WO2012020578A1 - Radiological image conversion panel, process for production of radiological image conversion panel, and device for formation of radiological image - Google Patents

Radiological image conversion panel, process for production of radiological image conversion panel, and device for formation of radiological image Download PDF

Info

Publication number
WO2012020578A1
WO2012020578A1 PCT/JP2011/053471 JP2011053471W WO2012020578A1 WO 2012020578 A1 WO2012020578 A1 WO 2012020578A1 JP 2011053471 W JP2011053471 W JP 2011053471W WO 2012020578 A1 WO2012020578 A1 WO 2012020578A1
Authority
WO
WIPO (PCT)
Prior art keywords
adhesive layer
conversion panel
image conversion
radiation image
layer
Prior art date
Application number
PCT/JP2011/053471
Other languages
French (fr)
Japanese (ja)
Inventor
宜人 山本
直之 澤本
貴文 柳多
Original Assignee
コニカミノルタエムジー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コニカミノルタエムジー株式会社 filed Critical コニカミノルタエムジー株式会社
Priority to JP2012528599A priority Critical patent/JPWO2012020578A1/en
Publication of WO2012020578A1 publication Critical patent/WO2012020578A1/en

Links

Images

Classifications

    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21KTECHNIQUES FOR HANDLING PARTICLES OR IONISING RADIATION NOT OTHERWISE PROVIDED FOR; IRRADIATION DEVICES; GAMMA RAY OR X-RAY MICROSCOPES
    • G21K4/00Conversion screens for the conversion of the spatial distribution of X-rays or particle radiation into visible images, e.g. fluoroscopic screens
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21KTECHNIQUES FOR HANDLING PARTICLES OR IONISING RADIATION NOT OTHERWISE PROVIDED FOR; IRRADIATION DEVICES; GAMMA RAY OR X-RAY MICROSCOPES
    • G21K4/00Conversion screens for the conversion of the spatial distribution of X-rays or particle radiation into visible images, e.g. fluoroscopic screens
    • G21K2004/04Conversion screens for the conversion of the spatial distribution of X-rays or particle radiation into visible images, e.g. fluoroscopic screens with an intermediate layer

Definitions

  • the present invention relates to a radiation image conversion panel used in a radiation image forming apparatus used when a radiation image of a subject is formed.
  • radiographic images such as X-ray images have been widely used for diagnosis of medical conditions in the medical field.
  • intensifying screen-film radiographic images have been widely used as imaging systems that have both high reliability and excellent cost performance as a result of high sensitivity and high image quality in the long history. It was.
  • an image conversion panel having a phosphor layer is used.
  • the fluorescent light generated from the phosphor layer is directly detected by a photoelectric conversion element or the like to form an image, or the phosphor layer accumulates part of the radiation energy, and then Some are used in a method of forming an image by detecting stimulated light emission that emits light in response to stored energy by receiving excitation light such as visible light.
  • phosphor layers containing phosphors are susceptible to mechanical changes such as damage due to friction and chemical changes such as deliquescence due to moisture in the air, and these changes lead to degradation of the image quality of radiographic images. It was easy.
  • a radiation image conversion panel in which a protective layer having a specific surface roughness is provided on a phosphor layer in order to provide high scratch resistance without degrading image quality (see Patent Document 1). )
  • a method for making a specific surface roughness among them includes a method of adding fine particles to a coating solution for the protective layer, a method of embossing the protective layer, and the like.
  • an adhesive layer is provided on the phosphor layer, and a protective layer provided on the backing film is laminated thereon to form a backing film.
  • a method for manufacturing a radiation image conversion panel is known in which a radiation image conversion panel having a protective layer is manufactured by peeling and further pressing a protective layer (see Patent Document 2).
  • An object of the present invention is to provide a radiation image conversion panel having no deterioration in image quality, excellent scratch resistance and excellent decontamination, and a manufacturing method for manufacturing the same.
  • a radiation image conversion panel having a phosphor layer, an adhesive layer disposed on the phosphor layer, and a protective layer disposed on the adhesive layer on a substrate, the adhesive layer containing matting agent particles
  • the radiation image conversion panel wherein the value of the average particle diameter M of the matting agent particles is larger than the value of the film thickness d of the adhesive layer.
  • a radiation image forming apparatus comprising the radiation image conversion panel according to any one of 1 to 5 above.
  • a manufacturing method of a radiation image conversion panel for manufacturing the radiation image conversion panel according to any one of 1 to 5, A coating solution preparation step of preparing a coating solution for an adhesive layer containing the matting agent particles, An adhesive layer forming step of forming the adhesive layer on the protective layer by applying and drying the adhesive layer coating solution on the protective layer; The phosphor layer is formed on the substrate to produce a phosphor sheet, and the phosphor sheet and the protective layer with the adhesive layer are bonded to the phosphor layer and the adhesive.
  • the above-mentioned means of the present invention can provide a radiation image conversion panel having no deterioration in image quality, excellent scratch resistance and excellent decontamination and a manufacturing method for manufacturing the same.
  • the present invention relates to a radiation image conversion panel having a phosphor layer, an adhesive layer disposed on the phosphor layer, and a protective layer disposed on the adhesive layer on a substrate, the adhesive layer being a mat. It is characterized by containing agent particles, and the value of the average particle diameter M of the matting agent particles is larger than the value of the film thickness d of the adhesive layer.
  • FIG. 1 schematically shows the configuration of an example of the radiation image conversion panel of the present invention.
  • the radiation image conversion panel 10 has an undercoat layer 2 provided as necessary on a substrate 1, a phosphor layer 3 on the undercoat layer 2, and the phosphor layer 3 on 2 has an adhesive layer 4 and a protective layer 6 on the adhesive layer 4.
  • the adhesive layer 4 has matting agent particles 5 having a particle size larger than the film thickness of the adhesive layer 4.
  • the substrate according to the present invention is a plate-like body or a film body that can carry a phosphor layer.
  • glass substrates such as quartz, borosilicate glass, chemically tempered glass, ceramic substrates such as sapphire, silicon nitride, silicon carbide, semiconductor substrates such as silicon, germanium, gallium arsenide, gallium phosphide, gallium nitrogen, cellulose acetate film, polyester Metal having a coating layer of metal sheet or metal oxide such as film, polyethylene terephthalate film, polyamide film, polyimide film, triacetate film, polycarbonate film, carbon fiber reinforced resin sheet, aluminum sheet, iron sheet, copper sheet A sheet or the like can be used.
  • glass substrates such as quartz, borosilicate glass, chemically tempered glass, ceramic substrates such as sapphire, silicon nitride, silicon carbide, semiconductor substrates such as silicon, germanium, gallium arsenide, gallium phosphide, gallium nitrogen, cellulose acetate film, polyester Metal having a coating layer of metal sheet or metal oxide such as film, polyethylene terephthalate film, polyamide film, polyimi
  • a PET sheet, an aluminum sheet, a carbon fiber reinforced resin sheet, and a polyimide film are preferably used.
  • the thickness of the base material is preferably in the range of 50 ⁇ m to 500 ⁇ m from the viewpoint of improving resistance and reducing weight.
  • the phosphor layer according to the present invention contains a phosphor.
  • Examples of the phosphor include a phosphor represented by BaSO 4 : Ax described in JP-A-48-80487, a phosphor represented by MgSO 4 : Ax described in JP-A-48-80488, Phosphors represented by SrSO 4 : Ax described in JP-A-48-80489, Na 2 SO 4 , CaSO 4 and BaSO 4 described in JP-A-51-29889, etc., Mn, Dy And phosphors added with at least one of Tb, phosphors such as BeO, LiF, MgSO 4 and CaF 2 described in JP-A-52-30487, described in JP-A-53-39277 Phosphors such as Li 2 B 4 O 7 : Cu, Ag, etc., phosphors such as Li 2 O.
  • an alkaline earth fluorohalide phosphor represented by the general formula (Ba 1-xy Mg x Ca y ) F x : Eu 2+ described in JP-A-55-12143 A phosphor in which the general formula described in JP-A-55-12144 is represented by LnOX: xA, and a general formula described in JP-A-55-12145 is (Ba 1-x M (II) x ) F a phosphor represented by x : yA, a phosphor represented by the general formula described in JP-A-55-84389, represented by BaFX: xCe, yA, and a general compound described in JP-A-55-160078
  • stimulable phosphor particles represented by the following general formula (1) can also be preferably used.
  • M 1 is at least one alkali metal selected from the group consisting of Li, Na, K, Rb and Cs
  • M 2 is Be, Mg, Ca, Sr, Ba, Zn, Cd. , Cu and Ni
  • M 3 is Sc, Y, La, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er.
  • M 1 is at least one alkali metal selected from the group consisting of K, Rb and Cs
  • X is at least one halogen selected from Br and I
  • M 2 is at least one divalent metal selected from Be, Mg, Ca, Sr and Ba
  • M 3 is Y, Ce, Sm, Eu, Al, La, Gd, Lu, Ga and
  • At least one trivalent metal selected from the group consisting of: b is 0 ⁇ b ⁇ 10 ⁇ 2
  • A is at least one selected from the group consisting of Eu, Cs, Sm, Tl and Na A seed metal is preferred.
  • the phosphor layer is formed by applying a coating solution containing the above-mentioned phosphor on a substrate by a known method and drying, or forming the above-mentioned phosphor on a substrate by a known vapor deposition method.
  • a phosphor sheet having a base material and a phosphor layer is produced.
  • An undercoat layer may be provided between the substrate and the phosphor layer.
  • the undercoat layer includes a method of forming a polyparaxylylene film by a CVD method (vapor phase chemical growth method) and a method using a polymer binder (binder). From the viewpoint of attaching a film, a polymer binder ( A method using a binder is more preferable.
  • the undercoat layer is preferably formed by applying and drying a polymer binder (hereinafter also referred to as “binder”) dissolved or dispersed in a solvent.
  • binder a polymer binder
  • polymer binder examples include polyurethane, vinyl chloride copolymer, vinyl chloride-vinyl acetate copolymer, vinyl chloride-vinylidene chloride copolymer, vinyl chloride-acrylonitrile copolymer, butadiene-acrylonitrile copolymer.
  • Polymer polyamide resin, polyvinyl butyral, polyester, cellulose derivative (nitrocellulose, etc.), styrene-butadiene copolymer, various synthetic rubber resins, phenol resin, epoxy resin, urea resin, melamine resin, phenoxy resin, silicone resin , Acrylic resins, urea formamide resins, and the like.
  • polyurethane, polyester, vinyl chloride copolymer, polyvinyl butyral, and nitrocellulose are preferably used.
  • polyurethane polyurethane
  • polyester vinyl chloride copolymer
  • polyvinyl butyral polyvinyl butyral
  • nitrocellulose particularly preferable in terms of adhesion to the phosphor layer.
  • a polymer having a glass transition temperature (Tg) of 30 to 100 ° C. is preferable in terms of attaching a film between the deposited crystal and the support. From this viewpoint, a polyester resin is particularly preferable.
  • Solvents that can be used to prepare the undercoat layer include lower alcohols such as methanol, ethanol, n-propanol and n-butanol, hydrocarbons containing chlorine atoms such as methylene chloride and ethylene chloride, acetone, methyl ethyl ketone, and methyl isobutyl ketone.
  • the undercoat layer may contain a pigment or a dye to prevent scattering of light emitted from the phosphor (scintillator) and improve sharpness.
  • the dry thickness of the undercoat layer is preferably 1 to 50 ⁇ m, more preferably 5 to 30 ⁇ m.
  • the adhesive layer according to the present invention is a layer for adhering a phosphor layer and a protective layer to be described later, contains matting agent particles, and the thickness d of the adhesive layer is the average particle size M of the matting agent particles. Is less than the value of.
  • the adhesive layer is a layer containing a resin capable of adhering the phosphor layer and the protective layer.
  • the resin include polyurethane, polyester, vinyl chloride copolymer, vinyl chloride-vinyl acetate copolymer, and chloride. Vinyl-vinylidene chloride copolymer, vinyl chloride-acrylonitrile copolymer, butadiene-acrylonitrile copolymer, polyamide resin, polyvinyl butyral, cellulose derivative (nitrocellulose, etc.), styrene-butadiene copolymer, various synthetic rubber resins Phenol resin, epoxy resin, urea resin, melamine resin, phenoxy resin, silicon resin, acrylic resin, urea formamide resin, and the like. Among these, it is preferable to use polyurethane, polyester, vinyl chloride copolymer and the like.
  • the resin may be used alone or a resin having a different Tg may be mixed.
  • the adhesive layer can be formed by preparing an adhesive layer coating solution containing the resin and matting agent particles described below, and applying the adhesive layer coating solution.
  • the coating solution for the adhesive layer preferably contains a solvent capable of dissolving the above resin. Examples of the solvent include methyl ethyl ketone, toluene, cyclohexanone, and a mixed solvent thereof is preferably used.
  • the coating liquid for the adhesive layer may be applied on the phosphor layer, but after the protective layer with the adhesive layer in which the adhesive layer is formed on the protective layer by applying on the protective layer described below,
  • the adhesive layer is preferably disposed between the phosphor layer and the protective layer.
  • the film thickness d of the adhesive layer refers to an average value of the values at each point by observing the cross section of the adhesive layer with an electron microscope, measuring the thickness of a portion where the matting agent particles are not present, 20 points.
  • the value of the film thickness d is preferably 0.5 ⁇ m to 20 ⁇ m, particularly preferably 1.0 ⁇ m to 5.0 ⁇ m from the viewpoint of adhesion between the phosphor layer and the protective layer.
  • the matting agent particles according to the present invention refer to particles having a particle size of 100 ⁇ m or less.
  • the particle diameter means the maximum length in the projected image.
  • the value of the average particle diameter M of the matting agent particles is larger than the value of the film thickness d of the adhesive layer.
  • the average particle diameter M refers to the average value of the particle diameters measured for 100 particles.
  • the shape of the matting agent particles is not particularly limited, but spherical particles are preferably used from the viewpoint of dispersibility and surface control.
  • the average particle diameter is preferably 50 ⁇ m or less, more preferably 3 ⁇ m or more and 50 ⁇ m or less from the viewpoint of image unevenness.
  • the matting agent particles are larger than the value of the film thickness d of the adhesive layer, it is preferable that the average particle size M has a relationship of 3d ⁇ M ⁇ 15d.
  • the material for the matting agent particles is preferably transparent or has a low refractive index, and inorganic particles such as silica and calcium carbonate, and resin particles such as acrylic resin are preferable.
  • silica particles and acrylic resin particles are preferable.
  • the matting agent particles may be used alone or in combination.
  • the adhesive layer can be formed by applying the adhesive layer coating liquid as described above, but the content of the matting agent particles in the adhesive layer coating liquid is the same as that in the adhesive layer coating liquid.
  • the content is preferably 0.01% by mass to 20% by mass and particularly preferably 1.0% by mass to 5.0% by mass with respect to the resin.
  • the protective layer according to the present invention is a layer that is disposed on the phosphor layer via the adhesive layer as described above and covers the matting agent particles that the adhesive layer has.
  • Protective layer is polyethylene terephthalate, polymethyl methacrylate (PMMA), polyethylene, polycarbonate, polypropylene, vinyl chloride, polybutylene terephthalate, ABS, AS, POM, polystyrene, polyamide, Teflon (registered trademark), ethylene acid bicopolymer, finol resin It is preferably a layer of a resin such as melamine, polyester, epoxy resin, cellulose, or a copolymer thereof, and an embodiment that is a film of these resins is a preferred embodiment.
  • the thickness value of the protective layer is preferably 1 to 50 ⁇ m, particularly 4 to 20 ⁇ m from the viewpoint of sharpness and scratch resistance.
  • the protective layer may be formed on the adhesive layer provided on the phosphor layer. However, after the adhesive layer is formed on the protective layer as described above, the protective layer is provided on the phosphor layer via the adhesive layer. It is preferable.
  • the method for producing a radiation image conversion panel according to the present invention includes a coating liquid preparation step for preparing a coating liquid for an adhesive layer containing the matting agent particles, a coating liquid for the adhesive layer applied on the protective layer, and then dried.
  • the coating liquid preparation step, the adhesive layer formation step, and the phosphor sheet preparation step are performed by the methods described above.
  • the phosphor sheet and the protective layer with an adhesive layer are bonded with the phosphor layer and the adhesive layer facing each other.
  • the nip temperature at the time of bonding is preferably Tg or more and 180 ° C. or less from the viewpoint of stable adhesion of the protective layer and deformation of the panel. More preferably, the temperature is at least 140 ° C and at most 140 ° C.
  • the nip pressure is preferably 3 kg / cm or more and 50 kg / cm or less from the viewpoint of uneven bonding and panel deformation, and more preferably 5 kg / cm or more and 20 kg / cm or less from the surface of panel deformation.
  • the radiation image forming apparatus of the present invention includes the radiation image conversion panel of the present invention.
  • the radiation image forming apparatus has a structure in which a photoelectric conversion substrate having a photoelectric conversion element on its surface and the radiation image conversion panel of the present invention are arranged so that the photoelectric conversion element and the phosphor layer face each other. The light from the phosphor layer emitted by the incident radiation is converted into an electrical signal to form an image.
  • polyester resin-dissolved product (Toyobo Byron 30SS: solid content 30% by mass) 290.31 g and ⁇ -copper phthalocyanine dispersion 0.03 g (solid content 35% by mass, pigment content 30% by mass) and curing Agent Coronate HX 9.68 g was mixed and dispersed by a propeller mixer.
  • This undercoat layer coating solution was applied to a base material PET (Toray: 250-E20) using a doctor blade and dried at 100 ° C. for 5 minutes to form a 20 ⁇ m thick undercoat layer.
  • alkaline earth metal halide phosphor (BaFBr 0.85 I 0.15 : Eu) activated by europium having an average particle size of 5 ⁇ m as a material for forming the phosphor layer
  • polyester resin (Toyobo Byron 530) The mixture was added to a mixed solvent of methyl ethyl ketone, toluene, and cyclohexanone, and dispersed with a propeller mixer to prepare a coating solution having a solid content of 77%.
  • This coating solution was applied to the undercoat layer side of the PET base material using a doctor blade, and then dried at 100 ° C. for 15 minutes to form a phosphor layer of 280 ⁇ m for each to produce a phosphor sheet.
  • a PET film 9 ⁇ m (“Emblet” manufactured by Unitika) was used as a protective layer.
  • An adhesive layer having a DRY film thickness of 2 ⁇ m was formed on the PET film by applying the adhesive layer coating solution prepared above with a gravure coater at a line speed of 10 m / min and drying at 80 ° C. for 3 minutes.
  • the protective layer with adhesive prepared above was bonded to the phosphor sheet using a laminator. Bonding is performed at a laminator nip temperature of 120 ° C. and a nip line pressure of 13 kg / cm, and at the same time as laminating, the radiation image conversion panel 1 in which irregularities are imparted to the phosphor plate surface (protective layer) by the acrylic particles. (Invention) was produced.
  • the radiation image conversion panel 23 was produced in the same manner as the production of the radiation image conversion panel 1 except that the matting agent particles were not included in the coating liquid for the adhesive layer.
  • a protective layer containing matting agent particles having a thickness of about 9 ⁇ m is applied on the phosphor layer in the radiation image conversion panel 1 by applying the coating liquid for protective layer prepared above with a wire bar and drying for 5 minutes.
  • a radiation image conversion panel 24 was prepared.
  • the MTF attaches a CTF chart to the radiation image conversion panel sample, irradiates the radiation image conversion panel with X-rays of 80 kVp for 10 mR (distance to the subject: 1.5 m), and then the panel is He—Ne laser light (633 nm).
  • the CTF chart image was scanned and read.
  • the relative result of each radiation image conversion panel was evaluated according to the following rank, and was used as one of the indexes of image quality evaluation. ⁇ : -1% or more ⁇ : -5% or more, less than -1% ⁇ : less than -5%
  • Table 1 The results are shown in Table 1.
  • Image quality Image unevenness
  • the panel After irradiating the radiation image conversion panel with X-rays with a tube voltage of 80 kVp, the panel is excited by operating with a He—Ne laser beam (633 nm), and this is reproduced as an image by an image reproducing device and printed out from an output device.
  • the obtained print image was visually observed to evaluate the appearance of image unevenness.
  • the degree of image unevenness was evaluated according to the following rank, and was used as one of the indexes of image quality evaluation. ⁇ Unevenness is not visible at all ⁇ There is unevenness, but it can be photographed and evaluated.
  • the radiation image conversion panel of the present invention has less sharpness degradation, less image unevenness, excellent image quality, and excellent scratch resistance and contamination removal.

Abstract

The present invention provides: a radiological image conversion panel which comprises a base and a phosphor layer, an adhesive layer arranged on the phosphor layer and a protective layer arranged on the adhesive layer which are formed on the base, wherein the panel is characterized in that the adhesive layer contains particles of a matting agent and the value of the average particle diameter (M) of the particles of the matting agent is larger than the value of the thickness (d) of the adhesive layer, and wherein the panel does not rarely undergo the deterioration in an image and has excellent scratch resistance and excellent stain-proof properties; and a process for producing the panel.

Description

放射線像変換パネル、放射線像変換パネルの製造方法および放射線画像形成装置Radiation image conversion panel, method for manufacturing radiation image conversion panel, and radiation image forming apparatus
 本発明は、被写体の放射線画像を形成する際に用いられる放射線画像形成装置に用いられる放射線像変換パネルに関する。 The present invention relates to a radiation image conversion panel used in a radiation image forming apparatus used when a radiation image of a subject is formed.
 従来から、X線画像のような放射線画像は医療現場において病状の診断に広く用いられている。特に、増感紙-フィルム系による放射線画像は、長い歴史のなかで高感度化と高画質化が図られた結果、高い信頼性と優れたコストパフォーマンスを併せ持った撮像システムとして、広く用いられてきた。 Conventionally, radiographic images such as X-ray images have been widely used for diagnosis of medical conditions in the medical field. In particular, intensifying screen-film radiographic images have been widely used as imaging systems that have both high reliability and excellent cost performance as a result of high sensitivity and high image quality in the long history. It was.
 しかしながらこれら画像情報はいわゆるアナログ画像情報であって、近年発展を続けているデジタル画像情報のような、自由な画像処理や瞬時の電送ができない。 However, these pieces of image information are so-called analog image information, and free image processing and instantaneous transmission cannot be performed like digital image information that has been developed in recent years.
 そして、近年ではコンピューテッドラジオグラフィ(CR)やフラットパネル型の放射線ディテクタ(FPD)等に代表されるデジタル方式の放射線画像検出装置が登場している。これらの放射線画像検出装置においては、デジタルの放射線画像が、直接あるいは間接的に得られ、陰極管や液晶パネル等の画像表示装置や、写真感光材料などの記録材料などに、放射線画像を表示することが可能である。 In recent years, digital radiological image detection devices represented by computed radiography (CR), flat panel type radiation detectors (FPD) and the like have appeared. In these radiation image detection devices, digital radiation images are obtained directly or indirectly, and the radiation images are displayed on an image display device such as a cathode tube or a liquid crystal panel, or a recording material such as a photographic material. It is possible.
 これらの放射線画像検出には、蛍光体層を有する画像変換パネルが用いられ。 For these radiation image detection, an image conversion panel having a phosphor layer is used.
 画像変換パネルとしては、蛍光体層から発生する蛍光を直接光電変換素子などで検出して画像を形成する方式に用いられるものや、蛍光体層が放射線のエネルギーの一部を蓄積し、その後で可視光などの励起光を受け蓄積されたエネルギーに応じて発光する輝尽発光を検出して画像を形成する方式に用いられるものがある。 As an image conversion panel, the fluorescent light generated from the phosphor layer is directly detected by a photoelectric conversion element or the like to form an image, or the phosphor layer accumulates part of the radiation energy, and then Some are used in a method of forming an image by detecting stimulated light emission that emits light in response to stored energy by receiving excitation light such as visible light.
 他方、蛍光体を含有する蛍光体層は、摩擦による損傷などの機械的変化や、空気中の水分などによる潮解などの化学的変化を受けやすく、これらの変化により放射線画像の画質の劣化を招き易かった。 On the other hand, phosphor layers containing phosphors are susceptible to mechanical changes such as damage due to friction and chemical changes such as deliquescence due to moisture in the air, and these changes lead to degradation of the image quality of radiographic images. It was easy.
 そのため、放射線画像検出装置を用いる方法として、蛍光体層上に保護層を設けた構成で使用される方法が知られている。 Therefore, as a method using a radiation image detection device, a method used in a configuration in which a protective layer is provided on a phosphor layer is known.
 例えば、画質を低下させることなく高い防傷性を持たせるために、蛍光体層の上に特定の表面粗さを有する保護層を設けた放射線像変換パネルが知られており(特許文献1参照)、その中で特定の表面粗さにするための方法として、保護層用の塗布液中に微粒子を添加する方法、保護層をエンボス加工をする方法などが記載されている。 For example, a radiation image conversion panel is known in which a protective layer having a specific surface roughness is provided on a phosphor layer in order to provide high scratch resistance without degrading image quality (see Patent Document 1). ), A method for making a specific surface roughness among them includes a method of adding fine particles to a coating solution for the protective layer, a method of embossing the protective layer, and the like.
 また、保護層と蛍光体層との密着強度を高め画質低下を抑えるために、蛍光体層上に接着層を設け、この上に裏打ちフィルム上に設けられた保護層を積層して裏打ちフィルムを剥がし、さらに保護層を圧着して、保護層を有する放射線像変換パネルを製造する放射線像変換パネルの製造方法が知られている(特許文献2参照)。 In addition, in order to increase the adhesion strength between the protective layer and the phosphor layer and suppress deterioration in image quality, an adhesive layer is provided on the phosphor layer, and a protective layer provided on the backing film is laminated thereon to form a backing film. A method for manufacturing a radiation image conversion panel is known in which a radiation image conversion panel having a protective layer is manufactured by peeling and further pressing a protective layer (see Patent Document 2).
 しかしながら、これらの放射線像変換パネルを用いても、画質が不充分な場合がある、耐傷性が不充分な場合があるなどの問題があった。 However, even when these radiation image conversion panels are used, there are problems that image quality may be insufficient and scratch resistance may be insufficient.
特開2000-346996号公報JP 2000-346996 A 特開2008-14859号公報JP 2008-14859 A
 本発明の目的は、画質の低下がなく、耐傷性に優れ、汚染除去性に優れた放射線像変換パネルおよびそれを製造する製造方法を提供することにある。 An object of the present invention is to provide a radiation image conversion panel having no deterioration in image quality, excellent scratch resistance and excellent decontamination, and a manufacturing method for manufacturing the same.
 本発明の上記目的は、下記の手段により達成される。 The above object of the present invention is achieved by the following means.
 1.基材上に、蛍光体層、該蛍光体層上に配置された接着層および該接着層上に配置された保護層を有する放射線像変換パネルであって、該接着層がマット剤粒子を含有し、該マット剤粒子の平均粒径Mの値が、該接着層の膜厚dの値より大きいことを特徴とする放射線像変換パネル。 1. A radiation image conversion panel having a phosphor layer, an adhesive layer disposed on the phosphor layer, and a protective layer disposed on the adhesive layer on a substrate, the adhesive layer containing matting agent particles The radiation image conversion panel, wherein the value of the average particle diameter M of the matting agent particles is larger than the value of the film thickness d of the adhesive layer.
 2.前記接着層の膜厚dと、前記平均粒径Mが、3d<M<15dの関係であることを特徴とする前記1に記載の放射線像変換パネル。 2. 2. The radiation image conversion panel according to 1 above, wherein the thickness d of the adhesive layer and the average particle diameter M are in a relationship of 3d <M <15d.
 3.前記マット剤粒子の平均粒径Mが、3μm~50μmであることを特徴とする前記1または2に記載の放射線像変換パネル。 3. 3. The radiation image conversion panel as described in 1 or 2 above, wherein the average particle diameter M of the matting agent particles is 3 μm to 50 μm.
 4.前記接着層の膜厚dが、1μm~10μmであることを特徴とする前記1から3のいずれか1項に記載の放射線像変換パネル。 4. 4. The radiation image conversion panel according to any one of 1 to 3, wherein the thickness d of the adhesive layer is 1 μm to 10 μm.
 5.前記保護層の膜厚が、4~20μmであることを特徴とする前記1から4のいずれか1項に記載の放射線像変換パネル。 5. 5. The radiation image conversion panel according to any one of 1 to 4, wherein the protective layer has a thickness of 4 to 20 μm.
 6.前記1から5のいずれか1項に記載の放射線像変換パネルを具備することを特徴とする放射線画像形成装置。 6. 6. A radiation image forming apparatus comprising the radiation image conversion panel according to any one of 1 to 5 above.
 7.前記1から5のいずれか1項に記載の放射線像変換パネルを製造する放射線像変換パネルの製造方法であって、
 前記マット剤粒子を含有する接着層用塗布液を調製する塗布液調製工程、
 前記保護層上に該接着層用塗布液を塗布し乾燥して前記保護層上に前記接着層を形成する接着層形成工程、
 前記基材上に前記蛍光体層を形成して蛍光体シートを作製する蛍光体シート作製工程、および該蛍光体シートと前記接着層が付いた前記保護層とを、前記蛍光体層と前記接着層とを対面させて貼合する貼合工程、
を有することを特徴とする放射線像変換パネルの製造方法。
7. A manufacturing method of a radiation image conversion panel for manufacturing the radiation image conversion panel according to any one of 1 to 5,
A coating solution preparation step of preparing a coating solution for an adhesive layer containing the matting agent particles,
An adhesive layer forming step of forming the adhesive layer on the protective layer by applying and drying the adhesive layer coating solution on the protective layer;
The phosphor layer is formed on the substrate to produce a phosphor sheet, and the phosphor sheet and the protective layer with the adhesive layer are bonded to the phosphor layer and the adhesive. A laminating step for facing and laminating the layers;
The manufacturing method of the radiation image conversion panel characterized by having.
 本発明の上記手段により、画質の低下がなく、耐傷性に優れ、汚染除去性に優れた放射線像変換パネルおよびそれを製造する製造方法が提供できる。 The above-mentioned means of the present invention can provide a radiation image conversion panel having no deterioration in image quality, excellent scratch resistance and excellent decontamination and a manufacturing method for manufacturing the same.
本発明の放射線像変換パネルの例の構成を示す、概略断面図である。It is a schematic sectional drawing which shows the structure of the example of the radiation image conversion panel of this invention.
 本発明は、基材上に、蛍光体層、該蛍光体層上に配置された接着層および該接着層上に配置された保護層を有する放射線像変換パネルであって、該接着層がマット剤粒子を含有し、該マット剤粒子の平均粒径Mの値が、該接着層の膜厚dの値より大きいことを特徴とする。 The present invention relates to a radiation image conversion panel having a phosphor layer, an adhesive layer disposed on the phosphor layer, and a protective layer disposed on the adhesive layer on a substrate, the adhesive layer being a mat. It is characterized by containing agent particles, and the value of the average particle diameter M of the matting agent particles is larger than the value of the film thickness d of the adhesive layer.
 本発明では、特に保護層と蛍光体層との間に、その膜厚よりもおおきな粒径を有するマット剤粒子を含有した接着層を設けることで、画質の低下がなく、耐傷性に優れ、防汚性に優れた放射線像変換パネルを得ることができる。 In the present invention, in particular, by providing an adhesive layer containing matting agent particles having a particle size larger than the film thickness between the protective layer and the phosphor layer, there is no deterioration in image quality and excellent scratch resistance. A radiation image conversion panel having excellent antifouling properties can be obtained.
 図1は、本発明の放射線像変換パネルの例の構成を模式的に表したものである。図1において、放射線像変換パネル10は、基材1上に、必要に応じて設けられる下引き層2を有し、下引き層2上に蛍光体層3を有し、蛍光体層3上に接着層4を有し、接着層4上に保護層6を有する。接着層4は、接着層4の膜厚よりも大きな粒径を有するマット剤粒子5を有している。 FIG. 1 schematically shows the configuration of an example of the radiation image conversion panel of the present invention. In FIG. 1, the radiation image conversion panel 10 has an undercoat layer 2 provided as necessary on a substrate 1, a phosphor layer 3 on the undercoat layer 2, and the phosphor layer 3 on 2 has an adhesive layer 4 and a protective layer 6 on the adhesive layer 4. The adhesive layer 4 has matting agent particles 5 having a particle size larger than the film thickness of the adhesive layer 4.
 (基材)
 本発明に係る基材は、蛍光体層を担持可能な板状体またはフィルム体である。
(Base material)
The substrate according to the present invention is a plate-like body or a film body that can carry a phosphor layer.
 基材としては、各種のガラス、高分子材料、金属等を用いることができる。例えば、石英、ホウ珪酸ガラス、化学的強化ガラスなどの板ガラス、サファイア、チッ化珪素、炭化珪素などのセラミック基板、シリコン、ゲルマニウム、ガリウム砒素、ガリウム燐、ガリウム窒素など半導体基板、セルロースアセテートフィルム、ポリエステルフィルム、ポリエチレンテレフタレートフィルム、ポリアミドフィルム、ポリイミドフィルム、トリアセテートフィルム、ポリカーボネートフィルム、炭素繊維強化樹脂シート等のプラスチックフィルム、アルミニウムシート、鉄シート、銅シート等の金属シート或いは金属酸化物の被覆層を有する金属シートなどを用いることができる。 As the substrate, various kinds of glass, polymer materials, metals, etc. can be used. For example, glass substrates such as quartz, borosilicate glass, chemically tempered glass, ceramic substrates such as sapphire, silicon nitride, silicon carbide, semiconductor substrates such as silicon, germanium, gallium arsenide, gallium phosphide, gallium nitrogen, cellulose acetate film, polyester Metal having a coating layer of metal sheet or metal oxide such as film, polyethylene terephthalate film, polyamide film, polyimide film, triacetate film, polycarbonate film, carbon fiber reinforced resin sheet, aluminum sheet, iron sheet, copper sheet A sheet or the like can be used.
 これらの中でも、耐久性や軽量化といった観点から、PETシート、アルミニウムシートや炭素繊維強化樹脂シート、ポリイミドフィルムが好ましく用いられる。 Among these, from the viewpoint of durability and weight reduction, a PET sheet, an aluminum sheet, a carbon fiber reinforced resin sheet, and a polyimide film are preferably used.
 また、基材の厚さは、耐性の向上や軽量化といった観点から、50μm~500μmの範囲にあることが好ましい。 Further, the thickness of the base material is preferably in the range of 50 μm to 500 μm from the viewpoint of improving resistance and reducing weight.
 (蛍光体層)
 本発明に係る蛍光体層は、蛍光体を含有する。
(Phosphor layer)
The phosphor layer according to the present invention contains a phosphor.
 蛍光体としては、例えば、特開昭48-80487号に記載されているBaSO:Axで表される蛍光体、特開昭48-80488号記載のMgSO:Axで表される蛍光体、特開昭48-80489号に記載されているSrSO:Axで表される蛍光体、特開昭51-29889号に記載されているNaSO、CaSO及びBaSO等にMn、Dy及びTbの中少なくとも1種を添加した蛍光体、特開昭52-30487号に記載されているBeO、LiF、MgSO及びCaF等の蛍光体、特開昭53-39277号に記載されているLi:Cu,Ag等の蛍光体、特開昭54-47883号に記載されているLiO・(Be)x:Cu,Ag等の蛍光体、米国特許第3,859,527号に記載されているSrS:Ce,Sm、SrS:Eu,Sm、LaS:Eu,Sm及び(Zn,Cd)S:Mnxで表される蛍光体が挙げられる。また、特開昭55-12142号に記載されているZnS:Cu,Pb蛍光体、一般式がBaO・xAl:Euで表されるアルミン酸バリウム蛍光体、及び、一般式がM(II)O・xSiO:Aで表されるアルカリ土類金属珪酸塩系蛍光体が挙げられる。 Examples of the phosphor include a phosphor represented by BaSO 4 : Ax described in JP-A-48-80487, a phosphor represented by MgSO 4 : Ax described in JP-A-48-80488, Phosphors represented by SrSO 4 : Ax described in JP-A-48-80489, Na 2 SO 4 , CaSO 4 and BaSO 4 described in JP-A-51-29889, etc., Mn, Dy And phosphors added with at least one of Tb, phosphors such as BeO, LiF, MgSO 4 and CaF 2 described in JP-A-52-30487, described in JP-A-53-39277 Phosphors such as Li 2 B 4 O 7 : Cu, Ag, etc., phosphors such as Li 2 O. (Be 2 O 2 ) x: Cu, Ag described in JP-A-54-47883, US Patent No. 3,85 , SrS are described in JP 527: Ce, Sm, SrS: Eu, Sm, La 2 O 2 S: Eu, Sm and (Zn, Cd) S: phosphor can be cited represented by Mnx. Further, a ZnS: Cu, Pb phosphor described in JP-A-55-12142, a barium aluminate phosphor represented by the general formula BaO.xAl 2 O 3 : Eu, and a general formula represented by M ( II) Alkaline earth metal silicate phosphors represented by O.xSiO 2 : A are mentioned.
 また、特開昭55-12143号に記載されている一般式が(Ba1-x-yMgCa)F:Eu2+で表されるアルカリ土類フッ化ハロゲン化物蛍光体、特開昭55-12144号に記載されている一般式がLnOX:xAで表される蛍光体、特開昭55-12145号に記載されている一般式が(Ba1-xM(II))F:yAで表される蛍光体、特開昭55-84389号に記載されている一般式がBaFX:xCe,yAで表される蛍光体、特開昭55-160078号に記載されている一般式がM(II)FX・xA:yLnで表される希土類元素賦活2価金属フルオロハライド蛍光体、一般式ZnS:A、CdS:A、(Zn,Cd)S:A,Xで表される蛍光体、特開昭59-38278号に記載されている下記いずれかの一般式
 xM(PO・NX:yA
 xM(PO:yA
で表される蛍光体、特開昭59-155487号に記載されている下記いずれかの一般式
 nReX・mAX′:xEu
 nReX・mAX′:xEu,ySm
で表される蛍光体、特開昭61-72087号に記載されている下記一般式
 M(I)X・aM(II)X′・bM(III)X″:cA
で表されるアルカリハライド蛍光体、及び特開昭61-228400号に記載されている一般式M(I)X:xBiで表されるビスマス賦活アルカリハライド蛍光体等が挙げられる。特に、アルカリハライド蛍光体は、蒸着、スパッタリング等の方法で柱状の輝尽性蛍光体層を形成させやすく好ましい。
Further, an alkaline earth fluorohalide phosphor represented by the general formula (Ba 1-xy Mg x Ca y ) F x : Eu 2+ described in JP-A-55-12143, A phosphor in which the general formula described in JP-A-55-12144 is represented by LnOX: xA, and a general formula described in JP-A-55-12145 is (Ba 1-x M (II) x ) F a phosphor represented by x : yA, a phosphor represented by the general formula described in JP-A-55-84389, represented by BaFX: xCe, yA, and a general compound described in JP-A-55-160078 Rare earth element activated divalent metal fluorohalide phosphor represented by the formula M (II) FX.xA: yLn, represented by the general formula ZnS: A, CdS: A, (Zn, Cd) S: A, X Phosphor, described in JP-A-59-38278 Any one of the following general formulas xM 3 (PO 4 ) 2 .NX 2 : yA
xM 3 (PO 4 ) 2 : yA
A phosphor represented by any one of the following general formulas described in JP-A-59-155487: nReX 3 · mAX ′ 2 : xEu
nReX 3 · mAX ′ 2 : xEu, ySm
A phosphor represented by the following general formula M (I) X · aM (II) X ′ 2 · bM (III) X ″ 3 : cA described in JP-A-61-72087
And bismuth-activated alkali halide phosphors represented by the general formula M (I) X: xBi described in JP-A No. 61-228400. In particular, alkali halide phosphors are preferred because they easily form columnar photostimulable phosphor layers by methods such as vapor deposition and sputtering.
 また、下記一般式(1)で表される輝尽性蛍光体粒子も好ましく用いることができる。 In addition, stimulable phosphor particles represented by the following general formula (1) can also be preferably used.
 一般式(1):MX・aMX′・bMX″:eA
 一般式(1)において、MはLi、Na、K、Rb及びCsからなる群から選ばれる少なくとも1種のアルカリ金属であり、MはBe、Mg、Ca、Sr、Ba、Zn、Cd、Cu及びNiからなる群から選ばれる少なくとも1種の2価金属であり、MはSc、Y、La、Ce、Pr、Nd、Pm、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb、Lu、Al、Ga及びInからなる群から選ばれる少なくとも1種の3価金属であり、X、X′及びX″は各々F、Cl、Br及びIからなる群から選ばれる少なくとも1種のハロゲンであり、Aは、Eu、Tb、In、Cs、Ce、Tm、Dy、Pr、Ho、Nd、Yb、Er、Gd、Lu、Sm、Y、Tl、Na、Ag、Cu及びMgからなる群から選ばれる少なくとも1種の金属であり、また、a、b、eはそれぞれ0≦a<0.5、0≦b<0.5、0<e≦0.2の範囲の数値を表す。
The general formula (1): M 1 X · aM 2 X '2 · bM 3 X "3: eA
In the general formula (1), M 1 is at least one alkali metal selected from the group consisting of Li, Na, K, Rb and Cs, and M 2 is Be, Mg, Ca, Sr, Ba, Zn, Cd. , Cu and Ni, and M 3 is Sc, Y, La, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er. , Tm, Yb, Lu, Al, Ga and In, at least one trivalent metal selected from the group consisting of In, X, X ′ and X ″ are each selected from the group consisting of F, Cl, Br and I At least one halogen, and A is Eu, Tb, In, Cs, Ce, Tm, Dy, Pr, Ho, Nd, Yb, Er, Gd, Lu, Sm, Y, Tl, Na, Ag, Cu And at least selected from the group consisting of Mg A seed metal, also, a, b, e each represent a number between 0 ≦ a <0.5,0 ≦ b <0.5,0 <e ≦ 0.2.
 さらに、前記一般式(1)においては、MがK、Rb及びCsからなる群から選ばれる少なくとも1種のアルカリ金属であること、XがBr及びIから選ばれる少なくとも1種のハロゲンであること、MがBe、Mg、Ca、Sr及びBaから選ばれる少なくとも1種の2価金属であること、MがY、Ce、Sm、Eu、Al、La、Gd、Lu、Ga及びInからなる群から選ばれる少なくとも1種の3価金属であること、bが0≦b≦10-2であること、Aが、Eu、Cs、Sm、Tl及びNaからなる群から選ばれる少なくとも1種の金属であることが好ましい。 Further, in the general formula (1), M 1 is at least one alkali metal selected from the group consisting of K, Rb and Cs, and X is at least one halogen selected from Br and I. M 2 is at least one divalent metal selected from Be, Mg, Ca, Sr and Ba, M 3 is Y, Ce, Sm, Eu, Al, La, Gd, Lu, Ga and In At least one trivalent metal selected from the group consisting of: b is 0 ≦ b ≦ 10 −2 , A is at least one selected from the group consisting of Eu, Cs, Sm, Tl and Na A seed metal is preferred.
 蛍光体層は、基材上に上記の蛍光体を含有する塗布液を公知の方法により塗布し乾燥して形成する、あるいは基材上に上記の蛍光体を公知の蒸着法により形成する、方法により形成され、基材と蛍光体層を有する蛍光体シートが作製される。 The phosphor layer is formed by applying a coating solution containing the above-mentioned phosphor on a substrate by a known method and drying, or forming the above-mentioned phosphor on a substrate by a known vapor deposition method. Thus, a phosphor sheet having a base material and a phosphor layer is produced.
 (下引層)
 基材と蛍光体層の間には、下引層を有してもよい。
(Undercoat layer)
An undercoat layer may be provided between the substrate and the phosphor layer.
 当該下引層は、CVD法(気相化学成長法)によりポリパラキシリレン膜を成膜する方法や高分子結合材(バインダー)による方法があるが、膜付の観点から高分子結合材(バインダー)による方法がより好ましい。 The undercoat layer includes a method of forming a polyparaxylylene film by a CVD method (vapor phase chemical growth method) and a method using a polymer binder (binder). From the viewpoint of attaching a film, a polymer binder ( A method using a binder is more preferable.
 下引層は、溶剤に溶解または分散した高分子結合材(以下「バインダー」ともいう。)を塗布、乾燥して形成することが好ましい。 The undercoat layer is preferably formed by applying and drying a polymer binder (hereinafter also referred to as “binder”) dissolved or dispersed in a solvent.
 高分子結合材としては、具体的には、ポリウレタン、塩化ビニル共重合体、塩化ビニル-酢酸ビニル共重合体、塩化ビニル-塩化ビニリデン共重合体、塩化ビニル-アクリロニトリル共重合体、ブタジエン-アクリロニトリル共重合体、ポリアミド樹脂、ポリビニルブチラール、ポリエステル、セルロース誘導体(ニトロセルロース等)、スチレン-ブタジエン共重合体、各種の合成ゴム系樹脂、フェノール樹脂、エポキシ樹脂、尿素樹脂、メラミン樹脂、フェノキシ樹脂、シリコン樹脂、アクリル系樹脂、尿素ホルムアミド樹脂等が挙げられる。なかでもポリウレタン、ポリエステル、塩化ビニル系共重合体、ポリビニルブチラール、ニトロセルロースを使用することが好ましい。 Specific examples of the polymer binder include polyurethane, vinyl chloride copolymer, vinyl chloride-vinyl acetate copolymer, vinyl chloride-vinylidene chloride copolymer, vinyl chloride-acrylonitrile copolymer, butadiene-acrylonitrile copolymer. Polymer, polyamide resin, polyvinyl butyral, polyester, cellulose derivative (nitrocellulose, etc.), styrene-butadiene copolymer, various synthetic rubber resins, phenol resin, epoxy resin, urea resin, melamine resin, phenoxy resin, silicone resin , Acrylic resins, urea formamide resins, and the like. Of these, polyurethane, polyester, vinyl chloride copolymer, polyvinyl butyral, and nitrocellulose are preferably used.
 高分子結合材としては、特に蛍光体層との密着の点でポリウレタン、ポリエステル、塩化ビニル系共重合体、ポリビニルブチラール、ニトロセルロースなどが好ましい。 As the polymer binder, polyurethane, polyester, vinyl chloride copolymer, polyvinyl butyral, nitrocellulose and the like are particularly preferable in terms of adhesion to the phosphor layer.
 また、ガラス転移温度(Tg)が30~100℃のポリマーであることが、蒸着結晶と支持体との膜付の点で好ましい。この観点からは、特にポリエステル樹脂であることが好ましい。 Further, a polymer having a glass transition temperature (Tg) of 30 to 100 ° C. is preferable in terms of attaching a film between the deposited crystal and the support. From this viewpoint, a polyester resin is particularly preferable.
 下引層の調製に用いることができる溶剤としては、メタノール、エタノール、n-プロパノール、n-ブタノールなどの低級アルコール、メチレンクロライド、エチレンクロライドなどの塩素原子含有炭化水素、アセトン、メチルエチルケトン、メチルイソブチルケトンなどのケトン、トルエン、ベンゼン、シクロヘキサン、シクロヘキサノン、キシレンなどの芳香族化合物、酢酸メチル、酢酸エチル、酢酸ブチルなどの低級脂肪酸と低級アルコールとのエステル、ジオキサン、エチレングリコールモノエチルエステル、エチレングリコールモノメチルエステルなどのエーテルおよびそれらの混合物を挙げることができる。 Solvents that can be used to prepare the undercoat layer include lower alcohols such as methanol, ethanol, n-propanol and n-butanol, hydrocarbons containing chlorine atoms such as methylene chloride and ethylene chloride, acetone, methyl ethyl ketone, and methyl isobutyl ketone. Such as ketone, toluene, benzene, cyclohexane, cyclohexanone, xylene and other aromatic compounds, methyl acetate, ethyl acetate, butyl acetate and other lower fatty acid and lower alcohol esters, dioxane, ethylene glycol monoethyl ester, ethylene glycol monomethyl ester And ethers thereof and mixtures thereof.
 なお、下引層には、蛍光体(シンチレータ)が発光する光の散乱の防止し、鮮鋭性等を向上させるために顔料や染料を含有させても良い。下引層の乾燥膜厚は1~50μmが好ましく、5~30μmがより好ましい。 The undercoat layer may contain a pigment or a dye to prevent scattering of light emitted from the phosphor (scintillator) and improve sharpness. The dry thickness of the undercoat layer is preferably 1 to 50 μm, more preferably 5 to 30 μm.
 (接着層)
 本発明に係る接着層は、蛍光体層と後述する保護層とを接着させるための層であり、マット剤粒子を含有し、接着層の膜厚dが、該マット剤粒子の平均粒径Mの値より小さい。
(Adhesive layer)
The adhesive layer according to the present invention is a layer for adhering a phosphor layer and a protective layer to be described later, contains matting agent particles, and the thickness d of the adhesive layer is the average particle size M of the matting agent particles. Is less than the value of.
 接着層は、蛍光体層と保護層とを接着し得る樹脂を含有する層であり、この樹脂としては、例えば、ポリウレタン、ポリエステル、塩化ビニル共重合体、塩化ビニル-酢酸ビニル共重合体、塩化ビニル-塩化ビニリデン共重合体、塩化ビニル-アクリロニトリル共重合体、ブタジエン-アクリロニトリル共重合体、ポリアミド樹脂、ポリビニルブチラール、セルロース誘導体(ニトロセルロース等)、スチレン-ブタジエン共重合体、各種の合成ゴム系樹脂、フェノール樹脂、エポキシ樹脂、尿素樹脂、メラミン樹脂、フェノキシ樹脂、シリコン樹脂、アクリル系樹脂、尿素ホルムアミド樹脂等が挙げられる。これらのなかでもポリウレタン、ポリエステル、塩化ビニル系共重合体等を使用することが好ましい。樹脂は単独で使っても良いし、Tgの異なる樹脂を混合しても良い。 The adhesive layer is a layer containing a resin capable of adhering the phosphor layer and the protective layer. Examples of the resin include polyurethane, polyester, vinyl chloride copolymer, vinyl chloride-vinyl acetate copolymer, and chloride. Vinyl-vinylidene chloride copolymer, vinyl chloride-acrylonitrile copolymer, butadiene-acrylonitrile copolymer, polyamide resin, polyvinyl butyral, cellulose derivative (nitrocellulose, etc.), styrene-butadiene copolymer, various synthetic rubber resins Phenol resin, epoxy resin, urea resin, melamine resin, phenoxy resin, silicon resin, acrylic resin, urea formamide resin, and the like. Among these, it is preferable to use polyurethane, polyester, vinyl chloride copolymer and the like. The resin may be used alone or a resin having a different Tg may be mixed.
 接着層は、上記の樹脂および下述するマット剤粒子を含有する接着層用塗布液を調製し、この接着層用塗布液を塗布することにより形成できる。接着層用塗布液は上記樹脂を溶解可能な溶媒を含有することが好ましく、溶媒としては、メチルエチルケトン、トルエン、シクロヘキサノンなどが挙げられる、またこれらの混合溶媒が好ましく用いられる。 The adhesive layer can be formed by preparing an adhesive layer coating solution containing the resin and matting agent particles described below, and applying the adhesive layer coating solution. The coating solution for the adhesive layer preferably contains a solvent capable of dissolving the above resin. Examples of the solvent include methyl ethyl ketone, toluene, cyclohexanone, and a mixed solvent thereof is preferably used.
 接着層用塗布液は、蛍光体層上に塗布されてもよいが、下述する保護層上に塗布され、保護層上に接着層が形成された接着層付き保護層が作製された後に、接着層が蛍光体層と保護層との間に配置されることが好ましい。 The coating liquid for the adhesive layer may be applied on the phosphor layer, but after the protective layer with the adhesive layer in which the adhesive layer is formed on the protective layer by applying on the protective layer described below, The adhesive layer is preferably disposed between the phosphor layer and the protective layer.
 本発明において、接着層の膜厚dとは、接着層の断面を電子顕微鏡で観察し、マット剤粒子が存在しない部分の厚さを20点測定し、各点の値の平均値をいう。 In the present invention, the film thickness d of the adhesive layer refers to an average value of the values at each point by observing the cross section of the adhesive layer with an electron microscope, measuring the thickness of a portion where the matting agent particles are not present, 20 points.
 膜厚dの値としては、蛍光体層と保護層との密着性などの面から、0.5μm~20μmが好ましく、特に1.0μm~5.0μmが好ましい。 The value of the film thickness d is preferably 0.5 μm to 20 μm, particularly preferably 1.0 μm to 5.0 μm from the viewpoint of adhesion between the phosphor layer and the protective layer.
 (マット剤粒子)
 本発明に係るマット剤粒子は、その粒子径が100μm以下の粒子をいう。粒子径とは投影像における最大の長さをいう。
(Matting agent particles)
The matting agent particles according to the present invention refer to particles having a particle size of 100 μm or less. The particle diameter means the maximum length in the projected image.
 本発明において、マット剤粒子の平均粒径Mの値は、上記接着層の膜厚dの値より大きい。 In the present invention, the value of the average particle diameter M of the matting agent particles is larger than the value of the film thickness d of the adhesive layer.
 平均粒径Mは、100の粒子について粒子径を測定し、各粒子径の平均値をいう。 The average particle diameter M refers to the average value of the particle diameters measured for 100 particles.
 マット剤粒子の形状としては特に限定はないが、分散性、表面制御の観点より球状の粒子が好ましく用いられる。 The shape of the matting agent particles is not particularly limited, but spherical particles are preferably used from the viewpoint of dispersibility and surface control.
 またその平均粒子径は、画像ムラの面から50μm以下が好ましく、さらに3μm以上50μm以下が好ましい。 The average particle diameter is preferably 50 μm or less, more preferably 3 μm or more and 50 μm or less from the viewpoint of image unevenness.
 マット剤粒子は、上記接着層の膜厚dの値より大きいが、平均粒径Mが、3d<M<15dの関係であることが好ましい。 Although the matting agent particles are larger than the value of the film thickness d of the adhesive layer, it is preferable that the average particle size M has a relationship of 3d <M <15d.
 マット剤粒子の材料としては透明もしくは屈折率が低いものが好ましく、シリカ、炭酸カルシウム等の無機粒子、アクリル樹脂等の樹脂粒子が好ましい。 The material for the matting agent particles is preferably transparent or has a low refractive index, and inorganic particles such as silica and calcium carbonate, and resin particles such as acrylic resin are preferable.
 中でもシリカ粒子、アクリル樹脂粒子が好ましい。マット剤粒子は単独で使用してもよいし、混合して使用してもよい。 Of these, silica particles and acrylic resin particles are preferable. The matting agent particles may be used alone or in combination.
 接着層の形成は、上記のように接着層用塗布液を塗布することにより形成することができるが、接着層用塗布液中のマット剤粒子の含有量は、接着層用塗布液中の上記樹脂に対して、0.01質量%~20質量%が好ましく、特に1.0質量%~5.0質量%が好ましい。 The adhesive layer can be formed by applying the adhesive layer coating liquid as described above, but the content of the matting agent particles in the adhesive layer coating liquid is the same as that in the adhesive layer coating liquid. The content is preferably 0.01% by mass to 20% by mass and particularly preferably 1.0% by mass to 5.0% by mass with respect to the resin.
 (保護層)
 本発明に係る保護層は、上記のように接着層を介して蛍光体層に配置され、接着層が有するマット剤粒子を覆っている層である。
(Protective layer)
The protective layer according to the present invention is a layer that is disposed on the phosphor layer via the adhesive layer as described above and covers the matting agent particles that the adhesive layer has.
 保護層は、ポリエチレンテレフタレート、ポリメチルメタクリレート(PMMA)、ポリエチレン、ポリカーボネート、ポリプロピレン、塩化ビニル、ポリブチレンテレフタレート、ABS、AS、POM、ポリスチレン、ポリアミド、テフロン(登録商標)、エチレン酸ビコポリマー、フィノール樹脂、メラミン、ポリエステル、エポキシ樹脂、セルロース、またこれらの共重合体などの樹脂の層であることが好ましく、これらの樹脂のフィルムである態様が好ましい態様である。 Protective layer is polyethylene terephthalate, polymethyl methacrylate (PMMA), polyethylene, polycarbonate, polypropylene, vinyl chloride, polybutylene terephthalate, ABS, AS, POM, polystyrene, polyamide, Teflon (registered trademark), ethylene acid bicopolymer, finol resin It is preferably a layer of a resin such as melamine, polyester, epoxy resin, cellulose, or a copolymer thereof, and an embodiment that is a film of these resins is a preferred embodiment.
 保護層の厚さの値は、鮮鋭性、耐傷性の面から、1~50μmであることが好ましく、特に4~20μmであることが好ましい。 The thickness value of the protective layer is preferably 1 to 50 μm, particularly 4 to 20 μm from the viewpoint of sharpness and scratch resistance.
 保護層は、蛍光体層の上に設けられた接着層上に形成してもよいが、上記のように接着層を保護層に形成した後、接着層を介して蛍光体層上に設けられることが好ましい。 The protective layer may be formed on the adhesive layer provided on the phosphor layer. However, after the adhesive layer is formed on the protective layer as described above, the protective layer is provided on the phosphor layer via the adhesive layer. It is preferable.
 (放射線像変換パネルの製造方法)
 本発明の放射線像変換パネルの製造方法は、上記マット剤粒子を含有する接着層用塗布液を調製する塗布液調製工程、上記保護層上に接着層用塗布液を塗布し乾燥して保護層上に接着層を形成して接着層付き保護層を作製する接着層形成工程、基材上に蛍光体層を形成して蛍光体シートを作製する蛍光体シート作製工程、および蛍光体シートと接着層付保護層とを、蛍光体層と接着層とを対面させて貼合する貼合工程を有する。
(Method for manufacturing radiation image conversion panel)
The method for producing a radiation image conversion panel according to the present invention includes a coating liquid preparation step for preparing a coating liquid for an adhesive layer containing the matting agent particles, a coating liquid for the adhesive layer applied on the protective layer, and then dried. Adhesive layer forming step for forming a protective layer with an adhesive layer by forming an adhesive layer thereon, phosphor sheet preparing step for forming a phosphor sheet by forming a phosphor layer on a substrate, and adhesion to the phosphor sheet It has the bonding process of bonding a protective layer with a layer, a fluorescent substance layer and an adhesive layer facing each other.
 塗布液調製工程、接着層形成工程および蛍光体シート作製工程については、上記のような方法で行われる。 The coating liquid preparation step, the adhesive layer formation step, and the phosphor sheet preparation step are performed by the methods described above.
 貼合工程では、蛍光体シートと接着層付保護層とを、蛍光体層と接着層とを対面させて貼合する。 In the bonding step, the phosphor sheet and the protective layer with an adhesive layer are bonded with the phosphor layer and the adhesive layer facing each other.
 貼合する際の、ニップ温度としては、保護層を形成する樹脂のTg以上であることが、保護層の接着の安定し、パネルの変形の面から、Tg以上180℃以下が好ましく、特に100℃以上140℃以下がさらに好ましい。 The nip temperature at the time of bonding is preferably Tg or more and 180 ° C. or less from the viewpoint of stable adhesion of the protective layer and deformation of the panel. More preferably, the temperature is at least 140 ° C and at most 140 ° C.
 ニップ圧力としては、貼り合わせムラ、パネルの変形の面から3kg/cm以上、50kg/cm以下が好ましく、特にパネルの変形の面から5kg/cm以上、20kg/cm以下がさらに好ましい。 The nip pressure is preferably 3 kg / cm or more and 50 kg / cm or less from the viewpoint of uneven bonding and panel deformation, and more preferably 5 kg / cm or more and 20 kg / cm or less from the surface of panel deformation.
 (放射線画像形成装置)
 本発明の放射線画像形成装置は、本発明の放射線像変換パネルを具備する。
(Radiation image forming device)
The radiation image forming apparatus of the present invention includes the radiation image conversion panel of the present invention.
 放射線画像形成装置は、光電変換素子をその表面に有する光電変換基板と、上記本発明の放射線像変換パネルとを、光電変換素子と、蛍光体層が対面するように配置された構造を有し、入射する放射線により発光した蛍光体層からの光を電気信号に変換し画像を形成する。 The radiation image forming apparatus has a structure in which a photoelectric conversion substrate having a photoelectric conversion element on its surface and the radiation image conversion panel of the present invention are arranged so that the photoelectric conversion element and the phosphor layer face each other. The light from the phosphor layer emitted by the incident radiation is converted into an electrical signal to form an image.
 以下、実施例を挙げて本発明を詳細に説明するが、本発明はこれらに限定されない。 Hereinafter, the present invention will be described in detail with reference to examples, but the present invention is not limited thereto.
 (蛍光体シートの作製)
 下引き層塗布液として、ポリエステル樹脂溶解品(東洋紡バイロン30SS:固形分30質量%)290.31gにβ-銅フタロシアニン分散品0.03g(固形分35質量%、顔料分30質量%)及び硬化剤コロネートHX9.68gを混ぜ、プロペラミキサーで分散して用意した。この下引き層塗布液をドクターブレードを用いて基材であるPET(東レ製:250-E20)に塗布、100℃で5分乾燥し、20μm厚の下引き層を形成した。
(Preparation of phosphor sheet)
As an undercoat layer coating solution, polyester resin-dissolved product (Toyobo Byron 30SS: solid content 30% by mass) 290.31 g and β-copper phthalocyanine dispersion 0.03 g (solid content 35% by mass, pigment content 30% by mass) and curing Agent Coronate HX 9.68 g was mixed and dispersed by a propeller mixer. This undercoat layer coating solution was applied to a base material PET (Toray: 250-E20) using a doctor blade and dried at 100 ° C. for 5 minutes to form a 20 μm thick undercoat layer.
 蛍光体層の形成材料として平均粒径5μmのユーロピウムにより賦活されているアルカリ土類金属ハロゲン化物系蛍光体(BaFBr0.850.15:Eu)427g、ポリエステル樹脂(東洋紡バイロン530)18gをメチルエチルケトン、トルエン、シクロヘキサノンの混合溶媒に添加、プロペラミキサーによって分散し、固形分77%の塗布液を調製した。 427 g of alkaline earth metal halide phosphor (BaFBr 0.85 I 0.15 : Eu) activated by europium having an average particle size of 5 μm as a material for forming the phosphor layer, 18 g of polyester resin (Toyobo Byron 530) The mixture was added to a mixed solvent of methyl ethyl ketone, toluene, and cyclohexanone, and dispersed with a propeller mixer to prepare a coating solution having a solid content of 77%.
 この塗布液をドクターブレードを用いて、上記PET基材の下引き層側に塗布した後、100℃で15分間乾燥させて、それぞれに280μmの蛍光体層を形成させ蛍光体シートを作製した。 This coating solution was applied to the undercoat layer side of the PET base material using a doctor blade, and then dried at 100 ° C. for 15 minutes to form a phosphor layer of 280 μm for each to produce a phosphor sheet.
 (マット剤粒子含有接着層用塗布液の作製)
 ポリエステル樹脂溶解品(東洋紡製バイロン20SS)を固形分15質量%となる様にトルエン:メチルエチルケトン=1:1に調合した溶液を添加し、プロペラミキサーにて3分間攪拌した。上記樹脂溶解品にアクリル粒子(マット剤粒子):粒子径15μm(綜研化学(株)製ケミスノーMXシリーズ)を樹脂比で2質量%添加し、プロペラミキサーにて10分間攪拌し、溶液中に均一に分散させ、マット剤粒子含有接着層用塗布液を調整した。
(Preparation of coating liquid for matting agent particle-containing adhesive layer)
A solution prepared by dissolving a polyester resin-dissolved product (Toyobo Byron 20SS) in toluene: methyl ethyl ketone = 1: 1 so as to have a solid content of 15% by mass was added, and the mixture was stirred with a propeller mixer for 3 minutes. Acrylic particles (mat agent particles): particle size of 15 μm (Kemisnow MX series, manufactured by Soken Chemical Co., Ltd.) is added to the resin-dissolved product in an amount of 2% by mass, and the mixture is stirred for 10 minutes with a propeller mixer. The coating solution for the adhesive layer containing the matting agent particles was prepared.
 (接着層の形成)
 保護層としてPETフィルム9μm(ユニチカ製「エンブレット」)を使用した。このPETフィルムの上に上記にて調整した接着層用塗布液をグラビアコーターにてライン速度10m/minで塗布、80℃にて3分乾燥させることでDRY膜厚2μmの接着層を設けた。
(Formation of adhesive layer)
A PET film 9 μm (“Emblet” manufactured by Unitika) was used as a protective layer. An adhesive layer having a DRY film thickness of 2 μm was formed on the PET film by applying the adhesive layer coating solution prepared above with a gravure coater at a line speed of 10 m / min and drying at 80 ° C. for 3 minutes.
 (蛍光体シートと保護層との貼合)
 上記にて作製した接着剤付保護層を上記蛍光体シートにラミネーターを用いて貼合させた。貼合は、ラミネーターのニップ温度120℃、ニップ線圧13kg/cm、にて実施し、ラミネートと同時に上記アクリル粒子によって蛍光体プレート表面(保護層)に凹凸が付与された放射線像変換パネル1(本発明)を作製した。
(Lamination of phosphor sheet and protective layer)
The protective layer with adhesive prepared above was bonded to the phosphor sheet using a laminator. Bonding is performed at a laminator nip temperature of 120 ° C. and a nip line pressure of 13 kg / cm, and at the same time as laminating, the radiation image conversion panel 1 in which irregularities are imparted to the phosphor plate surface (protective layer) by the acrylic particles. (Invention) was produced.
 (放射線像変換パネル2~21(本発明)、22(比較例)の作製)
 接着層の中に分散させる粒子の粒径と量、接着層の厚さ、保護層の厚さを表1のように変化させ、同様に放射線像変換パネル2~21(本発明)および22(比較例)を作製した。
(Production of radiation image conversion panels 2 to 21 (present invention), 22 (comparative example))
The particle size and amount of particles dispersed in the adhesive layer, the thickness of the adhesive layer, and the thickness of the protective layer were changed as shown in Table 1, and similarly, the radiation image conversion panels 2 to 21 (present invention) and 22 (invention) Comparative example) was produced.
 (放射線像変換パネル23の作製(比較例))
 放射線像変換パネル1の作製において、接着層用塗布液の中にマット剤粒子を含有させない他は放射線像変換パネル1の作製と同様にして、放射線像変換パネル23の作製を行った。
(Production of radiation image conversion panel 23 (comparative example))
In the production of the radiation image conversion panel 1, the radiation image conversion panel 23 was produced in the same manner as the production of the radiation image conversion panel 1 except that the matting agent particles were not included in the coating liquid for the adhesive layer.
 (放射線像変換パネル24の作製(比較例))
 (保護層用塗布液の調製)
 トルエンにて溶解されたPMMA樹脂(DIC製 「ACRYDIC A-181」)中にPMMA粒子:粒子径15μm(綜研化学(株)製ケミスノーMXシリーズ)を樹脂比で1.875質量%添加し、プロペラミキサーにて10分間攪拌し、溶液中に均一に分散させ、マット剤粒子入り保護層用塗布液を調製した。
(Production of Radiation Image Conversion Panel 24 (Comparative Example))
(Preparation of coating solution for protective layer)
To PMMA resin (“ACRYDIC A-181” manufactured by DIC) dissolved in toluene, 1.875% by mass of PMMA particles: particle size 15 μm (Chemisnow MX series manufactured by Soken Chemical Co., Ltd.) was added in a resin ratio, and a propeller was added. The mixture was stirred for 10 minutes with a mixer and uniformly dispersed in the solution to prepare a coating solution for a protective layer containing matting agent particles.
 (保護層の塗布)
 放射線像変換パネル1における蛍光体層の上に、上記にて作製した保護層用塗布液をワイヤーバーにて塗布、5分間乾燥させることで膜厚約9μmのマット剤粒子を含有する保護層を有する放射線像変換パネル24を作製した。
(Application of protective layer)
A protective layer containing matting agent particles having a thickness of about 9 μm is applied on the phosphor layer in the radiation image conversion panel 1 by applying the coating liquid for protective layer prepared above with a wire bar and drying for 5 minutes. A radiation image conversion panel 24 was prepared.
 (評価)
 (画質:鮮鋭性)
 各々作製した放射線像変換パネルの鮮鋭性について、変調伝達関数(MTF)を求めて評価した。
(Evaluation)
(Image quality: sharpness)
The sharpness of each produced radiation image conversion panel was evaluated by obtaining a modulation transfer function (MTF).
 MTFは放射線画像変換パネル試料にCTFチャートを貼付した後、放射線像変換パネルに80kVpのX線を10mR(被写体までの距離:1.5m)照射した後、パネルをHe-Neレーザー光(633nm)で操作して励起し、CTFチャート像を走査読み取りして求めた。放射線像変換パネル23を基準とし、各放射線像変換パネルの相対結果を下記ランクで評価し画質の評価の指標の一つとした。
○:-1%以上
△:-5%以上、-1%未満
×:-5%未満
 結果を表1に示した。
The MTF attaches a CTF chart to the radiation image conversion panel sample, irradiates the radiation image conversion panel with X-rays of 80 kVp for 10 mR (distance to the subject: 1.5 m), and then the panel is He—Ne laser light (633 nm). The CTF chart image was scanned and read. Using the radiation image conversion panel 23 as a reference, the relative result of each radiation image conversion panel was evaluated according to the following rank, and was used as one of the indexes of image quality evaluation.
○: -1% or more Δ: -5% or more, less than -1% ×: less than -5% The results are shown in Table 1.
 (画質:画像ムラ)
 放射線像変換パネルに管電圧80kVpのX線を照射した後、パネルをHe-Neレーザー光(633nm)で操作して励起し、これを画像再生装置によって画像として再生し出力装置よりプリントアウトし、得られたプリント画像を目視により観察して画像ムラの出現を評価した。画像ムラの程度を下記ランクにより評価し、画質の評価の指標の一つとした。
○全くムラが見えない
△ムラはあるが撮影評価出来る
×ムラが多く撮影評価出来ない
 結果を表1に示した。
(Image quality: Image unevenness)
After irradiating the radiation image conversion panel with X-rays with a tube voltage of 80 kVp, the panel is excited by operating with a He—Ne laser beam (633 nm), and this is reproduced as an image by an image reproducing device and printed out from an output device. The obtained print image was visually observed to evaluate the appearance of image unevenness. The degree of image unevenness was evaluated according to the following rank, and was used as one of the indexes of image quality evaluation.
○ Unevenness is not visible at all △ There is unevenness, but it can be photographed and evaluated.
 (耐傷性:スクラッチ評価)
 HEIDON製トライボギア18LFWを使用し、先端形状が0.1mmR90度のサファイア製引掻き針を試料表面に接触させ、荷重を連続的に増加させながら引っ掻き、試料表面(保護層)に傷が発生するときの荷重を測定した。試料表面に傷が発生したときの荷重を測定し、下記のランクによりスクラッチ評価を行い、耐傷性の評価の指標の一つとした。
○:20g以上
△:10を超え20g未満
×:10g以下
 結果を表1に示した。
(Scratch resistance: scratch evaluation)
When using HEIDON's tribogear gear 18LFW, a sapphire scratching needle with a tip shape of 0.1 mmR90 degrees is brought into contact with the sample surface, and the sample surface (protective layer) is scratched by scratching while continuously increasing the load. The load was measured. The load when a scratch occurred on the surface of the sample was measured, and scratch evaluation was performed according to the following rank, which was used as one index for evaluating scratch resistance.
○: 20 g or more Δ: More than 10 and less than 20 g x: 10 g or less The results are shown in Table 1.
 (耐傷性:搬送評価)
 線圧0.2kg/cmにてニップされたEPDMゴムローラーφ20mm間に上記にて作製した試料を10000回往復搬送させ、試料面(保護層)に発生する傷を目視、放射線撮影画像にて確認した。傷の程度により、下記ランクで搬送評価を行い、耐傷性の評価の指標の一つとした。
○:傷がない、もしくは見えない
△:傷があるが撮影評価出来る
×:傷が多数あり撮影評価出来ない
 結果を表1に示した。
(Scratch resistance: conveyance evaluation)
The sample prepared above was reciprocated 10,000 times between the EPDM rubber rollers φ20 mm nipped at a linear pressure of 0.2 kg / cm, and scratches occurring on the sample surface (protective layer) were confirmed visually and by radiographic images did. Depending on the degree of scratches, the conveyance evaluation was performed according to the following ranks, and it was set as one of the indexes of scratch resistance evaluation.
○: No scratches or invisible Δ: There are scratches but can be photographed and evaluated x: There are many scratches and cannot be photographed and evaluated The results are shown in Table 1.
 (汚染除去性:搬送評価)
 線圧0.2kg/cmにてニップされたEPDMゴムローラーφ20mm間に上記にて作製した試料を10000回往復搬送させ、試料表面(保護層)に発生する汚れを目視、放射線撮影画像にて確認した。試料表面をエタノールにて拭き取り汚れがふき取れるかを下記のランクで評価し、対汚染性を評価した。
○汚れがふき取れる
△汚れが残るが撮影評価出来る
×汚れが残り撮影評価出来ない
 結果を表1に示した。
(Decontamination: Transport evaluation)
The sample prepared above is reciprocated 10,000 times between the EPDM rubber rollers φ20 mm nipped at a linear pressure of 0.2 kg / cm, and the contamination generated on the sample surface (protective layer) is confirmed visually and by radiographic images. did. The sample surface was wiped with ethanol, and whether or not the dirt was wiped off was evaluated according to the following rank, and the anti-contamination property was evaluated.
○ Dirt can be wiped out △ Dirt remains, but photography evaluation can be made x Dirt remains and photography evaluation cannot be performed Table 1 shows the results.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表1より、本発明の放射線像変換パネルは、鮮鋭性の劣化が少なく画像ムラが少なく画質に優れ、耐傷性、汚染除去性に優れることが分かる。 From Table 1, it can be seen that the radiation image conversion panel of the present invention has less sharpness degradation, less image unevenness, excellent image quality, and excellent scratch resistance and contamination removal.
 1 基材
 2 下引き層
 3 蛍光体層
 4 接着層
 5 マット剤粒子
 6 保護層
 10 放射線像変換パネル
DESCRIPTION OF SYMBOLS 1 Base material 2 Undercoat layer 3 Phosphor layer 4 Adhesive layer 5 Matting agent particle 6 Protective layer 10 Radiation image conversion panel

Claims (7)

  1.  基材上に、蛍光体層、該蛍光体層上に配置された接着層および該接着層上に配置された保護層を有する放射線像変換パネルであって、該接着層がマット剤粒子を含有し、該マット剤粒子の平均粒径Mの値が、該接着層の膜厚dの値より大きいことを特徴とする放射線像変換パネル。 A radiation image conversion panel having a phosphor layer, an adhesive layer disposed on the phosphor layer, and a protective layer disposed on the adhesive layer on a substrate, the adhesive layer containing matting agent particles The radiation image conversion panel, wherein the value of the average particle diameter M of the matting agent particles is larger than the value of the film thickness d of the adhesive layer.
  2.  前記接着層の膜厚dと、前記平均粒径Mが、3d<M<15dの関係であることを特徴とする請求項1に記載の放射線像変換パネル。 The radiation image conversion panel according to claim 1, wherein the film thickness d of the adhesive layer and the average particle diameter M have a relationship of 3d <M <15d.
  3.  前記マット剤粒子の平均粒径Mが、3μm~50μmであることを特徴とする請求項1または2に記載の放射線像変換パネル。 3. The radiation image conversion panel according to claim 1, wherein the average particle diameter M of the matting agent particles is 3 μm to 50 μm.
  4.  前記接着層の膜厚dが、1μm~10μmであることを特徴とする請求項1から3のいずれか1項に記載の放射線像変換パネル。 4. The radiation image conversion panel according to claim 1, wherein a thickness d of the adhesive layer is 1 μm to 10 μm.
  5.  前記保護層の膜厚が、4~20μmであることを特徴とする請求項1から4のいずれか1項に記載の放射線像変換パネル。 The radiation image conversion panel according to any one of claims 1 to 4, wherein the protective layer has a thickness of 4 to 20 µm.
  6.  請求項1から5のいずれか1項に記載の放射線像変換パネルを具備することを特徴とする放射線画像形成装置。 A radiation image forming apparatus comprising the radiation image conversion panel according to any one of claims 1 to 5.
  7.  請求項1から5のいずれか1項に記載の放射線像変換パネルを製造する放射線像変換パネルの製造方法であって、
     前記マット剤粒子を含有する接着層用塗布液を調製する塗布液調製工程、
     前記保護層上に該接着層用塗布液を塗布し乾燥して前記保護層上に前記接着層を形成する接着層形成工程、
     前記基材上に前記蛍光体層を形成して蛍光体シートを作製する蛍光体シート作製工程、および該蛍光体シートと前記接着層が付いた前記保護層とを、前記蛍光体層と前記接着層とを対面させて貼合する貼合工程、
    を有することを特徴とする放射線像変換パネルの製造方法。
    A method for producing a radiation image conversion panel for producing the radiation image conversion panel according to any one of claims 1 to 5,
    A coating solution preparation step of preparing a coating solution for an adhesive layer containing the matting agent particles,
    An adhesive layer forming step of forming the adhesive layer on the protective layer by applying and drying the adhesive layer coating solution on the protective layer;
    The phosphor layer is formed on the substrate to produce a phosphor sheet, and the phosphor sheet and the protective layer with the adhesive layer are bonded to the phosphor layer and the adhesive. A laminating step for facing and laminating the layers;
    The manufacturing method of the radiation image conversion panel characterized by having.
PCT/JP2011/053471 2010-08-12 2011-02-18 Radiological image conversion panel, process for production of radiological image conversion panel, and device for formation of radiological image WO2012020578A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012528599A JPWO2012020578A1 (en) 2010-08-12 2011-02-18 Radiation image conversion panel, method for manufacturing radiation image conversion panel, and radiation image forming apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-180769 2010-08-12
JP2010180769 2010-08-12

Publications (1)

Publication Number Publication Date
WO2012020578A1 true WO2012020578A1 (en) 2012-02-16

Family

ID=45567551

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/053471 WO2012020578A1 (en) 2010-08-12 2011-02-18 Radiological image conversion panel, process for production of radiological image conversion panel, and device for formation of radiological image

Country Status (2)

Country Link
JP (1) JPWO2012020578A1 (en)
WO (1) WO2012020578A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015036402A (en) * 2013-08-13 2015-02-23 コニカミノルタ株式会社 Hard coat film, and radiation image conversion panel using the same

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06331749A (en) * 1993-05-27 1994-12-02 Hitachi Medical Corp Radiation detector
JPH1031097A (en) * 1996-07-15 1998-02-03 Toshiba Corp Radiation intensifying screen
JP2005030798A (en) * 2003-07-08 2005-02-03 Konica Minolta Medical & Graphic Inc Radiation image conversion panel
JP2006126109A (en) * 2004-11-01 2006-05-18 Konica Minolta Medical & Graphic Inc Radiation image conversion panel
JP2008170374A (en) * 2007-01-15 2008-07-24 Canon Inc Radiation detection apparatus and scintillator panel

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06331749A (en) * 1993-05-27 1994-12-02 Hitachi Medical Corp Radiation detector
JPH1031097A (en) * 1996-07-15 1998-02-03 Toshiba Corp Radiation intensifying screen
JP2005030798A (en) * 2003-07-08 2005-02-03 Konica Minolta Medical & Graphic Inc Radiation image conversion panel
JP2006126109A (en) * 2004-11-01 2006-05-18 Konica Minolta Medical & Graphic Inc Radiation image conversion panel
JP2008170374A (en) * 2007-01-15 2008-07-24 Canon Inc Radiation detection apparatus and scintillator panel

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015036402A (en) * 2013-08-13 2015-02-23 コニカミノルタ株式会社 Hard coat film, and radiation image conversion panel using the same

Also Published As

Publication number Publication date
JPWO2012020578A1 (en) 2013-10-28

Similar Documents

Publication Publication Date Title
JP6575105B2 (en) Scintillator panel and manufacturing method thereof
JPWO2007060813A1 (en) Scintillator plate
EP2783242A1 (en) X-ray imaging panel with thermally-sensitive adhesive
JP6926726B2 (en) Radiation image detection panel and radiation detection device
JP2006098242A (en) Radiation image conversion panel
WO2012020578A1 (en) Radiological image conversion panel, process for production of radiological image conversion panel, and device for formation of radiological image
JP2017161407A (en) Scintillator and radiation detector
EP1437744A2 (en) Radiographic image conversion panel
JP2010014666A (en) Radiological image conversion panel
JP4254049B2 (en) Radiation image conversion panel
JP2004226269A (en) Radiation image converter and manufacturing method therefor
JP2010060414A (en) Scintillator plate
JP2004294137A (en) Radiation image conversion panel and method for manufacturing it
JP2008203252A (en) Radiation image conversion panel, its manufacturing method, and x-ray photographing system
JP2005114397A (en) Radiographic image transformation panel, and manufacturing method therefor
JP4305002B2 (en) Manufacturing method of radiation image conversion panel
JP2004279159A (en) Radiological image conversion panel and its manufacturing method
JPWO2008102645A1 (en) Scintillator panel and radiation image sensor
JP3910146B2 (en) Radiation image storage panel having specific layer arrangement
WO2010032504A1 (en) Radiation image conversion panel and method for producing the same
JPH1090498A (en) Radiation intensifying screen and radiation conversion panel
JP2004138440A (en) Radiation image transducer panel
JPH11167000A (en) Radiation image conversion panel
JP2002116300A (en) Radiation luminescence panel
JP2549912B2 (en) Manufacturing method of radiation image conversion panel

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11816244

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012528599

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11816244

Country of ref document: EP

Kind code of ref document: A1