WO2012022042A1 - 头戴式视觉增强系统及其训练方法 - Google Patents

头戴式视觉增强系统及其训练方法 Download PDF

Info

Publication number
WO2012022042A1
WO2012022042A1 PCT/CN2010/076154 CN2010076154W WO2012022042A1 WO 2012022042 A1 WO2012022042 A1 WO 2012022042A1 CN 2010076154 W CN2010076154 W CN 2010076154W WO 2012022042 A1 WO2012022042 A1 WO 2012022042A1
Authority
WO
WIPO (PCT)
Prior art keywords
stereoscopic
control circuit
eye
color image
image data
Prior art date
Application number
PCT/CN2010/076154
Other languages
English (en)
French (fr)
Inventor
李天行
李西峙
李西君
Original Assignee
浙江博望科技发展有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 浙江博望科技发展有限公司 filed Critical 浙江博望科技发展有限公司
Priority to PCT/CN2010/076154 priority Critical patent/WO2012022042A1/zh
Publication of WO2012022042A1 publication Critical patent/WO2012022042A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • G02B27/017Head mounted
    • G02B27/0172Head mounted characterised by optical features
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61HPHYSICAL THERAPY APPARATUS, e.g. DEVICES FOR LOCATING OR STIMULATING REFLEX POINTS IN THE BODY; ARTIFICIAL RESPIRATION; MASSAGE; BATHING DEVICES FOR SPECIAL THERAPEUTIC OR HYGIENIC PURPOSES OR SPECIFIC PARTS OF THE BODY
    • A61H5/00Exercisers for the eyes
    • A61H5/005Exercisers for training the stereoscopic view
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61HPHYSICAL THERAPY APPARATUS, e.g. DEVICES FOR LOCATING OR STIMULATING REFLEX POINTS IN THE BODY; ARTIFICIAL RESPIRATION; MASSAGE; BATHING DEVICES FOR SPECIAL THERAPEUTIC OR HYGIENIC PURPOSES OR SPECIFIC PARTS OF THE BODY
    • A61H2201/00Characteristics of apparatus not provided for in the preceding codes
    • A61H2201/16Physical interface with patient
    • A61H2201/1602Physical interface with patient kind of interface, e.g. head rest, knee support or lumbar support
    • A61H2201/1604Head
    • A61H2201/1607Holding means therefor
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • G02B27/0101Head-up displays characterised by optical features
    • G02B2027/0132Head-up displays characterised by optical features comprising binocular systems
    • G02B2027/0134Head-up displays characterised by optical features comprising binocular systems of stereoscopic type
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/04Prisms

Definitions

  • the present invention relates to a head-mounted visual augmentation system and a training method thereof that can be used for eye muscle exercise, vision correction, and health care.
  • a stereo vision training system for eye muscle exercise and health care including a computer, a projector, a projection screen, and a plurality of a secondary eyepiece, and a stereoscopic image piece for improving vision, wherein the stereoscopic playback software is loaded into the computer, and the computer signal is transmitted to the projection screen after being transmitted to the projection screen, and the stereoscopic image piece for improving vision is used for the trainee
  • the virtual target of gaze allows the trainee to circulate between the anterior and posterior points of the eye at the point of sight of the trainee at the time of gaze, in order to maximize the increase and spread the set, thereby driving the eye to do a large crystal gymnastics.
  • the point in front of the eye is any point in front of the eye, and the point in the back of the eye is the point at which the inverse extension line of the line of sight of the eyes intersects at both points after the eyes.
  • the invention generates a dynamic stereoscopic scene according to the visual physiological characteristics of the human eye through computer virtual reality technology, and achieves the purpose of healthy eye protection by watching the scene.
  • this training system still has some shortcomings: because it requires computers, projectors and other equipment, it can only be trained in a fixed place, and can not achieve personalized training; and the equipment input cost is too high, which is not conducive to promotion and popularization.
  • the invention solves the problem that the existing visual training system is inconvenient and costly, and provides a head-mounted visual augmentation system which is very convenient to use.
  • the head-mounted visual augmentation system of the present invention includes a glasses-type bracket, and the bracket is provided with two left and right micro-display chips, and the image light emitted by the left and right micro-display chips is composed.
  • the surface reflection processing is further transmitted to the left and right large field of view optical prisms of the human eye, and a control circuit for transmitting video signals to the two microdisplay chips; wherein the control circuit is a stereoscopic image control circuit for stereoscopic
  • the video signal is processed and the left and right video signals are decomposed and transmitted to the left and right microdisplay chips to display the attention of the wearer to make the visual center make a combination of distance, left and right, up and down, and circumference. Stereo image.
  • a video input interface for receiving an external stereoscopic video signal and transmitting the same to the stereoscopic image control circuit may be disposed on the bracket.
  • a memory for storing stereoscopic video data may be installed on the bracket, and the stereoscopic video data in the memory may be played and transmitted to the stereoscopic image control. Circuit micro player.
  • the present invention also provides a method for training a human eye using the above-described head-mounted visual augmentation system, comprising the following steps: (S1) Playing stereoscopic video data and transmitting the stereoscopic video signal to the control circuit; (S2) The stereoscopic image control circuit processes the stereoscopic video signal and decomposes the left and right video signals to the left and right microdisplay chips; (S3) The left and right micro-display chips respectively display two left and right video signals to form a stereoscopic image, so as to display a stereoscopic image that can guide the wearer's attention so that the visual center can perform a combined movement of the near, the left, the right, the upper and lower, the circumference, and the like.
  • the stereoscopic video data in the step (S1) may be 320 ⁇ 480 color image data of the left eye and 320 ⁇ 480 color image data of the right eye; in the step (S2), the The stereoscopic image control circuit generates left and right video signals of 640 ⁇ 480 color image data of the left eye and 640 ⁇ 480 color image data of the right eye by interpolation conversion processing.
  • the stereoscopic video data in the step (S1) may be 640 ⁇ 480 color image data of the left eye and 640 ⁇ 480 color image data of the right eye; in the step (S2), the The stereoscopic image control circuit processes the left and right video signals of the left eye 640 ⁇ 480 color image data and the right eye 640 ⁇ 480 color image data by a component method.
  • the stereoscopic video data in the step (S1) may be left eye 800 ⁇ 640 color image data and right eye 800 ⁇ 640 color image data; in the step (S2), the The stereoscopic image control circuit processes the left and right video signals of the left eye 800 ⁇ 640 color image data and the right eye 800 ⁇ 640 color image data by a component method.
  • the stereoscopic video data in the step (S1) can be generated by two real or virtual cameras for the same real or virtual image, wherein the distance between the two real or virtual cameras is changed.
  • the angle is used to adjust the separation degree of the stereo image, and the continuous change of the longitudinal distance of the stereo image is realized by the continuous change of the angle, and the two real or virtual cameras realize the visual center by synchronously combining the left and right, up and down, and circumference. The change.
  • the change of the visual center is realized by the motion of the moving object in the background image.
  • the head-mounted visual augmentation system of the invention has the following advantages: (1) a head-mounted structure, which can be trained in any place, and can realize personalized training for different people; (2) Compared with systems composed of computers and projectors, the cost is greatly reduced; (3) image data update and technology improvement can be realized through network download; (4) It has made it possible to promote and popularize the physical and psychological treatment of myopia, amblyopia and other eye diseases.
  • FIG. 1 is a schematic structural view of a head-mounted visual augmentation system according to an embodiment of the present invention
  • FIG. 2 is a schematic view showing a light path between a micro display chip and an optical prism in the head-mounted visual augmentation system shown in FIG. 1;
  • FIG. 3 is a circuit block diagram of the head-mounted visual augmentation system of FIG. 1;
  • FIG. 4 is a schematic diagram of 320 ⁇ 480 color image data for left and right eyes in one embodiment
  • FIG. 5 is a schematic diagram of 640 ⁇ 480 dot matrix color image data of two left and right microdisplay chips
  • FIG. 6 is a schematic diagram of 800 ⁇ 640 dot matrix color image data of two left and right microdisplay chips
  • Fig. 7 is a schematic diagram of acquiring a stereoscopic image by changing two cameras.
  • FIG. 1 An embodiment of the present invention, as shown in FIG. 1 , includes a glasses-type bracket 4 in the head-mounted visual augmentation system, and the temple portion is not shown in the figure, and may be specifically referred to in FIG.
  • the eyeglass bracket can be formed by attaching the temples extending in the direction of the arrow, and it is also possible to further provide a corresponding housing structure to mount the corresponding components inside to form an eyeglass structure.
  • two left and right microdisplay chips 1, two left and right large angle of view optical prisms 2, and one stereoscopic image control circuit 3 are mounted.
  • the microdisplay chip 1 is actively illuminated, and the large field of view optical prism 2 performs surface reflection processing on the light emitted by the microdisplay chip 1 and transmits it to the human eye in the direction of the right arrow in FIG.
  • the large angle of view optical prism 2 has three faces, the first face 21 is a transfer face, which faces the microdisplay chip 1; the second face 22 of the large field of view optical prism 2 reflects through the first face 21 The introduced light forms a first reflection and is directed toward the third surface 23; the third surface 23 is a coated mirror surface, where the light again forms a second reflection, returns to the second surface 22, and is transmitted to the person.
  • the retina of the eye 5 has three faces, the first face 21 is a transfer face, which faces the microdisplay chip 1; the second face 22 of the large field of view optical prism 2 reflects through the first face 21 The introduced light forms a first reflection and is directed toward the third surface 23; the third surface 23 is a coated mirror surface, where the light again forms a second reflection, returns to the second surface 22, and is transmitted to the person.
  • the retina of the eye 5 has three faces, the first face 21 is a transfer face, which faces the microdisplay chip 1; the second face 22 of the large field of view optical prism 2 reflects
  • the three faces of the large-angle optical prism 2 are preferably curved surfaces, and the design distance between the light-emitting surface of the micro-display chip 1 and the first surface 21 of the large-angle optical prism 2 may be 2- 3 mm, the inclination angle between the two is between 28 and 36 degrees; the material used for the large angle of view optical prism 2 has a refractive index Nd of between 1 and 1.6.
  • the radius of curvature R2 of the second surface 22 of the large angle of view optical prism 2 is larger than the radius of curvature R3 of the third surface 23, and for example, R2 is 140 to 180 mm, and R3 is 60 to 80 mm.
  • the angle of intersection of the intersection points of the two curved surfaces is 24°-45°. Adjusting the angle can adjust the prism thickness and the object size. By adjusting the ratio of R3/R2, you can coarsely adjust the magnification of the image to produce a larger screen visual effect.
  • microdisplay chips two identical optical prisms 2.
  • the corresponding circuit block diagram is shown in Figure 3, which includes a stereo image control circuit and two left and right microdisplay chips. Inside the microdisplay chip, there are row and column registers and row and column drivers for driving the RGB dot array; the microdisplay chip integrates an RGB memory, an RGB timing control circuit and a control logic circuit.
  • the stereoscopic image control circuit includes an MCU image control circuit, a VGA/AV interface, and the like.
  • the stereoscopic image control circuit provides various required logic control signals for the microdisplay chip, for example, frame synchronization, line synchronization, pixel effective, brightness control, interrupt signal, enable signal, color saturation control, scanning mode, image position, 3D stereo Frame strobe signal and so on.
  • a sound input interface can also be added to the stereoscopic image control circuit, and the sound is played through a small speaker.
  • a memory for storing stereoscopic video data may be installed on the bracket, and the stereoscopic video data in the memory may be played and transmitted to the stereo image control circuit. Micro player.
  • the human eye can be exercised by using the above-mentioned head-mounted visual augmentation system, and the related method includes the following steps:
  • the stereoscopic image control circuit processes the stereoscopic video signal and decomposes the left and right video signals and transmits them to the left and right microdisplay chips;
  • the left and right micro-display chips respectively display the left and right video signals to form a stereoscopic image, so as to display a stereoscopic image that can guide the wearer's attention so that the visual center can perform a combined motion of the near, the left, the right, the upper and lower, the circumference, and the like.
  • the stereoscopic video data in step (S1) is 320 ⁇ 480 color image data of the left eye and 320 ⁇ 480 color image data of the right eye; in step (S2), The stereoscopic image control circuit generates left and right video signals of 640 ⁇ 480 color image data of the left eye and 640 ⁇ 480 color image data of the right eye by interpolation conversion processing.
  • the tiny images on the micro-display chip are respectively enlarged by the left and right large-angle optical prisms, and imaged on the virtual focus plane to make the head-mounted vision Augmented systems can see stereoscopic images through the prism.
  • the stereoscopic video data in step (S1) can be generated by two real or virtual cameras for the same real or virtual image, wherein the separation of the stereo image is adjusted by changing the spacing and the angle between the two real or virtual cameras. Degree, through the continuous change of the angle to achieve continuous changes in the longitudinal distance of the stereo image, the two real or virtual cameras through the synchronous left and right, up and down, circumference and other combined motion to achieve the change of the visual center. As shown in FIG. 7, by changing the angle ⁇ between the two cameras 51, 52, the camera focal length L can be further changed, thereby changing the virtual visual center position 53; by changing the pitch S of the two cameras, the difference in the pupil distance can be satisfied and adapted. The needs of the trainee; at the same time, the S and ⁇ changes will also change the resolution of the stereo image.
  • the change of the visual center can also be realized by the motion of the moving object in the background image.
  • the stereoscopic video data in step (S1) is 640 ⁇ 480 color image data of the left eye and 640 ⁇ 480 color image data of the right eye; in step (S2), The left and right video signals of the left eye 640 ⁇ 480 color image data and the right eye 640 ⁇ 480 color image data are processed by the stereoscopic image control circuit by the component method.
  • the stereoscopic video data in step (S1) is left eye 800 ⁇ 640 color image data and right eye 800 ⁇ 640 color image data; in step (S2), The left and right video signals of the left eye 800 ⁇ 640 color image data and the right eye 800 ⁇ 640 color image data are generated by the stereoscopic image control circuit by the component method.
  • the above-mentioned stereoscopic image data can guide the wearer's attention, and the visual center can be combined with the near and far, left and right, up and down, and circumference to achieve the functions of eye muscle exercise, vision correction and health care.
  • the head-mounted visual augmentation system and method thereof of the present invention can also be used for: (1) physical and psychological treatment of myopia, amblyopia and other eye diseases; (2) personal ordinary stereoscopic video playback (3) a head-mounted display for medical minimally invasive surgery; (4) a virtual reality head-mounted display.

Landscapes

  • Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Physical Education & Sports Medicine (AREA)
  • Rehabilitation Therapy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Epidemiology (AREA)
  • Pain & Pain Management (AREA)
  • Veterinary Medicine (AREA)
  • Ophthalmology & Optometry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Controls And Circuits For Display Device (AREA)
  • Testing, Inspecting, Measuring Of Stereoscopic Televisions And Televisions (AREA)

Description

头戴式视觉增强系统及其训练方法 技术领域
本发明涉及一种可用于眼肌的锻炼、视觉校正和保健的头戴式视觉增强系统及其训练方法。
背景技术
全球有60%的人具有不同程度的近视、弱视和其它眼疾。随着电脑的普及和使用时间的增加,这个人数还在上升。在中国,青少年近视、弱视人群已过亿。治疗和改善近视、弱视的基本方法是佩戴眼镜和激光手术,前者给佩戴者带来终身不便,后者则存在较大的手术风险。近年来还有一些眼保健产品,例如眼部按摩器、舒目镜等,这些方法疗效甚微。
在名称为“立体视觉训练系统及方法”的中国专利申请(公开号CN101185603)中,公开了一种立体视觉训练系统,用于眼肌的锻炼和保健,包括电脑、投影机、投影幕、若干副目镜、和用于提高视力的立体图像片,其中立体播放软件加载入计算机中,电脑信号输入投影机后透射在投影幕上,所述用于提高视力的立体图像片中用以使受训者注视的虚拟目标物使受训者在注视之时双眼视线的相交点在眼前点和眼后点之间循环,以达到最大限度的增加和散开集合,从而带动眼睛做大幅度的晶状体操,所述眼前点是眼前的任意一点,而所述眼后点是双眼视线的反向延长线相交于双眼后的任意一点。该发明通过计算机虚拟现实技术,依据人眼的视觉生理特点产生动态立体场景,通过观看该场景达到健眼护眼的目的。
不过,这种训练系统仍存在一些不足:由于需要电脑、投影机等设备,所以只能在固定场所进行训练,无法实现个性化训练;而且设备投入成本过高,不利于推广和普及。
发明内容
本发明要解决现有视觉训练系统使用不便、成本过高的问题,提供一种非常方便使用的头戴式视觉增强系统。
为解决上述技术问题,本发明的头戴式视觉增强系统中,包括一个眼镜式支架,所述支架上装有:左右两个微显示器芯片,对所述左右两个微显示器芯片发出的图像光线作曲面反射处理再传送到人眼的左右大视场角光学棱镜,以及向所述两个微显示器芯片传送视频信号的控制电路;其中,所述控制电路是一个立体图像控制电路,用于将立体视频信号进行处理并分解左右两路视频信号再传送到所述左右两个微显示器芯片,以显示出可引导头戴者的注意力使其视觉中心做远近、左右、上下、圆周等组合运动的立体图像。
本发明的头戴式视觉增强系统中,可在所述支架上装设用于接收外部立体视频信号并传送到所述立体图像控制电路的视频输入接口。
本发明的头戴式视觉增强系统中,也可在所述支架上装设用于存储立体视频数据的存储器,以及用于对所述存储器中的立体视频数据进行播放并传送到所述立体图像控制电路的微型播放器。
此外,本发明还提供一种利用上述头戴式视觉增强系统对人眼进行训练的方法,其中包括以下步骤:(S1) 播放立体视频数据并将立体视频信号传送到所述控制电路;(S2) 所述立体图像控制电路对所述立体视频信号进行处理并分解左右两路视频信号再传送到所述左右两个微显示器芯片;(S3) 所述左右两个微显示器芯片分别显示左右两路视频信号构成立体图像,以显示出可引导头戴者的注意力使其视觉中心做远近、左右、上下、圆周等组合运动的立体图像。
本发明所述的方法中,所述步骤(S1)中的立体视频数据可以是左眼320×480彩色图像数据、右眼320×480彩色图像数据;在所述步骤(S2)中,所述立体图像控制电路通过插值变换处理生成左眼640×480彩色图像数据、右眼640×480彩色图像数据的左右两路视频信号。
本发明所述的方法中,所述步骤(S1)中的立体视频数据可以是左眼640×480彩色图像数据、右眼640×480彩色图像数据;在所述步骤(S2)中,所述立体图像控制电路通过分量方式处理生成左眼640×480彩色图像数据、右眼640×480彩色图像数据的左右两路视频信号。
本发明所述的方法中,所述步骤(S1)中的立体视频数据可以是左眼800×640彩色图像数据、右眼800×640彩色图像数据;在所述步骤(S2)中,所述立体图像控制电路通过分量方式处理生成左眼800×640彩色图像数据、右眼800×640彩色图像数据的左右两路视频信号。
本发明所述的方法中,所述步骤(S1)中的立体视频数据可由两台真实或虚拟摄像机对同一真实或虚拟图像进行摄制生成的,其中既通过改变两台真实或虚拟摄像机的间距和夹角来调整立体图像的分离度,又通过夹角的连续变化来实现立体图像的纵向远近的连续变化,所述两台真实或虚拟摄像机通过同步地左右、上下、圆周等组合运动实现视觉中心的变化。
本发明所述的方法中,所述步骤(S1)的立体视频数据中,通过背景图像中运动物体的运动来实现所述视觉中心的变化。
本发明的头戴式视觉增强系统具有以下优点:(1)头戴式结构,可在任何场所进行训练,可针对不同的人实现个性化训练;(2) 与电脑、投影机等设备组成的系统相比,成本大大降低;(3) 图像数据的更新和技术提升可通过网络下载实现;(4) 使近视、弱视和其它眼疾的物理和心理治疗的大面积推广和普及成为可能。
附图说明
图1是本发明一个实施例中头戴式视觉增强系统的结构示意图;
图2是图1所示头戴式视觉增强系统中微显示芯片与光学棱镜之间的光线走向示意图;
图3是图1所示头戴式视觉增强系统的电路原理框图;
图4是一个实施例中用于左和右眼的320×480彩色图像数据示意图;
图5是左右两个微显示器芯片的640×480点阵彩色图像数据示意图;
图6是左右两个微显示器芯片的800×640点阵彩色图像数据示意图;
图7是通过改变两个摄像机来获取立体图像的示意图。
具体实施方式
本发明一个实施例如图1所示,这种头戴式视觉增强系统中,包括一个眼镜式的支架4,图中未画出眼镜腿部分,具体实施时可以在图1中标号4所指的位置装上沿该处箭头方向伸出的眼镜腿,即可形成眼镜式支架,当然也可进一步设置相应的壳体结构将相应的部件均装在内部,构成一个眼镜式的结构。
在这个眼镜式的支架中,装有左右两个微显示器芯片1、左右两个大视场角光学棱镜2、以及一个立体图像控制电路3。其中的微显示器芯片1是主动发光,大视场角光学棱镜2则对微显示器芯片1发出的光进行曲面反射处理再沿图1中右侧箭头方向传送到人眼。
图2示出了微显示芯片与光学棱镜之间的光线走向,由微显示器芯片1发出的主光线进入光学棱镜2后,需经过两次反射才进入人眼5。其中的大视场角光学棱镜2具有三个面,第一面21为传送面,它与微显示器芯片1面对;大视场角光学棱镜2的第二面22会反射经第一面21导入的光线,形成第一次反射并射向第三面23;第三面23是一个镀膜的镜面,光线在此再形成第二次反射,又回到第二面22,并射出传送到人眼5的视网膜。
具体实施时,大视场角光学棱镜2的三个面最好都是曲面,微显示器芯片1的发光表面与大视场角光学棱镜2的第一面21之间的设计距离可以是2-3毫米,两者之间的倾角在28-36度之间;大视场角光学棱镜2所用材料的折射率Nd在1-1.6之间。
其中,大视场角光学棱镜2中第二面22的曲率半径R2比第三面23的曲率半径R3要大,例如可取R2为140~180mm,R3为60~80mm。两曲面相交点的切线夹角为24°-45°,调整该夹角可以调整棱镜厚度和物景大小。调整R3/R2的比值,可粗调图像的放大率,产生更大屏幕的视觉效果。
最好使用两片相同的微显示器芯片1,两个完全相同的光学棱镜2。相应的电路原理框图如图3所示,其中包括立体图像控制电路、以及左右两个微显示器芯片。在微显示器芯片内部有行、列寄存器和行、列驱动器,用于驱动RGB点阵列;微显示器芯片内部集成了RGB贮存器、RGB时序控制电路和控制逻辑电路。立体图像控制电路中包括MCU图像控制电路、VGA/AV接口等。立体图像控制电路为微显示器芯片提供各种需要的逻辑控制信号,例如,帧同步、行同步、像素有效、亮度控制、中断信号、使能信号、色饱和控制以及扫描方式、图像位置、3D立体帧选通信号等等。立体图像控制电路中还可增设声音输入接口,并通过小型扬声器播放声音。
具体实施时,除使用上述VGA/AV视频输入接口外,还可在支架上装设用于存储立体视频数据的存储器,以及用于对存储器中的立体视频数据进行播放并传送到立体图像控制电路的微型播放器。
利用上述头戴式视觉增强系统,可对人眼进行锻炼,相关方法包括以下步骤:
(S1) 播放立体视频数据并将立体视频信号传送到控制电路;
(S2) 立体图像控制电路对立体视频信号进行处理并分解左右两路视频信号再传送到左右两个微显示器芯片;
(S3)左右两个微显示器芯片分别显示左右两路视频信号构成立体图像,以显示出可引导头戴者的注意力使其视觉中心做远近、左右、上下、圆周等组合运动的立体图像。
本发明的一个实施例中,如图4所示,步骤(S1)中的立体视频数据是左眼320×480彩色图像数据、右眼320×480彩色图像数据;在步骤(S2)中,由立体图像控制电路通过插值变换处理生成左眼640×480彩色图像数据、右眼640×480彩色图像数据的左右两路视频信号。再如图3所示,并分别送至左右两个微显示器芯片,微显示器芯片上的微小图像分别被左右两个大视场角光学棱镜放大,并在虚拟聚焦平面上成像,使头戴视觉增强系统者可通过棱镜看到立体图像。
其中,步骤(S1)中的立体视频数据可由两台真实或虚拟摄像机对同一真实或虚拟图像进行摄制生成的,其中既通过改变两台真实或虚拟摄像机的间距和夹角来调整立体图像的分离度,又通过夹角的连续变化来实现立体图像的纵向远近的连续变化,两台真实或虚拟摄像机通过同步地左右、上下、圆周等组合运动实现视觉中心的变化。如图7所示,通过改变两个摄像机51、52的夹角θ可进而改变摄像焦距L,从而改变虚拟视觉中心位置53;通过改变两个摄像机的间距S,可满足和适应瞳距不同的受训人的需要;同时,S和θ改变也会改变立体图像的分离度。
本发明中,对于步骤(S1)的立体视频数据,还可通过背景图像中运动物体的运动来实现视觉中心的变化。
本发明的另一个实施例中,如图5所示,步骤(S1)中的立体视频数据是左眼640×480彩色图像数据、右眼640×480彩色图像数据;在骤(S2)中,由立体图像控制电路通过分量方式处理生成左眼640×480彩色图像数据、右眼640×480彩色图像数据的左右两路视频信号。
本发明的另一个实施例中,如图6所示,步骤(S1)中的立体视频数据是左眼800×640彩色图像数据、右眼800×640彩色图像数据;在步骤(S2)中,由立体图像控制电路通过分量方式处理生成左眼800×640彩色图像数据、右眼800×640彩色图像数据的左右两路视频信号。
上述立体图像数据可引导头戴者的注意力,使其视觉中心做远近、左右、上下、圆周等组合运动,达到眼肌的锻炼、视觉校正和保健的作用。
除了上述对人眼进行锻炼的功能外,本发明的头戴式视觉增强系统及其方法还可用于:(1)近视、弱视和其它眼疾的物理和心理治疗;(2)个人普通立体影视播放;(3)医疗微创手术的头戴式显示器;(4)虚拟现实的头戴式显示器。

Claims (10)

  1. 一种头戴式视觉增强系统,其特征在于,包括一个眼镜式支架,所述支架上装有:左右两个微显示器芯片,对所述左右两个微显示器芯片发出的图像光线作曲面反射处理再传送到人眼的左右大视场角光学棱镜,以及向所述两个微显示器芯片传送视频信号的控制电路;
    其中,所述控制电路是一个立体图像控制电路,用于将立体视频信号进行处理并分解左右两路视频信号再传送到所述左右两个微显示器芯片,以显示出可引导头戴者的注意力使其视觉中心做远近、左右、上下、圆周等组合运动的立体图像。
  2. 根据权利要求1所述的头戴式视觉增强系统,其特征在于,所述支架上还装有用于接收外部立体视频信号并传送到所述立体图像控制电路的视频输入接口。
  3. 根据权利要求1所述的头戴式视觉增强系统,其特征在于,所述支架上还装有用于存储立体视频数据的存储器,以及用于对所述存储器中的立体视频数据进行播放并传送到所述立体图像控制电路的微型播放器。
  4. 根据权利要求2所述的头戴式视觉增强系统,其特征在于,所述支架上还装有用于存储立体视频数据的存储器,以及用于对所述存储器中的立体视频数据进行播放并传送到所述立体图像控制电路的微型播放器。
  5. 一种利用权利要求1所述的头戴式视觉增强系统对人眼进行训练的方法,其特征在于,包括以下步骤: (S1) 播放立体视频数据并将立体视频信号传送到所述控制电路;(S2) 所述立体图像控制电路对所述立体视频信号进行处理并分解左右两路视频信号再传送到所述左右两个微显示器芯片;(S3) 所述左右两个微显示器芯片分别显示左右两路视频信号构成立体图像,以显示出可引导头戴者的注意力使其视觉中心做远近、左右、上下、圆周等组合运动的立体图像。
  6. 根据权利要求5所述的对人眼进行训练的方法,其特征在于,所述步骤(S1)中的立体视频数据为左眼320×480彩色图像数据、右眼320×480彩色图像数据;在所述步骤(S2)中,所述立体图像控制电路通过插值变换处理生成左眼640×480彩色图像数据、右眼640×480彩色图像数据的左右两路视频信号。
  7. 根据权利要求5所述的对人眼进行训练的方法,其特征在于,所述步骤(S1)中的立体视频数据为左眼640×480彩色图像数据、右眼640×480彩色图像数据;在所述步骤(S2)中,所述立体图像控制电路通过分量方式处理生成左眼640×480彩色图像数据、右眼640×480彩色图像数据的左右两路视频信号。
  8. 根据权利要求5所述的对人眼进行训练的方法,其特征在于,所述步骤(S1)中的立体视频数据为左眼800×640彩色图像数据、右眼800×640彩色图像数据;在所述步骤(S2)中,所述立体图像控制电路通过分量方式处理生成左眼800×640彩色图像数据、右眼800×640彩色图像数据的左右两路视频信号。
  9. 根据权利要求5-8中任一项所述的对人眼进行训练的方法,其特征在于,所述步骤(S1)中的立体视频数据是由两台真实或虚拟摄像机对同一真实或虚拟图像进行摄制生成的,其中既通过改变两台真实或虚拟摄像机的间距和夹角来调整立体图像的分离度,又通过夹角的连续变化来实现立体图像的纵向远近的连续变化,所述两台真实或虚拟摄像机通过同步地左右、上下、圆周等组合运动实现视觉中心的变化。
  10. 根据权利要求5-8中任一项所述的对人眼进行训练的方法,其特征在于,所述步骤(S1)的立体视频数据中,通过背景图像中运动物体的运动来实现所述视觉中心的变化。
PCT/CN2010/076154 2010-08-19 2010-08-19 头戴式视觉增强系统及其训练方法 WO2012022042A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2010/076154 WO2012022042A1 (zh) 2010-08-19 2010-08-19 头戴式视觉增强系统及其训练方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2010/076154 WO2012022042A1 (zh) 2010-08-19 2010-08-19 头戴式视觉增强系统及其训练方法

Publications (1)

Publication Number Publication Date
WO2012022042A1 true WO2012022042A1 (zh) 2012-02-23

Family

ID=45604695

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2010/076154 WO2012022042A1 (zh) 2010-08-19 2010-08-19 头戴式视觉增强系统及其训练方法

Country Status (1)

Country Link
WO (1) WO2012022042A1 (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104306102A (zh) * 2014-10-10 2015-01-28 上海交通大学 针对视觉障碍患者的头戴式视觉辅助系统
CN104765152A (zh) * 2015-05-06 2015-07-08 京东方科技集团股份有限公司 一种虚拟现实眼镜
CN108852766A (zh) * 2018-04-03 2018-11-23 山东省看看视力矫治科技有限公司 视力矫正方法
CN115643395A (zh) * 2022-12-23 2023-01-24 广州视景医疗软件有限公司 一种基于虚拟现实的视觉训练方法和装置
WO2023040637A1 (zh) * 2021-09-16 2023-03-23 深圳市数泽科技有限公司 一种显示3d图像的手术显微镜系统

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002091983A1 (fr) * 2001-05-11 2002-11-21 Eye Power Sports Corporation Appareil permettant de recuperer la vue, a l'aide d'une video stereoscopique, et procede d'affichage de cette video stereoscopique
JP2003325606A (ja) * 2002-05-16 2003-11-18 Yasuo Shiokawa 視力回復訓練装置
CN1669549A (zh) * 2004-03-18 2005-09-21 远藤真一郎 恢复视力训练装置
CN201211269Y (zh) * 2008-07-04 2009-03-25 王正 暗箱式三维视力康复仪
CN201253290Y (zh) * 2008-08-19 2009-06-10 深圳市亿思达显示科技有限公司 一种眼保健仪

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002091983A1 (fr) * 2001-05-11 2002-11-21 Eye Power Sports Corporation Appareil permettant de recuperer la vue, a l'aide d'une video stereoscopique, et procede d'affichage de cette video stereoscopique
JP2003325606A (ja) * 2002-05-16 2003-11-18 Yasuo Shiokawa 視力回復訓練装置
CN1669549A (zh) * 2004-03-18 2005-09-21 远藤真一郎 恢复视力训练装置
CN201211269Y (zh) * 2008-07-04 2009-03-25 王正 暗箱式三维视力康复仪
CN201253290Y (zh) * 2008-08-19 2009-06-10 深圳市亿思达显示科技有限公司 一种眼保健仪

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104306102A (zh) * 2014-10-10 2015-01-28 上海交通大学 针对视觉障碍患者的头戴式视觉辅助系统
CN104765152A (zh) * 2015-05-06 2015-07-08 京东方科技集团股份有限公司 一种虚拟现实眼镜
US10209737B2 (en) 2015-05-06 2019-02-19 Boe Technology Group Co., Ltd. Virtual reality glasses
CN108852766A (zh) * 2018-04-03 2018-11-23 山东省看看视力矫治科技有限公司 视力矫正方法
WO2023040637A1 (zh) * 2021-09-16 2023-03-23 深圳市数泽科技有限公司 一种显示3d图像的手术显微镜系统
CN115643395A (zh) * 2022-12-23 2023-01-24 广州视景医疗软件有限公司 一种基于虚拟现实的视觉训练方法和装置

Similar Documents

Publication Publication Date Title
CN201768134U (zh) 头戴式视觉增强系统
JP2910111B2 (ja) 眼鏡型網膜直接表示装置
JP2023504373A (ja) 電子ディスプレイの中心窩レンダリングのための予測視線追跡システムおよび方法
JP2023109774A (ja) 深度平面間の低減された切り替えを伴う多深度平面ディスプレイシステム
WO2016054860A1 (zh) 针对视觉障碍患者的头戴式视觉辅助系统
CN104483753A (zh) 自配准透射式头戴显示设备
WO2005043216A1 (ja) 画像表示装置
JP2016515897A (ja) 改善された光学及び知覚デジタルアイウエア
WO2012022042A1 (zh) 头戴式视觉增强系统及其训练方法
WO2018053905A1 (zh) 一种虚拟现实设备
WO2002086590A1 (en) Head mounted display with full field of view and high resolution
JPH08160344A (ja) 頭部装着式映像表示装置
US11662812B2 (en) Systems and methods for using a display as an illumination source for eye tracking
CN109106567B (zh) 一种用于近视治疗的多视距显示系统
WO2017073953A1 (ko) 초근거리를 볼 수 있는 교정렌즈
EP4073572A1 (en) Systems and methods for improving binocular vision
Teitel The Eyephone: a head-mounted stereo display
CN115643395A (zh) 一种基于虚拟现实的视觉训练方法和装置
WO2018045985A1 (zh) 一种增强现实显示系统
WO2022205789A1 (zh) 基于虚拟现实的眼球追踪方法、系统
CN113177434A (zh) 基于单眼球追踪的虚拟现实系统注视渲染方法、系统
WO2018006238A1 (zh) 视觉系统及观片器
CN107102440A (zh) 头戴式/护罩式/手持式显示方法及显示装置
WO2020141375A1 (en) Visual receptive field enhancement
WO2023001113A1 (zh) 一种显示方法与电子设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10856040

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10856040

Country of ref document: EP

Kind code of ref document: A1