM structure (physical uplink control channel format 3) according to an embodiment of the present invention.
  • Fig. 11 is a block diagram showing the structure of a terminal for a multi-antenna system according to an embodiment of the present invention.
  • FIG. 2 is a flowchart of a preferred method for transmitting uplink control signaling in a multi-antenna system according to an embodiment of the present invention, including: Step S202: A terminal acquires a time domain orthogonal resource indicated by an index;
  • the uplink control signaling includes: ACK (Acknowledgement)/NACK (Negative Acknowledgement) information and/or channel state information sent by the DFT-s-OFDM structure.
  • ACK Acknowledgement
  • NACK Negative Acknowledgement
  • the uplink control signaling of the channel format 3 solves the problem that the uplink control signaling of the physical uplink control channel format 3 cannot be transmitted in the multi-antenna system, thereby achieving the accurate reporting of the physical uplink control channel format.
  • the physical uplink control channel format 3 may be an uplink control channel grid specified by the protocol.
  • the sending, by the terminal, the uplink control signaling by using different time domain orthogonal resources on different antennas includes: the terminal expanding the uplink control signaling to the current time slot by using the time domain orthogonal resource indicated by the first index.
  • the sending, by the terminal, the uplink control signaling by using different time domain orthogonal resources on different antennas further includes: the terminal acquiring the first antenna by using different time domain orthogonal resources or different frequency domain orthogonal resources.
  • the terminal mapping the uplink demodulation reference signal to an OFDM symbol corresponding to the first antenna and the second antenna for transmitting a demodulation reference signal for transmission.
  • the first antenna and the second antenna are only an example, and the above-mentioned step 4 can be applied to multiple antennas, for example, 4 antennas.
  • the sending, by the terminal, the uplink control signaling by using different time domain orthogonal resources on different antennas further includes: if the uplink measurement reference signal needs to be sent at the same time, the terminal mapping the uplink measurement reference signal to the first antenna The transmission is performed on an OFDM symbol corresponding to the second antenna for transmitting the measurement reference signal.
  • the acquiring, by the terminal, the time domain orthogonal resource indicated by the index comprises: acquiring, by the terminal, the index from the received signaling; the terminal locally searching for the time domain orthogonal resource corresponding to the index.
  • the terminal can conveniently acquire time-domain orthogonal resources, and can transmit specific time-domain orthogonal resources without signaling, but only transmit and time-domain positive through signaling.
  • the index corresponding to the resource is allocated, thereby further effectively utilizing the wireless resource, and ensuring the correctness of the time domain orthogonal resource used.
  • the base station and the terminal may pre-configure the same mapping table in each local area by interaction, wherein in the mapping table, the index and the time domain orthogonal resource have a corresponding relationship.
  • the base station only needs to deliver the signaling carrying the index without transmitting specific time domain orthogonal resources, thereby saving transmission resources and improving transmission efficiency.
  • the obtaining, by the terminal, the index from the received signaling includes: acquiring, by the terminal, all required indexes by using signaling; or acquiring, by the signaling, one index of all the required indexes, and The other indexes in all the foregoing indexes are obtained by using the index and the predetermined offset value; wherein the signaling is one of the following: high-level configuration signaling, implicit signaling, or displayed signaling.
  • the foregoing terminal acquires the time domain orthogonal resource indicated by the index, pre-processing the uplink control signaling to obtain an uplink control signaling sequence, where the pre-processing includes: channel coding, scrambling, modulation, and pre-processing coding.
  • the time domain orthogonal resource includes one of the following: a DFT sequence, a Walsh sequence, or
  • the sending, by the terminal, uplink control signaling by using different time domain orthogonal resources on different antennas includes: if the terminal uses 4 antennas to send the uplink control signaling, implementing the above 4 antennas by using 2 antenna virtualization Send.
  • Embodiment 2 The following describes a method for transmitting uplink control signaling by using a terminal 2 antenna as an example, and FIG. 3 is another preferred flowchart of a method for transmitting uplink control signaling in a multiple antenna system according to an embodiment of the present invention. As shown in FIG.
  • the method includes: Step S302: Pre-processing uplink control signaling that needs to be transmitted; Step S304: The terminal uses an orthogonal resource indicated by the index 1 ) ... w ( n ⁇ 1 to uplink control signaling sequence Expanded to n OFDM symbols used for transmitting uplink control signaling in the current time slot, and transmitted by antenna 1; the terminal uses orthogonal resources indicated by the index
  • the uplink control signaling sequence is extended to the n OFDM symbols used for transmitting the uplink control signaling in the current time slot, and is transmitted by using the antenna 2;
  • Step S306 The antenna 1 and the antenna 2 are The uplink demodulation reference signal needs to be sent, and the terminal obtains an uplink demodulation reference signal on different antennas by using different time domain orthogonal resources or frequency domain orthogonal resources, and then the terminal respectively maps the uplink demodulation reference signal to Transmitting on the OFDM symbol corresponding to the antenna 1 and the antenna 2 for transmitting the demodulation reference signal;
  • Step S308 If the uplink measurement reference signal needs to be simultaneously transmitted, the terminal mapping the uplink measurement reference signal to the antenna 1 and The antenna 2 transmits on the OFDM symbol corresponding to the transmission measurement reference signal.
  • the step S302 is to perform channel coding, scrambling, modulation, and precoding transformation on the uplink control signaling to be transmitted to obtain an uplink control signaling sequence.
  • the index in step S304 is a high-level configuration letter. The above-mentioned orthogonal resource ⁇ 1 ) ...
  • Embodiment 3 is based on the terminal 2 antenna, and the number of symbols in each slot is 6 Specifically, a method for transmitting uplink control signaling is described.
  • the extended cyclic prefix is used, and FIG. 6 is a preferred one of the symbols in the DFT-s-OFDM structure (physical uplink control channel format 3) according to the embodiment of the present invention.
  • FIG. 7 is a symbol in the DFT-s-OFDM structure (physical uplink control channel format 3) of the embodiment of the present invention.
  • FIG. 4 is still another preferred flowchart of a method for transmitting uplink control signaling in a multi-antenna system according to an embodiment of the present invention. As shown in FIG. 4, the uplink according to this embodiment is shown.
  • the method for transmitting control signaling includes the following steps: Step S402: The uplink control signaling o that the terminal needs to transmit.
  • Embodiment 4 The following describes the uplink control signaling based on the scenario in which the antenna of the terminal 2 and the number of symbols in each slot are 7. In the scenario of this embodiment, it is assumed that the conventional cyclic prefix is used, and the number of symbols in each slot is 7; there is no need to transmit SRS; the number of symbols occupied by the DM RS is 2, and is continuously distributed in each On the second and third symbols of the time slots, FIG. 8 is implemented in the present invention.
  • FIG. 10 Yet another preferred schematic of the symbols in the DFT-s-OFDM structure (physical uplink control channel format 3), as shown in Figure 8 (or distributed over the first and fifth symbols of each time slot, Figure 9 is an embodiment of the present invention
  • Table 2 Table 2
  • FIG. 5 is a flowchart of still another preferred method for transmitting uplink control signaling in a multi-antenna system according to an embodiment of the present invention.
  • Step S506 The foregoing terminal generates an uplink demodulation reference signal on different antennas in one of the following manners;
  • FIG. 11 is a schematic structural diagram of a terminal of a multi-antenna system according to an embodiment of the present invention, as shown in the figure.
  • the method includes: an obtaining unit 1102, configured to acquire a time domain orthogonal resource indicated by an index, and a sending unit 1104, configured to be connected to the acquiring unit 1102, configured to use different time domain orthogonal resources on different antennas.
  • Send uplink control signaling includes: ACK/NACK response information and/or channel state information sent by the DFT-S-OFDM structure.
  • the uplink control signaling of the channel format 3 solves the problem of the uplink control signaling of the physical uplink control channel format 3 that cannot be transmitted in the multi-antenna system, thereby achieving the accurate reporting of the physical uplink control channel format 3
  • the technical effect of uplink control signaling Preferably, the sending unit 1104 includes: a first sending module 11041, configured to extend, by using a time domain orthogonal resource indicated by the first index, the uplink control signaling to an OFDM symbol used by the current time slot for transmitting the uplink control signaling.
  • the sending unit 1104 further includes: a third sending module 11043, configured to acquire the foregoing on the first antenna and the second antenna by using different time domain orthogonal resources or different frequency domain orthogonal resources.
  • the terminal can more efficiently uplink the uplink demodulation reference signal.
  • the obtaining unit 1102 includes: an obtaining module 11021, configured to obtain the foregoing index from the received high-level signaling; the searching module 11022 is connected to the obtaining module 11021, and configured to locally search for the foregoing time domain corresponding to the index. Orthogonal resources.
  • the terminal can conveniently acquire time-domain orthogonal resources, and can transmit specific time-domain orthogonal resources without signaling, but only transmit and time-domain positive through signaling.
  • the index corresponding to the resource is allocated, thereby further effectively utilizing the wireless resource, and ensuring the correctness of the time domain orthogonal resource used.
  • the base station and the terminal may pre-configure the same mapping table in each locality by interaction, wherein in the mapping table, the index and the time domain orthogonal resources have a corresponding relationship. In this way, the base station only needs to deliver the signaling carrying the index without transmitting specific time domain orthogonal resources, thereby saving transmission resources and improving transmission efficiency.
  • the foregoing uplink control signaling is preprocessed to obtain an uplink control signaling sequence, where the preprocessing includes: channel coding, adding 4 special, modulation, and Precoding.
  • the foregoing time domain orthogonal resource comprises one of the following: a DFT sequence, a Walsh sequence or a CAZAC sequence.
  • the uplink control signaling of the physical uplink control channel format 3 is transmitted on the uplink control channel.
  • the sending, by the sending unit 1104, in the foregoing terminal, using the different time domain orthogonal resources to send the uplink control signaling on different antennas includes: if the terminal uses the 4 antennas to send the uplink control signaling, pass the 2 antennas. Virtualization implements the transmission of the above 4 antennas.
  • the computing device may be implemented by program code executable by the computing device, such that they may be stored in the storage device by the computing device and, in some cases, may be different from the order herein. Perform the steps shown or described, or They are separately fabricated into individual integrated circuit modules, or a plurality of modules or steps thereof are fabricated into a single integrated circuit module.
  • the invention is not limited to any specific combination of hardware and software. The above is only the preferred embodiment of the present invention, and is not intended to limit the present invention, and various modifications and changes can be made to the present invention. Any modifications, equivalent substitutions, improvements, etc. made within the scope of the present invention are intended to be included within the scope of the present invention.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Quality & Reliability (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Radio Transmission System (AREA)

Description

多天线系统下上 4亍控制信令的发送方法和装置 技术领域 本发明涉及通信领域, 具体而言, 涉及一种多天线系统下上行控制信令 的发送方法和装置。 背景技术
LTE ( Long Term Evolution, 长期演进)系统是第三代伙伴组织的重要计 划, 图 1是根据相关技术的 LTE系统中基本帧结构的结构示意图, 如图 1所 示, 帧结构分为无线帧、 半帧、 子帧、 时隙和符号四个等级, 其中, 一个无 线帧的长度为 10ms, —个无线帧由两个半帧组成, 每个半帧的长度为 5ms, 一个半帧由 5个子帧组成, 每个子帧的长度为 lms, —个子帧由两个时隙构 成, 每个时隙的长度为 0.5ms。 当 LTE系统釆用常规循环前缀时,一个时隙包含 7个长度为 66.7μδ的上 /下行符号, 其中, 第一个符号的循环前缀长度为 5.21μδ, 其他 6个符号的循 环前缀长度为 4.69(xs。 当 LTE系统釆用扩展循环前缀时,一个时隙包含 6个长度为 66.7μδ的上
/下行符号, 其中, 每个符号的循环前缀长度均为 16.67μδ。 在 LTE的下行 HARQ ( Hybrid Automatic Repeat Request, 混合自动重传 请求) 中, PDSCH ( Physical Downlink Shared Channel, 物理下行共享信道) 的 ACK/NACK ( Acknowledgement/Negative Acknowledgement, 正确 /错误应 答消息) 应答消息, 当 UE ( User Equipment, 终端) 没有 PUSCH ( Physical Uplink Shared Channel,物理上行共享信道 )时,是在 PUCCH( Physical Uplink Control Channel, 物理上行控制信道) 上发送的。 LTE定义了多种 PUCCH format ( format, 格式;), 包括 PUCCH format 1/la/lb和 format 2/2a/2b, 其中 format 1用来发送 UE的 SR ( Scheduling Request,调度请求)信号, format la 和 lb分别用来反馈 1比特的 ACK/NACK应答消息和 2比特的 ACK/NACK 应答消息, format 2用来发送 CSI ( Channel States Information, 信道状态信 息; 包括 CQI ( Channel Quality Information, 信道质量信息;)、 PMI ( Precoding Matrix Indicator,预编码信息)以及 RI ( Rank Indication,秩指示信息;), format 2a用来发送 CSI和 1比特的 ACK/NACK应答消息, format2b用来发送 CSI 信息和 2比特的 ACK/NACK应答消息, format 2a/2b只用于循环前缀为常规 循环前缀的场景。
LTE系统中, 在 FDD ( Frequency Division Duplex, 频分双工) 系统中, 由于上下行子帧是——对应的, 所以当 PDSCH只包含一个传输块时, UE要 反馈 1比特的 ACK/NACK应答消息, 当 PDSCH包含两个传输块时, UE要 反馈 2比特的 ACK/NACK应答消息, 在 TDD ( Time Division Duplex, 时分 双工) 系统中, 由于上下行子帧的不是——对应的, 也就是说多个下行子帧 对应的 ACK/NACK应答消息需要在一个上行子帧的 PUCCH信道上发送, 其中上行子帧对应的下行子帧集合组成了 "bundling window"。 ACK/NACK应 答消息的发送方法有两种: 一种是 bundling (绑定方法), 该方法的核心思想 是把需要在该上行子帧反馈的各个下行子帧对应的传输块的 ACK/NACK应 答消息进行逻辑与运算, 如果一个下行子帧有 2个传输块, UE要反馈 2比 特的 ACK/NACK应答消息, 如果各个子帧只有一个传输块, UE要反馈 1比 特的 ACK/NACK应答消息; 另一种是 multiplexing ( multiplexing with channel selection, 信道选择)方法, 该方法的核心思想是利用不同的 PUCCH信道和 该信道上不同的调制符号来表示需要在该上行子帧反馈的下行子帧的不同反 馈状态, 如果下行子帧上有多个传输块, 那么先将下行子帧的多个传输块反 馈的 ACK/NACK进行逻辑与 (Spatial Bundling ) 后再进行信道选择, 然后 使用 PUCCH format lb发送。 为了满足高级国际电信联盟 ( International Telecommunication
Union-Advanced, 简称为 ITU- Advanced ) 的要求, 作为 LTE的演进标准的 高级长期演进 ( Long Term Evolution Advanced, 简称为 LTE-A ) 系统需要支 持更大的系统带宽 (最高可达 100MHz ), 并需要后向兼容 LTE现有的标准。 在现有的 LTE系统的基础上,可以将 LTE系统的带宽进行合并来获得更大的 带宽, 这种技术称为载波聚合 (Carrier Aggregation, 简称为 CA ) 技术, 该 技术能够提高 IMT- Advance系统的频谱利用率、 緩解频谱资源紧缺, 进而优 化频谱资源的利用。 为了获得更高的峰值频谱效率, LTE-A系统中, 上行支 持多根传输天线, 考虑到传输分集方式可以提高信道传输的可靠性, 改善接 收信号的信噪比, 所以针对 PUCCH信道多天线传输模式的讨论都是基于传 输分集方式的。 当 LTE-A釆用了载波聚合技术时, 当 UE配置了 4个下行分量载波时, UE需要反馈这 4个下行分量载波的 ACK/NACK。 如果在 MIMO情况下, UE需要反馈每个码字的 ACK/NACK,则当 UE配置了 4个下行分量载波时, UE需要反馈 8个 ACK/NACK。 目前关于 ACK/NACK应答消息反馈的结论 是: 对于 LTE-A的终端来说: 如果最多支持 4比特 ACK/NACK应答消息, 使用信道选择方法; 如果支持大于 4比特 ACK/NACK应答消息的反馈, 使 用 DFT-S-OFDM结构的方法。 为了便于后面描述, 在此将这种基于
DFT-s-OFDM结构的称为物理上行控制信道格式 3。 发明人发现: 在目前的 LTE-A系统中, 没有给出在多天线系统下发送釆 用了物理上行控制信道格式 3的上行控制信令的方法。 发明内容 本发明的主要目的在于提供一种多天线系统下上行控制信令的发送方法 和装置, 以至少解决现有技术中在多天线系统下无法发送的釆用了物理上行 控制信道格式 3的上行控制信令的问题。 根据本发明的一个方面, 提供了一种多天线系统下上行控制信令的发送 方法, 其包括: 终端获取由索引指示的时域正交资源; 上述终端在不同的天 线上使用不同的上述时域正交资源发送上行控制信令。 进一步地, 上述上行控制信令包括: 釆用 DFT-s-OFDM结构发送的确认 /否定 ACK/NACK应答信息和 /或信道状态信息。
上述上行控制信令包括: 上述终端使用第一索引指示的时域正交资源将上述 上行控制信令扩展到当前时隙用于传输上述上行控制信令的正交频分复用 OFDM符号上, 并使用第一天线发送; 上述终端使用第二索引指示的时域正 交资源将上述上行控制信令扩展到上述当前时隙中的用于传输上述上行控制 信令的 OFDM符号上, 并使用第二天线发送。
上述上行控制信令还包括: 上述终端使用不同的时域正交资源或不同的频域 正交资源得到上述第一天线和第二天线上的上行解调参考信号; 上述终端将 上述上行解调参考信号映射到与上述第一天线和第二天线对应的用于传输解 调参考信号的 OFDM符号上进行发送。 上述上行控制信令还包括: 如果需要同时发送上行测量参考信号, 则上述终 端将上述上行测量参考信号映射到与上述第一天线和第二天线对应的用于传 输测量参考信号的 OFDM符号上进行发送。 进一步地, 上述终端获取由索引指示的时域正交资源包括: 上述终端从 所接收到的信令中获取上述索引; 上述终端在本地查找与上述索引对应的上 述时域正交资源。 进一步地, 上述终端从所接收到的信令中获取上述索引包括: 上述终端 通过信令获取所有所需的索引; 或者上述终端通过上述信令获取上述所有所 需的索引中的一个索引, 并通过该索引与预定的偏移值获取上述所有所需的 索引中的其他索引; 其中, 上述信令为以下之一: 高层配置的信令、 隐含的 信令, 或者显示的信令。 进一步地, 上述时域正交资源包括以下之一: DFT序列、 Walsh序列或 者 CAZAC序列。
上述上行控制信令包括:如果上述终端使用 4天线来发送上述上行控制信令, 则通过 2天线虚拟化实现上述 4天线的发送。 根据本发明的另一方面, 提供了一种釆用多天线系统的终端, 其包括: 获取单元, 用于获取由索引指示的时域正交资源; 发送单元, 用于在不同的 天线上使用不同的上述时域正交资源发送上行控制信令。 进一步地, 上述发送单元包括: 第一发送模块, 用于使用第一索引指示 的时域正交资源将上述上行控制信令扩展到当前时隙用于传输上述上行控制 信令的 OFDM符号上, 并使用第一天线发送; 第二发送模块, 用于使用第二 索引指示的时域正交资源将上述上行控制信令扩展到上述当前时隙中的用于 传输上述上行控制信令的 OFDM符号上, 并使用第二天线发送。 进一步地, 上述发送单元还包括: 第三发送模块, 用于使用不同的时域 正交资源或不同的频域正交资源获取上述第一天线和第二天线上的上行解调 参考信号, 并将上述上行解调参考信号映射到与上述第一天线和第二天线对 应的用于传输解调参考信号的 OFDM符号上进行发送;如果需要同时发送上 行测量参考信号, 则将上述的上行测量参考信号映射到与上述第一天线和第 二天线对应的用于传输测量参考信号的 OFDM符号上进行发送。 进一步地, 上述获取单元包括: 获取模块, 用于从所接收到的信令中获 取上述索引; 查找模块, 用于在本地查找与上述索引对应的上述时域正交资 源。 通过本发明, 在不同的天线上使用不同的时域正交资源发送釆用物理上 行控制信道格式 3的上行控制信令, 解决了在多天线系统下无法发送的釆用 了物理上行控制信道格式 3的上行控制信令的问题, 进而达到了可以准确上 报釆用物理上行控制信道格式 3的上行控制信令的技术效果。 附图说明 此处所说明的附图用来提供对本发明的进一步理解, 构成本申请的一部 分, 本发明的示意性实施例及其说明用于解释本发明, 并不构成对本发明的 不当限定。 在附图中: 图 1是根据相关技术的 LTE系统中基本帧结构的示意图; 图 2是根据本发明实施例的多天线系统下上行控制信令的发送方法的一 种优选的流程图; 图 3是根据本发明实施例的多天线系统下上行控制信令的发送方法的另 一种优选的流程图; 图 4是根据本发明实施例的多天线系统下上行控制信令的发送方法的又 一种优选的流程图; 图 5是根据本发明实施例的多天线系统下上行控制信令的发送方法的又 一种优选的流程图; 图 6是才艮据本发明实施例的 DFT-S-OFDM结构(物理上行控制信道格式 3 ) 中的符号的一种优选的示意图; 图 7是才艮据本发明实施例的 DFT-S-OFDM结构(物理上行控制信道格式
3 ) 中的符号的另一种优选的示意图; 图 8是才艮据本发明实施例的 DFT-S-OFDM结构(物理上行控制信道格式 3 ) 中的符号的又一种优选的示意图; 图 9是才艮据本发明实施例的 DFT-S-OFDM结构(物理上行控制信道格式 3 ) 中的符号的又一种优选的示意图; 图 10是才艮据本发明实施例的 DFT-s-OFDM结构 (物理上行控制信道格 式 3 ) 中的符号的又一种优选的示意图; 图 11是才艮据本发明实施例的釆用多天线系统的终端的结构示意图。 具体实施方式 下文中将参考附图并结合实施例来详细说明本发明。 需要说明的是, 在 不冲突的情况下, 本申请中的实施例及实施例中的特征可以相互组合。 实施例 1 图 2是根据本发明实施例的多天线系统下上行控制信令的发送方法的一 种优选的流程图, 其包括: 步骤 S202, 终端获取由索引指示的时域正交资源;
上行控制信令。 优选的, 上述上行控制信令包括: 釆用 DFT-s-OFDM结构发送的 ACK ( Acknowledgement, 确认) /NACK ( Negative Acknowledgement, 否定)应 答信息和 /或信道状态信息。
道格式 3的上行控制信令, 解决了在多天线系统下无法发送的釆用了物理上 行控制信道格式 3的上行控制信令的问题, 进而达到了可以准确上报釆用物 理上行控制信道格式 3的上行控制信令的技术效果。 优选的, 物理上行控制信道格式 3可以为协议所规定的上行控制信道格 优选的, 上述终端在不同的天线上使用不同的时域正交资源发送上行控 制信令包括: 该终端使用第一索引指示的时域正交资源将上述上行控制信令 扩展到当前时隙用于传输上述上行控制信令的 OFDM ( Orthogonal Frequency Division Multiplexing, 正交频分复用)符号上, 并使用第一天线发送; 该终 端使用第二索引指示的时域正交资源将上述上行控制信令扩展到上述当前时 隙中的用于传输上述上行控制信令的 OFDM符号上, 并使用第二天线发送。 优选的, 上述终端在不同的天线上使用不同的时域正交资源发送釆上行 控制信令还包括: 该终端使用不同的时域正交资源或不同的频域正交资源获 取上述第一天线和第二天线上的上行解调参考信号; 上述终端将上述上行解 调参考信号映射到与上述第一天线和第二天线对应的用于传输解调参考信号 的 OFDM符号上进行发送。 当然,这里,第一天线和第二天线只是一个示例, 上述步 4聚可以适用于多个天线, 例如, 4才艮天线。 优选的, 上述终端在不同的天线上使用不同的时域正交资源发送上行控 制信令还包括: 如果需要同时发送上行测量参考信号, 该终端将上述上行测 量参考信号映射到与上述第一天线和第二天线对应的用于传输测量参考信号 的 OFDM符号上进行发送。 优选的, 上述终端获取由索引指示的时域正交资源包括: 该终端从所接 收到的信令中获取上述索引; 该终端在本地查找与上述索引对应的上述时域 正交资源。 通过这种信令配置的方式, 终端可以较为方便地获取时域正交资 源, 并且, 可以不需要通过信令来传输具体的时域正交资源, 而只是通过信 令传输了与时域正交资源对应的索引, 从而进一步有效地利用了无线资源, 保证了所使用的时域正交资源的正确性。 优选的, 基站与终端可以预先通过交互来在各自的本地配置相同的映射 表, 其中, 在该映射表中, 索引与时域正交资源均有——对应的关系。 通过 这种方式, 在交互时, 基站只需要下发携带索引的信令而不需要传输具体的 时域正交资源, 从而节省了传输资源, 提高了传输效率。 优选的, 上述终端从所接收到的信令中获取上述索引包括: 该终端通过 信令获取所有所需的索引; 或者该终端通过上述信令获取上述所有所需的索 引中的一个索引, 并通过该索引与预定的偏移值获取上述所有所需的索引中 的其他索引; 其中, 该信令为以下之一: 高层配置的信令、 隐含的信令, 或 者显示的信令。 优选的, 在上述终端获取由索引指示的时域正交资源之前, 对上述上行 控制信令进行预处理得到上行控制信令序列, 其中, 该预处理包括: 信道编 码、 加扰、 调制和预编码。 通过本实施例中的预处理步骤, 提高了上行控制 信令的传输正确性。 优选的, 上述时域正交资源包括以下之一: DFT序列、 Walsh序列或者
CAZAC序列。 通过不同的时域正交资源, 使得本发明可以适用于不同的场 景。 优选的, 上述终端在不同的天线上使用不同的上述时域正交资源发送上 行控制信令包括: 如果该终端使用 4天线来发送上述上行控制信令, 则通过 2天线虚拟化实现上述 4天线的发送。 实施例 2 以下以终端 2天线为例, 具体描述上行控制信令的发送方法, 图 3是根 据本发明实施例的多天线系统下上行控制信令的发送方法的另一种优选的流 程图, 如图 3所示, 其包括: 步骤 S302: 对需要传输的上行控制信令进行预处理; 步骤 S304:上述终端使用索引 指示的正交资源 1) … w(n ~1 将上行控制信令序列扩展到当前时隙用于传输上行控制信令的 n个 OFDM符 号上, 利用天线 1发送; 上述终端使用索引 指示的正交资源
[ ()) ^(1) ... 将上行控制信令序列扩展到当前时隙用于传输上行 控制信令的 n个 OFDM符号上, 利用天线 2发送; 步骤 S306: 上述天线 1和天线 2上还需要发送上行解调参考信号, 上述 终端通过不同的时域正交资源或者频域正交资源获得不同天线上的上行解调 参考信号, 然后, 该终端分别将上行解调参考信号映射到与上述天线 1和天 线 2对应的用于传输解调参考信号的 OFDM符号上进行发送; 步骤 S308: 如果需要同时发送上行测量参考信号时, 上述终端将上行测 量参考信号映射到与上述天线 1和天线 2对应的用于传输测量参考信号的 OFDM符号上发送。如果不需要同时发送上行测量参考信号,则忽略此步骤。 由于在 2天线上使用不同的时域正交资源发送上行控制信令, 解决了在 多天线系统下无法釆用物理上行控制信道格式 3发送上行控制信令的问题。 优选的, 步骤 S302是指对需要传输的上行控制信令进行信道编码, 加 扰, 调制, 预编码变换后得到上行控制信令序列; 优选的, 步骤 S304中的索引 , 是由高层配置的信令得到; 上述的 正交资源 ^1) … 是指 DFT序列或 Walsh序列或 CAZAC序列 或者通过上述序列扩展得到; 实施例 3 以下基于终端 2天线、 每个时隙内的符号数为 6的场景, 具体描述上行 控制信令的发送方法。 在本实施例的场景下, 個—设釆用扩展循环前缀, 图 6是才艮据本发明实施 例的 DFT-s-OFDM结构 (物理上行控制信道格式 3 ) 中的符号的一种优选的 示意图, 如图 6所示, 每个 slot (时隙) 内符号个数是 6; 需要发送 SRS ; DM RS所占的符号个数是 2 , 且连续分布在每个时隙的第 2个和第 3个符号 上 (或者分布在每个时隙的第 0个和第 5个符号上, 图 7是 居本发明实施 例的 DFT-s-OFDM结构 (物理上行控制信道格式 3 ) 中的符号的另一种优选 的示意图,如图 7所示),需要发送的上行控制信令是 o。, , ,其中, m≥4 , 釆用 2天线发送; 正交资源是釆用表 1所示的 Walsh序列, DM RS的序列是 r »(w = o,i,... i i)。
表 1
序列索引 序列
0 [i i i i]
1 [1 -1 1 - 1]
2 [1 -1 -1 1]
3 [1 1 -1 - 1] 图 4是根据本发明实施例的多天线系统下上行控制信令的发送方法的又 一种优选的流程图, 如图 4所示, 根据本实施例的上行控制信令的发送方法 包括如下步骤: 步骤 S402: 上述终端对需要传输的上行控制信令 o。, , 进行预处理 得到上行控制信令序列; 步骤 S404:上述终端使用索引 = 0指示的正交资源 [1 1 1 1]将上行控 制信令序列扩展到该时隙用于传输上行控制信令的 4个 OFDM符号上,用天 线 1发送;该终端使用索引 = 2指示的正交资源 [1 -1 1 -1]将上行控制信 令序列扩展到该时隙用于传输上行控制信令的 4个 OFDM符号上, 用天线 2 发送。 步骤 S406: 上述终端釆用以下的几种方式之一生成不同天线上的上行解 调参考信号; 上述天线 1上 DM RS符号上发送的分别是 , , , , 天线 2上发送的是 ) , ^n ^n 其中" = 0,1,···,11 ; 上述天线 1上 DM RS符号上发送的分别是 ("), , , , 天线 2上发送的是 ^, , , , 其中":0'1'…'1 1。 也就是说, 上述终端分别将各个天线上的上行解调参考信号映射到与各 天线对应的用于传输 DM RS的 OFDM符号上进行发送。 步骤 S408: 上述终端将 SRS映射到上述天线 1和天线 2对应的用于传 输 SRS的 OFDM符号上进行发送。 实施例 4 以下基于终端 2天线、 每个时隙内的符号数为 7的场景, 具体描述上行 控制信令的发送方法。 在本实施例的场景下, 假设釆用常规循环前缀, 每个 slot内符号个数是 7; 不需要发送 SRS; DM RS所占的符号个数是 2, 且连续分布在每个时隙 的第 2个和第 3个符号上,图 8是 居本发明实施例的 DFT-s-OFDM结构(物 理上行控制信道格式 3 ) 中的符号的又一种优选的示意图, 如图 8所示 (或 者分布在每个时隙的第 1个和第 5个符号上, 图 9是 居本发明实施例的 DFT-s-OFDM结构 (物理上行控制信道格式 3 ) 中的符号的又一种优选的示 意图, 如图 9所示; 或者分别在每个时隙的第 0个和第 6个符号上, 图 10 是才艮据本发明实施例的 DFT-s-OFDM结构 (物理上行控制信道格式 3 ) 中的 符号的又一种优选的示意图, 如图 10所示), 需要发送的上行控制信令是 ο0,ολ,...Οηι_λ, 其中, m≥4, 釆用 2天线发送; 正交资源是釆用表 2所示的 DFT 序列, DMRS的序列是 0 ( 7 = 0,1,...11)。 表 2
Figure imgf000013_0001
图 5是根据本发明实施例的多天线系统下上行控制信令的发送方法的又 一种优选的流程图, 如图 5所示, 根据本实施例的上行控制信令的发送方法 包括如下步 4聚: 步骤 S502: 上述终端对需要传输的上行控制信令 ' 1,'^-1进行预处理 得到上行控制信令序列; 步骤 S504: 上述终端使用索引 =Q指示的正交资源 ^ 1 1 1 将上 行控制信令序列扩展到该时隙用于传输上行控制信令的 5个 OFDM符号上, 利用天线 1发送; 该终端使用索引 =1指示的正交资源
「1 Ί
L 」将上行控制信令序列扩展到该时隙用于传输上 行控制信令的 5个 OFDM符号上, 利用天线 2发送。 步骤 S506: 上述终端釆用以下的几种方式之一生成不同天线上的上行解 调参考信号; 上述天线 1上 DM RS符号上发送的分别是 , , , , 天线 2上发送的是 ) , ^n ^n 其中" = 0,1,···,11 ; 上述天线 1上 DM RS符号上发送的分别是 ("), , , , 天线 2上发送的是 ^, , , , 其中" = 0,1,···,11 ; 也就是说, 上述终端分别将各个天线上的上行解调参考信号映射到与各 天线对应的用于传输 DM RS的 OFDM符号上进行发送。 实施例 5 本发明还提供了一种釆用多天线系统的终端,其可以使用上述实施例 1-4 中的发送方法来发送上行控制信令。 图 11是才艮据本发明实施例的釆用多天线系统的终端的结构示意图,如图
11所示, 其包括: 获取单元 1102 , 用于获取由索引指示的时域正交资源; 发 送单元 1104 , 与获取单元 1102相连, 用于在不同的天线上使用不同的上述 时域正交资源发送上行控制信令。 优选的, 上述上行控制信令包括: 釆用 DFT-S-OFDM结构发送的 ACK/NACK应答信息和 /或信道状态信息。
道格式 3的上行控制信令, 解决了在多天线系统下无法发送的釆用物理上行 控制信道格式 3的上行控制信令的问题, 进而达到了可以准确上报釆用物理 上行控制信道格式 3的上行控制信令的技术效果。 优选的, 发送单元 1104包括: 第一发送模块 11041 , 用于使用第一索引 指示的时域正交资源将上述上行控制信令扩展到当前时隙用于传输上述上行 控制信令的 OFDM符号上, 并使用第一天线发送所扩展的 OFDM符号; 第 二发送模块 11042 , 用于使用第二索引指示的时域正交资源将上述上行控制 信令扩展到上述当前时隙中的用于传输上述上行控制信令的 OFDM符号上, 并使用第二天线发送所扩展的 OFDM符号。 优选的, 发送单元 1104还包括: 第三发送模块 11043 , 用于在使用不同 的时域正交资源或不同的频域正交资源获取上述第一天线和第二天线上的上 行解调参考信号, 并将上述上行解调参考信号映射到与上述第一天线和第二 天线对应的用于传输解调参考信号的 OFDM符号上进行发送;如果需要同时 发送上行测量参考信号, 则将上述的上行测量参考信号映射到与上述第一天 线和第二天线对应的用于传输测量参考信号的 OFDM符号上进行发送。通过 使用不同的时域正交资源, 终端可以更有效地上 4艮上行解调参考信号。 优选的, 获取单元 1102包括: 获取模块 11021 , 用于从所接收到的高层 信令中获取上述索引; 查找模块 11022 , 与获取模块 11021相连, 用于在本 地查找与该索引对应的上述时域正交资源。 通过这种信令配置的方式, 终端 可以较为方便地获取时域正交资源, 并且, 可以不需要通过信令来传输具体 的时域正交资源, 而只是通过信令传输了与时域正交资源对应的索引, 从而 进一步有效地利用了无线资源, 保证了所使用的时域正交资源的正确性。 进一步, 基站与终端可以预先通过交互来在各自的本地配置相同的映射 表, 其中, 在该映射表中, 索引与时域正交资源均有——对应关系。 通过这 种方式, 在交互时, 基站只需要下发携带索引的信令而不需要传输具体的时 域正交资源, 从而节省了传输资源, 提高了传输效率。 优选的, 在上述终端获取由索引指示的时域正交资源之前, 对上述上行 控制信令进行预处理得到上行控制信令序列, 其中, 该预处理包括: 信道编 码、 加 4尤、 调制和预编码。 优选的, 上述时域正交资源包括以下之一: DFT序列、 Walsh序列或者 CAZAC序列。
上行控制信道上发送釆用物理上行控制信道格式 3的上行控制信令。 进一步地,上述终端中的发送单元 1104在不同的天线上使用不同的上述 时域正交资源发送上述上行控制信令包括: 如果上述终端使用 4天线来发送 上述上行控制信令, 则通过 2天线虚拟化实现上述 4天线的发送。 显然, 本领域的技术人员应该明白, 上述的本发明的各模块或各步骤可 以用通用的计算装置来实现, 它们可以集中在单个的计算装置上, 或者分布 在多个计算装置所组成的网络上, 可选地, 它们可以用计算装置可执行的程 序代码来实现, 从而, 可以将它们存储在存储装置中由计算装置来执行, 并 且在某些情况下, 可以以不同于此处的顺序执行所示出或描述的步 4聚, 或者 将它们分别制作成各个集成电路模块, 或者将它们中的多个模块或步骤制作 成单个集成电路模块来实现。 这样, 本发明不限制于任何特定的硬件和软件 结合。 以上所述仅为本发明的优选实施例而已, 并不用于限制本发明, 对于本 领域的技术人员来说, 本发明可以有各种更改和变化。 凡在本发明的^"神和 原则之内, 所作的任何修改、 等同替换、 改进等, 均应包含在本发明的保护 范围之内。

Claims

权 利 要 求 书 一种多天线系统下上行控制信令的发送方法, 其特征在于, 包括: 终端获取由索引指示的时域正交资源;
所述终端在不同的天线上使用不同的所述时域正交资源发送上行 控制信令。 根据权利要求 1所述的方法, 其特征在于, 所述上行控制信令包括: 釆用 DFT-s-OFDM结构发送的确认 /否定 ACK/NACK应答信息和 /或信 道状态信息。 根据权利要求 1所述的方法, 其特征在于, 所述终端在不同的天线上 使用不同的所述时域正交资源发送所述上行控制信令包括:
所述终端使用第一索引指示的时域正交资源将所述上行控制信令 扩展到当前时隙用于传输所述上行控制信令的正交频分复用 OFDM符 号上, 并使用第一天线发送;
所述终端使用第二索引指示的时域正交资源将所述上行控制信令 扩展到所述当前时隙中的用于传输所述上行控制信令的 OFDM符号 上, 并使用第二天线发送。 根据权利要求 3所述的方法, 其特征在于, 所述终端在不同的天线上 使用不同的所述时域正交资源发送所述上行控制信令还包括: 述第一天线和第二天线上的上行解调参考信号;
所述终端将所述上行解调参考信号映射到与所述第一天线和第二 天线对应的用于传输解调参考信号的 OFDM符号上进行发送。 根据权利要求 3所述的方法, 其特征在于, 所述终端在不同的天线上 使用不同的所述时域正交资源发送所述上行控制信令还包括:
如果需要同时发送上行测量参考信号, 则所述终端将所述上行测 量参考信号映射到与所述第一天线和第二天线对应的用于传输测量参 考信号的 OFDM符号上进行发送。
6. 根据权利要求 1所述的方法, 其特征在于, 所述终端获取由索引指示 的时域正交资源包括:
所述终端从所接收到的信令中获取所述索引;
所述终端在本地查找与所述索引对应的所述时 i或正交资源。
7 居权利要求 6所述的方法, 其特征在于, 所述终端从所接收到的信 令中获取所述索引包括:
所述终端通过信令获取所有所需的索引; 或者
所述终端通过所述信令获取所述所有所需的索引中的一个索引, 并通过该索引与预定的偏移值获取所述所有所需的索引中的其他索 引;
其中, 所述信令为以下之一: 高层配置的信令、 隐含的信令, 或 者显示的信令。
8. 根据权利要求 1至 7中任一项所述的方法, 其特征在于, 所述时域正 交资源包括以下之一: DFT序列、 Walsh序列或者 CAZAC序列。
9. 才艮据权利要求 1至 7中任一项所述的方法, 其特征在于, 所述终端在 不同的天线上使用不同的所述时域正交资源发送所述上行控制信令包 括:
如果所述终端使用 4天线来发送所述上行控制信令, 则通过 2天 线虚拟化实现所述 4天线的发送。
10. —种釆用多天线系统的终端, 其特征在于, 包括:
获取单元, 用于获取由索引指示的时域正交资源;
发送单元, 用于在不同的天线上使用不同的所述时域正交资源发 送上行控制信令。
11. 根据权利要求 10所述的终端, 其特征在于, 所述发送单元包括: 第一发送模块, 用于使用第一索引指示的时域正交资源将所述上 行控制信令扩展到当前时隙用于传输所述上行控制信令的 OFDM符号 上, 并使用第一天线发送; 第二发送模块, 用于使用第二索引指示的时域正交资源将所述上 行控制信令扩展到所述当前时隙中的用于传输所述上行控制信令的 OFDM符号上, 并使用第二天线发送。
12. 根据权利要求 11所述的终端, 其特征在于, 所述发送单元还包括: 第三发送模块, 用于使用不同的时域正交资源或不同的频域正交 资源获取所述第一天线和第二天线上的上行解调参考信号, 并将所述 上行解调参考信号映射到与所述第一天线和第二天线对应的用于传输 解调参考信号的 OFDM符号上进行发送; 如果需要同时发送上行测量 参考信号, 则将所述的上行测量参考信号映射到与所述第一天线和第 二天线对应的用于传输测量参考信号的 OFDM符号上进行发送。
13. 根据权利要求 10所述的终端, 其特征在于, 所述获取单元包括:
获取模块, 用于从所接收到的信令中获取所述索 I; 查找模块 ,用于在本地查找与所述索引对应的所述时域正交资源。
PCT/CN2011/070079 2010-08-16 2011-01-07 多天线系统下上行控制信令的发送方法和装置 WO2012022128A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201010258985.XA CN101917380B (zh) 2010-08-16 2010-08-16 多天线系统下上行控制信令的发送方法和装置
CN201010258985.X 2010-08-16

Publications (1)

Publication Number Publication Date
WO2012022128A1 true WO2012022128A1 (zh) 2012-02-23

Family

ID=43324768

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2011/070079 WO2012022128A1 (zh) 2010-08-16 2011-01-07 多天线系统下上行控制信令的发送方法和装置

Country Status (2)

Country Link
CN (1) CN101917380B (zh)
WO (1) WO2012022128A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101917380B (zh) * 2010-08-16 2016-06-15 中兴通讯股份有限公司 多天线系统下上行控制信令的发送方法和装置
CN102307082B (zh) * 2011-09-28 2014-03-19 电信科学技术研究院 一种上行控制信令的传输方法及装置
CA3047490C (en) 2016-12-23 2023-09-05 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Data transmission method and apparatus
CN109327292B (zh) * 2017-07-31 2021-08-03 普天信息技术有限公司 下行参考信号资源分配方法及装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101674162A (zh) * 2009-09-29 2010-03-17 中兴通讯股份有限公司 多天线系统中物理上行控制信道的数据加扰方法与装置
CN101686108A (zh) * 2008-09-22 2010-03-31 三星电子株式会社 利用多天线在多个信道上发送信息的方法
CN101741462A (zh) * 2009-12-14 2010-06-16 中兴通讯股份有限公司 解调参考信号动态循环移位参数的处理方法
CN101917380A (zh) * 2010-08-16 2010-12-15 中兴通讯股份有限公司 多天线系统下上行控制信令的发送方法和装置

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101651525B (zh) * 2008-08-15 2012-08-22 富士通株式会社 响应信号的传送资源分配方法、反馈方法和处理方法
CN101540631B (zh) * 2009-04-27 2014-03-12 中兴通讯股份有限公司 测量参考信号的多天线发送方法及装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101686108A (zh) * 2008-09-22 2010-03-31 三星电子株式会社 利用多天线在多个信道上发送信息的方法
CN101674162A (zh) * 2009-09-29 2010-03-17 中兴通讯股份有限公司 多天线系统中物理上行控制信道的数据加扰方法与装置
CN101741462A (zh) * 2009-12-14 2010-06-16 中兴通讯股份有限公司 解调参考信号动态循环移位参数的处理方法
CN101917380A (zh) * 2010-08-16 2010-12-15 中兴通讯股份有限公司 多天线系统下上行控制信令的发送方法和装置

Also Published As

Publication number Publication date
CN101917380A (zh) 2010-12-15
CN101917380B (zh) 2016-06-15

Similar Documents

Publication Publication Date Title
AU2021212111B2 (en) Uplink transmission method and corresponding equipment
US10153880B2 (en) Method for allocating PHICH and generating reference signal in system using single user MIMO based on multiple codewords when transmitting uplink
JP5694460B2 (ja) ワイヤレス通信システムにおける制御情報の符号化および多重化
CN106850151B (zh) 长期演进系统中用于上行链路重发的收发方法和装置
US9350575B2 (en) Method and apparatus for transmitting uplink control signaling and bearing uplink demodulation reference signal
CN102484568B (zh) 正确错误应答在物理上行控制信道上的反馈方法及系统
WO2014180185A1 (zh) 数据发送、接收方法、数据发送及接收端
JP2013541924A5 (zh)
CN101925113B (zh) 一种上行控制信道的传输处理方法及设备
WO2011085596A1 (zh) 一种多载波系统中物理上行控制信道资源的确定方法
WO2012019445A1 (zh) 一种确定物理上行控制信道资源的方法及系统
CN103178942A (zh) 信令传输方法、基站和用户设备
CN103384183A (zh) 一种上行控制信息传输方法及装置
WO2012155506A1 (zh) 一种小区间上行解调参考信号的信息交互方法和基站
WO2012155507A1 (zh) 一种信息反馈方法及用户设备
WO2012155499A1 (zh) 一种信道状态信息的发送方法和用户设备
US9031002B2 (en) Devices for sending and receiving feedback information
WO2012022105A1 (zh) 正确错误应答消息在物理上行控制信道上的发送方法及终端
CN102394685A (zh) 多天线系统上行控制信道的发送方法和系统
WO2011156992A1 (zh) 下行控制信息的发送方法和基站
JP2013537767A (ja) 非適応再送信の方法および装置
CN102045140B (zh) 一种利用上行子帧反馈确认/非确认信息的方法及终端
CN101964698A (zh) 多天线系统下应答信息的传输方法及用户设备
WO2013055095A2 (ko) 무선 통신 시스템에서 상향링크제어정보 송수신 방법 및 장치
CN102412883B (zh) 上行控制信息的发送方法和装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11817656

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11817656

Country of ref document: EP

Kind code of ref document: A1