WO2012020628A1 - Light directivity control unit and process for production thereof, 2d/3d switchable display module, liquid crystal aligning agent - Google Patents

Light directivity control unit and process for production thereof, 2d/3d switchable display module, liquid crystal aligning agent Download PDF

Info

Publication number
WO2012020628A1
WO2012020628A1 PCT/JP2011/066501 JP2011066501W WO2012020628A1 WO 2012020628 A1 WO2012020628 A1 WO 2012020628A1 JP 2011066501 W JP2011066501 W JP 2011066501W WO 2012020628 A1 WO2012020628 A1 WO 2012020628A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid crystal
group
control unit
directivity control
light directivity
Prior art date
Application number
PCT/JP2011/066501
Other languages
French (fr)
Japanese (ja)
Inventor
博昭 徳久
西川 通則
Original Assignee
Jsr株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jsr株式会社 filed Critical Jsr株式会社
Priority to JP2012528624A priority Critical patent/JPWO2012020628A1/en
Priority to CN201180035097.4A priority patent/CN103003722B/en
Priority to KR1020127030693A priority patent/KR101461047B1/en
Publication of WO2012020628A1 publication Critical patent/WO2012020628A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133526Lenses, e.g. microlenses or Fresnel lenses
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B3/00Simple or compound lenses
    • G02B3/02Simple or compound lenses with non-spherical faces
    • G02B3/06Simple or compound lenses with non-spherical faces with cylindrical or toric faces
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B30/00Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images
    • G02B30/20Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes
    • G02B30/26Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes of the autostereoscopic type
    • G02B30/27Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes of the autostereoscopic type involving lenticular arrays
    • G02B30/28Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes of the autostereoscopic type involving lenticular arrays involving active lenticular arrays
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B35/00Stereoscopic photography
    • G03B35/18Stereoscopic photography by simultaneous viewing
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N13/00Stereoscopic video systems; Multi-view video systems; Details thereof
    • H04N13/30Image reproducers
    • H04N13/302Image reproducers for viewing without the aid of special glasses, i.e. using autostereoscopic displays
    • H04N13/305Image reproducers for viewing without the aid of special glasses, i.e. using autostereoscopic displays using lenticular lenses, e.g. arrangements of cylindrical lenses
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N13/00Stereoscopic video systems; Multi-view video systems; Details thereof
    • H04N13/30Image reproducers
    • H04N13/356Image reproducers having separate monoscopic and stereoscopic modes
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
    • G02F1/13378Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers by treatment of the surface, e.g. embossing, rubbing or light irradiation
    • G02F1/133788Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers by treatment of the surface, e.g. embossing, rubbing or light irradiation by light irradiation, e.g. linearly polarised light photo-polymerisation
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/29Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the position or the direction of light beams, i.e. deflection

Definitions

  • the present invention relates to a light directivity control unit and a manufacturing method thereof, a 2D / 3D switchable display module, and a liquid crystal aligning agent.
  • an autostereoscopic (autostereoscopic) module that recognizes 3D images without using visual aids such as special glasses on the viewer side
  • an autostereoscopic display module As an example of such an autostereoscopic display module, a two-dimensional (2D) mode and a three-dimensional (3D stereoscopic) mode are provided with an array of elongated lenticular elements extending in a vertical direction and in parallel on a two-dimensional liquid crystal display panel.
  • Patent Literature 1 and Non-Patent Literature 1 has been proposed (see Patent Literature 1 and Non-Patent Literature 1).
  • the lenticular element is generally formed of liquid crystal, but it is necessary to increase the uniformity of the alignment of the liquid crystal in order to ensure good display. Therefore, conventionally, a liquid crystal alignment film is formed around the liquid crystal formation space, and after the rubbing treatment, the liquid crystal is formed to enhance the alignment of the liquid crystal.
  • the rubbing treatment is usually performed by using a rubbing cloth affixed to the outer peripheral surface of the roller, contacting the rubbing cloth with the surface of the liquid crystal alignment film while rotating the roller, and rubbing the surface on which the liquid crystal alignment film is formed.
  • a rubbing cloth affixed to the outer peripheral surface of the roller, contacting the rubbing cloth with the surface of the liquid crystal alignment film while rotating the roller, and rubbing the surface on which the liquid crystal alignment film is formed.
  • the present invention has been made to solve the above-described disadvantages. That is, the main object of the present invention is to provide a light directivity control unit capable of obtaining a good display such as resolution by including a liquid crystal lens layer having excellent alignment uniformity, and 2D including the light directivity control unit. A 3D switchable display module is provided. Another object of the present invention is to provide a method for manufacturing such a light directivity control unit.
  • the invention made to solve the above problems is A transparent substrate; A lenticular layer disposed oppositely on the front side of the transparent substrate and having a lenticular lens array on the back side; A liquid crystal alignment film laminated on the back surface of the lenticular layer and formed of a radiation-sensitive liquid crystal alignment agent;
  • the light directivity control unit includes a liquid crystal lens layer laminated on the back side of the lenticular layer via the liquid crystal alignment film.
  • the light directivity control unit of the present invention has the above-described configuration, and a lenticular layer and a liquid crystal lens layer oriented in a certain direction are laminated.
  • the refractive index of the liquid crystal varies depending on the angle formed by the vibration direction of polarized light passing through the unit and the liquid crystal alignment direction of the liquid crystal lens layer. That is, the refractive index of the lenticular layer and the liquid crystal lens layer is the same for polarized light that vibrates in a predetermined direction, and the refractive index of the lenticular layer and the liquid crystal lens layer is different for polarized light having a different vibration surface. It can be configured as follows.
  • the directivity of light can be switched depending on whether light is simply transmitted or refracted in the liquid crystal lens layer.
  • the said liquid crystal aligning film is formed of a radiation sensitive liquid crystal aligning agent, the said light directivity control unit is excellent in the alignment uniformity of the alignment film compared with the liquid crystal aligning film which performed the conventional rubbing process.
  • the alignment uniformity of the liquid crystal lens layer formed through the liquid crystal alignment film is increased.
  • the display module that can switch between the two-dimensional mode and the three-dimensional mode provided with the light directivity control unit can improve the display quality.
  • the light directivity control unit may include another liquid crystal alignment film laminated on the back surface of the liquid crystal lens layer and formed of a radiation-sensitive liquid crystal aligning agent.
  • the back side is also laminated with a liquid crystal alignment film formed of a radiation sensitive liquid crystal aligning agent, so that the alignment uniformity of the liquid crystal lens layer in the light directivity control unit further increases. Rise. As a result, the display quality of the 2D / 3D switchable display module including the light directivity control unit can be further improved.
  • the light directivity control unit may include a pair of transparent electrode layers stacked on both sides of the liquid crystal lens layer. According to the light directivity control unit, by having a pair of transparent electrode layers laminated on both sides of the liquid crystal lens layer, the orientation of the liquid crystal in the liquid crystal lens layer is determined depending on whether voltage is applied between the transparent electrode layers. The light directivity can be switched by changing.
  • the light directivity control unit may include a liquid crystal layer superimposed on the transparent substrate and a pair of transparent electrode layers disposed on both sides of the liquid crystal layer.
  • the orientation of the liquid crystal layer between the transparent electrode layers changes depending on whether or not voltage is applied between the pair of transparent electrode layers.
  • the radiation-sensitive liquid crystal aligning agent may contain [A] a polyorganosiloxane having a photo-alignment group (hereinafter sometimes referred to as “[A] photo-alignment polyorganosiloxane”).
  • [A] In the liquid crystal alignment film obtained by irradiating the coating film formed from the liquid crystal aligning agent containing the photo-alignable polyorganosiloxane, the alignment property of the molecules forming the alignment film is increased. be able to. As a result, the alignment uniformity of the liquid crystal lens layer formed through the liquid crystal alignment film is improved.
  • the photo-alignment group is preferably a group having a cinnamic acid structure.
  • a group having a cinnamic acid structure having cinnamic acid or a derivative thereof as a basic skeleton as a photoalignable group, introduction of the photoalignable group into polyorganosiloxane in the liquid crystal aligning agent is facilitated, and A liquid crystal alignment film formed from a liquid crystal aligning agent has higher optical alignment performance. As a result, the alignment uniformity of the liquid crystal lens layer in the light directivity control unit can be further increased.
  • the group having a cinnamic acid structure is at least one group selected from the group consisting of a group derived from a compound represented by the following formula (1) and a group derived from a compound represented by the formula (2).
  • R 1 is a phenylene group, a biphenylene group, a terphenylene group or a cyclohexylene group.
  • Some or all of the hydrogen atoms of the phenylene group, biphenylene group, terphenylene group and cyclohexylene group are May be substituted with an alkyl group having 1 to 10 carbon atoms or an alkoxy group having 1 to 10 carbon atoms, a fluorine atom or a cyano group, which may have a fluorine atom, R 2 is a single bond, carbon number An alkanediyl group of 1 to 3, an oxygen atom, a sulfur atom, —CH ⁇ CH—, —NH—, —COO— or —OCO—, where a is an integer of 0 to 3, provided that a is 2 or more.
  • R 1 and R 2 may be the same or different from each other, R 3 is a fluorine atom or a cyano group, and b is an integer of 0 to 4.
  • R 4 is a phenylene group or a cyclohexylene group. Some or all of the hydrogen atoms of the phenylene group and cyclohexylene group may be a linear or cyclic alkyl group having 1 to 10 carbon atoms, a linear or cyclic alkoxy group having 1 to 10 carbon atoms, a fluorine atom, or a cyano group. May be substituted.
  • R 5 is a single bond, an alkanediyl group having 1 to 3 carbon atoms, an oxygen atom, a sulfur atom or —NH—.
  • c is an integer of 1 to 3. However, when c is 2 or more, the plurality of R 4 and R 5 may be the same or different.
  • R 6 is a fluorine atom or a cyano group.
  • d is an integer of 0-4.
  • R 7 is an oxygen atom, —COO— or —OCO—.
  • R 8 is a divalent aromatic group, a divalent alicyclic group, a divalent heterocyclic group or a divalent condensed cyclic group.
  • R 9 is a single bond, —OCO— (CH 2 ) f — * or —O (CH 2 ) g — *. * Indicates a binding site with a carboxyl group.
  • f and g are each an integer of 1 to 10.
  • e is an integer of 0 to 3. However, when e is 2 or more, the plurality of R 7 and R 8 may be the same or different.
  • the optical alignment performance of the obtained liquid crystal alignment film can be further improved, and as a result, the liquid crystal lens layer in the light directivity control unit can be improved.
  • the alignment uniformity can be further improved.
  • the polyorganosiloxane having a photo-alignment group is selected from the group consisting of a polyorganosiloxane having an epoxy group, a compound represented by the above formula (1), and a compound represented by the above formula (2).
  • the reaction product with at least one compound is preferred.
  • the specific cinnamic acid derivative having a photoalignment group on the polyorganosiloxane as the main chain Side chain groups derived from can be easily introduced.
  • the liquid crystal aligning agent is at least selected from the group consisting of an acetal ester structure of [C] carboxylic acid, a ketal ester structure of carboxylic acid, a 1-alkylcycloalkyl ester structure of carboxylic acid, and a t-butyl ester structure of carboxylic acid It is preferable to further contain a compound having one or two or more structures, and when this structure is one, a plurality of compounds (hereinafter sometimes referred to as “[C] ester structure-containing compound”).
  • the liquid crystal aligning agent contains the [C] ester structure-containing compound, an acid is generated in the baking step (post-bake), and the generated acid promotes the crosslinking of [A] polyorganosiloxane.
  • the heat resistance of the obtained light directivity control unit can be improved.
  • the liquid crystal aligning agent is at least one polymer selected from the group consisting of [B] polyamic acid, polyimide, ethylenically unsaturated compound polymer, and polyorganosiloxane having no photo-alignable group (hereinafter referred to as “ It is preferable to further contain [B] other polymer ”. Even if the content of the photoalignable polyorganosiloxane in the liquid crystal aligning agent is reduced by adding another polymer to the liquid crystal aligning agent, the photoalignable polyorganosiloxane is unevenly distributed on the surface of the liquid crystal aligning layer.
  • the optical alignment performance of the liquid crystal alignment film can be increased, and as a result, the alignment uniformity of the liquid crystal in the liquid crystal lens layer can be maintained high. Therefore, the content of the photoalignable polyorganosiloxane having a high production cost in the liquid crystal aligning agent can be reduced, and as a result, the production cost of the light directivity control unit can be reduced.
  • the 2D / 3D switchable display module of the present invention is A display panel;
  • the 2D / 3D switchable display module includes the above-described light directivity control unit that excels in liquid crystal alignment uniformity of the liquid crystal lens layer, it almost reduces the level of 2D and 3D display quality. Therefore, a favorable display can be provided to the viewer.
  • the manufacturing method of the light directivity control unit of the present invention is as follows.
  • a light directivity control unit comprising a liquid crystal lens layer laminated on the back side of (1)
  • step (3) (3-1) a step of disposing the liquid crystal alignment film and the transparent substrate to face each other and forming a space between them; and (3-2) filling the space with a liquid crystal material to form a liquid crystal lens layer. It is preferable to have the process to do.
  • step (3-2) It is more preferable to have (3-2-1) a step of sucking polymerizable liquid crystal into this space, and (3-2-2) a step of polymerizing this polymerizable liquid crystal to form a liquid crystal lens layer.
  • step (3) (3-1 ′) a step of applying a liquid crystal material to the back side of the liquid crystal alignment film to form a liquid crystal lens layer; and (3-2 ′) a step of disposing a transparent substrate on the back side of the liquid crystal lens layer. It is preferable to have.
  • step (3-1 ′) (3-1′-1) a step of applying a polymerizable liquid crystal on the back side of the liquid crystal alignment film, and (3-1′-2) a step of polymerizing the polymerizable liquid crystal to form a liquid crystal lens layer. It is more preferable.
  • the manufacturing method of the present invention it is possible to efficiently manufacture a light directivity control unit having excellent alignment uniformity of the liquid crystal lens layer, and it is possible to promote improvement in productivity and reduction in manufacturing cost.
  • the liquid crystal aligning agent of the present invention is A liquid crystal aligning agent for aligning a liquid crystal lens layer of a 2D / 3D switchable display module, It has a radiation sensitivity.
  • the orientation of the liquid crystal alignment film laminated on the liquid crystal lens layer of the light directivity control unit of the 2D / 3D switchable display module can be improved.
  • the alignment uniformity can be improved.
  • the alignment uniformity of the liquid crystal lens layer can be improved, and as a result, the display accuracy such as the resolution of a 2D / 3D switchable display module using the liquid crystal lens layer can be improved. it can.
  • the light directivity control unit 1 includes a pair of transparent substrates 11 and 12, a lenticular layer 13, a liquid crystal lens layer 14, and two liquid crystal alignment films 15 and 16.
  • This light directivity control unit 1 is in a case where the extraordinary refractive index of the liquid crystal lens layer 14 (the refractive index for polarized light oscillating in the direction parallel to the optical axis of the liquid crystal) is larger than the refractive index of the lenticular layer 13.
  • one transparent substrate 12 side is the back side, that is, the side on which light from the display panel is incident
  • the other transparent substrate 11 side is the front side, that is, the light is emitted toward the viewer. The side to do.
  • the pair of transparent substrates 11 and 12 are disposed to face each other, and the other transparent substrate 11 is disposed substantially in parallel on the surface side of one transparent substrate 12.
  • a lenticular layer 13 is laminated on the back surface of the transparent substrate 11.
  • the lenticular layer 13 has a concave lenticular lens array on the back surface.
  • the ridge line direction of the lenticular lens layer 13 is configured to be one direction.
  • a liquid crystal alignment film 15 is stacked on the surface of the concave lenticular lens array on the back surface of the lenticular layer 13, and a liquid crystal alignment film 16 is stacked on the surface of one transparent substrate 12.
  • the liquid crystal lens layer 14 is formed between the two liquid crystal alignment films 15 and 16.
  • the two liquid crystal alignment films respectively formed on the back surface of the lenticular layer 13 and the front surface of the transparent substrate 12 have the liquid crystal alignment ability in the same direction, that is, both in the z direction when irradiated with radiation.
  • the liquid crystal lens layer 14 is composed of a liquid crystal filled between the two liquid crystal alignment layers 15 and 16, and as a result, the liquid crystal lens layer 14 has a lenticular lens having irregularities opposite to the lenticular layer 13 on its surface. Has an array.
  • the liquid crystal of the liquid crystal lens layer 14 is aligned in the z direction according to the liquid crystal alignment ability of the liquid crystal alignment films 15 and 16. Therefore, the refractive index of the liquid crystal lens layer 14 is high for polarized light whose vibration direction is the z direction, while it is low for polarized light whose vibration direction is the x direction, and has a refractive index substantially equal to that of the lenticular layer 13. is doing.
  • the liquid crystal lens layer 14 is used when the oscillation direction of polarized light incident on the light directivity control unit 1 is the z direction.
  • 14 and the lenticular layer 13 are different in refractive index, and the refractive index of the liquid crystal lens layer 14 is larger. Therefore, the combination of the liquid crystal lens layer 14 and the lenticular layer 13 functions as a lenticular lens having the shape of the liquid crystal lens layer 14.
  • the light directivity control unit 1 provides a refractive light directivity function.
  • the refractive index of the liquid crystal lens layer 14 and that of the lenticular layer 13 are substantially the same. In the combination, the light is simply transmitted without being refracted, and the light directivity control unit 1 provides a passing light directivity function.
  • the liquid crystal alignment ability of the two liquid crystal alignment films may be the x direction in addition to the z direction, but the z direction is preferable.
  • the light directivity control unit 2 includes a pair of transparent substrates 11 and 12, a lenticular layer 13, a liquid crystal lens layer 14, two liquid crystal alignment films 15 and 16, a transparent substrate (switch transparent substrate) 21, and a pair of Transparent electrode layers (switch transparent electrodes) 22 and 23 and a liquid crystal layer (switch liquid crystal layer) 24 are provided.
  • the combination of the switch transparent substrate 21, the pair of switch transparent electrode layers 22 and 23, and the switch liquid crystal layer 24 forms the switch liquid crystal layer 24 depending on whether voltage is applied between the pair of switch transparent electrode layers 22 and 23.
  • the light directivity control unit 2 has a configuration in which a liquid crystal switch is added to the configuration of the light directivity control unit 1 of the first embodiment.
  • the same configurations as those of the light directivity control unit 1 of the first embodiment are denoted by the same reference numerals and description thereof is omitted.
  • the transparent substrate, the transparent electrode layer, and the liquid crystal layer constituting the liquid crystal switch are also referred to as a switch transparent substrate, a switch transparent electrode layer, and a switch liquid crystal layer, respectively.
  • a switch transparent substrate 21 is disposed on the surface side of the transparent substrate 11 so as to face the transparent substrate 11.
  • a pair of transparent electrode layers 22 and 23 are arranged with a certain gap on the opposing surfaces of the transparent substrate 11 and the switch transparent substrate 21, and a switch liquid crystal layer 24 is disposed between the pair of transparent conductive layers 22 and 23. Is done.
  • the light directivity control unit 2 further includes the configuration of the liquid crystal switch. Therefore, depending on whether voltage is applied between the transparent electrode layers 22 and 23, the liquid crystal lens layer The polarized light in the desired vibration direction incident on 14 can be switched so as to be emitted from the light directivity control unit 2. That is, according to the light directivity control unit 2, incident light polarized in the z direction can be refracted by the liquid crystal lens layer 14 and the lenticular layer 13, and then polarized in a desired direction by the liquid crystal switch and emitted.
  • incident light polarized in the x direction can be simply transmitted through the liquid crystal lens layer 14 and the lenticular layer 13, and then polarized in a desired direction by the liquid crystal switch to be emitted. Therefore, according to the light directivity control unit 2, it is possible to switch between the transmission type and the refraction type light directivity functions for the outgoing light having a desired vibration direction.
  • the light directivity control unit 3 includes a pair of transparent substrates 11 and 12, a lenticular layer 13, a liquid crystal lens layer 14, two liquid crystal alignment films 15 and 16, a switch transparent electrode substrate 25, a transparent electrode layer 26, And a switch liquid crystal layer 24.
  • the switch transparent electrode substrate 25 is obtained by laminating a transparent electrode layer on the back side of the transparent substrate. That is, the light directivity control unit 3 has a structure in which a liquid crystal switch including a switch transparent electrode substrate 25, a transparent electrode layer 26, and a switch liquid crystal layer 24 is added to the structure of the light directivity control unit 1 of the first embodiment. is doing.
  • FIG. 3 the same components as those of the light directivity control unit 1 of the first embodiment are denoted by the same reference numerals and description thereof is omitted.
  • the light directivity control unit 3 includes a switch transparent electrode substrate 25, a switch liquid crystal layer 24, and a transparent electrode layer 26 between the liquid crystal alignment film 16 and the one transparent substrate 12 in the light directivity control unit 1 of the first embodiment. It has a configuration arranged in this order.
  • the switch transparent electrode substrate 25 and the transparent electrode layer 26, and the switch liquid crystal layer 24 sandwiched therebetween function as a liquid crystal switch as described above. Therefore, similarly to the light directivity control unit 2 of the second embodiment, the light directivity control unit 3 has a desired vibration direction depending on whether or not voltage is applied between the switch transparent electrode substrate 25 and the transparent electrode layer 26. With respect to the incident light, it is possible to switch between the transmissive and refractive light directivity functions.
  • incident light polarized in a specific direction on the xz plane is changed into z-direction polarization by the liquid crystal switch, and refracted by the liquid crystal lens layer 14 and the lenticular layer 13 to be emitted.
  • incident light polarized in a specific direction on the xz plane can be converted into polarized light in the x direction by the liquid crystal switch, and can be simply transmitted by the liquid crystal lens layer 14 and the lenticular layer 13 to be emitted.
  • the light directivity control unit 4 includes a pair of transparent substrates 11 and 12, a lenticular 13, a liquid crystal lens layer 14, two liquid crystal alignment films 15 and 16, and a pair of transparent electrode layers 27 and 28. . That is, the light directivity control unit 4 has a configuration in which a pair of transparent conductive layers 27 and 28 are added to the configuration of the light directivity control unit 1 of the first embodiment.
  • the same configurations as those of the light directivity control unit 1 of the first embodiment are denoted by the same reference numerals and description thereof is omitted.
  • transparent electrode layers 27 and 28 are laminated on the pair of transparent substrates 11 and 12 on opposite sides thereof.
  • a lenticular layer 13 is laminated on the back surface of one transparent electrode layer 27.
  • a liquid crystal alignment film 16 is laminated on the surface of the other transparent electrode layer 28.
  • the orientation direction of the liquid crystal forming the liquid crystal lens layer 14 disposed between the pair of transparent electrode layers 27 and 28 can be changed depending on whether or not the voltage is applied between the pair of transparent electrode layers 27 and 28.
  • the lens function by the combination of the liquid crystal lens layer 14 and the lenticular layer 13 can be switched with respect to incident light in a predetermined vibration direction, so that the light directivity of transmission type and refraction type can be switched. You can switch functions.
  • the transparent substrates 11 and 12 include glass substrates such as float glass and soda glass, triacetyl cellulose (TAC), polyethylene terephthalate, polybutylene terephthalate, polyethersulfone, polyamide, polyimide, polymethyl methacrylate, polycarbonate, and cyclic.
  • glass substrates such as float glass and soda glass, triacetyl cellulose (TAC), polyethylene terephthalate, polybutylene terephthalate, polyethersulfone, polyamide, polyimide, polymethyl methacrylate, polycarbonate, and cyclic.
  • TAC triacetyl cellulose
  • polyethylene terephthalate polybutylene terephthalate
  • polyethersulfone polyamide
  • polyimide polymethyl methacrylate
  • polycarbonate polycarbonate
  • cyclic examples include olefin ring-opening polymers and hydrogenated products thereof, cyclic olefin addition polymers, and transparent substrates including plastic substrate
  • the refractive index thereof is preferably about the same as the ordinary refractive index of the liquid crystal lens layer 14.
  • Polyethylene terephthalate, polybutylene terephthalate, polyethersulfone, polyamide, polyimide, polymethyl methacrylate Resins such as acrylic, polycarbonate, polyvinyl chloride, polyolefin and the like are preferably used.
  • the back surface of the transparent substrate may have a convex or concave lenticular shape, and the transparent substrate and the lenticular layer may be integrated.
  • the liquid crystal alignment films 15 and 16 are provided.
  • the liquid crystal alignment film has a function of regulating the alignment direction of the liquid crystal formed adjacent to the liquid crystal alignment layer and improving the alignment.
  • the liquid crystal alignment film 15 laminated on the front surface of the liquid crystal lens layer 14, that is, the back surface of the lenticular layer 13, is required to be a liquid crystal alignment film formed of a radiation-sensitive liquid crystal aligning agent.
  • the radiation-sensitive liquid crystal aligning agent uses polarized light in a predetermined vibration direction instead of the usual rubbing treatment to enhance the alignment of alignment film forming molecules and enhance the liquid crystal alignment performance.
  • the liquid crystal alignment film 16 formed on the back surface side of the liquid crystal lens layer 14, that is, on the surface of the transparent substrate 12 is preferably formed of a radiation-sensitive liquid crystal aligning agent.
  • a radiation-sensitive liquid crystal aligning agent By forming the liquid crystal alignment film laminated on the back surface of the liquid crystal lens layer 14 with a radiation-sensitive liquid crystal aligning agent, the alignment uniformity of the liquid crystal lens layer 14 can be further improved, and as a result, the light directivity control is performed.
  • the display accuracy such as the resolution of the 2D / 3D switchable display module including the unit can be further improved.
  • the liquid crystal alignment film 15 is formed from a radiation-sensitive liquid crystal aligning agent (hereinafter also simply referred to as “liquid crystal aligning agent”).
  • liquid crystal aligning agent a radiation-sensitive liquid crystal aligning agent
  • the liquid crystal alignment film 15 that is formed on the fine uneven surface of the lenticular layer and is considered difficult to improve the alignment by rubbing treatment is also an alignment film forming molecule.
  • the alignment uniformity of the obtained liquid crystal lens layer 14 can be improved. Therefore, the display accuracy such as the resolution of the 2D / 3D switchable display module including the light directivity control unit can be further improved.
  • the liquid crystal alignment film 16 can also be formed from a radiation sensitive liquid crystal aligning agent.
  • both of the pair of liquid crystal alignment films 15 and 16 laminated on both sides of the liquid crystal lens layer 14 are aligned using the radiation sensitive liquid crystal aligning agent and the same polarized radiation, both the pair of liquid crystal alignment films 15 and 16 are aligned. It is preferable because the alignment direction of the alignment film forming molecules in the film can be matched at a high level, and as a result, the alignment uniformity of the liquid crystal lens layer 14 to be obtained can be further improved.
  • the liquid crystal aligning agent is not particularly limited as long as it is radiation sensitive, and various liquid crystal aligning agents can be used.
  • the liquid crystal aligning agent contains a specific polyimide resin described in JP-A-9-297313. And those containing a polymer having a molecular unit capable of causing photochemical isomerization / dimerization described in JP-A-6-287453.
  • liquid crystal aligning agent a liquid crystal aligning agent containing an inorganic polymer having a photo-alignable group is preferable.
  • a liquid crystal aligning agent containing an inorganic polymer having a photo-alignment group By using a liquid crystal aligning agent containing an inorganic polymer having a photo-alignment group, a liquid crystal alignment film having excellent liquid crystal alignment performance and thermal stability can be formed.
  • the liquid crystal aligning agent containing [A] polyorganosiloxane having a photo-alignable group is more preferable.
  • the liquid crystal aligning agent contains [A] photo-alignable polyorganosiloxane it is possible to form a liquid crystal alignment film having excellent transparency, and the light irradiation amount necessary for alignment due to high-sensitivity photo-alignment. Can be reduced. Since the firing temperature can be lowered, the range of selection of the substrate to be used can be widened, and furthermore, since a heating step during and after radiation irradiation is unnecessary, a liquid crystal alignment film can be formed efficiently.
  • the liquid crystal aligning agent containing the photo-alignable polyorganosiloxane preferably contains [B] other polymer and [C] ester structure-containing compound, and the other, as long as the effects of the present invention are not impaired. These optional components may be contained.
  • [A] photo-alignable polyorganosiloxane, [B] other polymer, [C] ester structure-containing compound, and optional components will be described in detail.
  • the photo-alignment polyorganosiloxane has photo-alignment in a portion derived from at least one selected from the group consisting of polyorganosiloxane as a main chain, a hydrolyzate thereof and a condensate of the hydrolyzate. A group has been introduced. By the photo-alignment group, the sensitivity of photo-alignment is improved, a low light irradiation amount can be realized, and the liquid crystal alignment property of the liquid crystal alignment film is excellent. Further, since polyorganosiloxane is employed as the main chain, the liquid crystal alignment film formed from the liquid crystal aligning agent has excellent chemical stability and thermal stability.
  • photo-alignment group groups derived from various compounds exhibiting photo-alignment can be adopted.
  • azobenzene-containing group containing azobenzene or a derivative thereof as a basic skeleton cinnamic acid containing a cinnamic acid or a derivative thereof as a basic skeleton
  • examples thereof include a group having a structure, a chalcone-containing group containing chalcone or a derivative thereof as a basic skeleton, a benzophenone-containing group containing benzophenone or a derivative thereof as a basic skeleton, and a coumarin-containing group having coumarin or a derivative thereof as a basic skeleton.
  • a group having a cinnamic acid structure containing cinnamic acid or a derivative thereof as a basic skeleton is preferable.
  • R 1 is a phenylene group, a biphenylene group, a terphenylene group, or a cyclohexylene group.
  • Some or all of the hydrogen atoms of the phenylene group, biphenylene group, terphenylene group, and cyclohexylene group may have a fluorine atom or an alkyl group having 1 to 10 carbon atoms or an alkoxy group having 1 to 10 carbon atoms.
  • R 2 is a single bond, an alkanediyl group having 1 to 3 carbon atoms, an oxygen atom, a sulfur atom, —CH ⁇ CH—, —NH—, —COO— or —OCO—.
  • a is an integer of 0 to 3. However, when a is 2 or more, the plurality of R 1 and R 2 may be the same or different.
  • R 3 is a fluorine atom or a cyano group.
  • b is an integer of 0-4.
  • Examples of the compound represented by the above formula (1) include a compound represented by the following formula.
  • R 1 is preferably an unsubstituted phenylene group or a phenylene group substituted with a fluorine atom or an alkyl group having 1 to 3 carbon atoms.
  • R 2 is preferably a single bond, an oxygen atom or —CH 2 ⁇ CH 2 —.
  • b is preferably 0 to 1. When a is 1 to 3, b is particularly preferably 0.
  • R 4 is a phenylene group or a cyclohexylene group. Some or all of the hydrogen atoms of the phenylene group or cyclohexylene group may be a linear or cyclic alkyl group having 1 to 10 carbon atoms, a linear or cyclic alkoxy group having 1 to 10 carbon atoms, a fluorine atom, or a cyano group. May be substituted.
  • R 5 is a single bond, an alkanediyl group having 1 to 3 carbon atoms, an oxygen atom, a sulfur atom or —NH—.
  • c is an integer of 1 to 3. However, when c is 2 or more, the plurality of R 4 and R 5 may be the same or different.
  • R 6 is a fluorine atom or a cyano group.
  • d is an integer of 0-4.
  • R 7 is an oxygen atom, —COO— or —OCO—.
  • R 8 is a divalent aromatic group, a divalent alicyclic group, a divalent heterocyclic group, or a divalent condensed cyclic group.
  • R 9 is a single bond, —OCO— (CH 2 ) f — * or —O (CH 2 ) g — *. * Indicates a binding site with a carboxyl group.
  • f and g are each an integer of 1 to 10.
  • e is an integer of 0-3. However, when e is 2 or more, the plurality of R 7 and R 8 may be the same or different.
  • Examples of the compound represented by the above formula (2) include compounds represented by the following formulas (2-1) to (2-2).
  • Q is a linear or cyclic alkyl group having 1 to 10 carbon atoms, a linear or cyclic alkoxy group having 1 to 10 carbon atoms, a fluorine atom, or a cyano group. Synonymous.
  • the synthesis procedure of the specific cinnamic acid derivative is not particularly limited and can be performed by combining conventionally known methods.
  • a typical synthesis procedure for example, (i) a compound having a benzene ring skeleton substituted with a halogen atom under basic conditions is reacted with acrylic acid in the presence of a transition metal catalyst to produce a specific cinnamic acid derivative. And (ii) reacting a cinnamic acid in which a hydrogen atom of a benzene ring is substituted with a halogen atom under a basic condition and a compound having a benzene ring skeleton substituted with a halogen atom in the presence of a transition metal catalyst.
  • the method etc. which make a specific cinnamic acid derivative are mentioned.
  • [A] As a part derived from at least one selected from the group consisting of polyorganosiloxane contained in the photoalignable polyorganosiloxane as a main chain, a hydrolyzate thereof and a condensate of the hydrolyzate, As long as it has a portion derived from the structure into which the photo-alignable group can be introduced, it is not particularly limited.
  • the photoalignable polyorganosiloxane is a portion derived from at least one selected from the group consisting of such polyorganosiloxane, a hydrolyzate thereof, and a condensate of the hydrolyzate, and the photoalignment property. And a group derived from a compound exhibiting
  • Examples of the structure into which the photoalignable group can be introduced include a hydroxyl group, an epoxy group, an amino group, a carboxyl group, a mercapto group, an ester group, and an amide group.
  • an epoxy group is preferable in consideration of ease of introduction and preparation.
  • the photoalignable polyorganosiloxane is preferably a reaction product of a polyorganosiloxane having an epoxy group and a compound represented by the above formula (1) and / or (2).
  • the liquid crystal aligning agent by utilizing the reactivity between the polyorganosiloxane having an epoxy group and the specific cinnamic acid derivative, the polyorganosiloxane as the main chain is derived from the specific cinnamic acid derivative having photo-alignment property. Groups can be easily introduced.
  • the polyorganosiloxane having an epoxy group is not particularly limited as long as an epoxy group is introduced as a side chain into the polyorganosiloxane.
  • the polyorganosiloxane having an epoxy group may be a hydrolyzate of a polyorganosiloxane having an epoxy group or a condensate of the hydrolyzate.
  • the polyorganosiloxane having an epoxy group is at least one selected from the group consisting of a polyorganosiloxane having a structural unit represented by the following formula (3), a hydrolyzate thereof, and a condensate of the hydrolyzate. It is preferable that
  • X 1 is a monovalent organic group having an epoxy group.
  • Y 1 is a hydroxyl group, an alkoxy group having 1 to 10 carbon atoms, an alkyl group having 1 to 20 carbon atoms, or 6 to 20 carbon atoms. Of the aryl group.
  • hydrolysis condensate of the polyorganosiloxane having the structural unit represented by the above formula (3) is not only the hydrolysis condensate of the polyorganosiloxane but also the structural unit represented by the above formula (3).
  • Hydrolysis condensate in the case where the polyorganosiloxane obtained by the branching or crosslinking of the main chain has the structural unit represented by the above formula (3) in the process of producing the polyorganosiloxane by the hydrolytic condensation of It is a concept that also includes
  • X 1 in the above formula (3) is not particularly limited as long as it is a monovalent organic group having an epoxy group, and examples thereof include a group containing a glycidyl group, a glycidyloxy group, and an epoxycyclohexyl group.
  • X 1 is preferably represented by the following formula (X 1 -1) or (X 1 -2).
  • A is an oxygen atom or a single bond.
  • H is an integer of 1 to 3.
  • i is an integer of 0 to 6. However, when i is 0, A is It is a single bond.
  • j is an integer of 1 to 6.
  • * represents a bond.
  • groups represented by the following formula (X 1 -1-1) or (X 1 -2-1) are: preferable.
  • Examples of the alkoxy group having 1 to 10 carbon atoms include a methoxy group and an ethoxy group;
  • Examples of the alkyl group having 1 to 20 carbon atoms include methyl group, ethyl group, n-propyl group, n-butyl group, n-pentyl group, n-hexyl group, n-heptyl group, n-octyl group, and n-nonyl.
  • aryl group having 6 to 20 carbon atoms include a phenyl group.
  • the weight average molecular weight (Mw) in terms of polystyrene measured by gel permeation chromatography (GPC) of a polyorganosiloxane having an epoxy group is preferably 500 to 100,000, more preferably 1,000 to 10,000. 1,000 to 5,000 is particularly preferred.
  • Mw in this specification is a polystyrene conversion value measured by GPC having the following specifications. Column: Tosoh, TSKgelGRCXLII Solvent: Tetrahydrofuran Temperature: 40 ° C Pressure: 6.8 MPa
  • Such a polyorganosiloxane having an epoxy group is preferably a silane compound having an epoxy group or a mixture of a silane compound having an epoxy group and another silane compound, preferably in the presence of a suitable organic solvent, water and a catalyst.
  • a suitable organic solvent water and a catalyst.
  • silane compound having an epoxy group examples include 3-glycidyloxypropyltrimethoxysilane, 3-glycidyloxypropyltriethoxysilane, 3-glycidyloxypropylmethyldimethoxysilane, 3-glycidyloxypropylmethyldiethoxy.
  • Silane, 3-glycidyloxypropyldimethylmethoxysilane, 3-glycidyloxypropyldimethylethoxysilane, 2- (3,4-epoxycyclohexyl) ethyltrimethoxysilane, 2- (3,4-epoxycyclohexyl) ethyltriethoxy Silane etc. are mentioned.
  • silane compounds examples include tetrachlorosilane, tetramethoxysilane, tetraethoxysilane, tetra-n-propoxysilane, tetra-i-propoxysilane, tetra-n-butoxysilane, tetra-sec-butoxysilane, trichlorosilane, Trimethoxysilane, triethoxysilane, tri-n-propoxysilane, tri-i-propoxysilane, tri-n-butoxysilane, tri-sec-butoxysilane, fluorotrichlorosilane, fluorotrimethoxysilane, fluorotriethoxysilane, Fluorotri-n-propoxysilane, fluorotri-i-propoxysilane, fluorotri-i-propoxysilane, fluorotri-n-butoxysilane, fluorotri-sec-butoxysilane, methylt
  • Examples of commercially available products include KC-89, KC-89S, X-21-3153, X-21-5841, X-21-5842, X-21-5843, X-21-5844, X-21-5845, X-21-5546, X-21-5847, X-21-5848, X-22-160AS, X-22-170B, X-22-170BX, X-22-170D, X-22-170DX, X- 22-176B, X-22-176D, X-22-176DX, X-22-176F, X-40-2308, X-40-2651, X-40-2655A, X-40-2671, X-40- 2672, X-40-9220, X-40-9225, X-40-9227, X-40-9246, X-40-9247, X-40-9250, X-40-9323, X-41 -1053, X-41-1056, X-41-1805, X-
  • tetramethoxysilane, tetraethoxysilane, methyltrimethoxysilane, methyltriethoxysilane, 3- (meth) acrylic acid are used from the viewpoint of the orientation and chemical stability of the obtained liquid crystal alignment film.
  • the polyorganosiloxane having an epoxy group used in the present invention suppresses unintended side reactions caused by excessive introduction of epoxy groups while introducing a sufficient amount of side chains having photo-alignment properties.
  • the epoxy equivalent is preferably 100 g / mol to 10,000 g / mol, and more preferably 150 g / mol to 1,000 g / mol. Therefore, when synthesizing a polyorganosiloxane having an epoxy group, the use ratio of the silane compound having an epoxy group and another silane compound is prepared so that the epoxy equivalent of the obtained polyorganosiloxane is in the above range. It is preferable.
  • such other silane compound is preferably used in an amount of 0% by mass to 50% by mass with respect to the total of the polyorganosiloxane having an epoxy group and the other silane compound, and 5% by mass to 30% by mass. % Is more preferable.
  • organic solvent examples include hydrocarbon compounds, ketone compounds, ester compounds, ether compounds, alcohol compounds, and the like.
  • hydrocarbon compound examples include toluene and xylene
  • examples of the ketone include methyl ethyl ketone, methyl isobutyl ketone, methyl n-amyl ketone, diethyl ketone, and cyclohexanone
  • examples of the ester include ethyl acetate, n-butyl acetate, I-amyl acetate, propylene glycol monomethyl ether acetate, 3-methoxybutyl acetate, ethyl lactate and the like
  • the ether for example, ethylene glycol dimethyl ether, ethylene glycol diethyl ether, tetrahydrofuran, dioxane and the like
  • as the alcohol for example, 1-hexanol 4-methyl-2-pentanol, ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, ethylene glycol mono- - propyl ether, ethylene glycol monobut
  • the amount of the organic solvent used is preferably 10 parts by mass to 10,000 parts by mass, more preferably 50 parts by mass to 1,000 parts by mass with respect to 100 parts by mass of the total silane compounds.
  • the amount of water used in producing the polyorganosiloxane having an epoxy group is preferably 0.5 to 100 times mol, more preferably 1 to 30 times mol based on the total silane compounds. .
  • an acid for example, an acid, an alkali metal compound, an organic base, a titanium compound, a zirconium compound, or the like can be used.
  • alkali metal compound examples include sodium hydroxide, potassium hydroxide, sodium methoxide, potassium methoxide, sodium ethoxide, potassium ethoxide and the like.
  • Examples of the organic base include primary and secondary organic amines such as ethylamine, diethylamine, piperazine, piperidine, pyrrolidine, and pyrrole; Tertiary organic amines such as triethylamine, tri-n-propylamine, tri-n-butylamine, pyridine, 4-dimethylaminopyridine, diazabicycloundecene; Examples include quaternary organic ammonium salts such as tetramethylammonium hydroxide. Of these organic bases, tertiary organic amines such as triethylamine, tri-n-propylamine, tri-n-butylamine, pyridine, 4-dimethylaminopyridine, etc. Quaternary organic ammonium salts such as methylammonium hydroxide are preferred.
  • an alkali metal compound or an organic base is preferable as a catalyst for producing a polyorganosiloxane having an epoxy group.
  • an alkali metal compound or an organic base is preferable.
  • the desired polyorganosiloxane can be obtained at a high hydrolysis / condensation rate without causing side reactions such as ring opening of the epoxy group, resulting in stable production. It is preferable because of its excellent properties.
  • the radiation-sensitive liquid crystal aligning agent containing a reaction product of a polyorganosiloxane having an epoxy group synthesized using an alkali metal compound or an organic base as a catalyst and a specific cinnamic acid derivative has extremely high storage stability. It is convenient because it is excellent.
  • an organic base is particularly preferable.
  • the amount of organic base used varies depending on the reaction conditions such as the type of organic base and temperature, and can be set appropriately.
  • the specific use amount of the organic base is, for example, preferably 0.01 to 3 times mol, more preferably 0.05 to 1 time mol, with respect to all silane compounds.
  • Hydrolysis or hydrolysis / condensation reaction when producing polyorganosiloxane having an epoxy group is carried out by dissolving an epoxy group-containing silane compound and, if necessary, another silane compound in an organic solvent, and dissolving the solution in an organic base. And it is preferable to carry out by mixing with water and heating with, for example, an oil bath.
  • the heating temperature of the oil bath is preferably 130 ° C. or lower, more preferably 40 ° C. to 100 ° C., preferably 0.5 hours to 12 hours, more preferably 1 hour to 8 hours. Is desirable.
  • the mixture may be stirred or placed under reflux.
  • the organic solvent layer separated from the reaction solution is preferably washed with water.
  • a desiccant such as anhydrous calcium sulfate or molecular sieves as necessary, and then the target is removed by removing the solvent.
  • a polyorganosiloxane having an epoxy group can be obtained.
  • polyorganosiloxane having an epoxy group may be used.
  • examples of such commercially available products include DMS-E01, DMS-E12, DMS-E21, EMS-32 (manufactured by Chisso).
  • the photo-alignable polyorganosiloxane compound is a hydrolysis product obtained by hydrolyzing and condensing a portion derived from a hydrolyzate produced by hydrolysis of an epoxy group-containing polyorganosiloxane itself or an epoxy group-containing polyorganosiloxane. A portion derived from the condensate may be included.
  • hydrolysates and hydrolysis condensates which are constituent materials of the above-mentioned parts can also be prepared in the same manner as the hydrolysis or condensation conditions of polyorganosiloxane having an epoxy group.
  • the [A] photoalignable polyorganosiloxane used in the present invention can be synthesized, for example, by reacting the above-mentioned polyorganosiloxane having an epoxy group with a specific cinnamic acid derivative, preferably in the presence of a catalyst.
  • the amount of the specific cinnamic acid derivative used is preferably 0.001 mol to 10 mol, more preferably 0.01 mol to 5 mol, more preferably 0.05 mol to 1 mol with respect to 1 mol of the epoxy group of the polyorganosiloxane. Two moles are particularly preferred.
  • an organic base or a compound known as a so-called curing accelerator that accelerates the reaction between an epoxy compound and an acid anhydride can be used.
  • said organic base the thing similar to what was mentioned above is mentioned, for example.
  • the curing accelerator examples include tertiary amines such as benzyldimethylamine, 2,4,6-tris (dimethylaminomethyl) phenol, cyclohexyldimethylamine, and triethanolamine; 2-methylimidazole, 2-n-heptylimidazole, 2-n-undecylimidazole, 2-phenylimidazole, 2-phenyl-4-methylimidazole, 1-benzyl-2-methylimidazole, 1-benzyl-2-phenyl Imidazole, 1,2-dimethylimidazole, 2-ethyl-4-methylimidazole, 1- (2-cyanoethyl) -2-methylimidazole, 1- (2-cyanoethyl) -2-n-undecylimidazole, 1- ( 2-cyanoethyl) -2-phenylimidazole, 1- (2-cyanoethyl) -2-ethyl-4-methylimidazole, 2-phen
  • quaternary ammonium salts such as tetraethylammonium bromide, tetra-n-butylammonium bromide, tetraethylammonium chloride and tetra-n-butylammonium chloride are preferable.
  • the amount of the catalyst used is preferably 100 parts by mass or less, more preferably 0.01 parts by mass to 100 parts by mass, and 0.1 parts by mass to 20 parts by mass with respect to 100 parts by mass of the polyorganosiloxane having an epoxy group. Particularly preferred.
  • the reaction temperature is preferably 0 ° C. to 200 ° C., more preferably 50 ° C. to 150 ° C.
  • the reaction time is preferably 0.1 hours to 50 hours, more preferably 0.5 hours to 20 hours.
  • the photo-alignable polyorganosiloxane can be synthesized in the presence of an organic solvent, if necessary.
  • the organic solvent include hydrocarbon compounds, ether compounds, ester compounds, ketone compounds, amide compounds, alcohol compounds, and the like. Of these, ether compounds, ester compounds, and ketone compounds are preferred from the viewpoints of solubility of raw materials and products and ease of purification of the products.
  • the solvent has a solid content concentration (the ratio of the mass of components other than the solvent in the reaction solution to the total mass of the solution), preferably 0.1% by mass to 70% by mass, more preferably 5% by mass to 50% by mass. % Is used in an amount of less than%.
  • the Mw of the thus obtained [A] photo-alignable polyorganosiloxane is not particularly limited, but is preferably 1,000 to 20,000, more preferably 3,000 to 15,000. By setting it as such a molecular weight range, the favorable orientation and stability of a liquid crystal aligning film are securable.
  • the photoalignable polyorganosiloxane introduces a structure derived from a specific cinnamic acid derivative by ring-opening addition of the carboxyl group of the specific cinnamic acid derivative to the epoxy to the polyorganosiloxane having an epoxy group.
  • This production method is simple and is a very suitable method in that the introduction rate of the structure derived from the specific cinnamic acid derivative can be increased.
  • a part of the specific cinnamic acid derivative may be replaced with a compound represented by the following formula (4) as long as the effects of the present invention are not impaired.
  • the synthesis of [A] photoalignable polyorganosiloxane compound is carried out by reacting a polyorganosiloxane having an epoxy group with a mixture of a specific cinnamic acid derivative and a compound represented by the following formula (4). Is called.
  • R 10 in the above formula (4) is preferably an alkyl group or alkoxy group having 8 to 20 carbon atoms, or a fluoroalkyl group or fluoroalkoxy group having 4 to 21 carbon atoms.
  • R 11 is preferably a single bond, a 1,4-cyclohexylene group or a 1,4-phenylene group.
  • R 12 is preferably a carboxyl group.
  • Examples of the compound represented by the above formula (4) include compounds represented by the following formulas (4-1) to (4-3).
  • the compound represented by the above formula (4) can contribute to improving the stability of the liquid crystal aligning agent by deactivating the active site of [A] photoalignable polyorganosiloxane.
  • the total use ratio of the specific cinnamic acid derivative and the compound represented by the above formula (4) is polyorganosiloxane. 0.001 mol to 1.5 mol is preferable, 0.01 mol to 1 mol is more preferable, and 0.05 mol to 0.9 mol is particularly preferable with respect to 1 mol of the epoxy group contained in.
  • the amount of the compound represented by the above formula (4) is preferably 50 mol% or less, more preferably 25 mol% or less, based on the total amount with the specific cinnamic acid derivative.
  • the proportion of the compound represented by the above formula (4) exceeds 50 mol%, there is a risk of causing a problem that the orientation in the liquid crystal alignment film is lowered.
  • the liquid crystal aligning agent can contain [B] another polymer as a suitable component.
  • the other polymer include at least one selected from the group consisting of polyamic acid, polyimide, ethylenically unsaturated compound polymer, and polyorganosiloxane having no photo-alignment group.
  • the photoalignable polyorganosiloxane in the liquid crystal aligning agent is reduced by increasing the content of other polymers, the photoalignable polyorganosiloxane is unevenly distributed on the alignment film surface. Liquid crystal orientation can be obtained. Therefore, in this invention, it becomes possible to reduce content in the said liquid crystal aligning agent of photoalignment polyorganosiloxane with a high manufacturing cost, As a result, the manufacturing cost of the said liquid crystal aligning agent can be reduced.
  • a polyamic acid is obtained by reacting a tetracarboxylic dianhydride and a diamine compound.
  • tetracarboxylic dianhydrides examples include aliphatic tetracarboxylic dianhydrides, alicyclic tetracarboxylic dianhydrides, aromatic tetracarboxylic dianhydrides, and the like. These tetracarboxylic dianhydrides can be used alone or in combination of two or more.
  • Examples of the aliphatic tetracarboxylic dianhydride include butanetetracarboxylic dianhydride.
  • Examples of the alicyclic tetracarboxylic dianhydride include 1,2,3,4-cyclobutanetetracarboxylic dianhydride, 2,3,5-tricarboxycyclopentylacetic acid dianhydride, 1,3,3a, 4 , 5,9b-Hexahydro-5- (tetrahydro-2,5-dioxo-3-furanyl) -naphtho [1,2-c] furan-1,3-dione, 1,3,3a, 4,5,9b -Hexahydro-8-methyl-5- (tetrahydro-2,5-dioxo-3-furanyl) -naphtho [1,2-c] furan-1,3-dione, 3-oxabicyclo [3.2.1] Octane-2,4-dione-6-spiro-3 ′-(tetrahydrofuran-2 ′, 5′-dione), 5- (2,5-dioxotetrahydro-3
  • aromatic tetracarboxylic dianhydride examples include pyromellitic dianhydride and the like, and the tetracarboxylic dianhydride described in JP 2010-97188 A.
  • tetracarboxylic dianhydrides alicyclic tetracarboxylic dianhydrides are preferred, and 2,3,5-tricarboxycyclopentylacetic dianhydride or 1,2,3,4-cyclobutanetetracarboxylic dianhydride.
  • An anhydride is more preferable, and 2,3,5-tricarboxycyclopentylacetic acid dianhydride is particularly preferable.
  • the amount of 2,3,5-tricarboxycyclopentylacetic acid dianhydride or 1,2,3,4-cyclobutanetetracarboxylic dianhydride used is 10 mol% or more based on the total tetracarboxylic dianhydride. It is preferably 20 mol% or more, and it is particularly preferable that it consists only of 2,3,5-tricarboxycyclopentylacetic acid dianhydride or 1,2,3,4-cyclobutanetetracarboxylic dianhydride.
  • diamine compound examples include aliphatic diamines, alicyclic diamines, aromatic diamines, diaminoorganosiloxanes, and the like. These diamine compounds can be used alone or in combination of two or more.
  • aliphatic diamine examples include metaxylylenediamine, 1,3-propanediamine, tetramethylenediamine, pentamethylenediamine, hexamethylenediamine and the like.
  • alicyclic diamine examples include 1,4-diaminocyclohexane, 4,4'-methylenebis (cyclohexylamine), 1,3-bis (aminomethyl) cyclohexane and the like.
  • aromatic diamines examples include p-phenylenediamine, 4,4′-diaminodiphenylmethane, 4,4′-diaminodiphenyl sulfide, 1,5-diaminonaphthalene, 2,2′-dimethyl-4,4′-diaminobiphenyl.
  • X I is an alkyl group having 1 to 3 carbon atoms, * - O -, * - . COO- or * -OCO- is provided that bond is di-aminophenyl group marked with * R is 0 or 1.
  • s is an integer from 0 to 2.
  • t is an integer from 1 to 20.
  • diaminoorganosiloxane examples include 1,3-bis (3-aminopropyl) -tetramethyldisiloxane and the like, and diamines described in JP 2010-97188 A.
  • the ratio of the tetracarboxylic dianhydride and the diamine compound used in the polyamic acid synthesis reaction is such that the acid anhydride group of the tetracarboxylic dianhydride is 0 with respect to 1 equivalent of the amino group contained in the diamine compound. 2 equivalents to 2 equivalents are preferable, and 0.3 equivalents to 1.2 equivalents are more preferable.
  • the synthesis reaction is preferably performed in an organic solvent.
  • the reaction temperature is preferably ⁇ 20 ° C. to 150 ° C., more preferably 0 ° C. to 100 ° C.
  • the reaction time is preferably 0.5 to 24 hours, more preferably 2 to 12 hours.
  • the organic solvent is not particularly limited as long as it can dissolve the synthesized polyamic acid.
  • NMP N-methyl-2-pyrrolidone
  • N, N-dimethylacetamide, N, N-dimethylformamide, N Aprotic polar solvents such as N-dimethylimidazolidinone, dimethyl sulfoxide, ⁇ -butyrolactone, tetramethylurea, hexamethylphosphoric triamide
  • phenolic solvents such as m-cresol, xylenol, phenol, halogenated phenol, etc.
  • the amount of the organic solvent used (a) is 0.1% by mass to 50% with respect to the total amount (b) of the tetracarboxylic dianhydride and diamine compound and the total amount of the organic solvent used (a) (a + b). % By mass is preferable, and 5% by mass to 30% by mass is more preferable.
  • the polyamic acid solution obtained after the reaction may be used as it is for the preparation of the liquid crystal aligning agent, or may be used for the preparation of the liquid crystal aligning agent after isolating the polyamic acid contained in the reaction solution. You may use for preparation of a liquid crystal aligning agent, after refine
  • the method for isolating the polyamic acid include a method of pouring a reaction solution into a large amount of a poor solvent and drying a precipitate obtained under reduced pressure, and a method of distilling the reaction solution under reduced pressure using an evaporator.
  • Examples of the method for purifying the polyamic acid include a method in which the isolated polyamic acid is dissolved again in an organic solvent and precipitated with a poor solvent, and a method in which the step of distilling off the organic solvent or the like with an evaporator is performed once or a plurality of times. .
  • the polyimide can be produced by dehydrating and ring-closing the amic acid structure of the polyamic acid to imidize it.
  • the polyimide may be a completely imidized product in which all of the amic acid structure of the precursor polyamic acid has been dehydrated and cyclized, and only a part of the amic acid structure may be dehydrated and cyclized to form an amic acid structure and an imide. It may be a partially imidized product in which a ring structure coexists.
  • method for synthesizing polyimide for example, (i) a method of heating polyamic acid (hereinafter sometimes referred to as “method (i)”), (ii) polyamic acid is dissolved in an organic solvent, and dehydration is performed in this solution. Examples thereof include a method based on a dehydration ring-closing reaction of a polyamic acid, such as a method in which an agent and a dehydration ring-closing catalyst are added and heated as necessary (hereinafter sometimes referred to as “method (ii)”).
  • the reaction temperature in method (i) is preferably 50 ° C. to 200 ° C., more preferably 60 ° C. to 170 ° C.
  • the reaction time is preferably 0.5 to 48 hours, more preferably 2 to 20 hours.
  • the polyimide obtained in the method (i) may be used for the preparation of the liquid crystal aligning agent as it is, may be used for the preparation of the liquid crystal aligning agent after isolating the polyimide, or may be obtained after purifying the isolated polyimide. You may use for the preparation of a liquid crystal aligning agent, after refine
  • Examples of the dehydrating agent in method (ii) include acid anhydrides such as acetic anhydride, propionic anhydride, and trifluoroacetic anhydride.
  • the amount of the dehydrating agent used is appropriately selected depending on the desired imidization ratio, but is preferably 0.01 mol to 20 mol with respect to 1 mol of the amic acid structure of the polyamic acid.
  • Examples of the dehydration ring closure catalyst in the method (ii) include pyridine, collidine, lutidine, triethylamine and the like.
  • the use amount of the dehydration ring closure catalyst is preferably 0.01 mol to 10 mol with respect to 1 mol of the dehydrating agent contained.
  • the imidation rate can be increased as the content of the dehydrating agent and the dehydrating ring-closing agent is increased.
  • Examples of the organic solvent used in the method (ii) include organic solvents similar to those exemplified as those used for the synthesis of polyamic acid.
  • the reaction temperature in method (ii) is preferably 0 ° C. to 180 ° C., more preferably 10 ° C. to 150 ° C.
  • the reaction time is preferably 0.5 to 20 hours, more preferably 1 to 8 hours.
  • a reaction solution containing polyimide is obtained.
  • This reaction solution may be used as it is for the preparation of the liquid crystal aligning agent, or after removing the dehydrating agent and the dehydrating ring-closing catalyst from the reaction solution, it may be used for the preparation of the liquid crystal aligning agent.
  • Examples of a method for removing the dehydrating agent and the dehydrating ring-closing catalyst from the reaction solution include a solvent replacement method.
  • Examples of the polyimide isolation method and purification method include the same methods as those exemplified as the polyamic acid isolation method and purification method.
  • the ethylenically unsaturated compound polymer as the other polymer is obtained by polymerizing a known ethylenically unsaturated compound by a known method.
  • a known ethylenically unsaturated compound for example, (a) an epoxy group-containing ethylenically unsaturated compound (hereinafter sometimes referred to as “(a) unsaturated compound”) and (b1) an ethylenically unsaturated carboxylic acid and / or a polymerizable unsaturated polyvalent carboxylic acid.
  • (b1) unsaturated compound An acid anhydride (hereinafter sometimes referred to as “(b1) unsaturated compound”), a polymerizable unsaturated compound other than (a) unsaturated compound and (b1) unsaturated compound (hereinafter referred to as “(b2) unsaturated”) And is sometimes referred to as “compound”).
  • (b1) unsaturated compound) a polymerizable unsaturated compound other than (a) unsaturated compound and (b1) unsaturated compound (hereinafter referred to as “(b2) unsaturated”) And is sometimes referred to as “compound”).
  • (B1) copolymer The copolymer obtained by this copolymerization may be hereinafter referred to as “(B1) copolymer”.
  • unsaturated compounds include glycidyl (meth) acrylate, glycidyl ⁇ -ethyl acrylate, glycidyl ⁇ -n-propyl acrylate, glycidyl ⁇ -n-butyl acrylate, and (meth) acrylic acid 3,4.
  • Examples of unsaturated compounds include (meth) acrylic acid, crotonic acid, ⁇ -ethylacrylic acid, ⁇ -n-propylacrylic acid, ⁇ -n-butylacrylic acid, maleic acid, fumaric acid, citraconic acid, Unsaturated carboxylic acids such as mesaconic acid and itaconic acid; Examples thereof include unsaturated polycarboxylic anhydrides such as maleic anhydride, itaconic anhydride, citraconic anhydride, and cis-1,2,3,4-tetrahydrophthalic anhydride.
  • Examples of unsaturated compounds include (meth) acrylic acid hydroxyalkyl esters such as (meth) acrylic acid 2-hydroxyethyl and (meth) acrylic acid 2-hydroxypropyl; Methyl (meth) acrylate, ethyl (meth) acrylate, n-propyl (meth) acrylate, i-propyl (meth) acrylate, n-butyl (meth) acrylate, i-butyl (meth) acrylate, (Meth) acrylic acid alkyl esters such as (meth) acrylic acid sec-butyl and (meth) acrylic acid t-butyl; (Meth) acrylic acid cyclopentyl, (meth) acrylic acid cyclohexyl, (meth) acrylic acid 2-methylcyclohexyl, (meth) acrylic acid tricyclo [5.2.1.0 2,6 ] decan-8-yl Tricyclo [5.2.1.0 2,6 ] decan-8-yl is referred to
  • the content of structural units derived from the unsaturated compound (a) is preferably 10% by mass to 70% by mass, and 20% by mass to 60% by mass with respect to the total structural units. More preferably, (b1) The total content of the structural units derived from the unsaturated compound is preferably 5% by mass to 40% by mass, more preferably 10% by mass to 30% by mass with respect to the total structural units. b2) The content of the structural unit derived from the unsaturated compound is preferably 10% by mass to 70% by mass and more preferably 20% by mass to 50% by mass with respect to the total structural units.
  • the copolymer can be synthesized by, for example, radical polymerization of each unsaturated compound in the presence of a suitable solvent and a polymerization initiator.
  • a suitable solvent for example, the organic solvent similar to the organic solvent illustrated as what is used for the synthesis
  • polymerization initiator examples include 2,2′-azobisisobutyronitrile, 2,2′-azobis- (2,4-dimethylvaleronitrile), 2,2′-azobis- (4-methoxy-2, Azo compounds such as 4-dimethylvaleronitrile); Organic peroxides such as benzoyl peroxide, lauroyl peroxide, t-butylperoxypivalate, 1,1′-bis- (t-butylperoxy) cyclohexane; hydrogen peroxide; Examples thereof include a redox initiator composed of these peroxides and a reducing agent. These polymerization initiators can be used alone or in admixture of two or more.
  • the liquid crystal aligning agent may further contain [B] a polyorganosiloxane having no photoalignable group as another polymer, in addition to [A] photoalignable polyorganosiloxane.
  • the polyorganosiloxane having no photo-alignment group is at least selected from the group consisting of a polyorganosiloxane having a structural unit represented by the following formula (5), a hydrolyzate thereof, and a condensate of the hydrolyzate. One is preferred.
  • the said liquid crystal aligning agent contains the polyorganosiloxane which does not have a photo-alignment group
  • most of the polyorganosiloxane which does not have a photo-alignment group is independent of [A] photo-alignment polyorganosiloxane.
  • a part thereof may exist as a condensate with [A] photoalignable polyorganosiloxane.
  • X 2 is a hydroxyl group, a halogen atom, an alkyl group having 1 to 20 carbon atoms, an alkoxy group having 1 to 6 carbon atoms or an aryl group having 6 to 20 carbon atoms.
  • Y 2 is a hydroxyl group or an alkoxy group having 1 to 10 carbon atoms.
  • alkyl group having 1 to 20 carbon atoms examples include linear or branched methyl, ethyl, propyl, butyl, pentyl, hexyl, heptyl, octyl, nonyl, decyl, Examples include lauryl group, dodecyl group, tridecyl group, tetradecyl group, pentadecyl group, hexadecyl group, heptadecyl group, octadecyl group, nonadecyl group, and eicosyl group.
  • alkoxy group having 1 to 6 carbon atoms examples include a methoxy group, an ethoxy group, an n-propoxy group, an isopropoxy group, an n-butoxy group, and an isobutoxy group.
  • Examples of the aryl group having 6 to 20 carbon atoms include a phenyl group and a naphthyl group.
  • the polyorganosiloxane having no photo-alignment group is, for example, at least one silane compound selected from the group consisting of an alkoxysilane compound and a halogenated silane compound (hereinafter sometimes referred to as “raw material silane compound”).
  • a silane compound selected from the group consisting of an alkoxysilane compound and a halogenated silane compound (hereinafter sometimes referred to as “raw material silane compound”).
  • raw material silane compound halogenated silane compound
  • it can be synthesized by hydrolysis or hydrolysis / condensation in a suitable organic solvent in the presence of water and a catalyst.
  • Examples of the raw material silane compound include tetramethoxysilane, tetraethoxysilane, tetra-n-propoxysilane, tetra-iso-propoxysilane, tetra-n-butoxysilane, tetra-sec-butoxysilane, tetra-tert-butoxysilane, tetra Chlorosilane, etc .; Methyltrimethoxysilane, methyltriethoxysilane, methyltri-n-propoxysilane, methyltri-iso-propoxysilane, methyltri-n-butoxysilane, methyltri-sec-butoxysilane, methyltri-tert-butoxysilane, methyltriphenoxysilane, Methyltrichlorosilane, ethyltrimethoxysilane, ethyltriethoxysilane, ethyltri-n-prop
  • tetramethoxysilane, tetraethoxysilane, methyltrimethoxysilane, methyltriethoxysilane, phenyltrimethoxysilane, phenyltriethoxysilane, dimethyldimethoxysilane, dimethyldiethoxysilane, trimethylmethoxysilane or trimethylethoxysilane are preferred.
  • organic solvents examples include alcohol compounds, ketone compounds, amide compounds, ester compounds, and other aprotic compounds. . These can be used alone or in combination of two or more.
  • the amount of water used in the synthesis of the polyorganosiloxane having no photo-alignment group is preferably 0.01 to 100 mol with respect to a total of 1 mol of the alkoxy group and halogen atom of the starting silane compound, 0.1 mol to 30 mol is more preferable, and 1 mol to 1.5 mol is particularly preferable.
  • Examples of the catalyst that can be used in the synthesis of the polyorganosiloxane having no photo-alignment group include metal chelate compounds, organic acids, inorganic acids, organic bases, alkali metal compounds, alkaline earth metal compounds, and ammonia. These can be used alone or in combination of two or more.
  • the amount of the catalyst used is preferably 0.001 to 10 parts by mass, more preferably 0.001 to 1 part by mass with respect to 100 parts by mass of the raw material silane compound.
  • the water added in the synthesis of the polyorganosiloxane having no photo-alignment group can be added intermittently or continuously in the raw material silane compound or in a solution obtained by dissolving the silane compound in an organic solvent.
  • the catalyst may be added in advance to a raw material silane compound or a solution in which the silane compound is dissolved in an organic solvent, or may be dissolved or dispersed in the added water.
  • the reaction temperature during the synthesis of the polyorganosiloxane having no photo-alignment group is preferably 0 ° C. to 100 ° C., more preferably 15 ° C. to 80 ° C.
  • the reaction time is preferably 0.5 to 24 hours, more preferably 1 to 8 hours.
  • the content ratio of [B] other polymer varies depending on the type of [B] other polymer, but [A] photo-alignment property.
  • the amount is preferably 10,000 parts by mass or less, more preferably 5,000 parts by mass or less, and still more preferably 2,000 parts by mass or less with respect to 100 parts by mass of the polyorganosiloxane.
  • the liquid crystal aligning agent can form a liquid crystal aligning film having excellent heat resistance and the like. Further, by adding the [C] ester structure-containing compound to the liquid crystal aligning agent, the liquid crystal aligning film can be baked at a lower temperature, so that the selection range of the substrate on which the liquid crystal aligning film is formed is expanded.
  • the ester structure-containing compound is selected from the group consisting of an acetal ester structure of a carboxylic acid, a ketal ester structure of a carboxylic acid, a 1-alkylcycloalkyl ester structure of a carboxylic acid, and a t-butyl ester structure of a carboxylic acid in the molecule.
  • the structure is one kind or more
  • the compound is plural. That is, the [C] ester structure-containing compound may be a compound having two or more of the same kind of structures among these structures, and has two or more of the different kinds of structures among these structures. It may be a compound.
  • Examples of the group containing an acetal ester structure of the carboxylic acid include groups represented by the following formulas (C-1) and (C-2).
  • R 13 and R 14 are each independently an alkyl group having 1 to 20 carbon atoms, an alicyclic group having 3 to 10 carbon atoms, an aryl group having 6 to 10 carbon atoms, or a carbon atom. It is an aralkyl group of formula 7-10.
  • n1 is an integer of 2 to 10.
  • the alkyl group having 1 to 20 carbon atoms is preferably a methyl group
  • the alicyclic group having 3 to 10 carbon atoms is preferably a cyclohexyl group
  • the alkyl group having 6 to 10 carbon atoms is preferably a cyclohexyl group
  • the aryl group is preferably a phenyl group
  • the aralkyl group having 7 to 10 carbon atoms is preferably a benzyl group.
  • the alkyl group having 1 to 20 carbon atoms of R 14 is preferably an alkyl group having 1 to 6 carbon atoms
  • the alicyclic group having 3 to 10 carbon atoms is preferably an alicyclic group having 6 to 10 carbon atoms.
  • the aryl group having 6 to 10 carbon atoms is preferably a phenyl group, and the aralkyl group having 7 to 10 carbon atoms is preferably a benzyl group or a 2-phenylethyl group.
  • N1 in the formula (C-2) is preferably 3 or 4.
  • Examples of the group represented by the formula (C-1) include 1-methoxyethoxycarbonyl group, 1-ethoxyethoxycarbonyl group, 1-n-propoxyethoxycarbonyl group, 1-n-butoxyethoxycarbonyl group, 1- i-butoxyethoxycarbonyl group, 1-sec-butoxyethoxycarbonyl group, 1-t-butoxyethoxycarbonyl group, 1-cyclohexyloxyethoxycarbonyl group, 1-norbornyloxyethoxycarbonyl group, 1-phenoxyethoxycarbonyl group, (Cyclohexyl) (methoxy) methoxycarbonyl group, (cyclohexyl) (cyclohexyloxy) methoxycarbonyl group, (cyclohexyl) (phenoxy) methoxycarbonyl group, (cyclohexyl) (benzyloxy) methoxycarbonyl group, Enyl) (methoxy) methoxycarbonyl group, (pheny
  • Examples of the group represented by the above formula (C-2) include 2-tetrahydrofuranyloxycarbonyl group, 2-tetrahydropyranyloxycarbonyl group and the like.
  • 1-ethoxyethoxycarbonyl group 1-n-propoxyethoxycarbonyl group, 1-cyclohexyloxyethoxycarbonyl group, 2-tetrahydrofuranyloxycarbonyl group, and 2-tetrahydropyranyloxycarbonyl group are preferable.
  • Examples of the group containing a ketal ester structure of the carboxylic acid include groups represented by the following formulas (C-3) to (C-5).
  • R 15 is an alkyl group having 1 to 12 carbon atoms.
  • R 16 and R 17 are each independently an alkyl group having 1 to 12 carbon atoms or an aliphatic group having 3 to 20 carbon atoms.
  • R 18 represents an alkyl group having 1 to 12 carbon atoms.
  • n2 is an integer of 2 to 8.
  • R 19 is an alkyl group having 1 to 12 carbon atoms.
  • n3 is an integer of 2 to 8.
  • the alkyl group having 1 to 12 carbon atoms of R 15 is preferably a methyl group
  • the alkyl group having 1 to 12 carbon atoms in R 16 is preferably a methyl group, and having 3 to 20 carbon atoms.
  • the alicyclic group is preferably a cyclohexyl group
  • the aryl group having 6 to 20 carbon atoms is preferably a phenyl group
  • the aralkyl group having 7 to 20 carbon atoms is preferably a benzyl group.
  • the alkyl group having 7 to 20 carbon atoms in R 17 is preferably an alkyl group having 1 to 6 carbon atoms.
  • the alicyclic group having 3 to 20 carbon atoms is preferably an alicyclic group having 6 to 10 carbon atoms.
  • the aryl group having 6 to 20 carbon atoms is preferably a phenyl group.
  • the aralkyl group having 7 to 20 carbon atoms is preferably a benzyl group or a 2-phenylethyl group.
  • n2 is preferably 3 or 4.
  • n3 is preferably 3 or 4.
  • Examples of the group represented by the above formula (C-3) include 1-methyl-1-methoxyethoxycarbonyl group, 1-methyl-1-n-propoxyethoxycarbonyl group, 1-methyl-1-n-butoxyethoxy. Carbonyl group, 1-methyl-1-i-butoxyethoxycarbonyl group, 1-methyl-1-sec-butoxyethoxycarbonyl group, 1-methyl-1-t-butoxyethoxycarbonyl group, 1-methyl-1-cyclohexyloxy Ethoxycarbonyl group, 1-methyl-1-norbornyloxyethoxycarbonyl group, 1-methyl-1-phenoxyethoxycarbonyl group, 1-methyl-1-benzyloxyethoxycarbonyl group, 1-methyl-1-phenethyloxyethoxy Carbonyl group, 1-cyclohexyl-1-methoxyethoxycarbonyl 1-cyclohexyl-1-cyclohexyloxyethoxycarbonyl group, 1-cyclohexyl-1-phenoxyethoxycarbonyl
  • Examples of the group represented by the above formula (C-4) include 2- (2-methyltetrahydrofuranyl) oxycarbonyl group and 2- (2-methyltetrahydropyranyl) oxycarbonyl group.
  • Examples of the group represented by the above formula (C-5) include 1-methoxycyclopentyloxycarbonyl group, 1-methoxycyclohexyloxycarbonyl group and the like.
  • a 1-methyl-1-methoxyethoxycarbonyl group and a 1-methyl-1-cyclohexyloxyethoxycarbonyl group are preferable.
  • Examples of the group containing a 1-alkylcycloalkyl ester structure of the carboxylic acid include a group represented by the following formula (C-6).
  • R 20 is an alkyl group having 1 to 12 carbon atoms.
  • N4 is an integer of 1 to 8.
  • the alkyl group having 1 to 12 carbon atoms of R 20 is preferably an alkyl group having 1 to 10 carbon atoms.
  • Examples of the group represented by the formula (C-6) include 1-methylcyclopropoxycarbonyl group, 1-methylcyclobutoxycarbonyl group, 1-methylcyclopentoxycarbonyl group, 1-methylcyclohexyloxycarbonyl group, 1-methylcyclodecyloxycarbonyl group, 1-ethylcyclobutoxycarbonyl group, 1-ethylcyclopentoxycarbonyl group, 1-ethylcyclohexyloxycarbonyl group, 1-ethylcyclodecyloxycarbonyl group, 1- (iso) propylcyclo Propoxycarbonyl group, 1- (iso) propylcyclobutoxycarbonyl group, 1- (iso) propylcyclodecyloxycarbonyl group, 1- (iso) butylcyclobutoxycarbonyl group, 1- (iso) butylcyclopentoxycarbonyl group, 1- (Iso) butyl Chloroxyloxycarbonyl group, 1- (iso) butylcycloh
  • the group containing the t-butyl ester structure of the carboxylic acid is a t-butoxycarbonyl group.
  • T is a group represented by any one of the above formulas (C-1) to (C-6) or a t-butoxycarbonyl group, n is 2, and R is a single bond.
  • N is an integer of 2 to 10 and R is an n-valent group obtained by removing hydrogen from a heterocyclic compound having 3 to 10 carbon atoms or an n-valent hydrocarbon group having 1 to 18 carbon atoms .
  • N is preferably 2 or 3.
  • R is a single bond, an alkanediyl group having 1 to 12 carbon atoms, a 1,2-phenylene group, a 1,3-phenylene group, or a 1,4-phenylene group when n is 2. 2,6-naphthalenyl group, 5-sodium sulfo-1,3-phenylene group, 5-tetrabutylphosphonium sulfo-1,3-phenylene group and the like.
  • examples of R include a group represented by the following formula, a benzene-1,3,5-triyl group, and the like.
  • the alkanediyl group is preferably a straight chain.
  • the [C] ester structure-containing compound represented by the above formula (C) can be synthesized by a conventional organic chemistry method or by appropriately combining organic chemistry conventional methods.
  • a compound in which T in the above formula (C) is a group represented by the above formula (C-1) (except when R 13 is a phenyl group) is preferably a compound in the presence of a phosphoric acid catalyst.
  • R 13 ′ can be synthesized by adding a group obtained by removing a hydrogen atom from the 1-position carbon of R 13 in the above formula (C-1).
  • T in the above formula (C) is a group represented by the above formula (C-2) is preferably a compound R- (COOH) n (where R and R in the presence of a p-toluenesulfonic acid catalyst).
  • n is synonymous with the above formula (C)) and can be synthesized by adding a compound represented by the following formula.
  • n1 has the same meaning as in the above formula (C-2).
  • the content of the [C] ester structure-containing compound in the liquid crystal aligning agent is not particularly limited as long as it is determined in consideration of required heat resistance and the like, but [A] with respect to 100 parts by mass of the photoalignable polyorganosiloxane.
  • the [C] ester structure-containing compound is preferably 0.1 to 50 parts by weight, more preferably 1 to 20 parts by weight, and particularly preferably 2 to 10 parts by weight.
  • the liquid crystal aligning agent includes a curing agent, a curing catalyst, a curing accelerator, and a compound having at least one epoxy group in the molecule (hereinafter referred to as “epoxy compound”) as long as the effects of the present invention are not impaired.
  • epoxy compound a compound having at least one epoxy group in the molecule
  • a functional silane compound, a surfactant, a photosensitizer, and the like will be described in detail.
  • a curing agent and a curing catalyst can be contained in the liquid crystal alignment agent for the purpose of strengthening the crosslinking reaction of [A] photo-alignable polyorganosiloxane.
  • the said hardening accelerator can be contained in the said liquid crystal aligning agent in order to accelerate
  • a curable compound having an epoxy group or a curing agent generally used for curing a curable composition containing a compound having an epoxy group can be used.
  • An acid anhydride, polyhydric carboxylic acid, etc. are mentioned.
  • Examples of the polyvalent carboxylic acid anhydride include cyclohexanetricarboxylic acid anhydride and other polyvalent carboxylic acid anhydrides.
  • Examples of the cyclohexanetricarboxylic acid anhydride include cyclohexane-1,2,4-tricarboxylic acid, cyclohexane-1,3,5-tricarboxylic acid, cyclohexane-1,2,3-tricarboxylic acid, cyclohexane-1,3,4- And tricarboxylic acid-3,4-anhydride, cyclohexane-1,3,5-tricarboxylic acid-3,5-anhydride, cyclohexane-1,2,3-tricarboxylic acid-2,3-acid anhydride, and the like. .
  • polycarboxylic anhydrides examples include 4-methyltetrahydrophthalic anhydride, methyl nadic anhydride, dodecenyl succinic anhydride, succinic anhydride, maleic anhydride, phthalic anhydride, trimellitic anhydride,
  • 4-methyltetrahydrophthalic anhydride methyl nadic anhydride
  • dodecenyl succinic anhydride succinic anhydride
  • maleic anhydride phthalic anhydride
  • trimellitic anhydride trimellitic anhydride
  • tetracarboxylic dianhydride generally used for the synthesis of polyamic acid
  • an alicyclic compound having a conjugated double bond such as ⁇ -terpinene and allocymene
  • maleic anhydride The Diels-Alder reaction product and hydrogenated products thereof.
  • the curing catalyst examples include diazonium salts, iodonium salts, sulfonium salts, aluminum alcoholates, and aluminum chelates.
  • AMERICURE (BF 4 ) (diaconium salt made by ACC), ULTRASET (BF 4 , PF 6 ) (diazonium salt made by Asahi Denka Kogyo), UVE series (iodonium salt made by GE), Photoinitiator 2074 ((C 6 F 6 ) 4 B) (iodonium salt made by Rhône-Poulenc), CYRACURE UVI-6974, CYRACURE UVI-6990 (above, sulfonium salt made by UCC), UVI-508, UVI-509 (above, sulfonium made by GE) Salt), OPTOMER SP-150, OPTOMER SP-170 (a sulfonium salt manufactured by Asahi Denka Kogyo), Sun-Aid SI-60L, Sun-
  • the use ratio of the curing catalyst is preferably 20 parts by mass or less and more preferably 10 parts by mass or less with respect to 100 parts by mass of [A] photo-alignable polyorganosiloxane.
  • the said liquid crystal aligning agent contains a curing catalyst, as the content rate, [B] above-mentioned photo-alignment polyorganosiloxane and [B] other polymer used arbitrarily with respect to a total of 100 mass parts 30 parts by mass or less is preferable, and 20 parts by mass or less is more preferable.
  • sulfonium salts and aluminum chelates are preferable, and among the sulfonium salts, compounds containing antimony hexafluoride, phosphorus hexafluoride and the like as anionic species are more preferable.
  • these sulfonium salts include hexafluoroantimony salt of methylphenyldimethylsulfonium, hexafluoroantimony salt of ethylphenyldimethylsulfonium, hexafluorophosphate salt of methylphenyldimethylsulfonium, and the like. These sulfonium salts may be used alone or as a mixture of two or more.
  • curing accelerators examples include imidazole compounds; Quaternary phosphorus compounds; Quaternary amine compounds; Diazabicycloalkenes such as 1,8-diazabicyclo [5.4.0] undecene-7 and its organic acid salts; Organometallic compounds such as zinc octylate, tin octylate, aluminum acetylacetone complex; Boron compounds such as boron trifluoride and triphenyl borate; metal halides such as zinc chloride and stannic chloride; High melting point dispersion type latent curing accelerators such as dicyandiamide, amine addition type accelerators such as adducts of amine and epoxy resin; A microcapsule type latent curing accelerator whose surface is covered with a polymer such as a quaternary phosphonium salt; An amine salt type latent curing accelerator; And high temperature dissociation type thermal cationic polymerization type latent curing accelerators such as Lewis acid salts and Bronsted acid
  • the use ratio of the curing accelerator is preferably 10 parts by mass or less with respect to 100 parts by mass of [A] photo-alignable polyorganosiloxane.
  • the content ratio is 100 masses in total of [B] other polymers optionally used with the above-mentioned [A] photo-alignable polyorganosiloxane. 10 parts by mass or less is preferable with respect to parts, and 1 part by mass or less is more preferable.
  • Epoxy compound An epoxy compound can be contained in the liquid crystal alignment agent for the purpose of further improving the adhesion of the liquid crystal alignment film to be formed to the substrate surface.
  • epoxy compound examples include ethylene glycol diglycidyl ether, polyethylene glycol diglycidyl ether, propylene glycol diglycidyl ether, tripropylene glycol diglycidyl ether, polypropylene glycol diglycidyl ether, neopentyl glycol diglycidyl ether, and 1,6-hexanediol.
  • a content rate of an epoxy compound 40 mass parts or less are preferable with respect to a total of 100 mass parts of [A] photo-alignment polyorganosiloxane and [B] other polymer arbitrarily contained, 0.1 More preferred is 30 to 30 parts by mass.
  • a base catalyst such as 1-benzyl-2-methylimidazole may be used in combination for the purpose of efficiently causing a crosslinking reaction.
  • the said functional silane compound can be used in order to improve the adhesiveness with respect to the substrate surface of the liquid crystal aligning film formed.
  • Examples of the functional silane compound include 3-aminopropyltrimethoxysilane, 3-aminopropyltriethoxysilane, 2-aminopropyltrimethoxysilane, 2-aminopropyltriethoxysilane, and N- (2-aminoethyl) -3.
  • a content rate of a functional silane compound 50 mass parts or less are preferable with respect to a total of 100 mass parts of [A] photo-alignment polyorganosiloxane and the arbitrarily contained [B] other polymer, Less than the mass part is more preferable.
  • surfactant examples include nonionic surfactants, anionic surfactants, cationic surfactants, amphoteric surfactants, silicone surfactants, polyalkylene oxide surfactants, and fluorine-containing surfactants.
  • the proportion of the surfactant used is preferably 10 parts by mass or less, and more preferably 1 part by mass or less, based on 100 parts by mass of the entire liquid crystal aligning agent.
  • the photosensitizer that can be contained in the liquid crystal aligning agent includes a carboxyl group, a hydroxyl group, —SH, —NCO, —NHR (where R is a hydrogen atom or an alkyl group having 1 to 6 carbon atoms), —CH ⁇ A compound having at least one group selected from the group consisting of CH 2 and SO 2 Cl and a photosensitizing structure.
  • the [A] photoalignable polyorganosiloxane contained in the liquid crystal aligning agent is a specific cinnamic acid.
  • the photosensitive structure (cinnamic acid structure) derived from the derivative and the photosensitized structure derived from the photosensitizer are included.
  • This photosensitizing structure has a function of being excited by light irradiation and giving this excitation energy to the adjacent photosensitive structure in the polymer.
  • This excited state may be a singlet or a triplet, but is preferably a triplet in view of long life and efficient energy transfer.
  • the light absorbed by the photosensitizing structure is preferably ultraviolet rays or visible rays having a wavelength in the range of 150 nm to 600 nm. Light with a wavelength shorter than the above lower limit cannot be used in a photo-alignment method because it cannot be handled by a normal optical system. On the other hand, light having a wavelength longer than the above upper limit has a small energy and hardly induces an excited state of the photosensitizing structure.
  • photosensitizing structure examples include acetophenone structure, benzophenone structure, anthraquinone structure, biphenyl structure, carbazole structure, nitroaryl structure, fluorene structure, naphthalene structure, anthracene structure, acridine structure, indole structure, etc. Or in combination of two or more.
  • These photosensitizing structures are groups obtained by removing 1 to 4 hydrogen atoms from acetophenone, benzophenone, anthraquinone, biphenyl, carbazole, nitrobenzene or dinitrobenzene, naphthalene, fluorene, anthracene, acridine or indole, respectively.
  • each of the acetophenone structure, carbazole structure and indole structure is preferably a structure comprising groups obtained by removing 1 to 4 hydrogen atoms of the benzene ring of acetophenone, carbazole or indole.
  • At least one selected from the group consisting of an acetophenone structure, a benzophenone structure, an anthraquinone structure, a biphenyl structure, a carbazole structure, a nitroaryl structure, and a naphthalene structure is preferable, and the acetophenone structure, benzophenone Particularly preferred is at least one selected from the group consisting of a structure and a nitroaryl structure.
  • the photosensitizer is preferably a compound having a carboxyl group and a photosensitizing structure, and more preferable compounds include, for example, compounds represented by the following formulas (H-1) to (H-10). It is done.
  • the photoalignable polyorganosiloxane compound used in the present invention is preferably combined with a photosensitizer in addition to the above polyorganosiloxane having an epoxy group and a specific cinnamic acid derivative, preferably in the presence of a catalyst, You may synthesize
  • the amount of the specific cinnamic acid derivative used is preferably 0.001 mol to 10 mol, more preferably 0.01 mol to 5 mol, relative to 1 mol of the silicon atom of the polyorganosiloxane having an epoxy group. 0.05 mol to 2 mol is particularly preferred.
  • the amount of the photosensitizer used is preferably 0.0001 mol to 0.5 mol, more preferably 0.0005 mol to 0.2 mol, relative to 1 mol of the silicon atom of the polyorganosiloxane having an epoxy group. 0.001 mol to 0.1 mol is particularly preferable.
  • the liquid crystal aligning agent contains, for example, [A] photo-alignable polyorganosiloxane, and may contain a suitable component and other optional components as necessary.
  • each component is organic. It is prepared as a solution-like composition dissolved in a solvent.
  • [A] a photoalignable polyorganosiloxane and other components optionally used are preferably dissolved and do not react with these.
  • the organic solvent that can be preferably used in the liquid crystal aligning agent varies depending on the type of other polymer that is optionally contained.
  • the organic solvents exemplified as those used for the synthesis of polyamic acid. Is mentioned. These organic solvents can be used alone or in combination of two or more.
  • a preferable solvent used for the preparation of the liquid crystal aligning agent is obtained by combining one or more of the above-described organic solvents according to the presence or absence of other polymers and their types.
  • Such a solvent is one in which each component contained in the liquid crystal aligning agent does not precipitate at the following preferable solid content concentration, and the surface tension of the liquid crystal aligning agent is in the range of 25 mN / m to 40 mN / m.
  • the solid content concentration of the liquid crystal aligning agent that is, the ratio of the mass of all components other than the solvent in the liquid crystal aligning agent to the total mass of the liquid crystal aligning agent is selected in consideration of viscosity, volatility, etc. Is 1% by mass to 10% by mass.
  • the film thickness of the liquid crystal alignment film formed from the liquid crystal alignment agent is too small, and a good liquid crystal alignment film may not be obtained.
  • the film thickness of the coating film may be excessive and a good liquid crystal alignment film may not be obtained. There may be a shortage.
  • the range of the preferable solid content concentration varies depending on the method employed when the liquid crystal aligning agent is applied to the substrate.
  • the range of the solid content concentration in the case of the spinner method is preferably 1.5% by mass to 4.5% by mass.
  • the solid content concentration is preferably in the range of 3% by mass to 9% by mass, and thereby the solution viscosity is preferably in the range of 12 mPa ⁇ s to 50 mPa ⁇ s.
  • the solid content concentration is preferably in the range of 1% by mass to 5% by mass, and thereby the solution viscosity is preferably in the range of 3 mPa ⁇ s to 15 mPa ⁇ s.
  • the temperature at which the liquid crystal aligning agent is prepared is preferably 0 ° C. to 200 ° C., more preferably 0 ° C. to 40 ° C.
  • the light directivity control unit of the present invention can be manufactured, for example, as follows.
  • the manufacturing method of the light directivity control unit of the present invention is as follows.
  • a light directivity control unit comprising a liquid crystal lens layer laminated on the back side of (1)
  • a liquid crystal alignment film is formed with a radiation-sensitive liquid crystal aligning agent.
  • the liquid crystal alignment films 15 and 16 may be formed by, for example, radiation sensitive on the surface of the back surface of the lenticular layer 13 on which the lenticular lens array is formed and on the surface of the transparent substrate 12.
  • the method of forming the coating film of a crystalline liquid crystal aligning film, and then providing liquid crystal alignment ability to this coating film by the photo-alignment method is mentioned.
  • the liquid crystal alignment film can be produced, for example, by the following method using the liquid crystal alignment agent.
  • the liquid crystal aligning agent is applied to the substrate by an appropriate application method such as spray coating, slit coating, roll coater, spinner, printing, ink jet, or vapor deposition.
  • the coated surface is preheated (pre-baked) and then post-baked to form a coating film.
  • Prebaking conditions are, for example, 0.1 to 5 minutes at 40 to 120 ° C.
  • the post-baking conditions are preferably 120 ° C. to 300 ° C., more preferably 130 ° C. to 220 ° C., preferably 5 minutes to 200 minutes, and more preferably 10 minutes to 100 minutes.
  • the thickness of the coating film after post-baking is preferably 0.001 ⁇ m to 1 ⁇ m, more preferably 0.005 ⁇ m to 0.5 ⁇ m.
  • a functional silane compound, titanate, or the like may be applied in advance on the substrate in order to further improve the adhesion between each layer forming the coating film and the coating film.
  • liquid crystal alignment ability is imparted by irradiating the coating film with linearly polarized light, partially polarized radiation or non-polarized radiation.
  • the radiation for example, ultraviolet rays including light having a wavelength of 150 nm to 800 nm and visible light can be used, but ultraviolet rays including light having a wavelength of 300 nm to 400 nm are preferable.
  • irradiation may be performed from a direction perpendicular to the substrate surface, or from an oblique direction to give a pretilt angle, or a combination thereof. May be.
  • the direction of irradiation needs to be an oblique direction.
  • the “pretilt angle” in this specification refers to the angle of inclination of liquid crystal molecules from a direction parallel to the substrate surface.
  • Examples of the light source used include a low-pressure mercury lamp, a high-pressure mercury lamp, a deuterium lamp, a metal halide lamp, an argon resonance lamp, a xenon lamp, and an excimer laser mercury-xenon lamp (Hg-Xe lamp).
  • the ultraviolet rays in the preferable wavelength region can be obtained by means of using the light source together with, for example, a filter, a diffraction grating, or the like.
  • the irradiation dose of radiation preferably less than 1 J / m 2 or more 10,000J / m 2, 10J / m 2 ⁇ 3,000J / m 2 is more preferable.
  • the above-mentioned liquid crystal aligning agent needs the irradiation dose of 10,000 J / m ⁇ 2 > or more.
  • a liquid crystal lens layer is formed between the liquid crystal alignment film 15 and the transparent substrate 12 (between the liquid crystal alignment films 15 and 16).
  • a liquid crystal alignment film 15 and the transparent substrate 12 are joined to form a space, and a liquid crystal material is filled in the space to form the liquid crystal lens layer 14.
  • Examples thereof include (B) a method of forming a liquid crystal lens layer 14 using a liquid crystal material adjacent to the liquid crystal alignment film 15 and then disposing the transparent substrate 12.
  • the step (3) (3-1) a step of disposing the liquid crystal alignment film and the transparent substrate to face each other and forming a space between them; and (3-2) filling the space with a liquid crystal material to form a liquid crystal lens layer.
  • the liquid crystal alignment film 15 and the transparent substrate 12 are disposed so as to face each other, and are bonded to each other between the liquid crystal alignment film 15 and the transparent substrate 12 (between the liquid crystal alignment films 15, 16). A sandwiched space is formed.
  • the method for joining the lenticular layer 13 and the transparent substrate 12 is not particularly limited, and examples thereof include a method using an adhesive, a method using a pressure-sensitive adhesive, a heat sealing method, and a method using excimer UV.
  • an adhesive an acrylic adhesive or the like is preferably used.
  • the liquid crystal material is filled in the space between the liquid crystal alignment films 15 and 16 to form the liquid crystal lens layer 14.
  • liquid crystal material examples include liquid polymer liquid crystals, polymerizable liquid crystals, and non-polymerizable liquid crystals.
  • a polymerizable liquid crystal is used as the liquid crystal material, it is necessary to polymerize the polymerizable liquid crystal as will be described later.
  • the space between the liquid crystal alignment films 15 and 16 is reduced in pressure, the liquid crystal material is sucked, the space between the liquid crystal alignment films 15 and 16 is immersed in the liquid crystal material, and the capillary tube
  • a method of filling the liquid crystal material for example, the space between the liquid crystal alignment films 15 and 16 is reduced in pressure, the liquid crystal material is sucked, the space between the liquid crystal alignment films 15 and 16 is immersed in the liquid crystal material, and the capillary tube
  • Examples thereof include a method of filling a liquid crystal material by a phenomenon or the like, a method of injecting a liquid crystal material into a space between the liquid crystal alignment films 15 and 16, and the like.
  • the step (3) (3-1 ′) a step of applying a liquid crystal material to the back side of the liquid crystal alignment film to form a liquid crystal lens layer; and (3-2 ′) a step of disposing a transparent substrate on the back side of the liquid crystal lens layer.
  • liquid crystal material is applied to the back side of the liquid crystal alignment film 15 to form the liquid crystal lens layer 14.
  • liquid crystal material include liquid crystal materials used in step (3-1).
  • Examples of the method of applying the liquid crystal material to the back side of the liquid crystal alignment film 15 include a method of dropping using a pipette, a method using a brush, a method using spray coating, a method using roll coating, and the like.
  • the transparent substrate 12 is disposed on the back side of the liquid crystal lens layer 14 formed above, and, for example, the lenticular layer 13 and the transparent substrate 12 are bonded.
  • the bonding method include an example of a method of bonding the lenticular layer 13 and the transparent substrate 12 in the step (3-1 ′).
  • the polymerizable liquid crystal is polymerized by heating and / or irradiation with non-polarized radiation. That is, in this case
  • the above step (3-2) (3-2-1) a step of sucking polymerizable liquid crystal into this space; and (3-2-2) a step of polymerizing the polymerizable liquid crystal to form a liquid crystal lens layer.
  • the above step (3-1 ′) (3-1′-1) a step of applying a polymerizable liquid crystal on the back side of the liquid crystal alignment film, and (3-1′-2) a step of polymerizing the polymerizable liquid crystal to form a liquid crystal lens layer.
  • the polymerizable liquid crystal is not particularly limited as long as it is a compound that can be polymerized by heating or irradiation.
  • it may be a nematic liquid crystal compound as described in UV curable liquid crystal and its application (see Liquid Crystal, Vol. 3, No. 1, 1999, pages 34 to 42), or a mixture with a plurality of compounds.
  • a well-known photoinitiator or thermal polymerization initiator may be included.
  • These polymerizable liquid crystal compounds and mixtures thereof can be used by dissolving in an appropriate solvent.
  • a liquid crystal having a twisted nematic orientation twisted in a direction perpendicular to the substrate by adding a chiral agent or the like, a cholesteric liquid crystal, or a discotic liquid crystal may be used.
  • a temperature at which good alignment is obtained is selected.
  • the temperature is selected in the range of 40 ° C to 80 ° C.
  • Examples of the radiation when irradiating the radiation include non-polarized ultraviolet rays.
  • the irradiation dose of radiation preferably less than 1,000J / m 2 ⁇ 100,000J / m 2, 10,000J / m 2 ⁇ 50,000J / m 2 is more preferable.
  • Polymerization of the polymerizable liquid crystal may be performed in the air or in an inert gas atmosphere such as nitrogen, and conditions suitable for the polymerizable group and initiator of the polymerizable liquid crystal to be used can be selected.
  • the polymerizable liquid crystal can be fixed in a highly uniform alignment state. Therefore, since the obtained light directivity control unit is excellent in the alignment uniformity of the liquid crystal lens layer, the 2D / 3D switchable display module including the light directivity control unit can improve display accuracy such as resolution. .
  • the present invention suitably includes a switchable display module including the light directivity control unit.
  • a 2D / 3D switchable display module 71 including the light directivity control unit 1 according to the first embodiment of the present invention will be described below with reference to FIG.
  • the 2D / 3D switchable display module 71 includes the light directivity control unit 1, the display panel 31, and the liquid crystal switch unit 41 described above.
  • the display panel 31 includes an incident light polarizer 61 and an outgoing light polarizer 62 in addition to a normal display device (display panel body) using liquid crystal or the like.
  • the display panel 31 (display panel body) is disposed on the back side (opposite the viewer) of the light directivity control unit 1, and an incident light polarizer 61 is attached to the back side of the display panel body. Yes.
  • the display panel 31 is normally used in a liquid crystal display device, and includes, for example, a liquid crystal panel that can control transmission of light from a backlight provided on the back side for each pixel.
  • the liquid crystal switch unit 41 is disposed on the surface side (viewer side) of the light directivity control unit 1.
  • the liquid crystal switch unit 41 includes a pair of switch transparent substrates 51 and 52 arranged to face each other, a pair of transparent electrode layers 53 and 54 arranged to face each other adjacent to the inside of these transparent substrates, and the transparent conductive layers. And a switch liquid crystal layer 55 sandwiched inside.
  • the liquid crystal switch unit 41 can switch the rotation of circularly polarized light between 0 ° and 90 ° depending on whether a voltage is applied between the pair of transparent electrode layers 53 and 54.
  • the incident light polarizer 61 is arranged so as to pass only polarized light whose vibration direction is the x direction. Further, the outgoing light polarizer 62 is arranged so as to allow only polarized light whose vibration direction is the x direction to pass therethrough. The outgoing light polarizer 62 is disposed on the viewer side of the liquid crystal switch unit 41.
  • the 2D / 3D switchable display module has the above-described configuration, when the voltage is not applied to the pair of transparent electrode layers 53 and 54 of the liquid crystal switch unit 41, the polarization plane is rotated in the liquid crystal switch unit 41. Therefore, polarized light that vibrates in the x direction and enters the light directivity control unit 1 from the display panel 31 is emitted from the outgoing light polarizer 62. For this polarized light, the light directivity control unit 1 exhibits a pass-type light directivity, so that the display module can be used for 2D display. Further, when a voltage is applied to the pair of transparent electrode layers 53 and 54 of the liquid crystal switch unit 41, the polarization plane of the liquid crystal switch unit 41 can be rotated by 90 °.
  • polarized light that vibrates in the z direction and enters the light directivity control unit 1 from the display panel 31 is emitted from the outgoing light polarizer 62.
  • the light directivity control unit 1 exhibits a refractive light directivity, so that the display module can be used for 3D display.
  • 2D / 3D switchable display module 71 2D and 3D display can be switched and displayed.
  • the 2D / 3D switchable display module 72 including the light directivity control unit 2 according to the second embodiment of the present invention will be described below with reference to FIG.
  • the 2D / 3D switchable display module 72 includes the above-described light directivity control unit 2 and the display panel 31.
  • the display panel body is on the back side of the light directivity control unit 2
  • the incident light polarizer 61 that is a part of the display panel is on the back side of the display panel body
  • the outgoing light polarizer 62 is on the light directivity control unit. 2 are disposed on the surface side of the two.
  • description is abbreviate
  • a 2D / 3D switchable display module 73 including the light directivity control unit 3 according to the third embodiment of the present invention will be described below with reference to FIG.
  • the 2D / 3D switchable display module 73 includes the light directivity control unit 3 and the display panel 31 described above.
  • the display panel 31 is disposed on the back side of the light directivity control unit 3.
  • the incident light polarizer 61 and the outgoing light polarizer 62 included in the display panel 31 are respectively disposed on the back side and the front side of the display panel 31 (display panel body).
  • a 2D / 3D switchable display module 74 including the light directivity control unit 4 of the fourth embodiment of the present invention will be described below with reference to FIG.
  • the 2D / 3D switchable display module 74 includes the light directivity control unit 4 and the display panel 31 described above.
  • the display panel 31 is disposed on the back side of the light directivity control unit 4.
  • the incident light polarizer 61 included in the display panel 31 is disposed on the back side of the display panel 31 (display panel body).
  • 2D / 3D switchable display modules 72, 73, and 74 as in the case of the first embodiment, whether or not voltage is applied between a pair of transparent electrode layers, 2D and 3D display can be switched and displayed.
  • the light directivity control unit of the present invention is not limited to the above embodiment.
  • the refractive index of the material constituting the lenticular layer and the magnitude of the abnormal refractive index of the liquid crystal lens layer are small.
  • a convex type can be used instead of the concave type.
  • the 2D / 3D switchable display module of the present invention is not limited to the above-described embodiment, and for example, a plasma display can be used as a display panel instead of a liquid crystal display.
  • the reaction solution was cooled to room temperature, poured into 200 mL of 1N hydrochloric acid aqueous solution, and the precipitated solid was separated by filtration.
  • the obtained solid was dissolved in ethyl acetate and subjected to separation washing in the order of 100 mL of 1N hydrochloric acid aqueous solution, 100 mL of pure water, and 100 mL of saturated brine.
  • the organic layer was dried over anhydrous magnesium sulfate, and the solvent was distilled off.
  • the obtained solid was vacuum-dried to obtain 9 g of a compound represented by the following formula (K-1) (specific cinnamic acid derivative (K-1)).
  • the solution temperature was raised to 70 ° C., and this temperature was maintained for 5 hours to obtain a polymer solution containing a copolymer (MA-1) of poly (meth) acrylate.
  • the solid content concentration of the obtained polymer solution was 33.1% by mass.
  • the number average molecular weight of the obtained polymer was 7,000.
  • A-2 liquid crystal aligning agent
  • Example 3 A liquid crystal according to Example 3 was obtained in the same manner as in Example 1 except that 50 parts by mass of (C-1-1) obtained in Synthesis Example 8 was further added as the [C] ester structure-containing compound in Example 1.
  • An aligning agent (A-3) was prepared.
  • the light directivity control unit was manufactured by the following method using the liquid crystal aligning agent prepared in the said Example.
  • Example 4 A substrate made of polymethylmethacrylate having a concave lenticular shape is bonded to one side of the transparent glass substrate (a), and the liquid crystal aligning agent (A-1) prepared in Example 1 is applied to the concave surface by spray coating. After coating and prebaking on an 80 ° C. hot plate for 1 minute, it was post-baked at 150 ° C. for 30 minutes in an oven in which the inside of the cabinet was replaced with nitrogen to form a coating film having a thickness of 0.1 ⁇ m.
  • the surface of the coating film was irradiated with polarized ultraviolet rays 300 J / m 2 including a 313 nm emission line perpendicularly from the substrate normal line using a Hg—Xe lamp and a Grand Taylor prism to form a liquid crystal alignment film.
  • a similar liquid crystal alignment film was formed on one surface of the transparent glass substrate (b) by the same method as described above except that the roll coating method was used.
  • Polymeric liquid crystal (Merck, RMS03-013C) was filtered with a filter having a pore size of 0.2 ⁇ m into the concave portion of the concave lenticular shaped substrate where the liquid crystal alignment film was formed, and then dropped and filled using a pipette.
  • the surface of the liquid crystal filled with polymerizable liquid crystal was irradiated with non-polarized ultraviolet rays of 30,000 J / m 2 including an emission line of 365 nm using a Hg—Xe lamp. Formed.
  • the surface on the liquid crystal side of the transparent glass substrate on which the liquid crystal alignment film is formed is overlaid on the surface on the liquid crystal side of the concave lenticular substrate on which the liquid crystal is formed, and then the two are bonded together.
  • the unit was manufactured.
  • Example 5 In Example 4, instead of the transparent glass substrate (a), liquid crystal switching element (I) (on both sides of a pair of ITO (indium-tin-oxide) transparent electrode layers sandwiching a TN (Twisted Nematic) type liquid crystal)
  • the light directivity control unit of Example 5 is the same as Example 4 except that a concave lenticular substrate is bonded to one transparent glass substrate. Manufactured.
  • Example 6 In Example 4, instead of the transparent glass substrate (b), a liquid crystal switch element (II) (one transparent glass substrate bonded to one outer side of a pair of ITO transparent electrode layers sandwiching a TN liquid crystal) A liquid crystal alignment layer was formed on the surface of the ITO transparent electrode layer, and (A-2) prepared in Example 2 was used instead of (A-1) as the liquid crystal alignment agent.
  • the light directivity control unit of Example 6 was manufactured in the same manner as Example 4.
  • Example 7 In Example 4, instead of the transparent glass substrate (a) and the transparent glass substrate (b), a pair of transparent glass substrates to which the ITO electrode layers were joined were used, and both substrates had a liquid crystal alignment film formed on the ITO electrode layer side. Manufactured the light directivity control unit of Example 7 in the same manner as Example 4.
  • Example 8 In Example 7, (A-3) prepared in Example 3 was used instead of (A-1) as the liquid crystal aligning agent, and non-polymerizable liquid crystal (Merck, A light directivity control unit of Example 8 was produced in the same manner as Example 7 except that MLC-7028) was used.
  • Example 9 A substrate made of polymethylmethacrylate having a concave lenticular shape is adhered to one side of the transparent glass substrate (c), and the liquid crystal aligning agent (A-3) prepared in Example 3 is applied to the concave surface by a spray coating method. After coating and pre-baking on an 80 ° C. hot plate for 1 minute, it was post-baked at 150 ° C. for 30 minutes in an open atmosphere in which the inside of the cabinet was replaced with nitrogen to form a coating film having a thickness of 0.1 ⁇ m.
  • the surface of the coating film was irradiated with polarized ultraviolet rays 300 J / m 2 containing a 313 nm emission line perpendicularly from the substrate normal line using a Hg—Xe lamp and a Glanteller prism to form a liquid crystal alignment film.
  • a similar liquid crystal alignment film was formed on one surface of the transparent glass substrate (d) by the same method as described above except that the roll coating method was used.
  • Example 9 The surface on the concave side where the liquid crystal alignment film of the concave lenticular shaped substrate was formed and the surface on the liquid crystal alignment film side of the liquid crystal alignment film-forming transparent glass substrate were overlapped, and then both were joined.
  • the polymerizable liquid crystal was injected under reduced pressure into the cavity between the substrates. Thereafter, by using a Hg—Xe lamp to irradiate non-polarized ultraviolet rays containing 365 nm emission line 30,000 J / m 2 from the liquid crystal alignment film-formed transparent glass substrate side to form a liquid crystal, the light directing of Example 9 was achieved.
  • a sex control unit was manufactured.
  • Example 1 A substrate made of polymethyl methacrylate having a concave lenticular shape is adhered to one surface of the transparent glass substrate (a), and a liquid crystal aligning agent (manufactured by JSR, AL3046) is applied on the concave surface by a spray coating method, After pre-baking on a hot plate for 1 minute, it was post-baked at 150 ° C. for 30 minutes in an oven in which the interior was replaced with nitrogen to form a coating film having a thickness of 0.1 ⁇ m. Next, rubbing treatment was performed by rubbing the surface of the coating film while rotating a roller around which a nylon cloth was wound.
  • a liquid crystal aligning agent manufactured by JSR, AL3046
  • a similar liquid crystal alignment layer was also formed on one surface of the transparent glass substrate (b) by the same method as described above except that it was rubbed after being applied using the roll coating method. Thereafter, the light directivity control unit of Comparative Example 1 was manufactured by the same method as in Example 4.
  • the liquid crystal lens layer is obtained by cutting and polishing the liquid crystal lens layer along a plane perpendicular to the thickness direction through the center in the thickness direction. The cross section was observed with a polarizing microscope.
  • the liquid crystal alignment uniformity “A” was evaluated when the liquid crystal alignment uniformity was found to be high, and the liquid crystal alignment uniformity “B” was evaluated when the liquid crystal alignment uniformity was found to be low.
  • the evaluation results are shown in Table 1 below.
  • Example 10 Manufacture of 2D / 3D switchable display module>
  • the 2D / 3D switchable display module of Example 10 was manufactured by joining the light directivity control unit, the display panel, and the liquid crystal switch unit (I) of Example 4 to each other in the arrangement shown in FIG. .
  • Example 11 The 2D / 3D switchable display module of Example 11 was manufactured by joining the light directivity control unit of Example 5 and the display panel to each other in the arrangement shown in FIG.
  • Example 12 The 2D / 3D switchable display module of Example 12 was manufactured by joining the light directivity control unit of Example 6 and the display panel to each other in the arrangement shown in FIG.
  • Example 13 The 2D / 3D switchable display module of Example 13 was manufactured by joining the light directivity control unit of Example 7 and the display panel to each other in the arrangement shown in FIG.
  • Example 14 The 2D / 3D switchable display module of Example 14 was manufactured by joining the light directivity control unit of Example 8 and the display panel to each other in the arrangement shown in FIG.
  • Example 15 The 2D / 3D switchable display module of Example 15 was manufactured by joining the light directivity control unit of Example 9 and the display panel to each other in the arrangement shown in FIG.
  • the light directivity control unit having the liquid crystal alignment film has a uniform liquid crystal alignment of the liquid crystal lens layer, and the 2D / 3D switchable display module including such a light directivity control unit is Was shown to be good.
  • a light directivity control unit that does not have a liquid crystal alignment film formed from a radiation-sensitive liquid crystal alignment agent and has a liquid crystal alignment film that has been subjected to a rubbing treatment has low uniformity of liquid crystal alignment.
  • the 2D / 3D switchable display module with the sex control unit has been shown to be poorly displayed.
  • the uniformity of liquid crystal alignment is good, the light directivity control unit capable of displaying with excellent resolution even in the two-dimensional mode, the manufacturing method thereof, and the 2D / 3D including the light directivity control unit.
  • a switchable display module can be provided.
  • Light directivity control unit (first embodiment) 2 Light directivity control unit (second embodiment) 3 Light directivity control unit (third embodiment) 4.
  • Light directivity control unit (fourth embodiment) DESCRIPTION OF SYMBOLS 11 Transparent substrate 12 Transparent substrate 13 Lenticular layer 14 Liquid crystal lens layer 15 Liquid crystal alignment film 16 Liquid crystal alignment film 21 Switch transparent substrate 22 Transparent electrode layer 23 Transparent electrode layer 24 Switch liquid crystal layer 25 Switch transparent electrode substrate 26 Transparent electrode layer 27 Transparent electrode layer 28 transparent electrode layer 31 display panel 41 liquid crystal switch unit 51 switch transparent substrate 52 switch transparent substrate 53 transparent electrode layer 54 transparent electrode layer 55 switch liquid crystal layer 61 incident light polarizer 62 outgoing light polarizer 71 2D / 3D switchable display module ( First embodiment) 72 2D / 3D switchable display module (second embodiment) 73 2D / 3D switchable display module (third embodiment) 74 2D / 3D switchable display module (fourth embodiment)

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Liquid Crystal (AREA)
  • Mathematical Physics (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)

Abstract

The present invention provides a light directivity control unit comprising a transparent substrate, a lenticular layer which is arranged so as to face the front surface side of the transparent substrate and has a lenticular lens array on the back surface thereof, a liquid crystal alignment film which is laminated on the back surface of the lenticular layer and comprises a radiation-sensitive liquid crystal aligning agent, and a liquid crystal lens layer which is laminated on the back surface side of the lenticular layer through the liquid crystal alignment film. Preferably, the light directivity control unit additionally comprises another liquid crystal alignment film which is laminated on the back surface of the liquid crystal lens layer and comprises a radiation-sensitive liquid crystal aligning agent.

Description

光指向性制御ユニット及びその製造方法、2D/3D切替可能表示モジュール、並びに液晶配向剤Light directivity control unit and manufacturing method thereof, 2D / 3D switchable display module, and liquid crystal aligning agent
 本発明は、光指向性制御ユニット及びその製造方法、2D/3D切替可能表示モジュール、並びに液晶配向剤に関する。 The present invention relates to a light directivity control unit and a manufacturing method thereof, a 2D / 3D switchable display module, and a liquid crystal aligning agent.
 近年、立体3次元(3D)表示を行う液晶表示装置として、視聴者側において特殊メガネ等の視覚的補助具を使用しなくても3D画像が認識される自動立体表示(オートステレオスコピック)モジュールが開発されている。このような自動立体表示モジュールの一例として、2次元液晶表示パネル上に縦方向かつ平行に延在する細長いレンチキュラー素子のアレイを備え、2次元(2D)モードと3次元(3Dステレオスコピック)モードとの切り替えが可能な表示モジュールが提案されている(特許文献1及び非特許文献1参照)。 2. Description of the Related Art In recent years, as a liquid crystal display device that performs stereoscopic three-dimensional (3D) display, an autostereoscopic (autostereoscopic) module that recognizes 3D images without using visual aids such as special glasses on the viewer side Has been developed. As an example of such an autostereoscopic display module, a two-dimensional (2D) mode and a three-dimensional (3D stereoscopic) mode are provided with an array of elongated lenticular elements extending in a vertical direction and in parallel on a two-dimensional liquid crystal display panel. Has been proposed (see Patent Literature 1 and Non-Patent Literature 1).
 上述の2D/3D切替可能表示モジュールにおいては、上記レンチキュラー素子は一般的に液晶で形成されているが、表示良好性を確保するため、この液晶の配向の均一性を高くする必要がある。そのため、従来は液晶の形成空間の周囲に液晶配向膜を形成して、ラビング処理を行った後に、液晶を形成させることにより、液晶の配向性を高めている。 In the above-described 2D / 3D switchable display module, the lenticular element is generally formed of liquid crystal, but it is necessary to increase the uniformity of the alignment of the liquid crystal in order to ensure good display. Therefore, conventionally, a liquid crystal alignment film is formed around the liquid crystal formation space, and after the rubbing treatment, the liquid crystal is formed to enhance the alignment of the liquid crystal.
 ラビング処理は通常、ローラーの外周面に貼り付けられたラビング布を用い、このローラーを回転させながら液晶配向膜表面にラビング布を接触させて、液晶配向膜を形成する面を擦ることにより行われる。このようなラビング処理は、凹型レンチキュラー等のように、微細な凹凸を有する面に対して行うと、処理の方向が不均一になり易い。従って、形成される液晶の配向の均一性を高くすることができず、その結果、得られる表示の解像度等が低下するという不都合を有している。 The rubbing treatment is usually performed by using a rubbing cloth affixed to the outer peripheral surface of the roller, contacting the rubbing cloth with the surface of the liquid crystal alignment film while rotating the roller, and rubbing the surface on which the liquid crystal alignment film is formed. . When such a rubbing process is performed on a surface having fine irregularities such as a concave lenticular, the direction of the process tends to be uneven. Therefore, the uniformity of alignment of the liquid crystal to be formed cannot be increased, and as a result, there is a disadvantage that the resolution of the display obtained is lowered.
特表2009-528565号公報Special table 2009-528565 gazette
 本発明は以上のような不都合を解消するためになされたものである。すなわち、本発明の主な目的は、配向均一性に優れる液晶レンズ層を備えることで、解像度等の良好な表示を得ることができる光指向性制御ユニット、及びこの光指向性制御ユニットを備える2D/3D切替可能表示モジュールを提供することである。また、本発明の別の目的は、そのような光指向性制御ユニットの製造方法を提供することである。 The present invention has been made to solve the above-described disadvantages. That is, the main object of the present invention is to provide a light directivity control unit capable of obtaining a good display such as resolution by including a liquid crystal lens layer having excellent alignment uniformity, and 2D including the light directivity control unit. A 3D switchable display module is provided. Another object of the present invention is to provide a method for manufacturing such a light directivity control unit.
 上記課題を解決するためになされた発明は、
 透明基板と、
 この透明基板の表面側に対向配設され、裏面にレンチキュラーレンズアレイを有するレンチキュラー層と、
 このレンチキュラー層の裏面に積層され、感放射線性液晶配向剤により形成される液晶配向膜と、
 この液晶配向膜を介してレンチキュラー層の裏面側に積層される液晶レンズ層と
を備える光指向性制御ユニットである。
The invention made to solve the above problems is
A transparent substrate;
A lenticular layer disposed oppositely on the front side of the transparent substrate and having a lenticular lens array on the back side;
A liquid crystal alignment film laminated on the back surface of the lenticular layer and formed of a radiation-sensitive liquid crystal alignment agent;
The light directivity control unit includes a liquid crystal lens layer laminated on the back side of the lenticular layer via the liquid crystal alignment film.
 本発明の光指向性制御ユニットは、上記構成を有しており、レンチキュラー層と、一定方向に配向した液晶レンズ層とが積層されている。当該ユニットを通過する偏光の振動方向と、液晶レンズ層の液晶の配向方向とのなす角度によって、液晶の屈折率は変わってくる。すなわち、所定方向に振動する偏光に対しては、レンチキュラー層と液晶レンズ層の屈折率は同じであり、それと異なる振動面を有する偏光に対しては、レンチキュラー層と液晶レンズ層の屈折率は異なるよう構成することができる。このため、当該光指向性制御ユニットによれば、光が単純透過するか、液晶レンズ層において屈折するかにより、光の指向性を切り替えることができる。また、当該光指向性制御ユニットは、上記液晶配向膜が感放射線性液晶配向剤により形成されるため、従来のラビング処理を施した液晶配向膜に比べて、配向膜の配向均一性に優れる。それにより、当該光指向性制御ユニットにおいて、この液晶配向膜を介して形成される液晶レンズ層の配向均一性が高くなる。その結果、当該光指向性制御ユニットを備える2次元モードと3次元モードとの切替可能な表示モジュールは、その表示の良好性を高めることができる。 The light directivity control unit of the present invention has the above-described configuration, and a lenticular layer and a liquid crystal lens layer oriented in a certain direction are laminated. The refractive index of the liquid crystal varies depending on the angle formed by the vibration direction of polarized light passing through the unit and the liquid crystal alignment direction of the liquid crystal lens layer. That is, the refractive index of the lenticular layer and the liquid crystal lens layer is the same for polarized light that vibrates in a predetermined direction, and the refractive index of the lenticular layer and the liquid crystal lens layer is different for polarized light having a different vibration surface. It can be configured as follows. Therefore, according to the light directivity control unit, the directivity of light can be switched depending on whether light is simply transmitted or refracted in the liquid crystal lens layer. Moreover, since the said liquid crystal aligning film is formed of a radiation sensitive liquid crystal aligning agent, the said light directivity control unit is excellent in the alignment uniformity of the alignment film compared with the liquid crystal aligning film which performed the conventional rubbing process. Thereby, in the light directivity control unit, the alignment uniformity of the liquid crystal lens layer formed through the liquid crystal alignment film is increased. As a result, the display module that can switch between the two-dimensional mode and the three-dimensional mode provided with the light directivity control unit can improve the display quality.
 当該光指向性制御ユニットにおいて、上記液晶レンズ層の裏面に積層され、感放射線性液晶配向剤により形成される他の液晶配向膜を備えるとよい。液晶レンズ層の表面側に加えて、裏面側も感放射線性液晶配向剤により形成される液晶配向膜を積層することで、当該光指向性制御ユニットにおける液晶レンズ層の液晶の配向均一性がさらに高まる。その結果、当該光指向性制御ユニットを備える2D/3D切替可能表示モジュールの表示の良好性をさらに高めることができる。 The light directivity control unit may include another liquid crystal alignment film laminated on the back surface of the liquid crystal lens layer and formed of a radiation-sensitive liquid crystal aligning agent. In addition to the front side of the liquid crystal lens layer, the back side is also laminated with a liquid crystal alignment film formed of a radiation sensitive liquid crystal aligning agent, so that the alignment uniformity of the liquid crystal lens layer in the light directivity control unit further increases. Rise. As a result, the display quality of the 2D / 3D switchable display module including the light directivity control unit can be further improved.
 当該光指向性制御ユニットにおいては、上記液晶レンズ層の両面側に積層される一対の透明電極層を備えるとよい。当該光指向性制御ユニットによれば、上記液晶レンズ層の両面側に積層される一対の透明電極層を有することで、この透明電極層間の電圧印可の有無により、液晶レンズ層の液晶の配向性を変化させることによって、光指向性を切り替えることができる。 The light directivity control unit may include a pair of transparent electrode layers stacked on both sides of the liquid crystal lens layer. According to the light directivity control unit, by having a pair of transparent electrode layers laminated on both sides of the liquid crystal lens layer, the orientation of the liquid crystal in the liquid crystal lens layer is determined depending on whether voltage is applied between the transparent electrode layers. The light directivity can be switched by changing.
 当該光指向性制御ユニットにおいては、上記透明基板に重畳される液晶層と、この液晶層の両面側に配設される一対の透明電極層とを備えるとよい。上記液晶層と、この液晶の両面側に配設される一対の透明電極層との組み合わせは、この一対の透明電極層間の電圧印可の有無により、これら透明電極層間の液晶層の配向が変化し、進行する偏光の偏光面の回転角度を変えることができる液晶スイッチを構成する。従って、当該光指向性制御ユニットは、このような液晶スイッチをさらに有することにより、この一対の透明電極層間の電圧印可の有無によって光指向性を切り替えることができる。 The light directivity control unit may include a liquid crystal layer superimposed on the transparent substrate and a pair of transparent electrode layers disposed on both sides of the liquid crystal layer. In the combination of the liquid crystal layer and the pair of transparent electrode layers disposed on both sides of the liquid crystal, the orientation of the liquid crystal layer between the transparent electrode layers changes depending on whether or not voltage is applied between the pair of transparent electrode layers. This constitutes a liquid crystal switch that can change the rotation angle of the polarization plane of the traveling polarized light. Therefore, the light directivity control unit can further switch the light directivity depending on whether or not voltage is applied between the pair of transparent electrode layers by further including such a liquid crystal switch.
 上記感放射線性液晶配向剤が、[A]光配向性基を有するポリオルガノシロキサン(以下、「[A]光配向性ポリオルガノシロキサン」と称することがある)を含有するとよい。上記[A]光配向性ポリオルガノシロキサンを含有する液晶配向剤から形成された塗膜に、放射線を照射することで得られる液晶配向膜においては、配向膜を形成する分子の配向性を高くすることができる。その結果、この液晶配向膜を介して形成される液晶レンズ層の配向均一性が向上する。 The radiation-sensitive liquid crystal aligning agent may contain [A] a polyorganosiloxane having a photo-alignment group (hereinafter sometimes referred to as “[A] photo-alignment polyorganosiloxane”). [A] In the liquid crystal alignment film obtained by irradiating the coating film formed from the liquid crystal aligning agent containing the photo-alignable polyorganosiloxane, the alignment property of the molecules forming the alignment film is increased. be able to. As a result, the alignment uniformity of the liquid crystal lens layer formed through the liquid crystal alignment film is improved.
 上記光配向性基が、桂皮酸構造を有する基であることが好ましい。光配向性基として桂皮酸又はその誘導体を基本骨格とする桂皮酸構造を有する基を用いることで、上記液晶配向剤におけるポリオルガノシロキサンへの光配向性基の導入が容易となり、かつそのような液晶配向剤から形成される液晶配向膜は、さらに高い光配向性能を有する。その結果、当該光指向性制御ユニットにおける液晶レンズ層の配向均一性をさらに高くすることができる。 The photo-alignment group is preferably a group having a cinnamic acid structure. By using a group having a cinnamic acid structure having cinnamic acid or a derivative thereof as a basic skeleton as a photoalignable group, introduction of the photoalignable group into polyorganosiloxane in the liquid crystal aligning agent is facilitated, and A liquid crystal alignment film formed from a liquid crystal aligning agent has higher optical alignment performance. As a result, the alignment uniformity of the liquid crystal lens layer in the light directivity control unit can be further increased.
 上記桂皮酸構造を有する基が下記式(1)で表される化合物に由来する基及び式(2)で表される化合物に由来する基からなる群より選択される少なくとも1種の基であるとよい。
Figure JPOXMLDOC01-appb-C000002
(式(1)中、Rは、フェニレン基、ビフェニレン基、ターフェニレン基又はシクロヘキシレン基である。このフェニレン基、ビフェニレン基、ターフェニレン基及びシクロヘキシレン基の水素原子の一部又は全部は、フッ素原子を有していてもよい炭素数1~10のアルキル基若しくは炭素数1~10のアルコキシ基、フッ素原子又はシアノ基で置換されていてもよい。Rは、単結合、炭素数1~3のアルカンジイル基、酸素原子、硫黄原子、-CH=CH-、-NH-、-COO-又は-OCO-である。aは0~3の整数である。但し、aが2以上の場合、複数のR及びRはそれぞれ同一であっても異なっていてもよい。Rは、フッ素原子又はシアノ基である。bは0~4の整数である。
 式(2)中、Rは、フェニレン基又はシクロヘキシレン基である。このフェニレン基及びシクロヘキシレン基の水素原子の一部又は全部は、炭素数1~10の鎖状若しくは環状のアルキル基、炭素数1~10の鎖状若しくは環状のアルコキシ基、フッ素原子又はシアノ基で置換されていてもよい。Rは、単結合、炭素数1~3のアルカンジイル基、酸素原子、硫黄原子又は-NH-である。cは、1~3の整数である。但し、cが2以上の場合、複数のR及びRはそれぞれ同一であっても異なっていてもよい。Rは、フッ素原子又はシアノ基である。dは、0~4の整数である。Rは、酸素原子、-COO-又は-OCO-である。Rは、2価の芳香族基、2価の脂環式基、2価の複素環式基又は2価の縮合環式基である。Rは、単結合、-OCO-(CH-*又は-O(CH-*である。*は、カルボキシル基との結合部位を示す。f及びgは、それぞれ1~10の整数である。eは、0~3の整数である。但し、eが2以上の場合、複数のR及びRはそれぞれ同一であっても異なっていてもよい。)
The group having a cinnamic acid structure is at least one group selected from the group consisting of a group derived from a compound represented by the following formula (1) and a group derived from a compound represented by the formula (2). Good.
Figure JPOXMLDOC01-appb-C000002
(In the formula (1), R 1 is a phenylene group, a biphenylene group, a terphenylene group or a cyclohexylene group. Some or all of the hydrogen atoms of the phenylene group, biphenylene group, terphenylene group and cyclohexylene group are May be substituted with an alkyl group having 1 to 10 carbon atoms or an alkoxy group having 1 to 10 carbon atoms, a fluorine atom or a cyano group, which may have a fluorine atom, R 2 is a single bond, carbon number An alkanediyl group of 1 to 3, an oxygen atom, a sulfur atom, —CH═CH—, —NH—, —COO— or —OCO—, where a is an integer of 0 to 3, provided that a is 2 or more. In this case, R 1 and R 2 may be the same or different from each other, R 3 is a fluorine atom or a cyano group, and b is an integer of 0 to 4.
In Formula (2), R 4 is a phenylene group or a cyclohexylene group. Some or all of the hydrogen atoms of the phenylene group and cyclohexylene group may be a linear or cyclic alkyl group having 1 to 10 carbon atoms, a linear or cyclic alkoxy group having 1 to 10 carbon atoms, a fluorine atom, or a cyano group. May be substituted. R 5 is a single bond, an alkanediyl group having 1 to 3 carbon atoms, an oxygen atom, a sulfur atom or —NH—. c is an integer of 1 to 3. However, when c is 2 or more, the plurality of R 4 and R 5 may be the same or different. R 6 is a fluorine atom or a cyano group. d is an integer of 0-4. R 7 is an oxygen atom, —COO— or —OCO—. R 8 is a divalent aromatic group, a divalent alicyclic group, a divalent heterocyclic group or a divalent condensed cyclic group. R 9 is a single bond, —OCO— (CH 2 ) f — * or —O (CH 2 ) g — *. * Indicates a binding site with a carboxyl group. f and g are each an integer of 1 to 10. e is an integer of 0 to 3. However, when e is 2 or more, the plurality of R 7 and R 8 may be the same or different. )
 上記桂皮酸構造を有する基として上記特定桂皮酸誘導体に由来する基を用いることにより、得られる液晶配向膜の光配向性能をさらに向上でき、その結果、当該光指向性制御ユニットにおける液晶レンズ層の配向均一性をさらに向上することができる。 By using a group derived from the specific cinnamic acid derivative as the group having the cinnamic acid structure, the optical alignment performance of the obtained liquid crystal alignment film can be further improved, and as a result, the liquid crystal lens layer in the light directivity control unit can be improved. The alignment uniformity can be further improved.
 [A]光配向性基を有するポリオルガノシロキサンが、エポキシ基を有するポリオルガノシロキサンと、上記式(1)で表される化合物及び上記式(2)で表される化合物からなる群より選択される少なくとも1種の化合物との反応生成物であることが好ましい。当該光指向性制御ユニットにおいて、エポキシ基を有するポリオルガノシロキサンと特定桂皮酸誘導体との間の反応性を利用することにより、主鎖としてのポリオルガノシロキサンに光配向性基を有する特定桂皮酸誘導体に由来する側鎖基を容易に導入できる。 [A] The polyorganosiloxane having a photo-alignment group is selected from the group consisting of a polyorganosiloxane having an epoxy group, a compound represented by the above formula (1), and a compound represented by the above formula (2). The reaction product with at least one compound is preferred. In the light directivity control unit, by utilizing the reactivity between the polyorganosiloxane having an epoxy group and the specific cinnamic acid derivative, the specific cinnamic acid derivative having a photoalignment group on the polyorganosiloxane as the main chain Side chain groups derived from can be easily introduced.
 上記液晶配向剤が、[C]カルボン酸のアセタールエステル構造、カルボン酸のケタールエステル構造、カルボン酸の1-アルキルシクロアルキルエステル構造及びカルボン酸のt-ブチルエステル構造からなる群より選択される少なくとも1種又は2種以上の構造を有し、この構造が1種の場合は複数有する化合物(以下、「[C]エステル構造含有化合物」と称することがある)をさらに含有することが好ましい。上記液晶配向剤が[C]エステル構造含有化合物を含有することにより、焼成工程(ポストベーク)において酸が発生し、発生した酸によって、[A]ポリオルガノシロキサンの架橋を促進させ、その結果、得られる光指向性制御ユニットの耐熱性を向上することができる。 The liquid crystal aligning agent is at least selected from the group consisting of an acetal ester structure of [C] carboxylic acid, a ketal ester structure of carboxylic acid, a 1-alkylcycloalkyl ester structure of carboxylic acid, and a t-butyl ester structure of carboxylic acid It is preferable to further contain a compound having one or two or more structures, and when this structure is one, a plurality of compounds (hereinafter sometimes referred to as “[C] ester structure-containing compound”). When the liquid crystal aligning agent contains the [C] ester structure-containing compound, an acid is generated in the baking step (post-bake), and the generated acid promotes the crosslinking of [A] polyorganosiloxane. The heat resistance of the obtained light directivity control unit can be improved.
 上記液晶配向剤が、[B]ポリアミック酸、ポリイミド、エチレン性不飽和化合物重合体及び光配向性基を有さないポリオルガノシロキサンからなる群より選択される少なくとも1種の重合体(以下、「[B]他の重合体」と称することがある)をさらに含有することが好ましい。上記液晶配向剤に他の重合体を含有させることにより上記液晶配向剤中における光配向性ポリオルガノシロキサンの含有量を減らしても、光配向性ポリオルガノシロキサンは液晶配向層表面に偏在するので、液晶配向膜の光配向性能を高くすることができ、その結果、液晶レンズ層の液晶の配向均一性を高く維持することができる。従って、製造コストの高い光配向性ポリオルガノシロキサンの上記液晶配向剤中における含有量を減らすことが可能となり、結果として、当該光指向性制御ユニットの製造コストを低減できる。 The liquid crystal aligning agent is at least one polymer selected from the group consisting of [B] polyamic acid, polyimide, ethylenically unsaturated compound polymer, and polyorganosiloxane having no photo-alignable group (hereinafter referred to as “ It is preferable to further contain [B] other polymer ”. Even if the content of the photoalignable polyorganosiloxane in the liquid crystal aligning agent is reduced by adding another polymer to the liquid crystal aligning agent, the photoalignable polyorganosiloxane is unevenly distributed on the surface of the liquid crystal aligning layer. The optical alignment performance of the liquid crystal alignment film can be increased, and as a result, the alignment uniformity of the liquid crystal in the liquid crystal lens layer can be maintained high. Therefore, the content of the photoalignable polyorganosiloxane having a high production cost in the liquid crystal aligning agent can be reduced, and as a result, the production cost of the light directivity control unit can be reduced.
 本発明の2D/3D切替可能表示モジュールは、
 表示パネルと、
 当該光指向性制御ユニットと
を備える。
The 2D / 3D switchable display module of the present invention is
A display panel;
The light directivity control unit.
 当該2D/3D切替可能表示モジュールは、液晶レンズ層の液晶の配向均一性に優れる上述の光指向性制御ユニットを備えているので、2次元及び3次元の表示の質のレベルをほとんど低下させることなく、視聴者に良好な表示を提供することができる。 Since the 2D / 3D switchable display module includes the above-described light directivity control unit that excels in liquid crystal alignment uniformity of the liquid crystal lens layer, it almost reduces the level of 2D and 3D display quality. Therefore, a favorable display can be provided to the viewer.
 本発明の光指向性制御ユニットの製造方法は、
 透明基板と、この透明基板の表面側に対向配設され、裏面にレンチキュラーレンズアレイを有するレンチキュラー層と、このレンチキュラー層の裏面に積層される液晶配向膜と、この液晶配向膜を介してレンチキュラー層の裏面側に積層される液晶レンズ層とを備える光指向性制御ユニットの製造方法であって、
(1)レンチキュラー層の裏面に感放射線性液晶配向剤を塗布し、塗膜を形成する工程、
(2)上記塗膜への放射線の照射により液晶配向膜を形成する工程、及び
(3)この液晶配向膜及び透明基板間に液晶レンズ層を形成する工程
を有する。
The manufacturing method of the light directivity control unit of the present invention is as follows.
A transparent substrate, a lenticular layer disposed on the front side of the transparent substrate and having a lenticular lens array on the back surface, a liquid crystal alignment film laminated on the back surface of the lenticular layer, and a lenticular layer via the liquid crystal alignment film A light directivity control unit comprising a liquid crystal lens layer laminated on the back side of
(1) A step of applying a radiation-sensitive liquid crystal aligning agent to the back surface of the lenticular layer to form a coating film,
(2) forming a liquid crystal alignment film by irradiating the coating film with radiation; and (3) forming a liquid crystal lens layer between the liquid crystal alignment film and the transparent substrate.
 また、上記(3)工程が、
 (3-1)この液晶配向膜と透明基板とを対向配設させ、これらに挟まれた空間を形成する工程、及び
 (3-2)この空間に液晶材料を充填し、液晶レンズ層を形成する工程
を有することが好ましい。
In addition, the step (3)
(3-1) a step of disposing the liquid crystal alignment film and the transparent substrate to face each other and forming a space between them; and (3-2) filling the space with a liquid crystal material to form a liquid crystal lens layer. It is preferable to have the process to do.
 さらに、(3-2)工程が、
 (3-2-1)この空間に重合性液晶を吸入する工程、及び
 (3-2-2)この重合性液晶を重合させて液晶レンズ層を形成する工程
を有することがより好ましい。
Furthermore, the step (3-2)
It is more preferable to have (3-2-1) a step of sucking polymerizable liquid crystal into this space, and (3-2-2) a step of polymerizing this polymerizable liquid crystal to form a liquid crystal lens layer.
 また、上記(3)工程が、
 (3-1’)この液晶配向膜の裏面側に液晶材料を塗布し、液晶レンズ層を形成する工程、及び
 (3-2’)この液晶レンズ層の裏面側に透明基板を配設する工程
を有することが好ましい。
In addition, the step (3)
(3-1 ′) a step of applying a liquid crystal material to the back side of the liquid crystal alignment film to form a liquid crystal lens layer; and (3-2 ′) a step of disposing a transparent substrate on the back side of the liquid crystal lens layer. It is preferable to have.
 さらに、上記(3-1’)工程が、
 (3-1’-1)この液晶配向膜の裏面側に重合性液晶を塗布する工程、及び
 (3-1’-2)この重合性液晶を重合させて液晶レンズ層を形成する工程
を有することがより好ましい。
Further, the step (3-1 ′)
(3-1′-1) a step of applying a polymerizable liquid crystal on the back side of the liquid crystal alignment film, and (3-1′-2) a step of polymerizing the polymerizable liquid crystal to form a liquid crystal lens layer. It is more preferable.
 本発明の製造方法によれば、液晶レンズ層の配向均一性に優れる光指向性制御ユニットを効率よく製造でき、生産性の向上及び製造コストの低減化を促進することができる。 According to the manufacturing method of the present invention, it is possible to efficiently manufacture a light directivity control unit having excellent alignment uniformity of the liquid crystal lens layer, and it is possible to promote improvement in productivity and reduction in manufacturing cost.
 本発明の液晶配向剤は、
 2D/3D切替可能表示モジュールの液晶レンズ層配向用液晶配向剤であって、
 感放射線性を有することを特徴とする。
The liquid crystal aligning agent of the present invention is
A liquid crystal aligning agent for aligning a liquid crystal lens layer of a 2D / 3D switchable display module,
It has a radiation sensitivity.
 本発明の液晶配向剤によれば、2D/3D切替可能表示モジュールの光指向性制御ユニットの液晶レンズ層に積層される液晶配向膜の配向性を高めることができ、その結果、液晶レンズ層の配向均一性を高めることができる。 According to the liquid crystal aligning agent of the present invention, the orientation of the liquid crystal alignment film laminated on the liquid crystal lens layer of the light directivity control unit of the 2D / 3D switchable display module can be improved. The alignment uniformity can be improved.
 本発明の光指向性制御ユニットによれば、液晶レンズ層の配向均一性を向上させることができ、その結果、これを用いる2D/3D切替可能表示モジュールの解像度等の表示精度を向上することができる。 According to the light directivity control unit of the present invention, the alignment uniformity of the liquid crystal lens layer can be improved, and as a result, the display accuracy such as the resolution of a 2D / 3D switchable display module using the liquid crystal lens layer can be improved. it can.
本発明の第1実施形態に係る光指向性制御ユニットの断面図である。It is sectional drawing of the light directivity control unit which concerns on 1st Embodiment of this invention. 本発明の第2実施形態に係る光指向性制御ユニットの断面図である。It is sectional drawing of the light directivity control unit which concerns on 2nd Embodiment of this invention. 本発明の第3実施形態に係る光指向性制御ユニットの断面図である。It is sectional drawing of the light directivity control unit which concerns on 3rd Embodiment of this invention. 本発明の第4実施形態に係る光指向性制御ユニットの断面図である。It is sectional drawing of the light directivity control unit which concerns on 4th Embodiment of this invention. 本発明の第1実施形態の2D/3D切替可能表示モジュール断面図である。It is a 2D / 3D switchable display module sectional view of a 1st embodiment of the present invention. 本発明の第2実施形態の2D/3D切替可能表示モジュール断面図である。It is 2D / 3D switchable display module sectional drawing of 2nd Embodiment of this invention. 本発明の第3実施形態の2D/3D切替可能表示モジュール断面図である。It is 2D / 3D switchable display module sectional drawing of 3rd Embodiment of this invention. 本発明の第4実施形態の2D/3D切替可能表示モジュール断面図である。It is 2D / 3D switchable display module sectional drawing of 4th Embodiment of this invention.
<光指向性制御ユニット>
 まず、第1実施形態に係る光指向性制御ユニットについて、図1を参照しつつ、以下説明する。光指向性制御ユニット1は、一対の透明基板11、12と、レンチキュラー層13と、液晶レンズ層14と、2つの液晶配向膜15、16を有している。この光指向性制御ユニット1は、レンチキュラー層13の屈折率よりも、液晶レンズ層14の異常屈折率(液晶の光軸に平行な方向に振動する偏光に対する屈折率)が大きい場合の形態である。図1の光指向性制御ユニットにおいて、一方の透明基板12側が裏側、すなわち、表示パネルからの光が入射する側であり、他方の透明基板11側が表側、すなわち、光が視聴者へ向けて出射する側である。
<Light directivity control unit>
First, the light directivity control unit according to the first embodiment will be described below with reference to FIG. The light directivity control unit 1 includes a pair of transparent substrates 11 and 12, a lenticular layer 13, a liquid crystal lens layer 14, and two liquid crystal alignment films 15 and 16. This light directivity control unit 1 is in a case where the extraordinary refractive index of the liquid crystal lens layer 14 (the refractive index for polarized light oscillating in the direction parallel to the optical axis of the liquid crystal) is larger than the refractive index of the lenticular layer 13. . In the light directivity control unit of FIG. 1, one transparent substrate 12 side is the back side, that is, the side on which light from the display panel is incident, and the other transparent substrate 11 side is the front side, that is, the light is emitted toward the viewer. The side to do.
 上記一対の透明基板11、12は、対向して配設されており、一方の透明基板12の表面側に他方の透明基板11が略平行に配設されている。この透明基板11の裏面には、レンチキュラー層13が積層されている。レンチキュラー層13は、裏面に凹型のレンチキュラーレンズアレイを有している。このレンチキュラーレンズ層13の稜線方向は一方向となるよう構成されている。液晶配向膜15が、レンチキュラー層13の裏面の凹型レンチキュラーレンズアレイの面に積層され、液晶配向膜16が、一方の透明基板12の表面に積層されている。液晶レンズ層14は、上記2つの液晶配向膜15、16の間に形成されている。 The pair of transparent substrates 11 and 12 are disposed to face each other, and the other transparent substrate 11 is disposed substantially in parallel on the surface side of one transparent substrate 12. A lenticular layer 13 is laminated on the back surface of the transparent substrate 11. The lenticular layer 13 has a concave lenticular lens array on the back surface. The ridge line direction of the lenticular lens layer 13 is configured to be one direction. A liquid crystal alignment film 15 is stacked on the surface of the concave lenticular lens array on the back surface of the lenticular layer 13, and a liquid crystal alignment film 16 is stacked on the surface of one transparent substrate 12. The liquid crystal lens layer 14 is formed between the two liquid crystal alignment films 15 and 16.
 上記レンチキュラー層13の裏面及び透明基板12の表面にそれぞれ形成された2つの液晶配向膜は、放射線照射により同一方向、すなわちどちらもz方向の液晶配向能を有している。 The two liquid crystal alignment films respectively formed on the back surface of the lenticular layer 13 and the front surface of the transparent substrate 12 have the liquid crystal alignment ability in the same direction, that is, both in the z direction when irradiated with radiation.
 上記液晶レンズ層14は、上記2つの液晶配向層15、16の間に充填される液晶から構成され、その結果、液晶レンズ層14は、その表面にレンチキュラー層13とは凹凸が逆のレンチキュラーレンズアレイを有している。この液晶レンズ層14の液晶は、上記液晶配向膜15、16の液晶配向能に従って、z方向に配向している。従って、液晶レンズ層14の屈折率は、振動方向がz方向の偏光に対しては高く、一方、振動方向がx方向の偏光に対しては低く、レンチキュラー層13とほぼ同等の屈折率を有している。 The liquid crystal lens layer 14 is composed of a liquid crystal filled between the two liquid crystal alignment layers 15 and 16, and as a result, the liquid crystal lens layer 14 has a lenticular lens having irregularities opposite to the lenticular layer 13 on its surface. Has an array. The liquid crystal of the liquid crystal lens layer 14 is aligned in the z direction according to the liquid crystal alignment ability of the liquid crystal alignment films 15 and 16. Therefore, the refractive index of the liquid crystal lens layer 14 is high for polarized light whose vibration direction is the z direction, while it is low for polarized light whose vibration direction is the x direction, and has a refractive index substantially equal to that of the lenticular layer 13. is doing.
 光指向性制御ユニット1は、液晶レンズ層14を形成する液晶の配向方向がz方向であるので、光指向性制御ユニット1に入射する偏光の振動方向がz方向である場合は、液晶レンズ層14とレンチキュラー層13との屈折率が異なり、液晶レンズ層14の屈折率の方が大きいため、液晶レンズ層14とレンチキュラー層13との組み合わせは、液晶レンズ層14の形状を有するレンチキュラーレンズとして機能し、光指向性制御ユニット1は、屈折型の光指向性機能を提供する。一方、光指向性制御ユニット1に入射する偏光の方向がx方向である場合は、液晶レンズ層14とレンチキュラー層13の屈折率はほぼ同じであるため、液晶レンズ層14とレンチキュラー層13との組み合わせにおいては、光は屈折することなく単純透過し、光指向性制御ユニット1は、通過型の光指向性機能を提供する。なお、上記2つの液晶配向膜の有する液晶配向能としては、z方向以外にもx方向であってもよいが、z方向が好ましい。 In the light directivity control unit 1, since the alignment direction of the liquid crystal forming the liquid crystal lens layer 14 is the z direction, the liquid crystal lens layer is used when the oscillation direction of polarized light incident on the light directivity control unit 1 is the z direction. 14 and the lenticular layer 13 are different in refractive index, and the refractive index of the liquid crystal lens layer 14 is larger. Therefore, the combination of the liquid crystal lens layer 14 and the lenticular layer 13 functions as a lenticular lens having the shape of the liquid crystal lens layer 14. The light directivity control unit 1 provides a refractive light directivity function. On the other hand, when the direction of polarized light incident on the light directivity control unit 1 is the x direction, the refractive index of the liquid crystal lens layer 14 and that of the lenticular layer 13 are substantially the same. In the combination, the light is simply transmitted without being refracted, and the light directivity control unit 1 provides a passing light directivity function. The liquid crystal alignment ability of the two liquid crystal alignment films may be the x direction in addition to the z direction, but the z direction is preferable.
 本発明の第2実施形態に係る光指向性制御ユニット2について、図2を参照しつつ、以下説明する。光指向性制御ユニット2は、一対の透明基板11、12と、レンチキュラー層13と、液晶レンズ層14と、2つの液晶配向膜15、16と、透明基板(スイッチ透明基板)21と、一対の透明電極層(スイッチ透明電極)22、23と、液晶層(スイッチ液晶層)24とを有している。スイッチ透明基板21と、一対のスイッチ透明電極層22、23と、スイッチ液晶層24との組み合わせは、一対のスイッチ透明電極層22、23間の電圧印可の有無により、スイッチ液晶層24を形成する液晶の配向方向が変わることで円偏光の回転が0°と90°との間で変化する「液晶スイッチ」として機能する。すなわち、光指向性制御ユニット2は、第1実施形態の光指向性制御ユニット1の構成に、液晶スイッチが付加された構成を有している。図2において、第1実施形態の光指向性制御ユニット1と同様の構成は、同一番号を付して説明を省略する。なお、本明細書において、液晶スイッチを構成する透明基板、透明電極層及び液晶層をそれぞれスイッチ透明基板、スイッチ透明電極層及びスイッチ液晶層ともいう。 The light directivity control unit 2 according to the second embodiment of the present invention will be described below with reference to FIG. The light directivity control unit 2 includes a pair of transparent substrates 11 and 12, a lenticular layer 13, a liquid crystal lens layer 14, two liquid crystal alignment films 15 and 16, a transparent substrate (switch transparent substrate) 21, and a pair of Transparent electrode layers (switch transparent electrodes) 22 and 23 and a liquid crystal layer (switch liquid crystal layer) 24 are provided. The combination of the switch transparent substrate 21, the pair of switch transparent electrode layers 22 and 23, and the switch liquid crystal layer 24 forms the switch liquid crystal layer 24 depending on whether voltage is applied between the pair of switch transparent electrode layers 22 and 23. It functions as a “liquid crystal switch” in which the rotation of the circularly polarized light changes between 0 ° and 90 ° by changing the alignment direction of the liquid crystal. That is, the light directivity control unit 2 has a configuration in which a liquid crystal switch is added to the configuration of the light directivity control unit 1 of the first embodiment. In FIG. 2, the same configurations as those of the light directivity control unit 1 of the first embodiment are denoted by the same reference numerals and description thereof is omitted. In the present specification, the transparent substrate, the transparent electrode layer, and the liquid crystal layer constituting the liquid crystal switch are also referred to as a switch transparent substrate, a switch transparent electrode layer, and a switch liquid crystal layer, respectively.
 光指向性制御ユニット2においては、透明基板11の表面側に、スイッチ透明基板21が対向して配設される。透明基板11及びスイッチ透明基板21のそれぞれ対向する面に一対の透明電極層22、23が一定の隙間をもって配置され、これら一対の透明導電層22、23の間に、スイッチ液晶層24が配設される。 In the light directivity control unit 2, a switch transparent substrate 21 is disposed on the surface side of the transparent substrate 11 so as to face the transparent substrate 11. A pair of transparent electrode layers 22 and 23 are arranged with a certain gap on the opposing surfaces of the transparent substrate 11 and the switch transparent substrate 21, and a switch liquid crystal layer 24 is disposed between the pair of transparent conductive layers 22 and 23. Is done.
 光指向性制御ユニット2は、光指向性制御ユニット1の構成に加えて、上記液晶スイッチの構成をさらに有しているので、透明電極層22、23間の電圧印可の有無によって、液晶レンズ層14に入射する所望の振動方向の偏光が、光指向性制御ユニット2から出射するように切り替えることができる。すなわち、光指向性制御ユニット2によれば、z方向に偏光した入射光を液晶レンズ層14とレンチキュラー層13とにより屈折させた後、液晶スイッチにより所望する方向に偏光させて出射させることができ、また、x方向に偏光した入射光を液晶レンズ層14とレンチキュラー層13とにより単純透過させた後、液晶スイッチにより所望する方向に偏光させて出射させることができる。従って、光指向性制御ユニット2によれば、所望の振動方向を有する出射光について、透過型と屈折型の光指向性機能を切り替えることができる。 In addition to the configuration of the light directivity control unit 1, the light directivity control unit 2 further includes the configuration of the liquid crystal switch. Therefore, depending on whether voltage is applied between the transparent electrode layers 22 and 23, the liquid crystal lens layer The polarized light in the desired vibration direction incident on 14 can be switched so as to be emitted from the light directivity control unit 2. That is, according to the light directivity control unit 2, incident light polarized in the z direction can be refracted by the liquid crystal lens layer 14 and the lenticular layer 13, and then polarized in a desired direction by the liquid crystal switch and emitted. In addition, incident light polarized in the x direction can be simply transmitted through the liquid crystal lens layer 14 and the lenticular layer 13, and then polarized in a desired direction by the liquid crystal switch to be emitted. Therefore, according to the light directivity control unit 2, it is possible to switch between the transmission type and the refraction type light directivity functions for the outgoing light having a desired vibration direction.
 本発明の第3実施形態に係る光指向性制御ユニット3について、図3を参照しつつ、以下説明する。光指向性制御ユニット3は、一対の透明基板11、12と、レンチキュラー層13と、液晶レンズ層14と、2つの液晶配向膜15、16と、スイッチ透明電極基板25、透明電極層26と、スイッチ液晶層24とを有している。スイッチ透明電極基板25は、透明基板の裏面側に透明電極層を積層させたものである。すなわち、光指向性制御ユニット3は、第1実施形態の光指向性制御ユニット1の構成に、スイッチ透明電極基板25、透明電極層26及びスイッチ液晶層24による液晶スイッチが付加された構成を有している。図3において、第1実施形態の光指向性制御ユニット1と同様の構成は、同一番号を付して説明を省略する。 The light directivity control unit 3 according to the third embodiment of the present invention will be described below with reference to FIG. The light directivity control unit 3 includes a pair of transparent substrates 11 and 12, a lenticular layer 13, a liquid crystal lens layer 14, two liquid crystal alignment films 15 and 16, a switch transparent electrode substrate 25, a transparent electrode layer 26, And a switch liquid crystal layer 24. The switch transparent electrode substrate 25 is obtained by laminating a transparent electrode layer on the back side of the transparent substrate. That is, the light directivity control unit 3 has a structure in which a liquid crystal switch including a switch transparent electrode substrate 25, a transparent electrode layer 26, and a switch liquid crystal layer 24 is added to the structure of the light directivity control unit 1 of the first embodiment. is doing. In FIG. 3, the same components as those of the light directivity control unit 1 of the first embodiment are denoted by the same reference numerals and description thereof is omitted.
 光指向性制御ユニット3は、第1実施形態の光指向性制御ユニット1における液晶配向膜16と一方の透明基板12の間に、スイッチ透明電極基板25、スイッチ液晶層24及び透明電極層26がこの順に配置された構成を有する。これらのスイッチ透明電極基板25及び透明電極層26、並びにこれらの間に挟持されるスイッチ液晶層24は、上述のように液晶スイッチとして機能する。従って、光指向性制御ユニット3は、第2実施形態の光指向性制御ユニット2と同様に、スイッチ透明電極基板25及び透明電極層26間の電圧印可の有無により、所望の振動方向を有する出射光について、透過型と屈折型の光指向性機能を切り替えることができる。すなわち、光指向性制御ユニット3によれば、x-z平面上の特定方向に偏光した入射光を液晶スイッチによりz方向の偏光とし、液晶レンズ層14とレンチキュラー層13とにより屈折させて出射させることができ、また、x-z平面上の特定方向に偏光した入射光を液晶スイッチによりx方向の偏光とし、液晶レンズ層14とレンチキュラー層13とにより単純透過させて出射させることができる。 The light directivity control unit 3 includes a switch transparent electrode substrate 25, a switch liquid crystal layer 24, and a transparent electrode layer 26 between the liquid crystal alignment film 16 and the one transparent substrate 12 in the light directivity control unit 1 of the first embodiment. It has a configuration arranged in this order. The switch transparent electrode substrate 25 and the transparent electrode layer 26, and the switch liquid crystal layer 24 sandwiched therebetween function as a liquid crystal switch as described above. Therefore, similarly to the light directivity control unit 2 of the second embodiment, the light directivity control unit 3 has a desired vibration direction depending on whether or not voltage is applied between the switch transparent electrode substrate 25 and the transparent electrode layer 26. With respect to the incident light, it is possible to switch between the transmissive and refractive light directivity functions. That is, according to the light directivity control unit 3, incident light polarized in a specific direction on the xz plane is changed into z-direction polarization by the liquid crystal switch, and refracted by the liquid crystal lens layer 14 and the lenticular layer 13 to be emitted. In addition, incident light polarized in a specific direction on the xz plane can be converted into polarized light in the x direction by the liquid crystal switch, and can be simply transmitted by the liquid crystal lens layer 14 and the lenticular layer 13 to be emitted.
 本発明の第4実施形態に係る光指向性制御ユニット4について、図4を参照しつつ、以下説明する。光指向性制御ユニット4は、一対の透明基板11、12と、レンチキュラー13と、液晶レンズ層14と、2つの液晶配向膜15、16と、一対の透明電極層27、28を有している。すなわち、光指向性制御ユニット4は、第1実施形態の光指向性制御ユニット1の構成に、一対の透明導電層27、28が付加された構成を有している。図4において、第1実施形態の光指向性制御ユニット1と同様の構成は、同一番号を付して説明を省略する。 The light directivity control unit 4 according to the fourth embodiment of the present invention will be described below with reference to FIG. The light directivity control unit 4 includes a pair of transparent substrates 11 and 12, a lenticular 13, a liquid crystal lens layer 14, two liquid crystal alignment films 15 and 16, and a pair of transparent electrode layers 27 and 28. . That is, the light directivity control unit 4 has a configuration in which a pair of transparent conductive layers 27 and 28 are added to the configuration of the light directivity control unit 1 of the first embodiment. In FIG. 4, the same configurations as those of the light directivity control unit 1 of the first embodiment are denoted by the same reference numerals and description thereof is omitted.
 光指向性制御ユニット4においては、一対の透明基板11、12には、その対向する面側にそれぞれ透明電極層27、28が積層されている。そして、一方の透明電極層27の裏面には、レンチキュラー層13が積層されている。また、他方の透明電極層28の表面には、液晶配向膜16が積層されている。光指向性制御ユニット4においては、一対の透明電極層27、28の間の電圧印可の有無により、その間に配置する液晶レンズ層14を形成する液晶の配向方向を変化させることができる。従って、光指向性制御ユニット4によれば、所定の振動方向の入射光について、液晶レンズ層14とレンチキュラー層13との組み合わせによるレンズ機能を切り替えることができ、透過型と屈折型の光指向性機能を切り替えることができる。 In the light directivity control unit 4, transparent electrode layers 27 and 28 are laminated on the pair of transparent substrates 11 and 12 on opposite sides thereof. A lenticular layer 13 is laminated on the back surface of one transparent electrode layer 27. A liquid crystal alignment film 16 is laminated on the surface of the other transparent electrode layer 28. In the light directivity control unit 4, the orientation direction of the liquid crystal forming the liquid crystal lens layer 14 disposed between the pair of transparent electrode layers 27 and 28 can be changed depending on whether or not the voltage is applied between the pair of transparent electrode layers 27 and 28. Therefore, according to the light directivity control unit 4, the lens function by the combination of the liquid crystal lens layer 14 and the lenticular layer 13 can be switched with respect to incident light in a predetermined vibration direction, so that the light directivity of transmission type and refraction type can be switched. You can switch functions.
 上記透明基板11、12としては、例えばフロートガラス、ソーダガラス等のガラス基材、トリアセチルセルロース(TAC)、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリエーテルスルホン、ポリアミド、ポリイミド、ポリメチルメタクリレート、ポリカーボネート、環状オレフィンの開環重合体及びその水素添加物、環状オレフィンの付加重合体、芳香族ポリエーテル等のプラスチック基材を含む透明基板等が挙げられる。 Examples of the transparent substrates 11 and 12 include glass substrates such as float glass and soda glass, triacetyl cellulose (TAC), polyethylene terephthalate, polybutylene terephthalate, polyethersulfone, polyamide, polyimide, polymethyl methacrylate, polycarbonate, and cyclic. Examples include olefin ring-opening polymers and hydrogenated products thereof, cyclic olefin addition polymers, and transparent substrates including plastic substrates such as aromatic polyethers.
 レンチキュラー層13を形成する材料としては、その屈折率が、液晶レンズ層14の常光屈折率と同程度であることが好ましく、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリエーテルスルホン、ポリアミド、ポリイミド、ポリメチルメタクリレート等のアクリル、ポリカーボネート、ポリ塩化ビニル、ポリオレフィン等の樹脂が好適に用いられる。 As a material for forming the lenticular layer 13, the refractive index thereof is preferably about the same as the ordinary refractive index of the liquid crystal lens layer 14. Polyethylene terephthalate, polybutylene terephthalate, polyethersulfone, polyamide, polyimide, polymethyl methacrylate Resins such as acrylic, polycarbonate, polyvinyl chloride, polyolefin and the like are preferably used.
 なお、上記透明基板の裏面を、凸状や凹状のレンチキュラー形状とし、透明基板とレンチキュラー層とを一体化させてもよい。 Note that the back surface of the transparent substrate may have a convex or concave lenticular shape, and the transparent substrate and the lenticular layer may be integrated.
<液晶配向膜>
 上述したいずれの実施形態の光指向性制御ユニットにおいても、液晶配向膜15、16を有している。液晶配向膜は、それに隣接して形成される液晶の配向方向を規制し、配向性を高める機能を有する。本発明においては、液晶レンズ層14の表面、すなわち、レンチキュラー層13の裏面に積層される液晶配向膜15は、感放射線性液晶配向剤により形成される液晶配向膜であることを要する。感放射線性液晶配向剤は、通常のラビング処理の代わりに、所定の振動方向の偏光を用いて、配向膜形成分子の配向性を高め、液晶配向性能を高めるものである。感放射線性液晶配向剤を用いることで、ラビング処理が困難なレンチキュラー層裏面の微細な凹凸表面等に対しても、配向性に優れる液晶配向膜を形成することができ、その結果、得られる液晶レンズ層の配向均一性を高めることができる。
<Liquid crystal alignment film>
In any of the above-described light directivity control units, the liquid crystal alignment films 15 and 16 are provided. The liquid crystal alignment film has a function of regulating the alignment direction of the liquid crystal formed adjacent to the liquid crystal alignment layer and improving the alignment. In the present invention, the liquid crystal alignment film 15 laminated on the front surface of the liquid crystal lens layer 14, that is, the back surface of the lenticular layer 13, is required to be a liquid crystal alignment film formed of a radiation-sensitive liquid crystal aligning agent. The radiation-sensitive liquid crystal aligning agent uses polarized light in a predetermined vibration direction instead of the usual rubbing treatment to enhance the alignment of alignment film forming molecules and enhance the liquid crystal alignment performance. By using a radiation-sensitive liquid crystal aligning agent, it is possible to form a liquid crystal aligning film having excellent orientation even on the fine uneven surface on the back of the lenticular layer, which is difficult to rub, and the resulting liquid crystal The alignment uniformity of the lens layer can be improved.
 また、液晶レンズ層14の裏面側、すなわち、透明基板12の表面上等に形成される液晶配向膜16についても、感放射線性液晶配向剤により形成されることが好ましい。液晶レンズ層14の裏面に積層される液晶配向膜も、感放射線性液晶配向剤により形成することにより、液晶レンズ層14の配向均一性をさらに高めることができ、その結果、当該光指向性制御ユニットを備える2D/3D切替可能表示モジュールの解像度等の表示精度をさらに向上させることができる。 Also, the liquid crystal alignment film 16 formed on the back surface side of the liquid crystal lens layer 14, that is, on the surface of the transparent substrate 12 is preferably formed of a radiation-sensitive liquid crystal aligning agent. By forming the liquid crystal alignment film laminated on the back surface of the liquid crystal lens layer 14 with a radiation-sensitive liquid crystal aligning agent, the alignment uniformity of the liquid crystal lens layer 14 can be further improved, and as a result, the light directivity control is performed. The display accuracy such as the resolution of the 2D / 3D switchable display module including the unit can be further improved.
<感放射線性液晶配向剤>
 液晶配向膜15は、感放射線性液晶配向剤(以下、単に「液晶配向剤」ともいう。)から形成される。感放射線性液晶配向剤から形成されることによって、レンチキュラー層の微細な凹凸表面に形成され、ラビング処理によっては配向性を高めることが困難であると考えられる液晶配向膜15でも、配向膜形成分子の配向性を高めることができ、その結果、得られる液晶レンズ層14の配向均一性を向上させることができる。従って、当該光指向性制御ユニットを備える2D/3D切替可能表示モジュールの解像度等の表示精度をさらに向上させることができる。液晶配向膜16も、感放射線性液晶配向剤から形成することができる。液晶レンズ層14の両面側に積層させる一対の液晶配向膜15、16をどちらも感放射線性液晶配向剤を用い、かつ同一の偏光放射線によって配向させると、一対の液晶配向膜15、16の両膜における配向膜形成分子の配向方向の高いレベルで一致させることができ、その結果、得られる液晶レンズ層14の配向均一性をさらに高めることができるため好ましい。
<Radiation sensitive liquid crystal aligning agent>
The liquid crystal alignment film 15 is formed from a radiation-sensitive liquid crystal aligning agent (hereinafter also simply referred to as “liquid crystal aligning agent”). By forming from a radiation-sensitive liquid crystal aligning agent, the liquid crystal alignment film 15 that is formed on the fine uneven surface of the lenticular layer and is considered difficult to improve the alignment by rubbing treatment is also an alignment film forming molecule. As a result, the alignment uniformity of the obtained liquid crystal lens layer 14 can be improved. Therefore, the display accuracy such as the resolution of the 2D / 3D switchable display module including the light directivity control unit can be further improved. The liquid crystal alignment film 16 can also be formed from a radiation sensitive liquid crystal aligning agent. When both of the pair of liquid crystal alignment films 15 and 16 laminated on both sides of the liquid crystal lens layer 14 are aligned using the radiation sensitive liquid crystal aligning agent and the same polarized radiation, both the pair of liquid crystal alignment films 15 and 16 are aligned. It is preferable because the alignment direction of the alignment film forming molecules in the film can be matched at a high level, and as a result, the alignment uniformity of the liquid crystal lens layer 14 to be obtained can be further improved.
 上記液晶配向剤としては、感放射線性である限り特に限定されず、種々の液晶配向剤を用いることができ、例えば、特開平9-297313号公報に記載されている特定のポリイミド樹脂を含有するもの、特開平6-287453号公報に記載されている光化学的異性化/二量化を起こすことができる分子単位を有するポリマーを含有するもの等が挙げられる。 The liquid crystal aligning agent is not particularly limited as long as it is radiation sensitive, and various liquid crystal aligning agents can be used. For example, the liquid crystal aligning agent contains a specific polyimide resin described in JP-A-9-297313. And those containing a polymer having a molecular unit capable of causing photochemical isomerization / dimerization described in JP-A-6-287453.
 上記液晶配向剤としては、光配向性基を有する無機高分子を含有する液晶配向剤が好ましい。光配向性基を有する無機高分子を含有する液晶配向剤を用いることにより、液晶配向性能及び熱安定性に優れる液晶配向膜を形成することができる。 As the liquid crystal aligning agent, a liquid crystal aligning agent containing an inorganic polymer having a photo-alignable group is preferable. By using a liquid crystal aligning agent containing an inorganic polymer having a photo-alignment group, a liquid crystal alignment film having excellent liquid crystal alignment performance and thermal stability can be formed.
 また、上記光配向性基を有する無機高分子を含有する液晶配向剤の中でも[A]光配向性基を有するポリオルガノシロキサンを含有する液晶配向剤がより好ましい。上記液晶配向剤が[A]光配向性ポリオルガノシロキサンを含有することで、さらに、透明性に優れる液晶配向膜を形成することができ、高感度の光配向性により配向に必要な光照射量を低減することができる。焼成温度を低くすることができるので用いる基板の選択の幅を広げることができ、さらに、放射線照射中及び照射後の加熱工程が不要なため効率よく液晶配向膜を形成することができる。 In addition, among the liquid crystal aligning agents containing the inorganic polymer having the photo-alignable group, the liquid crystal aligning agent containing [A] polyorganosiloxane having a photo-alignable group is more preferable. When the liquid crystal aligning agent contains [A] photo-alignable polyorganosiloxane, it is possible to form a liquid crystal alignment film having excellent transparency, and the light irradiation amount necessary for alignment due to high-sensitivity photo-alignment. Can be reduced. Since the firing temperature can be lowered, the range of selection of the substrate to be used can be widened, and furthermore, since a heating step during and after radiation irradiation is unnecessary, a liquid crystal alignment film can be formed efficiently.
 [A]光配向性ポリオルガノシロキサンを含有する液晶配向剤は、[B]他の重合体、[C]エステル構造含有化合物を含有することが好ましく、さらに本発明の効果を損なわない限り、その他の任意成分を含有してもよい。以下、[A]光配向性ポリオルガノシロキサン、[B]他の重合体、[C]エステル構造含有化合物及び任意成分について詳述する。 [A] The liquid crystal aligning agent containing the photo-alignable polyorganosiloxane preferably contains [B] other polymer and [C] ester structure-containing compound, and the other, as long as the effects of the present invention are not impaired. These optional components may be contained. Hereinafter, [A] photo-alignable polyorganosiloxane, [B] other polymer, [C] ester structure-containing compound, and optional components will be described in detail.
<[A]光配向性ポリオルガノシロキサン>
 [A]光配向性ポリオルガノシロキサンは、主鎖としてのポリオルガノシロキサン、その加水分解物及びその加水分解物の縮合物からなる群より選択される少なくとも1種に由来する部分に、光配向性基が導入されている。光配向性基により、光配向の感度が良好となり、低光照射量を実現でき、また液晶配向膜の液晶配向性に優れる。また、主鎖としてポリオルガノシロキサンを採用しているので、上記液晶配向剤から形成される液晶配向膜は、優れた化学的安定性・熱的安定性を有する。
<[A] Photoalignable polyorganosiloxane>
[A] The photo-alignment polyorganosiloxane has photo-alignment in a portion derived from at least one selected from the group consisting of polyorganosiloxane as a main chain, a hydrolyzate thereof and a condensate of the hydrolyzate. A group has been introduced. By the photo-alignment group, the sensitivity of photo-alignment is improved, a low light irradiation amount can be realized, and the liquid crystal alignment property of the liquid crystal alignment film is excellent. Further, since polyorganosiloxane is employed as the main chain, the liquid crystal alignment film formed from the liquid crystal aligning agent has excellent chemical stability and thermal stability.
 光配向性基としては、光配向性を示す種々の化合物由来の基を採用でき、例えばアゾベンゼン又はその誘導体を基本骨格として含有するアゾベンゼン含有基、桂皮酸又はその誘導体を基本骨格として含有する桂皮酸構造を有する基、カルコン又はその誘導体を基本骨格として含有するカルコン含有基、ベンゾフェノン又はその誘導体を基本骨格として含有するベンゾフェノン含有基、クマリン又はその誘導体を基本骨格として有するクマリン含有基等が挙げられる。これらの光配向性基のうち、高い配向能と導入の容易性を考慮すると、桂皮酸又はその誘導体を基本骨格として含有する桂皮酸構造を有する基が好ましい。 As the photo-alignment group, groups derived from various compounds exhibiting photo-alignment can be adopted. For example, azobenzene-containing group containing azobenzene or a derivative thereof as a basic skeleton, cinnamic acid containing a cinnamic acid or a derivative thereof as a basic skeleton Examples thereof include a group having a structure, a chalcone-containing group containing chalcone or a derivative thereof as a basic skeleton, a benzophenone-containing group containing benzophenone or a derivative thereof as a basic skeleton, and a coumarin-containing group having coumarin or a derivative thereof as a basic skeleton. Of these photo-orientable groups, in view of high orientation ability and ease of introduction, a group having a cinnamic acid structure containing cinnamic acid or a derivative thereof as a basic skeleton is preferable.
 桂皮酸構造を有する基の構造は、桂皮酸又はその誘導体を基本骨格として含有していれば特に限定されないが、上記特定桂皮酸誘導体に由来する基が好ましい。なお、Rは、フェニレン基、ビフェニレン基、ターフェニレン基又はシクロヘキシレン基である。このフェニレン基、ビフェニレン基、ターフェニレン基及びシクロヘキシレン基の水素原子の一部又は全部は、フッ素原子を有していてもよい炭素数1~10のアルキル基若しくは炭素数1~10のアルコキシ基、フッ素原子又はシアノ基で置換されていてもよい。Rは、単結合、炭素数1~3のアルカンジイル基、酸素原子、硫黄原子、-CH=CH-、-NH-、-COO-又は-OCO-である。aは、0~3の整数である。但し、aが2以上の場合、複数のR及びRはそれぞれ同一であっても異なっていてもよい。Rはフッ素原子又はシアノ基である。bは0~4の整数である。 The structure of the group having a cinnamic acid structure is not particularly limited as long as it contains cinnamic acid or a derivative thereof as a basic skeleton, but a group derived from the specific cinnamic acid derivative is preferable. R 1 is a phenylene group, a biphenylene group, a terphenylene group, or a cyclohexylene group. Some or all of the hydrogen atoms of the phenylene group, biphenylene group, terphenylene group, and cyclohexylene group may have a fluorine atom or an alkyl group having 1 to 10 carbon atoms or an alkoxy group having 1 to 10 carbon atoms. , May be substituted with a fluorine atom or a cyano group. R 2 is a single bond, an alkanediyl group having 1 to 3 carbon atoms, an oxygen atom, a sulfur atom, —CH═CH—, —NH—, —COO— or —OCO—. a is an integer of 0 to 3. However, when a is 2 or more, the plurality of R 1 and R 2 may be the same or different. R 3 is a fluorine atom or a cyano group. b is an integer of 0-4.
 上記式(1)で表される化合物としては例えば下記式で表される化合物が挙げられる。 Examples of the compound represented by the above formula (1) include a compound represented by the following formula.
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000003
 これらのうちRとしては、無置換のフェニレン基、又はフッ素原子若しくは炭素数1~3のアルキル基で置換されたフェニレン基が好ましい。Rは単結合、酸素原子又は-CH=CH-が好ましい。bは0~1が好ましい。aが1~3のときはbが0であることが特に好ましい。 Of these, R 1 is preferably an unsubstituted phenylene group or a phenylene group substituted with a fluorine atom or an alkyl group having 1 to 3 carbon atoms. R 2 is preferably a single bond, an oxygen atom or —CH 2 ═CH 2 —. b is preferably 0 to 1. When a is 1 to 3, b is particularly preferably 0.
 上記式(2)中、Rはフェニレン基又はシクロヘキシレン基である。このフェニレン基又はシクロヘキシレン基の水素原子の一部又は全部は、炭素数1~10の鎖状若しくは環状のアルキル基、炭素数1~10の鎖状若しくは環状のアルコキシ基、フッ素原子又はシアノ基で置換されていてもよい。Rは単結合、炭素数1~3のアルカンジイル基、酸素原子、硫黄原子又は-NH-である。cは1~3の整数である。但し、cが2以上の場合、複数のR及びRはそれぞれ同一であっても異なっていてもよい。Rはフッ素原子又はシアノ基である。dは0~4の整数である。Rは酸素原子、-COO-又は-OCO-である。Rは2価の芳香族基、2価の脂環式基、2価の複素環式基又は2価の縮合環式基である。Rは単結合、-OCO-(CH-*又は-O(CH-*である。*は、カルボキシル基との結合部位を示す。f及びgはそれぞれ1~10の整数である。eは0~3の整数である。但し、eが2以上の場合、複数のR及びRはそれぞれ同一であっても異なっていてもよい。 In the formula (2), R 4 is a phenylene group or a cyclohexylene group. Some or all of the hydrogen atoms of the phenylene group or cyclohexylene group may be a linear or cyclic alkyl group having 1 to 10 carbon atoms, a linear or cyclic alkoxy group having 1 to 10 carbon atoms, a fluorine atom, or a cyano group. May be substituted. R 5 is a single bond, an alkanediyl group having 1 to 3 carbon atoms, an oxygen atom, a sulfur atom or —NH—. c is an integer of 1 to 3. However, when c is 2 or more, the plurality of R 4 and R 5 may be the same or different. R 6 is a fluorine atom or a cyano group. d is an integer of 0-4. R 7 is an oxygen atom, —COO— or —OCO—. R 8 is a divalent aromatic group, a divalent alicyclic group, a divalent heterocyclic group, or a divalent condensed cyclic group. R 9 is a single bond, —OCO— (CH 2 ) f — * or —O (CH 2 ) g — *. * Indicates a binding site with a carboxyl group. f and g are each an integer of 1 to 10. e is an integer of 0-3. However, when e is 2 or more, the plurality of R 7 and R 8 may be the same or different.
 上記式(2)で表される化合物としては、例えば下記式(2-1)~(2-2)で表される化合物が挙げられる。 Examples of the compound represented by the above formula (2) include compounds represented by the following formulas (2-1) to (2-2).
Figure JPOXMLDOC01-appb-C000004
(式中、Qは炭素数1~10の鎖状又は環状のアルキル基、炭素数1~10の鎖状又は環状のアルコキシ基、フッ素原子又はシアノ基である。fは、式(2)と同義である。)
Figure JPOXMLDOC01-appb-C000004
(In the formula, Q is a linear or cyclic alkyl group having 1 to 10 carbon atoms, a linear or cyclic alkoxy group having 1 to 10 carbon atoms, a fluorine atom, or a cyano group. Synonymous.)
 特定桂皮酸誘導体の合成手順は特に限定されず、従来公知の方法を組み合わせて行うことができる。代表的な合成手順としては、例えば、(i)塩基性条件下、ハロゲン原子で置換されたベンゼン環骨格を有する化合物と、アクリル酸とを遷移金属触媒存在下で反応させて特定桂皮酸誘導体を得る方法、(ii)塩基性条件下、ベンゼン環の水素原子がハロゲン原子で置換された桂皮酸と、ハロゲン原子で置換されたベンゼン環骨格を有する化合物とを遷移金属触媒存在下で反応させて特定桂皮酸誘導体とする方法等が挙げられる。 The synthesis procedure of the specific cinnamic acid derivative is not particularly limited and can be performed by combining conventionally known methods. As a typical synthesis procedure, for example, (i) a compound having a benzene ring skeleton substituted with a halogen atom under basic conditions is reacted with acrylic acid in the presence of a transition metal catalyst to produce a specific cinnamic acid derivative. And (ii) reacting a cinnamic acid in which a hydrogen atom of a benzene ring is substituted with a halogen atom under a basic condition and a compound having a benzene ring skeleton substituted with a halogen atom in the presence of a transition metal catalyst. The method etc. which make a specific cinnamic acid derivative are mentioned.
 [A]光配向性ポリオルガノシロキサンに主鎖として含まれるポリオルガノシロキサン、その加水分解物及びその加水分解物の縮合物からなる群より選択される少なくとも1種に由来する部分としては、それ自体に上記光配向性基を導入し得る構造に由来した部分を有する限り特に限定されない。[A]光配向性ポリオルガノシロキサンは、このようなポリオルガノシロキサン、その加水分解物、その加水分解物の縮合物からなる群より選択される少なくとも1種に由来する部分と、上記光配向性を示す化合物に由来する基とを有する。 [A] As a part derived from at least one selected from the group consisting of polyorganosiloxane contained in the photoalignable polyorganosiloxane as a main chain, a hydrolyzate thereof and a condensate of the hydrolyzate, As long as it has a portion derived from the structure into which the photo-alignable group can be introduced, it is not particularly limited. [A] The photoalignable polyorganosiloxane is a portion derived from at least one selected from the group consisting of such polyorganosiloxane, a hydrolyzate thereof, and a condensate of the hydrolyzate, and the photoalignment property. And a group derived from a compound exhibiting
 上記光配向性基を導入し得る構造としては、例えば水酸基、エポキシ基、アミノ基、カルボキシル基、メルカプト基、エステル基、アミド基等が挙げられる。この中でも、導入及び調製の容易性を考慮すると、エポキシ基が好ましい。 Examples of the structure into which the photoalignable group can be introduced include a hydroxyl group, an epoxy group, an amino group, a carboxyl group, a mercapto group, an ester group, and an amide group. Among these, an epoxy group is preferable in consideration of ease of introduction and preparation.
 [A]光配向性ポリオルガノシロキサンは、エポキシ基を有するポリオルガノシロキサンと、上記式(1)及び/又は(2)で表される化合物との反応生成物であることが好ましい。上記液晶配向剤において、エポキシ基を有するポリオルガノシロキサンと特定桂皮酸誘導体との間の反応性を利用することにより、主鎖としてのポリオルガノシロキサンに光配向性を有する特定桂皮酸誘導体に由来する基を容易に導入することができる。 [A] The photoalignable polyorganosiloxane is preferably a reaction product of a polyorganosiloxane having an epoxy group and a compound represented by the above formula (1) and / or (2). In the liquid crystal aligning agent, by utilizing the reactivity between the polyorganosiloxane having an epoxy group and the specific cinnamic acid derivative, the polyorganosiloxane as the main chain is derived from the specific cinnamic acid derivative having photo-alignment property. Groups can be easily introduced.
 上記エポキシ基を有するポリオルガノシロキサンは、ポリオルガノシロキサンに側鎖としてエポキシ基が導入されていれば特に限定されない。上記エポキシ基を有するポリオルガノシロキサンは、エポキシ基を有するポリオルガノシロキサンの加水分解物であってもよく、その加水分解物の縮合物であってもよい。上記エポキシ基を有するポリオルガノシロキサンとしては、下記式(3)で表される構造単位を有するポリオルガノシロキサン、その加水分解物及びその加水分解物の縮合物からなる群より選択される少なくとも1種であることが好ましい。 The polyorganosiloxane having an epoxy group is not particularly limited as long as an epoxy group is introduced as a side chain into the polyorganosiloxane. The polyorganosiloxane having an epoxy group may be a hydrolyzate of a polyorganosiloxane having an epoxy group or a condensate of the hydrolyzate. The polyorganosiloxane having an epoxy group is at least one selected from the group consisting of a polyorganosiloxane having a structural unit represented by the following formula (3), a hydrolyzate thereof, and a condensate of the hydrolyzate. It is preferable that
Figure JPOXMLDOC01-appb-C000005
(式(3)中、Xはエポキシ基を有する1価の有機基である。Yは水酸基、炭素数1~10のアルコキシ基、炭素数1~20のアルキル基又は炭素数6~20のアリール基である。)
Figure JPOXMLDOC01-appb-C000005
(In Formula (3), X 1 is a monovalent organic group having an epoxy group. Y 1 is a hydroxyl group, an alkoxy group having 1 to 10 carbon atoms, an alkyl group having 1 to 20 carbon atoms, or 6 to 20 carbon atoms. Of the aryl group.)
 なお、上記式(3)で表される構造単位を有するポリオルガノシロキサンの加水分解縮合物は、そのポリオルガノシロキサン同士の加水分解縮合物だけでなく、上記式(3)で表される構造単位の加水分解縮合によりポリオルガノシロキサンが生成される過程において、主鎖の枝分かれや架橋等が生じて得られるポリオルガノシロキサンが上記式(3)で表される構造単位を有する場合の加水分解縮合物をも含む概念である。 In addition, the hydrolysis condensate of the polyorganosiloxane having the structural unit represented by the above formula (3) is not only the hydrolysis condensate of the polyorganosiloxane but also the structural unit represented by the above formula (3). Hydrolysis condensate in the case where the polyorganosiloxane obtained by the branching or crosslinking of the main chain has the structural unit represented by the above formula (3) in the process of producing the polyorganosiloxane by the hydrolytic condensation of It is a concept that also includes
 上記式(3)におけるXは、エポキシ基を有する1価の有機基であれば特に限定されず、例えばグリシジル基、グリシジルオキシ基、エポキシシクロヘキシル基を含む基等が挙げられる。Xとしては、下記式(X-1)又は(X-2)で表されることが好ましい。 X 1 in the above formula (3) is not particularly limited as long as it is a monovalent organic group having an epoxy group, and examples thereof include a group containing a glycidyl group, a glycidyloxy group, and an epoxycyclohexyl group. X 1 is preferably represented by the following formula (X 1 -1) or (X 1 -2).
Figure JPOXMLDOC01-appb-C000006
(式(X-1)中、Aは酸素原子又は単結合である。hは1~3の整数である。iは0~6の整数である。但し、iが0の場合、Aは単結合である。
 式(X-2)中、jは1~6の整数である。
 式(X-1)及び(X-2)中、*はそれぞれ結合手であることを示す。)
Figure JPOXMLDOC01-appb-C000006
(In the formula (X 1 -1), A is an oxygen atom or a single bond. H is an integer of 1 to 3. i is an integer of 0 to 6. However, when i is 0, A is It is a single bond.
In the formula (X 1 -2), j is an integer of 1 to 6.
In formulas (X 1 -1) and (X 1 -2), * represents a bond. )
 さらに上記式(X-1)又は(X-2)で表されるエポキシ基のうち、下記式(X-1-1)又は(X-2-1)で表される基が好ましい。 Furthermore, among the epoxy groups represented by the above formula (X 1 -1) or (X 1 -2), groups represented by the following formula (X 1 -1-1) or (X 1 -2-1) are: preferable.
Figure JPOXMLDOC01-appb-C000007
(式(X-1-1)又は式(X-2-1)中、*は結合手であることを示す。)
Figure JPOXMLDOC01-appb-C000007
(In formula (X 1 -1-1) or formula (X 1 -2-1), * indicates a bond)
 上記式(3)中のYにおいて、
 炭素数1~10のアルコキシ基としては、例えばメトキシ基、エトキシ基等;
 炭素数1~20のアルキル基として、例えばメチル基、エチル基、n-プロピル基、n-ブチル基、n-ペンチル基、n-ヘキシル基、n-ヘプチル基、n-オクチル基、n-ノニル基、n-デシル基、n-ドデシル基、n-トリデシル基、n-テトラデシル基、n-ペンタデシル基、n-ヘキサデシル基、n-ヘプタデシル基、n-オクタデシル基、n-ノナデシル基、n-エイコシル基等;
 炭素数6~20のアリール基としては、例えばフェニル基等が挙げられる。
In Y 1 in the above formula (3),
Examples of the alkoxy group having 1 to 10 carbon atoms include a methoxy group and an ethoxy group;
Examples of the alkyl group having 1 to 20 carbon atoms include methyl group, ethyl group, n-propyl group, n-butyl group, n-pentyl group, n-hexyl group, n-heptyl group, n-octyl group, and n-nonyl. Group, n-decyl group, n-dodecyl group, n-tridecyl group, n-tetradecyl group, n-pentadecyl group, n-hexadecyl group, n-heptadecyl group, n-octadecyl group, n-nonadecyl group, n-eicosyl Group, etc .;
Examples of the aryl group having 6 to 20 carbon atoms include a phenyl group.
 エポキシ基を有するポリオルガノシロキサンのゲルパーミエーションクロマトグラフィー(GPC)により測定したポリスチレン換算の重量平均分子量(Mw)としては、500~100,000が好ましく、1,000~10,000がより好ましく、1,000~5,000が特に好ましい。
 なお、本明細書におけるMwは、下記仕様のGPCにより測定したポリスチレン換算値である。
  カラム:東ソー製、TSKgelGRCXLII
  溶媒:テトラヒドロフラン
  温度:40℃
  圧力:6.8MPa
The weight average molecular weight (Mw) in terms of polystyrene measured by gel permeation chromatography (GPC) of a polyorganosiloxane having an epoxy group is preferably 500 to 100,000, more preferably 1,000 to 10,000. 1,000 to 5,000 is particularly preferred.
In addition, Mw in this specification is a polystyrene conversion value measured by GPC having the following specifications.
Column: Tosoh, TSKgelGRCXLII
Solvent: Tetrahydrofuran Temperature: 40 ° C
Pressure: 6.8 MPa
 このようなエポキシ基を有するポリオルガノシロキサンは、好ましくはエポキシ基を有するシラン化合物、又はエポキシ基を有するシラン化合物と他のシラン化合物の混合物を、好ましくは適当な有機溶媒、水及び触媒の存在下において加水分解又は加水分解・縮合することにより合成できる。 Such a polyorganosiloxane having an epoxy group is preferably a silane compound having an epoxy group or a mixture of a silane compound having an epoxy group and another silane compound, preferably in the presence of a suitable organic solvent, water and a catalyst. Can be synthesized by hydrolysis or hydrolysis / condensation.
 上記エポキシ基を有するシラン化合物としては、例えば3-グリシジロキシプロピルトリメトキシシラン、3-グリシジロキシプロピルトリエトキシシラン、3-グリシジロキシプロピルメチルジメトキシシラン、3-グリシジロキシプロピルメチルジエトキシシラン、3-グリシジロキシプロピルジメチルメトキシシラン、3-グリシジロキシプロピルジメチルエトキシシラン、2-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン、2-(3,4-エポキシシクロヘキシル)エチルトリエトキシシラン等が挙げられる。 Examples of the silane compound having an epoxy group include 3-glycidyloxypropyltrimethoxysilane, 3-glycidyloxypropyltriethoxysilane, 3-glycidyloxypropylmethyldimethoxysilane, 3-glycidyloxypropylmethyldiethoxy. Silane, 3-glycidyloxypropyldimethylmethoxysilane, 3-glycidyloxypropyldimethylethoxysilane, 2- (3,4-epoxycyclohexyl) ethyltrimethoxysilane, 2- (3,4-epoxycyclohexyl) ethyltriethoxy Silane etc. are mentioned.
 上記他のシラン化合物としては、例えばテトラクロロシラン、テトラメトキシシラン、テトラエトキシシラン、テトラ-n-プロポキシシラン、テトラ-i-プロポキシシラン、テトラ-n-ブトキシラン、テトラ-sec-ブトキシシラン、トリクロロシラン、トリメトキシシラン、トリエトキシシラン、トリ-n-プロポキシシラン、トリ-i-プロポキシシラン、トリ-n-ブトキシシラン、トリ-sec-ブトキシシラン、フルオロトリクロロシラン、フルオロトリメトキシシラン、フルオロトリエトキシシラン、フルオロトリ-n-プロポキシシラン、フルオロトリ-i-プロポキシシラン、フルオロトリ-n-ブトキシシラン、フルオロトリ-sec-ブトキシシラン、メチルトリクロロシラン、メチルトリメトキシシラン、メチルトリエトキシシラン、メチルトリ-n-プロポキシシラン、メチルトリ-i-プロポキシシラン、メチルトリ-n-ブトキシシラン、メチルトリ-sec-ブトキシシラン、2-(トリフルオロメチル)エチルトリクロロシラン、2-(トリフルオロメチル)エチルトリメトキシシラン、2-(トリフルオロメチル)エチルトリエトキシシラン、2-(トリフルオロメチル)エチルトリ-n-プロポキシシラン、2-(トリフルオロメチル)エチルトリ-i-プロポキシシラン、2-(トリフルオロメチル)エチルトリ-n-ブトキシシラン、2-(トリフルオロメチル)エチルトリ-sec-ブトキシシラン、2-(パーフルオロ-n-ヘキシル)エチルトリクロロシラン、2-(パーフルオロ-n-ヘキシル)エチルトリメトキシシラン、2-(パーフルオロ-n-ヘキシル)エチルトリエトキシシラン、2-(パーフルオロ-n-ヘキシル)エチルトリ-n-プロポキシシラン、2-(パーフルオロ-n-ヘキシル)エチルトリ-i-プロポキシシラン、2-(パーフルオロ-n-ヘキシル)エチルトリ-n-ブトキシシラン、2-(パーフルオロ-n-ヘキシル)エチルトリ-sec-ブトキシシラン、2-(パーフルオロ-n-オクチル)エチルトリクロロシラン、2-(パーフルオロ-n-オクチル)エチルトリメトキシシラン、2-(パーフルオロ-n-オクチル)エチルトリエトキシシラン、2-(パーフルオロ-n-オクチル)エチルトリ-n-プロポキシシラン、2-(パーフルオロ-n-オクチル)エチルトリ-i-プロポキシシラン、2-(パーフルオロ-n-オクチル)エチルトリ-n-ブトキシシラン、2-(パーフルオロ-n-オクチル)エチルトリ-sec-ブトキシシラン、ヒドロキシメチルトリクロロシラン、ヒドロキシメチルトリメトキシシラン、ヒドロキシエチルトリメトキシシラン、ヒドロキシメチルトリ-n-プロポキシシラン、ヒドロキシメチルトリ-i-プロポキシシラン、ヒドロキシメチルトリ-n-ブトキシシラン、ヒドロキシメチルトリ-sec-ブトキシシラン、3-(メタ)アクリロキシプロピルトリクロロシラン、3-(メタ)アクリロキシプロピルトリメトキシシラン、3-(メタ)アクリロキシプロピルトリエトキシシラン、3-(メタ)アクリロキシプロピルトリ-n-プロポキシシラン、3-(メタ)アクリロキシプロピルトリ-i-プロポキシシラン、3-(メタ)アクリロキシプロピルトリ-n-ブトキシシラン、3-(メタ)アクリロキシプロピルトリ-sec-ブトキシシラン、3-メルカプトプロピルトリクロロシラン、3-メルカプトプロピルトリメトキシシラン、3-メルカプトプロピルトリエトキシシラン、3-メルカプトプロピルトリ-n-プロポキシシラン、3-メルカプトプロピルトリ-i-プロポキシシラン、3-メルカプトプロピルトリ-n-ブトキシシラン、3-メルカプトプロピルトリ-sec-ブトキシシラン、メルカプトメチルトリメトキシシラン、メルカプトメチルトリエトキシシラン、ビニルトリクロロシラン、ビニルトリメトキシシラン、ビニルトリエトキシシラン、ビニルトリ-n-プロポキシシラン、ビニルトリ-i-プロポキシシラン、ビニルトリ-n-ブトキシシラン、ビニルトリ-sec-ブトキシシラン、アリルトリクロロシラン、アリルトリメトキシシラン、アリルトリエトキシシラン、アリルトリ-n-プロポキシシラン、アリルトリ-i-プロポキシシラン、アリルトリ-n-ブトキシシラン、アリルトリ-sec-ブトキシシラン、フェニルトリクロロシラン、フェニルトリメトキシシラン、フェニルトリエトキシシラン、フェニルトリ-n-プロポキシシラン、フェニルトリ-i-プロポキシシラン、フェニルトリ-n-ブトキシシラン、フェニルトリ-sec-ブトキシシラン、メチルジクロロシラン、メチルジメトキシシラン、メチルジエトキシシラン、メチルジ-n-プロポキシシラン、メチルジ-i-プロポキシシラン、メチルジ-n-ブトキシシラン、メチルジ-sec-ブトキシシラン、ジメチルジクロロシラン、ジメチルジメトキシシラン、ジメチルジエトキシシラン、ジメチルジ-n-プロポキシシラン、ジメチルジ-i-プロポキシシラン、ジメチルジ-n-ブトキシシラン、ジメチルジ-sec-ブトキシシラン、(メチル)〔2-(パーフルオロ-n-オクチル)エチル〕ジクロロシラン、(メチル)〔2-(パーフルオロ-n-オクチル)エチル〕ジメトキシシラン、(メチル)〔2-(パーフルオロ-n-オクチル)エチル〕ジエメトキシシラン、(メチル)〔2-(パーフルオロ-n-オクチル)エチル〕ジ-n-プロポキシシラン、(メチル)〔2-(パーフルオロ-n-オクチル)エチル〕ジ-i-プロポキシシラン、(メチル)〔2-(パーフルオロ-n-オクチル)エチル〕ジ-n-ブトキシシラン、(メチル)〔2-(パーフルオロ-n-オクチル)エチル〕ジ-sec-ブトキシシラン、(メチル)(3-メルカプトプロピル)ジクロロシラン、(メチル)(3-メルカプトプロピル)ジメトキシシラン、(メチル)(3-メルカプトプロピル)ジエトキシシラン、(メチル)(3-メルカプトプロピル)ジ-n-プロポキシシラン、(メチル)(3-メルカプトプロピル)ジ-i-プロポキシシラン、(メチル)(3-メルカプトプロピル)ジ-n-ブトキシシラン、(メチル)(3-メルカプトプロピル)ジ-sec-ブトキシシラン、(メチル)(ビニル)ジクロロシラン、(メチル)(ビニル)ジメトキシシラン、(メチル)(ビニル)ジエトキシシラン、(メチル)(ビニル)ジ-n-プロポキシシラン、(メチル)(ビニル)ジ-i-プロポキシシラン、(メチル)(ビニル)ジ-n-ブトキシシラン、(メチル)(ビニル)ジ-sec-ブトキシシラン、ジビニルジクロロシラン、ジビニルジメトキシシラン、ジビニルジエトキシシラン、ジビニルジ-n-プロポキシシラン、ジビニルジ-i-プロポキシシラン、ジビニルジ-n-ブトキシシラン、ジビニルジ-sec-ブトキシシラン、ジフェニルジクロロシラン、ジフェニルジメトキシシラン、ジフェニルジエトキシシラン、ジフェニルジ-n-プロポキシシラン、ジフェニルジ-i-プロポキシシラン、ジフェニルジ-n-ブトキシシラン、ジフェニルジ-sec-ブトキシシラン、クロロジメチルシラン、メトキシジメチルシラン、エトキシジメチルシラン、クロロトリメチルシラン、ブロモトリメチルシラン、ヨードトリメチルシラン、メトキシトリメチルシラン、エトキシトリメチルシラン、n-プロポキシトリメチルシラン、i-プロポキシトリメチルシラン、n-ブトキシトリメチルシラン、sec-ブトキシトリメチルシラン、t-ブトキシトリメチルシラン、(クロロ)(ビニル)ジメチルシラン、(メトキシ)(ビニル)ジメチルシラン、(エトキシ)(ビニル)ジメチルシラン、(クロロ)(メチル)ジフェニルシラン、(メトキシ)(メチル)ジフェニルシラン、(エトキシ)(メチル)ジフェニルシラン等のケイ素原子を1個有するシラン化合物等が挙げられる。 Examples of the other silane compounds include tetrachlorosilane, tetramethoxysilane, tetraethoxysilane, tetra-n-propoxysilane, tetra-i-propoxysilane, tetra-n-butoxysilane, tetra-sec-butoxysilane, trichlorosilane, Trimethoxysilane, triethoxysilane, tri-n-propoxysilane, tri-i-propoxysilane, tri-n-butoxysilane, tri-sec-butoxysilane, fluorotrichlorosilane, fluorotrimethoxysilane, fluorotriethoxysilane, Fluorotri-n-propoxysilane, fluorotri-i-propoxysilane, fluorotri-n-butoxysilane, fluorotri-sec-butoxysilane, methyltrichlorosilane, methyltrimethoxysilane, Titritriethoxysilane, methyltri-n-propoxysilane, methyltri-i-propoxysilane, methyltri-n-butoxysilane, methyltri-sec-butoxysilane, 2- (trifluoromethyl) ethyltrichlorosilane, 2- (trifluoromethyl ) Ethyltrimethoxysilane, 2- (trifluoromethyl) ethyltriethoxysilane, 2- (trifluoromethyl) ethyltri-n-propoxysilane, 2- (trifluoromethyl) ethyltri-i-propoxysilane, 2- (tri Fluoromethyl) ethyltri-n-butoxysilane, 2- (trifluoromethyl) ethyltri-sec-butoxysilane, 2- (perfluoro-n-hexyl) ethyltrichlorosilane, 2- (perfluoro-n-hexyl) ethyltri Methoxy Lan, 2- (perfluoro-n-hexyl) ethyltriethoxysilane, 2- (perfluoro-n-hexyl) ethyltri-n-propoxysilane, 2- (perfluoro-n-hexyl) ethyltri-i-propoxysilane 2- (perfluoro-n-hexyl) ethyltri-n-butoxysilane, 2- (perfluoro-n-hexyl) ethyltri-sec-butoxysilane, 2- (perfluoro-n-octyl) ethyltrichlorosilane, 2 -(Perfluoro-n-octyl) ethyltrimethoxysilane, 2- (perfluoro-n-octyl) ethyltriethoxysilane, 2- (perfluoro-n-octyl) ethyltri-n-propoxysilane, 2- (perfluorosilane Fluoro-n-octyl) ethyltri-i-propoxysilane, 2- (Perful Oro-n-octyl) ethyltri-n-butoxysilane, 2- (perfluoro-n-octyl) ethyltri-sec-butoxysilane, hydroxymethyltrichlorosilane, hydroxymethyltrimethoxysilane, hydroxyethyltrimethoxysilane, hydroxymethyltri -N-propoxysilane, hydroxymethyltri-i-propoxysilane, hydroxymethyltri-n-butoxysilane, hydroxymethyltri-sec-butoxysilane, 3- (meth) acryloxypropyltrichlorosilane, 3- (meth) acryl Roxypropyltrimethoxysilane, 3- (meth) acryloxypropyltriethoxysilane, 3- (meth) acryloxypropyltri-n-propoxysilane, 3- (meth) acryloxypropyltri-i-propo Sisilane, 3- (meth) acryloxypropyltri-n-butoxysilane, 3- (meth) acryloxypropyltri-sec-butoxysilane, 3-mercaptopropyltrichlorosilane, 3-mercaptopropyltrimethoxysilane, 3-mercapto Propyltriethoxysilane, 3-mercaptopropyltri-n-propoxysilane, 3-mercaptopropyltri-i-propoxysilane, 3-mercaptopropyltri-n-butoxysilane, 3-mercaptopropyltri-sec-butoxysilane, mercapto Methyltrimethoxysilane, mercaptomethyltriethoxysilane, vinyltrichlorosilane, vinyltrimethoxysilane, vinyltriethoxysilane, vinyltri-n-propoxysilane, vinyltri-i-propoxy Vinyltri-n-butoxysilane, vinyltri-sec-butoxysilane, allyltrichlorosilane, allyltrimethoxysilane, allyltriethoxysilane, allyltri-n-propoxysilane, allyltri-i-propoxysilane, allyltri-n-butoxysilane Allyltri-sec-butoxysilane, phenyltrichlorosilane, phenyltrimethoxysilane, phenyltriethoxysilane, phenyltri-n-propoxysilane, phenyltri-i-propoxysilane, phenyltri-n-butoxysilane, phenyltri-sec -Butoxysilane, methyldichlorosilane, methyldimethoxysilane, methyldiethoxysilane, methyldi-n-propoxysilane, methyldi-i-propoxysilane, methyldi-n-butoxy Silane, methyldi-sec-butoxysilane, dimethyldichlorosilane, dimethyldimethoxysilane, dimethyldiethoxysilane, dimethyldi-n-propoxysilane, dimethyldi-i-propoxysilane, dimethyldi-n-butoxysilane, dimethyldi-sec-butoxysilane, (Methyl) [2- (perfluoro-n-octyl) ethyl] dichlorosilane, (methyl) [2- (perfluoro-n-octyl) ethyl] dimethoxysilane, (methyl) [2- (perfluoro-n- Octyl) ethyl] dimethoxysilane, (methyl) [2- (perfluoro-n-octyl) ethyl] di-n-propoxysilane, (methyl) [2- (perfluoro-n-octyl) ethyl] di-i -Propoxysilane, (methyl) [2- (perfluoro-n- (Cutyl) ethyl] di-n-butoxysilane, (methyl) [2- (perfluoro-n-octyl) ethyl] di-sec-butoxysilane, (methyl) (3-mercaptopropyl) dichlorosilane, (methyl) ( 3-mercaptopropyl) dimethoxysilane, (methyl) (3-mercaptopropyl) diethoxysilane, (methyl) (3-mercaptopropyl) di-n-propoxysilane, (methyl) (3-mercaptopropyl) di-i- Propoxysilane, (methyl) (3-mercaptopropyl) di-n-butoxysilane, (methyl) (3-mercaptopropyl) di-sec-butoxysilane, (methyl) (vinyl) dichlorosilane, (methyl) (vinyl) Dimethoxysilane, (methyl) (vinyl) diethoxysilane, (methyl) (vinyl) di n-propoxysilane, (methyl) (vinyl) di-i-propoxysilane, (methyl) (vinyl) di-n-butoxysilane, (methyl) (vinyl) di-sec-butoxysilane, divinyldichlorosilane, divinyldimethoxy Silane, divinyldiethoxysilane, divinyldi-n-propoxysilane, divinyldi-i-propoxysilane, divinyldi-n-butoxysilane, divinyldi-sec-butoxysilane, diphenyldichlorosilane, diphenyldimethoxysilane, diphenyldiethoxysilane, diphenyldi -N-propoxysilane, diphenyldi-i-propoxysilane, diphenyldi-n-butoxysilane, diphenyldi-sec-butoxysilane, chlorodimethylsilane, methoxydimethylsilane, ethoxydimethylsilane Chlorotrimethylsilane, bromotrimethylsilane, iodotrimethylsilane, methoxytrimethylsilane, ethoxytrimethylsilane, n-propoxytrimethylsilane, i-propoxytrimethylsilane, n-butoxytrimethylsilane, sec-butoxytrimethylsilane, t-butoxytrimethylsilane , (Chloro) (vinyl) dimethylsilane, (methoxy) (vinyl) dimethylsilane, (ethoxy) (vinyl) dimethylsilane, (chloro) (methyl) diphenylsilane, (methoxy) (methyl) diphenylsilane, (ethoxy) ( And silane compounds having one silicon atom such as methyl) diphenylsilane.
 市販品としては、例えば
 KC-89、KC-89S、X-21-3153、X-21-5841、X-21-5842、X-21-5843、X-21-5844、X-21-5845、X-21-5846、X-21-5847、X-21-5848、X-22-160AS、X-22-170B、X-22-170BX、X-22-170D、X-22-170DX、X-22-176B、X-22-176D、X-22-176DX、X-22-176F、X-40-2308、X-40-2651、X-40-2655A、X-40-2671、X-40-2672、X-40-9220、X-40-9225、X-40-9227、X-40-9246、X-40-9247、X-40-9250、X-40-9323、X-41-1053、X-41-1056、X-41-1805、X-41-1810、KF6001、KF6002、KF6003、KR212、KR-213、KR-217、KR220L、KR242A、KR271、KR282、KR300、KR311、KR401N、KR500、KR510、KR5206、KR5230、KR5235、KR9218、KR9706(以上、信越化学工業製);
 グラスレジン(昭和電工製);
 SH804、SH805、SH806A、SH840、SR2400、SR2402、SR2405、SR2406、SR2410、SR2411、SR2416、SR2420(以上、東レ・ダウコーニング製);
 FZ3711、FZ3722(以上、日本ユニカー製);
 DMS-S12、DMS-S15、DMS-S21、DMS-S27、DMS-S31、DMS-S32、DMS-S33、DMS-S35、DMS-S38、DMS-S42、DMS-S45、DMS-S51、DMS-227、PSD-0332、PDS-1615、PDS-9931、XMS-5025(以上、チッソ製);
 メチルシリケートMS51、メチルシリケートMS56(以上、三菱化学製);
 エチルシリケート28、エチルシリケート40、エチルシリケート48(以上、コルコート製);
 GR100、GR650、GR908、GR950(以上、昭和電工製)等の部分縮合物が挙げられる。
Examples of commercially available products include KC-89, KC-89S, X-21-3153, X-21-5841, X-21-5842, X-21-5843, X-21-5844, X-21-5845, X-21-5546, X-21-5847, X-21-5848, X-22-160AS, X-22-170B, X-22-170BX, X-22-170D, X-22-170DX, X- 22-176B, X-22-176D, X-22-176DX, X-22-176F, X-40-2308, X-40-2651, X-40-2655A, X-40-2671, X-40- 2672, X-40-9220, X-40-9225, X-40-9227, X-40-9246, X-40-9247, X-40-9250, X-40-9323, X-41 -1053, X-41-1056, X-41-1805, X-41-1810, KF6001, KF6002, KF6003, KR212, KR-213, KR-217, KR220L, KR242A, KR271, KR282, KR300, KR311, KR401N , KR500, KR510, KR5206, KR5230, KR5235, KR9218, KR9706 (above, manufactured by Shin-Etsu Chemical Co., Ltd.);
Glass resin (made by Showa Denko);
SH804, SH805, SH806A, SH840, SR2400, SR2402, SR2405, SR2406, SR2410, SR2411, SR2416, SR2420 (above, manufactured by Toray Dow Corning);
FZ3711, FZ3722 (above, made by Nihon Unicar);
DMS-S12, DMS-S15, DMS-S21, DMS-S27, DMS-S31, DMS-S32, DMS-S33, DMS-S35, DMS-S38, DMS-S42, DMS-S45, DMS-S51, DMS- 227, PSD-0332, PDS-1615, PDS-9931, XMS-5025 (above, manufactured by Chisso);
Methyl silicate MS51, methyl silicate MS56 (above, manufactured by Mitsubishi Chemical);
Ethyl silicate 28, ethyl silicate 40, ethyl silicate 48 (above, manufactured by Colcoat);
Examples include partial condensates such as GR100, GR650, GR908, GR950 (manufactured by Showa Denko).
 これらの他のシラン化合物のうち、得られる液晶配向膜の配向性及び化学的安定性の観点から、テトラメトキシシラン、テトラエトキシシラン、メチルトリメトキシシラン、メチルトリエトキシシラン、3-(メタ)アクリロキシプロピルトリメトキシシラン、3-(メタ)アクリロキシプロピルトリエトキシシラン、ビニルトリメトキシシラン、ビニルトリエトキシシラン、アリルトリメトキシシラン、アリルトリエトキシシラン、フェニルトリメトキシシラン、フェニルトリエトキシシラン、3-メルカプトプロピルトリメトキシシラン、3-メルカプトプロピルトリエトキシシラン、メルカプトメチルトリメトキシシラン、メルカプトメチルトリエトキシシラン、ジメチルジメトキシシラン又はジメチルジエトキシシランが好ましい。 Among these other silane compounds, tetramethoxysilane, tetraethoxysilane, methyltrimethoxysilane, methyltriethoxysilane, 3- (meth) acrylic acid are used from the viewpoint of the orientation and chemical stability of the obtained liquid crystal alignment film. Roxypropyltrimethoxysilane, 3- (meth) acryloxypropyltriethoxysilane, vinyltrimethoxysilane, vinyltriethoxysilane, allyltrimethoxysilane, allyltriethoxysilane, phenyltrimethoxysilane, phenyltriethoxysilane, 3- Mercaptopropyltrimethoxysilane, 3-mercaptopropyltriethoxysilane, mercaptomethyltrimethoxysilane, mercaptomethyltriethoxysilane, dimethyldimethoxysilane or dimethyldiethoxysilane are preferred.
 本発明に用いられるエポキシ基を有するポリオルガノシロキサンは、光配向性を有する側鎖を充分な量で導入しつつ、エポキシ基の導入量が過剰となることによる意図しない副反応等を抑制するために、そのエポキシ当量としては100g/モル~10,000g/モルが好ましく、150g/モル~1,000g/モルがより好ましい。従って、エポキシ基を有するポリオルガノシロキサンを合成するにあたっては、エポキシ基を有するシラン化合物と他のシラン化合物との使用割合を、得られるポリオルガノシロキサンのエポキシ当量が上記の範囲となるように調製することが好ましい。 The polyorganosiloxane having an epoxy group used in the present invention suppresses unintended side reactions caused by excessive introduction of epoxy groups while introducing a sufficient amount of side chains having photo-alignment properties. Further, the epoxy equivalent is preferably 100 g / mol to 10,000 g / mol, and more preferably 150 g / mol to 1,000 g / mol. Therefore, when synthesizing a polyorganosiloxane having an epoxy group, the use ratio of the silane compound having an epoxy group and another silane compound is prepared so that the epoxy equivalent of the obtained polyorganosiloxane is in the above range. It is preferable.
 具体的には、このような他のシラン化合物は、エポキシ基を有するポリオルガノシロキサンと他のシラン化合物との合計に対して0質量%~50質量%用いることが好ましく、5質量%~30質量%用いることがより好ましい。 Specifically, such other silane compound is preferably used in an amount of 0% by mass to 50% by mass with respect to the total of the polyorganosiloxane having an epoxy group and the other silane compound, and 5% by mass to 30% by mass. % Is more preferable.
 エポキシ基を有するポリオルガノシロキサンを合成するにあたって使用することのできる有機溶媒としては、例えば炭化水素化合物、ケトン化合物、エステル化合物、エーテル化合物、アルコール化合物等が挙げられる。 Examples of the organic solvent that can be used for synthesizing the polyorganosiloxane having an epoxy group include hydrocarbon compounds, ketone compounds, ester compounds, ether compounds, alcohol compounds, and the like.
 上記炭化水素化合物としては、例えばトルエン、キシレン等;上記ケトンとしては、例えばメチルエチルケトン、メチルイソブチルケトン、メチルn-アミルケトン、ジエチルケトン、シクロヘキサノン等;上記エステルとしては、例えば酢酸エチル、酢酸n-ブチル、酢酸i-アミル、プロピレングリコールモノメチルエーテルアセテート、3-メトキシブチルアセテート、乳酸エチル等;上記エーテルとしては、例えばエチレングリコールジメチルエーテル、エチレングリコールジエチルエーテル、テトラヒドロフラン、ジオキサン等;上記アルコールとしては、例えば1-ヘキサノール、4-メチル-2-ペンタノール、エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、エチレングリコールモノ-n-プロピルエーテル、エチレングリコールモノ-n-ブチルエーテル、プロピレングリコールモノメチルエーテル、プロピレングリコールモノエチルエーテル、プロピレングリコールモノ-n-プロピルエーテル等が挙げられる。これらのうち非水溶性のものが好ましい。これらの有機溶媒は、単独で又は2種以上を混合して使用できる。 Examples of the hydrocarbon compound include toluene and xylene; examples of the ketone include methyl ethyl ketone, methyl isobutyl ketone, methyl n-amyl ketone, diethyl ketone, and cyclohexanone; examples of the ester include ethyl acetate, n-butyl acetate, I-amyl acetate, propylene glycol monomethyl ether acetate, 3-methoxybutyl acetate, ethyl lactate and the like; as the ether, for example, ethylene glycol dimethyl ether, ethylene glycol diethyl ether, tetrahydrofuran, dioxane and the like; as the alcohol, for example, 1-hexanol 4-methyl-2-pentanol, ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, ethylene glycol mono- - propyl ether, ethylene glycol monobutyl -n- butyl ether, propylene glycol monomethyl ether, propylene glycol monoethyl ether, propylene glycol mono -n- propyl ether. Of these, water-insoluble ones are preferred. These organic solvents can be used alone or in admixture of two or more.
 有機溶媒の使用量としては、全シラン化合物100質量部に対して、10質量部~10,000質量部が好ましく、50質量部~1,000質量部がより好ましい。また、エポキシ基を有するポリオルガノシロキサンを製造する際の水の使用量としては、全シラン化合物に対して、0.5倍モル~100倍モルが好ましく、1倍モル~30倍モルがより好ましい。 The amount of the organic solvent used is preferably 10 parts by mass to 10,000 parts by mass, more preferably 50 parts by mass to 1,000 parts by mass with respect to 100 parts by mass of the total silane compounds. The amount of water used in producing the polyorganosiloxane having an epoxy group is preferably 0.5 to 100 times mol, more preferably 1 to 30 times mol based on the total silane compounds. .
 上記触媒としては例えば酸、アルカリ金属化合物、有機塩基、チタン化合物、ジルコニウム化合物等を用いることができる。 As the catalyst, for example, an acid, an alkali metal compound, an organic base, a titanium compound, a zirconium compound, or the like can be used.
 上記アルカリ金属化合物としては、例えば水酸化ナトリウム、水酸化カリウム、ナトリウムメトキシド、カリウムメトキシド、ナトリウムエトキシド、カリウムエトキシド等が挙げられる。 Examples of the alkali metal compound include sodium hydroxide, potassium hydroxide, sodium methoxide, potassium methoxide, sodium ethoxide, potassium ethoxide and the like.
 上記有機塩基としては、例えば
 エチルアミン、ジエチルアミン、ピペラジン、ピペリジン、ピロリジン、ピロール等の1~2級有機アミン;
 トリエチルアミン、トリ-n-プロピルアミン、トリ-n-ブチルアミン、ピリジン、4-ジメチルアミノピリジン、ジアザビシクロウンデセン等の3級の有機アミン;
 テトラメチルアンモニウムヒドロキシド等の4級の有機アンモニウム塩等が挙げられる。これらの有機塩基のうち、反応が穏やかに進行する点を考慮して、トリエチルアミン、トリ-n-プロピルアミン、トリ-n-ブチルアミン、ピリジン、4-ジメチルアミノピリジン等の3級の有機アミン;テトラメチルアンモニウムヒドロキシド等の4級の有機アンモニウム塩が好ましい。
Examples of the organic base include primary and secondary organic amines such as ethylamine, diethylamine, piperazine, piperidine, pyrrolidine, and pyrrole;
Tertiary organic amines such as triethylamine, tri-n-propylamine, tri-n-butylamine, pyridine, 4-dimethylaminopyridine, diazabicycloundecene;
Examples include quaternary organic ammonium salts such as tetramethylammonium hydroxide. Of these organic bases, tertiary organic amines such as triethylamine, tri-n-propylamine, tri-n-butylamine, pyridine, 4-dimethylaminopyridine, etc. Quaternary organic ammonium salts such as methylammonium hydroxide are preferred.
 エポキシ基を有するポリオルガノシロキサンを製造する際の触媒としては、アルカリ金属化合物又は有機塩基が好ましい。アルカリ金属化合物又は有機塩基を触媒として用いることにより、エポキシ基の開環等の副反応を生じることなく、高い加水分解・縮合速度で目的とするポリオルガノシロキサンを得ることができることになり、生産安定性に優れることとなって好ましい。また、触媒としてアルカリ金属化合物又は有機塩基を用いて合成されたエポキシ基を有するポリオルガノシロキサンと特定桂皮酸誘導体との反応生成物を含有する上記感放射線性液晶配向剤は、保存安定性が極めて優れるため好都合である。 As a catalyst for producing a polyorganosiloxane having an epoxy group, an alkali metal compound or an organic base is preferable. By using an alkali metal compound or an organic base as a catalyst, the desired polyorganosiloxane can be obtained at a high hydrolysis / condensation rate without causing side reactions such as ring opening of the epoxy group, resulting in stable production. It is preferable because of its excellent properties. Further, the radiation-sensitive liquid crystal aligning agent containing a reaction product of a polyorganosiloxane having an epoxy group synthesized using an alkali metal compound or an organic base as a catalyst and a specific cinnamic acid derivative has extremely high storage stability. It is convenient because it is excellent.
 その理由は、Chemical Reviews、95巻、p1409(1995年)に指摘されているように、加水分解、縮合反応において触媒としてアルカリ金属化合物又は有機塩基を用いると、ランダム構造、はしご型構造又はかご型構造が形成され、シラノール基の含有割合が少ないポリオルガノシロキサンが得られるためではないかと推察される。シラノール基の含有割合が少ないため、シラノール基同士の縮合反応が抑えられ、さらに、本発明の有機半導体配向用組成物が後述の他の重合体を含有するものである場合には、シラノール基と他の重合体との縮合反応が抑えられるため、保存安定性に優れる結果になるものと推察される。 The reason is that, as pointed out in Chemical Reviews, Vol. 95, p1409 (1995), when an alkali metal compound or an organic base is used as a catalyst in a hydrolysis or condensation reaction, a random structure, a ladder structure or a cage structure is used. It is presumed that a structure is formed and a polyorganosiloxane having a low content of silanol groups is obtained. Since the content ratio of silanol groups is small, the condensation reaction between silanol groups is suppressed, and when the composition for aligning organic semiconductors of the present invention contains other polymers described later, silanol groups and Since the condensation reaction with other polymers is suppressed, it is presumed that the storage stability is excellent.
 触媒としては、特に有機塩基が好ましい。有機塩基の使用量は、有機塩基の種類、温度等の反応条件等により異なり、適宜に設定することができる。有機塩基の具体的な使用量としては、例えば全シラン化合物に対して、好ましくは0.01倍モル~3倍モルであり、より好ましくは0.05倍モル~1倍モルである。 As the catalyst, an organic base is particularly preferable. The amount of organic base used varies depending on the reaction conditions such as the type of organic base and temperature, and can be set appropriately. The specific use amount of the organic base is, for example, preferably 0.01 to 3 times mol, more preferably 0.05 to 1 time mol, with respect to all silane compounds.
 エポキシ基を有するポリオルガノシロキサンを製造する際の加水分解又は加水分解・縮合反応は、エポキシ基を有するシラン化合物と必要に応じて他のシラン化合物とを有機溶媒に溶解し、この溶液を有機塩基及び水と混合して、例えば油浴等により加熱することにより実施することが好ましい。 Hydrolysis or hydrolysis / condensation reaction when producing polyorganosiloxane having an epoxy group is carried out by dissolving an epoxy group-containing silane compound and, if necessary, another silane compound in an organic solvent, and dissolving the solution in an organic base. And it is preferable to carry out by mixing with water and heating with, for example, an oil bath.
 加水分解・縮合反応時には、油浴の加熱温度を好ましくは130℃以下、より好ましくは40℃~100℃として、好ましくは0.5時間~12時間、より好ましくは1時間~8時間加熱するのが望ましい。加熱中は、混合液を撹拌してもよいし、還流下に置いてもよい。 During the hydrolysis / condensation reaction, the heating temperature of the oil bath is preferably 130 ° C. or lower, more preferably 40 ° C. to 100 ° C., preferably 0.5 hours to 12 hours, more preferably 1 hour to 8 hours. Is desirable. During heating, the mixture may be stirred or placed under reflux.
 反応終了後、反応液から分取した有機溶媒層を水で洗浄することが好ましい。この洗浄に際しては、洗浄操作が容易になる点で、少量の塩を含む水、例えば0.2質量%程度の硝酸アンモニウム水溶液等で洗浄することが好ましい。洗浄は洗浄後の水層が中性になるまで行い、その後有機溶媒層を、必要に応じて無水硫酸カルシウム、モレキュラーシーブス等の乾燥剤で乾燥した後、溶媒を除去することにより、目的とするエポキシ基を有するポリオルガノシロキサンを得ることができる。 After completion of the reaction, the organic solvent layer separated from the reaction solution is preferably washed with water. In this cleaning, it is preferable to perform cleaning with water containing a small amount of salt, for example, an aqueous ammonium nitrate solution of about 0.2% by mass in view of facilitating the cleaning operation. Washing is performed until the aqueous layer after washing becomes neutral, and then the organic solvent layer is dried with a desiccant such as anhydrous calcium sulfate or molecular sieves as necessary, and then the target is removed by removing the solvent. A polyorganosiloxane having an epoxy group can be obtained.
 本発明においては、エポキシ基を有するポリオルガノシロキサンとして市販されているものを用いてもよい。このような市販品としては、例えばDMS-E01、DMS-E12、DMS-E21、EMS-32(以上、チッソ製)等が挙げられる。 In the present invention, commercially available polyorganosiloxane having an epoxy group may be used. Examples of such commercially available products include DMS-E01, DMS-E12, DMS-E21, EMS-32 (manufactured by Chisso).
 [A]光配向性ポリオルガノシロキサン化合物は、エポキシ基を有するポリオルガノシロキサン自体が加水分解されて生じる加水分解物に由来する部分や、エポキシ基を有するポリオルガノシロキサン同士が加水分解縮合した加水分解縮合物に由来する部分を含んでいてもよい。上記部分の構成材料であるこれらの加水分解物や加水分解縮合物もエポキシ基を有するポリオルガノシロキサンの加水分解ないし縮合条件と同様に調製することができる。 [A] The photo-alignable polyorganosiloxane compound is a hydrolysis product obtained by hydrolyzing and condensing a portion derived from a hydrolyzate produced by hydrolysis of an epoxy group-containing polyorganosiloxane itself or an epoxy group-containing polyorganosiloxane. A portion derived from the condensate may be included. These hydrolysates and hydrolysis condensates which are constituent materials of the above-mentioned parts can also be prepared in the same manner as the hydrolysis or condensation conditions of polyorganosiloxane having an epoxy group.
<[A]光配向性ポリオルガノシロキサンの合成方法>
 本発明で使用される[A]光配向性ポリオルガノシロキサンは、例えば上記のエポキシ基を有するポリオルガノシロキサンと特定桂皮酸誘導体とを、好ましくは触媒の存在下に反応させることにより合成できる。
<[A] Method for Synthesizing Photo-Orienting Polyorganosiloxane>
The [A] photoalignable polyorganosiloxane used in the present invention can be synthesized, for example, by reacting the above-mentioned polyorganosiloxane having an epoxy group with a specific cinnamic acid derivative, preferably in the presence of a catalyst.
 ここで特定桂皮酸誘導体の使用量としては、ポリオルガノシロキサンの有するエポキシ基1モルに対して0.001モル~10モルが好ましく、0.01モル~5モルがより好ましく、0.05モル~2モルが特に好ましい。 Here, the amount of the specific cinnamic acid derivative used is preferably 0.001 mol to 10 mol, more preferably 0.01 mol to 5 mol, more preferably 0.05 mol to 1 mol with respect to 1 mol of the epoxy group of the polyorganosiloxane. Two moles are particularly preferred.
 上記触媒としては、有機塩基、又はエポキシ化合物と酸無水物との反応を促進するいわゆる硬化促進剤として公知の化合物を用いることができる。上記有機塩基としては、例えば上述したものと同様のものが挙げられる。 As the catalyst, an organic base or a compound known as a so-called curing accelerator that accelerates the reaction between an epoxy compound and an acid anhydride can be used. As said organic base, the thing similar to what was mentioned above is mentioned, for example.
 上記硬化促進剤としては、例えば
 ベンジルジメチルアミン、2,4,6-トリス(ジメチルアミノメチル)フェノール、シクロヘキシルジメチルアミン、トリエタノールアミン等の3級アミン;
 2-メチルイミダゾール、2-n-ヘプチルイミダゾール、2-n-ウンデシルイミダゾール、2-フェニルイミダゾール、2-フェニル-4-メチルイミダゾール、1-ベンジル-2-メチルイミダゾール、1-ベンジル-2-フェニルイミダゾール、1,2-ジメチルイミダゾール、2-エチル-4-メチルイミダゾール、1-(2-シアノエチル)-2-メチルイミダゾール、1-(2-シアノエチル)-2-n-ウンデシルイミダゾール、1-(2-シアノエチル)-2-フェニルイミダゾール、1-(2-シアノエチル)-2-エチル-4-メチルイミダゾール、2-フェニル-4-メチル-5-ヒドロキシメチルイミダゾール、2-フェニル-4,5-ジ(ヒドロキシメチル)イミダゾール、1-(2-シアノエチル)-2-フェニル-4,5-ジ〔(2’-シアノエトキシ)メチル〕イミダゾール、1-(2-シアノエチル)-2-n-ウンデシルイミダゾリウムトリメリテート、1-(2-シアノエチル)-2-フェニルイミダゾリウムトリメリテート、1-(2-シアノエチル)-2-エチル-4-メチルイミダゾリウムトリメリテート、2,4-ジアミノ-6-〔2’-メチルイミダゾリル-(1’)〕エチル-s-トリアジン、2,4-ジアミノ-6-(2’-n-ウンデシルイミダゾリル)エチル-s-トリアジン、2,4-ジアミノ-6-〔2’-エチル-4’-メチルイミダゾリル-(1’)〕エチル-s-トリアジン、2-メチルイミダゾールのイソシアヌル酸付加物、2-フェニルイミダゾールのイソシアヌル酸付加物、及び2,4-ジアミノ-6-〔2’-メチルイミダゾリル-(1’)〕エチル-s-トリアジンのイソシアヌル酸付加物等のイミダゾール化合物;
 ジフェニルフォスフィン、トリフェニルフォスフィン、亜リン酸トリフェニル等の有機リン化合物;
 ベンジルトリフェニルフォスフォニウムクロライド、テトラ-n-ブチルフォスフォニウムブロマイド、メチルトリフェニルフォスフォニウムブロマイド、エチルトリフェニルフォスフォニウムブロマイド、n-ブチルトリフェニルフォスフォニウムブロマイド、テトラフェニルフォスフォニウムブロマイド、エチルトリフェニルフォスフォニウムヨーダイド、エチルトリフェニルフォスフォニウムアセテート、テトラ-n-ブチルフォスフォニウムo,o-ジエチルフォスフォロジチオネート、テトラ-n-ブチルフォスフォニウムベンゾトリアゾレート、テトラフェニルフォスフォニウムテトラフェニルボレート、テトラ-n-ブチルフォスフォニウムテトラフルオロボレート、テトラ-n-ブチルフォスフォニウムテトラフェニルボレート等の4級フォスフォニウム塩;
 1,8-ジアザビシクロ[5.4.0]ウンデセン-7やその有機酸塩等のジアザビシクロアルケン;
 オクチル酸亜鉛、オクチル酸錫、アルミニウムアセチルアセトン錯体等の有機金属化合物;
 テトラエチルアンモニウムブロマイド、テトラ-n-ブチルアンモニウムブロマイド、テトラエチルアンモニウムクロライド、テトラ-n-ブチルアンモニウムクロライド等の4級アンモニウム塩;
 三フッ化ホウ素、ホウ酸トリフェニル等のホウ素化合物;
 塩化亜鉛、塩化第二錫等の金属ハロゲン化合物;
 ジシアンジアミドやアミンとエポキシ樹脂との付加物等のアミン付加型促進剤等の高融点分散型潜在性硬化促進剤;
 上記イミダゾール化合物、有機リン化合物や4級フォスフォニウム塩等の硬化促進剤の表面をポリマーで被覆したマイクロカプセル型潜在性硬化促進剤;
 アミン塩型潜在性硬化促進剤;
 ルイス酸塩、ブレンステッド酸塩等の高温解離型の熱カチオン重合型潜在性硬化促進剤等の潜在性硬化促進剤等が挙げられる。
Examples of the curing accelerator include tertiary amines such as benzyldimethylamine, 2,4,6-tris (dimethylaminomethyl) phenol, cyclohexyldimethylamine, and triethanolamine;
2-methylimidazole, 2-n-heptylimidazole, 2-n-undecylimidazole, 2-phenylimidazole, 2-phenyl-4-methylimidazole, 1-benzyl-2-methylimidazole, 1-benzyl-2-phenyl Imidazole, 1,2-dimethylimidazole, 2-ethyl-4-methylimidazole, 1- (2-cyanoethyl) -2-methylimidazole, 1- (2-cyanoethyl) -2-n-undecylimidazole, 1- ( 2-cyanoethyl) -2-phenylimidazole, 1- (2-cyanoethyl) -2-ethyl-4-methylimidazole, 2-phenyl-4-methyl-5-hydroxymethylimidazole, 2-phenyl-4,5-di (Hydroxymethyl) imidazole, 1- (2-cyanoethyl) -2-fur Nyl-4,5-di [(2′-cyanoethoxy) methyl] imidazole, 1- (2-cyanoethyl) -2-n-undecylimidazolium trimellitate, 1- (2-cyanoethyl) -2-phenyl Imidazolium trimellitate, 1- (2-cyanoethyl) -2-ethyl-4-methylimidazolium trimellitate, 2,4-diamino-6- [2'-methylimidazolyl- (1 ')] ethyl-s -Triazine, 2,4-diamino-6- (2'-n-undecylimidazolyl) ethyl-s-triazine, 2,4-diamino-6- [2'-ethyl-4'-methylimidazolyl- (1 ' )] Ethyl-s-triazine, isocyanuric acid adduct of 2-methylimidazole, isocyanuric acid adduct of 2-phenylimidazole, and 2,4-diamino-6- [2'- Methylimidazolyl- (1 ′)] ethyl-s-triazine isocyanuric acid adducts such as isocyanuric acid adducts;
Organophosphorus compounds such as diphenylphosphine, triphenylphosphine, triphenyl phosphite;
Benzyltriphenylphosphonium chloride, tetra-n-butylphosphonium bromide, methyltriphenylphosphonium bromide, ethyltriphenylphosphonium bromide, n-butyltriphenylphosphonium bromide, tetraphenylphosphonium bromide , Ethyltriphenylphosphonium iodide, ethyltriphenylphosphonium acetate, tetra-n-butylphosphonium o, o-diethylphosphorodithionate, tetra-n-butylphosphonium benzotriazolate, tetra Phenylphosphonium tetraphenylborate, tetra-n-butylphosphonium tetrafluoroborate, tetra-n-butylphosphonium tetraphenylborate Quaternary phosphonium salts bets like;
Diazabicycloalkenes such as 1,8-diazabicyclo [5.4.0] undecene-7 and organic acid salts thereof;
Organometallic compounds such as zinc octylate, tin octylate, aluminum acetylacetone complex;
Quaternary ammonium salts such as tetraethylammonium bromide, tetra-n-butylammonium bromide, tetraethylammonium chloride, tetra-n-butylammonium chloride;
Boron compounds such as boron trifluoride and triphenyl borate;
Metal halides such as zinc chloride and stannic chloride;
High melting point dispersion type latent curing accelerators such as amine addition accelerators such as dicyandiamide and adducts of amine and epoxy resin;
A microcapsule type latent curing accelerator in which the surface of a curing accelerator such as an imidazole compound, an organic phosphorus compound or a quaternary phosphonium salt is coated with a polymer;
An amine salt type latent curing accelerator;
Examples include latent curing accelerators such as high temperature dissociation type thermal cationic polymerization type latent curing accelerators such as Lewis acid salts and Bronsted acid salts.
 これらの触媒の中でも、テトラエチルアンモニウムブロマイド、テトラ-n-ブチルアンモニウムブロマイド、テトラエチルアンモニウムクロライド、テトラ-n-ブチルアンモニウムクロライド等の4級アンモニウム塩が好ましい。 Among these catalysts, quaternary ammonium salts such as tetraethylammonium bromide, tetra-n-butylammonium bromide, tetraethylammonium chloride and tetra-n-butylammonium chloride are preferable.
 触媒の使用量としては、エポキシ基を有するポリオルガノシロキサン100質量部に対して100質量部以下が好ましく、0.01質量部~100質量部がより好ましく、0.1質量部~20質量部が特に好ましい。 The amount of the catalyst used is preferably 100 parts by mass or less, more preferably 0.01 parts by mass to 100 parts by mass, and 0.1 parts by mass to 20 parts by mass with respect to 100 parts by mass of the polyorganosiloxane having an epoxy group. Particularly preferred.
 反応温度としては、0℃~200℃が好ましく、50℃~150℃がより好ましい。反応時間としては、0.1時間~50時間が好ましく、0.5時間~20時間がより好ましい。 The reaction temperature is preferably 0 ° C. to 200 ° C., more preferably 50 ° C. to 150 ° C. The reaction time is preferably 0.1 hours to 50 hours, more preferably 0.5 hours to 20 hours.
 [A]光配向性ポリオルガノシロキサンは、必要に応じて有機溶媒の存在下に合成できる。かかる有機溶媒としては、例えば炭化水素化合物、エーテル化合物、エステル化合物、ケトン化合物、アミド化合物、アルコール化合物等が挙げられる。これらのうち、エーテル化合物、エステル化合物、ケトン化合物が、原料及び生成物の溶解性並びに生成物の精製のし易さの観点から好ましい。溶媒は、固形分濃度(反応溶液中の溶媒以外の成分の質量が溶液の全質量に占める割合)が、好ましくは0.1質量%以上70質量%以下、より好ましくは5質量%以上50質量%以下となる量で使用される。 [A] The photo-alignable polyorganosiloxane can be synthesized in the presence of an organic solvent, if necessary. Examples of the organic solvent include hydrocarbon compounds, ether compounds, ester compounds, ketone compounds, amide compounds, alcohol compounds, and the like. Of these, ether compounds, ester compounds, and ketone compounds are preferred from the viewpoints of solubility of raw materials and products and ease of purification of the products. The solvent has a solid content concentration (the ratio of the mass of components other than the solvent in the reaction solution to the total mass of the solution), preferably 0.1% by mass to 70% by mass, more preferably 5% by mass to 50% by mass. % Is used in an amount of less than%.
 このようにして得られた[A]光配向性ポリオルガノシロキサンのMwとしては、特に限定されないが、1,000~20,000が好ましく、3,000~15,000がより好ましい。このような分子量範囲とすることで、液晶配向膜の良好な配向性及び安定性を確保できる。 The Mw of the thus obtained [A] photo-alignable polyorganosiloxane is not particularly limited, but is preferably 1,000 to 20,000, more preferably 3,000 to 15,000. By setting it as such a molecular weight range, the favorable orientation and stability of a liquid crystal aligning film are securable.
 [A]光配向性ポリオルガノシロキサンは、エポキシ基を有するポリオルガノシロキサンに、特定桂皮酸誘導体のカルボキシル基のエポキシへの開環付加により特定桂皮酸誘導体に由来する構造を導入している。この製造方法は簡便であり、しかも特定桂皮酸誘導体に由来する構造の導入率を高くすることができる点で極めて好適な方法である。 [A] The photoalignable polyorganosiloxane introduces a structure derived from a specific cinnamic acid derivative by ring-opening addition of the carboxyl group of the specific cinnamic acid derivative to the epoxy to the polyorganosiloxane having an epoxy group. This production method is simple and is a very suitable method in that the introduction rate of the structure derived from the specific cinnamic acid derivative can be increased.
 本発明においては、本発明の効果を損なわない範囲で上記特定桂皮酸誘導体の一部を下記式(4)で表される化合物で置き換えて使用してもよい。この場合、[A]光配向性ポリオルガノシロキサン化合物の合成は、エポキシ基を有するポリオルガノシロキサンと、特定桂皮酸誘導体及び下記式(4)で表される化合物の混合物とを反応させることにより行われる。 In the present invention, a part of the specific cinnamic acid derivative may be replaced with a compound represented by the following formula (4) as long as the effects of the present invention are not impaired. In this case, the synthesis of [A] photoalignable polyorganosiloxane compound is carried out by reacting a polyorganosiloxane having an epoxy group with a mixture of a specific cinnamic acid derivative and a compound represented by the following formula (4). Is called.
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000008
 上記式(4)におけるR10としては、炭素数8~20のアルキル基若しくはアルコキシ基、又は炭素数4~21のフルオロアルキル基若しくはフルオロアルコキシ基であることが好ましい。R11としては、単結合、1,4-シクロヘキシレン基又は1,4-フェニレン基であることが好ましい。R12としてはカルボキシル基であることが好ましい。 R 10 in the above formula (4) is preferably an alkyl group or alkoxy group having 8 to 20 carbon atoms, or a fluoroalkyl group or fluoroalkoxy group having 4 to 21 carbon atoms. R 11 is preferably a single bond, a 1,4-cyclohexylene group or a 1,4-phenylene group. R 12 is preferably a carboxyl group.
 上記式(4)で表される化合物としては、例えば下記式(4-1)~式(4-3)で表される化合物が挙げられる。 Examples of the compound represented by the above formula (4) include compounds represented by the following formulas (4-1) to (4-3).
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000009
 上記式(4)で表される化合物は、[A]光配向性ポリオルガノシロキサンの活性部位を失活させて上記液晶配向剤の安定性向上に寄与し得る。本発明において、特定桂皮酸誘導体とともに上記式(4)で表される化合物を使用する場合、特定桂皮酸誘導体及び上記式(4)で表される化合物の合計の使用割合としては、ポリオルガノシロキサンの有するエポキシ基1モルに対して0.001モル~1.5モルが好ましく、0.01モル~1モルがより好ましく、0.05モル~0.9モルが特に好ましい。この場合、上記式(4)で表される化合物の使用量としては、特定桂皮酸誘導体との合計に対して50モル%以下が好ましく、25モル%以下がより好ましい。上記式(4)で表される化合物の使用割合が50モル%を超えると、液晶配向膜における配向性が低下する不具合を生じるおそれがある。 The compound represented by the above formula (4) can contribute to improving the stability of the liquid crystal aligning agent by deactivating the active site of [A] photoalignable polyorganosiloxane. In the present invention, when the compound represented by the above formula (4) is used together with the specific cinnamic acid derivative, the total use ratio of the specific cinnamic acid derivative and the compound represented by the above formula (4) is polyorganosiloxane. 0.001 mol to 1.5 mol is preferable, 0.01 mol to 1 mol is more preferable, and 0.05 mol to 0.9 mol is particularly preferable with respect to 1 mol of the epoxy group contained in. In this case, the amount of the compound represented by the above formula (4) is preferably 50 mol% or less, more preferably 25 mol% or less, based on the total amount with the specific cinnamic acid derivative. When the proportion of the compound represented by the above formula (4) exceeds 50 mol%, there is a risk of causing a problem that the orientation in the liquid crystal alignment film is lowered.
<[B]他の重合体>
 上記液晶配向剤は、好適成分として[B]他の重合体を含有できる。[B]他の重合体としては、ポリアミック酸、ポリイミド、エチレン性不飽和化合物重合体、光配向性基を有さないポリオルガノシロキサンからなる群より選択される少なくとも1種が挙げられる。これら[B]他の重合体を含有する場合、上記液晶配向剤から形成される液晶配向膜においては、その表層付近に光配向性ポリオルガノシロキサンが偏在することが明らかとなっている。この為、他の重合体の含有量を増やすことにより上記液晶配向剤中における光配向性ポリオルガノシロキサンの含有量を減らしても、光配向性ポリオルガノシロキサンは配向膜表面に偏在するので、十分な液晶配向性が得られる。従って、本発明では製造コストの高い光配向性ポリオルガノシロキサンの上記液晶配向剤中における含有量を減らすことが可能となり、結果として上記液晶配向剤の製造コストを低下できる。
<[B] Other polymer>
The liquid crystal aligning agent can contain [B] another polymer as a suitable component. [B] Examples of the other polymer include at least one selected from the group consisting of polyamic acid, polyimide, ethylenically unsaturated compound polymer, and polyorganosiloxane having no photo-alignment group. When these [B] other polymers are contained, in the liquid crystal alignment film formed from the liquid crystal aligning agent, it is clear that the photoalignable polyorganosiloxane is unevenly distributed in the vicinity of the surface layer. For this reason, even if the content of the photoalignable polyorganosiloxane in the liquid crystal aligning agent is reduced by increasing the content of other polymers, the photoalignable polyorganosiloxane is unevenly distributed on the alignment film surface. Liquid crystal orientation can be obtained. Therefore, in this invention, it becomes possible to reduce content in the said liquid crystal aligning agent of photoalignment polyorganosiloxane with a high manufacturing cost, As a result, the manufacturing cost of the said liquid crystal aligning agent can be reduced.
[ポリアミック酸]
 ポリアミック酸は、テトラカルボン酸二無水物とジアミン化合物とを反応させることにより得られる。
[Polyamic acid]
A polyamic acid is obtained by reacting a tetracarboxylic dianhydride and a diamine compound.
 テトラカルボン酸二無水物としては、例えば脂肪族テトラカルボン酸二無水物、脂環式テトラカルボン酸二無水物、芳香族テトラカルボン酸二無水物等が挙げられる。これらのテトラカルボン酸二無水物は、単独で又は2種以上を組み合わせて使用できる。 Examples of tetracarboxylic dianhydrides include aliphatic tetracarboxylic dianhydrides, alicyclic tetracarboxylic dianhydrides, aromatic tetracarboxylic dianhydrides, and the like. These tetracarboxylic dianhydrides can be used alone or in combination of two or more.
 脂肪族テトラカルボン酸二無水物としては、例えばブタンテトラカルボン酸二無水物等が挙げられる。 Examples of the aliphatic tetracarboxylic dianhydride include butanetetracarboxylic dianhydride.
 脂環式テトラカルボン酸二無水物としては、例えば1,2,3,4-シクロブタンテトラカルボン酸二無水物、2,3,5-トリカルボキシシクロペンチル酢酸二無水物、1,3,3a,4,5,9b-ヘキサヒドロ-5-(テトラヒドロ-2,5-ジオキソ-3-フラニル)-ナフト[1,2-c]フラン-1,3-ジオン、1,3,3a,4,5,9b-ヘキサヒドロ-8-メチル-5-(テトラヒドロ-2,5-ジオキソ-3-フラニル)-ナフト[1,2-c]フラン-1,3-ジオン、3-オキサビシクロ[3.2.1]オクタン-2,4-ジオン-6-スピロ-3’-(テトラヒドロフラン-2’,5’-ジオン)、5-(2,5-ジオキソテトラヒドロ-3-フラニル)-3-メチル-3-シクロヘキセン-1,2-ジカルボン酸無水物、3,5,6-トリカルボキシ-2-カルボキシメチルノルボルナン-2:3,5:6-二無水物、2,4,6,8-テトラカルボキシビシクロ[3.3.0]オクタン-2:4,6:8-二無水物、4,9-ジオキサトリシクロ[5.3.1.02,6]ウンデカン-3,5,8,10-テトラオン等が挙げられる。 Examples of the alicyclic tetracarboxylic dianhydride include 1,2,3,4-cyclobutanetetracarboxylic dianhydride, 2,3,5-tricarboxycyclopentylacetic acid dianhydride, 1,3,3a, 4 , 5,9b-Hexahydro-5- (tetrahydro-2,5-dioxo-3-furanyl) -naphtho [1,2-c] furan-1,3-dione, 1,3,3a, 4,5,9b -Hexahydro-8-methyl-5- (tetrahydro-2,5-dioxo-3-furanyl) -naphtho [1,2-c] furan-1,3-dione, 3-oxabicyclo [3.2.1] Octane-2,4-dione-6-spiro-3 ′-(tetrahydrofuran-2 ′, 5′-dione), 5- (2,5-dioxotetrahydro-3-furanyl) -3-methyl-3-cyclohexene -1,2-dicarboxylic acid Water, 3,5,6-tricarboxy-2-carboxymethylnorbornane-2: 3,5: 6-dianhydride, 2,4,6,8-tetracarboxybicyclo [3.3.0] octane- 2: 4,6: 8-dianhydride, 4,9-dioxatricyclo [5.3.1.0 2,6 ] undecane-3,5,8,10-tetraone and the like.
 芳香族テトラカルボン酸二無水物としては、例えばピロメリット酸二無水物等が挙げられる他、特開2010-97188号に記載のテトラカルボン酸二無水物が挙げられる。 Examples of the aromatic tetracarboxylic dianhydride include pyromellitic dianhydride and the like, and the tetracarboxylic dianhydride described in JP 2010-97188 A.
 これらのテトラカルボン酸二無水物のうち、脂環式テトラカルボン酸二無水物が好ましく、2,3,5-トリカルボキシシクロペンチル酢酸二無水物又は1,2,3,4-シクロブタンテトラカルボン酸二無水物がより好ましく、2,3,5-トリカルボキシシクロペンチル酢酸二無水物が特に好ましい。 Of these tetracarboxylic dianhydrides, alicyclic tetracarboxylic dianhydrides are preferred, and 2,3,5-tricarboxycyclopentylacetic dianhydride or 1,2,3,4-cyclobutanetetracarboxylic dianhydride. An anhydride is more preferable, and 2,3,5-tricarboxycyclopentylacetic acid dianhydride is particularly preferable.
 2,3,5-トリカルボキシシクロペンチル酢酸二無水物又は1,2,3,4-シクロブタンテトラカルボン酸二無水物の使用量としては、全テトラカルボン酸二無水物に対して、10モル%以上が好ましく、20モル%以上がより好ましく、2,3,5-トリカルボキシシクロペンチル酢酸二無水物又は1,2,3,4-シクロブタンテトラカルボン酸二無水物のみからなることが、特に好ましい。 The amount of 2,3,5-tricarboxycyclopentylacetic acid dianhydride or 1,2,3,4-cyclobutanetetracarboxylic dianhydride used is 10 mol% or more based on the total tetracarboxylic dianhydride. It is preferably 20 mol% or more, and it is particularly preferable that it consists only of 2,3,5-tricarboxycyclopentylacetic acid dianhydride or 1,2,3,4-cyclobutanetetracarboxylic dianhydride.
 ジアミン化合物としては、例えば脂肪族ジアミン、脂環式ジアミン、芳香族ジアミン、ジアミノオルガノシロキサン等が挙げられる。これらジアミン化合物は、単独で又は2種以上を組み合わせて使用できる。 Examples of the diamine compound include aliphatic diamines, alicyclic diamines, aromatic diamines, diaminoorganosiloxanes, and the like. These diamine compounds can be used alone or in combination of two or more.
 脂肪族ジアミンとしては、例えばメタキシリレンジアミン、1,3-プロパンジアミン、テトラメチレンジアミン、ペンタメチレンジアミン、ヘキサメチレンジアミン等が挙げられる。 Examples of the aliphatic diamine include metaxylylenediamine, 1,3-propanediamine, tetramethylenediamine, pentamethylenediamine, hexamethylenediamine and the like.
 脂環式ジアミンとしては、例えば1,4-ジアミノシクロヘキサン、4,4’-メチレンビス(シクロヘキシルアミン)、1,3-ビス(アミノメチル)シクロヘキサン等が挙げられる。 Examples of the alicyclic diamine include 1,4-diaminocyclohexane, 4,4'-methylenebis (cyclohexylamine), 1,3-bis (aminomethyl) cyclohexane and the like.
 芳香族ジアミンとしては、例えばp-フェニレンジアミン、4,4’-ジアミノジフェニルメタン、4,4’-ジアミノジフェニルスルフィド、1,5-ジアミノナフタレン、2,2’-ジメチル-4,4’-ジアミノビフェニル、4,4’-ジアミノ-2,2’-ビス(トリフルオロメチル)ビフェニル、2,7-ジアミノフルオレン、4,4’-ジアミノジフェニルエーテル、2,2-ビス[4-(4-アミノフェノキシ)フェニル]プロパン、9,9-ビス(4-アミノフェニル)フルオレン、2,2-ビス[4-(4-アミノフェノキシ)フェニル]ヘキサフルオロプロパン、2,2-ビス(4-アミノフェニル)ヘキサフルオロプロパン、4,4’-(p-フェニレンジイソプロピリデン)ビスアニリン、4,4’-(m-フェニレンジイソプロピリデン)ビスアニリン、1,4-ビス(4-アミノフェノキシ)ベンゼン、4,4’-ビス(4-アミノフェノキシ)ビフェニル、2,6-ジアミノピリジン、3,4-ジアミノピリジン、2,4-ジアミノピリミジン、3,6-ジアミノアクリジン、3,6-ジアミノカルバゾール、N-メチル-3,6-ジアミノカルバゾール、N-エチル-3,6-ジアミノカルバゾール、N-フェニル-3,6-ジアミノカルバゾール、N,N’-ビス(4-アミノフェニル)-ベンジジン、N,N’-ビス(4-アミノフェニル)-N,N’-ジメチルベンジジン、1,4-ビス-(4-アミノフェニル)-ピペラジン、3,5-ジアミノ安息香酸、ドデカノキシ-2,4-ジアミノベンゼン、テトラデカノキシ-2,4-ジアミノベンゼン、ペンタデカノキシ-2,4-ジアミノベンゼン、ヘキサデカノキシ-2,4-ジアミノベンゼン、オクタデカノキシ-2,4-ジアミノベンゼン、ドデカノキシ-2,5-ジアミノベンゼン、テトラデカノキシ-2,5-ジアミノベンゼン、ペンタデカノキシ-2,5-ジアミノベンゼン、ヘキサデカノキシ-2,5-ジアミノベンゼン、オクタデカノキシ-2,5-ジアミノベンゼン、コレスタニルオキシ-3,5-ジアミノベンゼン、コレステニルオキシ-3,5-ジアミノベンゼン、コレスタニルオキシ-2,4-ジアミノベンゼン、コレステニルオキシ-2,4-ジアミノベンゼン、3,5-ジアミノ安息香酸コレスタニル、3,5-ジアミノ安息香酸コレステニル、3,5-ジアミノ安息香酸ラノスタニル、3,6-ビス(4-アミノベンゾイルオキシ)コレスタン、3,6-ビス(4-アミノフェノキシ)コレスタン、4-(4’-トリフルオロメトキシベンゾイロキシ)シクロヘキシル-3,5-ジアミノベンゾエート、4-(4’-トリフルオロメチルベンゾイロキシ)シクロヘキシル-3,5-ジアミノベンゾエート、1,1-ビス(4-((アミノフェニル)メチル)フェニル)-4-ブチルシクロヘキサン、1,1-ビス(4-((アミノフェニル)メチル)フェニル)-4-ヘプチルシクロヘキサン、1,1-ビス(4-((アミノフェノキシ)メチル)フェニル)-4-ヘプチルシクロヘキサン、1,1-ビス(4-((アミノフェニル)メチル)フェニル)-4-(4-ヘプチルシクロヘキシル)シクロヘキサン、2,4-ジアミノーN,N―ジアリルアニリン、4-アミノベンジルアミン、3-アミノベンジルアミン及び下記式(A-1)で表されるジアミン化合物等が挙げられる。 Examples of aromatic diamines include p-phenylenediamine, 4,4′-diaminodiphenylmethane, 4,4′-diaminodiphenyl sulfide, 1,5-diaminonaphthalene, 2,2′-dimethyl-4,4′-diaminobiphenyl. 4,4′-diamino-2,2′-bis (trifluoromethyl) biphenyl, 2,7-diaminofluorene, 4,4′-diaminodiphenyl ether, 2,2-bis [4- (4-aminophenoxy) Phenyl] propane, 9,9-bis (4-aminophenyl) fluorene, 2,2-bis [4- (4-aminophenoxy) phenyl] hexafluoropropane, 2,2-bis (4-aminophenyl) hexafluoro Propane, 4,4 '-(p-phenylenediisopropylidene) bisaniline, 4,4'-(m-phenol Range isopropylidene) bisaniline, 1,4-bis (4-aminophenoxy) benzene, 4,4′-bis (4-aminophenoxy) biphenyl, 2,6-diaminopyridine, 3,4-diaminopyridine, 2,4 -Diaminopyrimidine, 3,6-diaminoacridine, 3,6-diaminocarbazole, N-methyl-3,6-diaminocarbazole, N-ethyl-3,6-diaminocarbazole, N-phenyl-3,6-diaminocarbazole N, N′-bis (4-aminophenyl) -benzidine, N, N′-bis (4-aminophenyl) -N, N′-dimethylbenzidine, 1,4-bis- (4-aminophenyl)- Piperazine, 3,5-diaminobenzoic acid, dodecanoxy-2,4-diaminobenzene, tetradecanoxy-2,4-dia Nobenzene, pentadecanoxy-2,4-diaminobenzene, hexadecanoxy-2,4-diaminobenzene, octadecanoxy-2,4-diaminobenzene, dodecanoxy-2,5-diaminobenzene, tetradecanoxy-2,5-diaminobenzene, pentadecanoxy-2 , 5-diaminobenzene, hexadecanoxy-2,5-diaminobenzene, octadecanoxy-2,5-diaminobenzene, cholestanyloxy-3,5-diaminobenzene, cholestenyloxy-3,5-diaminobenzene, cholestanyloxy- 2,4-diaminobenzene, cholestenyloxy-2,4-diaminobenzene, cholestanyl 3,5-diaminobenzoate, cholestenyl 3,5-diaminobenzoate, lanostannyl 3,5-diaminobenzoate, 3,6- Bis (4-aminobenzoyloxy) cholestane, 3,6-bis (4-aminophenoxy) cholestane, 4- (4′-trifluoromethoxybenzoyloxy) cyclohexyl-3,5-diaminobenzoate, 4- (4 ′ -Trifluoromethylbenzoyloxy) cyclohexyl-3,5-diaminobenzoate, 1,1-bis (4-((aminophenyl) methyl) phenyl) -4-butylcyclohexane, 1,1-bis (4-(( Aminophenyl) methyl) phenyl) -4-heptylcyclohexane, 1,1-bis (4-((aminophenoxy) methyl) phenyl) -4-heptylcyclohexane, 1,1-bis (4-((aminophenyl) methyl) ) Phenyl) -4- (4-heptylcyclohexyl) cyclohexane, 2,4-diamino-N N- diallyl aniline, 4-amino-benzylamine, diamines compounds represented by the 3-amino-benzylamine and the following formulas (A-1) can be mentioned.
Figure JPOXMLDOC01-appb-C000010
(式(A-1)中、Xは炭素数1~3のアルキル基、*-O-、*-COO-又は*-OCO-である。但し、*を付した結合手がジアミノフェニル基と結合する。rは0又は1である。sは0~2の整数である。tは1~20の整数である。)
Figure JPOXMLDOC01-appb-C000010
(In the formula (A-1), X I is an alkyl group having 1 to 3 carbon atoms, * - O -, * - . COO- or * -OCO- is provided that bond is di-aminophenyl group marked with * R is 0 or 1. s is an integer from 0 to 2. t is an integer from 1 to 20.)
 ジアミノオルガノシロキサンとしては、例えば、1,3-ビス(3-アミノプロピル)-テトラメチルジシロキサン等が挙げられる他、特開2010-97188号に記載のジアミンが挙げられる。 Examples of the diaminoorganosiloxane include 1,3-bis (3-aminopropyl) -tetramethyldisiloxane and the like, and diamines described in JP 2010-97188 A.
 ポリアミック酸の合成反応に供されるテトラカルボン酸二無水物とジアミン化合物の使用割合としては、ジアミン化合物に含まれるアミノ基1当量に対して、テトラカルボン酸二無水物の酸無水物基が0.2当量~2当量が好ましく、0.3当量~1.2当量がより好ましい。 The ratio of the tetracarboxylic dianhydride and the diamine compound used in the polyamic acid synthesis reaction is such that the acid anhydride group of the tetracarboxylic dianhydride is 0 with respect to 1 equivalent of the amino group contained in the diamine compound. 2 equivalents to 2 equivalents are preferable, and 0.3 equivalents to 1.2 equivalents are more preferable.
 合成反応は、有機溶媒中において行うことが好ましい。反応温度としては、-20℃~150℃が好ましく、0℃~100℃がより好ましい。反応時間としては、0.5時間~24時間が好ましく、2時間~12時間がより好ましい。 The synthesis reaction is preferably performed in an organic solvent. The reaction temperature is preferably −20 ° C. to 150 ° C., more preferably 0 ° C. to 100 ° C. The reaction time is preferably 0.5 to 24 hours, more preferably 2 to 12 hours.
 有機溶媒としては、合成されるポリアミック酸を溶解できるものであれば特に制限はなく、例えばN-メチル-2-ピロリドン(NMP)、N,N-ジメチルアセトアミド、N,N-ジメチルホルムアミド、N,N-ジメチルイミダゾリジノン、ジメチルスルホキシド、γ-ブチロラクトン、テトラメチル尿素、ヘキサメチルホスホルトリアミド等の非プロトン系極性溶媒;m-クレゾール、キシレノール、フェノール、ハロゲン化フェノール等のフェノール系溶媒が挙げられる。 The organic solvent is not particularly limited as long as it can dissolve the synthesized polyamic acid. For example, N-methyl-2-pyrrolidone (NMP), N, N-dimethylacetamide, N, N-dimethylformamide, N, Aprotic polar solvents such as N-dimethylimidazolidinone, dimethyl sulfoxide, γ-butyrolactone, tetramethylurea, hexamethylphosphoric triamide; phenolic solvents such as m-cresol, xylenol, phenol, halogenated phenol, etc. .
 有機溶媒の使用量(a)としては、テトラカルボン酸二無水物及びジアミン化合物の総量(b)と有機溶媒の使用量(a)の合計(a+b)に対して、0.1質量%~50質量%が好ましく、5質量%~30質量%がより好ましい。 The amount of the organic solvent used (a) is 0.1% by mass to 50% with respect to the total amount (b) of the tetracarboxylic dianhydride and diamine compound and the total amount of the organic solvent used (a) (a + b). % By mass is preferable, and 5% by mass to 30% by mass is more preferable.
 反応後に得られるポリアミック酸溶液は、そのまま液晶配向剤の調製に供してもよく、反応溶液中に含まれるポリアミック酸を単離した上で液晶配向剤の調製に供してもよく、単離したポリアミック酸を精製した上で液晶配向剤の調製に供してもよい。ポリアミック酸の単離方法としては、例えば反応溶液を大量の貧溶媒中に注いで得られる析出物を減圧下乾燥する方法、反応溶液をエバポレーターで減圧留去する方法等が挙げられる。ポリアミック酸の精製方法としては、単離したポリアミック酸を再び有機溶媒に溶解し、貧溶媒で析出させる方法、エバポレーターで有機溶媒等を減圧留去する工程を1回若しくは複数回行う方法が挙げられる。 The polyamic acid solution obtained after the reaction may be used as it is for the preparation of the liquid crystal aligning agent, or may be used for the preparation of the liquid crystal aligning agent after isolating the polyamic acid contained in the reaction solution. You may use for preparation of a liquid crystal aligning agent, after refine | purifying an acid. Examples of the method for isolating the polyamic acid include a method of pouring a reaction solution into a large amount of a poor solvent and drying a precipitate obtained under reduced pressure, and a method of distilling the reaction solution under reduced pressure using an evaporator. Examples of the method for purifying the polyamic acid include a method in which the isolated polyamic acid is dissolved again in an organic solvent and precipitated with a poor solvent, and a method in which the step of distilling off the organic solvent or the like with an evaporator is performed once or a plurality of times. .
[ポリイミド]
 ポリイミドは、上記ポリアミック酸の有するアミック酸構造を脱水閉環してイミド化することにより製造できる。ポリイミドは、その前駆体であるポリアミック酸が有しているアミック酸構造の全てを脱水閉環した完全イミド化物であってもよく、アミック酸構造の一部のみを脱水閉環し、アミック酸構造とイミド環構造とが併存している部分イミド化物であってもよい。
[Polyimide]
The polyimide can be produced by dehydrating and ring-closing the amic acid structure of the polyamic acid to imidize it. The polyimide may be a completely imidized product in which all of the amic acid structure of the precursor polyamic acid has been dehydrated and cyclized, and only a part of the amic acid structure may be dehydrated and cyclized to form an amic acid structure and an imide. It may be a partially imidized product in which a ring structure coexists.
 ポリイミドの合成方法としては、例えば(i)ポリアミック酸を加熱する方法(以下、「方法(i)」と称することがある)、(ii)ポリアミック酸を有機溶媒に溶解し、この溶液中に脱水剤及び脱水閉環触媒を添加し、必要に応じて加熱する方法(以下、「方法(ii)」と称することがある)等のポリアミック酸の脱水閉環反応による方法が挙げられる。 As a method for synthesizing polyimide, for example, (i) a method of heating polyamic acid (hereinafter sometimes referred to as “method (i)”), (ii) polyamic acid is dissolved in an organic solvent, and dehydration is performed in this solution. Examples thereof include a method based on a dehydration ring-closing reaction of a polyamic acid, such as a method in which an agent and a dehydration ring-closing catalyst are added and heated as necessary (hereinafter sometimes referred to as “method (ii)”).
 方法(i)における反応温度としては、50℃~200℃が好ましく、60℃~170℃がより好ましい。反応温度が50℃未満では、脱水閉環反応が十分に進行せず、反応温度が200℃を超えると得られるポリイミドの分子量が低下することがある。反応時間としては、0.5時間~48時間が好ましく、2時間~20時間がより好ましい。 The reaction temperature in method (i) is preferably 50 ° C. to 200 ° C., more preferably 60 ° C. to 170 ° C. When the reaction temperature is less than 50 ° C., the dehydration ring-closing reaction does not proceed sufficiently, and when the reaction temperature exceeds 200 ° C., the molecular weight of the resulting polyimide may decrease. The reaction time is preferably 0.5 to 48 hours, more preferably 2 to 20 hours.
 方法(i)において得られるポリイミドはそのまま液晶配向剤の調製に供してもよく、ポリイミドを単離した上で液晶配向剤の調製に供してもよく又は単離したポリイミドを精製した上で又は得られるポリイミドを精製した上で液晶配向剤の調製に供してもよい。 The polyimide obtained in the method (i) may be used for the preparation of the liquid crystal aligning agent as it is, may be used for the preparation of the liquid crystal aligning agent after isolating the polyimide, or may be obtained after purifying the isolated polyimide. You may use for the preparation of a liquid crystal aligning agent, after refine | purifying the polyimide obtained.
 方法(ii)における脱水剤としては、例えば無水酢酸、無水プロピオン酸、無水トリフルオロ酢酸等の酸無水物が挙げられる。 Examples of the dehydrating agent in method (ii) include acid anhydrides such as acetic anhydride, propionic anhydride, and trifluoroacetic anhydride.
 脱水剤の使用量としては、所望のイミド化率により適宜選択されるが、ポリアミック酸のアミック酸構造1モルに対して0.01モル~20モルが好ましい。 The amount of the dehydrating agent used is appropriately selected depending on the desired imidization ratio, but is preferably 0.01 mol to 20 mol with respect to 1 mol of the amic acid structure of the polyamic acid.
 方法(ii)における脱水閉環触媒としては、例えばピリジン、コリジン、ルチジン、トリエチルアミン等が挙げられる。 Examples of the dehydration ring closure catalyst in the method (ii) include pyridine, collidine, lutidine, triethylamine and the like.
 脱水閉環触媒の使用量としては、含有する脱水剤1モルに対して0.01モル~10モルが好ましい。なお、イミド化率は上記脱水剤及び脱水閉環剤の含有量が多いほど高くできる。 The use amount of the dehydration ring closure catalyst is preferably 0.01 mol to 10 mol with respect to 1 mol of the dehydrating agent contained. In addition, the imidation rate can be increased as the content of the dehydrating agent and the dehydrating ring-closing agent is increased.
 方法(ii)に用いられる有機溶媒としては、例えばポリアミック酸の合成に用いられるものとして例示した有機溶媒と同様の有機溶媒等が挙げられる。 Examples of the organic solvent used in the method (ii) include organic solvents similar to those exemplified as those used for the synthesis of polyamic acid.
 方法(ii)における反応温度としては、0℃~180℃が好ましく、10℃~150℃がより好ましい。反応時間としては、0.5時間~20時間が好ましく、1時間~8時間がより好ましい。反応条件を上記範囲とすることで、脱水閉環反応が十分に進行し、また、得られるポリイミドの分子量を適切なものとできる。 The reaction temperature in method (ii) is preferably 0 ° C. to 180 ° C., more preferably 10 ° C. to 150 ° C. The reaction time is preferably 0.5 to 20 hours, more preferably 1 to 8 hours. By setting the reaction conditions in the above range, the dehydration ring-closing reaction proceeds sufficiently, and the molecular weight of the resulting polyimide can be made appropriate.
 方法(ii)においてはポリイミドを含有する反応溶液が得られる。この反応溶液をそのまま液晶配向剤の調製に供してもよく、反応溶液から脱水剤及び脱水閉環触媒を除いたうえで液晶配向剤の調製に供してもよく、ポリイミドを単離した上で液晶配向剤の調製に供してもよく又は単離したポリイミドを精製した上で液晶配向剤の調製に供してもよい。反応溶液から脱水剤及び脱水閉環触媒を除く方法としては、例えば溶媒置換の方法等が挙げられる。ポリイミドの単離方法及び精製方法としては、例えばポリアミック酸の単離方法及び精製方法として例示したものと同様の方法等が挙げられる。 In method (ii), a reaction solution containing polyimide is obtained. This reaction solution may be used as it is for the preparation of the liquid crystal aligning agent, or after removing the dehydrating agent and the dehydrating ring-closing catalyst from the reaction solution, it may be used for the preparation of the liquid crystal aligning agent. You may use for preparation of an agent, or you may use for preparation of a liquid crystal aligning agent, after purifying the isolated polyimide. Examples of a method for removing the dehydrating agent and the dehydrating ring-closing catalyst from the reaction solution include a solvent replacement method. Examples of the polyimide isolation method and purification method include the same methods as those exemplified as the polyamic acid isolation method and purification method.
[エチレン性不飽和化合物重合体]
 [B]他の重合体としてのエチレン性不飽和化合物重合体は、公知のエチレン性不飽和化合物を公知の方法で重合させることにより得られる。例えば、(a)エポキシ基含有エチレン性不飽和化合物(以下、「(a)不飽和化合物」と称することがある)と(b1)エチレン性不飽和カルボン酸及び/又は重合性不飽和多価カルボン酸無水物(以下、「(b1)不飽和化合物」と称することがある)と(a)不飽和化合物及び(b1)不飽和化合物以外の重合性不飽和化合物(以下、「(b2)不飽和化合物」と称することがある)とを共重合することで得られる。(この共重合により得られる共重合体を、以下、「(B1)共重合体」と称することがある)
[Ethylenically unsaturated compound polymer]
[B] The ethylenically unsaturated compound polymer as the other polymer is obtained by polymerizing a known ethylenically unsaturated compound by a known method. For example, (a) an epoxy group-containing ethylenically unsaturated compound (hereinafter sometimes referred to as “(a) unsaturated compound”) and (b1) an ethylenically unsaturated carboxylic acid and / or a polymerizable unsaturated polyvalent carboxylic acid. An acid anhydride (hereinafter sometimes referred to as “(b1) unsaturated compound”), a polymerizable unsaturated compound other than (a) unsaturated compound and (b1) unsaturated compound (hereinafter referred to as “(b2) unsaturated”) And is sometimes referred to as “compound”). (The copolymer obtained by this copolymerization may be hereinafter referred to as “(B1) copolymer”).
 (a)不飽和化合物としては、例えば(メタ)アクリル酸グリシジル、α-エチルアクリル酸グリシジル、α-n-プロピルアクリル酸グリシジル、α-n-ブチルアクリル酸グリシジル、(メタ)アクリル酸3,4-エポキシブチル、α-エチルアクリル酸3,4-エポキシブチル、(メタ)アクリル酸6,7-エポキシヘプチル、α-エチルアクリル酸6,7-エポキシヘプチル等が挙げられる。 (A) Examples of unsaturated compounds include glycidyl (meth) acrylate, glycidyl α-ethyl acrylate, glycidyl α-n-propyl acrylate, glycidyl α-n-butyl acrylate, and (meth) acrylic acid 3,4. -Epoxybutyl, α-ethyl acrylate 3,4-epoxybutyl, (meth) acrylate 6,7-epoxyheptyl, α-ethyl acrylate 6,7-epoxyheptyl and the like.
 (b1)不飽和化合物としては、例えば
 (メタ)アクリル酸、クロトン酸、α-エチルアクリル酸、α-n-プロピルアクリル酸、α-n-ブチルアクリル酸、マレイン酸、フマル酸、シトラコン酸、メサコン酸、イタコン酸等の不飽和カルボン酸類;
無水マレイン酸、無水イタコン酸、無水シトラコン酸、シス-1,2,3,4-テトラヒドロフタル酸無水物等の不飽和多価カルボン酸無水物類等が挙げられる。
(B1) Examples of unsaturated compounds include (meth) acrylic acid, crotonic acid, α-ethylacrylic acid, α-n-propylacrylic acid, α-n-butylacrylic acid, maleic acid, fumaric acid, citraconic acid, Unsaturated carboxylic acids such as mesaconic acid and itaconic acid;
Examples thereof include unsaturated polycarboxylic anhydrides such as maleic anhydride, itaconic anhydride, citraconic anhydride, and cis-1,2,3,4-tetrahydrophthalic anhydride.
 (b2)不飽和化合物としては、例えば
 (メタ)アクリル酸2-ヒドロキシエチル、(メタ)アクリル酸2-ヒドロキシプロピル等の(メタ)アクリル酸ヒドロキシアルキルエステル類;
 (メタ)アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸n-プロピル、(メタ)アクリル酸i-プロピル、(メタ)アクリル酸n-ブチル、(メタ)アクリル酸i-ブチル、(メタ)アクリル酸sec-ブチル、(メタ)アクリル酸t-ブチル等の(メタ)アクリル酸アルキルエステル類;
 (メタ)アクリル酸シクロペンチル、(メタ)アクリル酸シクロヘキシル、(メタ)アクリル酸2-メチルシクロヘキシル、(メタ)アクリル酸トリシクロ[5.2.1.02,6]デカン-8-イル(以下、トリシクロ[5.2.1.02,6]デカン-8-イルを「ジシクロペンタニル」という。)、(メタ)アクリル酸2-ジシクロペンタニルオキシエチル、(メタ)アクリル酸イソボロニル等の(メタ)アクリル酸脂環式エステル類;
 (メタ)アクリル酸フェニル、(メタ)アクリル酸ベンジル等の(メタ)アクリル酸アリールエステル類;
 マレイン酸ジエチル、フマル酸ジエチル、イタコン酸ジエチル等の不飽和ジカルボン酸ジエステル類;
 N-フェニルマレイミド、N-ベンジルマレイミド、N-シクロヘキシルマレイミド、N-スクシンイミジル-3-マレイミドベンゾエート、N-スクシンイミジル-4-マレイミドブチレート、N-スクシンイミジル-6-マレイミドカプロエート、N-スクシンイミジル-3-マレイミドプロピオネート、N-(9-アクリジル)マレイミド等の不飽和ジカルボニルイミド誘導体;
 (メタ)アクリロニトリル、α-クロロアクリロニトリル、シアン化ビニリデン等のシアン化ビニル化合物;
 (メタ)アクリルアミド、N,N-ジメチル(メタ)アクリルアミド等の不飽和アミド化合物;
 スチレン、α-メチルスチレン、m-メチルスチレン、p-メチルスチレン、ビニルトルエン、p-メトキシスチレン等の芳香族ビニル化合物;
 インデン、1-メチルインデン等のインデン誘導体類;
 1,3-ブタジエン、イソプレン、2,3-ジメチル-1,3-ブタジエン等の共役ジエン系化合物の他、塩化ビニル、塩化ビニリデン、酢酸ビニル等が挙げられる。
(B2) Examples of unsaturated compounds include (meth) acrylic acid hydroxyalkyl esters such as (meth) acrylic acid 2-hydroxyethyl and (meth) acrylic acid 2-hydroxypropyl;
Methyl (meth) acrylate, ethyl (meth) acrylate, n-propyl (meth) acrylate, i-propyl (meth) acrylate, n-butyl (meth) acrylate, i-butyl (meth) acrylate, (Meth) acrylic acid alkyl esters such as (meth) acrylic acid sec-butyl and (meth) acrylic acid t-butyl;
(Meth) acrylic acid cyclopentyl, (meth) acrylic acid cyclohexyl, (meth) acrylic acid 2-methylcyclohexyl, (meth) acrylic acid tricyclo [5.2.1.0 2,6 ] decan-8-yl Tricyclo [5.2.1.0 2,6 ] decan-8-yl is referred to as “dicyclopentanyl”), 2-dicyclopentanyloxyethyl (meth) acrylate, isobornyl (meth) acrylate, etc. (Meth) acrylic acid alicyclic esters of
(Meth) acrylic acid aryl esters such as phenyl (meth) acrylate and benzyl (meth) acrylate;
Unsaturated dicarboxylic acid diesters such as diethyl maleate, diethyl fumarate, diethyl itaconate;
N-phenylmaleimide, N-benzylmaleimide, N-cyclohexylmaleimide, N-succinimidyl-3-maleimidobenzoate, N-succinimidyl-4-maleimidobutyrate, N-succinimidyl-6-maleimidocaproate, N-succinimidyl-3 -Unsaturated dicarbonylimide derivatives such as maleimide propionate, N- (9-acridyl) maleimide;
Vinyl cyanide compounds such as (meth) acrylonitrile, α-chloroacrylonitrile, vinylidene cyanide;
Unsaturated amide compounds such as (meth) acrylamide and N, N-dimethyl (meth) acrylamide;
Aromatic vinyl compounds such as styrene, α-methylstyrene, m-methylstyrene, p-methylstyrene, vinyltoluene, p-methoxystyrene;
Indene derivatives such as indene and 1-methylindene;
In addition to conjugated diene compounds such as 1,3-butadiene, isoprene and 2,3-dimethyl-1,3-butadiene, vinyl chloride, vinylidene chloride, vinyl acetate and the like can be mentioned.
 (B1)共重合体において、(a)不飽和化合物に由来する構造単位の含有率としては、全構造単位に対して、10質量%~70質量%が好ましく、20質量%~60質量%がより好ましく、(b1)不飽和化合物に由来する構造単位の合計含有率としては、全構造単位に対して、5質量%~40質量%が好ましく、10質量%~30質量%がより好ましく、(b2)不飽和化合物に由来する構造単位の含有率としては、全構造単位に対して、10質量%~70質量%が好ましく、20質量%~50質量%がより好ましい。 In the copolymer (B1), the content of structural units derived from the unsaturated compound (a) is preferably 10% by mass to 70% by mass, and 20% by mass to 60% by mass with respect to the total structural units. More preferably, (b1) The total content of the structural units derived from the unsaturated compound is preferably 5% by mass to 40% by mass, more preferably 10% by mass to 30% by mass with respect to the total structural units. b2) The content of the structural unit derived from the unsaturated compound is preferably 10% by mass to 70% by mass and more preferably 20% by mass to 50% by mass with respect to the total structural units.
 (B1)共重合体は、各不飽和化合物を、適当な溶媒及び重合開始剤の存在下、例えばラジカル重合によって合成することができる。有機溶媒としては、例えばポリアミック酸の合成に用いられるものとして例示した有機溶媒と同様の有機溶媒等が挙げられる。 (B1) The copolymer can be synthesized by, for example, radical polymerization of each unsaturated compound in the presence of a suitable solvent and a polymerization initiator. As an organic solvent, the organic solvent similar to the organic solvent illustrated as what is used for the synthesis | combination of a polyamic acid, etc. are mentioned, for example.
 重合開始剤としては、例えば
 2,2’-アゾビスイソブチロニトリル、2,2’-アゾビス-(2,4-ジメチルバレロニトリル)、2,2’-アゾビス-(4-メトキシ-2,4-ジメチルバレロニトリル)等のアゾ化合物;
 ベンゾイルペルオキシド、ラウロイルペルオキシド、t-ブチルペルオキシピバレート、1,1’-ビス-(t-ブチルペルオキシ)シクロヘキサン等の有機過酸化物;
 過酸化水素;
 これらの過酸化物と還元剤とからなるレドックス型開始剤等が挙げられる。これらの重合開始剤は、単独で又は2種以上を混合して使用することができる。
Examples of the polymerization initiator include 2,2′-azobisisobutyronitrile, 2,2′-azobis- (2,4-dimethylvaleronitrile), 2,2′-azobis- (4-methoxy-2, Azo compounds such as 4-dimethylvaleronitrile);
Organic peroxides such as benzoyl peroxide, lauroyl peroxide, t-butylperoxypivalate, 1,1′-bis- (t-butylperoxy) cyclohexane;
hydrogen peroxide;
Examples thereof include a redox initiator composed of these peroxides and a reducing agent. These polymerization initiators can be used alone or in admixture of two or more.
[光配向性基を有さないポリオルガノシロキサン]
 上記液晶配向剤は、[A]光配向性ポリオルガノシロキサン以外にも[B]他の重合体としての光配向性基を有さないポリオルガノシロキサンをさらに含有していてもよい。光配向性基を有さないポリオルガノシロキサンとしては、下記式(5)で表される構造単位を有するポリオルガノシロキサン、その加水分解物及び加水分解物の縮合物よりなる群から選択される少なくとも1種が好ましい。なお、上記液晶配向剤が光配向性基を有さないポリオルガノシロキサンを含む場合、光配向性基を有さないポリオルガノシロキサンの大部分は、[A]光配向性ポリオルガノシロキサンとは独立して存在していればその一部は[A]光配向性ポリオルガノシロキサンとの縮合物として存在していても良い。
[Polyorganosiloxane having no photo-alignment group]
The liquid crystal aligning agent may further contain [B] a polyorganosiloxane having no photoalignable group as another polymer, in addition to [A] photoalignable polyorganosiloxane. The polyorganosiloxane having no photo-alignment group is at least selected from the group consisting of a polyorganosiloxane having a structural unit represented by the following formula (5), a hydrolyzate thereof, and a condensate of the hydrolyzate. One is preferred. In addition, when the said liquid crystal aligning agent contains the polyorganosiloxane which does not have a photo-alignment group, most of the polyorganosiloxane which does not have a photo-alignment group is independent of [A] photo-alignment polyorganosiloxane. A part thereof may exist as a condensate with [A] photoalignable polyorganosiloxane.
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000011
 上記式(5)中、Xは水酸基、ハロゲン原子、炭素数1~20のアルキル基、炭素数1~6のアルコキシ基又は炭素数6~20のアリール基である。Yは水酸基又は炭素数1~10のアルコキシ基である。 In the above formula (5), X 2 is a hydroxyl group, a halogen atom, an alkyl group having 1 to 20 carbon atoms, an alkoxy group having 1 to 6 carbon atoms or an aryl group having 6 to 20 carbon atoms. Y 2 is a hydroxyl group or an alkoxy group having 1 to 10 carbon atoms.
 炭素数1~20のアルキル基としては、例えば直鎖状又は分岐状の、メチル基、エチル基、プロピル基、ブチル基、ペンチル基、ヘキシル基、ヘプチル基、オクチル基、ノニル基、デシル基、ラウリル基、ドデシル基、トリデシル基、テトラデシル基、ペンタデシル基、ヘキサデシル基、ヘプタデシル基、オクタデシル基、ノナデシル基、エイコシル基等が挙げられる。 Examples of the alkyl group having 1 to 20 carbon atoms include linear or branched methyl, ethyl, propyl, butyl, pentyl, hexyl, heptyl, octyl, nonyl, decyl, Examples include lauryl group, dodecyl group, tridecyl group, tetradecyl group, pentadecyl group, hexadecyl group, heptadecyl group, octadecyl group, nonadecyl group, and eicosyl group.
 炭素数1~6のアルコキシ基としては、例えばメトキシ基、エトキシ基、n-プロポキシ基、イソプロポキシ基、n-ブトキシ基、イソブトキシ基等が挙げられる。 Examples of the alkoxy group having 1 to 6 carbon atoms include a methoxy group, an ethoxy group, an n-propoxy group, an isopropoxy group, an n-butoxy group, and an isobutoxy group.
 炭素数6~20のアリール基としては、例えば、フェニル基、ナフチル基等が挙げられる。 Examples of the aryl group having 6 to 20 carbon atoms include a phenyl group and a naphthyl group.
 光配向性基を有さないポリオルガノシロキサンは、例えばアルコキシシラン化合物及びハロゲン化シラン化合物からなる群より選択される少なくとも1種のシラン化合物(以下、「原料シラン化合物」と称することがある)を、好ましくは適当な有機溶媒中で、水及び触媒の存在下において加水分解又は加水分解・縮合することにより合成できる。 The polyorganosiloxane having no photo-alignment group is, for example, at least one silane compound selected from the group consisting of an alkoxysilane compound and a halogenated silane compound (hereinafter sometimes referred to as “raw material silane compound”). Preferably, it can be synthesized by hydrolysis or hydrolysis / condensation in a suitable organic solvent in the presence of water and a catalyst.
 原料シラン化合物としては、例えば
 テトラメトキシシラン、テトラエトキシシラン、テトラ-n-プロポキシシラン、テトラ-iso-プロポキシシラン、テトラ-n-ブトキシラン、テトラ-sec-ブトキシシラン、テトラ-tert-ブトキシシラン、テトラクロロシラン等;
 メチルトリメトキシシラン、メチルトリエトキシシラン、メチルトリ-n-プロポキシシラン、メチルトリ-iso-プロポキシシラン、メチルトリ-n-ブトキシシラン、メチルトリ-sec-ブトキシシラン、メチルトリ-tert-ブトキシシラン、メチルトリフェノキシシラン、メチルトリクロロシラン、エチルトリメトキシシラン、エチルトリエトキシシラン、エチルトリ-n-プロポキシシラン、エチルトリ-iso-プロポキシシラン、エチルトリ-n-ブトキシシラン、エチルトリ-sec-ブトキシシラン、エチルトリ-tert-ブトキシシラン、エチルトリクロロシラン、フェニルトリメトキシシラン、フェニルトリエトキシシラン、フェニルトリクロロシラン等;
 ジメチルジメトキシシラン、ジメチルジエトキシシラン、ジメチルジクロロシラン等;
 トリメチルメトキシシラン、トリメチルエトキシシラン、トリメチルクロロシラン等が挙げられる。
Examples of the raw material silane compound include tetramethoxysilane, tetraethoxysilane, tetra-n-propoxysilane, tetra-iso-propoxysilane, tetra-n-butoxysilane, tetra-sec-butoxysilane, tetra-tert-butoxysilane, tetra Chlorosilane, etc .;
Methyltrimethoxysilane, methyltriethoxysilane, methyltri-n-propoxysilane, methyltri-iso-propoxysilane, methyltri-n-butoxysilane, methyltri-sec-butoxysilane, methyltri-tert-butoxysilane, methyltriphenoxysilane, Methyltrichlorosilane, ethyltrimethoxysilane, ethyltriethoxysilane, ethyltri-n-propoxysilane, ethyltri-iso-propoxysilane, ethyltri-n-butoxysilane, ethyltri-sec-butoxysilane, ethyltri-tert-butoxysilane, ethyl Trichlorosilane, phenyltrimethoxysilane, phenyltriethoxysilane, phenyltrichlorosilane, etc .;
Dimethyldimethoxysilane, dimethyldiethoxysilane, dimethyldichlorosilane, etc .;
Examples include trimethylmethoxysilane, trimethylethoxysilane, and trimethylchlorosilane.
 これらのうち、テトラメトキシシラン、テトラエトキシシラン、メチルトリメトキシシラン、メチルトリエトキシシラン、フェニルトリメトキシシラン、フェニルトリエトキシシラン、ジメチルジメトキシシラン、ジメチルジエトキシシラン、トリメチルメトキシシラン又はトリメチルエトキシシランが好ましい。 Of these, tetramethoxysilane, tetraethoxysilane, methyltrimethoxysilane, methyltriethoxysilane, phenyltrimethoxysilane, phenyltriethoxysilane, dimethyldimethoxysilane, dimethyldiethoxysilane, trimethylmethoxysilane or trimethylethoxysilane are preferred. .
 光配向性基を有さないポリオルガノシロキサンを合成する際に、任意的に使用できる有機溶媒としては、例えば、アルコール化合物、ケトン化合物、アミド化合物、エステル化合物又はその他の非プロトン性化合物が挙げられる。これらは単独で又は2種以上組合せて使用できる。 Examples of organic solvents that can optionally be used when synthesizing a polyorganosiloxane having no photo-alignment group include alcohol compounds, ketone compounds, amide compounds, ester compounds, and other aprotic compounds. . These can be used alone or in combination of two or more.
 光配向性基を有さないポリオルガノシロキサンの合成に際して使用する水の量としては、原料シラン化合物の有するアルコキシ基及びハロゲン原子の合計1モルに対して、0.01モル~100モルが好ましく、0.1モル~30モルがより好ましく、1モル~1.5モルが特に好ましい。 The amount of water used in the synthesis of the polyorganosiloxane having no photo-alignment group is preferably 0.01 to 100 mol with respect to a total of 1 mol of the alkoxy group and halogen atom of the starting silane compound, 0.1 mol to 30 mol is more preferable, and 1 mol to 1.5 mol is particularly preferable.
 光配向性基を有さないポリオルガノシロキサンの合成に際して使用できる触媒としては、例えば金属キレート化合物、有機酸、無機酸、有機塩基、アルカリ金属化合物、アルカリ土類金属化合物、アンモニア等が挙げられる。これらは単独で又は2種以上組合せて使用できる。 Examples of the catalyst that can be used in the synthesis of the polyorganosiloxane having no photo-alignment group include metal chelate compounds, organic acids, inorganic acids, organic bases, alkali metal compounds, alkaline earth metal compounds, and ammonia. These can be used alone or in combination of two or more.
 触媒の使用量としては、原料シラン化合物100質量部に対して0.001質量部~10質量部が好ましく、0.001質量部~1質量部がより好ましい。 The amount of the catalyst used is preferably 0.001 to 10 parts by mass, more preferably 0.001 to 1 part by mass with respect to 100 parts by mass of the raw material silane compound.
 光配向性基を有さないポリオルガノシロキサンの合成に際して添加される水は、原料であるシラン化合物中又はシラン化合物を有機溶媒に溶解した溶液中に、断続的又は連続的に添加できる。触媒は、原料であるシラン化合物中又はシラン化合物を有機溶媒に溶解した溶液中に予め添加しておいてもよく、添加される水中に溶解又は分散させておいてもよい。 The water added in the synthesis of the polyorganosiloxane having no photo-alignment group can be added intermittently or continuously in the raw material silane compound or in a solution obtained by dissolving the silane compound in an organic solvent. The catalyst may be added in advance to a raw material silane compound or a solution in which the silane compound is dissolved in an organic solvent, or may be dissolved or dispersed in the added water.
 光配向性基を有さないポリオルガノシロキサンの合成の際の反応温度としては、0℃~100℃が好ましく、15℃~80℃がより好ましい。反応時間としては、0.5時間~24時間が好ましく、1時間~8時間がより好ましい。 The reaction temperature during the synthesis of the polyorganosiloxane having no photo-alignment group is preferably 0 ° C. to 100 ° C., more preferably 15 ° C. to 80 ° C. The reaction time is preferably 0.5 to 24 hours, more preferably 1 to 8 hours.
 上記液晶配向剤が、[B]他の重合体を含有する場合、[B]他の重合体の含有割合としては、[B]他の重合体の種類により異なるが、[A]光配向性ポリオルガノシロキサン100質量部に対して10,000質量部以下が好ましく、5,000質量部以下がより好ましく、2,000質量部以下がさらに好ましい。 When the liquid crystal aligning agent contains [B] other polymer, the content ratio of [B] other polymer varies depending on the type of [B] other polymer, but [A] photo-alignment property. The amount is preferably 10,000 parts by mass or less, more preferably 5,000 parts by mass or less, and still more preferably 2,000 parts by mass or less with respect to 100 parts by mass of the polyorganosiloxane.
<[C]エステル構造含有化合物>
 上記液晶配向剤は[C]エステル構造含有化合物を含むことにより、耐熱性等に優れる液晶配向膜を形成し得る。また、上記液晶配向剤に[C]エステル構造含有化合物を含有させることにより、液晶配向膜をより低温で焼成することが可能になるので、液晶配向膜を形成する基板の選択の幅が広がる。
<[C] Ester structure-containing compound>
By including the [C] ester structure-containing compound, the liquid crystal aligning agent can form a liquid crystal aligning film having excellent heat resistance and the like. Further, by adding the [C] ester structure-containing compound to the liquid crystal aligning agent, the liquid crystal aligning film can be baked at a lower temperature, so that the selection range of the substrate on which the liquid crystal aligning film is formed is expanded.
 [C]エステル構造含有化合物は、分子内にカルボン酸のアセタールエステル構造、カルボン酸のケタールエステル構造、カルボン酸の1-アルキルシクロアルキルエステル構造及びカルボン酸のt-ブチルエステル構造からなる群より選択される1種又は2種以上を有し、この構造が1種の場合は複数有する化合物である。すなわち、[C]エステル構造含有化合物は、これらの構造のうちの同じ種類の構造を2個以上有する化合物であってもよく、これらの構造のうちの異なる種類の構造を合わせて2個以上有する化合物であってもよい。上記カルボン酸のアセタールエステル構造を含む基としては、下記式(C-1)及び式(C-2)で表される基が挙げられる。 [C] The ester structure-containing compound is selected from the group consisting of an acetal ester structure of a carboxylic acid, a ketal ester structure of a carboxylic acid, a 1-alkylcycloalkyl ester structure of a carboxylic acid, and a t-butyl ester structure of a carboxylic acid in the molecule. In the case where the structure is one kind or more, the compound is plural. That is, the [C] ester structure-containing compound may be a compound having two or more of the same kind of structures among these structures, and has two or more of the different kinds of structures among these structures. It may be a compound. Examples of the group containing an acetal ester structure of the carboxylic acid include groups represented by the following formulas (C-1) and (C-2).
Figure JPOXMLDOC01-appb-C000012
(式(C-1)中、R13及びR14はそれぞれ独立して、炭素数1~20のアルキル基、炭素数3~10の脂環式基、炭素数6~10のアリール基又は炭素数7~10のアラルキル基である。
 式(C-2)中、n1は2~10の整数である。)
Figure JPOXMLDOC01-appb-C000012
(In Formula (C-1), R 13 and R 14 are each independently an alkyl group having 1 to 20 carbon atoms, an alicyclic group having 3 to 10 carbon atoms, an aryl group having 6 to 10 carbon atoms, or a carbon atom. It is an aralkyl group of formula 7-10.
In the formula (C-2), n1 is an integer of 2 to 10. )
 上記式(C-1)におけるR13において、炭素数1~20のアルキル基としてはメチル基が好ましく、炭素数3~10の脂環式基としてはシクロヘキシル基が好ましく、炭素数6~10のアリール基としてはフェニル基が好ましく、炭素数7~10のアラルキル基としてはベンジル基が好ましい。R14の炭素数1~20のアルキル基としては炭素数1~6のアルキル基が好ましく、炭素数3~10の脂環式基としては炭素数6~10の脂環式基が好ましく、炭素数6~10のアリール基としてはフェニル基が好ましく、炭素数7~10のアラルキル基としてはベンジル基又は2-フェニルエチル基が好ましい。式(C-2)におけるn1としては、3又は4が好ましい。 In R 13 in the above formula (C-1), the alkyl group having 1 to 20 carbon atoms is preferably a methyl group, the alicyclic group having 3 to 10 carbon atoms is preferably a cyclohexyl group, and the alkyl group having 6 to 10 carbon atoms. The aryl group is preferably a phenyl group, and the aralkyl group having 7 to 10 carbon atoms is preferably a benzyl group. The alkyl group having 1 to 20 carbon atoms of R 14 is preferably an alkyl group having 1 to 6 carbon atoms, and the alicyclic group having 3 to 10 carbon atoms is preferably an alicyclic group having 6 to 10 carbon atoms. The aryl group having 6 to 10 carbon atoms is preferably a phenyl group, and the aralkyl group having 7 to 10 carbon atoms is preferably a benzyl group or a 2-phenylethyl group. N1 in the formula (C-2) is preferably 3 or 4.
 上記式(C-1)で表される基としては、例えば1-メトキシエトキシカルボニル基、1-エトキシエトキシカルボニル基、1-n-プロポキシエトキシカルボニル基、1-n-ブトキシエトキシカルボニル基、1-i-ブトキシエトキシカルボニル基、1-sec-ブトキシエトキシカルボニル基、1-t-ブトキシエトキシカルボニル基、1-シクロヘキシルオキシエトキシカルボニル基、1-ノルボルニルオキシエトキシカルボニル基、1-フェノキシエトキシカルボニル基、(シクロヘキシル)(メトキシ)メトキシカルボニル基、(シクロヘキシル)(シクロヘキシルオキシ)メトキシカルボニル基、(シクロヘキシル)(フェノキシ)メトキシカルボニル基、(シクロヘキシル)(ベンジルオキシ)メトキシカルボニル基、(フェニル)(メトキシ)メトキシカルボニル基、(フェニル)(シクロヘキシルオキシ)メトキシカルボニル基、(フェニル)(フェノキシ)メトキシカルボニル基、(フェニル)(ベンジルオキシ)メトキシカルボニル基、(ベンジル)(メトキシ)メトキシカルボニル基、(ベンジル)(シクロヘキシルオキシ)メトキシカルボニル基、(ベンジル)(フェノキシ)メトキシカルボニル基、(ベンジル)(ベンジルオキシ)メトキシカルボニル基等が挙げられる。 Examples of the group represented by the formula (C-1) include 1-methoxyethoxycarbonyl group, 1-ethoxyethoxycarbonyl group, 1-n-propoxyethoxycarbonyl group, 1-n-butoxyethoxycarbonyl group, 1- i-butoxyethoxycarbonyl group, 1-sec-butoxyethoxycarbonyl group, 1-t-butoxyethoxycarbonyl group, 1-cyclohexyloxyethoxycarbonyl group, 1-norbornyloxyethoxycarbonyl group, 1-phenoxyethoxycarbonyl group, (Cyclohexyl) (methoxy) methoxycarbonyl group, (cyclohexyl) (cyclohexyloxy) methoxycarbonyl group, (cyclohexyl) (phenoxy) methoxycarbonyl group, (cyclohexyl) (benzyloxy) methoxycarbonyl group, Enyl) (methoxy) methoxycarbonyl group, (phenyl) (cyclohexyloxy) methoxycarbonyl group, (phenyl) (phenoxy) methoxycarbonyl group, (phenyl) (benzyloxy) methoxycarbonyl group, (benzyl) (methoxy) methoxycarbonyl group , (Benzyl) (cyclohexyloxy) methoxycarbonyl group, (benzyl) (phenoxy) methoxycarbonyl group, (benzyl) (benzyloxy) methoxycarbonyl group and the like.
 上記式(C-2)で表される基としては、例えば2-テトラヒドロフラニルオキシカルボニル基、2-テトラヒドロピラニルオキシカルボニル基等が挙げられる。 Examples of the group represented by the above formula (C-2) include 2-tetrahydrofuranyloxycarbonyl group, 2-tetrahydropyranyloxycarbonyl group and the like.
 これらのうち、1-エトキシエトキシカルボニル基、1-n-プロポキシエトキシカルボニル基、1-シクロヘキシルオキシエトキシカルボニル基、2-テトラヒドロフラニルオキシカルボニル基、2-テトラヒドロピラニルオキシカルボニル基が好ましい。 Of these, 1-ethoxyethoxycarbonyl group, 1-n-propoxyethoxycarbonyl group, 1-cyclohexyloxyethoxycarbonyl group, 2-tetrahydrofuranyloxycarbonyl group, and 2-tetrahydropyranyloxycarbonyl group are preferable.
 上記カルボン酸のケタールエステル構造を含む基としては、例えば下記式(C-3)~(C-5)で表される基が挙げられる。 Examples of the group containing a ketal ester structure of the carboxylic acid include groups represented by the following formulas (C-3) to (C-5).
Figure JPOXMLDOC01-appb-C000013
(式(C-3)中、R15は炭素数1~12のアルキル基である。R16及びR17はそれぞれ独立して、炭素数1~12のアルキル基、炭素数3~20の脂環式基、炭素数6~20のアリール基又は炭素数7~20のアラルキル基である。
 式(C-4)中、R18は炭素数1~12のアルキル基である。n2は2~8の整数である。
 式(C-5)中、R19は炭素数1~12のアルキル基である。n3は2~8の整数である。)
Figure JPOXMLDOC01-appb-C000013
(In Formula (C-3), R 15 is an alkyl group having 1 to 12 carbon atoms. R 16 and R 17 are each independently an alkyl group having 1 to 12 carbon atoms or an aliphatic group having 3 to 20 carbon atoms. A cyclic group, an aryl group having 6 to 20 carbon atoms, or an aralkyl group having 7 to 20 carbon atoms.
In formula (C-4), R 18 represents an alkyl group having 1 to 12 carbon atoms. n2 is an integer of 2 to 8.
In the formula (C-5), R 19 is an alkyl group having 1 to 12 carbon atoms. n3 is an integer of 2 to 8. )
 上記式(C-3)におけるR15の炭素数1~12のアルキル基としてはメチル基が好ましく、R16における炭素数1~12のアルキル基としてはメチル基が好ましく、炭素数3~20の脂環式基としてはシクロヘキシル基が好ましく、炭素数6~20のアリール基としてはフェニル基が好ましく、炭素数7~20のアラルキル基としてはベンジル基が好ましい。R17における炭素数7~20のアルキル基としては炭素数1~6のアルキル基が好ましい。炭素数3~20の脂環式基としては炭素数6~10の脂環式基が好ましい。炭素数6~20のアリール基としてはフェニル基が好ましい。炭素数7~20のアラルキル基としてはベンジル基又は2-フェニルエチル基が好ましい。式(C-4)におけるR18の炭素数1~12のアルキル基としてはメチル基が好ましい。n2としては3又は4が好ましい。式(C-5)におけるR19の炭素数1~12のアルキル基としてはメチル基が好ましい。n3としては3又は4が好ましい。 In the above formula (C-3), the alkyl group having 1 to 12 carbon atoms of R 15 is preferably a methyl group, and the alkyl group having 1 to 12 carbon atoms in R 16 is preferably a methyl group, and having 3 to 20 carbon atoms. The alicyclic group is preferably a cyclohexyl group, the aryl group having 6 to 20 carbon atoms is preferably a phenyl group, and the aralkyl group having 7 to 20 carbon atoms is preferably a benzyl group. The alkyl group having 7 to 20 carbon atoms in R 17 is preferably an alkyl group having 1 to 6 carbon atoms. The alicyclic group having 3 to 20 carbon atoms is preferably an alicyclic group having 6 to 10 carbon atoms. The aryl group having 6 to 20 carbon atoms is preferably a phenyl group. The aralkyl group having 7 to 20 carbon atoms is preferably a benzyl group or a 2-phenylethyl group. As the alkyl group having 1 to 12 carbon atoms of R 18 in the formula (C-4), a methyl group is preferable. n2 is preferably 3 or 4. As the alkyl group having 1 to 12 carbon atoms of R 19 in the formula (C-5), a methyl group is preferable. n3 is preferably 3 or 4.
 上記式(C-3)で表される基としては、例えば1-メチル-1-メトキシエトキシカルボニル基、1-メチル-1-n-プロポキシエトキシカルボニル基、1-メチル-1-n-ブトキシエトキシカルボニル基、1-メチル-1-i-ブトキシエトキシカルボニル基、1-メチル-1-sec-ブトキシエトキシカルボニル基、1-メチル-1-t-ブトキシエトキシカルボニル基、1-メチル-1-シクロヘキシルオキシエトキシカルボニル基、1-メチル-1-ノルボルニルオキシエトキシカルボニル基、1-メチル-1-フェノキシエトキシカルボニル基、1-メチル-1-ベンジルオキシエトキシカルボニル基、1-メチル-1-フェネチルオキシエトキシカルボニル基、1-シクロヘキシル-1-メトキシエトキシカルボニル基、1-シクロヘキシル-1-シクロヘキシルオキシエトキシカルボニル基、1-シクロヘキシル-1-フェノキシエトキシカルボニル基、1-フェニル-1-メトキシエトキシカルボニル基、1-フェニル-1-エトキシエトキシカルボニル基、1-フェニル-1-フェノキシエトキシカルボニル基、1-フェニル-1-ベンジルオキシエトキシカルボニル基、1-ベンジル-1-メトキシエトキシカルボニル基、1-ベンジル-1-シクロヘキシルオキシエトキシカルボニル基、1-ベンジル-1-フェノキシエトキシカルボニル基、1-ベンジル-1-ベンジルオキシエトキシカルボニル基等が挙げられる。 Examples of the group represented by the above formula (C-3) include 1-methyl-1-methoxyethoxycarbonyl group, 1-methyl-1-n-propoxyethoxycarbonyl group, 1-methyl-1-n-butoxyethoxy. Carbonyl group, 1-methyl-1-i-butoxyethoxycarbonyl group, 1-methyl-1-sec-butoxyethoxycarbonyl group, 1-methyl-1-t-butoxyethoxycarbonyl group, 1-methyl-1-cyclohexyloxy Ethoxycarbonyl group, 1-methyl-1-norbornyloxyethoxycarbonyl group, 1-methyl-1-phenoxyethoxycarbonyl group, 1-methyl-1-benzyloxyethoxycarbonyl group, 1-methyl-1-phenethyloxyethoxy Carbonyl group, 1-cyclohexyl-1-methoxyethoxycarbonyl 1-cyclohexyl-1-cyclohexyloxyethoxycarbonyl group, 1-cyclohexyl-1-phenoxyethoxycarbonyl group, 1-phenyl-1-methoxyethoxycarbonyl group, 1-phenyl-1-ethoxyethoxycarbonyl group, 1-phenyl- 1-phenoxyethoxycarbonyl group, 1-phenyl-1-benzyloxyethoxycarbonyl group, 1-benzyl-1-methoxyethoxycarbonyl group, 1-benzyl-1-cyclohexyloxyethoxycarbonyl group, 1-benzyl-1-phenoxyethoxy Examples thereof include a carbonyl group and a 1-benzyl-1-benzyloxyethoxycarbonyl group.
 上記式(C-4)で表される基としては、例えば2-(2-メチルテトラヒドロフラニル)オキシカルボニル基、2-(2-メチルテトラヒドロピラニル)オキシカルボニル基等が挙げられる。 Examples of the group represented by the above formula (C-4) include 2- (2-methyltetrahydrofuranyl) oxycarbonyl group and 2- (2-methyltetrahydropyranyl) oxycarbonyl group.
 上記式(C-5)で表される基としては、例えば1-メトキシシクロペンチルオキシカルボニル基、1-メトキシシクロヘキシルオキシカルボニル基等が挙げられる。 Examples of the group represented by the above formula (C-5) include 1-methoxycyclopentyloxycarbonyl group, 1-methoxycyclohexyloxycarbonyl group and the like.
 これらのうち、1-メチル-1-メトキシエトキシカルボニル基、1-メチル-1-シクロヘキシルオキシエトキシカルボニル基が好ましい。 Of these, a 1-methyl-1-methoxyethoxycarbonyl group and a 1-methyl-1-cyclohexyloxyethoxycarbonyl group are preferable.
 上記カルボン酸の1-アルキルシクロアルキルエステル構造を含む基としては、例えば下記式(C-6)で表される基が挙げられる。 Examples of the group containing a 1-alkylcycloalkyl ester structure of the carboxylic acid include a group represented by the following formula (C-6).
Figure JPOXMLDOC01-appb-C000014
(式(C-6)中、R20は炭素数1~12のアルキル基である。n4は1~8の整数である。)
Figure JPOXMLDOC01-appb-C000014
(In the formula (C-6), R 20 is an alkyl group having 1 to 12 carbon atoms. N4 is an integer of 1 to 8.)
 上記式(C-6)におけるR20の炭素数1~12のアルキル基としては炭素数1~10のアルキル基が好ましい。 In the above formula (C-6), the alkyl group having 1 to 12 carbon atoms of R 20 is preferably an alkyl group having 1 to 10 carbon atoms.
 上記式(C-6)で表される基としては、例えば1-メチルシクロプロポキシカルボニル基、1-メチルシクロブトキシカルボニル基、1-メチルシクロペントキシカルボニル基、1-メチルシクロへキシロキシカルボニル基、1-メチルシクロデシロキシカルボニル基、1-エチルシクロブトキシカルボニル基、1-エチルシクロペントキシカルボニル基、1-エチルシクロヘキシロキシカルボニル基、1-エチルシクロデシロキシカルボニル基、1-(イソ)プロピルシクロプロポキシカルボニル基、1-(イソ)プロピルシクロブトキシカルボニル基、1-(イソ)プロピルシクロデシロキシカルボニル基、1-(イソ)ブチルシクロブトキシカルボニル基、1-(イソ)ブチルシクロペントキシカルボニル基、1-(イソ)ブチルシクロヘキシロキシカルボニル基、1-(イソ)ブチルシクロヘプチロキシカルボニル基、1-(イソ)ブチルシクロデシロキシカルボニル基、1-(イソ)ペンチルシクロヘプチロキシカルボニル基、1-(イソ)ペンチルシクロオクチロキシカルボニル基、1-(イソ)ヘキシルシクロプロポキシカルボニル基、1-(イソ)ヘキシルシクロブトキシカルボニル基、1-(イソ)ヘキシルシクロペントキシカルボニル基、1-(イソ)ヘキシルシクロヘキシロキシカルボニル基、1-(イソ)ヘキシルシクロノニロキシカルボニル基、1-(イソ)ヘキシルシクロデシロキシカルボニル基、1-(イソ)オクチルシクロプロポキシカルボニル基、1-(イソ)オクチルシクロブトキシカルボニル基、1-(イソ)オクチルシクロペントキシカルボニル基、1-(イソ)オクチルシクロヘキシロキシカルボニル基、1-(イソ)オクチルシクロヘプチロキシカルボニル基、1-(イソ)オクチルシクロオクチロキシカルボニル基、1-(イソ)オクチルシクロデシロキシカルボニル基等を挙げることができる。 Examples of the group represented by the formula (C-6) include 1-methylcyclopropoxycarbonyl group, 1-methylcyclobutoxycarbonyl group, 1-methylcyclopentoxycarbonyl group, 1-methylcyclohexyloxycarbonyl group, 1-methylcyclodecyloxycarbonyl group, 1-ethylcyclobutoxycarbonyl group, 1-ethylcyclopentoxycarbonyl group, 1-ethylcyclohexyloxycarbonyl group, 1-ethylcyclodecyloxycarbonyl group, 1- (iso) propylcyclo Propoxycarbonyl group, 1- (iso) propylcyclobutoxycarbonyl group, 1- (iso) propylcyclodecyloxycarbonyl group, 1- (iso) butylcyclobutoxycarbonyl group, 1- (iso) butylcyclopentoxycarbonyl group, 1- (Iso) butyl Chloroxyloxycarbonyl group, 1- (iso) butylcycloheptyloxycarbonyl group, 1- (iso) butylcyclodecyloxycarbonyl group, 1- (iso) pentylcycloheptyloxycarbonyl group, 1- (iso) pentyl Cyclooctyloxycarbonyl group, 1- (iso) hexylcyclopropoxycarbonyl group, 1- (iso) hexylcyclobutoxycarbonyl group, 1- (iso) hexylcyclopentoxycarbonyl group, 1- (iso) hexylcyclohexyloxycarbonyl group 1- (iso) hexylcyclononyloxycarbonyl group, 1- (iso) hexylcyclodecyloxycarbonyl group, 1- (iso) octylcyclopropoxycarbonyl group, 1- (iso) octylcyclobutoxycarbonyl group, 1- ( Iso) octylcyclopentoxy Carbonyl group, 1- (iso) octylcyclohexyloxycarbonyl group, 1- (iso) octylcycloheptyloxycarbonyl group, 1- (iso) octylcyclooctyloxycarbonyl group, 1- (iso) octylcyclodecyloxycarbonyl group Etc.
 上記カルボン酸のt-ブチルエステル構造を含む基とは、t-ブトキシカルボニル基である。 The group containing the t-butyl ester structure of the carboxylic acid is a t-butoxycarbonyl group.
 本発明における[C]エステル構造含有化合物としては、下記式(C)で表される化合物が好ましい。 As the [C] ester structure-containing compound in the present invention, a compound represented by the following formula (C) is preferable.
  TR   (C)
(式(C)中、Tは上記式(C-1)~(C-6)のいずれかで表される基若しくはt-ブトキシカルボニル基であり、nが2であってRが単結合であるか、又はnが2~10の整数であってRが炭素数3~10の複素環化合物から水素を除去して得られるn価の基若しくは炭素数1~18のn価の炭化水素基である。)
T n R (C)
(In the formula (C), T is a group represented by any one of the above formulas (C-1) to (C-6) or a t-butoxycarbonyl group, n is 2, and R is a single bond. N is an integer of 2 to 10 and R is an n-valent group obtained by removing hydrogen from a heterocyclic compound having 3 to 10 carbon atoms or an n-valent hydrocarbon group having 1 to 18 carbon atoms .)
 nは、2又は3が好ましい。 N is preferably 2 or 3.
 上記式(C)におけるRとしてはnが2である場合としては単結合、炭素数1~12のアルカンジイル基、1,2-フェニレン基、1,3-フェニレン基、1,4-フェニレン基、2,6-ナフタレニル基、5-ナトリウムスルホ-1,3-フェニレン基、5-テトラブチルホスホニウムスルホ-1,3-フェニレン基等が挙げられる。 In the above formula (C), R is a single bond, an alkanediyl group having 1 to 12 carbon atoms, a 1,2-phenylene group, a 1,3-phenylene group, or a 1,4-phenylene group when n is 2. 2,6-naphthalenyl group, 5-sodium sulfo-1,3-phenylene group, 5-tetrabutylphosphonium sulfo-1,3-phenylene group and the like.
 nが3である場合、上記Rとしては下記式で表される基、ベンゼン-1,3,5-トリイル基等が挙げられる。 When n is 3, examples of R include a group represented by the following formula, a benzene-1,3,5-triyl group, and the like.
Figure JPOXMLDOC01-appb-C000015
Figure JPOXMLDOC01-appb-C000015
 上記アルカンジイル基としては、直鎖状が好ましい。 The alkanediyl group is preferably a straight chain.
 上記式(C)で表される[C]エステル構造含有化合物は、有機化学の定法により、又は有機化学の定法を適宜に組み合わせることにより合成できる。 The [C] ester structure-containing compound represented by the above formula (C) can be synthesized by a conventional organic chemistry method or by appropriately combining organic chemistry conventional methods.
 例えば上記式(C)におけるTが上記式(C-1)で表される基である化合物(但し、R13がフェニル基である場合を除く)は、好ましくはリン酸触媒の存在下で化合物R-(COOH)(但し、R及びnは、それぞれ上記式(C)と同義である)及び化合物R14-O-CH=R13’(但し、R14は上記式(C-1)と同義である。R13’は上記式(C-1)におけるR13の一位炭素から水素原子を除去して得られる基である)を付加することにより合成できる。 For example, a compound in which T in the above formula (C) is a group represented by the above formula (C-1) (except when R 13 is a phenyl group) is preferably a compound in the presence of a phosphoric acid catalyst. R— (COOH) n (wherein R and n are as defined above in formula (C)) and compound R 14 —O—CH═R 13 ′ (where R 14 is as defined in formula (C-1) above) R 13 ′ can be synthesized by adding a group obtained by removing a hydrogen atom from the 1-position carbon of R 13 in the above formula (C-1).
 上記式(C)におけるTが上記式(C-2)で表される基である化合物は、好ましくはp-トルエンスルホン酸触媒の存在下で、化合物R-(COOH)(但し、R及びnは上記式(C)と同義である)及び下記式で表される化合物を付加することにより合成できる。 The compound in which T in the above formula (C) is a group represented by the above formula (C-2) is preferably a compound R- (COOH) n (where R and R in the presence of a p-toluenesulfonic acid catalyst). n is synonymous with the above formula (C)) and can be synthesized by adding a compound represented by the following formula.
Figure JPOXMLDOC01-appb-C000016
(式中、n1は上記式(C-2)と同義である。)
Figure JPOXMLDOC01-appb-C000016
(In the formula, n1 has the same meaning as in the above formula (C-2).)
 上記液晶配向剤中の[C]エステル構造含有化合物の含有量としては、要求される耐熱性等を考慮して決めれば特に限定されないが、[A]光配向性ポリオルガノシロキサン100質量部に対して[C]エステル構造含有化合物0.1質量部~50質量部が好ましく、1質量部~20質量部がより好ましく、2質量部~10質量部が特に好ましい。 The content of the [C] ester structure-containing compound in the liquid crystal aligning agent is not particularly limited as long as it is determined in consideration of required heat resistance and the like, but [A] with respect to 100 parts by mass of the photoalignable polyorganosiloxane. The [C] ester structure-containing compound is preferably 0.1 to 50 parts by weight, more preferably 1 to 20 parts by weight, and particularly preferably 2 to 10 parts by weight.
<その他の任意成分>
 上記液晶配向剤は、上記の他に、本発明の効果を損なわない範囲で硬化剤、硬化触媒、硬化促進剤、分子内に少なくとも一つのエポキシ基を有する化合物(以下、「エポキシ化合物」と称することがある)、官能性シラン化合物、界面活性剤、光増感剤等を含有できる。以下、これらのその他の任意成分について詳述する。
<Other optional components>
In addition to the above, the liquid crystal aligning agent includes a curing agent, a curing catalyst, a curing accelerator, and a compound having at least one epoxy group in the molecule (hereinafter referred to as “epoxy compound”) as long as the effects of the present invention are not impaired. A functional silane compound, a surfactant, a photosensitizer, and the like. Hereinafter, these other optional components will be described in detail.
[硬化剤、硬化触媒及び硬化促進剤]
 硬化剤及び硬化触媒は、[A]光配向性ポリオルガノシロキサンの架橋反応をより強固にする目的で上記液晶配向剤に含有できる。また、上記硬化促進剤は、硬化剤の司る硬化反応を促進する目的で上記液晶配向剤に含有できる。
[Curing agent, curing catalyst and curing accelerator]
A curing agent and a curing catalyst can be contained in the liquid crystal alignment agent for the purpose of strengthening the crosslinking reaction of [A] photo-alignable polyorganosiloxane. Moreover, the said hardening accelerator can be contained in the said liquid crystal aligning agent in order to accelerate | stimulate the hardening reaction which a hardening | curing agent controls.
 硬化剤としては、エポキシ基を有する硬化性化合物又はエポキシ基を有する化合物を含有する硬化性組成物の硬化用として一般に用いられている硬化剤を用いることができ、例えば多価アミン、多価カルボン酸無水物、多価カルボン酸等が挙げられる。 As the curing agent, a curable compound having an epoxy group or a curing agent generally used for curing a curable composition containing a compound having an epoxy group can be used. An acid anhydride, polyhydric carboxylic acid, etc. are mentioned.
 多価カルボン酸無水物としては、例えばシクロヘキサントリカルボン酸の無水物及びその他の多価カルボン酸無水物等が挙げられる。シクロヘキサントリカルボン酸無水物としては、例えばシクロヘキサン-1,2,4-トリカルボン酸、シクロヘキサン-1,3,5-トリカルボン酸、シクロヘキサン-1,2,3-トリカルボン酸、シクロヘキサン-1,3,4-トリカルボン酸-3,4-無水物、シクロヘキサン-1,3,5-トリカルボン酸-3,5-無水物、シクロヘキサン-1,2,3-トリカルボン酸-2,3-酸無水物等が挙げられる。 Examples of the polyvalent carboxylic acid anhydride include cyclohexanetricarboxylic acid anhydride and other polyvalent carboxylic acid anhydrides. Examples of the cyclohexanetricarboxylic acid anhydride include cyclohexane-1,2,4-tricarboxylic acid, cyclohexane-1,3,5-tricarboxylic acid, cyclohexane-1,2,3-tricarboxylic acid, cyclohexane-1,3,4- And tricarboxylic acid-3,4-anhydride, cyclohexane-1,3,5-tricarboxylic acid-3,5-anhydride, cyclohexane-1,2,3-tricarboxylic acid-2,3-acid anhydride, and the like. .
 その他の多価カルボン酸無水物としては、例えば4-メチルテトラヒドロフタル酸無水物、メチルナジック酸無水物、ドデセニルコハク酸無水物、無水こはく酸、無水マレイン酸、無水フタル酸、無水トリメリット酸、下記式(6)で表される化合物、及びポリアミック酸の合成に一般に用いられるテトラカルボン酸二無水物の他、α-テルピネン、アロオシメン等の共役二重結合を有する脂環式化合物と無水マレイン酸とのディールス・アルダー反応生成物及びこれらの水素添加物等が挙げられる。 Examples of other polycarboxylic anhydrides include 4-methyltetrahydrophthalic anhydride, methyl nadic anhydride, dodecenyl succinic anhydride, succinic anhydride, maleic anhydride, phthalic anhydride, trimellitic anhydride, In addition to the compound represented by the formula (6) and tetracarboxylic dianhydride generally used for the synthesis of polyamic acid, an alicyclic compound having a conjugated double bond such as α-terpinene and allocymene, and maleic anhydride The Diels-Alder reaction product and hydrogenated products thereof.
Figure JPOXMLDOC01-appb-C000017
(式(6)中、pは1~20の整数である。)
Figure JPOXMLDOC01-appb-C000017
(In formula (6), p is an integer of 1 to 20)
 硬化触媒としては、例えばジアゾニウム塩、ヨードニウム塩、スルホニウム塩、アルミニウムアルコレート、アルミニウムキレート等が挙げられる。市販品としては、AMERICURE(BF)(ACC製のジアゾニウム塩)、ULTRASET(BF,PF)(旭電化工業製のジアゾニウム塩)、UVEシリーズ(GE製のヨードニウム塩)、Photoinitiator2074((CB)(ローヌ・プーラン製のヨードニウム塩)、CYRACURE UVI-6974、CYRACURE UVI-6990(以上、UCC製のスルホニウム塩)、UVI-508、UVI-509(以上、GE製のスルホニウム塩)、OPTOMER SP-150、OPTOMER SP-170(旭電化工業製のスルホニウム塩)、サンエイド SI-60L、サンエイド SI-80L、サンエイド SI-100L(以上、三新化学工業製のスルホニウム塩)、IRUGACURE 261(チバガイギー製のメタロセン化合物)、アルミキレートA(W)(川研ファインケミカル製)等が挙げられる。これらの硬化触媒は、単独でも2種類以上の混合物であってもよい。 Examples of the curing catalyst include diazonium salts, iodonium salts, sulfonium salts, aluminum alcoholates, and aluminum chelates. As commercial products, AMERICURE (BF 4 ) (diaconium salt made by ACC), ULTRASET (BF 4 , PF 6 ) (diazonium salt made by Asahi Denka Kogyo), UVE series (iodonium salt made by GE), Photoinitiator 2074 ((C 6 F 6 ) 4 B) (iodonium salt made by Rhône-Poulenc), CYRACURE UVI-6974, CYRACURE UVI-6990 (above, sulfonium salt made by UCC), UVI-508, UVI-509 (above, sulfonium made by GE) Salt), OPTOMER SP-150, OPTOMER SP-170 (a sulfonium salt manufactured by Asahi Denka Kogyo), Sun-Aid SI-60L, Sun-Aid SI-80L, Sun-Aid SI-100L (above, a sulfonium salt manufactured by Sanshin Chemical Industry), IRU GACURE 261 (metallocene compound manufactured by Ciba Geigy), aluminum chelate A (W) (manufactured by Kawaken Fine Chemicals) and the like can be mentioned. These curing catalysts may be used alone or as a mixture of two or more.
 硬化触媒の使用割合としては、[A]光配向性ポリオルガノシロキサン100質量部に対して、20質量部以下が好ましく、10質量部以下がより好ましい。上記液晶配向剤が硬化触媒を含有する場合、その含有割合としては、上記の[A]光配向性ポリオルガノシロキサンと任意的に使用される[B]他の重合体の合計100質量部に対して、30質量部以下が好ましく、20質量部以下がより好ましい。 The use ratio of the curing catalyst is preferably 20 parts by mass or less and more preferably 10 parts by mass or less with respect to 100 parts by mass of [A] photo-alignable polyorganosiloxane. When the said liquid crystal aligning agent contains a curing catalyst, as the content rate, [B] above-mentioned photo-alignment polyorganosiloxane and [B] other polymer used arbitrarily with respect to a total of 100 mass parts 30 parts by mass or less is preferable, and 20 parts by mass or less is more preferable.
 これらの硬化触媒のうち、スルホニウム塩、アルミニウムキレートが好ましく、スルホニウム塩のうち、アニオン種として6フッ化アンチモン、6フッ化リン等を含む化合物がより好ましい。これらのスルホニウム塩としては、例えばメチルフェニルジメチルスルホニウムのヘキサフルオロアンチモン塩、エチルフェニルジメチルスルホニウムのヘキサフルオロアンチモン塩、メチルフェニルジメチルスルホニウムのヘキサフルオロホスフェート塩等が挙げられる。これらのスルホニウム塩は、単独でも2種類以上の混合物であってもよい。これらのスルホニム塩の市販品としては、サンエイドSI-60L、サンエイドSI-80L、サンエイドSI-100L(以上、三新化学工業製)、UVI-6990、UVI-6992、UVI-6974(以上、ユニオンカーバイド製)、アデカオプトマーSP-150、アデカオプトマーSP-170、アデカオプトンCP-66、アデカオプトンCP-77(以上、旭電化工業製)、IRGACURE 261(チバガイギー製)等が挙げられる。 Of these curing catalysts, sulfonium salts and aluminum chelates are preferable, and among the sulfonium salts, compounds containing antimony hexafluoride, phosphorus hexafluoride and the like as anionic species are more preferable. Examples of these sulfonium salts include hexafluoroantimony salt of methylphenyldimethylsulfonium, hexafluoroantimony salt of ethylphenyldimethylsulfonium, hexafluorophosphate salt of methylphenyldimethylsulfonium, and the like. These sulfonium salts may be used alone or as a mixture of two or more. Commercially available products of these sulfonime salts include Sun-Aid SI-60L, Sun-Aid SI-80L, Sun-Aid SI-100L (above, manufactured by Sanshin Chemical Industry), UVI-6990, UVI-6922, UVI-6974 (above, Union Carbide). Adekaoptomer SP-150, Adekaoptomer SP-170, Adeka Opton CP-66, Adeka Opton CP-77 (manufactured by Asahi Denka Kogyo), IRGACURE 261 (Ciba Geigy) and the like.
 硬化促進剤としては、例えば
 イミダゾール化合物;
 4級リン化合物;
 4級アミン化合物;
 1,8-ジアザビシクロ[5.4.0]ウンデセン-7やその有機酸塩の如きジアザビシクロアルケン;
 オクチル酸亜鉛、オクチル酸錫、アルミニウムアセチルアセトン錯体の如き有機金属化合物;
 三フッ化ホウ素、ホウ酸トリフェニルの如きホウ素化合物;塩化亜鉛、塩化第二錫の如き金属ハロゲン化合物;
 ジシアンジアミド、アミンとエポキシ樹脂との付加物の如きアミン付加型促進剤等の高融点分散型潜在性硬化促進剤;
 4級フォスフォニウム塩等の表面をポリマーで被覆したマイクロカプセル型潜在性硬化促進剤;
 アミン塩型潜在性硬化促進剤;
 ルイス酸塩、ブレンステッド酸塩の如き高温解離型の熱カチオン重合型潜在性硬化促進剤等が挙げられる。
Examples of curing accelerators include imidazole compounds;
Quaternary phosphorus compounds;
Quaternary amine compounds;
Diazabicycloalkenes such as 1,8-diazabicyclo [5.4.0] undecene-7 and its organic acid salts;
Organometallic compounds such as zinc octylate, tin octylate, aluminum acetylacetone complex;
Boron compounds such as boron trifluoride and triphenyl borate; metal halides such as zinc chloride and stannic chloride;
High melting point dispersion type latent curing accelerators such as dicyandiamide, amine addition type accelerators such as adducts of amine and epoxy resin;
A microcapsule type latent curing accelerator whose surface is covered with a polymer such as a quaternary phosphonium salt;
An amine salt type latent curing accelerator;
And high temperature dissociation type thermal cationic polymerization type latent curing accelerators such as Lewis acid salts and Bronsted acid salts.
 硬化促進剤の使用割合としては、[A]光配向性ポリオルガノシロキサン100質量部に対して、10質量部以下が好ましい。 The use ratio of the curing accelerator is preferably 10 parts by mass or less with respect to 100 parts by mass of [A] photo-alignable polyorganosiloxane.
 上記液晶配向剤が硬化剤及び硬化触媒を含有する場合、その含有割合としては、上記の[A]光配向性ポリオルガノシロキサンと任意的に使用される[B]他の重合体の合計100質量部に対して、10質量部以下が好ましく、1質量部以下がより好ましい。 When the liquid crystal aligning agent contains a curing agent and a curing catalyst, the content ratio is 100 masses in total of [B] other polymers optionally used with the above-mentioned [A] photo-alignable polyorganosiloxane. 10 parts by mass or less is preferable with respect to parts, and 1 part by mass or less is more preferable.
[エポキシ化合物]
 エポキシ化合物は、形成される液晶配向膜の基板表面に対する接着性をより向上する目的で上記液晶配向剤に含有できる。
[Epoxy compound]
An epoxy compound can be contained in the liquid crystal alignment agent for the purpose of further improving the adhesion of the liquid crystal alignment film to be formed to the substrate surface.
 エポキシ化合物としては、例えばエチレングリコールジグリシジルエーテル、ポリエチレングリコールジグリシジルエーテル、プロピレングリコールジグリシジルエーテル、トリプロピレングリコールジグリシジルエーテル、ポリプロピレングリコールジグリシジルエーテル、ネオペンチルグリコールジグリシジルエーテル、1,6-ヘキサンジオールジグリシジルエーテル、グリセリンジグリシジルエーテル、2,2-ジブロモネオペンチルグリコールジグリシジルエーテル、1,3,5,6-テトラグリシジル-2,4-ヘキサンジオール、N,N,N’,N’-テトラグリシジル-m-キシレンジアミン、1,3-ビス(N,N-ジグリシジルアミノメチル)シクロヘキサン、N,N,N’,N’-テトラグリシジル-4,4’-ジアミノジフェニルメタン、N,N-ジグリシジル-ベンジルアミン、N,N-ジグリシジル-アミノメチルシクロヘキサン等が挙げられる。 Examples of the epoxy compound include ethylene glycol diglycidyl ether, polyethylene glycol diglycidyl ether, propylene glycol diglycidyl ether, tripropylene glycol diglycidyl ether, polypropylene glycol diglycidyl ether, neopentyl glycol diglycidyl ether, and 1,6-hexanediol. Diglycidyl ether, glycerin diglycidyl ether, 2,2-dibromoneopentyl glycol diglycidyl ether, 1,3,5,6-tetraglycidyl-2,4-hexanediol, N, N, N ′, N′-tetra Glycidyl-m-xylenediamine, 1,3-bis (N, N-diglycidylaminomethyl) cyclohexane, N, N, N ′, N′-tetraglycidyl-4,4′-di Mino diphenylmethane, N, N-diglycidyl - benzylamine, N, N-diglycidyl - aminomethyl cyclohexane.
 エポキシ化合物の含有割合としては、[A]光配向性ポリオルガノシロキサンと任意に含有される[B]他の重合体との合計100質量部に対して、40質量部以下が好ましく、0.1質量部~30質量部がより好ましい。なお、上記液晶配向剤がエポキシ化合物を含有する場合、架橋反応を効率良く起こす目的で、1-ベンジル-2-メチルイミダゾール等の塩基触媒を併用してもよい。 As a content rate of an epoxy compound, 40 mass parts or less are preferable with respect to a total of 100 mass parts of [A] photo-alignment polyorganosiloxane and [B] other polymer arbitrarily contained, 0.1 More preferred is 30 to 30 parts by mass. When the liquid crystal aligning agent contains an epoxy compound, a base catalyst such as 1-benzyl-2-methylimidazole may be used in combination for the purpose of efficiently causing a crosslinking reaction.
[官能性シラン化合物]
 上記官能性シラン化合物は、形成される液晶配向膜の基板表面に対する接着性を向上する目的で使用できる。
[Functional silane compounds]
The said functional silane compound can be used in order to improve the adhesiveness with respect to the substrate surface of the liquid crystal aligning film formed.
 官能性シラン化合物としては、例えば3-アミノプロピルトリメトキシシラン、3-アミノプロピルトリエトキシシラン、2-アミノプロピルトリメトキシシラン、2-アミノプロピルトリエトキシシラン、N-(2-アミノエチル)-3-アミノプロピルトリメトキシシラン、N-(2-アミノエチル)-3-アミノプロピルメチルジメトキシシラン、3-ウレイドプロピルトリメトキシシラン、3-ウレイドプロピルトリエトキシシラン、N-エトキシカルボニル-3-アミノプロピルトリメトキシシラン、N-エトキシカルボニル-3-アミノプロピルトリエトキシシラン、N-トリエトキシシリルプロピルトリエチレントリアミン、N-トリメトキシシリルプロピルトリエチレントリアミン、10-トリメトキシシリル-1,4,7-トリアザデカン、10-トリエトキシシリル-1,4,7-トリアザデカン、9-トリメトキシシリル-3,6-ジアザノニルアセテート、9-トリエトキシシリル-3,6-ジアザノニルアセテート、N-ベンジル-3-アミノプロピルトリメトキシシラン、N-ベンジル-3-アミノプロピルトリエトキシシラン、N-フェニル-3-アミノプロピルトリメトキシシラン、N-フェニル-3-アミノプロピルトリエトキシシラン、N-ビス(オキシエチレン)-3-アミノプロピルトリメトキシシラン、N-ビス(オキシエチレン)-3-アミノプロピルトリエトキシシラン、3-グリシジロキシプロピルトリメトキシシラン、2-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン、テトラカルボン酸二無水物とアミノ基を有するシラン化合物との反応物等の他、特開昭63-291922号公報に記載されている、テトラカルボン酸二無水物とアミノ基を有するシラン化合物との反応物等が挙げられる。 Examples of the functional silane compound include 3-aminopropyltrimethoxysilane, 3-aminopropyltriethoxysilane, 2-aminopropyltrimethoxysilane, 2-aminopropyltriethoxysilane, and N- (2-aminoethyl) -3. -Aminopropyltrimethoxysilane, N- (2-aminoethyl) -3-aminopropylmethyldimethoxysilane, 3-ureidopropyltrimethoxysilane, 3-ureidopropyltriethoxysilane, N-ethoxycarbonyl-3-aminopropyltri Methoxysilane, N-ethoxycarbonyl-3-aminopropyltriethoxysilane, N-triethoxysilylpropyltriethylenetriamine, N-trimethoxysilylpropyltriethylenetriamine, 10-trimethoxysilyl-1,4 -Triazadecane, 10-triethoxysilyl-1,4,7-triazadecane, 9-trimethoxysilyl-3,6-diazanonyl acetate, 9-triethoxysilyl-3,6-diazanonyl acetate, N-benzyl -3-aminopropyltrimethoxysilane, N-benzyl-3-aminopropyltriethoxysilane, N-phenyl-3-aminopropyltrimethoxysilane, N-phenyl-3-aminopropyltriethoxysilane, N-bis (oxy Ethylene) -3-aminopropyltrimethoxysilane, N-bis (oxyethylene) -3-aminopropyltriethoxysilane, 3-glycidyloxypropyltrimethoxysilane, 2- (3,4-epoxycyclohexyl) ethyltrimethoxy Silane, tetracarboxylic dianhydride and amino Another reaction product of the silane compound having a group are described in JP-A-63-291922, a reaction product of a silane compound having a tetracarboxylic dianhydride and an amino group.
 官能性シラン化合物の含有割合としては、[A]光配向性ポリオルガノシロキサンと任意に含有される[B]他の重合体との合計100質量部に対して、50質量部以下が好ましく、20質量部以下がより好ましい。 As a content rate of a functional silane compound, 50 mass parts or less are preferable with respect to a total of 100 mass parts of [A] photo-alignment polyorganosiloxane and the arbitrarily contained [B] other polymer, Less than the mass part is more preferable.
[界面活性剤]
 界面活性剤としては、例えばノニオン界面活性剤、アニオン界面活性剤、カチオン界面活性剤、両性界面活性剤、シリコーン界面活性剤、ポリアルキレンオキシド界面活性剤、含フッ素界面活性剤等が挙げられる。
[Surfactant]
Examples of the surfactant include nonionic surfactants, anionic surfactants, cationic surfactants, amphoteric surfactants, silicone surfactants, polyalkylene oxide surfactants, and fluorine-containing surfactants.
 界面活性剤の使用割合としては、上記液晶配向剤の全体100質量部に対して、10質量部以下が好ましく、1質量部以下がより好ましい。 The proportion of the surfactant used is preferably 10 parts by mass or less, and more preferably 1 part by mass or less, based on 100 parts by mass of the entire liquid crystal aligning agent.
[光増感剤]
 上記液晶配向剤に含有され得る光増感性剤は、カルボキシル基、水酸基、-SH、-NCO、-NHR(但し、Rは水素原子又は炭素数1~6のアルキル基である)、-CH=CH及びSOClからなる群より選択される少なくとも1種の基並びに光増感性構造を有する化合物である。上記エポキシ基を有するポリオルガノシロキサンと、特定桂皮酸誘導体及び光増感性剤の混合物とを反応させることにより、上記液晶配向剤に含有される[A]光配向性ポリオルガノシロキサンは、特定桂皮酸誘導体に由来する感光性構造(桂皮酸構造)と光増感性剤に由来する光増感性構造とを併有することとなる。この光増感性構造は、光の照射により励起し、この励起エネルギーを重合体内で近接する感光性構造に与える機能を有する。この励起状態は一重項であってもよく、三重項であってもよいが、長寿命や効率的なエネルギー移動に鑑み、三重項であることが好ましい。上記光増感性構造が吸収する光は、波長150nm~600nmの範囲の紫外線又は可視光線であることが好ましい。波長が上記下限より短い光は、通常の光学系で取り扱うことができないため、光配向法に好適に用いることができない。一方、上記上限より波長の長い光は、エネルギーが小さく、上記光増感性構造の励起状態を誘起し難い。
[Photosensitizer]
The photosensitizer that can be contained in the liquid crystal aligning agent includes a carboxyl group, a hydroxyl group, —SH, —NCO, —NHR (where R is a hydrogen atom or an alkyl group having 1 to 6 carbon atoms), —CH═ A compound having at least one group selected from the group consisting of CH 2 and SO 2 Cl and a photosensitizing structure. By reacting the polyorganosiloxane having an epoxy group with a mixture of a specific cinnamic acid derivative and a photosensitizer, the [A] photoalignable polyorganosiloxane contained in the liquid crystal aligning agent is a specific cinnamic acid. The photosensitive structure (cinnamic acid structure) derived from the derivative and the photosensitized structure derived from the photosensitizer are included. This photosensitizing structure has a function of being excited by light irradiation and giving this excitation energy to the adjacent photosensitive structure in the polymer. This excited state may be a singlet or a triplet, but is preferably a triplet in view of long life and efficient energy transfer. The light absorbed by the photosensitizing structure is preferably ultraviolet rays or visible rays having a wavelength in the range of 150 nm to 600 nm. Light with a wavelength shorter than the above lower limit cannot be used in a photo-alignment method because it cannot be handled by a normal optical system. On the other hand, light having a wavelength longer than the above upper limit has a small energy and hardly induces an excited state of the photosensitizing structure.
 かかる光増感性構造としては、例えばアセトフェノン構造、ベンゾフェノン構造、アントラキノン構造、ビフェニル構造、カルバゾール構造、ニトロアリール構造、フルオレン構造、ナフタレン構造、アントラセン構造、アクリジン構造、インドール構造等が挙げられ、これらを単独で又は2種以上組み合わせて用いることができる。これらの光増感性構造は、それぞれ、アセトフェノン、ベンゾフェノン、アントラキノン、ビフェニル、カルバゾール、ニトロベンゼンもしくはジニトロベンゼン、ナフタレン、フルオレン、アントラセン、アクリジン又はインドールから、1~4個の水素原子を除去して得られる基からなる構造をいう。ここで、アセトフェノン構造、カルバゾール構造及びインドール構造のそれぞれは、アセトフェノン、カルバゾール又はインドールのベンゼン環が有する水素原子のうちの1~4個を除去して得られる基からなる構造であることが好ましい。これらの光増感性構造のうち、アセトフェノン構造、ベンゾフェノン構造、アントラキノン構造、ビフェニル構造、カルバゾール構造、ニトロアリール構造及びナフタレン構造からなる群より選択される少なくとも1種であることが好ましく、アセトフェノン構造、ベンゾフェノン構造及びニトロアリール構造からなる群より選択される少なくとも1種であることが特に好ましい。 Examples of such photosensitizing structure include acetophenone structure, benzophenone structure, anthraquinone structure, biphenyl structure, carbazole structure, nitroaryl structure, fluorene structure, naphthalene structure, anthracene structure, acridine structure, indole structure, etc. Or in combination of two or more. These photosensitizing structures are groups obtained by removing 1 to 4 hydrogen atoms from acetophenone, benzophenone, anthraquinone, biphenyl, carbazole, nitrobenzene or dinitrobenzene, naphthalene, fluorene, anthracene, acridine or indole, respectively. A structure consisting of Here, each of the acetophenone structure, carbazole structure and indole structure is preferably a structure comprising groups obtained by removing 1 to 4 hydrogen atoms of the benzene ring of acetophenone, carbazole or indole. Among these photosensitizing structures, at least one selected from the group consisting of an acetophenone structure, a benzophenone structure, an anthraquinone structure, a biphenyl structure, a carbazole structure, a nitroaryl structure, and a naphthalene structure is preferable, and the acetophenone structure, benzophenone Particularly preferred is at least one selected from the group consisting of a structure and a nitroaryl structure.
 光増感性剤としては、カルボキシル基及び光増感性構造を有する化合物であることが好ましく、さらに好ましい化合物として、例えば下記式(H-1)~(H-10)で表される化合物等が挙げられる。 The photosensitizer is preferably a compound having a carboxyl group and a photosensitizing structure, and more preferable compounds include, for example, compounds represented by the following formulas (H-1) to (H-10). It is done.
Figure JPOXMLDOC01-appb-C000018
(式中、qは1~6の整数である。)
Figure JPOXMLDOC01-appb-C000018
(In the formula, q is an integer of 1 to 6.)
 本発明で使用される光配向性ポリオルガノシロキサン化合物は、上記のエポキシ基を有するポリオルガノシロキサン及び特定桂皮酸誘導体に加え、光増感性剤を合わせて、好ましくは触媒の存在下において、好ましくは有機溶媒中で反応させることにより合成してもよい。 The photoalignable polyorganosiloxane compound used in the present invention is preferably combined with a photosensitizer in addition to the above polyorganosiloxane having an epoxy group and a specific cinnamic acid derivative, preferably in the presence of a catalyst, You may synthesize | combine by making it react in an organic solvent.
 この場合、特定桂皮酸誘導体の使用量としては、エポキシ基を有するポリオルガノシロキサンのケイ素原子1モルに対して、0.001モル~10モルが好ましく、0.01モル~5モルがより好ましく、0.05モル~2モルが特に好ましい。光増感性剤の使用量としては、エポキシ基を有するポリオルガノシロキサンのケイ素原子1モルに対して、0.0001モル~0.5モルが好ましく、0.0005モル~0.2モルがより好ましく、0.001モル~0.1モルが特に好ましい。 In this case, the amount of the specific cinnamic acid derivative used is preferably 0.001 mol to 10 mol, more preferably 0.01 mol to 5 mol, relative to 1 mol of the silicon atom of the polyorganosiloxane having an epoxy group. 0.05 mol to 2 mol is particularly preferred. The amount of the photosensitizer used is preferably 0.0001 mol to 0.5 mol, more preferably 0.0005 mol to 0.2 mol, relative to 1 mol of the silicon atom of the polyorganosiloxane having an epoxy group. 0.001 mol to 0.1 mol is particularly preferable.
<液晶配向剤の調製方法>
 上記液晶配向剤は、上述の通り、例えば、[A]光配向性ポリオルガノシロキサンを含有し、必要に応じて好適成分、その他の任意成分を含有することができるが、好ましくは各成分が有機溶媒に溶解された溶液状の組成物として調製される。
<Method for preparing liquid crystal aligning agent>
As described above, the liquid crystal aligning agent contains, for example, [A] photo-alignable polyorganosiloxane, and may contain a suitable component and other optional components as necessary. Preferably, each component is organic. It is prepared as a solution-like composition dissolved in a solvent.
 有機溶媒としては、[A]光配向性ポリオルガノシロキサン及び任意に使用される他の成分を溶解し、これらと反応しないものが好ましい。上記液晶配向剤に好ましく使用できる有機溶媒としては、任意に含有される他の重合体の種類により異なる。 As the organic solvent, [A] a photoalignable polyorganosiloxane and other components optionally used are preferably dissolved and do not react with these. The organic solvent that can be preferably used in the liquid crystal aligning agent varies depending on the type of other polymer that is optionally contained.
 上記液晶配向剤が[A]光配向性ポリオルガノシロキサンと、[B]他の重合体を含有するものである場合における好ましい有機溶媒としては、ポリアミック酸の合成に用いられるものとして例示した有機溶媒が挙げられる。これらの有機溶媒は、単独で又は2種以上組み合わせて使用できる。 As the preferable organic solvent in the case where the liquid crystal aligning agent contains [A] photo-alignable polyorganosiloxane and [B] other polymer, the organic solvents exemplified as those used for the synthesis of polyamic acid. Is mentioned. These organic solvents can be used alone or in combination of two or more.
 上記液晶配向剤の調製に用いられる好ましい溶媒は、他の重合体の使用の有無及びその種類に従い、上記した有機溶媒の1種又は2種以上を組み合わせて得られる。このような溶媒は、下記の好ましい固形分濃度において液晶配向剤に含有される各成分が析出せず、且つ液晶配向剤の表面張力が25mN/m~40mN/mの範囲となるものである。 A preferable solvent used for the preparation of the liquid crystal aligning agent is obtained by combining one or more of the above-described organic solvents according to the presence or absence of other polymers and their types. Such a solvent is one in which each component contained in the liquid crystal aligning agent does not precipitate at the following preferable solid content concentration, and the surface tension of the liquid crystal aligning agent is in the range of 25 mN / m to 40 mN / m.
 上記液晶配向剤の固形分濃度、すなわち上記液晶配向剤中の溶媒以外の全成分の質量が液晶配向剤の全質量に占める割合は、粘性、揮発性等を考慮して選択されるが、好ましくは1質量%~10質量%である。固形分濃度が1質量%未満では、上記液晶配向剤から形成される液晶配向膜の膜厚が過小となって良好な液晶配向膜が得られない場合がある。一方、固形分濃度が10質量%を超えると、塗膜の膜厚が過大となって良好な液晶配向膜を得られない場合があり、また、液晶配向剤の粘性が増大して塗布特性が不足する場合がある。好ましい固形分濃度の範囲は、基板に液晶配向剤を塗布する際に採用する方法によって異なる。例えばスピンナー法による場合の固形分濃度の範囲としては、1.5質量%~4.5質量%が好ましい。印刷法による場合、固形分濃度を3質量%~9質量%の範囲とし、それによって溶液粘度を12mPa・s~50mPa・sの範囲とすることが好ましい。インクジェット法による場合、固形分濃度を1質量%~5質量%の範囲とし、それによって溶液粘度を3mPa・s~15mPa・sの範囲とすることが好ましい。 The solid content concentration of the liquid crystal aligning agent, that is, the ratio of the mass of all components other than the solvent in the liquid crystal aligning agent to the total mass of the liquid crystal aligning agent is selected in consideration of viscosity, volatility, etc. Is 1% by mass to 10% by mass. When the solid content concentration is less than 1% by mass, the film thickness of the liquid crystal alignment film formed from the liquid crystal alignment agent is too small, and a good liquid crystal alignment film may not be obtained. On the other hand, if the solid content concentration exceeds 10% by mass, the film thickness of the coating film may be excessive and a good liquid crystal alignment film may not be obtained. There may be a shortage. The range of the preferable solid content concentration varies depending on the method employed when the liquid crystal aligning agent is applied to the substrate. For example, the range of the solid content concentration in the case of the spinner method is preferably 1.5% by mass to 4.5% by mass. In the case of the printing method, the solid content concentration is preferably in the range of 3% by mass to 9% by mass, and thereby the solution viscosity is preferably in the range of 12 mPa · s to 50 mPa · s. In the case of the ink jet method, the solid content concentration is preferably in the range of 1% by mass to 5% by mass, and thereby the solution viscosity is preferably in the range of 3 mPa · s to 15 mPa · s.
 上記液晶配向剤を調製する際の温度としては、0℃~200℃が好ましく、0℃~40℃がより好ましい。 The temperature at which the liquid crystal aligning agent is prepared is preferably 0 ° C. to 200 ° C., more preferably 0 ° C. to 40 ° C.
<光指向性制御ユニットの製造方法>
 本発明の光指向性制御ユニットは、例えば以下のようにして製造できる。本発明の光指向性制御ユニットの製造方法は、
 透明基板と、この透明基板の表面側に対向配設され、裏面にレンチキュラーレンズアレイを有するレンチキュラー層と、このレンチキュラー層の裏面に積層される液晶配向膜と、この液晶配向膜を介してレンチキュラー層の裏面側に積層される液晶レンズ層とを備える光指向性制御ユニットの製造方法であって、
(1)レンチキュラー層の裏面に感放射線性液晶配向剤を塗布し、塗膜を形成する工程、
(2)上記塗膜への放射線の照射により液晶配向膜を形成する工程、及び
(3)この液晶配向膜及び透明基板間に液晶レンズ層を形成する工程
を有する。
<Method of manufacturing light directivity control unit>
The light directivity control unit of the present invention can be manufactured, for example, as follows. The manufacturing method of the light directivity control unit of the present invention is as follows.
A transparent substrate, a lenticular layer disposed on the front side of the transparent substrate and having a lenticular lens array on the back surface, a liquid crystal alignment film laminated on the back surface of the lenticular layer, and a lenticular layer via the liquid crystal alignment film A light directivity control unit comprising a liquid crystal lens layer laminated on the back side of
(1) A step of applying a radiation-sensitive liquid crystal aligning agent to the back surface of the lenticular layer to form a coating film,
(2) forming a liquid crystal alignment film by irradiating the coating film with radiation; and (3) forming a liquid crystal lens layer between the liquid crystal alignment film and the transparent substrate.
 (1)工程及び(2)工程では、感放射線性液晶配向剤により液晶配向膜を形成する。 In the steps (1) and (2), a liquid crystal alignment film is formed with a radiation-sensitive liquid crystal aligning agent.
<液晶配向膜の形成方法>
 当該光指向性制御ユニットにおいて、液晶配向膜15、16を形成する方法としては、例えば、レンチキュラー層13の裏面のレンチキュラーレンズアレイが形成された面上、及び透明基板12の表面上に、感放射線性液晶配向膜の塗膜を形成し、次いでこの塗膜に光配向法により液晶配向能を付与する方法が挙げられる。
<Method for forming liquid crystal alignment film>
In the light directivity control unit, the liquid crystal alignment films 15 and 16 may be formed by, for example, radiation sensitive on the surface of the back surface of the lenticular layer 13 on which the lenticular lens array is formed and on the surface of the transparent substrate 12. The method of forming the coating film of a crystalline liquid crystal aligning film, and then providing liquid crystal alignment ability to this coating film by the photo-alignment method is mentioned.
 液晶配向膜は、上記液晶配向剤を利用して、例えば次の方法によって製造できる。上記液晶配向剤を、例えば、スプレーコーティング法、スリットコーティング法、ロールコーター法、スピンナー法、印刷法、インクジェット法、蒸着法等の適宜の塗布方法により基板に塗布する。次に、該塗布面を予備加熱(プレベーク)し、次いでポストベークすることにより塗膜を形成する。プレベーク条件としては、例えば40℃~120℃において0.1分~5分である。ポストベーク条件としては、120℃~300℃が好ましく、130℃~220℃がより好ましく、5分~200分が好ましく、10分~100分がより好ましい。ポストベーク後の塗膜の膜厚は、好ましくは0.001μm~1μmであり、より好ましくは0.005μm~0.5μmである。 The liquid crystal alignment film can be produced, for example, by the following method using the liquid crystal alignment agent. The liquid crystal aligning agent is applied to the substrate by an appropriate application method such as spray coating, slit coating, roll coater, spinner, printing, ink jet, or vapor deposition. Next, the coated surface is preheated (pre-baked) and then post-baked to form a coating film. Prebaking conditions are, for example, 0.1 to 5 minutes at 40 to 120 ° C. The post-baking conditions are preferably 120 ° C. to 300 ° C., more preferably 130 ° C. to 220 ° C., preferably 5 minutes to 200 minutes, and more preferably 10 minutes to 100 minutes. The thickness of the coating film after post-baking is preferably 0.001 μm to 1 μm, more preferably 0.005 μm to 0.5 μm.
 上記液晶配向剤の塗布に際しては、塗膜を形成する各層と塗膜との接着性をさらに良好にするために基板上に予め官能性シラン化合物、チタネート等を塗布しておいてもよい。 In applying the liquid crystal aligning agent, a functional silane compound, titanate, or the like may be applied in advance on the substrate in order to further improve the adhesion between each layer forming the coating film and the coating film.
 次いで、上記塗膜に直線偏光若しくは部分偏光された放射線又は無偏光の放射線を照射することにより、液晶配向能を付与する。放射線としては、例えば150nm~800nmの波長の光を含む紫外線及び可視光線を用いることができるが、300nm~400nmの波長の光を含む紫外線が好ましい。用いる放射線が直線偏光又は部分偏光している場合には、照射は基板面に垂直の方向から行っても、プレチルト角を付与するために斜め方向から行ってもよく、また、これらを組み合わせて行ってもよい。無偏光の放射線を照射する場合には、照射の方向は斜め方向である必要がある。なお、本明細書における「プレチルト角」とは、基板面と平行な方向からの液晶分子の傾きの角度をいう。 Next, liquid crystal alignment ability is imparted by irradiating the coating film with linearly polarized light, partially polarized radiation or non-polarized radiation. As the radiation, for example, ultraviolet rays including light having a wavelength of 150 nm to 800 nm and visible light can be used, but ultraviolet rays including light having a wavelength of 300 nm to 400 nm are preferable. When the radiation used is linearly polarized or partially polarized, irradiation may be performed from a direction perpendicular to the substrate surface, or from an oblique direction to give a pretilt angle, or a combination thereof. May be. When irradiating non-polarized radiation, the direction of irradiation needs to be an oblique direction. The “pretilt angle” in this specification refers to the angle of inclination of liquid crystal molecules from a direction parallel to the substrate surface.
 使用する光源としては、例えば低圧水銀ランプ、高圧水銀ランプ、重水素ランプ、メタルハライドランプ、アルゴン共鳴ランプ、キセノンランプ、エキシマーレーザー水銀-キセノンランプ(Hg-Xeランプ)等が挙げられる。上記の好ましい波長領域の紫外線は、上記光源を、例えばフィルター、回折格子等と併用する手段等により得られる。 Examples of the light source used include a low-pressure mercury lamp, a high-pressure mercury lamp, a deuterium lamp, a metal halide lamp, an argon resonance lamp, a xenon lamp, and an excimer laser mercury-xenon lamp (Hg-Xe lamp). The ultraviolet rays in the preferable wavelength region can be obtained by means of using the light source together with, for example, a filter, a diffraction grating, or the like.
 放射線の照射量としては、1J/m以上10,000J/m未満が好ましく、10J/m~3,000J/mがより好ましい。なお、従来知られている液晶配向剤から形成される塗膜に光配向法により液晶配向能を付与する場合、10,000J/m以上の放射線照射量が必要であるところ、上記液晶配向剤を用いると、光配向法の際の放射線照射量が3,000J/m以下、さらに1,000J/m以下であっても良好な液晶配向能を付与でき液晶表示素子の製造コストの削減に資する。 The irradiation dose of radiation, preferably less than 1 J / m 2 or more 10,000J / m 2, 10J / m 2 ~ 3,000J / m 2 is more preferable. In addition, when providing the liquid crystal aligning ability by the photo-alignment method to the coating film formed from a conventionally known liquid crystal aligning agent, the above-mentioned liquid crystal aligning agent needs the irradiation dose of 10,000 J / m < 2 > or more. Can provide good liquid crystal alignment ability even when the irradiation dose in the photo-alignment method is 3,000 J / m 2 or less, and even 1,000 J / m 2 or less, and the manufacturing cost of the liquid crystal display element is reduced. Contribute to
 (3)工程では、液晶配向膜15と透明基板12との間(液晶配向膜15、16間)に液晶レンズ層を形成する。(3)工程を行う方法としては、例えば、(A)液晶配向膜15と透明基板12との間とを接合して空間を形成させ、この空間に液晶材料を充填させて液晶レンズ層14を形成させる方法、(B)液晶配向膜15に隣接させて液晶材料を用い液晶レンズ層14を形成させた後に、透明基板12を配設させる方法等が挙げられる。 (3) In the step (3), a liquid crystal lens layer is formed between the liquid crystal alignment film 15 and the transparent substrate 12 (between the liquid crystal alignment films 15 and 16). (3) As a method of performing the step, for example, (A) a liquid crystal alignment film 15 and the transparent substrate 12 are joined to form a space, and a liquid crystal material is filled in the space to form the liquid crystal lens layer 14. Examples thereof include (B) a method of forming a liquid crystal lens layer 14 using a liquid crystal material adjacent to the liquid crystal alignment film 15 and then disposing the transparent substrate 12.
 上記方法(A)の場合、(3)工程は、
 (3-1)この液晶配向膜と透明基板とを対向配設させ、これらに挟まれた空間を形成する工程、及び
 (3-2)この空間に液晶材料を充填し、液晶レンズ層を形成する工程
を有する。
In the case of the method (A), the step (3)
(3-1) a step of disposing the liquid crystal alignment film and the transparent substrate to face each other and forming a space between them; and (3-2) filling the space with a liquid crystal material to form a liquid crystal lens layer. The process of carrying out.
 上記(3-1)工程では、液晶配向膜15と透明基板12とを対向配設して接合することにより、液晶配向膜15と透明基板12との間(液晶配向膜15、16間)に挟まれた空間を形成する。 In the step (3-1), the liquid crystal alignment film 15 and the transparent substrate 12 are disposed so as to face each other, and are bonded to each other between the liquid crystal alignment film 15 and the transparent substrate 12 (between the liquid crystal alignment films 15, 16). A sandwiched space is formed.
 レンチキュラー層13と透明基板12等を接合する方法としては、特に限定されないが、接着剤を用いる方法、粘着剤を用いる方法、ヒートシール法、エキシマUVを用いる方法等が挙げられる。上記接着剤としては、アクリル系接着剤等が好適に用いられる。 The method for joining the lenticular layer 13 and the transparent substrate 12 is not particularly limited, and examples thereof include a method using an adhesive, a method using a pressure-sensitive adhesive, a heat sealing method, and a method using excimer UV. As the adhesive, an acrylic adhesive or the like is preferably used.
 上記(3-2)工程では、液晶配向膜15、16間の空間に、液晶材料を充填し、液晶レンズ層14を形成させる。 In the step (3-2), the liquid crystal material is filled in the space between the liquid crystal alignment films 15 and 16 to form the liquid crystal lens layer 14.
 上記液晶材料としては、液状の高分子液晶、重合性液晶、非重合性液晶等が挙げられる。液晶材料として重合性液晶を用いる場合には、後述するように、重合性液晶を重合させることが必要となる。 Examples of the liquid crystal material include liquid polymer liquid crystals, polymerizable liquid crystals, and non-polymerizable liquid crystals. When a polymerizable liquid crystal is used as the liquid crystal material, it is necessary to polymerize the polymerizable liquid crystal as will be described later.
 液晶材料を充填する方法としては、例えば、液晶配向膜15、16間の空間を減圧とし、液晶材料を吸引する方法、液晶配向膜15、16間の空間を液晶材料中に浸漬して、毛細管現象等により液晶材料を充填させる方法、液晶材料を液晶配向膜15、16間の空間に注入する方法等が挙げられる。 As a method of filling the liquid crystal material, for example, the space between the liquid crystal alignment films 15 and 16 is reduced in pressure, the liquid crystal material is sucked, the space between the liquid crystal alignment films 15 and 16 is immersed in the liquid crystal material, and the capillary tube Examples thereof include a method of filling a liquid crystal material by a phenomenon or the like, a method of injecting a liquid crystal material into a space between the liquid crystal alignment films 15 and 16, and the like.
 上記方法(B)の場合、(3)工程は、
 (3-1’)この液晶配向膜の裏面側に液晶材料を塗布し、液晶レンズ層を形成する工程、及び
 (3-2’)この液晶レンズ層の裏面側に透明基板を配設する工程
を有する。
In the case of the method (B), the step (3)
(3-1 ′) a step of applying a liquid crystal material to the back side of the liquid crystal alignment film to form a liquid crystal lens layer; and (3-2 ′) a step of disposing a transparent substrate on the back side of the liquid crystal lens layer. Have
 上記(3-1’)では、液晶配向膜15の裏面側に液晶材料を塗布し、液晶レンズ層14を形成させる。この液晶材料としては、例えば、上記(3-1)工程で用いられる液晶材料の例等が挙げられる。 In the above (3-1 ′), a liquid crystal material is applied to the back side of the liquid crystal alignment film 15 to form the liquid crystal lens layer 14. Examples of the liquid crystal material include liquid crystal materials used in step (3-1).
 液晶材料を液晶配向膜15の裏面側に塗布する方法としては、例えば、ピペットを用いて滴下する方法、ハケを用いる方法、スプレーコーティングによる方法、ロールコーティングによる方法等が挙げられる。 Examples of the method of applying the liquid crystal material to the back side of the liquid crystal alignment film 15 include a method of dropping using a pipette, a method using a brush, a method using spray coating, a method using roll coating, and the like.
 上記(3-2’)では、上記形成した液晶レンズ層14の裏面側に透明基板12を配設し、例えば、レンチキュラー層13と透明基板12とを接合させる。この接合する方法としては、例えば、上記(3-1’)工程におけるレンチキュラー層13と透明基板12とを接合する方法の例等が挙げられる。 In the above (3-2 '), the transparent substrate 12 is disposed on the back side of the liquid crystal lens layer 14 formed above, and, for example, the lenticular layer 13 and the transparent substrate 12 are bonded. Examples of the bonding method include an example of a method of bonding the lenticular layer 13 and the transparent substrate 12 in the step (3-1 ′).
 上記(3-2)工程及び(3-1’)工程において、液晶材料として重合性材料を用いる場合には、加熱及び/又は非偏光の放射線照射等により重合性液晶を重合させる。すなわち、この場合、
上記(3-2)工程は、
 (3-2-1)この空間に重合性液晶を吸入する工程、及び
 (3-2-2)この重合性液晶を重合させて液晶レンズ層を形成する工程
を有する。
 また、上記(3-1’)工程は、
 (3-1’-1)この液晶配向膜の裏面側に重合性液晶を塗布する工程、及び
 (3-1’-2)この重合性液晶を重合させて液晶レンズ層を形成する工程
を有する。 
In the steps (3-2) and (3-1 ′), when a polymerizable material is used as the liquid crystal material, the polymerizable liquid crystal is polymerized by heating and / or irradiation with non-polarized radiation. That is, in this case
The above step (3-2)
(3-2-1) a step of sucking polymerizable liquid crystal into this space; and (3-2-2) a step of polymerizing the polymerizable liquid crystal to form a liquid crystal lens layer.
In addition, the above step (3-1 ′)
(3-1′-1) a step of applying a polymerizable liquid crystal on the back side of the liquid crystal alignment film, and (3-1′-2) a step of polymerizing the polymerizable liquid crystal to form a liquid crystal lens layer. .
 上記重合性液晶としては、加熱又は放射線照射によって重合できる化合物であれば特に限定されない。例えば、UVキュアラブル液晶とその応用(液晶 第3巻 第1号 1999年 第34頁~第42頁参照)に記載されているようなネマティック液晶化合物でも良く、複数の化合物との混合物でも良い。また公知の光重合開始剤又は熱重合開始剤を含んでいても良い。これらの重合性液晶化合物やその混合物は適切な溶媒に溶解して使用できる。さらに、カイラル剤等を加えることで基板に垂直方向でねじれたツイストネマティック配向をする液晶や、コレステリック液晶を用いても良く、ディスコティック液晶を用いても良い。 The polymerizable liquid crystal is not particularly limited as long as it is a compound that can be polymerized by heating or irradiation. For example, it may be a nematic liquid crystal compound as described in UV curable liquid crystal and its application (see Liquid Crystal, Vol. 3, No. 1, 1999, pages 34 to 42), or a mixture with a plurality of compounds. Moreover, a well-known photoinitiator or thermal polymerization initiator may be included. These polymerizable liquid crystal compounds and mixtures thereof can be used by dissolving in an appropriate solvent. Further, a liquid crystal having a twisted nematic orientation twisted in a direction perpendicular to the substrate by adding a chiral agent or the like, a cholesteric liquid crystal, or a discotic liquid crystal may be used.
 重合性液晶を加熱する場合の温度としては、良好な配向が得られる温度を選択する。例えば、メルク製重合性液晶、RMS03-013Cを使用した場合では40℃~80℃の範囲で選択される。 As the temperature for heating the polymerizable liquid crystal, a temperature at which good alignment is obtained is selected. For example, when a Merck polymerizable liquid crystal, RMS03-013C, is used, the temperature is selected in the range of 40 ° C to 80 ° C.
 上記放射線を照射する場合の放射線としては、例えば非偏光の紫外線等が挙げられる。放射線の照射量としては、1,000J/m~100,000J/m未満が好ましく、10,000J/m~50,000J/mがより好ましい。 Examples of the radiation when irradiating the radiation include non-polarized ultraviolet rays. The irradiation dose of radiation, preferably less than 1,000J / m 2 ~ 100,000J / m 2, 10,000J / m 2 ~ 50,000J / m 2 is more preferable.
 上記重合性液晶の重合は空気下で行ってもよく、窒素等の不活性ガス雰囲気下で行ってもよく、用いる重合性液晶の重合性基や開始剤によって適した条件を選択できる。 Polymerization of the polymerizable liquid crystal may be performed in the air or in an inert gas atmosphere such as nitrogen, and conditions suitable for the polymerizable group and initiator of the polymerizable liquid crystal to be used can be selected.
 このようにして得られた光指向性制御ユニットにおいては、均一性の高い配向状態で重合性液晶を固定化できる。従って、得られた光指向性制御ユニットは、液晶レンズ層の配向均一性に優れるので、当該光指向性制御ユニットを備える2D/3D切替可能表示モジュールは、解像度等の表示精度を高めることができる。 In the light directivity control unit thus obtained, the polymerizable liquid crystal can be fixed in a highly uniform alignment state. Therefore, since the obtained light directivity control unit is excellent in the alignment uniformity of the liquid crystal lens layer, the 2D / 3D switchable display module including the light directivity control unit can improve display accuracy such as resolution. .
<2D/3D切替可能表示モジュール>
 本発明には、当該光指向性制御ユニットを備える切替可能表示モジュールも好適に含まれる。
<2D / 3D switchable display module>
The present invention suitably includes a switchable display module including the light directivity control unit.
 本発明の第1実施形態に係る光指向性制御ユニット1を備える2D/3D切替可能表示モジュール71について、図5を参照しつつ、以下説明する。2D/3D切替可能表示モジュール71は、上述した光指向性制御ユニット1と、表示パネル31と、液晶スイッチユニット41とを備えている。表示パネル31は、液晶等による通常の表示装置(表示パネル本体)に加えて、入射光偏光子61、及び出射光偏光子62が含まれる。 A 2D / 3D switchable display module 71 including the light directivity control unit 1 according to the first embodiment of the present invention will be described below with reference to FIG. The 2D / 3D switchable display module 71 includes the light directivity control unit 1, the display panel 31, and the liquid crystal switch unit 41 described above. The display panel 31 includes an incident light polarizer 61 and an outgoing light polarizer 62 in addition to a normal display device (display panel body) using liquid crystal or the like.
 表示パネル31(表示パネル本体)は、上記光指向性制御ユニット1の裏面側(視聴者の反対側)に配置されており、表示パネル本体裏面側には、入射光偏光子61が取り付けられている。表示パネル31は、液晶表示装置において通常用いられるものであり、例えば、裏面側に設けられたバックライトから光を画素ごとに透過の制御を行い得る液晶パネルから構成される。 The display panel 31 (display panel body) is disposed on the back side (opposite the viewer) of the light directivity control unit 1, and an incident light polarizer 61 is attached to the back side of the display panel body. Yes. The display panel 31 is normally used in a liquid crystal display device, and includes, for example, a liquid crystal panel that can control transmission of light from a backlight provided on the back side for each pixel.
 液晶スイッチユニット41は、光指向性制御ユニット1の表面側(視聴者側)に配置されている。また、液晶スイッチユニット41は、対向配置される一対のスイッチ透明基板51、52と、これら透明基板の内側に隣接して対向配置される一対の透明電極層53、54と、これら透明導電層の内側に挟持されるスイッチ液晶層55とを備える。 The liquid crystal switch unit 41 is disposed on the surface side (viewer side) of the light directivity control unit 1. In addition, the liquid crystal switch unit 41 includes a pair of switch transparent substrates 51 and 52 arranged to face each other, a pair of transparent electrode layers 53 and 54 arranged to face each other adjacent to the inside of these transparent substrates, and the transparent conductive layers. And a switch liquid crystal layer 55 sandwiched inside.
 上記液晶スイッチユニット41は、一対の透明電極層53、54の間の電圧印可の有無によって、円偏光の回転が0°と90°との間で切り替えることができる。 The liquid crystal switch unit 41 can switch the rotation of circularly polarized light between 0 ° and 90 ° depending on whether a voltage is applied between the pair of transparent electrode layers 53 and 54.
 入射光偏光子61は、振動方向がx方向である偏光のみを通過させるように配置されている。また、出射光偏光子62は、振動方向がx方向である偏光のみを通過させるように配置されている。なお、出射光偏光子62は、上記液晶スイッチユニット41の視聴者側に配されている。 The incident light polarizer 61 is arranged so as to pass only polarized light whose vibration direction is the x direction. Further, the outgoing light polarizer 62 is arranged so as to allow only polarized light whose vibration direction is the x direction to pass therethrough. The outgoing light polarizer 62 is disposed on the viewer side of the liquid crystal switch unit 41.
 当該2D/3D切替可能表示モジュールは、上記の構成を有しているので、液晶スイッチユニット41の一対の透明電極層53、54に電圧印可をしない場合は、液晶スイッチユニット41において偏光面の回転がないため、表示パネル31から光指向性制御ユニット1に入射するx方向に振動する偏光が、出射光偏光子62から出射する。この偏光に対しては、光指向性制御ユニット1は、通過型の光指向性を発揮するため、当該表示モジュールは、2D表示用とすることができる。また、液晶スイッチユニット41の一対の透明電極層53、54に電圧印可する場合は、液晶スイッチユニット41において偏光面が90°回転させることができる。従って、表示パネル31から光指向性制御ユニット1に入射するz方向に振動する偏光が、出射光偏光子62から出射する。この偏光に対しては、光指向性制御ユニット1は、屈折型の光指向性を発揮するため、当該表示モジュールは、3D表示用とすることができる。このように、2D/3D切替可能表示モジュール71によれば、2D及び3D表示をそれぞれ切り替えて表示させることができる。 Since the 2D / 3D switchable display module has the above-described configuration, when the voltage is not applied to the pair of transparent electrode layers 53 and 54 of the liquid crystal switch unit 41, the polarization plane is rotated in the liquid crystal switch unit 41. Therefore, polarized light that vibrates in the x direction and enters the light directivity control unit 1 from the display panel 31 is emitted from the outgoing light polarizer 62. For this polarized light, the light directivity control unit 1 exhibits a pass-type light directivity, so that the display module can be used for 2D display. Further, when a voltage is applied to the pair of transparent electrode layers 53 and 54 of the liquid crystal switch unit 41, the polarization plane of the liquid crystal switch unit 41 can be rotated by 90 °. Therefore, polarized light that vibrates in the z direction and enters the light directivity control unit 1 from the display panel 31 is emitted from the outgoing light polarizer 62. For this polarized light, the light directivity control unit 1 exhibits a refractive light directivity, so that the display module can be used for 3D display. As described above, according to the 2D / 3D switchable display module 71, 2D and 3D display can be switched and displayed.
 本発明の第2実施形態の光指向性制御ユニット2を備える2D/3D切替可能表示モジュール72について、図6を参照しつつ、以下説明する。2D/3D切替可能表示モジュール72は、上述した光指向性制御ユニット2と、表示パネル31とを備えている。表示パネル本体は、光指向性制御ユニット2の裏面側に、表示パネルの一部である入射光偏光子61は、表示パネル本体の裏面側に、出射光偏光子62は、光指向性制御ユニット2の表面側にそれぞれ配設される。なお、同一符号である場合、説明を省略する。 The 2D / 3D switchable display module 72 including the light directivity control unit 2 according to the second embodiment of the present invention will be described below with reference to FIG. The 2D / 3D switchable display module 72 includes the above-described light directivity control unit 2 and the display panel 31. The display panel body is on the back side of the light directivity control unit 2, the incident light polarizer 61 that is a part of the display panel is on the back side of the display panel body, and the outgoing light polarizer 62 is on the light directivity control unit. 2 are disposed on the surface side of the two. In addition, description is abbreviate | omitted when it is the same code | symbol.
 本発明の第3実施形態の光指向性制御ユニット3を備える2D/3D切替可能表示モジュール73について、図7を参照しつつ、以下説明する。2D/3D切替可能表示モジュール73は、上述した光指向性制御ユニット3と、表示パネル31を備えている。表示パネル31は、光指向性制御ユニット3の裏面側に配設されている。表示パネル31に含まれる入射光偏光子61と、出射光偏光子62とは、表示パネル31(表示パネル本体)の裏面側と表面側にそれぞれ配設される。 A 2D / 3D switchable display module 73 including the light directivity control unit 3 according to the third embodiment of the present invention will be described below with reference to FIG. The 2D / 3D switchable display module 73 includes the light directivity control unit 3 and the display panel 31 described above. The display panel 31 is disposed on the back side of the light directivity control unit 3. The incident light polarizer 61 and the outgoing light polarizer 62 included in the display panel 31 are respectively disposed on the back side and the front side of the display panel 31 (display panel body).
 本発明の第4実施形態の光指向性制御ユニット4を備える2D/3D切替可能表示モジュール74について、図8を参照しつつ、以下説明する。2D/3D切替可能表示モジュール74は、上述した光指向性制御ユニット4と、表示パネル31とを備えている。表示パネル31は、光指向性制御ユニット4の裏面側に配設されている。表示パネル31に含まれる入射光偏光子61は、表示パネル31(表示パネル本体)の裏面側に配設される。 A 2D / 3D switchable display module 74 including the light directivity control unit 4 of the fourth embodiment of the present invention will be described below with reference to FIG. The 2D / 3D switchable display module 74 includes the light directivity control unit 4 and the display panel 31 described above. The display panel 31 is disposed on the back side of the light directivity control unit 4. The incident light polarizer 61 included in the display panel 31 is disposed on the back side of the display panel 31 (display panel body).
 上記第2、第3及び第4実施形態に係る2D/3D切替可能表示モジュール72、73及び74においても、第1実施形態の場合と同様に、一対の透明電極層間の電圧印可の有無により、2D及び3D表示をそれぞれ切り替えて表示させることができる。 In the 2D / 3D switchable display modules 72, 73, and 74 according to the second, third, and fourth embodiments, as in the case of the first embodiment, whether or not voltage is applied between a pair of transparent electrode layers, 2D and 3D display can be switched and displayed.
 これらの2D/3D切替可能表示モジュール71~74によれば、液晶レンズ層の液晶の配向均一性に優れる光指向性制御ユニット1、2、3又は4を備えているので、表示パネルにおける2次元及び3次元の表示の質のレベルをほとんど低下させることなく、視聴者に良好な表示を提供することができる。 According to these 2D / 3D switchable display modules 71 to 74, since the light directivity control unit 1, 2, 3 or 4 having excellent liquid crystal alignment uniformity of the liquid crystal lens layer is provided, In addition, a good display can be provided to the viewer with almost no decrease in the quality level of the three-dimensional display.
 なお、本発明の光指向性制御ユニットは、上記実施形態に限定されるものではなく、例えば、レンチキュラー層としては、レンチキュラー層を構成する材質の屈折率と、液晶レンズ層の異常屈折率の大小関係によっては、凹型の代わりに、凸型のものを使用することができる。また、本発明の2D/3D切替可能表示モジュールは、上記実施形態に限定されるものではなく、例えば、表示パネルとして、液晶ディスプレイの代わりに、プラズマディスプレイを用いることもできる。 The light directivity control unit of the present invention is not limited to the above embodiment. For example, as the lenticular layer, the refractive index of the material constituting the lenticular layer and the magnitude of the abnormal refractive index of the liquid crystal lens layer are small. Depending on the relationship, a convex type can be used instead of the concave type. Further, the 2D / 3D switchable display module of the present invention is not limited to the above-described embodiment, and for example, a plasma display can be used as a display panel instead of a liquid crystal display.
 以下、本発明を実施例によりさらに具体的に説明するが、本発明はこれらの実施例に制限されるものではない。なお、以下の実施例において用いた原料化合物及び重合体の必要量は、下記の合成例に示す合成スケールでの原料化合物及び重合体の合成を必要に応じて繰り返すことにより確保した。 Hereinafter, the present invention will be described more specifically with reference to examples, but the present invention is not limited to these examples. In addition, the required amount of the raw material compound and the polymer used in the following examples was ensured by repeating the synthesis of the raw material compound and the polymer on the synthetic scale shown in the following synthesis examples as necessary.
<エポキシ基を有するポリオルガノシロキサンの合成>
[合成例1]
 撹拌機、温度計、滴下漏斗及び還流冷却管を備えた反応容器に、2-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン(ECETS)100.0g、メチルイソブチルケトン500g及びトリエチルアミン10.0gを仕込み、室温で混合した。次いで、脱イオン水100gを滴下漏斗より30分かけて滴下した後、還流下で混合しつつ、80℃で6時間反応させた。反応終了後、有機層を取り出し、0.2質量%硝酸アンモニウム水溶液により洗浄後の水が中性になるまで洗浄したのち、減圧下で溶媒及び水を留去することにより、エポキシ基を有するポリオルガノシロキサンを粘稠な透明液体として得た。
<Synthesis of polyorganosiloxane having epoxy group>
[Synthesis Example 1]
In a reaction vessel equipped with a stirrer, thermometer, dropping funnel and reflux condenser, 100.0 g of 2- (3,4-epoxycyclohexyl) ethyltrimethoxysilane (ECETS), 500 g of methyl isobutyl ketone and 10.0 g of triethylamine were added. Charged and mixed at room temperature. Next, 100 g of deionized water was dropped from the dropping funnel over 30 minutes, and the mixture was reacted at 80 ° C. for 6 hours while mixing under reflux. After completion of the reaction, the organic layer is taken out and washed with a 0.2% by mass aqueous ammonium nitrate solution until the water after washing becomes neutral, and then the solvent and water are distilled off under reduced pressure to give a polyorgano having an epoxy group. Siloxane was obtained as a viscous clear liquid.
 このエポキシ基を有するポリオルガノシロキサンについて、H-NMR分析を行なったところ、化学シフト(δ)=3.2ppm付近にエポキシ基に基づくピークが理論強度どおりに得られ、反応中にエポキシ基の副反応が起こっていないことが確認された。得られたエポキシ基を有するポリオルガノシロキサンのMwは2,200であり、エポキシ当量は186g/モルであった。 As a result of 1 H-NMR analysis of this polyorganosiloxane having an epoxy group, a peak based on the epoxy group was obtained in the vicinity of the chemical shift (δ) = 3.2 ppm according to the theoretical intensity. It was confirmed that no side reaction occurred. Mw of the obtained polyorganosiloxane having an epoxy group was 2,200, and the epoxy equivalent was 186 g / mol.
<特定桂皮酸誘導体の合成>
 特定桂皮酸誘導体の合成反応は全て不活性雰囲気中で行った。
<Synthesis of specific cinnamic acid derivatives>
All synthetic reactions of specific cinnamic acid derivatives were carried out in an inert atmosphere.
[合成例2]
 冷却管を備えた300mLの三口フラスコに4-フルオロフェニルボロン酸6.5g、4-ブロモ桂皮酸10g、テトラキストリフェニルホスフィンパラジウム2.7g、炭酸ナトリウム4g、テトラヒドロフラン80mL、純水39mLを混合した。引き続き反応溶液を80℃で8時間加熱撹拌し、反応終了をTLCで確認した。反応溶液を室温まで冷却後、1N-塩酸水溶液200mLに注ぎ、析出固体をろ別した。得られた固体を酢酸エチルに溶解させ、1N-塩酸水溶液100mL、純水100mL、飽和食塩水100mLの順で分液洗浄した。次に有機層を無水硫酸マグネシウムで乾燥し、溶媒を留去した。得られた固体を真空乾燥し、下記式(K-1)で表される化合物(特定桂皮酸誘導体(K-1))を9g得た。
[Synthesis Example 2]
A 300 mL three-necked flask equipped with a condenser was mixed with 6.5 g of 4-fluorophenylboronic acid, 10 g of 4-bromocinnamic acid, 2.7 g of tetrakistriphenylphosphine palladium, 4 g of sodium carbonate, 80 mL of tetrahydrofuran, and 39 mL of pure water. Subsequently, the reaction solution was heated and stirred at 80 ° C. for 8 hours, and the completion of the reaction was confirmed by TLC. The reaction solution was cooled to room temperature, poured into 200 mL of 1N hydrochloric acid aqueous solution, and the precipitated solid was separated by filtration. The obtained solid was dissolved in ethyl acetate and subjected to separation washing in the order of 100 mL of 1N hydrochloric acid aqueous solution, 100 mL of pure water, and 100 mL of saturated brine. Next, the organic layer was dried over anhydrous magnesium sulfate, and the solvent was distilled off. The obtained solid was vacuum-dried to obtain 9 g of a compound represented by the following formula (K-1) (specific cinnamic acid derivative (K-1)).
Figure JPOXMLDOC01-appb-C000019
Figure JPOXMLDOC01-appb-C000019
[合成例3]
 冷却管を備えた200mLの三口フラスコに4-ビニルビフェニル9.5g、4-ブロモ桂皮酸10g、酢酸パラジウム0.099g、トリス(2-トリル)ホスフィン0.54g、トリエチルアミン18g、ジメチルアセトアミド80mLを混合した。この溶液を120℃で3時間加熱撹拌し、TLCで反応の終了を確認した後、反応溶液を室温まで冷却した。沈殿物をろ別した後、ろ液を1N塩酸水溶液500mLに注ぎ、沈殿物を回収した。これらの沈殿物をジメチルアセトアミド、エタノール1:1溶液で再結晶することにより下記式(K-2)で表される化合物(特定桂皮酸誘導体(K-2))を11g得た。
[Synthesis Example 3]
A 200 mL three-necked flask equipped with a condenser tube was mixed with 9.5 g of 4-vinylbiphenyl, 10 g of 4-bromocinnamic acid, 0.099 g of palladium acetate, 0.54 g of tris (2-tolyl) phosphine, 18 g of triethylamine, and 80 mL of dimethylacetamide. did. This solution was heated and stirred at 120 ° C. for 3 hours, and after completion of the reaction was confirmed by TLC, the reaction solution was cooled to room temperature. After the precipitate was filtered off, the filtrate was poured into 500 mL of 1N hydrochloric acid aqueous solution to collect the precipitate. By recrystallizing these precipitates with a 1: 1 solution of dimethylacetamide and ethanol, 11 g of a compound represented by the following formula (K-2) (specific cinnamic acid derivative (K-2)) was obtained.
Figure JPOXMLDOC01-appb-C000020
Figure JPOXMLDOC01-appb-C000020
<[A]光配向性ポリオルガノシロキサンの合成>
[合成例4]
 100mLの三口フラスコに、合成例1で得たエポキシ基を有するポリオルガノシロキサン9.3g、メチルイソブチルケトン26g、合成例2で得た特定桂皮酸誘導体(K-1)3g及び4級アミン塩(サンアプロ製、UCAT 18X)0.10gを仕込み、80℃で12時間撹拌した。反応終了後、メタノールで再沈殿を行い、沈殿物を酢酸エチルに溶解して溶液を得、この溶液を3回水洗した後、溶媒を留去することにより、[A]光配向性ポリオルガノシロキサン(S-1)を白色粉末として6.3g得た。光配向性ポリオルガノシロキサン化合物(S-1)の重量平均分子量Mwは3,500であった。
<[A] Synthesis of photoalignable polyorganosiloxane>
[Synthesis Example 4]
In a 100 mL three-necked flask, 9.3 g of the polyorganosiloxane having an epoxy group obtained in Synthesis Example 1, 26 g of methyl isobutyl ketone, 3 g of the specific cinnamic acid derivative (K-1) obtained in Synthesis Example 2 and a quaternary amine salt ( 0.10 g of San Apro, UCAT 18X) was charged and stirred at 80 ° C. for 12 hours. After completion of the reaction, reprecipitation with methanol was performed, and the precipitate was dissolved in ethyl acetate to obtain a solution. This solution was washed with water three times, and then the solvent was distilled off, whereby [A] photo-alignable polyorganosiloxane was obtained. 6.3 g of (S-1) was obtained as a white powder. The weight-average molecular weight Mw of the photoalignable polyorganosiloxane compound (S-1) was 3,500.
[合成例5]
 合成例2で得た特定桂皮酸誘導体(K-2)3gを用いたこと以外は合成例4と同様に操作して、[A]光配向性ポリオルガノシロキサン(S-2)の白色粉末を7.0g得た。光配向性ポリオルガノシロキサン化合物(S-2)の重量平均分子量Mwは4,900であった。
[Synthesis Example 5]
[A] A white powder of photo-alignable polyorganosiloxane (S-2) was prepared in the same manner as in Synthesis Example 4 except that 3 g of the specific cinnamic acid derivative (K-2) obtained in Synthesis Example 2 was used. 7.0 g was obtained. The weight-average molecular weight Mw of the photoalignable polyorganosiloxane compound (S-2) was 4,900.
<[B]他の重合体の合成>
[合成例6]
 2,3,5-トリカルボキシシクロペンチル酢酸二無水物22.4g(0.1モル)とシクロヘキサンビス(メチルアミン)14.23g(0.1モル)とをNMP329.3gに溶解し、60℃で6時間反応させた。次いで、反応混合物を大過剰のメタノール中に注ぎ、反応生成物を沈澱させた。沈殿物をメタノールで洗浄し、減圧下40℃で15時間乾燥することにより、ポリアミック酸(PA-2)を32g得た。
 この(PA-2)を17.5gとり、これにNMP232.5g、ピリジン3.8g及び無水酢酸4.9gを添加し、120℃において4時間反応させてイミド化を行った。次いで、反応混合液を大過剰のメタノール中に注ぎ、反応生成物を沈澱させた。沈殿物をメタノールで洗浄し、減圧下で15時間乾燥することにより、ポリイミド(PI-1)を15g得た。
<[B] Synthesis of other polymer>
[Synthesis Example 6]
22.4 g (0.1 mol) of 2,3,5-tricarboxycyclopentylacetic acid dianhydride and 14.23 g (0.1 mol) of cyclohexanebis (methylamine) were dissolved in 329.3 g of NMP. The reaction was performed for 6 hours. The reaction mixture was then poured into a large excess of methanol to precipitate the reaction product. The precipitate was washed with methanol and dried under reduced pressure at 40 ° C. for 15 hours to obtain 32 g of polyamic acid (PA-2).
17.5 g of this (PA-2) was taken, 232.5 g of NMP, 3.8 g of pyridine and 4.9 g of acetic anhydride were added thereto, and the mixture was reacted at 120 ° C. for 4 hours for imidization. The reaction mixture was then poured into a large excess of methanol to precipitate the reaction product. The precipitate was washed with methanol and dried under reduced pressure for 15 hours to obtain 15 g of polyimide (PI-1).
[合成例7]
 冷却管と攪拌機を備えたフラスコに、2,2’-アゾビス(2,4-ジメチルバレロニトリル)5質量部とジエチレングリコールメチルエチルエーテル(DEGME)200質量部を仕込んだ。引き続きメタクリル酸グリシジル40質量部、スチレン10質量部、メタクリル酸30質量部及びシクロヘキシルマレイミド20質量部を仕込み窒素置換した後ゆるやかに攪拌を始めた。溶液温度を70℃に上昇させ、この温度を5時間保持しポリ(メタ)アクリレートの共重合体(MA-1)を含む重合体溶液を得た。得られた重合体溶液の固形分濃度は33.1質量%であった。得られた重合体の数平均分子量は7,000であった。
[Synthesis Example 7]
A flask equipped with a condenser and a stirrer was charged with 5 parts by mass of 2,2′-azobis (2,4-dimethylvaleronitrile) and 200 parts by mass of diethylene glycol methyl ethyl ether (DEGME). Subsequently, 40 parts by mass of glycidyl methacrylate, 10 parts by mass of styrene, 30 parts by mass of methacrylic acid, and 20 parts by mass of cyclohexylmaleimide were charged, and the mixture was gently agitated. The solution temperature was raised to 70 ° C., and this temperature was maintained for 5 hours to obtain a polymer solution containing a copolymer (MA-1) of poly (meth) acrylate. The solid content concentration of the obtained polymer solution was 33.1% by mass. The number average molecular weight of the obtained polymer was 7,000.
<[C]エステル構造含有化合物の合成>
 下記スキームに従って、エステル構造含有化合物(C-1-1)を合成した。
<Synthesis of [C] ester structure-containing compound>
An ester structure-containing compound (C-1-1) was synthesized according to the following scheme.
Figure JPOXMLDOC01-appb-C000021
Figure JPOXMLDOC01-appb-C000021
[合成例8]
 還流管、温度計及び窒素導入管を備えた500mLの三口フラスコにトリメシン酸21g、n-ブチルビニルエーテル60g及びリン酸0.09gを仕込み、50℃で30時間撹拌下に反応を行った。反応終了後、反応混合物にヘキサン500mLを加えて得た有機層につき、1M水酸化ナトリウム水溶液で2回及び水で3回、順次に分液洗浄した。その後、有機層から溶媒を留去することにより、エステル構造含有化合物(C-1-1)を無色透明の液体として50g得た。
[Synthesis Example 8]
A 500 mL three-necked flask equipped with a reflux tube, a thermometer and a nitrogen introduction tube was charged with 21 g of trimesic acid, 60 g of n-butyl vinyl ether and 0.09 g of phosphoric acid, and reacted at 50 ° C. with stirring for 30 hours. After completion of the reaction, the organic layer obtained by adding 500 mL of hexane to the reaction mixture was separated and washed successively with 1M aqueous sodium hydroxide solution twice and water three times. Thereafter, the solvent was distilled off from the organic layer to obtain 50 g of an ester structure-containing compound (C-1-1) as a colorless transparent liquid.
<液晶配向剤の調製>
[実施例1]
 [B]他の重合体として合成例6で得たポリイミド(PI-1)を含有する溶液を、これに含有されるポリイミド(PI-1)に換算して1,000質量部に相当する量を取り、ここに合成例4で得た[A]光配向性ポリオルガノシロキサン(S-1)100質量部を加え、さらにNMP及びジエチレングリコールメチルエチルエーテル(DEGME)を混合し、溶媒組成がNMP:DEGME=90:10(質量比)、固形分濃度が4.0質量%の溶液とした。この溶液を孔径1μmのフィルターで濾過することにより、実施例1に係る液晶配向剤(A-1)を調製した。
<Preparation of liquid crystal aligning agent>
[Example 1]
[B] An amount corresponding to 1,000 parts by mass of the solution containing the polyimide (PI-1) obtained in Synthesis Example 6 as another polymer in terms of the polyimide (PI-1) contained therein Here, 100 parts by mass of [A] photo-alignable polyorganosiloxane (S-1) obtained in Synthesis Example 4 is added, NMP and diethylene glycol methyl ethyl ether (DEGME) are further mixed, and the solvent composition is NMP: DEGME = 90: 10 (mass ratio) and a solid content concentration of 4.0% by mass was used. The solution was filtered through a filter having a pore diameter of 1 μm to prepare a liquid crystal aligning agent (A-1) according to Example 1.
[実施例2]
 [B]他の重合体として合成例7で得たポリ(メタ)アクリレートの共重合体(MA-1)を含有する溶液を、これに含有されるポリ(メタ)アクリレートの共重合体(MA-1)に換算して1,000質量部に相当する量を取り、ここに合成例5で得た[A]光配向性ポリオルガノシロキサン(S-2)100質量部を加え、さらにNMP及びエチレングリコールモノブチルエーテル(EGMB)を混合し、溶媒組成がNMP:EGMB=50:50(質量比)、固形分濃度が4.0質量%の溶液とした。この溶液を孔径1μmのフィルターで濾過することにより、実施例2に係る液晶配向剤(A-2)を調製した。
[Example 2]
[B] A solution containing the poly (meth) acrylate copolymer (MA-1) obtained in Synthesis Example 7 as another polymer is added to the poly (meth) acrylate copolymer (MA -1) in an amount corresponding to 1,000 parts by mass, and 100 parts by mass of [A] photo-alignable polyorganosiloxane (S-2) obtained in Synthesis Example 5 was added thereto, and NMP and Ethylene glycol monobutyl ether (EGMB) was mixed to obtain a solution having a solvent composition of NMP: EGMB = 50: 50 (mass ratio) and a solid content concentration of 4.0 mass%. The solution was filtered through a filter having a pore diameter of 1 μm to prepare a liquid crystal aligning agent (A-2) according to Example 2.
[実施例3]
 実施例1において、[C]エステル構造含有化合物として合成例8で得た(C-1-1)50質量部をさらに加えた以外は、実施例1と同様にして、実施例3に係る液晶配向剤(A-3)を調製した。
[Example 3]
A liquid crystal according to Example 3 was obtained in the same manner as in Example 1 except that 50 parts by mass of (C-1-1) obtained in Synthesis Example 8 was further added as the [C] ester structure-containing compound in Example 1. An aligning agent (A-3) was prepared.
<光指向性制御ユニットの製造>
 上記実施例で調製した液晶配向剤を用い、下記方法により、光指向性制御ユニットを製造した。
<Manufacture of light directivity control unit>
The light directivity control unit was manufactured by the following method using the liquid crystal aligning agent prepared in the said Example.
[実施例4]
 透明ガラス基板(a)の片面に、凹型レンチキュラー形状を有するポリメチルメタクリレート製基板を接着し、この凹型面上に上記実施例1で調製した液晶配向剤(A-1)を、スプレーコーティング法により塗布し、80℃のホットプレート上で1分間プレベークを行った後、庫内を窒素置換したオーブン中で150℃で30分間ポストベークして膜厚0.1μmの塗膜を形成した。次いで、この塗膜表面にHg-Xeランプ及びグランテーラープリズムを用いて313nmの輝線を含む偏光紫外線300J/mを、基板法線から垂直に照射して液晶配向膜を形成させた。また、透明ガラス基板(b)の一面にも、ロールコーティング法を用いた以外は上記と同様の方法により、同様の液晶配向膜を形成させた。
[Example 4]
A substrate made of polymethylmethacrylate having a concave lenticular shape is bonded to one side of the transparent glass substrate (a), and the liquid crystal aligning agent (A-1) prepared in Example 1 is applied to the concave surface by spray coating. After coating and prebaking on an 80 ° C. hot plate for 1 minute, it was post-baked at 150 ° C. for 30 minutes in an oven in which the inside of the cabinet was replaced with nitrogen to form a coating film having a thickness of 0.1 μm. Next, the surface of the coating film was irradiated with polarized ultraviolet rays 300 J / m 2 including a 313 nm emission line perpendicularly from the substrate normal line using a Hg—Xe lamp and a Grand Taylor prism to form a liquid crystal alignment film. A similar liquid crystal alignment film was formed on one surface of the transparent glass substrate (b) by the same method as described above except that the roll coating method was used.
 上記凹型レンチキュラー形状基板の液晶配向膜が形成された凹部に、重合性液晶(メルク製、RMS03-013C)を孔径0.2μmのフィルターで濾過した後、ピペットを用いて滴下し充填した。次いで、60℃のホットプレートで1分間ベークを行った後、Hg-Xeランプを用いて365nmの輝線を含む非偏光の紫外線30,000J/mを重合性液晶充填面に照射して、液晶を形成させた。 Polymeric liquid crystal (Merck, RMS03-013C) was filtered with a filter having a pore size of 0.2 μm into the concave portion of the concave lenticular shaped substrate where the liquid crystal alignment film was formed, and then dropped and filled using a pipette. Next, after baking for 1 minute on a hot plate at 60 ° C., the surface of the liquid crystal filled with polymerizable liquid crystal was irradiated with non-polarized ultraviolet rays of 30,000 J / m 2 including an emission line of 365 nm using a Hg—Xe lamp. Formed.
 この液晶を形成させた凹型レンチキュラー形状基板の液晶側の面に、上記液晶配向膜形成透明ガラス基板の液晶配向膜側の面を重ねてから、両者を接合し、実施例4の光指向性制御ユニットを製造した。 The surface on the liquid crystal side of the transparent glass substrate on which the liquid crystal alignment film is formed is overlaid on the surface on the liquid crystal side of the concave lenticular substrate on which the liquid crystal is formed, and then the two are bonded together. The unit was manufactured.
[実施例5]
 実施例4において、透明ガラス基板(a)の代わりに、液晶スイッチ素子(I)(TN(Twisted Nematic)型液晶を挟持した一対のITO(インジウム-スズ-酸化物)透明電極層の両外側に一対の透明ガラス基板を接合したもの)を用い、その一方の透明ガラス基板上に、凹型レンチキュラー形状基板を接着した以外は、実施例4と同様にして、実施例5の光指向性制御ユニットを製造した。
[Example 5]
In Example 4, instead of the transparent glass substrate (a), liquid crystal switching element (I) (on both sides of a pair of ITO (indium-tin-oxide) transparent electrode layers sandwiching a TN (Twisted Nematic) type liquid crystal) The light directivity control unit of Example 5 is the same as Example 4 except that a concave lenticular substrate is bonded to one transparent glass substrate. Manufactured.
[実施例6]
 実施例4において、透明ガラス基板(b)の代わりに、液晶スイッチ素子(II)(TN液晶を挟持した一対のITO透明電極層の片方の外側に一枚の透明ガラス基板を接合したもの)を用い、そのITO透明電極層の表面に液晶配向層を形成し、また液晶配向剤として、(A-1)の代わりに、上記実施例2で調製した(A-2)を用いた以外は実施例4と同様にして、実施例6の光指向性制御ユニットを製造した。
[Example 6]
In Example 4, instead of the transparent glass substrate (b), a liquid crystal switch element (II) (one transparent glass substrate bonded to one outer side of a pair of ITO transparent electrode layers sandwiching a TN liquid crystal) A liquid crystal alignment layer was formed on the surface of the ITO transparent electrode layer, and (A-2) prepared in Example 2 was used instead of (A-1) as the liquid crystal alignment agent. The light directivity control unit of Example 6 was manufactured in the same manner as Example 4.
[実施例7]
 実施例4において、透明ガラス基板(a)及び透明ガラス基板(b)の代わりに、ITO電極層が接合した透明ガラス基板を一対用い、両基板ともITO電極層側に液晶配向膜を形成した以外は実施例4と同様にして、実施例7の光指向性制御ユニットを製造した。
[Example 7]
In Example 4, instead of the transparent glass substrate (a) and the transparent glass substrate (b), a pair of transparent glass substrates to which the ITO electrode layers were joined were used, and both substrates had a liquid crystal alignment film formed on the ITO electrode layer side. Manufactured the light directivity control unit of Example 7 in the same manner as Example 4.
[実施例8]
 実施例7において、液晶配向剤として、(A-1)の代わりに、上記実施例3で調製した(A-3)を用い、また重合性液晶の代わりに、非重合性液晶(メルク製、MLC-7028)を用いた以外は実施例7と同様にして、実施例8の光指向性制御ユニットを製造した。
[Example 8]
In Example 7, (A-3) prepared in Example 3 was used instead of (A-1) as the liquid crystal aligning agent, and non-polymerizable liquid crystal (Merck, A light directivity control unit of Example 8 was produced in the same manner as Example 7 except that MLC-7028) was used.
[実施例9]
 透明ガラス基板(c)の片面に、凹型レンチキュラー形状を有するポリメチルメタクリレート製基板を接着し、この凹型面上に上記実施例3で調製した液晶配向剤(A-3)を、スプレーコーティング法により塗布し、80℃のホットプレート上で1分間プレベークを行った後、庫内を窒素置換したオープン中で150℃で30分間ポストベークして膜厚0.1μmの塗膜を形成した。次いで、この塗膜表面にHg-Xeランプ及びグランテラープリズムを用いて313nmの輝線を含む偏光紫外線300J/mを、基板法線から垂直に照射して液晶配向膜を形成させた。また、透明ガラス基板(d)の一面にも、ロールコーティング法を用いた以外は上記と同様の方法により、同様の液晶配向膜を形成させた。
[Example 9]
A substrate made of polymethylmethacrylate having a concave lenticular shape is adhered to one side of the transparent glass substrate (c), and the liquid crystal aligning agent (A-3) prepared in Example 3 is applied to the concave surface by a spray coating method. After coating and pre-baking on an 80 ° C. hot plate for 1 minute, it was post-baked at 150 ° C. for 30 minutes in an open atmosphere in which the inside of the cabinet was replaced with nitrogen to form a coating film having a thickness of 0.1 μm. Next, the surface of the coating film was irradiated with polarized ultraviolet rays 300 J / m 2 containing a 313 nm emission line perpendicularly from the substrate normal line using a Hg—Xe lamp and a Glanteller prism to form a liquid crystal alignment film. A similar liquid crystal alignment film was formed on one surface of the transparent glass substrate (d) by the same method as described above except that the roll coating method was used.
 上記凹型レンチキュラー形状基板の液晶配向膜が形成された凹部側の面と、上記液晶配向膜形成透明ガラス基板の液晶配向膜側の面とを重ねてから、両者を接合した。次いで、上記基板間の空洞に、上記重合性液晶を減圧注入した。その後、Hg-Xeランプを用いて365nmの輝線を含む非偏光の紫外線30,000J/mを液晶配向膜形成透明ガラス基板側から照射して液晶を形成させることにより、実施例9の光指向性制御ユニットを製造した。 The surface on the concave side where the liquid crystal alignment film of the concave lenticular shaped substrate was formed and the surface on the liquid crystal alignment film side of the liquid crystal alignment film-forming transparent glass substrate were overlapped, and then both were joined. Next, the polymerizable liquid crystal was injected under reduced pressure into the cavity between the substrates. Thereafter, by using a Hg—Xe lamp to irradiate non-polarized ultraviolet rays containing 365 nm emission line 30,000 J / m 2 from the liquid crystal alignment film-formed transparent glass substrate side to form a liquid crystal, the light directing of Example 9 was achieved. A sex control unit was manufactured.
[比較例1]
 透明ガラス基板(a)の一面に、凹型レンチキュラー形状を有するポリメチルメタクリレート製基板を接着し、この凹型面上に液晶配向剤(JSR製、AL3046)を、スプレーコーティング法により塗布し、80℃のホットプレート上で1分間プレベークを行った後、庫内を窒素置換したオーブン中で150℃で30分間ポストベークして膜厚0.1μmの塗膜を形成した。次いで、この塗膜表面を、ナイロン布を外周に巻いたローラーを回転させながら擦りつけることによりラビング処理を行った。透明ガラス基板(b)の一面にも、ロールコーティング法を用いて塗布した後ラビング処理した以外は上記同様の方法により、同様の液晶配向層を形成させた。この後は実施例4と同様の方法により、比較例1の光指向性制御ユニットを製造した。
[Comparative Example 1]
A substrate made of polymethyl methacrylate having a concave lenticular shape is adhered to one surface of the transparent glass substrate (a), and a liquid crystal aligning agent (manufactured by JSR, AL3046) is applied on the concave surface by a spray coating method, After pre-baking on a hot plate for 1 minute, it was post-baked at 150 ° C. for 30 minutes in an oven in which the interior was replaced with nitrogen to form a coating film having a thickness of 0.1 μm. Next, rubbing treatment was performed by rubbing the surface of the coating film while rotating a roller around which a nylon cloth was wound. A similar liquid crystal alignment layer was also formed on one surface of the transparent glass substrate (b) by the same method as described above except that it was rubbed after being applied using the roll coating method. Thereafter, the light directivity control unit of Comparative Example 1 was manufactured by the same method as in Example 4.
[比較例2~6]
 実施例5~9において、凹型レンチキュラー形状を有する基板上、及びガラス基板上又はITO電極層上に液晶配向膜を形成する代わりに、比較例1と同様の方法によって、ラビング処理を行った液晶配向層を形成した以外は比較例1と同様にして、比較例2~6の光指向性制御ユニットをそれぞれ製造した。
[Comparative Examples 2 to 6]
In Examples 5 to 9, the liquid crystal alignment was rubbed by the same method as in Comparative Example 1 instead of forming the liquid crystal alignment film on the substrate having a concave lenticular shape and on the glass substrate or the ITO electrode layer. The light directivity control units of Comparative Examples 2 to 6 were produced in the same manner as Comparative Example 1 except that the layers were formed.
[液晶配向均一性の評価]
 実施例4~9及び比較例1~6で製造した光指向性制御ユニットにつき、液晶レンズ層を、その厚さ方向の中心を通り、厚さ方向に垂直な平面で切断し研磨して得られた断面を偏光顕微鏡で観察した。液晶配向の均一性が高いと認められた場合は液晶配向均一性「A」とし、液晶配向の均一性が低いと認められた場合は液晶配向均一性「B」として評価した。評価結果を下記表1に示す。
[Evaluation of liquid crystal alignment uniformity]
For the light directivity control units manufactured in Examples 4 to 9 and Comparative Examples 1 to 6, the liquid crystal lens layer is obtained by cutting and polishing the liquid crystal lens layer along a plane perpendicular to the thickness direction through the center in the thickness direction. The cross section was observed with a polarizing microscope. The liquid crystal alignment uniformity “A” was evaluated when the liquid crystal alignment uniformity was found to be high, and the liquid crystal alignment uniformity “B” was evaluated when the liquid crystal alignment uniformity was found to be low. The evaluation results are shown in Table 1 below.
<2D/3D切替可能表示モジュールの製造>
[実施例10]
 実施例4の光指向性制御ユニットと、表示パネルと、液晶スイッチユニット(I)とを、図5に示す配列で互いに接合することにより、実施例10の2D/3D切替可能表示モジュールを製造した。
<Manufacture of 2D / 3D switchable display module>
[Example 10]
The 2D / 3D switchable display module of Example 10 was manufactured by joining the light directivity control unit, the display panel, and the liquid crystal switch unit (I) of Example 4 to each other in the arrangement shown in FIG. .
[実施例11]
 実施例5の光指向性制御ユニットと、上記表示パネルとを、図6に示す配列で互いに接合することにより、実施例11の2D/3D切替可能表示モジュールを製造した。
[Example 11]
The 2D / 3D switchable display module of Example 11 was manufactured by joining the light directivity control unit of Example 5 and the display panel to each other in the arrangement shown in FIG.
[実施例12]
 実施例6の光指向性制御ユニットと、上記表示パネルとを、図7に示す配列で互いに接合することにより、実施例12の2D/3D切替可能表示モジュールを製造した。
[Example 12]
The 2D / 3D switchable display module of Example 12 was manufactured by joining the light directivity control unit of Example 6 and the display panel to each other in the arrangement shown in FIG.
[実施例13]
 実施例7の光指向性制御ユニットと、上記表示パネルとを、図8に示す配列で互いに接合することにより、実施例13の2D/3D切替可能表示モジュールを製造した。
[Example 13]
The 2D / 3D switchable display module of Example 13 was manufactured by joining the light directivity control unit of Example 7 and the display panel to each other in the arrangement shown in FIG.
[実施例14]
 実施例8の光指向性制御ユニットと、上記表示パネルとを、図8に示す配列で互いに接合することにより、実施例14の2D/3D切替可能表示モジュールを製造した。
[Example 14]
The 2D / 3D switchable display module of Example 14 was manufactured by joining the light directivity control unit of Example 8 and the display panel to each other in the arrangement shown in FIG.
[実施例15]
 実施例9の光指向性制御ユニットと、上記表示パネルとを、図5に示す配列で互いに接合することにより、実施例15の2D/3D切替可能表示モジュールを製造した。
[Example 15]
The 2D / 3D switchable display module of Example 15 was manufactured by joining the light directivity control unit of Example 9 and the display panel to each other in the arrangement shown in FIG.
[比較例7~12]
 実施例10~15において、実施例4~9の光指向性制御ユニットの代わりに、比較例1~6の光指向性制御ユニットを用いた以外は、実施例10~15とそれぞれ同様にして、比較例7~12の2D/3D切替可能表示モジュールを製造した。
[Comparative Examples 7 to 12]
In Examples 10 to 15, in the same manner as Examples 10 to 15 except that the light directivity control unit of Comparative Examples 1 to 6 was used instead of the light directivity control unit of Examples 4 to 9, The 2D / 3D switchable display modules of Comparative Examples 7 to 12 were manufactured.
[2D/3D切替可能表示モジュールの表示良好性の評価]
 実施例10~15及び比較例7~12で製造した2D/3D切替可能表示モジュールにつき、2次元モードにおける表示の良好性を目視にて評価した。表示に不連続な部分が見られない場合は「A」、表示に不連続な部分が見られた場合は「B」と評価した。評価結果を表1に示す。
[Evaluation of display quality of 2D / 3D switchable display module]
For the 2D / 3D switchable display modules manufactured in Examples 10 to 15 and Comparative Examples 7 to 12, the display quality in the two-dimensional mode was visually evaluated. When a discontinuous portion was not found in the display, “A” was evaluated, and when a discontinuous portion was found in the display, “B” was evaluated. The evaluation results are shown in Table 1.
Figure JPOXMLDOC01-appb-T000022
Figure JPOXMLDOC01-appb-T000022
 表1の結果から、液晶配向膜を有する光指向性制御ユニットは、液晶レンズ層の液晶の配向が均一であり、そのような光指向性制御ユニットを備える2D/3D切替可能表示モジュールは、表示が良好であることが示された。一方、感放射線性液晶配向剤から形成された液晶配向膜を有さず、ラビング処理を施した液晶配向膜を有する光指向性制御ユニットは、液晶配向の均一性が低く、このような光指向性制御ユニットを備える2D/3D切替可能表示モジュールは表示が不良になることが示された。 From the results of Table 1, the light directivity control unit having the liquid crystal alignment film has a uniform liquid crystal alignment of the liquid crystal lens layer, and the 2D / 3D switchable display module including such a light directivity control unit is Was shown to be good. On the other hand, a light directivity control unit that does not have a liquid crystal alignment film formed from a radiation-sensitive liquid crystal alignment agent and has a liquid crystal alignment film that has been subjected to a rubbing treatment has low uniformity of liquid crystal alignment. The 2D / 3D switchable display module with the sex control unit has been shown to be poorly displayed.
 本発明によれば、液晶配向の均一性が良好であり、2次元モードにおいても解像度に優れる表示が可能な光指向性制御ユニット及びその製造方法、並びにこの光指向性制御ユニットを備える2D/3D切替可能表示モジュールを提供できる。 According to the present invention, the uniformity of liquid crystal alignment is good, the light directivity control unit capable of displaying with excellent resolution even in the two-dimensional mode, the manufacturing method thereof, and the 2D / 3D including the light directivity control unit. A switchable display module can be provided.
 1 光指向性制御ユニット(第1実施形態)
 2 光指向性制御ユニット(第2実施形態)
 3 光指向性制御ユニット(第3実施形態)
 4 光指向性制御ユニット(第4実施形態)
 11 透明基板
 12 透明基板
 13 レンチキュラー層
 14 液晶レンズ層
 15 液晶配向膜
 16 液晶配向膜
 21 スイッチ透明基板
 22 透明電極層
 23 透明電極層
 24 スイッチ液晶層
 25 スイッチ透明電極基板
 26 透明電極層
 27 透明電極層
 28 透明電極層
 31 表示パネル
 41 液晶スイッチユニット
 51 スイッチ透明基板
 52 スイッチ透明基板
 53 透明電極層
 54 透明電極層
 55 スイッチ液晶層
 61 入射光偏光子
 62 出射光偏光子
 71 2D/3D切替可能表示モジュール(第1実施形態)
 72 2D/3D切替可能表示モジュール(第2実施形態)
 73 2D/3D切替可能表示モジュール(第3実施形態)
 74 2D/3D切替可能表示モジュール(第4実施形態)
1 light directivity control unit (first embodiment)
2 Light directivity control unit (second embodiment)
3 Light directivity control unit (third embodiment)
4. Light directivity control unit (fourth embodiment)
DESCRIPTION OF SYMBOLS 11 Transparent substrate 12 Transparent substrate 13 Lenticular layer 14 Liquid crystal lens layer 15 Liquid crystal alignment film 16 Liquid crystal alignment film 21 Switch transparent substrate 22 Transparent electrode layer 23 Transparent electrode layer 24 Switch liquid crystal layer 25 Switch transparent electrode substrate 26 Transparent electrode layer 27 Transparent electrode layer 28 transparent electrode layer 31 display panel 41 liquid crystal switch unit 51 switch transparent substrate 52 switch transparent substrate 53 transparent electrode layer 54 transparent electrode layer 55 switch liquid crystal layer 61 incident light polarizer 62 outgoing light polarizer 71 2D / 3D switchable display module ( First embodiment)
72 2D / 3D switchable display module (second embodiment)
73 2D / 3D switchable display module (third embodiment)
74 2D / 3D switchable display module (fourth embodiment)

Claims (17)

  1.  透明基板と、
     この透明基板の表面側に対向配設され、裏面にレンチキュラーレンズアレイを有するレンチキュラー層と、
     このレンチキュラー層の裏面に積層され、感放射線性液晶配向剤により形成される液晶配向膜と、
     この液晶配向膜を介してレンチキュラー層の裏面側に積層される液晶レンズ層と
    を備える光指向性制御ユニット。
    A transparent substrate;
    A lenticular layer disposed oppositely on the front side of the transparent substrate and having a lenticular lens array on the back side;
    A liquid crystal alignment film laminated on the back surface of the lenticular layer and formed of a radiation-sensitive liquid crystal alignment agent;
    A light directivity control unit comprising: a liquid crystal lens layer laminated on the back side of the lenticular layer through the liquid crystal alignment film.
  2.  上記液晶レンズ層の裏面に積層され、感放射線性液晶配向剤により形成される他の液晶配向膜を備える請求項1に記載の光指向性制御ユニット。 The light directivity control unit according to claim 1, further comprising another liquid crystal alignment film laminated on the back surface of the liquid crystal lens layer and formed of a radiation sensitive liquid crystal aligning agent.
  3.  上記液晶レンズ層の両面側に積層される一対の透明電極層を備える請求項1に記載の光指向性制御ユニット。 The light directivity control unit according to claim 1, further comprising a pair of transparent electrode layers laminated on both sides of the liquid crystal lens layer.
  4.  上記透明基板に重畳される液晶層と、この液晶層の両面側に配設される一対の透明電極層とを備える請求項1に記載の光指向性制御ユニット。 The light directivity control unit according to claim 1, comprising a liquid crystal layer superimposed on the transparent substrate and a pair of transparent electrode layers disposed on both sides of the liquid crystal layer.
  5.  上記感放射線性液晶配向剤が、
     [A]光配向性基を有するポリオルガノシロキサン
    を含有する請求項1に記載の光指向性制御ユニット。
    The radiation-sensitive liquid crystal aligning agent is
    [A] The light directivity control unit according to claim 1, comprising a polyorganosiloxane having a photoalignment group.
  6.  上記光配向性基が、桂皮酸構造を有する基である請求項5に記載の光指向性制御ユニット。 The light directivity control unit according to claim 5, wherein the photo-alignment group is a group having a cinnamic acid structure.
  7.  上記桂皮酸構造を有する基が、下記式(1)で表される化合物に由来する基及び式(2)で表される化合物に由来する基からなる群より選択される少なくとも1種の基である請求項6に記載の光指向性制御ユニット。
    Figure JPOXMLDOC01-appb-C000001
    (式(1)中、Rは、フェニレン基、ビフェニレン基、ターフェニレン基又はシクロヘキシレン基である。このフェニレン基、ビフェニレン基、ターフェニレン基及びシクロヘキシレン基の水素原子の一部又は全部は、フッ素原子を有していてもよい炭素数1~10のアルキル基若しくは炭素数1~10のアルコキシ基、フッ素原子又はシアノ基で置換されていてもよい。Rは、単結合、炭素数1~3のアルカンジイル基、酸素原子、硫黄原子、-CH=CH-、-NH-、-COO-又は-OCO-である。aは、0~3の整数である。但し、aが2以上の場合、複数のR及びRはそれぞれ同一であっても異なっていてもよい。Rは、フッ素原子又はシアノ基である。bは、0~4の整数である。
     式(2)中、Rは、フェニレン基又はシクロヘキシレン基である。このフェニレン基及びシクロヘキシレン基の水素原子の一部又は全部は、炭素数1~10の鎖状若しくは環状のアルキル基、炭素数1~10の鎖状若しくは環状のアルコキシ基、フッ素原子又はシアノ基で置換されていてもよい。Rは、単結合、炭素数1~3のアルカンジイル基、酸素原子、硫黄原子又は-NH-である。cは、1~3の整数である。但し、cが2以上の場合、複数のR及びRはそれぞれ同一であっても異なっていてもよい。Rは、フッ素原子又はシアノ基である。dは、0~4の整数である。Rは、酸素原子、-COO-又は-OCO-である。Rは、2価の芳香族基、2価の脂環式基、2価の複素環式基又は2価の縮合環式基である。Rは、単結合、-OCO-(CH-*又は-O(CH-*である。*は、カルボキシル基との結合部位を示す。f及びgは、それぞれ1~10の整数である。eは、0~3の整数である。但し、eが2以上の場合、複数のR及びRはそれぞれ同一であっても異なっていてもよい。)
    The group having a cinnamic acid structure is at least one group selected from the group consisting of a group derived from a compound represented by the following formula (1) and a group derived from a compound represented by the formula (2) The light directivity control unit according to claim 6.
    Figure JPOXMLDOC01-appb-C000001
    (In the formula (1), R 1 is a phenylene group, a biphenylene group, a terphenylene group or a cyclohexylene group. Some or all of the hydrogen atoms of the phenylene group, biphenylene group, terphenylene group and cyclohexylene group are May be substituted with an alkyl group having 1 to 10 carbon atoms or an alkoxy group having 1 to 10 carbon atoms, a fluorine atom or a cyano group, which may have a fluorine atom, R 2 is a single bond, carbon number An alkanediyl group of 1 to 3, an oxygen atom, a sulfur atom, —CH═CH—, —NH—, —COO— or —OCO—, wherein a is an integer of 0 to 3, provided that a is 2 In the above case, the plurality of R 1 and R 2 may be the same or different, R 3 is a fluorine atom or a cyano group, and b is an integer of 0 to 4.
    In Formula (2), R 4 is a phenylene group or a cyclohexylene group. Some or all of the hydrogen atoms of the phenylene group and cyclohexylene group may be a linear or cyclic alkyl group having 1 to 10 carbon atoms, a linear or cyclic alkoxy group having 1 to 10 carbon atoms, a fluorine atom, or a cyano group. May be substituted. R 5 is a single bond, an alkanediyl group having 1 to 3 carbon atoms, an oxygen atom, a sulfur atom or —NH—. c is an integer of 1 to 3. However, when c is 2 or more, the plurality of R 4 and R 5 may be the same or different. R 6 is a fluorine atom or a cyano group. d is an integer of 0-4. R 7 is an oxygen atom, —COO— or —OCO—. R 8 is a divalent aromatic group, a divalent alicyclic group, a divalent heterocyclic group or a divalent condensed cyclic group. R 9 is a single bond, —OCO— (CH 2 ) f — * or —O (CH 2 ) g — *. * Indicates a binding site with a carboxyl group. f and g are each an integer of 1 to 10. e is an integer of 0 to 3. However, when e is 2 or more, the plurality of R 7 and R 8 may be the same or different. )
  8.  [A]光配向性基を有するポリオルガノシロキサンが、
     エポキシ基を有するポリオルガノシロキサンと、上記式(1)で表される化合物及び上記式(2)で表される化合物からなる群より選択される少なくとも1種の化合物との反応生成物である請求項7に記載の光指向性制御ユニット。
    [A] A polyorganosiloxane having a photo-alignment group is
    A reaction product of a polyorganosiloxane having an epoxy group and at least one compound selected from the group consisting of a compound represented by the above formula (1) and a compound represented by the above formula (2) Item 8. The light directivity control unit according to Item 7.
  9.  上記感放射線性液晶配向剤が、
     [C]カルボン酸のアセタールエステル構造、カルボン酸のケタールエステル構造、カルボン酸の1-アルキルシクロアルキルエステル構造及びカルボン酸のt-ブチルエステル構造からなる群より選択される1種又は2種以上の構造を有し、この構造が1種の場合は複数有する化合物
    をさらに含有する請求項5に記載の光指向性制御ユニット。
    The radiation-sensitive liquid crystal aligning agent is
    [C] One or more selected from the group consisting of an acetal ester structure of a carboxylic acid, a ketal ester structure of a carboxylic acid, a 1-alkylcycloalkyl ester structure of a carboxylic acid, and a t-butyl ester structure of a carboxylic acid The light directivity control unit according to claim 5, further comprising a compound having a structure and, when the structure is one kind, a plurality of compounds.
  10.  上記感放射線性液晶配向剤が、
     [B]ポリアミック酸、ポリイミド、エチレン性不飽和化合物重合体及び光配向性基を有さないポリオルガノシロキサンからなる群より選択される少なくとも1種の重合体
    をさらに含有する請求項5に記載の光指向性制御ユニット。
    The radiation-sensitive liquid crystal aligning agent is
    [B] The polymer according to claim 5, further comprising at least one polymer selected from the group consisting of polyamic acid, polyimide, ethylenically unsaturated compound polymer, and polyorganosiloxane having no photo-alignment group. Light directivity control unit.
  11.  表示パネルと、
     請求項3に記載の光指向性制御ユニットと
    を備える2D/3D切替可能表示モジュール。
    A display panel;
    A 2D / 3D switchable display module comprising the light directivity control unit according to claim 3.
  12.  透明基板と、この透明基板の表面側に対向配設され、裏面にレンチキュラーレンズアレイを有するレンチキュラー層と、このレンチキュラー層の裏面に積層される液晶配向膜と、この液晶配向膜を介してレンチキュラー層の裏面側に積層される液晶レンズ層とを備える光指向性制御ユニットの製造方法であって、
    (1)レンチキュラー層の裏面に感放射線性液晶配向剤を塗布し、塗膜を形成する工程、
    (2)上記塗膜への放射線の照射により液晶配向膜を形成する工程、及び
    (3)この液晶配向膜及び透明基板間に液晶レンズ層を形成する工程
    を有する光指向性制御ユニットの製造方法。
    A transparent substrate, a lenticular layer disposed on the front side of the transparent substrate and having a lenticular lens array on the back surface, a liquid crystal alignment film laminated on the back surface of the lenticular layer, and a lenticular layer via the liquid crystal alignment film A light directivity control unit comprising a liquid crystal lens layer laminated on the back side of
    (1) A step of applying a radiation-sensitive liquid crystal aligning agent to the back surface of the lenticular layer to form a coating film,
    (2) A method for producing a light directivity control unit, comprising: a step of forming a liquid crystal alignment film by irradiating the coating film with radiation; and (3) a step of forming a liquid crystal lens layer between the liquid crystal alignment film and the transparent substrate. .
  13.  上記(3)工程が、
     (3-1)この液晶配向膜と透明基板とを対向配設させ、これらに挟まれた空間を形成する工程、及び
     (3-2)この空間に液晶材料を充填し、液晶レンズ層を形成する工程
    を有する請求項12に記載の光指向性制御ユニットの製造方法。
    Step (3) above is
    (3-1) a step of disposing the liquid crystal alignment film and the transparent substrate to face each other and forming a space between them; and (3-2) filling the space with a liquid crystal material to form a liquid crystal lens layer. The manufacturing method of the light directivity control unit of Claim 12 which has a process to carry out.
  14.  (3-2)工程が、
     (3-2-1)この空間に重合性液晶を吸入する工程、及び
     (3-2-2)この重合性液晶を重合させて液晶レンズ層を形成する工程
    を有する請求項13に記載の光指向性制御ユニットの製造方法。
    (3-2) Step is
    14. The light according to claim 13, comprising: (3-2-1) a step of sucking a polymerizable liquid crystal into the space; and (3-2-2) a step of polymerizing the polymerizable liquid crystal to form a liquid crystal lens layer. Manufacturing method of directivity control unit.
  15.  上記(3)工程が、
     (3-1’)この液晶配向膜の裏面側に液晶材料を塗布し、液晶レンズ層を形成する工程、及び
     (3-2’)この液晶レンズ層の裏面側に透明基板を配設する工程
    を有する請求項12に記載の光指向性制御ユニットの製造方法。
    Step (3) above is
    (3-1 ′) a step of applying a liquid crystal material to the back side of the liquid crystal alignment film to form a liquid crystal lens layer; and (3-2 ′) a step of disposing a transparent substrate on the back side of the liquid crystal lens layer. The manufacturing method of the light directivity control unit of Claim 12 which has these.
  16.  上記(3-1’)工程が、
     (3-1’-1)この液晶配向膜の裏面側に重合性液晶を塗布する工程、及び
     (3-1’-2)この重合性液晶を重合させて液晶レンズ層を形成する工程
    を有する請求項15に記載の光指向性制御ユニットの製造方法。
    The above step (3-1 ′)
    (3-1′-1) a step of applying a polymerizable liquid crystal on the back side of the liquid crystal alignment film, and (3-1′-2) a step of polymerizing the polymerizable liquid crystal to form a liquid crystal lens layer. The manufacturing method of the light directivity control unit of Claim 15.
  17.  2D/3D切替可能表示モジュールの液晶レンズ層配向用液晶配向剤であって、
     感放射線性を有することを特徴とする液晶配向剤。
    A liquid crystal aligning agent for aligning a liquid crystal lens layer of a 2D / 3D switchable display module,
    A liquid crystal aligning agent characterized by having radiation sensitivity.
PCT/JP2011/066501 2010-08-09 2011-07-20 Light directivity control unit and process for production thereof, 2d/3d switchable display module, liquid crystal aligning agent WO2012020628A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2012528624A JPWO2012020628A1 (en) 2010-08-09 2011-07-20 Light directivity control unit and manufacturing method thereof, 2D / 3D switchable display module, and liquid crystal aligning agent
CN201180035097.4A CN103003722B (en) 2010-08-09 2011-07-20 Light directive property control module and manufacture method, display module
KR1020127030693A KR101461047B1 (en) 2010-08-09 2011-07-20 Light directivity control unit and process for production thereof, 2d/3d switchable display module, liquid crystal aligning agent

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-179070 2010-08-09
JP2010179070 2010-08-09

Publications (1)

Publication Number Publication Date
WO2012020628A1 true WO2012020628A1 (en) 2012-02-16

Family

ID=45567597

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/066501 WO2012020628A1 (en) 2010-08-09 2011-07-20 Light directivity control unit and process for production thereof, 2d/3d switchable display module, liquid crystal aligning agent

Country Status (5)

Country Link
JP (1) JPWO2012020628A1 (en)
KR (1) KR101461047B1 (en)
CN (1) CN103003722B (en)
TW (1) TW201211584A (en)
WO (1) WO2012020628A1 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103728768A (en) * 2012-10-15 2014-04-16 三星显示有限公司 Backlight unit for display device and driving method thereof
KR20140131154A (en) * 2013-05-03 2014-11-12 엘지디스플레이 주식회사 Autosterecoscopic display apparatus
JP2015520417A (en) * 2012-06-28 2015-07-16 コーロン インダストリーズ インク Switching lens for display device and manufacturing method thereof
JP2017187600A (en) * 2016-04-05 2017-10-12 Jsr株式会社 Liquid crystal alignment agent, polymer composition for forming protection film, protection film and method for producing the same, and liquid crystal element
JP2020514827A (en) * 2017-04-05 2020-05-21 コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. Multi-view display device and method
EP3491464A4 (en) * 2016-07-26 2020-05-27 Boe Technology Group Co. Ltd. Optical device, display apparatus and driving method thereof
JP2020173425A (en) * 2019-04-12 2020-10-22 Jsr株式会社 Laminate body, method for manufacturing laminate body, and method for manufacturing optical film
JP7552975B2 (en) 2020-07-31 2024-09-18 エルジー・ケム・リミテッド Optical Modulation Devices

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6701668B2 (en) * 2015-02-03 2020-05-27 Jsr株式会社 Liquid crystal aligning agent, liquid crystal aligning film, method for producing liquid crystal aligning film, and liquid crystal element
CN105316008A (en) * 2015-11-16 2016-02-10 深圳市华星光电技术有限公司 Reactive vertical orientation material, liquid crystal display panel and liquid crystal orientation method
JP2019505496A (en) * 2015-12-17 2019-02-28 メルク・パテント・ゲゼルシヤフト・ミツト・ベシユレンクテル・ハフツングMerck Patent GmbH Cinnamic acid derivatives
WO2017110976A1 (en) * 2015-12-25 2017-06-29 日産化学工業株式会社 Liquid crystal display element, liquid crystal optical element, and composition for liquid crystal structure stabilization film
KR102478693B1 (en) * 2016-06-22 2022-12-16 고쿠리츠다이가쿠호진 나가오카기쥬츠가가쿠다이가쿠 Liquid crystal optical element and manufacturing method of liquid crystal optical element
KR102463795B1 (en) * 2016-11-11 2022-11-08 한국전자통신연구원 Optoelectronic device
CN106405717A (en) * 2016-11-24 2017-02-15 宁波视睿迪光电有限公司 Refractive unit and refractive unit manufacture method
CN108957811A (en) * 2018-09-28 2018-12-07 张家港康得新光电材料有限公司 A kind of detection method of the orientation film thickness of 3D optical mode mother matrix
CN115728996A (en) * 2022-08-02 2023-03-03 张家港康得新光电材料有限公司 Liquid crystal box and 2D-3D switchable display device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09278890A (en) * 1995-11-20 1997-10-28 Lg Electron Inc Photosensitive substance for liquid crystal alignment and liquid crystal device using the same
JP2004538529A (en) * 2001-08-06 2004-12-24 オキュイティ・リミテッド Optical switching device
JP2005223727A (en) * 2004-02-06 2005-08-18 Ricoh Co Ltd Stereoscopic image display method, stereoscopic image display device, and optical deflection element
WO2009025386A1 (en) * 2007-08-21 2009-02-26 Jsr Corporation Liquid crystal aligning agent, method for forming liquid crystal alignment film, and liquid crystal display device
JP2010140010A (en) * 2008-11-17 2010-06-24 Jsr Corp Liquid crystal-aligning agent, liquid crystal alignment layer, method for forming the same, and liquid crystal display element

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2398130A (en) * 2003-02-05 2004-08-11 Ocuity Ltd Switchable active lens for display apparatus
GB2403815A (en) * 2003-07-10 2005-01-12 Ocuity Ltd Birefringent lens array structure
KR101309453B1 (en) * 2006-06-30 2013-09-23 엘지디스플레이 주식회사 Method of Manufacturing Optical Sheet for 3-Demensional Image
CN101646718B (en) * 2007-03-26 2013-04-03 Jsr株式会社 Curable resin composition, protective film, and method for forming protective film
JP2009025732A (en) * 2007-07-23 2009-02-05 Jsr Corp Manufacturing method of optical member and optical member
JP4458306B2 (en) * 2007-08-21 2010-04-28 Jsr株式会社 Liquid crystal aligning agent, method for producing liquid crystal aligning film, and liquid crystal display element

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09278890A (en) * 1995-11-20 1997-10-28 Lg Electron Inc Photosensitive substance for liquid crystal alignment and liquid crystal device using the same
JP2004538529A (en) * 2001-08-06 2004-12-24 オキュイティ・リミテッド Optical switching device
JP2005223727A (en) * 2004-02-06 2005-08-18 Ricoh Co Ltd Stereoscopic image display method, stereoscopic image display device, and optical deflection element
WO2009025386A1 (en) * 2007-08-21 2009-02-26 Jsr Corporation Liquid crystal aligning agent, method for forming liquid crystal alignment film, and liquid crystal display device
JP2010140010A (en) * 2008-11-17 2010-06-24 Jsr Corp Liquid crystal-aligning agent, liquid crystal alignment layer, method for forming the same, and liquid crystal display element

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015520417A (en) * 2012-06-28 2015-07-16 コーロン インダストリーズ インク Switching lens for display device and manufacturing method thereof
CN103728768A (en) * 2012-10-15 2014-04-16 三星显示有限公司 Backlight unit for display device and driving method thereof
JP2014082185A (en) * 2012-10-15 2014-05-08 Samsung Display Co Ltd Backlight unit for display device and driving method thereof
KR20140131154A (en) * 2013-05-03 2014-11-12 엘지디스플레이 주식회사 Autosterecoscopic display apparatus
KR102001672B1 (en) * 2013-05-03 2019-07-18 엘지디스플레이 주식회사 Autosterecoscopic display apparatus
JP2017187600A (en) * 2016-04-05 2017-10-12 Jsr株式会社 Liquid crystal alignment agent, polymer composition for forming protection film, protection film and method for producing the same, and liquid crystal element
EP3491464A4 (en) * 2016-07-26 2020-05-27 Boe Technology Group Co. Ltd. Optical device, display apparatus and driving method thereof
JP2020514827A (en) * 2017-04-05 2020-05-21 コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. Multi-view display device and method
JP2020173425A (en) * 2019-04-12 2020-10-22 Jsr株式会社 Laminate body, method for manufacturing laminate body, and method for manufacturing optical film
JP7552975B2 (en) 2020-07-31 2024-09-18 エルジー・ケム・リミテッド Optical Modulation Devices

Also Published As

Publication number Publication date
TW201211584A (en) 2012-03-16
JPWO2012020628A1 (en) 2013-10-28
KR101461047B1 (en) 2014-11-13
KR20130004379A (en) 2013-01-09
CN103003722B (en) 2015-08-26
CN103003722A (en) 2013-03-27

Similar Documents

Publication Publication Date Title
WO2012020628A1 (en) Light directivity control unit and process for production thereof, 2d/3d switchable display module, liquid crystal aligning agent
JP5790156B2 (en) Liquid crystal aligning agent for retardation film, liquid crystal aligning film for retardation film, retardation film and method for producing the same
JP5789945B2 (en) LIQUID CRYSTAL ALIGNING FILM AND METHOD FOR PRODUCING PHASE DIFFERENTIAL FILM, LIQUID CRYSTAL ALIGNING AGENT, LIQUID CRYSTAL ALIGNING FILM, AND RELATING FILM
KR101730297B1 (en) Liquid crystal aligning agent, process for forming liquid crystal aligning film, liquid crystal display device, and polyorganosiloxane
JP5915533B2 (en) Liquid crystal cell, liquid crystal display element, method for producing liquid crystal cell, and photoalignment agent for retardation film
JP5678824B2 (en) Liquid crystal aligning agent, liquid crystal aligning film, retardation film production method, retardation film and liquid crystal display element
JP5966329B2 (en) Manufacturing method of liquid crystal display element
WO2009096598A1 (en) A liquid crystal orientating agent, a liquid crystal orientating film and a liquid crystal display element
JP2012058280A (en) Cholesteric liquid crystal display, method for manufacturing the same, and liquid crystal aligning agent
TWI619734B (en) Liquid crystal alignment agent and liquid crystal alignment film for psa-mode liquid crystal display device, liquid crystal display device and method for manufacturing the same
JP5626510B2 (en) Liquid crystal aligning agent, liquid crystal alignment film forming method, and liquid crystal display element manufacturing method
KR20120081551A (en) Liquid crystal aligning agent, liquid crystal display device, liquid crystal alignment film and polyorganosiloxane compound
KR101697496B1 (en) Liquid crystal aligning agent, liquid crystal alignment film, liquid crystal display device and polyorganosiloxane compounds
JP5767800B2 (en) Liquid crystal aligning agent and liquid crystal display element
JP5642435B2 (en) Liquid crystal aligning agent and liquid crystal display element
KR101717566B1 (en) Liquid crystal aligning agent, method for forming liquid crystal alignment film, and liquid crystal display device
TWI660004B (en) Liquid crystal alignment agent and method of producing the same, liquid crystal alignment film, and liquid crystal display element
JP2009258578A (en) Liquid crystal aligning agent, liquid crystal alignment film, forming method thereof, liquid crystal display element, and optical member

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11816294

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012528624

Country of ref document: JP

ENP Entry into the national phase

Ref document number: 20127030693

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11816294

Country of ref document: EP

Kind code of ref document: A1