WO2010032504A1 - Radiation image conversion panel and method for producing the same - Google Patents

Radiation image conversion panel and method for producing the same Download PDF

Info

Publication number
WO2010032504A1
WO2010032504A1 PCT/JP2009/055044 JP2009055044W WO2010032504A1 WO 2010032504 A1 WO2010032504 A1 WO 2010032504A1 JP 2009055044 W JP2009055044 W JP 2009055044W WO 2010032504 A1 WO2010032504 A1 WO 2010032504A1
Authority
WO
WIPO (PCT)
Prior art keywords
phosphor
image conversion
radiation image
conversion panel
vapor deposition
Prior art date
Application number
PCT/JP2009/055044
Other languages
French (fr)
Japanese (ja)
Inventor
惠民 笠井
康史 永田
寛 伊佐
誠 飯島
Original Assignee
コニカミノルタエムジー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コニカミノルタエムジー株式会社 filed Critical コニカミノルタエムジー株式会社
Publication of WO2010032504A1 publication Critical patent/WO2010032504A1/en

Links

Images

Classifications

    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21KTECHNIQUES FOR HANDLING PARTICLES OR IONISING RADIATION NOT OTHERWISE PROVIDED FOR; IRRADIATION DEVICES; GAMMA RAY OR X-RAY MICROSCOPES
    • G21K4/00Conversion screens for the conversion of the spatial distribution of X-rays or particle radiation into visible images, e.g. fluoroscopic screens
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/62Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing gallium, indium or thallium
    • C09K11/626Halogenides
    • C09K11/628Halogenides with alkali or alkaline earth metals
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/0694Halides
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21KTECHNIQUES FOR HANDLING PARTICLES OR IONISING RADIATION NOT OTHERWISE PROVIDED FOR; IRRADIATION DEVICES; GAMMA RAY OR X-RAY MICROSCOPES
    • G21K4/00Conversion screens for the conversion of the spatial distribution of X-rays or particle radiation into visible images, e.g. fluoroscopic screens
    • G21K2004/06Conversion screens for the conversion of the spatial distribution of X-rays or particle radiation into visible images, e.g. fluoroscopic screens with a phosphor layer

Definitions

  • the present invention relates to a radiation image conversion panel having high sensitivity (high luminance), high sharpness, and excellent storage stability, and a method for manufacturing the same.
  • radiographic images such as X-ray images have been widely used for diagnosis of medical conditions in the medical field.
  • radiographic images using intensifying screens and film systems have been developed as an imaging system that combines high reliability and excellent cost performance as a result of high sensitivity and high image quality in a long history. Used in the medical field.
  • these pieces of image information are so-called analog image information, and free image processing and instantaneous electric transmission cannot be performed like digital image information that has been developing in recent years.
  • the flat plate X-ray detector is characterized in that the device is smaller than CR and the image quality at high dose is excellent.
  • a scintillator plate made of an X-ray phosphor having a characteristic of emitting light by radiation is used to convert the radiation into visible light.
  • the radiation image conversion panel used for the radiation image detection is composed of a support and a phosphor layer provided thereon as a basic structure.
  • a support is not necessarily required when the phosphor layer is self-supporting.
  • a protective layer is usually provided on the upper surface of the phosphor layer (the surface not facing the support) to protect the phosphor layer from chemical alteration or physical impact.
  • the phosphor layer is composed of a phosphor and a binder containing and supporting the phosphor in a dispersed state, and is composed only of an aggregate of phosphors without including a binder formed by vapor deposition or sintering. And those in which a polymer substance is impregnated in the gap between the phosphor and the aggregate of the phosphor are known.
  • a radiation image conversion containing at least a stimulable phosphor is performed by separating a radiation absorbing function and an energy storage function of a conventional stimulable phosphor.
  • a radiation image forming method using a combination of a panel and a phosphor screen containing a phosphor (radiation absorbing phosphor) that absorbs radiation and emits light in an ultraviolet to visible region has been proposed (for example, Patent Document 1). reference.).
  • radiation that has passed through a subject is first converted into light in the ultraviolet or visible region by the screen or panel radiation absorbing phosphor, and then the radiation is imaged by the panel energy storage phosphor. Accumulate and record as information.
  • the panel is scanned with excitation light to emit emitted light, and the emitted light is read photoelectrically to obtain an image signal.
  • the radiological image detection method (and the radiographic image formation method) is a method having a number of excellent advantages as described above. However, even in the radiographic image conversion panel used in this method, it is as sensitive as possible and It is desired to provide an image with good image quality (sharpness, graininess, etc.).
  • the vapor deposition method includes a vapor deposition method and a sputtering method.
  • the vapor deposition method evaporates and scatters the evaporation source by heating the evaporation source made of the phosphor or its raw material by irradiation with a resistance heater or an electron beam.
  • a phosphor layer made of columnar crystals of the phosphor is formed.
  • the phosphor layer formed by the vapor deposition method does not contain a binder and is composed only of the phosphor, and there are voids between the columnar crystals of the phosphor. For this reason, since the entrance efficiency of excitation light and the extraction efficiency of emitted light can be increased, the sensitivity is high, and the scattering of the excitation light in the plane direction can be prevented, so that a high sharpness image can be obtained. .
  • a scintillator made of an X-ray phosphor having a characteristic of emitting light by radiation is used.
  • light emission is used. It becomes necessary to use highly efficient scintillators.
  • the light emission efficiency of a scintillator is determined by the thickness of the phosphor layer and the X-ray absorption coefficient of the phosphor. The thicker the phosphor layer, the more scattered the emitted light in the phosphor layer. However, sharpness decreases. Therefore, when the sharpness necessary for the image quality is determined, the layer thickness is determined.
  • CsI cesium iodide
  • phosphors can be easily formed into a columnar crystal structure by vapor deposition. Therefore, scattering of emitted light within the crystal by the light guide effect. And the thickness of the phosphor layer can be increased (see, for example, Patent Document 3).
  • CsI cesium iodide
  • CaI cesium iodide
  • NaI sodium iodide
  • TlI thallium iodide
  • Visible conversion efficiency is improved by performing heat treatment at a temperature of 200 ° C. to 500 ° C. on what is deposited as thallium activated cesium iodide (CsI: Tl) on the (substrate), and used as an X-ray phosphor.
  • a phosphor layer (also referred to as “scintillator layer”) based on cesium iodide (CsI) has a deliquescent property and has a drawback that the characteristics deteriorate with time.
  • CsI cesium iodide
  • the present invention has been made in view of the above-mentioned problems and situations, and the problem to be solved is a radiation image conversion panel having high sensitivity (high brightness), high sharpness, and excellent storage stability, and a method for producing the same. Is to provide.
  • a moderate vacuum about 0.1 Pa to 10 Pa
  • a resistance heating method In the case of performing vapor deposition, it has been found that when a phosphor is vapor-deposited at a vapor deposition mass rate within a specific range, a phosphor layer with extremely good columnar crystallinity and a remarkably high light emission amount can be obtained, leading to the present invention.
  • a radiation image conversion panel having a phosphor layer containing a phosphor columnar crystal composed mainly of a cesium halide phosphor formed by a vapor deposition method, wherein the phosphor layer has a degree of vacuum of 0. It is characterized in that it is formed under the condition that it is maintained within the range of 05 Pa to 10 Pa and the deposition mass rate is maintained within the range of 0.01 mg / cm 2 ⁇ min to 2.0 mg / cm 2 ⁇ min. Radiation image conversion panel.
  • the phosphor columnar crystal is (1) an additive containing at least one of cesium iodide (CsI) and cesium bromide (CsBr) and (2) at least one of thallium (Tl) and europium (Eu); 2.
  • CsI cesium iodide
  • CsBr cesium bromide
  • Tl thallium
  • Eu europium
  • a method for producing a radiation image conversion panel comprising: forming a phosphor layer by a vapor deposition method including a step of vapor-depositing a phosphor material while rotating the support.
  • the radiation image conversion panel of the present invention is a radiation image conversion panel having a phosphor layer containing a phosphor columnar crystal mainly composed of a cesium halide phosphor formed by a vapor deposition method. Under the condition that the body layer maintains the degree of vacuum within the range of 0.05 Pa to 10 Pa and the deposition mass rate within the range of 0.01 mg / cm 2 ⁇ min to 2.0 mg / cm 2 ⁇ min. , Formed.
  • the degree of vacuum is more preferably in the range of 0.10 Pa to 2.0 Pa.
  • the phosphor columnar crystal is composed of (1) at least one of cesium iodide (CsI) and cesium bromide (CsBr), and (2) of thallium (Tl) and europium (Eu). It is preferable that the raw material is an additive containing at least one of the above.
  • a phosphor is produced by evaporating a substance generated by heating an evaporation source containing a cesium halide phosphor or its raw material on a support in a vapor deposition apparatus.
  • the phosphor layer is formed by performing vapor deposition while changing the degree of vacuum in the vapor deposition apparatus within the range in the course of forming the phosphor layer. Moreover, it is also preferable to perform vapor deposition by changing the vapor deposition mass rate within the range in the course of forming the phosphor layer. Furthermore, it is also preferable to perform vapor deposition by changing the temperature of the support in the course of forming the phosphor layer. The thickness of the support is preferably in the range of 30 ⁇ m to 500 ⁇ m.
  • a support is installed in the support rotating mechanism using a vapor deposition apparatus having an evaporation source and a support rotating mechanism in a vacuum vessel, and the support is supported.
  • the method is a manufacturing method in which the phosphor layer is formed by a vapor deposition method including a step of vapor-depositing the phosphor material while rotating the body.
  • the radiation image conversion panel of the present invention is characterized by having a phosphor layer containing a phosphor columnar crystal mainly composed of a cesium halide phosphor formed by a vapor deposition method. It is preferable that various functional layers as described later are provided in addition to the layers depending on the purpose.
  • the radiation image conversion panel of the present invention is a radiation image conversion panel in which a phosphor layer is provided on a first substrate by a vapor deposition method via a functional layer such as a reflective layer.
  • a functional layer such as a reflective layer.
  • a radiation image conversion panel may be used, or after forming a planar light receiving element on a substrate, a radiation image conversion may be performed by providing a phosphor layer directly or through a functional layer such as a reflective layer or a protective layer by a vapor deposition method. It is good as a panel.
  • a phosphor layer is provided directly after forming a planar light receiving element on a substrate. The same applies to the radiation image conversion panel.
  • the phosphor layer according to the present invention is a phosphor layer containing a phosphor columnar crystal composed mainly of a cesium halide phosphor formed by a vapor deposition method.
  • the phosphor constituting the phosphor layer As a material for forming the phosphor constituting the phosphor layer according to the present invention, various known phosphor materials can be used. In the present invention, in particular, cesium iodide (CsI) and cesium bromide are used.
  • the phosphor layer is preferably formed using at least one of (CsBr) as a main component. These compounds have a relatively high rate of change from X-rays to visible light, and can easily form phosphors into a columnar crystal structure by vapor deposition. Therefore, scattering of emitted light within the crystal is suppressed by the light guide effect, and fluorescence is reduced. This is because the thickness of the body layer can be increased.
  • CsI cesium iodide
  • CsBr cesium bromide
  • CsI cesium iodide
  • NaI sodium iodide
  • CsI as disclosed in Japanese Patent Application Laid-Open No. 2001-59899 is deposited, and thallium (Tl), europium (Eu), indium (In), lithium (Li), potassium (K), rubidium (Rb) ), CsI containing an activating substance such as sodium (Na) is preferred.
  • thallium (Tl) and europium (Eu) are particularly preferable.
  • thallium (Tl) is preferred.
  • the content of the additive is an optimum amount according to the target performance, but 0.001 mol% to 50 mol with respect to the content of cesium iodide. %, And preferably 0.1 mol% to 10.0 mol%.
  • the additive when the additive is 0.001 mol% or more with respect to cesium iodide or cesium bromide, the emission luminance obtained by using cesium iodide or cesium bromide alone is improved, and the intended light emission is achieved. This is preferable in terms of obtaining luminance. Moreover, it is preferable that it is 50 mol% or less because the properties and functions of cesium iodide or cesium bromide can be maintained.
  • the thickness of the phosphor layer is preferably 100 ⁇ m to 800 ⁇ m, and more preferably 120 ⁇ m to 700 ⁇ m from the viewpoint of obtaining a good balance between luminance and sharpness characteristics.
  • the phosphor columnar crystal according to the present invention needs to be formed by a vapor deposition method.
  • a vapor deposition method a vapor deposition method, a sputtering method, a CVD method, an ion plating method, or the like can be used.
  • the vapor deposition method is particularly preferable.
  • the cesium halide phosphor may be a phosphor represented by the following basic composition formula (I) or (II).
  • X is iodine (I)
  • z is preferably a numerical value within the range of 1 ⁇ 10 ⁇ 3 ⁇ z ⁇ 50, and 1 ⁇ 10 ⁇ 1 ⁇ z. A numerical value within the range of ⁇ 10 is more preferable.
  • X is bromine (Br)
  • z is preferably a numerical value in the range of 1 ⁇ 10 ⁇ 5 ⁇ z ⁇ 1 ⁇ 10 ⁇ 2.
  • a numerical value within the range of ⁇ 5 ⁇ z ⁇ 1 ⁇ 10 ⁇ 3 is more preferable.
  • M I represents at least one alkali metal selected from Li, Na, K and Rb
  • M II represents at least one selected from Be, Mg, Ca, Sr, Ba, Ni, Cu, Zn and Cd.
  • M III represents Sc, Y, La, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, Represents at least one rare earth element or trivalent metal selected from Al, Ga and In;
  • X, X a , X b and X c each represent at least one halogen selected from F, Cl, Br and I;
  • A, b, c, and z represent numerical values in the ranges of 0 ⁇ a ⁇ 0.5, 0 ⁇ b ⁇ 0.5, 0 ⁇ c ⁇ 0.5, and 0 ⁇ z ⁇ 1.0, respectively. .
  • a reflective layer (also referred to as a “metal reflective layer”) on the support (substrate), in order to reflect light emitted from the phosphor and increase the light extraction efficiency.
  • the reflective layer is preferably formed of a material containing any element selected from the element group consisting of Al, Ag, Cr, Cu, Ni, Ti, Mg, Rh, Pt, and Au.
  • a metal thin film composed of the above elements for example, an Ag film, an Al film, or the like. Two or more such metal thin films may be formed.
  • the lower layer is preferably a layer containing Cr from the viewpoint of improving the adhesion to the substrate.
  • a layer made of a metal oxide such as SiO 2 or TiO 2 may be provided in this order on the metal thin film to further improve the reflectance.
  • the thickness of the reflective layer is preferably 0.005 ⁇ m to 0.3 ⁇ m, more preferably 0.01 ⁇ m to 0.2 ⁇ m from the viewpoint of emission light extraction efficiency.
  • the formation method of the reflective layer according to the present invention may be any known method, and examples thereof include a sputtering process using the above raw materials.
  • a metal protective layer may be provided on the reflective layer.
  • the metal protective layer is preferably formed by applying and drying a resin dissolved in a solvent.
  • a polymer having a glass transition point of 30 ° C. to 100 ° C. is preferable from the viewpoint of forming a film with a deposited crystal and a support (substrate).
  • polyurethane resin vinyl chloride copolymer, vinyl chloride-acetic acid Vinyl copolymer, vinyl chloride-vinylidene chloride copolymer, vinyl chloride-acrylonitrile copolymer, butadiene-acrylonitrile copolymer, polyamide resin, polyvinyl butyral, polyester resin, cellulose derivative (nitrocellulose, etc.), styrene-butadiene copolymer
  • polyamide resin polyvinyl butyral
  • polyester resin cellulose derivative (nitrocellulose, etc.)
  • styrene-butadiene copolymer examples include polymers, various synthetic rubber resins, phenol resins, epoxy resins, urea resins, melamine resins, phenoxy resins, silicon resins, acrylic resins, urea formamide resins, and the like, and polyester resins are particularly preferable.
  • the thickness of the metal protective layer is preferably 0.1 ⁇ m or more in terms of adhesion, and preferably 3.0 ⁇ m or less in terms of ensuring the smoothness of the surface of the metal protective layer. More preferably, the thickness of the metal protective layer is in the range of 0.2 to 2.5 ⁇ m.
  • Solvents used for metal protective layer preparation include lower alcohols such as methanol, ethanol, n-propanol and n-butanol, chlorine atom-containing hydrocarbons such as methylene chloride and ethylene chloride, ketones such as acetone, methyl ethyl ketone and methyl isobutyl ketone, Aromatic compounds such as toluene, benzene, cyclohexane, cyclohexanone, xylene, esters of lower fatty acids and lower alcohols such as methyl acetate, ethyl acetate, butyl acetate, ethers such as dioxane, ethylene glycol monoethyl ester, ethylene glycol monomethyl ester, And mixtures thereof.
  • lower alcohols such as methanol, ethanol, n-propanol and n-butanol
  • chlorine atom-containing hydrocarbons such as methylene chloride and ethylene chloride
  • ketones such
  • the undercoat layer In the present invention, it is preferable to provide an undercoat layer from the viewpoint of attaching a film between the support (substrate) and the phosphor layer or between the reflective layer and the phosphor layer.
  • the undercoat layer preferably contains a polymer binder (binder), a dispersant and the like.
  • the thickness of the undercoat layer is 0.5 ⁇ m from the viewpoint of suppressing light scattering in the undercoat layer and preventing deterioration of sharpness and preventing disorder of columnar crystallinity by heat treatment. It is preferable to adjust to a range of ⁇ 4 ⁇ m.
  • the undercoat layer according to the present invention is preferably formed by applying and drying a polymer binder (hereinafter also referred to as “binder”) dissolved or dispersed in a solvent.
  • a polymer binder hereinafter also referred to as “binder”
  • the polymer binder include polyurethane, vinyl chloride copolymer, vinyl chloride-vinyl acetate copolymer, vinyl chloride-vinylidene chloride copolymer, vinyl chloride-acrylonitrile copolymer, butadiene-acrylonitrile copolymer.
  • Polymer polyamide resin, polyvinyl butyral, polyester, cellulose derivative (nitrocellulose, etc.), styrene-butadiene copolymer, various synthetic rubber resins, phenol resin, epoxy resin, urea resin, melamine resin, phenoxy resin, silicone resin , Acrylic resins, urea formamide resins, and the like.
  • polyurethane, polyester, vinyl chloride copolymer, polyvinyl butyral, and nitrocellulose are preferably used.
  • polyurethane, polyester, vinyl chloride copolymer, polyvinyl butyral, nitrocellulose and the like are particularly preferable in terms of adhesion to the phosphor layer.
  • a polymer having a glass transition temperature (Tg) of 30 to 100 ° C. is preferable from the viewpoint of attaching a film between the deposited crystal and the support (substrate). From this viewpoint, a polyester resin is particularly preferable.
  • Solvents that can be used to prepare the undercoat layer include lower alcohols such as methanol, ethanol, n-propanol, and n-butanol, hydrocarbons containing chlorine atoms such as methylene chloride and ethylene chloride, acetone, methyl ethyl ketone, and methyl isobutyl ketone.
  • ketones such as ketones, toluene, benzene, cyclohexane, cyclohexanone, xylene and other aromatic compounds, methyl acetate, ethyl acetate, butyl acetate and other lower fatty acid and lower alcohol esters, dioxane, ethylene glycol monoethyl ester, ethylene glycol monomethyl ester And ethers thereof and mixtures thereof.
  • the undercoat layer according to the present invention may contain a pigment or a dye in order to prevent scattering of light emitted from the phosphor and improve sharpness.
  • the protective layer according to the present invention focuses on protecting the phosphor layer. That is, cesium iodide (CsI) or cesium bromide (CsBr) has high hygroscopicity, and if it is left exposed, it absorbs water vapor in the air and deliquesces. To do.
  • CsI cesium iodide
  • CsBr cesium bromide
  • the protective layer can be formed using various materials.
  • a polyparaxylylene film is formed by a CVD method. That is, a polyparaxylylene film can be formed on the entire surface of the phosphor and the support (substrate) to form a protective layer.
  • a polymer film can be provided on the phosphor layer.
  • a film similar to the polymer film as a support (substrate) material described later can be used as a material of the polymer film.
  • the thickness of the polymer film is preferably 12 ⁇ m or more and 120 ⁇ m or less, more preferably 20 ⁇ m or more and 80 ⁇ m or less, taking into consideration the formation of voids, the protective properties of the phosphor layer, sharpness, moisture resistance, workability, etc. Is preferred.
  • the haze ratio is preferably 3% or more and 40% or less, more preferably 3% or more and 10% or less in consideration of sharpness, radiation image unevenness, production stability, workability, and the like.
  • the haze ratio can be measured, for example, by Nippon Denshoku Industries Co., Ltd. NDH5000W.
  • the required haze ratio is appropriately selected from commercially available polymer films and can be easily obtained.
  • the light transmittance of the protective film is preferably 70% or more at 550 nm in consideration of the photoelectric conversion efficiency, the emission wavelength of the phosphor, etc., but a film having a light transmittance of 99% or more is difficult to obtain industrially. Therefore, it is preferably substantially 99% to 70%.
  • the moisture permeability of the protective film is preferably 50 g / m 2 ⁇ day (40 ° C., 90% RH) (measured according to JIS Z0208) or less, more preferably 10 g / m 2 taking into account the protective properties and deliquescence of the phosphor layer.
  • m 2 ⁇ day (40 ° C./90% RH) (measured in accordance with JIS Z0208) or less is preferable, but a film having a moisture permeability of 0.01 g / m 2 ⁇ day (40 ° C./90% RH) or less is industrial.
  • the support (also referred to as “substrate”) is preferably a quartz glass sheet, a metal sheet made of aluminum, iron, tin, chrome, a carbon fiber reinforced sheet, a polymer film, or the like.
  • Polymer films such as cellulose acetate film, polyester film, polyethylene terephthalate (PEN) film, polyamide film, polyimide (PI) film, triacetate film, polycarbonate film, carbon fiber reinforced resin sheet, etc. Can be used.
  • a polymer film containing polyimide or polyethylene naphthalate is suitable for forming phosphor columnar crystals by a vapor phase method using cesium iodide as a raw material.
  • the polymer film as the support (substrate) according to the present invention is preferably a polymer film having a thickness of 30 ⁇ m to 500 ⁇ m and further having flexibility.
  • the "flexible support (substrate) having” means elastic modulus at 120 ° C. (E120) the support is 1000N / mm 2 ⁇ 6000N / mm 2 (substrate), such supports As the (substrate), a polymer film containing polyimide or polyethylene naphthalate is preferable.
  • the “elastic modulus” refers to the slope of the stress relative to the strain amount in a region where the strain indicated by the standard line of the sample conforming to JIS C 2318 and the corresponding stress have a linear relationship using a tensile tester. Is what we asked for. This is a value called Young's modulus, and in the present invention, this Young's modulus is defined as an elastic modulus.
  • Support for use in the present invention is preferably an elastic modulus at the 120 ° C. as described above (E120) is 1000N / mm 2 ⁇ 6000N / mm 2. More preferably, it is 1200 N / mm 2 to 5000 N / mm 2 .
  • a polymer film containing polyimide or polyethylene naphthalate is preferable as described above.
  • the support (substrate) is a polymer film having a thickness of 30 ⁇ m to 500 ⁇ m, so that the scintillator panel is deformed into a shape that matches the shape of the planar light receiving element surface, and is uniform over the entire light receiving surface of the flat panel detector Sharpness is obtained.
  • the support may have a resin layer in order to make the surface smooth.
  • the resin layer preferably contains a compound such as polyimide, polyethylene phthalate, paraffin, graphite, and the film thickness is preferably about 5 ⁇ m to 50 ⁇ m. This resin layer may be provided on the surface of the support or on the back surface.
  • means for providing an adhesive layer on the surface of the support include means such as a bonding method and a coating method.
  • the bonding method is performed using heating and a pressure roller.
  • the heating conditions are about 80 ° C. to 150 ° C.
  • the pressing conditions are 4.90 ⁇ 10 N / cm to 2.94 ⁇ 10 2 N / cm
  • the conveyance speed is 0.1 m / second to 2.0 m / second is preferable.
  • the manufacturing method of the radiation image conversion panel according to the present invention will be described in detail taking the case of vapor deposition by a resistance heating method as an example.
  • the resistance heating method has an advantage that vapor deposition can be performed at a moderate degree of vacuum, and a vapor deposition film having a good columnar crystal can be obtained relatively easily.
  • the phosphor containing the host cesium halide (CsX) component and the activator (Eu or Tl) component prepare at least two evaporation sources comprising Multi-source deposition is preferable because the evaporation rate can be controlled when the vapor pressures of the matrix component and the activator component of the phosphor are greatly different.
  • Each evaporation source may be composed of only a CsX component and an activator (Eu, Tl) component, or may be a mixture with additive components, depending on the desired phosphor composition. .
  • the number of evaporation sources is not limited to two, and for example, three or more evaporation sources may be added by separately adding evaporation sources composed of additive components.
  • the matrix CsX component of the phosphor may be the CsX compound itself, or may be a mixture of two or more raw materials that can react to form CsX.
  • the activator Eu component is generally a compound containing Eu, and for example, Eu halides and oxides are used.
  • the molar ratio of Eu 2+ compound in the Eu compound is preferably 70% or more.
  • Eu compounds contain Eu 2+ and Eu 3+ in a mixture, but the desired stimulating luminescence (or even instantaneous light emission) is emitted from a phosphor using Eu 2+ as an activator. It is.
  • the Eu compound is preferably EuOBr.
  • the Tl compound is preferably thallium iodide (TlI).
  • the evaporation source preferably has a water content of 0.5% by mass or less.
  • the evaporation source is preferably dehydrated by subjecting each of the phosphor components to a heat treatment in a temperature range of 100 ° C. to 300 ° C. under reduced pressure.
  • each phosphor component may be heated and melted in an atmosphere containing no moisture such as a nitrogen gas atmosphere at a temperature equal to or higher than the melting point of the component for several tens of minutes to several hours.
  • the evaporation source particularly the evaporation source containing the CsX component, has an alkali metal impurity (alkali metal other than the constituent elements of the phosphor) of 10 ppm or less, and an alkaline earth metal impurity (phosphor of the phosphor).
  • the content of (alkaline earth metal other than constituent elements) is desirably 5 ppm (mass) or less.
  • Such an evaporation source can be prepared by using a raw material with a low impurity content such as alkali metal or alkaline earth metal.
  • a plurality of evaporation sources and a support are arranged in a vapor deposition apparatus, and the inside of the apparatus is evacuated to a medium vacuum degree of about 0.05 Pa to 10 Pa.
  • the degree of vacuum is preferably 0.05 Pa to 3 Pa.
  • the inside of the apparatus is evacuated to a high vacuum level of about 1 ⁇ 10 ⁇ 5 Pa to 1 ⁇ 10 ⁇ 2 Pa, and then an inert gas such as Ar gas, Ne gas, or N 2 gas is introduced to Apply vacuum.
  • a rotary pump a turbo molecular pump, a cryopump, a diffusion pump, a mechanical booster, or the like can be used in appropriate combination.
  • vapor deposition is performed by setting the vacuum degree in the initial stage of growth including the nucleation part lower than the vacuum degree in the latter half of the growth period.
  • the evaporation source is heated by passing an electric current through each resistance heater.
  • the CsX component, the activator component, and the like, which are evaporation sources, are heated to evaporate and scatter, and cause a reaction to form a phosphor and deposit on the support surface.
  • the temperature of the support is generally in the range of 20 ° C to 350 ° C, more preferably in the range of 25 ° C to 250 ° C.
  • the deposition by changing the support temperature at least once.
  • the deposition is performed by setting the support temperature in the initial stage of growth including the nucleation part lower than the support temperature in the latter half of the growth.
  • the mean free path of the component particles evaporated from the evaporation source by heating is short, and the evaporation component particles do not reach the support unless the distance between the evaporation source and the support is reduced.
  • the support temperature tends to increase due to the influence of radiation from the evaporation source heated by the support.
  • the deposition mass rate exceeds 2 mg / cm 2 ⁇ min, particularly in the case of a thin resin substrate, the temperature rise of the substrate is large, and the light emission amount deviates greatly from the optimum substrate temperature, thereby causing a decrease in light emission amount.
  • the pillars of the phosphors grown on the support were fused and it was difficult to obtain independent columnar crystals. As a result, a phosphor layer with reduced sensitivity and sharpness can be obtained.
  • the vapor deposition mass rate is slower than 0.01 mg / cm 2 ⁇ min, it is found that the vaporized component particles collide with the gas in the vapor deposition apparatus such as an inert gas, and a good columnar crystal cannot be obtained. It was. As a result, the obtained phosphor layer has a reduced amount of X-ray absorption, and it becomes difficult to extract emitted light from the deep part of the phosphor layer, so that the amount of emitted light is reduced. Therefore, the sensitivity and sharpness are similarly reduced.
  • the rate of deposition of the phosphor i.e., the deposition mass rate, in terms of independent columnar crystalline and emission amount, in the range of 0.01 mg / cm 2 ⁇ min ⁇ 2.0mg / cm 2 ⁇ min More preferably, it is in the range of 0.03 mg / cm 2 ⁇ min to 2.0 mg / cm 2 ⁇ min.
  • the deposition rate of the phosphor that is, the deposition mass rate is preferably changed at least once to perform the deposition.
  • vapor deposition is performed by setting the vapor deposition mass rate in the initial stage of growth including the nucleation part lower than the vapor deposition mass rate in the latter half of the growth.
  • the vapor deposition rate of each evaporation source can be controlled by adjusting the resistance current of the heater and the opening area of the crucible.
  • each evaporation source and the support varies depending on the size of the support, but is preferably in the range of 50 mm to 500 mm.
  • the distance between the evaporation sources is preferably in the range of 50 mm to 100 mm.
  • two or more phosphor layers can be formed by performing heating with a resistance heater in a plurality of times.
  • the deposited film may be heat-treated (annealed) after the deposition.
  • a phosphor layer (deposition film) made only of the phosphor matrix compound (CsX) may be formed prior to forming the phosphor layer made of the phosphor.
  • This CsX phosphor layer (deposition film) is generally composed of a columnar crystal structure or an aggregate of spherical crystals, and the columnar crystallinity of the phosphor layer (deposition film) formed thereon can be further improved.
  • the relative density of the CsX vapor deposition film is in the range of 80% to 98%, it can also function as a stress relaxation layer and enhance the adhesion between the support and the phosphor layer.
  • additives such as an activator in the phosphor layer (deposition film) diffuse into the CsX phosphor layer (deposition film). The boundaries are not always clear.
  • the phosphor itself or the phosphor raw material mixture is used as an evaporation source and heated with a single resistance heater.
  • the evaporation source is prepared in advance to contain a desired concentration of activator.
  • the vapor deposition can be performed while supplying the CsX component to the evaporation source in consideration of the vapor pressure difference between the CsX component and the Tl or Eu component.
  • the phosphor layer does not contain a binder and is composed only of the phosphor, and there are voids between the columnar crystals of the phosphor.
  • the thickness of the phosphor layer varies depending on the characteristics of the intended radiation image conversion panel, the means and conditions of the vapor deposition method, but is usually in the range of 50 ⁇ m to 1 mm, preferably in the range of 200 ⁇ m to 700 ⁇ m. .
  • the vapor deposition method used in the present invention is not limited to the resistance heating method described above, and any other vapor deposition method may be used as long as it is performed under a medium vacuum.
  • the support does not necessarily have to serve also as a support for the radiation image conversion panel.
  • the phosphor layer is peeled off from the substrate and bonded to the support prepared separately by using an adhesive, A method of providing a phosphor layer on a support may be used.
  • the support (substrate) may not be attached to the phosphor layer.
  • the method for manufacturing a radiation image conversion panel according to the present invention uses a vapor deposition apparatus having an evaporation source and a support rotation mechanism in a vacuum vessel, and installs the support on the support rotation mechanism and rotates the support.
  • the phosphor layer is formed by a vapor deposition method including a step of vapor-depositing the phosphor material.
  • FIG. 1 is a schematic configuration diagram of a radiographic image conversion panel manufacturing apparatus 1 according to the present invention.
  • the radiation image conversion panel manufacturing apparatus 1 includes a vacuum container 2, and the vacuum container 2 includes a vacuum pump 3 that evacuates the inside of the vacuum container 2 and introduces the atmosphere. .
  • a support holder 5 that holds the support 4 is provided near the upper surface inside the vacuum vessel 2.
  • a phosphor layer is formed on the surface of the support 4 by a vapor deposition method.
  • a vapor deposition method a vapor deposition method, a sputtering method, a CVD method, an ion plating method, or the like can be used. In the present invention, the vapor deposition method is particularly preferable.
  • the support holder 5 is configured to hold the support 4 so that the surface of the support 4 on which the phosphor layer is formed faces the bottom surface of the vacuum vessel 2 and is parallel to the bottom surface of the vacuum vessel 2. It has become.
  • the support holder 5 is preferably provided with a heater (not shown) for heating the support 4.
  • a heater not shown for heating the support 4.
  • the adhesion of the support 4 to the support holder 5 is enhanced and the film quality of the phosphor layer is adjusted. Further, the adsorbate on the surface of the support 4 is removed and removed, and an impurity layer is prevented from being generated between the surface of the support 4 and the phosphor.
  • a heating medium or a mechanism (not shown) for circulating the heating medium may be provided as heating means. This means is suitable for the case where vapor deposition is performed while maintaining the temperature of the support 4 at a relatively low temperature of 50 to 150 ° C. during the vapor deposition of the phosphor.
  • a halogen lamp (not shown) may be provided as a heating means. This means is suitable for the case where vapor deposition is performed while maintaining the temperature of the support 4 at a relatively high temperature such as 150 ° C. or higher during the vapor deposition of the phosphor.
  • the support holder 5 is provided with a support rotating mechanism 6 that rotates the support 4 in the horizontal direction.
  • the support rotating mechanism 6 supports the support holder 5 and rotates the support 4 and a motor (not shown) that is disposed outside the vacuum vessel 2 and serves as a drive source for the support rotating shaft 7. Z).
  • evaporation sources 8 a and 8 b are arranged at positions facing each other on the circumference of a circle centering on a center line perpendicular to the support 4.
  • the distance between the support 4 and the evaporation sources 8a and 8b is preferably 100 to 1500 mm, more preferably 200 to 1000 mm.
  • the distance between the center line perpendicular to the support 4 and the evaporation sources 8a and 8b is preferably 100 to 1500 mm, more preferably 200 to 1000 mm.
  • the radiation image conversion panel manufacturing apparatus it is possible to provide a large number of three or more evaporation sources, and the respective evaporation sources may be arranged at equal intervals or at different intervals. May be. Further, the radius of a circle centered on the center line perpendicular to the support 4 can be arbitrarily determined.
  • the evaporation sources 8a and 8b contain the phosphor and heat it by a resistance heating method. Therefore, the evaporation sources 8a and 8b may be composed of an alumina crucible wound with a heater, or a boat or a heater made of a refractory metal. May be. Further, the method of heating the phosphor may be a method such as heating by an electron beam or heating by high frequency induction other than the resistance heating method, but in the present invention, it is relatively easy to handle, inexpensive, and In view of the fact that it can be applied to a large number of substances, a method in which a direct current is passed and resistance heating is performed, and a method in which a crucible is indirectly resistance heated with a surrounding heater is preferable.
  • the evaporation sources 8a and 8b may be molecular beam sources by a molecular source epitaxial method.
  • a shutter 9 that blocks a space from the evaporation sources 8a and 8b to the support 4 is provided between the evaporation sources 8a and 8b and the support 4 so as to be openable and closable in the horizontal direction.
  • substances other than the target substance attached to the surface of the phosphor can be prevented from evaporating at the initial stage of vapor deposition and adhering to the support 4.
  • the support 4 is attached to the support holder 5. Further, in the vicinity of the bottom surface of the vacuum vessel 2, evaporation sources 8 a and 8 b are arranged on the circumference of a circle centered on a center line perpendicular to the support 4.
  • the distance between the support 4 and the evaporation sources 8a and 8b is preferably 100 to 1500 mm, more preferably 200 to 1000 mm.
  • the distance between the center line perpendicular to the support 4 and the evaporation sources 8a and 8b is preferably 100 to 1500 mm, more preferably 200 to 1000 mm.
  • the inside of the vacuum vessel 2 is evacuated and adjusted to a desired degree of vacuum. Thereafter, the support holder 5 is rotated with respect to the evaporation sources 8a and 8b by the support rotation mechanism 6, and when the vacuum container 2 reaches a vacuum degree capable of vapor deposition, the phosphor is evaporated from the heated evaporation sources 8a and 8b. The phosphor is grown on the surface of the support 4 to a desired thickness.
  • the phosphor layer can be formed by performing the process of growing the phosphor on the surface of the support 4 in a plurality of times.
  • the vapor deposition target (support 4, protective layer, or intermediate layer) may be cooled or heated as necessary during vapor deposition.
  • the phosphor layer may be heat-treated.
  • reactive vapor deposition may be performed in which vapor deposition is performed by introducing a gas such as O 2 or H 2 as necessary.
  • the thickness of the phosphor layer to be formed is 50 ⁇ m to 2000 ⁇ m, preferably 50 ⁇ m to 1000 ⁇ m from the viewpoint of obtaining the effects of the present invention, although it varies depending on the purpose of use of the radiation image conversion panel and the type of the phosphor. More preferably, it is 100 ⁇ m to 800 ⁇ m.
  • the temperature of the support 4 on which the phosphor layer is formed is preferably set to room temperature (rt) to 300 ° C., more preferably 50 ° C. to 250 ° C.
  • the phosphor layer is physically or chemically protected on the surface of the phosphor layer opposite to the support 4 as necessary.
  • a protective layer may be provided.
  • the protective layer may be formed by directly applying a coating solution for the protective layer to the surface of the phosphor layer, or a protective layer separately formed in advance may be adhered to the phosphor layer.
  • the thickness of these protective layers is preferably 0.1 ⁇ m to 2000 ⁇ m.
  • the protective layer may be formed by laminating inorganic substances such as SiC, SiO 2 , SiN, and Al 2 O 3 by vapor deposition, sputtering, or the like.
  • the radiographic image conversion panel manufacturing apparatus 1 by providing the plurality of evaporation sources 8a and 8b, the overlapping portions of the vapor flows of the evaporation sources 8a and 8b are rectified, and the surface of the support 4 is rectified.
  • the crystallinity of the phosphor to be deposited can be made uniform.
  • the vapor flow is rectified at more locations, so that the crystallinity of the phosphor can be made uniform in a wider range.
  • the evaporation sources 8 a and 8 b are disposed on the circumference of a circle centering on the center line perpendicular to the support 4, the effect that the crystallinity becomes uniform due to the rectification of the vapor flow is provided. Can be obtained isotropically on the surface.
  • the phosphor can be uniformly deposited on the surface of the support 4 by depositing the phosphor while rotating the support 4 by the support rotating mechanism 6.
  • the phosphor layer is grown on the surface of the support 4 so that the crystallinity of the phosphor is uniform.
  • the sensitivity unevenness of the phosphor layer can be reduced, and the sharpness of the radiation image obtained from the radiation image conversion panel using the scintillator panel according to the present invention can be improved.
  • the crystallinity of the phosphor is made more uniform, and the radiation image The sharpness of the radiation image obtained from the conversion panel can be improved.
  • the support body holder 5 was provided with the support body rotation mechanism 6
  • this invention is not necessarily restricted to this, It vapor-deposits in the state which the support body holder 5 hold
  • the present invention is also applicable to the case where the phosphors from the evaporation sources 8a and 8b are deposited by moving the support 4 in the horizontal direction with respect to the evaporation sources 8a and 8b.
  • the radiation image conversion panel according to the present invention was obtained by the following method using the manufacturing apparatus shown in FIG.
  • the distance between the support and the evaporation source was adjusted to 400 mm, and the distance between the center line perpendicular to the support and the evaporation source was adjusted to 400 mm.
  • the inside of the vacuum vessel was once evacuated, Ar gas was introduced and the degree of vacuum was adjusted to 0.05 Pa, and then the temperature of the support was maintained at 200 ° C. while rotating the support at a speed of 10 rpm.
  • the phosphor 1 was deposited at a deposition mass rate of 0.008 mg / cm 2 ⁇ min in a state where the inside of the crucible was raised to a predetermined temperature by resistance heating and the support was not rotated, and the film thickness of the phosphor layer was The vapor deposition was terminated when the thickness reached 40 ⁇ m.
  • the phosphor 2 was deposited under the same conditions, and the deposition was terminated when the thickness of the phosphor layer reached 400 ⁇ m.
  • the phosphor layer was placed in a protective layer bag in dry air to obtain a comparative radiation image conversion panel 1-1 having a structure in which the phosphor layer was sealed.
  • Comparative Example 1-2 Among the production conditions of Comparative Example 1-1, the degree of vacuum was changed to 0.04 Pa and the vapor deposition mass rate was changed to 2.0 mg / cm 2 ⁇ min to obtain a radiation image conversion panel 1-2 of Comparative Example. It was.
  • X-rays with a tube voltage of 80 kVp were irradiated from the back surface (surface on which the phosphor layer was not formed) of the sample, and image data was detected with an FPD disposed on the phosphor, and the average signal value of the image was taken as the emission luminance. Then, the brightness of the radiation conversion panel of Comparative Example 1-1 was displayed as a relative value with the brightness set at 100. The higher this value, the higher the luminance and the better.
  • ⁇ Sharpness> Evaluation of sharpness
  • X-rays with a tube voltage of 80 kVp were irradiated to the radiation incident surface side of the FPD through a lead MTF chart, and image data was detected and recorded on a hard disk. Thereafter, the recording on the hard disk was analyzed by a computer, and the modulation transfer function MTF (MTF value at a spatial frequency of 1 cycle / mm) of the X-ray image recorded on the hard disk was used as an index of sharpness.
  • MTF modulation transfer function
  • the obtained radiation conversion panel was left to stand in an environment of 70 ° C./90% for 3 days, and the brightness deterioration range after being left was displayed as a relative value with the value before being left as 100.
  • Table 1 summarizes the results obtained from the above evaluations.
  • the radiographic image conversion panels of the present invention (Inventions 1-1 to 1-5) all have improved relative luminance values and relative MTF values. It has been seen.
  • the conventional radiographic image conversion panels (Comparative Examples 1-1 to 1-2) having a low degree of vacuum and a vapor deposition mass rate had poor relative luminance values and relative MTF values.
  • the radiation image conversion panels of the present invention (Inventions 1-1 to 1-5) were all excellent.
  • Comparative Example 2-1 (Production of radiation image conversion panel) Among the preparation conditions of Comparative Example 1-1, the phosphor 1 was changed to the phosphor 3 (only CsBr) and the phosphor 2 was changed to the phosphor 4 (CsBr: 0.003Eu) to obtain a radiation image conversion panel.
  • Comparative Example 2-2 Among the production conditions of Comparative Example 2-1, the degree of vacuum was changed to 0.04 Pa and the vapor deposition mass rate was changed to 2.0 mg / cm 2 ⁇ min to obtain a radiation image conversion panel 2-2 of Comparative Example. It was.
  • a 2 mm-thick lead disk is imprinted on each prepared radiation image conversion panel, X-ray with a tube voltage of 80 kVp is uniformly irradiated, and then a semiconductor laser beam (oscillation is provided from the surface side on which the phosphor layer is provided. Excitation is performed by scanning at a wavelength of 780 nm and a beam diameter of 100 ⁇ m. The stimulated emission emitted from each phosphor layer is received by a photoreceiver (photoelectron image multiplier of spectral sensitivity S-5), and the intensity is measured. This was defined as luminance, and the value of Comparative Example 2-1 was set as 100 and indicated as a relative value. The higher this value, the higher the luminance and the better.
  • X-ray with a tube voltage of 80 kVp-p is irradiated with 10 mR (distance from the tube to the panel: 1.5 m), and then a semiconductor laser beam (oscillation wavelength: 780 nm, beam diameter) : 100 ⁇ m) and excited to excite, read the CTF chart image as stimulated luminescence emitted from the stimulable phosphor layer, and photoelectrically convert it with a photodetector (photomultiplier) to obtain an image signal It was. Based on this signal value, the modulation transfer function (MTF) of the image was examined, and the value of Comparative Example 2-1 was set as 100 and indicated as a relative value. MTF is a value when the spatial frequency is 1 cycle / mm.
  • the obtained radiation image conversion panel was left to stand in an environment of 70 ° C./90% for 3 days, and the brightness deterioration range after being left was displayed as a relative value with the value before being left as 100.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Conversion Of X-Rays Into Visible Images (AREA)
  • Luminescent Compositions (AREA)

Abstract

Disclosed is a radiation image conversion panel having a phosphor layer formed by vapor deposition and containing a phosphor columnar crystal which is mainly composed of a caesium halide phosphor. A method for producing the radiation image conversion panel is also disclosed. The radiation image conversion panel is characterized in that the phosphor layer is formed under such conditions that the vacuum degree is kept within the range of 0.05-10 Pa and the mass deposition rate is kept within the range of 0.01-2.0 mg/cm2 min. The radiation image conversion panel has high sensitivity (high luminance), high sharpness, and excellent storage stability.

Description

放射線画像変換パネルとその製造方法Radiation image conversion panel and manufacturing method thereof
 本発明は、高感度(高輝度)で高鮮鋭性であり、かつ保存性に優れる放射線画像変換パネルとその製造方法に関する。 The present invention relates to a radiation image conversion panel having high sensitivity (high luminance), high sharpness, and excellent storage stability, and a method for manufacturing the same.
 従来、X線画像のような放射線画像は医療現場において病状の診断に広く用いられている。特に、増感紙-フィルム系による放射線画像は、長い歴史の中で高感度化と高画質化が図られた結果、高い信頼性と優れたコストパフォーマンスを併せ持った撮像システムとして、今なお、世界中の医療現場で用いられている。しかしながら、これら画像情報はいわゆるアナログ画像情報であって、近年発展を続けているデジタル画像情報のような、自由な画像処理や瞬時の電送が出来ない。 Conventionally, radiographic images such as X-ray images have been widely used for diagnosis of medical conditions in the medical field. In particular, radiographic images using intensifying screens and film systems have been developed as an imaging system that combines high reliability and excellent cost performance as a result of high sensitivity and high image quality in a long history. Used in the medical field. However, these pieces of image information are so-called analog image information, and free image processing and instantaneous electric transmission cannot be performed like digital image information that has been developing in recent years.
 そして、近年ではコンピューテッドラジオグラフィ(computed radiography:CR)やフラットパネル型の放射線ディテクタ(flat panel detector:FPD)等に代表されるデジタル方式の放射線画像検出装置が登場している。これらは、デジタルの放射線画像が直接得られ、陰極管や液晶パネル等の画像表示装置に画像を直接表示することが可能なので、必ずしも写真フィルム上への画像形成が必要なものではない。その結果、これらのデジタル方式のX線画像検出装置は、銀塩写真方式による画像形成の必要性を低減させ、病院や診療所での診断作業の利便性を大幅に向上させている。 In recent years, digital radiological image detection devices represented by computed radiography (CR), flat panel type radiation detectors (FPD), and the like have appeared. In these, since a digital radiographic image is directly obtained and an image can be directly displayed on an image display device such as a cathode tube or a liquid crystal panel, image formation on a photographic film is not necessarily required. As a result, these digital X-ray image detection devices reduce the need for image formation by the silver halide photography method, and greatly improve the convenience of diagnosis work in hospitals and clinics.
 平板X線検出装置(FPD)は、CRより装置が小型化し、高線量での画質が優れているという特徴がある。こちらの場合は、放射線を可視光に変換する為に放射線により発光する特性を有するX線蛍光体で作られたシンチレータプレートが使用される。 The flat plate X-ray detector (FPD) is characterized in that the device is smaller than CR and the image quality at high dose is excellent. In this case, a scintillator plate made of an X-ray phosphor having a characteristic of emitting light by radiation is used to convert the radiation into visible light.
 放射線画像検出に用いられる放射線画像変換パネルは、基本構造として、支持体とその上に設けられた蛍光体層とからなるものである。但し、蛍光体層が自己支持性である場合には必ずしも支持体を必要としない。 The radiation image conversion panel used for the radiation image detection is composed of a support and a phosphor layer provided thereon as a basic structure. However, a support is not necessarily required when the phosphor layer is self-supporting.
 また、蛍光体層の上面(支持体に面していない側の面)には通常、保護層が設けられていて、蛍光体層を化学的な変質あるいは物理的な衝撃から保護している。 Also, a protective layer is usually provided on the upper surface of the phosphor layer (the surface not facing the support) to protect the phosphor layer from chemical alteration or physical impact.
 蛍光体層としては、蛍光体とこれを分散状態で含有支持する結合剤とからなるもの、蒸着法や焼結法によって形成される結合剤を含まないで蛍光体の凝集体のみから構成されるもの及び蛍光体の凝集体の間隙に高分子物質が含浸されているものなどが知られている。 The phosphor layer is composed of a phosphor and a binder containing and supporting the phosphor in a dispersed state, and is composed only of an aggregate of phosphors without including a binder formed by vapor deposition or sintering. And those in which a polymer substance is impregnated in the gap between the phosphor and the aggregate of the phosphor are known.
 また、上記放射線画像検出方法の別法として、従来の蓄積性蛍光体における放射線吸収機能とエネルギー蓄積機能とを分離して、少なくとも蓄積性蛍光体(エネルギー蓄積用蛍光体)を含有する放射線画像変換パネルと、放射線を吸収して紫外乃至可視領域に発光を示す蛍光体(放射線吸収用蛍光体)を含有する蛍光スクリーンとの組合せを用いる放射線画像形成方法が提案されている(例えば、特許文献1参照。)。 As another method of the above radiographic image detection method, a radiation image conversion containing at least a stimulable phosphor (an energy storage phosphor) is performed by separating a radiation absorbing function and an energy storage function of a conventional stimulable phosphor. A radiation image forming method using a combination of a panel and a phosphor screen containing a phosphor (radiation absorbing phosphor) that absorbs radiation and emits light in an ultraviolet to visible region has been proposed (for example, Patent Document 1). reference.).
 この方法は、被検体を透過などした放射線をまず、当該スクリーンまたはパネルの放射線吸収用蛍光体により紫外乃至可視領域の光に変換した後、その光をパネルのエネルギー蓄積用蛍光体にて放射線画像情報として蓄積記録する。次いで、このパネルに励起光を走査して発光光を放出させ、この発光光を光電的に読み取って画像信号を得るものである。 In this method, radiation that has passed through a subject is first converted into light in the ultraviolet or visible region by the screen or panel radiation absorbing phosphor, and then the radiation is imaged by the panel energy storage phosphor. Accumulate and record as information. Next, the panel is scanned with excitation light to emit emitted light, and the emitted light is read photoelectrically to obtain an image signal.
 放射線画像検出方法(及び放射線画像形成方法)は上述したように数々の優れた利点を有する方法であるが、この方法に用いられる放射線画像変換パネルにあっても、できる限り高感度であってかつ画質(鮮鋭度、粒状性など)の良好な画像を与えるものであることが望まれている。 The radiological image detection method (and the radiographic image formation method) is a method having a number of excellent advantages as described above. However, even in the radiographic image conversion panel used in this method, it is as sensitive as possible and It is desired to provide an image with good image quality (sharpness, graininess, etc.).
 感度及び画質を高めることを目的として、放射線画像変換パネルの蛍光体層を気相堆積法により形成する方法が提案されている。気相堆積法には蒸着法やスパッタ法などがあり、例えば蒸着法は、蛍光体またはその原料からなる蒸発源を抵抗加熱器や電子線の照射により加熱して蒸発源を蒸発、飛散させ、金属シートなどの基板表面にその蒸発物を堆積させることにより、蛍光体の柱状結晶からなる蛍光体層を形成するものである。 For the purpose of improving sensitivity and image quality, a method of forming a phosphor layer of a radiation image conversion panel by a vapor deposition method has been proposed. The vapor deposition method includes a vapor deposition method and a sputtering method. For example, the vapor deposition method evaporates and scatters the evaporation source by heating the evaporation source made of the phosphor or its raw material by irradiation with a resistance heater or an electron beam. By depositing the evaporated material on the surface of a substrate such as a metal sheet, a phosphor layer made of columnar crystals of the phosphor is formed.
 気相堆積法により形成された蛍光体層は、結合剤を含有せず、蛍光体のみからなり、蛍光体の柱状結晶と柱状結晶の間には空隙が存在する。このため、励起光の進入効率や発光光の取出し効率を上げることができるので高感度であり、また励起光の平面方向への散乱を防ぐことができるので高鮮鋭度の画像を得ることができる。 The phosphor layer formed by the vapor deposition method does not contain a binder and is composed only of the phosphor, and there are voids between the columnar crystals of the phosphor. For this reason, since the entrance efficiency of excitation light and the extraction efficiency of emitted light can be increased, the sensitivity is high, and the scattering of the excitation light in the plane direction can be prevented, so that a high sharpness image can be obtained. .
 また、蛍光体の固体としての密度よりも低い密度で蛍光体層が基板上に堆積するように蒸着を制御することにより、基板上に針状の蛍光体層を形成する方法が開示され、そして蒸着を蒸着速度>1mg/cm・分で行うことが記載されている(例えば、特許文献2参照。)が、真空度や基板温度については詳細に述べられていない。 Also disclosed is a method of forming a needle-like phosphor layer on a substrate by controlling vapor deposition so that the phosphor layer is deposited on the substrate at a lower density than the density of the phosphor as a solid, and Although it is described that vapor deposition is performed at a vapor deposition rate> 1 mg / cm 2 · min (see, for example, Patent Document 2), the degree of vacuum and the substrate temperature are not described in detail.
 一方、放射線を可視光に変換するために、放射線により発光する特性を有するX線蛍光体で作られたシンチレータが使用されるが、低線量の撮影においてのSN比を向上するためには、発光効率の高いシンチレータを使用することが必要になってくる。一般にシンチレータの発光効率は、蛍光体層の厚さ、蛍光体のX線吸収係数によって決まるが、蛍光体層の厚さは厚くすればするほど、蛍光体層内での発光光の散乱が発生し、鮮鋭性は低下する。そのため、画質に必要な鮮鋭性を決めると、層厚が決定する。 On the other hand, in order to convert radiation into visible light, a scintillator made of an X-ray phosphor having a characteristic of emitting light by radiation is used. In order to improve the S / N ratio in low-dose imaging, light emission is used. It becomes necessary to use highly efficient scintillators. In general, the light emission efficiency of a scintillator is determined by the thickness of the phosphor layer and the X-ray absorption coefficient of the phosphor. The thicker the phosphor layer, the more scattered the emitted light in the phosphor layer. However, sharpness decreases. Therefore, when the sharpness necessary for the image quality is determined, the layer thickness is determined.
 中でも、ヨウ化セシウム(CsI)は、X線から可視光に対する変更率が比較的高く、蒸着によって容易に蛍光体を柱状結晶構造に形成できるため、光ガイド効果により結晶内での発光光の散乱が抑えられ、蛍光体層の厚さを厚くすることが可能である(例えば、特許文献3参照。)。 Among them, cesium iodide (CsI) has a relatively high change rate from X-rays to visible light, and phosphors can be easily formed into a columnar crystal structure by vapor deposition. Therefore, scattering of emitted light within the crystal by the light guide effect. And the thickness of the phosphor layer can be increased (see, for example, Patent Document 3).
 しかし、ヨウ化セシウム(CsI)のみでは発光効率が低いために、ヨウ化セシウム(CsI)とヨウ化ナトリウム(NaI)を任意のモル比で混合したものを、蒸着を用いて支持体(基板)上にナトリウム賦活ヨウ化セシウム(CsI:Na)として堆積、又近年では、ヨウ化セシウム(CsI)とヨウ化タリウム(TlI)を任意のモル比で混合したしたものを、蒸着を用いて支持体(基板)上にタリウム賦活ヨウ化セシウム(CsI:Tl)として堆積したものに、200℃~500℃の温度で熱処理を行うことで可視変換効率を向上させ、X線蛍光体として使用している(例えば、特許文献4参照。)。 However, since luminescence efficiency is low only with cesium iodide (CsI), a mixture of cesium iodide (CsI) and sodium iodide (NaI) mixed at an arbitrary molar ratio is used as a support (substrate). Deposited as sodium-activated cesium iodide (CsI: Na) on the top, and recently, a mixture of cesium iodide (CsI) and thallium iodide (TlI) mixed at an arbitrary molar ratio is used as a support. Visible conversion efficiency is improved by performing heat treatment at a temperature of 200 ° C. to 500 ° C. on what is deposited as thallium activated cesium iodide (CsI: Tl) on the (substrate), and used as an X-ray phosphor. (For example, refer to Patent Document 4).
 また、ヨウ化セシウム(CsI)をベースとした蛍光体層(「シンチレータ層」ともいう。)は潮解性があり、経時で特性が劣化するという欠点がある。この様な経時劣化を防止するために、当該蛍光体層の表面に防湿性保護層を形成することが提案されている。 Further, a phosphor layer (also referred to as “scintillator layer”) based on cesium iodide (CsI) has a deliquescent property and has a drawback that the characteristics deteriorate with time. In order to prevent such deterioration with time, it has been proposed to form a moisture-proof protective layer on the surface of the phosphor layer.
 例えば、ポリパラキシリレン樹脂により蛍光体層の上部、側面及び支持体(基板)のシンチレータ層外周部を覆う方法が知られている(例えば、特許文献5参照。)。 For example, a method is known in which the upper and side surfaces of the phosphor layer and the outer periphery of the scintillator layer of the support (substrate) are covered with polyparaxylylene resin (see, for example, Patent Document 5).
 一方、ヨウ化セシウム(CsI)を用いるフラットパネル型の放射線ディテクタ(FPD;「放射線画像変換パネル」ともいう。)においては、近年パネルの大面積化や、可搬型のカセッテタイプ化が要求されてきており、輝尽性蛍光体を用いるコンピューテッドラジオグラフィ(CR)に比較して、耐湿性や耐衝撃性の要求レベルが格段に厳しくなってきており、上記した従来技術ではその要求レベルを満足させることができなかった。 On the other hand, in the flat panel type radiation detector (FPD; also referred to as “radiation image conversion panel”) using cesium iodide (CsI), in recent years, an increase in the area of the panel and a portable cassette type have been required. Compared to computed radiography (CR) using photostimulable phosphors, the required level of moisture resistance and impact resistance has become much stricter. I wasn't satisfied.
 ヨウ化セシウム(CsI)を用いるフラットパネル型の放射線ディテクタ(FPD)の耐湿性や耐衝撃性を向上させるためには、従来保護層を設けたり、保護フィルムによる封止を行ったり、パネルと筐体間に緩衝剤を用いることが行われてきたが、要求レベルを満たすことができなかった。
特開2001-255610号公報 米国特許出願公開第2001/0010831A1号明細書 特開昭63-215987号公報 特公昭54-35060号公報 特開2000-284053号公報
In order to improve the moisture resistance and impact resistance of a flat panel radiation detector (FPD) using cesium iodide (CsI), a conventional protective layer, sealing with a protective film, Although buffering has been used between the bodies, the required level could not be met.
JP 2001-255610 A US Patent Application Publication No. 2001 / 0010831A1 JP-A-63-215987 Japanese Examined Patent Publication No. 54-35060 JP 2000-284053 A
 本発明は、上記問題・状況に鑑みてなされたものであり、その解決課題は、高感度(高輝度)で高鮮鋭性であり、かつ保存性に優れる放射線画像像変換パネルとその製造方法を提供することである。 The present invention has been made in view of the above-mentioned problems and situations, and the problem to be solved is a radiation image conversion panel having high sensitivity (high brightness), high sharpness, and excellent storage stability, and a method for producing the same. Is to provide.
 本発明者は、ハロゲン化セシウム系蛍光体からなる蛍光体層を蒸着法により形成することについて検討を重ねた結果、抵抗加熱方式による蒸着など中程度の真空度(約0.1Pa~10Pa)で蒸着を行う場合に、特定の範囲の蒸着質量速度で蛍光体を蒸着させると、柱状結晶性が極めて良好で発光量の顕著に高い蛍光体層が得られることを見出し、本発明に至った。 As a result of repeated studies on the formation of a phosphor layer made of a cesium halide phosphor by a vapor deposition method, the present inventor has obtained a moderate vacuum (about 0.1 Pa to 10 Pa) such as vapor deposition by a resistance heating method. In the case of performing vapor deposition, it has been found that when a phosphor is vapor-deposited at a vapor deposition mass rate within a specific range, a phosphor layer with extremely good columnar crystallinity and a remarkably high light emission amount can be obtained, leading to the present invention.
 すなわち、本発明に係る上記課題は、以下の手段により解決される。 That is, the above-mentioned problem according to the present invention is solved by the following means.
 1.気相堆積法により形成されたハロゲン化セシウム系蛍光体を主成分とする蛍光体柱状結晶を含有する蛍光体層を有する放射線画像変換パネルであって、当該蛍光体層が、真空度を0.05Pa~10Paの範囲内に維持し、かつ蒸着質量速度を0.01mg/cm・分~2.0mg/cm・分の範囲内に維持した条件下で、形成されたことを特徴とする放射線画像変換パネル。 1. A radiation image conversion panel having a phosphor layer containing a phosphor columnar crystal composed mainly of a cesium halide phosphor formed by a vapor deposition method, wherein the phosphor layer has a degree of vacuum of 0. It is characterized in that it is formed under the condition that it is maintained within the range of 05 Pa to 10 Pa and the deposition mass rate is maintained within the range of 0.01 mg / cm 2 · min to 2.0 mg / cm 2 · min. Radiation image conversion panel.
 2.前記蛍光体柱状結晶が、(1)ヨウ化セシウム(CsI)及び臭化セシウム(CsBr)のうちの少なくとも一方と(2)タリウム(Tl)及びユウロピウム(Eu)うちの少なくとも一方を含む添加剤とを原材料として形成されたことを特徴とする前記1に記載の放射線画像変換パネル。 2. The phosphor columnar crystal is (1) an additive containing at least one of cesium iodide (CsI) and cesium bromide (CsBr) and (2) at least one of thallium (Tl) and europium (Eu); 2. The radiation image conversion panel as described in 1 above, wherein the radiation image conversion panel is formed using as a raw material.
 3.前記1または2に記載の放射線画像変換パネルを製造する放射線画像変換パネルの製造方法であって、蒸着装置内で、ハロゲン化セシウム系蛍光体もしくはその原料を含む蒸発源を加熱することによって発生する物質を支持体上に蒸着させることにより蛍光体層を形成する工程を有し、当該蒸着装置内に不活性ガスを導入した後、真空度を0.05Pa~10Paの範囲内に維持し、かつ蒸着質量速度を0.01mg/cm・分~2.0mg/cm・分の範囲内にして蒸着を行うことを特徴とする放射線画像変換パネルの製造方法。 3. 3. A method for producing a radiation image conversion panel according to 1 or 2, wherein the radiation image conversion panel is produced by heating an evaporation source containing a cesium halide phosphor or its raw material in a vapor deposition apparatus. Having a step of forming a phosphor layer by vapor-depositing a substance on a support, and after introducing an inert gas into the vapor deposition apparatus, maintaining a degree of vacuum within a range of 0.05 Pa to 10 Pa; and A method for producing a radiation image conversion panel, characterized in that vapor deposition is performed at a vapor deposition mass rate of 0.01 mg / cm 2 · min to 2.0 mg / cm 2 · min.
 4.蛍光体層形成途中過程において前記蒸着装置内の真空度を前記範囲内で変更して蒸着を行うことにより前記蛍光体層を形成することを特徴とする前記3に記載の放射線画像変換パネルの製造方法。 4. 4. The manufacturing of the radiation image conversion panel according to 3 above, wherein the phosphor layer is formed by performing vapor deposition while changing the degree of vacuum in the vapor deposition apparatus within the range in the course of forming the phosphor layer. Method.
 5.蛍光体層形成途中過程において前記蒸着質量速度を前記範囲内で変更して蒸着を行うことにより前記蛍光体層を形成することを特徴とする前記3または4に記載の放射線画像変換パネルの製造方法。 5. 5. The method for producing a radiation image conversion panel according to 3 or 4, wherein the phosphor layer is formed by performing vapor deposition while changing the vapor deposition mass rate within the range in the course of forming the phosphor layer. .
 6.蛍光体層形成途中過程において前記支持体の温度を変更して蒸着を行うことにより前記蛍光体層を形成することを特徴とする前記3~5のいずれか1項に記載の放射線画像変換パネルの製造方法。 6. 6. The radiation image conversion panel according to any one of 3 to 5, wherein the phosphor layer is formed by performing vapor deposition while changing the temperature of the support in the course of forming the phosphor layer. Production method.
 7.前記支持体の厚さが、30μm~500μm範囲内であることを特徴とする前記3~6のいずれか1項に記載の放射線画像変換パネルの製造方法。 7. 7. The method for producing a radiation image conversion panel according to any one of 3 to 6, wherein the thickness of the support is in the range of 30 μm to 500 μm.
 8.前記3~7のいずれか1項に記載の放射線画像変換パネルの製造方法であって、真空容器内に蒸発源及び支持体回転機構を有する蒸着装置を用いて、支持体を前記支持体回転機構に設置して、当該支持体を回転しながら蛍光体材料を蒸着する工程を含む気相堆積法により、蛍光体層を形成することを特徴とする放射線画像変換パネルの製造方法。 8. 8. The method for producing a radiation image conversion panel according to any one of the above 3 to 7, wherein a vapor deposition apparatus having an evaporation source and a support rotating mechanism is used in a vacuum vessel, and the support is rotated by the support rotating mechanism. A method for producing a radiation image conversion panel, comprising: forming a phosphor layer by a vapor deposition method including a step of vapor-depositing a phosphor material while rotating the support.
 本発明の上記手段により、高感度(高輝度)で高鮮鋭性であり、かつ保存性に優れる放射線画像変換パネルとその製造方法を提供することができる。 By the above means of the present invention, it is possible to provide a radiation image conversion panel having high sensitivity (high luminance), high sharpness, and excellent storage stability, and a method for producing the same.
放射線画像変換パネル製造装置の模式図Schematic diagram of radiation image conversion panel manufacturing equipment
符号の説明Explanation of symbols
 1 放射線画像変換の製造装置
 2 真空容器
 3 真空ポンプ
 4 支持体
 5 支持体ホルダ
 6 支持体回転機構
 7 支持体回転軸
 8 蒸発源
 9 シャッタ
 10 遮蔽板
DESCRIPTION OF SYMBOLS 1 Manufacturing apparatus of radiation image conversion 2 Vacuum container 3 Vacuum pump 4 Support body 5 Support body holder 6 Support body rotation mechanism 7 Support body rotating shaft 8 Evaporation source 9 Shutter 10 Shielding plate
 本発明の放射線画像変換パネルは、気相堆積法により形成されたハロゲン化セシウム系蛍光体を主成分とする蛍光体柱状結晶を含有する蛍光体層を有する放射線画像変換パネルであって、当該蛍光体層が、真空度を0.05Pa~10Paの範囲内に維持し、かつ蒸着質量速度を0.01mg/cm・分~2.0mg/cm・分の範囲内に維持した条件下で、形成されたことを特徴とする。この特徴は、請求の範囲第1項~請求の範囲第9項に係る発明に共通する技術的特徴である。ここで、真空度を0.10Pa~2.0Paの範囲内とすることがより好ましい。 The radiation image conversion panel of the present invention is a radiation image conversion panel having a phosphor layer containing a phosphor columnar crystal mainly composed of a cesium halide phosphor formed by a vapor deposition method. Under the condition that the body layer maintains the degree of vacuum within the range of 0.05 Pa to 10 Pa and the deposition mass rate within the range of 0.01 mg / cm 2 · min to 2.0 mg / cm 2 · min. , Formed. This feature is a technical feature common to the inventions according to claims 1 to 9. Here, the degree of vacuum is more preferably in the range of 0.10 Pa to 2.0 Pa.
 本発明の実施態様としては、前記蛍光体柱状結晶が、(1)ヨウ化セシウム(CsI)及び臭化セシウム(CsBr)のうちの少なくとも一方と(2)タリウム(Tl)及びユウロピウム(Eu)うちの少なくとも一方を含む添加剤とを原材料として形成されたものであることが好ましい。 As an embodiment of the present invention, the phosphor columnar crystal is composed of (1) at least one of cesium iodide (CsI) and cesium bromide (CsBr), and (2) of thallium (Tl) and europium (Eu). It is preferable that the raw material is an additive containing at least one of the above.
 本発明の放射線画像変換パネルの製造方法としては、蒸着装置内で、ハロゲン化セシウム系蛍光体もしくはその原料を含む蒸発源を加熱することによって発生する物質を支持体上に蒸着させることにより蛍光体層を形成する工程を有し、当該蒸着装置内に不活性ガスを導入した後、真空度を0.05Pa~10Paの範囲内に維持し、かつ蒸着質量速度を0.01mg/cm・分~2.0mg/cm・分の範囲内にして蒸着を行う態様の製造方法であることが好ましい。 As a method for producing a radiation image conversion panel of the present invention, a phosphor is produced by evaporating a substance generated by heating an evaporation source containing a cesium halide phosphor or its raw material on a support in a vapor deposition apparatus. A step of forming a layer, and after introducing an inert gas into the vapor deposition apparatus, the degree of vacuum is maintained within a range of 0.05 Pa to 10 Pa, and the vapor deposition mass rate is 0.01 mg / cm 2 · min. It is preferable that the production method is an embodiment in which vapor deposition is carried out within a range of ˜2.0 mg / cm 2 · min.
 当該製造方法の実施態様としては、蛍光体層形成途中過程において前記蒸着装置内の真空度を前記範囲内で変更して蒸着を行うことにより前記蛍光体層を形成することが好ましい。また、当該蛍光体層形成途中過程において前記蒸着質量速度を前記範囲内で変更して蒸着を行うことも好ましい。更に、当該蛍光体層形成途中過程において前記支持体の温度を変更して蒸着を行うことも好ましい。なお、当該支持体の厚さは、30μm~500μmの範囲であることが好ましい。 As an embodiment of the manufacturing method, it is preferable that the phosphor layer is formed by performing vapor deposition while changing the degree of vacuum in the vapor deposition apparatus within the range in the course of forming the phosphor layer. Moreover, it is also preferable to perform vapor deposition by changing the vapor deposition mass rate within the range in the course of forming the phosphor layer. Furthermore, it is also preferable to perform vapor deposition by changing the temperature of the support in the course of forming the phosphor layer. The thickness of the support is preferably in the range of 30 μm to 500 μm.
 また、当該放射線画像変換パネルの製造方法の実施態様としては、真空容器内に蒸発源及び支持体回転機構を有する蒸着装置を用いて、支持体を前記支持体回転機構に設置して、当該支持体を回転しながら蛍光体材料を蒸着する工程を含む気相堆積法により、蛍光体層を形成する態様の製造方法であることが好ましい。 Further, as an embodiment of the manufacturing method of the radiation image conversion panel, a support is installed in the support rotating mechanism using a vapor deposition apparatus having an evaporation source and a support rotating mechanism in a vacuum vessel, and the support is supported. It is preferable that the method is a manufacturing method in which the phosphor layer is formed by a vapor deposition method including a step of vapor-depositing the phosphor material while rotating the body.
 (放射線画像変換パネルの構成)
 本発明の放射線画像変換パネルは、気相堆積法により形成されたハロゲン化セシウム系蛍光体を主成分とする蛍光体柱状結晶を含有する蛍光体層を有することを特徴とするが、当該蛍光体層の外に、目的に応じて、後述するような各種機能層を設けた構成とすることが好ましい。
(Configuration of radiation image conversion panel)
The radiation image conversion panel of the present invention is characterized by having a phosphor layer containing a phosphor columnar crystal mainly composed of a cesium halide phosphor formed by a vapor deposition method. It is preferable that various functional layers as described later are provided in addition to the layers depending on the purpose.
 また、本発明の放射線画像変換パネルは、第1の基板上に反射層等の機能層を介して気相堆積法により蛍光体層を設けてなる放射線画像変換パネルに、第2の基板上にフォトセンサとTFT(Thin Film Transistor)またはCCD(Charge Coupled Devices)からなる画素を2次元状に配置した光電変換素子部(「平面受光素子」)を設けてなる光電変換パネルを接着あるいは密着させることで放射線画像変換パネルとしてもよいし、基板上に平面受光素子を形成した後、直接あるいは反射層、保護層等の機能層を介して気相堆積法により蛍光体層を設けることで放射線画像変換パネルとしても良い。 The radiation image conversion panel of the present invention is a radiation image conversion panel in which a phosphor layer is provided on a first substrate by a vapor deposition method via a functional layer such as a reflective layer. Adhering or closely adhering a photoelectric conversion panel provided with a photoelectric conversion element section (“planar light receiving element”) in which pixels consisting of a photosensor and TFT (Thin Film Transistor) or CCD (Charge Coupled Devices) are two-dimensionally arranged. A radiation image conversion panel may be used, or after forming a planar light receiving element on a substrate, a radiation image conversion may be performed by providing a phosphor layer directly or through a functional layer such as a reflective layer or a protective layer by a vapor deposition method. It is good as a panel.
 以下、典型的例として、主に放射線画像変換パネルを形成する場合の各種構成層及び構成要素等について説明するが、基板上に平面受光素子を形成した後、直接的に蛍光体層を設けることで放射線画像変換パネルとする場合も、基本的には同様である。 Hereinafter, as a typical example, various constituent layers and constituent elements in the case of forming a radiation image conversion panel will be mainly described. However, a phosphor layer is provided directly after forming a planar light receiving element on a substrate. The same applies to the radiation image conversion panel.
 (蛍光体層)
 本発明に係る蛍光体層は、気相堆積法により形成されたハロゲン化セシウム系蛍光体を主成分とする蛍光体柱状結晶を含有する蛍光体層であることを特徴とする。
(Phosphor layer)
The phosphor layer according to the present invention is a phosphor layer containing a phosphor columnar crystal composed mainly of a cesium halide phosphor formed by a vapor deposition method.
 本発明に係る蛍光体層を構成する蛍光体を形成する材料としては、種々の公知の蛍光体材料を使用することができるが、本発明においては、特にヨウ化セシウム(CsI)及び臭化セシウム(CsBr)のうちの少なくとも一方を主成分として蛍光体層を形成することが好ましい。これらの化合物は、X線から可視光に対する変更率が比較的高く、蒸着によって容易に蛍光体を柱状結晶構造に形成できるため、光ガイド効果により結晶内での発光光の散乱が抑えられ、蛍光体層の厚さを厚くすることが可能であるからである。 As a material for forming the phosphor constituting the phosphor layer according to the present invention, various known phosphor materials can be used. In the present invention, in particular, cesium iodide (CsI) and cesium bromide are used. The phosphor layer is preferably formed using at least one of (CsBr) as a main component. These compounds have a relatively high rate of change from X-rays to visible light, and can easily form phosphors into a columnar crystal structure by vapor deposition. Therefore, scattering of emitted light within the crystal is suppressed by the light guide effect, and fluorescence is reduced. This is because the thickness of the body layer can be increased.
 但し、ヨウ化セシウム(CsI)または臭化セシウム(CsBr)のみでは発光効率が低いために、各種の賦活剤を添加することが好ましい。 However, since only cesium iodide (CsI) or cesium bromide (CsBr) has low luminous efficiency, it is preferable to add various activators.
 例えば、特公昭54-35060号公報の如く、ヨウ化セシウム(CsI)とヨウ化ナトリウム(NaI)を任意のモル比で混合したものが挙げられる。また、例えば特開2001-59899号公報に開示されているようなCsIを蒸着で、タリウム(Tl)、ユウロピウム(Eu)、インジウム(In)、リチウム(Li)、カリウム(K)、ルビジウム(Rb)、ナトリウム(Na)などの賦活物質を含有するCsIが好ましい。本発明においては、特に、タリウム(Tl)、ユウロピウム(Eu)が好ましい。更に、タリウム(Tl)が好ましい。 For example, as disclosed in JP-B-54-35060, a mixture of cesium iodide (CsI) and sodium iodide (NaI) at an arbitrary molar ratio can be mentioned. Further, for example, CsI as disclosed in Japanese Patent Application Laid-Open No. 2001-59899 is deposited, and thallium (Tl), europium (Eu), indium (In), lithium (Li), potassium (K), rubidium (Rb) ), CsI containing an activating substance such as sodium (Na) is preferred. In the present invention, thallium (Tl) and europium (Eu) are particularly preferable. Furthermore, thallium (Tl) is preferred.
 本発明に係る蛍光体層において、当該添加剤の含有量は目的性能等に応じて、最適量にすることが望ましいが、ヨウ化セシウムの含有量に対して、0.001モル%~50モル%、更に、0.1モル%~10.0モル%であることが好ましい。 In the phosphor layer according to the present invention, it is desirable that the content of the additive is an optimum amount according to the target performance, but 0.001 mol% to 50 mol with respect to the content of cesium iodide. %, And preferably 0.1 mol% to 10.0 mol%.
 ここで、ヨウ化セシウムあるいは臭化セシウムに対し、添加剤が0.001モル%以上であると、ヨウ化セシウムあるいは臭化セシウム単独使用で得られる発光輝度の向上がみられ、目的とする発光輝度を得る点で好ましい。また、50モル%以下であるとヨウ化セシウムあるいは臭化セシウムの性質・機能を保持することができて好ましい。 Here, when the additive is 0.001 mol% or more with respect to cesium iodide or cesium bromide, the emission luminance obtained by using cesium iodide or cesium bromide alone is improved, and the intended light emission is achieved. This is preferable in terms of obtaining luminance. Moreover, it is preferable that it is 50 mol% or less because the properties and functions of cesium iodide or cesium bromide can be maintained.
 なお、蛍光体層の厚さは、100μm~800μmであることが好ましく、120μm~700μmであることが、輝度と鮮鋭性の特性をバランスよく得られる点からより好ましい。 Note that the thickness of the phosphor layer is preferably 100 μm to 800 μm, and more preferably 120 μm to 700 μm from the viewpoint of obtaining a good balance between luminance and sharpness characteristics.
 本発明に係る蛍光体柱状結晶は、気相堆積法により形成することを要する。気相堆積法としては、蒸着法、スパッタリング法、CVD法、イオンプレーティング法その他を用いることができるが、本発明では特に蒸着法が好ましい。 The phosphor columnar crystal according to the present invention needs to be formed by a vapor deposition method. As the vapor deposition method, a vapor deposition method, a sputtering method, a CVD method, an ion plating method, or the like can be used. In the present invention, the vapor deposition method is particularly preferable.
 なお、本発明においては、ハロゲン化セシウム系蛍光体は、下記基本組成式(I)または(II)で表される蛍光体であってもよい。この場合、基本組成式(I)において、Xはヨウ素(I)であり、そしてzは1×10-3≦z≦50の範囲内の数値であることが好ましく、1×10-1≦z≦10の範囲内の数値であることが更に好ましい。 In the present invention, the cesium halide phosphor may be a phosphor represented by the following basic composition formula (I) or (II). In this case, in the basic composition formula (I), X is iodine (I), and z is preferably a numerical value within the range of 1 × 10 −3 ≦ z ≦ 50, and 1 × 10 −1 ≦ z. A numerical value within the range of ≦ 10 is more preferable.
 また、基本組成式(II)において、Xは臭素(Br)であり、そして、zは1×10-5≦z≦1×10-2の範囲内の数値であることが好ましく、1×10-5≦z≦1×10-3の範囲内の数値であることが更に好ましい。
基本組成式(I):CsX・aM・bMIIb2・cMIIIc3:zTl
基本組成式(II):CsX・aM・bMIIb2・cMIIIc3:zEu
 ただし、Mは、Li、Na、K及びRbから選ばれる少なくとも一種のアルカリ金属を表し;MIIは、Be、Mg、Ca、Sr、Ba、Ni、Cu、Zn及びCdから選ばれる少なくとも一種のアルカリ土類金属または二価金属を表し;MIIIは、Sc、Y、La、Ce、Pr、Nd、Pm、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb、Lu、Al、Ga及びInから選ばれる少なくとも一種の希土類元素または三価金属を表し;X、X、X及びXはそれぞれ、F、Cl、Br及びIから選ばれる少なくとも一種のハロゲンを表し;そしてa、b、c及びzは、それぞれ、0≦a<0.5、0≦b<0.5、0≦c<0.5、0<z<1.0の範囲内の数値を表す。
In the basic composition formula (II), X is bromine (Br), and z is preferably a numerical value in the range of 1 × 10 −5 ≦ z ≦ 1 × 10 −2. A numerical value within the range of −5 ≦ z ≦ 1 × 10 −3 is more preferable.
Basic composition formula (I): CsX · aM I X a · bM II X b2 · cM III X c3 : zTl
Basic composition formula (II): CsX · aM I X a · bM II X b2 · cM III X c3 : zEu
Where M I represents at least one alkali metal selected from Li, Na, K and Rb; M II represents at least one selected from Be, Mg, Ca, Sr, Ba, Ni, Cu, Zn and Cd. M III represents Sc, Y, La, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, Represents at least one rare earth element or trivalent metal selected from Al, Ga and In; X, X a , X b and X c each represent at least one halogen selected from F, Cl, Br and I; A, b, c, and z represent numerical values in the ranges of 0 ≦ a <0.5, 0 ≦ b <0.5, 0 ≦ c <0.5, and 0 <z <1.0, respectively. .
 (反射層)
 本発明においては、支持体(基板)上には反射層(「金属反射層」ともいう。)を設けることが好ましい、蛍光体から発した光を反射して、光の取り出し効率を高めるためのものである。当該反射層は、Al、Ag、Cr、Cu、Ni、Ti、Mg、Rh、Pt及びAuからなる元素群の中から選ばれるいずれかの元素を含む材料により形成されることが好ましい。
(Reflective layer)
In the present invention, it is preferable to provide a reflective layer (also referred to as a “metal reflective layer”) on the support (substrate), in order to reflect light emitted from the phosphor and increase the light extraction efficiency. Is. The reflective layer is preferably formed of a material containing any element selected from the element group consisting of Al, Ag, Cr, Cu, Ni, Ti, Mg, Rh, Pt, and Au.
 特に、上記の元素からなる金属薄膜、例えば、Ag膜、Al膜などを用いることが好ましい。また、このような金属薄膜を2層以上形成するようにしても良い。 In particular, it is preferable to use a metal thin film composed of the above elements, for example, an Ag film, an Al film, or the like. Two or more such metal thin films may be formed.
 金属薄膜を2層以上とする場合は、下層を、Crを含む層とすることが基板との接着性を向上させる点から好ましい。また、金属薄膜上にSiO、TiO等の金属酸化物からなる層をこの順に設けて、更に反射率を向上させても良い。 When the metal thin film has two or more layers, the lower layer is preferably a layer containing Cr from the viewpoint of improving the adhesion to the substrate. Further, a layer made of a metal oxide such as SiO 2 or TiO 2 may be provided in this order on the metal thin film to further improve the reflectance.
 なお、反射層の厚さは、0.005μm~0.3μm、より好ましくは0.01μm~0.2μmであることが、発光光取り出し効率の観点から好ましい。 It should be noted that the thickness of the reflective layer is preferably 0.005 μm to 0.3 μm, more preferably 0.01 μm to 0.2 μm from the viewpoint of emission light extraction efficiency.
 本発明に係る反射層の形成方法は既知のいかなる方法でも構わないが、例えば、上記原材料を使用したスパッタ処理が挙げられる。 The formation method of the reflective layer according to the present invention may be any known method, and examples thereof include a sputtering process using the above raw materials.
 (金属保護層)
 本発明に係る放射線画像変換パネルにおいては、上記反射層の上に金属保護層を設けてもよい。
(Metal protective layer)
In the radiation image conversion panel according to the present invention, a metal protective layer may be provided on the reflective layer.
 金属保護層は、溶剤に溶解した樹脂を塗布、乾燥して形成することが好ましい。ガラス転位点が30℃~100℃のポリマーであることが蒸着結晶と支持体(基板)との膜付の点で好ましく、具体的には、ポリウレタン樹脂、塩化ビニル共重合体、塩化ビニル-酢酸ビニル共重合体、塩化ビニル-塩化ビニリデン共重合体、塩化ビニル-アクリロニトリル共重合体、ブタジエン-アクリロニトリル共重合体、ポリアミド樹脂、ポリビニルブチラール、ポリエステル樹脂、セルロース誘導体(ニトロセルロース等)、スチレン-ブタジエン共重合体、各種の合成ゴム系樹脂、フェノール樹脂、エポキシ樹脂、尿素樹脂、メラミン樹脂、フェノキシ樹脂、シリコン樹脂、アクリル系樹脂、尿素ホルムアミド樹脂等が挙げられるが、特にポリエステル樹脂であることが好ましい。 The metal protective layer is preferably formed by applying and drying a resin dissolved in a solvent. A polymer having a glass transition point of 30 ° C. to 100 ° C. is preferable from the viewpoint of forming a film with a deposited crystal and a support (substrate). Specifically, polyurethane resin, vinyl chloride copolymer, vinyl chloride-acetic acid Vinyl copolymer, vinyl chloride-vinylidene chloride copolymer, vinyl chloride-acrylonitrile copolymer, butadiene-acrylonitrile copolymer, polyamide resin, polyvinyl butyral, polyester resin, cellulose derivative (nitrocellulose, etc.), styrene-butadiene copolymer Examples include polymers, various synthetic rubber resins, phenol resins, epoxy resins, urea resins, melamine resins, phenoxy resins, silicon resins, acrylic resins, urea formamide resins, and the like, and polyester resins are particularly preferable.
 金属保護層の膜厚としては接着性の点で0.1μm以上が好ましく、金属保護層表面の平滑性確保の点で3.0μm以下が好ましい。より好ましくは金属保護層の厚さが0.2~2.5μmの範囲である。 The thickness of the metal protective layer is preferably 0.1 μm or more in terms of adhesion, and preferably 3.0 μm or less in terms of ensuring the smoothness of the surface of the metal protective layer. More preferably, the thickness of the metal protective layer is in the range of 0.2 to 2.5 μm.
 金属保護層作製に用いる溶剤としては、メタノール、エタノール、n-プロパノール、n-ブタノールなどの低級アルコール、メチレンクロライド、エチレンクロライドなどの塩素原子含有炭化水素、アセトン、メチルエチルケトン、メチルイソブチルケトンなどのケトン、トルエン、ベンゼン、シクロヘキサン、シクロヘキサノン、キシレンなどの芳香族化合物、酢酸メチル、酢酸エチル、酢酸ブチルなどの低級脂肪酸と低級アルコールとのエステル、ジオキサン、エチレングリコールモノエチルエステル、エチレングリコールモノメチルエステルなどのエーテル、及びそれらの混合物を挙げることができる。 Solvents used for metal protective layer preparation include lower alcohols such as methanol, ethanol, n-propanol and n-butanol, chlorine atom-containing hydrocarbons such as methylene chloride and ethylene chloride, ketones such as acetone, methyl ethyl ketone and methyl isobutyl ketone, Aromatic compounds such as toluene, benzene, cyclohexane, cyclohexanone, xylene, esters of lower fatty acids and lower alcohols such as methyl acetate, ethyl acetate, butyl acetate, ethers such as dioxane, ethylene glycol monoethyl ester, ethylene glycol monomethyl ester, And mixtures thereof.
 (下引層)
 本発明においては、支持体(基板)と蛍光体層の間、または反射層と蛍光体層の間に膜付の観点から、下引き層を設けることが好ましい。当該下引層は、高分子結合材(バインダー)、分散剤等を含有することが好ましい。
(Undercoat layer)
In the present invention, it is preferable to provide an undercoat layer from the viewpoint of attaching a film between the support (substrate) and the phosphor layer or between the reflective layer and the phosphor layer. The undercoat layer preferably contains a polymer binder (binder), a dispersant and the like.
 尚、下引層の厚さは、下引き層内での光散乱を抑制し、鮮鋭性の劣化を防止する観点から、及び、熱処理により柱状結晶性の乱れを防止する観点から、0.5μm~4μmの範囲に調整することが好ましい。 The thickness of the undercoat layer is 0.5 μm from the viewpoint of suppressing light scattering in the undercoat layer and preventing deterioration of sharpness and preventing disorder of columnar crystallinity by heat treatment. It is preferable to adjust to a range of ˜4 μm.
 以下、下引層の構成要素について説明する。 Hereinafter, the components of the undercoat layer will be described.
 〈高分子結合材〉
 本発明に係る下引層は、溶剤に溶解または分散した高分子結合材(以下「バインダー」ともいう。)を塗布、乾燥して形成することが好ましい。高分子結合材としては、具体的には、ポリウレタン、塩化ビニル共重合体、塩化ビニル-酢酸ビニル共重合体、塩化ビニル-塩化ビニリデン共重合体、塩化ビニル-アクリロニトリル共重合体、ブタジエン-アクリロニトリル共重合体、ポリアミド樹脂、ポリビニルブチラール、ポリエステル、セルロース誘導体(ニトロセルロース等)、スチレン-ブタジエン共重合体、各種の合成ゴム系樹脂、フェノール樹脂、エポキシ樹脂、尿素樹脂、メラミン樹脂、フェノキシ樹脂、シリコン樹脂、アクリル系樹脂、尿素ホルムアミド樹脂等が挙げられる。 中でも、ポリウレタン、ポリエステル、塩化ビニル系共重合体、ポリビニルブチラール、ニトロセルロースを使用することが好ましい。
<Polymer binder>
The undercoat layer according to the present invention is preferably formed by applying and drying a polymer binder (hereinafter also referred to as “binder”) dissolved or dispersed in a solvent. Specific examples of the polymer binder include polyurethane, vinyl chloride copolymer, vinyl chloride-vinyl acetate copolymer, vinyl chloride-vinylidene chloride copolymer, vinyl chloride-acrylonitrile copolymer, butadiene-acrylonitrile copolymer. Polymer, polyamide resin, polyvinyl butyral, polyester, cellulose derivative (nitrocellulose, etc.), styrene-butadiene copolymer, various synthetic rubber resins, phenol resin, epoxy resin, urea resin, melamine resin, phenoxy resin, silicone resin , Acrylic resins, urea formamide resins, and the like. Of these, polyurethane, polyester, vinyl chloride copolymer, polyvinyl butyral, and nitrocellulose are preferably used.
 本発明に係る高分子結合材としては、特に蛍光体層との密着の点でポリウレタン、ポリエステル、塩化ビニル系共重合体、ポリビニルブチラール、ニトロセルロースなどが好ましい。また、ガラス転位温度(Tg)が30~100℃のポリマーであることが、蒸着結晶と支持体(基板)との膜付の点で好ましい。この観点からは、特にポリエステル樹脂であることが好ましい。 As the polymer binder according to the present invention, polyurethane, polyester, vinyl chloride copolymer, polyvinyl butyral, nitrocellulose and the like are particularly preferable in terms of adhesion to the phosphor layer. Further, a polymer having a glass transition temperature (Tg) of 30 to 100 ° C. is preferable from the viewpoint of attaching a film between the deposited crystal and the support (substrate). From this viewpoint, a polyester resin is particularly preferable.
 下引層の調製に用いることができる溶剤としては、メタノール、エタノール、n-プロパノール、n-ブタノールなどの低級アルコール、メチレンクロライド、エチレンクロライドなどの塩素原子含有炭化水素、アセトン、メチルエチルケトン、メチルイソブチルケトンなどのケトン、トルエン、ベンゼン、シクロヘキサン、シクロヘキサノン、キシレンなどの芳香族化合物、酢酸メチル、酢酸エチル、酢酸ブチルなどの低級脂肪酸と低級アルコールとのエステル、ジオキサン、エチレングリコールモノエチルエステル、エチレングリコールモノメチルエステルなどのエーテル及びそれらの混合物を挙げることができる。 Solvents that can be used to prepare the undercoat layer include lower alcohols such as methanol, ethanol, n-propanol, and n-butanol, hydrocarbons containing chlorine atoms such as methylene chloride and ethylene chloride, acetone, methyl ethyl ketone, and methyl isobutyl ketone. Such as ketones, toluene, benzene, cyclohexane, cyclohexanone, xylene and other aromatic compounds, methyl acetate, ethyl acetate, butyl acetate and other lower fatty acid and lower alcohol esters, dioxane, ethylene glycol monoethyl ester, ethylene glycol monomethyl ester And ethers thereof and mixtures thereof.
 なお、本発明に係る下引層には、蛍光体が発光する光の散乱の防止し、鮮鋭性等を向上させるために顔料や染料を含有させても良い。 It should be noted that the undercoat layer according to the present invention may contain a pigment or a dye in order to prevent scattering of light emitted from the phosphor and improve sharpness.
 (保護層)
 本発明に係る保護層は、蛍光体層の保護を主眼とするものである。すなわち、ヨウ化セシウム(CsI)あるいは臭化セシウム(CsBr)は、吸湿性が高く露出したままにしておくと空気中の水蒸気を吸湿して潮解してしまうため、これを防止することを主眼とする。
(Protective layer)
The protective layer according to the present invention focuses on protecting the phosphor layer. That is, cesium iodide (CsI) or cesium bromide (CsBr) has high hygroscopicity, and if it is left exposed, it absorbs water vapor in the air and deliquesces. To do.
 当該保護層は、種々の材料を用いて形成することができる。例えば、CVD法によりポリパラキシリレン膜を形成する。即ち、蛍光体及び支持体(基板)の表面全体にポリパラキシリレン膜を形成し、保護層とすることができる。 The protective layer can be formed using various materials. For example, a polyparaxylylene film is formed by a CVD method. That is, a polyparaxylylene film can be formed on the entire surface of the phosphor and the support (substrate) to form a protective layer.
 また、別の態様の保護層として、蛍光体層上に高分子フィルムを設けることもできる。なお、高分子フィルムの材料としては、後述する支持体(基板)材料としての高分子フィルムと同様のフィルムを用いることができる。 Also, as another protective layer, a polymer film can be provided on the phosphor layer. In addition, as a material of the polymer film, a film similar to the polymer film as a support (substrate) material described later can be used.
 上記高分子フィルムの厚さは、空隙部の形成性、蛍光体層の保護性、鮮鋭性、防湿性、作業性等を考慮し、12μm以上、120μm以下が好ましく、更には20μm以上、80μm以下が好ましい。また、ヘイズ率は、鮮鋭性、放射線画像ムラ、製造安定性及び作業性等を考慮し、3%以上、40%以下が好ましく、更には3%以上、10%以下が好ましい。ヘイズ率は、例えば、日本電色工業株式会社NDH5000Wにより測定できる。必要とするヘイズ率は、市販されている高分子フィルムから適宜選択し、容易に入手することが可能である。 The thickness of the polymer film is preferably 12 μm or more and 120 μm or less, more preferably 20 μm or more and 80 μm or less, taking into consideration the formation of voids, the protective properties of the phosphor layer, sharpness, moisture resistance, workability, etc. Is preferred. The haze ratio is preferably 3% or more and 40% or less, more preferably 3% or more and 10% or less in consideration of sharpness, radiation image unevenness, production stability, workability, and the like. The haze ratio can be measured, for example, by Nippon Denshoku Industries Co., Ltd. NDH5000W. The required haze ratio is appropriately selected from commercially available polymer films and can be easily obtained.
 保護フィルムの光透過率は、光電変換効率、蛍光体の発光波長等を考慮し、550nmで70%以上あることが好ましいが、99%以上の光透過率のフィルムは工業的に入手が困難であるため実質的に99%~70%が好ましい。 The light transmittance of the protective film is preferably 70% or more at 550 nm in consideration of the photoelectric conversion efficiency, the emission wavelength of the phosphor, etc., but a film having a light transmittance of 99% or more is difficult to obtain industrially. Therefore, it is preferably substantially 99% to 70%.
 保護フィルムの透湿度は、蛍光体層の保護性、潮解性等を考慮し50g/m・day(40℃・90%RH)(JIS Z0208に準じて測定)以下が好ましく、更には10g/m・day(40℃・90%RH)(JIS Z0208に準じて測定)以下が好ましいが、0.01g/m・day(40℃・90%RH)以下の透湿度のフィルムは工業的に入手が困難であるため実質的に、0.01g/m・day(40℃・90%RH)以上、50g/m・day(40℃・90%RH)(JIS Z0208に準じて測定)以下が好ましく、更には0.1g/m・day(40℃・90%RH)以上、10g/m・day(40℃・90%RH)(JIS Z0208に準じて測定)以下が好ましい。 The moisture permeability of the protective film is preferably 50 g / m 2 · day (40 ° C., 90% RH) (measured according to JIS Z0208) or less, more preferably 10 g / m 2 taking into account the protective properties and deliquescence of the phosphor layer. m 2 · day (40 ° C./90% RH) (measured in accordance with JIS Z0208) or less is preferable, but a film having a moisture permeability of 0.01 g / m 2 · day (40 ° C./90% RH) or less is industrial. Is practically 0.01 g / m 2 · day (40 ° C, 90% RH) or more, 50 g / m 2 · day (40 ° C., 90% RH) (measured according to JIS Z0208) ) Or less, more preferably 0.1 g / m 2 · day (40 ° C./90% RH) or more, 10 g / m 2 · day (40 ° C./90% RH) (measured according to JIS Z0208) or less .
 (支持体:基板)
 本発明において、支持体(「基板」ともいう。)としては、石英ガラスシート、アルミニウム、鉄、スズ、クロムなどからなる金属シート、炭素繊維強化シート、高分子フィルムなどが好ましい。
(Support: substrate)
In the present invention, the support (also referred to as “substrate”) is preferably a quartz glass sheet, a metal sheet made of aluminum, iron, tin, chrome, a carbon fiber reinforced sheet, a polymer film, or the like.
 高分子フィルムとしては、セルロースアセテートフィルム、ポリエステルフィルム、ポリエチレンテレフタレート(PEN)フィルム、ポリアミドフィルム、ポリイミド(PI)フィルム、トリアセテートフィルム、ポリカーボネートフィルム、炭素繊維強化樹脂シート等の高分子フィルム(プラスチックフィルム)を用いることができる。特に、ポリイミドまたはポリエチレンナフタレートを含有する高分子フィルムが、ヨウ化セシウムを原材料として気相法にて蛍光体柱状結晶を形成する場合に、好適である。 Polymer films such as cellulose acetate film, polyester film, polyethylene terephthalate (PEN) film, polyamide film, polyimide (PI) film, triacetate film, polycarbonate film, carbon fiber reinforced resin sheet, etc. Can be used. In particular, a polymer film containing polyimide or polyethylene naphthalate is suitable for forming phosphor columnar crystals by a vapor phase method using cesium iodide as a raw material.
 なお、本発明に係る支持体(基板)としての高分子フィルムは、厚さ30μm~500μmであること、更に可とう性を有する高分子フィルムであることが好ましい。 The polymer film as the support (substrate) according to the present invention is preferably a polymer film having a thickness of 30 μm to 500 μm and further having flexibility.
 ここで、「可とう性を有する支持体(基板)」とは、120℃での弾性率(E120)が1000N/mm~6000N/mmである支持体(基板)をいい、かかる支持体(基板)としてポリイミドまたはポリエチレンナフタレートを含有する高分子フィルムが好ましい。 Here, the "flexible support (substrate) having" means elastic modulus at 120 ° C. (E120) the support is 1000N / mm 2 ~ 6000N / mm 2 (substrate), such supports As the (substrate), a polymer film containing polyimide or polyethylene naphthalate is preferable.
 なお、「弾性率」とは、引張試験機を用い、JIS C 2318に準拠したサンプルの標線が示すひずみと、それに対応する応力が直線的な関係を示す領域において、ひずみ量に対する応力の傾きを求めたものである。これがヤング率と呼ばれる値であり、本発明では、かかるヤング率を弾性率と定義する。 Note that the “elastic modulus” refers to the slope of the stress relative to the strain amount in a region where the strain indicated by the standard line of the sample conforming to JIS C 2318 and the corresponding stress have a linear relationship using a tensile tester. Is what we asked for. This is a value called Young's modulus, and in the present invention, this Young's modulus is defined as an elastic modulus.
 本発明に用いられる支持体(基板)は、上記のように120℃での弾性率(E120)が1000N/mm~6000N/mmであることが好ましい。より好ましくは1200N/mm~5000N/mmである。 Support for use in the present invention (substrate) is preferably an elastic modulus at the 120 ° C. as described above (E120) is 1000N / mm 2 ~ 6000N / mm 2. More preferably, it is 1200 N / mm 2 to 5000 N / mm 2 .
 具体的には、ポリエチレンナフタレート(E120=4100N/mm)、ポリエチレンテレフタレート(E120=1500N/mm)、ポリブチレンナフタレート(E120=1600N/mm)、ポリカーボネート(E120=1700N/mm)、シンジオタクチックポリスチレン(E120=2200N/mm)、ポリエーテルイミド(E120=1900N/mm)、ポリアリレート(E120=1700N/mm)、ポリスルホン(E120=1800N/mm)、ポリエーテルスルホン(E120=1700N/mm)等からなる高分子フィルムが挙げられる。 Specifically, polyethylene naphthalate (E120 = 4100N / mm 2) , polyethylene terephthalate (E120 = 1500N / mm 2) , polybutylene naphthalate (E120 = 1600N / mm 2) , polycarbonate (E120 = 1700N / mm 2) , Syndiotactic polystyrene (E120 = 2200 N / mm 2 ), polyetherimide (E120 = 1900 N / mm 2 ), polyarylate (E120 = 1700 N / mm 2 ), polysulfone (E120 = 1800 N / mm 2 ), polyethersulfone Examples thereof include a polymer film made of (E120 = 1700 N / mm 2 ).
 これらは単独で用いてもよく積層あるいは混合して用いてもよい。中でも、特に好ましい高分子フィルムとしては、上述のように、ポリイミドまたはポリエチレンナフタレートを含有する高分子フィルムが好ましい。 These may be used singly or may be laminated or mixed. Among them, as a particularly preferable polymer film, a polymer film containing polyimide or polyethylene naphthalate is preferable as described above.
 なお、シンチレータパネルと平面受光素子面を貼り合せる際に、支持体(基板)の変形や蒸着時の反りなどの影響を受け、フラットパネルディテクタの受光面内で均一な画質特性が得られないという点に関して、当該支持体(基板)を、厚さ30μm~500μmの高分子フィルムとすることでシンチレータパネルが平面受光素子面形状に合った形状に変形し、フラットパネルディテクタの受光面全体で均一な鮮鋭性が得られる。 Note that when bonding the scintillator panel and the planar light receiving element surface, uniform image quality characteristics cannot be obtained within the light receiving surface of the flat panel detector due to the influence of deformation of the support (substrate) or warpage during vapor deposition. Regarding the point, the support (substrate) is a polymer film having a thickness of 30 μm to 500 μm, so that the scintillator panel is deformed into a shape that matches the shape of the planar light receiving element surface, and is uniform over the entire light receiving surface of the flat panel detector Sharpness is obtained.
 また、支持体は、その表面を平滑な面とするために樹脂層を有していてもよい。樹脂層は、ポリイミド、ポリエチレンフタレート、パラフィン、グラファイトなどの化合物を含有することが好ましく、その膜厚は、約5μm~50μmであることが好ましい。この樹脂層は、支持体の表面に設けてもよく、裏面に設けてもよい。 Further, the support may have a resin layer in order to make the surface smooth. The resin layer preferably contains a compound such as polyimide, polyethylene phthalate, paraffin, graphite, and the film thickness is preferably about 5 μm to 50 μm. This resin layer may be provided on the surface of the support or on the back surface.
 また、支持体の表面に接着層を設ける手段としては、貼合法、塗設法などの手段がある。このうち貼合法は加熱、加圧ローラを用いて行い、加熱条件は約80℃~150℃、加圧条件は4.90×10N/cm~2.94×10N/cm、搬送速度は0.1m/秒~2.0m/秒が好ましい。 Moreover, means for providing an adhesive layer on the surface of the support include means such as a bonding method and a coating method. Of these, the bonding method is performed using heating and a pressure roller. The heating conditions are about 80 ° C. to 150 ° C., the pressing conditions are 4.90 × 10 N / cm to 2.94 × 10 2 N / cm, and the conveyance speed is 0.1 m / second to 2.0 m / second is preferable.
 (放射線画像変換パネルの製造方法)
 本発明に係る放射線画像変換パネルの製造方法について、抵抗加熱方式による蒸着の場合を例にとって詳細に述べる。抵抗加熱方式は、中程度の真空度で蒸着を行うことができ、柱状結晶の良好な蒸着膜を比較的容易に得られる利点がある。
(Method for manufacturing radiation image conversion panel)
The manufacturing method of the radiation image conversion panel according to the present invention will be described in detail taking the case of vapor deposition by a resistance heating method as an example. The resistance heating method has an advantage that vapor deposition can be performed at a moderate degree of vacuum, and a vapor deposition film having a good columnar crystal can be obtained relatively easily.
 多元蒸着(共蒸着)により蛍光体層(蒸着膜)を形成する場合には、まず蒸発源として、前記蛍光体の母体ハロゲン化セシウム(CsX)成分を含むものと賦活剤(EuまたはTl)成分を含むものからなる少なくとも二個の蒸発源を用意する。多元蒸着は、蛍光体の母体成分と賦活剤成分の蒸気圧が大きく異なる場合に、その蒸発速度を各々制御することができるので好ましい。各蒸発源は、所望とする蛍光体の組成に応じて、CsX成分および賦活剤(Eu、Tl)成分それぞれのみから構成されていてもよいし、添加物成分などとの混合物であってもよい。また、蒸発源は二個に限定されるものではなく、例えば別に添加物成分などからなる蒸発源を加えて三個以上としてもよい。 In the case of forming a phosphor layer (deposition film) by multi-source deposition (co-evaporation), first, as an evaporation source, the phosphor containing the host cesium halide (CsX) component and the activator (Eu or Tl) component Prepare at least two evaporation sources comprising Multi-source deposition is preferable because the evaporation rate can be controlled when the vapor pressures of the matrix component and the activator component of the phosphor are greatly different. Each evaporation source may be composed of only a CsX component and an activator (Eu, Tl) component, or may be a mixture with additive components, depending on the desired phosphor composition. . Further, the number of evaporation sources is not limited to two, and for example, three or more evaporation sources may be added by separately adding evaporation sources composed of additive components.
 蛍光体の母体CsX成分は、CsX化合物それ自体であってもよいし、あるいは反応してCsXとなりうる二以上の原料の混合物であってもよい。 The matrix CsX component of the phosphor may be the CsX compound itself, or may be a mixture of two or more raw materials that can react to form CsX.
 また、賦活剤Eu成分は、一般にはEuを含む化合物であり、例えばEuのハロゲン化物や酸化物が用いられる。 Further, the activator Eu component is generally a compound containing Eu, and for example, Eu halides and oxides are used.
 Eu化合物中におけるEu2+化合物のモル比は70%以上であることが好ましい。一般に、Eu化合物にはEu2+とEu3+が混合して含まれているが、所望とする輝尽発光(あるいは瞬時発光であっても)はEu2+を賦活剤とする蛍光体から発せられるからである。Eu化合物はEuOBrであることが好ましい。 The molar ratio of Eu 2+ compound in the Eu compound is preferably 70% or more. In general, Eu compounds contain Eu 2+ and Eu 3+ in a mixture, but the desired stimulating luminescence (or even instantaneous light emission) is emitted from a phosphor using Eu 2+ as an activator. It is. The Eu compound is preferably EuOBr.
 Tl化合物はヨウ化タリウム(TlI)であることが好ましい。 The Tl compound is preferably thallium iodide (TlI).
 蒸発源は、その含水量が0.5質量%以下であることが好ましい。蒸発源となるCsX成分や賦活剤成分が、吸湿性である場合には特に、含水量をこのような低い値に抑えることは突沸防止などの点から重要である。蒸発源の脱水は、上記の各蛍光体成分を減圧下で100℃~300℃の温度範囲で加熱処理することにより行うことが好ましい。あるいは、各蛍光体成分を窒素ガス雰囲気などの水分を含まない雰囲気中で、当該成分の融点以上の温度で数十分乃至数時間加熱溶融してもよい。 The evaporation source preferably has a water content of 0.5% by mass or less. In particular, when the CsX component and the activator component serving as the evaporation source are hygroscopic, it is important from the viewpoint of preventing bumping to suppress the water content to such a low value. The evaporation source is preferably dehydrated by subjecting each of the phosphor components to a heat treatment in a temperature range of 100 ° C. to 300 ° C. under reduced pressure. Alternatively, each phosphor component may be heated and melted in an atmosphere containing no moisture such as a nitrogen gas atmosphere at a temperature equal to or higher than the melting point of the component for several tens of minutes to several hours.
 更に、本発明において、蒸発源、特にCsX成分を含む蒸発源は、アルカリ金属不純物(蛍光体の構成元素以外アルカリ金属)の含有量が10ppm以下であり、そしてアルカリ土類金属不純物(蛍光体の構成元素以外のアルカリ土類金属)の含有量が5ppm(質量)以下であることが望ましい。 Further, in the present invention, the evaporation source, particularly the evaporation source containing the CsX component, has an alkali metal impurity (alkali metal other than the constituent elements of the phosphor) of 10 ppm or less, and an alkaline earth metal impurity (phosphor of the phosphor). The content of (alkaline earth metal other than constituent elements) is desirably 5 ppm (mass) or less.
 このような蒸発源は、アルカリ金属やアルカリ土類金属など不純物の含有量の少ない原料を使用することにより調製することができる。 Such an evaporation source can be prepared by using a raw material with a low impurity content such as alkali metal or alkaline earth metal.
 複数の蒸発源及び支持体を蒸着装置内に配置し、装置内を排気して0.05Pa~10Pa程度の中真空度とする。好ましくは0.05Pa~3Paの真空度にする。あるいは、装置内を排気して1×10-5Pa~1×10-2Pa程度の高真空度とした後、Arガス、Neガス、Nガスなどの不活性ガスを導入して上記中真空度にする。 A plurality of evaporation sources and a support are arranged in a vapor deposition apparatus, and the inside of the apparatus is evacuated to a medium vacuum degree of about 0.05 Pa to 10 Pa. The degree of vacuum is preferably 0.05 Pa to 3 Pa. Alternatively, the inside of the apparatus is evacuated to a high vacuum level of about 1 × 10 −5 Pa to 1 × 10 −2 Pa, and then an inert gas such as Ar gas, Ne gas, or N 2 gas is introduced to Apply vacuum.
 これにより、装置内の水分圧や酸素分圧等を下げることができる。排気装置としては、ロータリーポンプ、ターボ分子ポンプ、クライオポンプ、ディフュージョンポンプ、メカニカルブースタ等を、適宜組み合わせて用いることができる。 This makes it possible to reduce the water pressure, oxygen partial pressure, etc. in the apparatus. As the exhaust device, a rotary pump, a turbo molecular pump, a cryopump, a diffusion pump, a mechanical booster, or the like can be used in appropriate combination.
 本発明において、真空度を少なくとも1回変更して蒸着を行うことが好ましい。好ましくは、核生成部を含む成長初期の真空度を、成長後半の真空度よりも低くして蒸着を行う。 In the present invention, it is preferable to perform the deposition by changing the degree of vacuum at least once. Preferably, vapor deposition is performed by setting the vacuum degree in the initial stage of growth including the nucleation part lower than the vacuum degree in the latter half of the growth period.
 次に、各抵抗加熱器に電流を流すことにより蒸発源を加熱する。蒸発源であるCsX成分や賦活剤成分等は加熱されて蒸発、飛散し、そして反応を生じて蛍光体を形成するとともに支持体表面に堆積する。 Next, the evaporation source is heated by passing an electric current through each resistance heater. The CsX component, the activator component, and the like, which are evaporation sources, are heated to evaporate and scatter, and cause a reaction to form a phosphor and deposit on the support surface.
 支持体の温度は、一般に20℃~350℃の範囲にあり、好ましくは25℃~250℃の範囲にあることが更に好ましい。 The temperature of the support is generally in the range of 20 ° C to 350 ° C, more preferably in the range of 25 ° C to 250 ° C.
 本発明において、支持体温度を少なくとも1回変更して蒸着を行うことが好ましい。好ましくは、核生成部を含む成長初期の支持体温度を、成長後半の支持体温度よりも低くして蒸着を行う。 In the present invention, it is preferable to perform the deposition by changing the support temperature at least once. Preferably, the deposition is performed by setting the support temperature in the initial stage of growth including the nucleation part lower than the support temperature in the latter half of the growth.
 一般に、中真空下の蒸着では、加熱によって蒸発源から蒸発した成分粒子の平均自由工程が短く、蒸発源と支持体との距離を小さくしないと蒸発成分粒子が支持体に達しない。 Generally, in vapor deposition under medium vacuum, the mean free path of the component particles evaporated from the evaporation source by heating is short, and the evaporation component particles do not reach the support unless the distance between the evaporation source and the support is reduced.
 しかしながら、蒸発源と支持体との距離が小さいと、支持体が加熱した蒸発源からの輻射の影響を受け易く支持体温度が上昇する傾向にある。そして、蒸着質量速度が2mg/cm・分を越えると、特に薄い樹脂基板の場合は基板の温度上昇が大きく、発光量に関して最適な基板温度から大きく外れてしまい、よって発光量の減少を引き起こすことが分かった。同時に、支持体上に成長した蛍光体の柱と柱が融着して独立柱状結晶が得られ難いことも分かった。その結果、感度および鮮鋭度の低下した蛍光体層が得られることになる。 However, when the distance between the evaporation source and the support is small, the support temperature tends to increase due to the influence of radiation from the evaporation source heated by the support. When the deposition mass rate exceeds 2 mg / cm 2 · min, particularly in the case of a thin resin substrate, the temperature rise of the substrate is large, and the light emission amount deviates greatly from the optimum substrate temperature, thereby causing a decrease in light emission amount. I understood that. At the same time, it was also found that the pillars of the phosphors grown on the support were fused and it was difficult to obtain independent columnar crystals. As a result, a phosphor layer with reduced sensitivity and sharpness can be obtained.
 一方、蒸着質量速度が0.01mg/cm・分より遅いと、蒸発成分粒子が不活性ガスなど蒸着装置内の気体に衝突する頻度が高くなり、良好な柱状結晶が得られないことが分かった。その結果、得られた蛍光体層はX線吸収量が減少し、蛍光体層深部からの発光光が取り出しにくくなるために発光量が減少する。よって、同様に感度の低下および鮮鋭度の低下をもたらすことになる。 On the other hand, when the vapor deposition mass rate is slower than 0.01 mg / cm 2 · min, it is found that the vaporized component particles collide with the gas in the vapor deposition apparatus such as an inert gas, and a good columnar crystal cannot be obtained. It was. As a result, the obtained phosphor layer has a reduced amount of X-ray absorption, and it becomes difficult to extract emitted light from the deep part of the phosphor layer, so that the amount of emitted light is reduced. Therefore, the sensitivity and sharpness are similarly reduced.
 本発明において、蛍光体の堆積する速度、即ち、蒸着質量速度は、独立柱状結晶性および発光量の点から、0.01mg/cm・分~2.0mg/cm・分の範囲にあることが好ましく、更に好ましくは、0.03mg/cm・分~2.0mg/cm・分の範囲である。 In the present invention, the rate of deposition of the phosphor, i.e., the deposition mass rate, in terms of independent columnar crystalline and emission amount, in the range of 0.01 mg / cm 2 · min ~ 2.0mg / cm 2 · min More preferably, it is in the range of 0.03 mg / cm 2 · min to 2.0 mg / cm 2 · min.
 本発明において蛍光体の堆積する速度、すなわち蒸着質量速度は、少なくとも1回変更して、蒸着を行うことが好ましい。好ましくは、核生成部を含む成長初期の蒸着質量速度を、成長後半の蒸着質量速度よりも低くして蒸着を行う。 In the present invention, the deposition rate of the phosphor, that is, the deposition mass rate is preferably changed at least once to perform the deposition. Preferably, vapor deposition is performed by setting the vapor deposition mass rate in the initial stage of growth including the nucleation part lower than the vapor deposition mass rate in the latter half of the growth.
 各蒸発源の蒸着速度は、加熱器の抵抗電流やルツボの開口面積などを調整することにより制御することができる。 The vapor deposition rate of each evaporation source can be controlled by adjusting the resistance current of the heater and the opening area of the crucible.
 各蒸発源と支持体との距離(垂直方向の距離)は、支持体のサイズ等によっても異なるが、50mm~500mmの範囲にあることが好ましい。また、各蒸発源間の距離は50mm~100mmの範囲にあることが好ましい。 The distance (vertical distance) between each evaporation source and the support varies depending on the size of the support, but is preferably in the range of 50 mm to 500 mm. The distance between the evaporation sources is preferably in the range of 50 mm to 100 mm.
 なお、抵抗加熱器による加熱を複数回に分けて行って二層以上の蛍光体層を形成することもできる。蒸着終了後に蒸着膜を熱処理(アニール処理)してもよい。 It should be noted that two or more phosphor layers can be formed by performing heating with a resistance heater in a plurality of times. The deposited film may be heat-treated (annealed) after the deposition.
 前記蛍光体からなる蛍光体層を形成するに先立って、蛍光体母体化合物(CsX)のみからなる蛍光体層(蒸着膜)を形成してもよい。このCsX蛍光体層(蒸着膜)は、一般に柱状結晶構造または球状結晶の凝集体からなり、この上に形成される蛍光体層(蒸着膜)の柱状結晶性をより一層良好にすることができる。更に、CsX蒸着膜の相対密度が80%~98%の範囲にある場合には、応力緩和層としても機能して支持体と蛍光体層との接着性を高めることができる。なお、蒸着時の支持体加熱及び/または蒸着後の熱処理によっては、蛍光体層(蒸着膜)中の賦活剤など添加物が、CsX蛍光体層(蒸着膜)中に拡散するために両者の境界は必ずしも明確ではない。 Prior to forming the phosphor layer made of the phosphor, a phosphor layer (deposition film) made only of the phosphor matrix compound (CsX) may be formed. This CsX phosphor layer (deposition film) is generally composed of a columnar crystal structure or an aggregate of spherical crystals, and the columnar crystallinity of the phosphor layer (deposition film) formed thereon can be further improved. . Furthermore, when the relative density of the CsX vapor deposition film is in the range of 80% to 98%, it can also function as a stress relaxation layer and enhance the adhesion between the support and the phosphor layer. Depending on the heating of the support during vapor deposition and / or heat treatment after vapor deposition, additives such as an activator in the phosphor layer (deposition film) diffuse into the CsX phosphor layer (deposition film). The boundaries are not always clear.
 一元蒸着の場合には、蒸発源として蛍光体自体または蛍光体原料混合物を用いてこれを単一の抵抗加熱器で加熱する。蒸発源は予め、所望の濃度の賦活剤を含有するように調製する。もしくは、CsX成分とTlまたはEu成分との蒸気圧差を考慮して、蒸発源にCsX成分を補給しながら蒸着を行うことも可能である。 In the case of single deposition, the phosphor itself or the phosphor raw material mixture is used as an evaporation source and heated with a single resistance heater. The evaporation source is prepared in advance to contain a desired concentration of activator. Alternatively, the vapor deposition can be performed while supplying the CsX component to the evaporation source in consideration of the vapor pressure difference between the CsX component and the Tl or Eu component.
 このように蒸着を行うことにより、蛍光体の柱状結晶がほぼ厚さ方向に成長した蛍光体層が得られる。蛍光体層は、結合剤を含有せず、蛍光体のみからなり、蛍光体の柱状結晶と柱状結晶の間には空隙が存在する。蛍光体層の層厚は、目的とする放射線画像変換パネルの特性、蒸着法の実施手段や条件などによっても異なるが、通常は50μm~1mmの範囲にあり、好ましくは200μm~700μmの範囲にある。 By performing vapor deposition in this way, a phosphor layer in which the columnar crystals of the phosphor are grown in the thickness direction can be obtained. The phosphor layer does not contain a binder and is composed only of the phosphor, and there are voids between the columnar crystals of the phosphor. The thickness of the phosphor layer varies depending on the characteristics of the intended radiation image conversion panel, the means and conditions of the vapor deposition method, but is usually in the range of 50 μm to 1 mm, preferably in the range of 200 μm to 700 μm. .
 なお、本発明に用いられる蒸着法は、上記の抵抗加熱方式に限定されるものではなく、中真空下で行う限り他の任意の蒸着法であってもよい。 The vapor deposition method used in the present invention is not limited to the resistance heating method described above, and any other vapor deposition method may be used as long as it is performed under a medium vacuum.
 支持体は必ずしも放射線画像変換パネルの支持体を兼ねる必要はなく、蛍光体層形成後、蛍光体層を基板から引き剥がし、別に用意した支持体上に接着剤を用いるなどして接合して、支持体上に蛍光体層を設ける方法を利用してもよい。あるいは、蛍光体層に支持体(基板)が付設されていなくてもよい。 The support does not necessarily have to serve also as a support for the radiation image conversion panel.After forming the phosphor layer, the phosphor layer is peeled off from the substrate and bonded to the support prepared separately by using an adhesive, A method of providing a phosphor layer on a support may be used. Alternatively, the support (substrate) may not be attached to the phosphor layer.
 本発明に係る放射線画像変換パネルの製造方法は、真空容器内に蒸発源及び支持体回転機構を有する蒸着装置を用いて、支持体を前記支持体回転機構に設置して、当該支持体を回転しながら蛍光体材料を蒸着する工程を含む気相堆積法により、蛍光体層を形成する態様の製造方法であることが好ましい。 The method for manufacturing a radiation image conversion panel according to the present invention uses a vapor deposition apparatus having an evaporation source and a support rotation mechanism in a vacuum vessel, and installs the support on the support rotation mechanism and rotates the support. However, it is preferable that the phosphor layer is formed by a vapor deposition method including a step of vapor-depositing the phosphor material.
 以下、本発明の実施形態について、図1を参照しながら説明する。 Hereinafter, an embodiment of the present invention will be described with reference to FIG.
 〈放射線画像変換パネルの製造装置〉
 図1は、本発明に係る放射線画像変換パネルの製造装置1の概略構成図である。図1に示すように、放射線画像変換パネルの製造装置1は真空容器2を備えており、真空容器2には真空容器2の内部の排気及び大気の導入を行う真空ポンプ3が備えられている。
<Radiological image conversion panel manufacturing equipment>
FIG. 1 is a schematic configuration diagram of a radiographic image conversion panel manufacturing apparatus 1 according to the present invention. As shown in FIG. 1, the radiation image conversion panel manufacturing apparatus 1 includes a vacuum container 2, and the vacuum container 2 includes a vacuum pump 3 that evacuates the inside of the vacuum container 2 and introduces the atmosphere. .
 真空容器2の内部の上面付近には、支持体4を保持する支持体ホルダ5が設けられている。 A support holder 5 that holds the support 4 is provided near the upper surface inside the vacuum vessel 2.
 支持体4の表面には、蛍光体層が気相堆積法によって形成される。気相堆積法としては、蒸着法、スパッタリング法、CVD法、イオンプレーティング法その他を用いることができるが、本発明では特に蒸着法が好ましい。 A phosphor layer is formed on the surface of the support 4 by a vapor deposition method. As the vapor deposition method, a vapor deposition method, a sputtering method, a CVD method, an ion plating method, or the like can be used. In the present invention, the vapor deposition method is particularly preferable.
 支持体ホルダ5は、支持体4のうち前記蛍光体層を形成する面が真空容器2の底面に対向し、かつ、真空容器2の底面と平行となるように支持体4を保持する構成となっている。 The support holder 5 is configured to hold the support 4 so that the surface of the support 4 on which the phosphor layer is formed faces the bottom surface of the vacuum vessel 2 and is parallel to the bottom surface of the vacuum vessel 2. It has become.
 また、支持体ホルダ5には、支持体4を加熱する加熱ヒータ(図示せず)を備えることが好ましい。この加熱ヒータで支持体4を加熱することによって、支持体4の支持体ホルダ5に対する密着性の強化や、前記蛍光体層の膜質調整を行う。また、支持体4の表面の吸着物を離脱・除去し、支持体4の表面と前記蛍光体との間に不純物層が発生することを防止する。 The support holder 5 is preferably provided with a heater (not shown) for heating the support 4. By heating the support 4 with this heater, the adhesion of the support 4 to the support holder 5 is enhanced and the film quality of the phosphor layer is adjusted. Further, the adsorbate on the surface of the support 4 is removed and removed, and an impurity layer is prevented from being generated between the surface of the support 4 and the phosphor.
 また、加熱手段として温媒または熱媒を循環させるための機構(図示せず)を有していてもよい。この手段は蛍光体の蒸着時における支持体4の温度を50~150℃といった比較的低温に保持して蒸着する場合に適している。 Also, a heating medium or a mechanism (not shown) for circulating the heating medium may be provided as heating means. This means is suitable for the case where vapor deposition is performed while maintaining the temperature of the support 4 at a relatively low temperature of 50 to 150 ° C. during the vapor deposition of the phosphor.
 また、加熱手段としてハロゲンランプ(図示せず)を有していてもよい。この手段は蛍光体の蒸着時における支持体4の温度を150℃以上といった比較的高温に保持して蒸着する場合に適している。 Further, a halogen lamp (not shown) may be provided as a heating means. This means is suitable for the case where vapor deposition is performed while maintaining the temperature of the support 4 at a relatively high temperature such as 150 ° C. or higher during the vapor deposition of the phosphor.
 更に、支持体ホルダ5には、支持体4を水平方向に回転させる支持体回転機構6が設けられている。支持体回転機構6は、支持体ホルダ5を支持すると共に支持体4を回転させる支持体回転軸7及び真空容器2の外部に配置されて支持体回転軸7の駆動源となるモータ(図示せず)から構成されている。 Furthermore, the support holder 5 is provided with a support rotating mechanism 6 that rotates the support 4 in the horizontal direction. The support rotating mechanism 6 supports the support holder 5 and rotates the support 4 and a motor (not shown) that is disposed outside the vacuum vessel 2 and serves as a drive source for the support rotating shaft 7. Z).
 また、真空容器2の内部の底面付近には、支持体4に垂直な中心線を中心とした円の円周上の互いに向かい合う位置に蒸発源8a、8bが配置されている。この場合において、支持体4と蒸発源8a、8bとの間隔は100~1500mmとされるのが好ましく、より好ましくは200~1000mmである。また、支持体4に垂直な中心線と蒸発源8a、8bとの間隔は100~1500mmとされるのが好ましく、より好ましくは200~1000mmである。 Further, near the bottom surface inside the vacuum vessel 2, evaporation sources 8 a and 8 b are arranged at positions facing each other on the circumference of a circle centering on a center line perpendicular to the support 4. In this case, the distance between the support 4 and the evaporation sources 8a and 8b is preferably 100 to 1500 mm, more preferably 200 to 1000 mm. In addition, the distance between the center line perpendicular to the support 4 and the evaporation sources 8a and 8b is preferably 100 to 1500 mm, more preferably 200 to 1000 mm.
 なお、本発明に係る放射線画像変換パネル製造装置においては3個以上の多数の蒸発源を設けることも可能であり、各々の蒸発源は等間隔に配置してもよく、間隔を変えて配置してもよい。また、支持体4に垂直な中心線を中心とした円の半径は任意に定めることができる。 In the radiation image conversion panel manufacturing apparatus according to the present invention, it is possible to provide a large number of three or more evaporation sources, and the respective evaporation sources may be arranged at equal intervals or at different intervals. May be. Further, the radius of a circle centered on the center line perpendicular to the support 4 can be arbitrarily determined.
 蒸発源8a、8bは、前記蛍光体を収容して抵抗加熱法で加熱するため、ヒータを巻いたアルミナ製のるつぼから構成しても良いし、ボートや、高融点金属からなるヒータから構成しても良い。また、前記蛍光体を加熱する方法は、抵抗加熱法以外に電子ビームによる加熱や、高周波誘導による加熱等の方法でも良いが、本発明では比較的簡単な構成で取り扱いが容易、安価、かつ、非常に多くの物質に適用可能である点から直接電流を流し抵抗加熱する方法や、周りのヒーターでるつぼを間接的に抵抗加熱する方法が好ましい。また、蒸発源8a、8bは分子源エピタキシャル法による分子線源でも良い。 The evaporation sources 8a and 8b contain the phosphor and heat it by a resistance heating method. Therefore, the evaporation sources 8a and 8b may be composed of an alumina crucible wound with a heater, or a boat or a heater made of a refractory metal. May be. Further, the method of heating the phosphor may be a method such as heating by an electron beam or heating by high frequency induction other than the resistance heating method, but in the present invention, it is relatively easy to handle, inexpensive, and In view of the fact that it can be applied to a large number of substances, a method in which a direct current is passed and resistance heating is performed, and a method in which a crucible is indirectly resistance heated with a surrounding heater is preferable. The evaporation sources 8a and 8b may be molecular beam sources by a molecular source epitaxial method.
 また、蒸発源8a、8bと支持体4との間には、蒸発源8a、8bから支持体4に至る空間を遮断するシャッタ9が水平方向に開閉自在に設けられており、このシャッタ9によって、蒸発源8a、8bにおいて前記蛍光体の表面に付着した目的物以外の物質が蒸着の初期段階で蒸発し、支持体4に付着するのを防ぐことができるようになっている。 Further, a shutter 9 that blocks a space from the evaporation sources 8a and 8b to the support 4 is provided between the evaporation sources 8a and 8b and the support 4 so as to be openable and closable in the horizontal direction. In the evaporation sources 8a and 8b, substances other than the target substance attached to the surface of the phosphor can be prevented from evaporating at the initial stage of vapor deposition and adhering to the support 4.
 〈放射線画像変換パネルの製造方法〉
 次に、上述のシンチレータパネル製造装置1を用いた本発明に係る放射線画像変換パネルの製造方法について説明する。
<Manufacturing method of radiation image conversion panel>
Next, the manufacturing method of the radiographic image conversion panel which concerns on this invention using the above-mentioned scintillator panel manufacturing apparatus 1 is demonstrated.
 まず、支持体ホルダ5に支持体4を取付ける。また、真空容器2の底面付近において、支持体4に垂直な中心線を中心とした円の円周上に蒸発源8a、8bを配置する。この場合において、支持体4と蒸発源8a、8bとの間隔は100~1500mmとされるのが好ましく、より好ましくは200~1000mmである。また、支持体4に垂直な中心線と蒸発源8a、8bとの間隔は100~1500mmとされるのが好ましく、より好ましくは200~1000mmである。 First, the support 4 is attached to the support holder 5. Further, in the vicinity of the bottom surface of the vacuum vessel 2, evaporation sources 8 a and 8 b are arranged on the circumference of a circle centered on a center line perpendicular to the support 4. In this case, the distance between the support 4 and the evaporation sources 8a and 8b is preferably 100 to 1500 mm, more preferably 200 to 1000 mm. In addition, the distance between the center line perpendicular to the support 4 and the evaporation sources 8a and 8b is preferably 100 to 1500 mm, more preferably 200 to 1000 mm.
 次いで、真空容器2の内部を真空排気し、所望の真空度に調整する。その後、支持体回転機構6により支持体ホルダ5を蒸発源8a、8bに対して回転させ、蒸着可能な真空度に真空容器2が達したら、加熱した蒸発源8a、8bから前記蛍光体を蒸発させて、支持体4の表面に前記蛍光体を所望の厚さに成長させる。 Next, the inside of the vacuum vessel 2 is evacuated and adjusted to a desired degree of vacuum. Thereafter, the support holder 5 is rotated with respect to the evaporation sources 8a and 8b by the support rotation mechanism 6, and when the vacuum container 2 reaches a vacuum degree capable of vapor deposition, the phosphor is evaporated from the heated evaporation sources 8a and 8b. The phosphor is grown on the surface of the support 4 to a desired thickness.
 なお、支持体4の表面に前記蛍光体を成長させる工程を複数回に分けて行って前記蛍光体層を形成することも可能である。 Note that the phosphor layer can be formed by performing the process of growing the phosphor on the surface of the support 4 in a plurality of times.
 また、蒸着法においては、蒸着時、必要に応じて、被蒸着体(支持体4、保護層または中間層)を冷却あるいは加熱しても良い。 In the vapor deposition method, the vapor deposition target (support 4, protective layer, or intermediate layer) may be cooled or heated as necessary during vapor deposition.
 更に、蒸着終了後、前記蛍光体層を加熱処理しても良い。また、蒸着法においては必要に応じてO、Hなどのガスを導入して蒸着する反応性蒸着を行っても良い。 Further, after the vapor deposition, the phosphor layer may be heat-treated. In the vapor deposition method, reactive vapor deposition may be performed in which vapor deposition is performed by introducing a gas such as O 2 or H 2 as necessary.
 形成する前記蛍光体層の膜厚は、放射線画像変換パネルの使用目的により、また前記蛍光体の種類により異なるが、本発明の効果を得る観点から50μm~2000μmであり、好ましくは50μm~1000μmであり、更に好ましくは100μm~800μmである。 The thickness of the phosphor layer to be formed is 50 μm to 2000 μm, preferably 50 μm to 1000 μm from the viewpoint of obtaining the effects of the present invention, although it varies depending on the purpose of use of the radiation image conversion panel and the type of the phosphor. More preferably, it is 100 μm to 800 μm.
 また、前記蛍光体層が形成される支持体4の温度は、室温(rt)~300℃に設定することが好ましく、更に好ましくは50℃~250℃である。 The temperature of the support 4 on which the phosphor layer is formed is preferably set to room temperature (rt) to 300 ° C., more preferably 50 ° C. to 250 ° C.
 以上のようにして前記蛍光体層を形成した後、必要に応じて、前記蛍光体層の支持体4とは反対の側の面に、物理的にあるいは化学的に前記蛍光体層を保護するための保護層を設けてもよい。保護層は、保護層用の塗布液を前記蛍光体層の表面に直接塗布して形成してもよく、また、予め別途形成した保護層を前記蛍光体層に接着してもよい。これらの保護層の層厚は0.1μm~2000μmが好ましい。 After the phosphor layer is formed as described above, the phosphor layer is physically or chemically protected on the surface of the phosphor layer opposite to the support 4 as necessary. A protective layer may be provided. The protective layer may be formed by directly applying a coating solution for the protective layer to the surface of the phosphor layer, or a protective layer separately formed in advance may be adhered to the phosphor layer. The thickness of these protective layers is preferably 0.1 μm to 2000 μm.
 また、保護層は蒸着法、スパッタリング法などにより、SiC、SiO、SiN、Alなどの無機物質を積層して形成してもよい。 The protective layer may be formed by laminating inorganic substances such as SiC, SiO 2 , SiN, and Al 2 O 3 by vapor deposition, sputtering, or the like.
 本発明においては、保護層の外に、上記の各種機能層を設けることが好ましい。 In the present invention, it is preferable to provide the above various functional layers in addition to the protective layer.
 以上の放射線画像変換パネルの製造装置1または製造方法によれば、複数の蒸発源8a、8bを設けることによって蒸発源8a、8bの蒸気流が重なり合う部分が整流化され、支持体4の表面に蒸着する前記蛍光体の結晶性を均一にすることができる。このとき、多数の蒸発源を設けるほど多くの箇所で蒸気流が整流化されるため、より広範囲において前記蛍光体の結晶性を均一にすることができる。また、蒸発源8a、8bを支持体4に垂直な中心線を中心とした円の円周上に配置することによって、蒸気流の整流化によって結晶性が均一になるという作用を、支持体4の表面において等方的に得ることができる。 According to the radiographic image conversion panel manufacturing apparatus 1 or the manufacturing method described above, by providing the plurality of evaporation sources 8a and 8b, the overlapping portions of the vapor flows of the evaporation sources 8a and 8b are rectified, and the surface of the support 4 is rectified. The crystallinity of the phosphor to be deposited can be made uniform. At this time, as the number of evaporation sources is increased, the vapor flow is rectified at more locations, so that the crystallinity of the phosphor can be made uniform in a wider range. Further, by disposing the evaporation sources 8 a and 8 b on the circumference of a circle centering on the center line perpendicular to the support 4, the effect that the crystallinity becomes uniform due to the rectification of the vapor flow is provided. Can be obtained isotropically on the surface.
 また、支持体回転機構6によって支持体4を回転しながら前記蛍光体の蒸着を行うことによって、支持体4の表面に均一に前記蛍光体を蒸着させることができる。 Further, the phosphor can be uniformly deposited on the surface of the support 4 by depositing the phosphor while rotating the support 4 by the support rotating mechanism 6.
 以上述べたように本発明に係る放射線画像変換パネル製造装置1または製造方法によれば、支持体4の表面において、前記蛍光体の結晶性が均一となるように前記蛍光体層を成長させることによって、前記蛍光体層の感度ムラを低下させ、本発明に係るシンチレータパネルを用いた放射線画像変換パネルから得られる放射線画像の鮮鋭性を向上させることができる。 As described above, according to the radiation image conversion panel manufacturing apparatus 1 or the manufacturing method of the present invention, the phosphor layer is grown on the surface of the support 4 so that the crystallinity of the phosphor is uniform. Thus, the sensitivity unevenness of the phosphor layer can be reduced, and the sharpness of the radiation image obtained from the radiation image conversion panel using the scintillator panel according to the present invention can be improved.
 また、支持体4に蒸着する前記蛍光体の入射角を所定の範囲に制限して輝尽性蛍光体の入射角のばらつきを防ぐことによって、蛍光体の結晶性をより均一にして、放射線画像変換パネルから得られる放射線画像の鮮鋭性を向上させることができる。 Further, by limiting the incident angle of the phosphor deposited on the support 4 to a predetermined range to prevent variations in the incident angle of the stimulable phosphor, the crystallinity of the phosphor is made more uniform, and the radiation image The sharpness of the radiation image obtained from the conversion panel can be improved.
 なお、以上は支持体ホルダ5が支持体回転機構6を備える場合について説明したが、本発明は必ずしもこれに限らず、支持体ホルダ5が支持体4を保持して静止した状態で蒸着を行う場合や、支持体4を蒸発源8a、8bに対して水平方向に移動させることによって蒸発源8a、8bからの前記蛍光体を蒸着させる場合などにおいても適用可能である。 In addition, although the case where the support body holder 5 was provided with the support body rotation mechanism 6 was demonstrated above, this invention is not necessarily restricted to this, It vapor-deposits in the state which the support body holder 5 hold | maintained the support body 4 and was still. The present invention is also applicable to the case where the phosphors from the evaporation sources 8a and 8b are deposited by moving the support 4 in the horizontal direction with respect to the evaporation sources 8a and 8b.
 以下、実施例を挙げて本発明を具体的に説明するが、本発明の実施態様はこれに限定されるものではない。 Hereinafter, the present invention will be specifically described with reference to examples, but the embodiment of the present invention is not limited thereto.
 図1に示す製造装置を使用して以下の方法により本発明に係る放射線画像変換パネルを得た。 The radiation image conversion panel according to the present invention was obtained by the following method using the manufacturing apparatus shown in FIG.
 [比較例1-1]
 (放射線画像変換パネルの作製)
 厚さ0.1mmのポリイミド樹脂シートからなる支持体の片面に蛍光体1(CsIのみ)、および蛍光体2(CsI:0.003Tl)を蒸着させて蛍光体層を形成した。すなわち、まず、支持体回転機構を備えた支持体ホルダに支持体を設置した。次に、上記蛍光体原料を蒸着材料として蒸発源るつぼに充填し、2個の蒸発源るつぼを真空容器の内部の底面付近であって、支持体に垂直な中心線を中心とした円の円周上に配置した。このとき、支持体と蒸発源との間隔400mmに調節すると共に、支持体に垂直な中心線と蒸発源との間隔を400mmに調節した。続いて真空容器の内部を一旦排気し、Arガスを導入して0.05Paに真空度を調整した後、10rpmの速度で支持体を回転させながら支持体の温度を200℃に保持した。次いで、抵抗加熱によりるつぼ内を所定の温度に上昇させて支持体を回転させない状態で蛍光体1を蒸着質量速度0.008mg/cm・分にて蒸着開始し、蛍光体層の膜厚が40μmとなったところで蒸着を終了させた。次いで蛍光体2を同じ条件で蒸着し、蛍光体層の膜厚が400μmとなったところで蒸着を終了させた。
[Comparative Example 1-1]
(Production of radiation image conversion panel)
Phosphor 1 (CsI only) and phosphor 2 (CsI: 0.003 Tl) were vapor-deposited on one side of a support made of a polyimide resin sheet having a thickness of 0.1 mm to form a phosphor layer. That is, first, a support was placed on a support holder provided with a support rotation mechanism. Next, the phosphor raw material is filled in the evaporation source crucible as an evaporation material, and the two evaporation source crucibles are in the vicinity of the bottom of the inside of the vacuum vessel and are circles centered on the center line perpendicular to the support Arranged on the circumference. At this time, the distance between the support and the evaporation source was adjusted to 400 mm, and the distance between the center line perpendicular to the support and the evaporation source was adjusted to 400 mm. Subsequently, the inside of the vacuum vessel was once evacuated, Ar gas was introduced and the degree of vacuum was adjusted to 0.05 Pa, and then the temperature of the support was maintained at 200 ° C. while rotating the support at a speed of 10 rpm. Subsequently, the phosphor 1 was deposited at a deposition mass rate of 0.008 mg / cm 2 · min in a state where the inside of the crucible was raised to a predetermined temperature by resistance heating and the support was not rotated, and the film thickness of the phosphor layer was The vapor deposition was terminated when the thickness reached 40 μm. Next, the phosphor 2 was deposited under the same conditions, and the deposition was terminated when the thickness of the phosphor layer reached 400 μm.
 次いで、乾燥空気内で蛍光体層を保護層袋に入れ、蛍光体層が密封された構造の、比較例の放射線画像変換パネル1-1を得た。 Next, the phosphor layer was placed in a protective layer bag in dry air to obtain a comparative radiation image conversion panel 1-1 having a structure in which the phosphor layer was sealed.
 [比較例1-2]
 比較例1-1の作製条件のうち、真空度を0.04Paに変更し、蒸着質量速度を2.0mg/cm・分に変更して、比較例の放射線画像変換パネル1-2を得た。
[Comparative Example 1-2]
Among the production conditions of Comparative Example 1-1, the degree of vacuum was changed to 0.04 Pa and the vapor deposition mass rate was changed to 2.0 mg / cm 2 · min to obtain a radiation image conversion panel 1-2 of Comparative Example. It was.
 [本発明1-1]
 比較例1-1の作製条件のうち、40μmまでの基板温度を30℃に変更し、蒸着質量速度を1.8mg/cm・分に変更し、本発明に係る放射線画像変換パネル1-1を得た。
[Invention 1-1]
Among the production conditions of Comparative Example 1-1, the substrate temperature up to 40 μm was changed to 30 ° C., the deposition mass rate was changed to 1.8 mg / cm 2 · min, and the radiation image conversion panel 1-1 according to the present invention was selected. Got.
 [本発明1-2]
 本発明1-1の作製条件のうち、真空度を0.10Paに変更し、本発明に係る放射線画像変換パネル1-2を得た。
[Invention 1-2]
Among the production conditions of the present invention 1-1, the degree of vacuum was changed to 0.10 Pa to obtain a radiation image conversion panel 1-2 according to the present invention.
 [本発明1-3]
 本発明1-2の作製条件のうち、40μmまでの蒸着質量速度を0.01mg/cm・分に変更し、本発明に係る放射線画像変換パネル1-3を得た。
[Invention 1-3]
Among the production conditions of the present invention 1-2, the vapor deposition mass rate up to 40 μm was changed to 0.01 mg / cm 2 · min to obtain a radiation image conversion panel 1-3 according to the present invention.
 [本発明1-4]
 本発明1-3の作製条件のうち、真空度を0.05Paに変更し、本発明に係る放射線画像変換パネル1-4を得た。
[Invention 1-4]
Among the production conditions of the present invention 1-3, the degree of vacuum was changed to 0.05 Pa to obtain a radiation image conversion panel 1-4 according to the present invention.
 [本発明1-5]
 本発明1-3の作製条件のうち、40~400μmまでの真空度を0.05Paに変更し、本発明に係る放射線画像変換パネル1-5を得た。
[Invention 1-5]
Among the production conditions of the present invention 1-3, the degree of vacuum from 40 to 400 μm was changed to 0.05 Pa to obtain a radiation image conversion panel 1-5 according to the present invention.
 [本発明1-6]
 本発明1-2の作製条件のうち、蒸着質量速度を1.0mg/cm・分に変更し、本発明に係る放射線画像変換パネル1-6を得た。
[Invention 1-6]
Among the production conditions of the present invention 1-2, the vapor deposition mass rate was changed to 1.0 mg / cm 2 · min to obtain a radiation image conversion panel 1-6 according to the present invention.
 [本発明1-7]
 本発明1-6の作製条件のうち、真空度を1.0Paに変更し、本発明に係る放射線画像変換パネル1-7を得た。
[Invention 1-7]
Among the production conditions of the present invention 1-6, the degree of vacuum was changed to 1.0 Pa to obtain a radiation image conversion panel 1-7 according to the present invention.
 [本発明1-8]
 本発明1-6の作製条件のうち、真空度を5.0Paに変更し、本発明に係る放射線画像変換パネル1-8を得た。
[Invention 1-8]
Among the production conditions of the present invention 1-6, the degree of vacuum was changed to 5.0 Pa to obtain a radiation image conversion panel 1-8 according to the present invention.
 [本発明1-9]
 本発明1-6の作製条件のうち、真空度を10.0Paに変更し、本発明に係る放射線画像変換パネル1-9を得た。
[Invention 1-9]
Among the production conditions of the present invention 1-6, the degree of vacuum was changed to 10.0 Pa to obtain a radiation image conversion panel 1-9 according to the present invention.
 [比較例1-3]
 本発明1-6の作製条件のうち、真空度を12.0Paに変更し、比較例の放射線画像変換パネル1-3を得た。
[Comparative Example 1-3]
Among the production conditions of the present invention 1-6, the degree of vacuum was changed to 12.0 Pa to obtain a radiation image conversion panel 1-3 of a comparative example.
 [比較例1-4]
 本発明1-1の作製条件のうち、蒸着質量速度を2.1mg/cm・分に変更し、比較例の放射線画像変換パネル1-4を得た。
[Comparative Example 1-4]
Among the production conditions of Invention 1-1, the vapor deposition mass rate was changed to 2.1 mg / cm 2 · min to obtain a radiation image conversion panel 1-4 of a comparative example.
 [評価]
 以上のようにして得られた放射線画像変換パネルをPaxScan2520(Varian社製FPD)にセットし下記のような評価を行った。
[Evaluation]
The radiation image conversion panel obtained as described above was set in PaxScan 2520 (VPD manufactured by Varian) and evaluated as follows.
 <輝度>
 管電圧80kVpのX線を試料の裏面(蛍光体層が形成されていない面)から照射し、画像データを蛍光体に配置したFPDで検出し、画像の平均シグナル値を発光輝度とした。そして、比較例1-1の放射線変換パネルの輝度を100とした、相対値で表示した。この値が高いほど輝度が高く優れていることを示す。
<Luminance>
X-rays with a tube voltage of 80 kVp were irradiated from the back surface (surface on which the phosphor layer was not formed) of the sample, and image data was detected with an FPD disposed on the phosphor, and the average signal value of the image was taken as the emission luminance. Then, the brightness of the radiation conversion panel of Comparative Example 1-1 was displayed as a relative value with the brightness set at 100. The higher this value, the higher the luminance and the better.
 <鮮鋭性>
 (鮮鋭性の評価)
 鉛製のMTFチャートを通して管電圧80kVpのX線をFPDの放射線入射面側に照射し、画像データを検出しハードディスクに記録した。その後、ハードディスク上の記録をコンピュータで分析して、当該ハードディスクに記録されたX線像の変調伝達関数MTF(空間周波数1サイクル/mmにおけるMTF値)を鮮鋭性の指標とした。そして、比較例1-1の放射線変換パネルのMTFを100とした、相対値で表示した。この値が高いほど鮮鋭性に優れていることを示す。MTFはModulation Transfer Functionの略号を示す。
<Sharpness>
(Evaluation of sharpness)
X-rays with a tube voltage of 80 kVp were irradiated to the radiation incident surface side of the FPD through a lead MTF chart, and image data was detected and recorded on a hard disk. Thereafter, the recording on the hard disk was analyzed by a computer, and the modulation transfer function MTF (MTF value at a spatial frequency of 1 cycle / mm) of the X-ray image recorded on the hard disk was used as an index of sharpness. The relative value was displayed with the MTF of the radiation conversion panel of Comparative Example 1-1 set to 100. It shows that it is excellent in sharpness, so that this value is high. MTF is an abbreviation for Modulation Transfer Function.
 (耐湿性の評価)
 得られた放射線変換パネルを70℃/90%の環境に3日間放置し、放置後の輝度の劣化幅を放置前の値を100とした相対値で表示した。
(Evaluation of moisture resistance)
The obtained radiation conversion panel was left to stand in an environment of 70 ° C./90% for 3 days, and the brightness deterioration range after being left was displayed as a relative value with the value before being left as 100.
 以上の評価から得られた結果をまとめて表1に示す。 Table 1 summarizes the results obtained from the above evaluations.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表1の結果から明らかなように、本発明の放射線画像変換パネル(本発明1-1~1-5)はいずれも、相対輝度値および相対MTF値が良化しており、本発明の効果が見られている。一方、真空度および蒸着質量速度が従来の放射線画像変換パネル(比較例1-1~1-2)は、いずれも、相対輝度値および相対MTF値が悪かった。また、耐湿性についても同様に、本発明の放射線画像変換パネル(本発明1-1~1-5)はいずれも優れる、という結果であった。 As is clear from the results in Table 1, the radiographic image conversion panels of the present invention (Inventions 1-1 to 1-5) all have improved relative luminance values and relative MTF values. It has been seen. On the other hand, the conventional radiographic image conversion panels (Comparative Examples 1-1 to 1-2) having a low degree of vacuum and a vapor deposition mass rate had poor relative luminance values and relative MTF values. Similarly, regarding the moisture resistance, the radiation image conversion panels of the present invention (Inventions 1-1 to 1-5) were all excellent.
 [比較例2-1]
 (放射線画像変換パネルの作製)
 比較例1-1の作製条件のうち、蛍光体1を蛍光体3(CsBrのみ)に、蛍光体2を蛍光体4(CsBr:0.003Eu)に変更して放射線画像変換パネルを得た。
[Comparative Example 2-1]
(Production of radiation image conversion panel)
Among the preparation conditions of Comparative Example 1-1, the phosphor 1 was changed to the phosphor 3 (only CsBr) and the phosphor 2 was changed to the phosphor 4 (CsBr: 0.003Eu) to obtain a radiation image conversion panel.
 [比較例2-2]
 比較例2-1の作製条件のうち、真空度を0.04Paに変更し、蒸着質量速度を2.0mg/cm・分に変更して、比較例の放射線画像変換パネル2-2を得た。
[Comparative Example 2-2]
Among the production conditions of Comparative Example 2-1, the degree of vacuum was changed to 0.04 Pa and the vapor deposition mass rate was changed to 2.0 mg / cm 2 · min to obtain a radiation image conversion panel 2-2 of Comparative Example. It was.
 [本発明2-1]
 比較例2-1の作製条件のうち、40μmまでの基板温度を30℃に変更し、蒸着質量速度を1.8mg/cm・分に変更し、本発明に係る放射線画像変換パネル2-1を得た。
[Invention 2-1]
Among the production conditions of Comparative Example 2-1, the substrate temperature up to 40 μm was changed to 30 ° C., the deposition mass rate was changed to 1.8 mg / cm 2 · min, and the radiation image conversion panel 2-1 according to the present invention was changed. Got.
 [本発明2-2]
 本発明2-1の作製条件のうち、真空度を0.10Paに変更し、本発明に係る放射線画像変換パネル2-2を得た。
[Invention 2-2]
Among the production conditions of the present invention 2-1, the degree of vacuum was changed to 0.10 Pa to obtain a radiation image conversion panel 2-2 according to the present invention.
 [本発明2-3]
 本発明2-2の作製条件のうち、40μmまでの蒸着質量速度を0.01mg/cm・分に変更し、本発明に係る放射線画像変換パネル2-3を得た。
[Invention 2-3]
Among the production conditions of the present invention 2-2, the vapor deposition mass rate up to 40 μm was changed to 0.01 mg / cm 2 · min to obtain a radiation image conversion panel 2-3 according to the present invention.
 [本発明2-4]
 本発明2-3のうち、真空度を0.05Paに変更し、本発明に係る放射線画像変換パネル2-4を得た。
[Invention 2-4]
Of the invention 2-3, the degree of vacuum was changed to 0.05 Pa to obtain a radiation image conversion panel 2-4 according to the invention.
 [本発明2-5]
 本発明2-3の作製条件のうち、40~400μmまでの真空度を0.05Paに変更し、本発明に係る放射線画像変換パネル2-5を得た。
[Invention 2-5]
Among the production conditions of the present invention 2-3, the degree of vacuum from 40 to 400 μm was changed to 0.05 Pa to obtain a radiation image conversion panel 2-5 according to the present invention.
 [本発明2-6]
 本発明2-2の作製条件のうち、蒸着質量速度を1.0mg/cm・分に変更し、本発明に係る放射線画像変換パネル2-6を得た。
[Invention 2-6]
Among the preparation conditions of the present invention 2-2, the vapor deposition mass rate was changed to 1.0 mg / cm 2 · min to obtain a radiation image conversion panel 2-6 according to the present invention.
 [本発明2-7]
 本発明2-6の作製条件のうち、真空度を1.0Paに変更し、本発明に係る放射線画像変換パネル2-7を得た。
[Invention 2-7]
Among the production conditions of the present invention 2-6, the degree of vacuum was changed to 1.0 Pa to obtain a radiation image conversion panel 2-7 according to the present invention.
 [本発明2-8]
 本発明2-6の作製条件のうち、真空度を5.0Paに変更し、本発明に係る放射線画像変換パネル2-8を得た。
[Invention 2-8]
Among the production conditions of the present invention 2-6, the degree of vacuum was changed to 5.0 Pa to obtain a radiation image conversion panel 2-8 according to the present invention.
 [本発明2-9]
 本発明2-6の作製条件のうち、真空度を10.0Paに変更し、本発明に係る放射線画像変換パネル2-9を得た。
[Invention 2-9]
Among the production conditions of the present invention 2-6, the degree of vacuum was changed to 10.0 Pa to obtain a radiation image conversion panel 2-9 according to the present invention.
 [比較例2-3]
本発明2-6の作製条件のうち、真空度を12.0Paに変更し、比較例の放射線画像変換パネル2-3を得た。
[Comparative Example 2-3]
Among the production conditions of the invention 2-6, the degree of vacuum was changed to 12.0 Pa, and a radiation image conversion panel 2-3 of a comparative example was obtained.
 [比較例2-4]
 本発明2-1の作製条件のうち、蒸着質量速度を2.1mg/cm・分に変更し、比較例の放射線画像変換パネル2-4を得た。
[Comparative Example 2-4]
Among the production conditions of the present invention 2-1, the deposition mass rate was changed to 2.1 mg / cm 2 · min to obtain a radiation image conversion panel 2-4 of a comparative example.
 《放射線画像変換パネルの評価》
 以上のようにして作製した放射線画像変換パネルにセットし、下記の方法に従って、輝度及び鮮鋭性の評価を行った。
<< Evaluation of radiation image conversion panel >>
It set to the radiographic image conversion panel produced as mentioned above, and the brightness | luminance and sharpness were evaluated in accordance with the following method.
 (輝度の測定)
 輝度の評価は、作製した各放射線画像変換パネルに厚さ2mmの鉛ディスクを写し込み、管電圧80kVpのX線を均一に照射した後、蛍光体層を設けた面側から半導体レーザ光(発振波長:780nm、ビーム径:100μm)で走査して励起し、各蛍光体層から放射される輝尽発光を受光器(分光感度S-5の光電子像倍管)で受光し、その強度を測定してこれを輝度と定義し、比較例2-1の値を100として相対値で示した。この値が高いほど輝度が高く優れていることを示す。
(Measurement of brightness)
For evaluation of luminance, a 2 mm-thick lead disk is imprinted on each prepared radiation image conversion panel, X-ray with a tube voltage of 80 kVp is uniformly irradiated, and then a semiconductor laser beam (oscillation is provided from the surface side on which the phosphor layer is provided. Excitation is performed by scanning at a wavelength of 780 nm and a beam diameter of 100 μm. The stimulated emission emitted from each phosphor layer is received by a photoreceiver (photoelectron image multiplier of spectral sensitivity S-5), and the intensity is measured. This was defined as luminance, and the value of Comparative Example 2-1 was set as 100 and indicated as a relative value. The higher this value, the higher the luminance and the better.
 (鮮鋭性の測定)
 放射線画像変換パネルにCTFチャートを貼付けた後、管電圧80kVp-pのX線を10mR(管球からパネルまでの距離:1.5m)照射した後、半導体レーザ光(発振波長:780nm、ビーム径:100μm)で走査して輝尽励起し、CTFチャート像を輝尽性蛍光体層から放射される輝尽発光として読取り、光検出器(光電子増倍管)で光電変換して画像信号を得た。この信号値により、画像の変調伝達関数(MTF)を調べ、比較例2-1の値を100として相対値で示した。なお、MTFは、空間周波数が1サイクル/mmの時の値である。
(Measure sharpness)
After a CTF chart is attached to the radiation image conversion panel, X-ray with a tube voltage of 80 kVp-p is irradiated with 10 mR (distance from the tube to the panel: 1.5 m), and then a semiconductor laser beam (oscillation wavelength: 780 nm, beam diameter) : 100 μm) and excited to excite, read the CTF chart image as stimulated luminescence emitted from the stimulable phosphor layer, and photoelectrically convert it with a photodetector (photomultiplier) to obtain an image signal It was. Based on this signal value, the modulation transfer function (MTF) of the image was examined, and the value of Comparative Example 2-1 was set as 100 and indicated as a relative value. MTF is a value when the spatial frequency is 1 cycle / mm.
 (耐湿性の評価)
 得られた放射線画像変換パネルを70℃/90%の環境に3日間放置し、放置後の輝度の劣化幅を放置前の値を100とした相対値で表示した。
(Evaluation of moisture resistance)
The obtained radiation image conversion panel was left to stand in an environment of 70 ° C./90% for 3 days, and the brightness deterioration range after being left was displayed as a relative value with the value before being left as 100.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 表2の結果から明らかなように、本発明の放射線画像変換パネル(本発明2-1~1-5)はいずれも、相対輝度値および相対MTF値が良化しており、本発明の効果が見られている。一方、真空度および蒸着質量速度が従来の放射線画像変換パネル(比較例2-1~2-2)はいずれも、相対輝度値および相対MTF値が悪かった。また、耐湿性についても同様に、本発明の放射線画像変換パネル(本発明2-1~2-5)はいずれも優れる、という結果であった。 As is clear from the results in Table 2, all of the radiation image conversion panels of the present invention (Inventions 2-1 to 1-5) have improved relative luminance values and relative MTF values, and the effects of the present invention are improved. It has been seen. On the other hand, all of the conventional radiation image conversion panels (Comparative Examples 2-1 and 2-2) with a low degree of vacuum and a vapor deposition mass rate had poor relative luminance values and relative MTF values. Similarly, regarding the moisture resistance, the radiation image conversion panels of the present invention (Inventions 2-1 to 2-5) were all excellent.

Claims (8)

  1. 気相堆積法により形成されたハロゲン化セシウム系蛍光体を主成分とする蛍光体柱状結晶を含有する蛍光体層を有する放射線画像変換パネルであって、当該蛍光体層が、真空度を0.05Pa~10Paの範囲内に維持し、かつ蒸着質量速度を0.01mg/cm・分~2.0mg/cm・分の範囲内に維持した条件下で、形成されたことを特徴とする放射線画像変換パネル。 A radiation image conversion panel having a phosphor layer containing a phosphor columnar crystal composed mainly of a cesium halide phosphor formed by a vapor deposition method, wherein the phosphor layer has a degree of vacuum of 0. It is characterized in that it is formed under the condition that it is maintained within the range of 05 Pa to 10 Pa and the deposition mass rate is maintained within the range of 0.01 mg / cm 2 · min to 2.0 mg / cm 2 · min. Radiation image conversion panel.
  2. 前記蛍光体柱状結晶が、(1)ヨウ化セシウム(CsI)及び臭化セシウム(CsBr)のうちの少なくとも一方と(2)タリウム(Tl)及びユウロピウム(Eu)うちの少なくとも一方を含む添加剤とを原材料として形成されたことを特徴とする請求の範囲第1項に記載の放射線画像変換パネル。 The phosphor columnar crystal is (1) an additive containing at least one of cesium iodide (CsI) and cesium bromide (CsBr) and (2) at least one of thallium (Tl) and europium (Eu); The radiation image conversion panel according to claim 1, wherein the radiation image conversion panel is formed from a raw material.
  3. 請求の範囲第1項または請求の範囲第2項に記載の放射線画像変換パネルを製造する放射線画像変換パネルの製造方法であって、蒸着装置内で、ハロゲン化セシウム系蛍光体もしくはその原料を含む蒸発源を加熱することによって発生する物質を支持体上に蒸着させることにより蛍光体層を形成する工程を有し、当該蒸着装置内に不活性ガスを導入した後、真空度を0.05~10Paの範囲内に維持し、かつ蒸着質量速度を0.01~2.0mg/cm・分の範囲内にして蒸着を行うことを特徴とする放射線画像変換パネルの製造方法。 A method for producing a radiation image conversion panel for producing the radiation image conversion panel according to claim 1 or claim 2, comprising a cesium halide phosphor or a raw material thereof in a vapor deposition apparatus. A process of forming a phosphor layer by vapor-depositing a substance generated by heating an evaporation source on a support, and after introducing an inert gas into the vapor deposition apparatus, the degree of vacuum is 0.05 to A method for producing a radiation image conversion panel, characterized in that vapor deposition is carried out while maintaining a pressure within a range of 10 Pa and a vapor deposition mass rate within a range of 0.01 to 2.0 mg / cm 2 · min.
  4. 蛍光体層形成途中過程において前記蒸着装置内の真空度を前記範囲内で変更して蒸着を行うことにより前記蛍光体層を形成することを特徴とする請求の範囲第3項に記載の放射線画像変換パネルの製造方法。 The radiographic image according to claim 3, wherein the phosphor layer is formed by performing vapor deposition while changing the degree of vacuum in the vapor deposition apparatus within the range in the course of forming the phosphor layer. A method for manufacturing a conversion panel.
  5. 蛍光体層形成途中過程において前記蒸着質量速度を前記範囲内で変更して蒸着を行うことにより前記蛍光体層を形成することを特徴とする請求の範囲第3項または請求の範囲第4項に記載の放射線画像変換パネルの製造方法。 The phosphor layer is formed by performing vapor deposition while changing the vapor deposition mass rate within the range in the course of forming the phosphor layer. The manufacturing method of the radiation image conversion panel of description.
  6. 蛍光体層形成途中過程において前記支持体の温度を変更して蒸着を行うことにより前記蛍光体層を形成することを特徴とする請求の範囲第3項~請求の範囲第5項のいずれか1項に記載の放射線画像変換パネルの製造方法。 6. The phosphor layer according to claim 3, wherein the phosphor layer is formed by performing vapor deposition while changing the temperature of the support in the course of forming the phosphor layer. The manufacturing method of the radiographic image conversion panel of item.
  7. 前記支持体の厚さが、30μm~500μm範囲内であることを特徴とする請求の範囲第3項~請求の範囲第6項のいずれか1項に記載の放射線画像変換パネルの製造方法。 The method for producing a radiation image conversion panel according to any one of claims 3 to 6, wherein the thickness of the support is in the range of 30 袖 m to 500 袖 m.
  8. 請求の範囲第3項~請求の範囲第7項のいずれか1項に記載の放射線画像変換パネルの製造方法であって、真空容器内に蒸発源及び支持体回転機構を有する蒸着装置を用いて、支持体を前記支持体回転機構に設置して、当該支持体を回転しながら蛍光体材料を蒸着する工程を含む気相堆積法により、蛍光体層を形成することを特徴とする放射線画像変換パネルの製造方法。 The method of manufacturing a radiation image conversion panel according to any one of claims 3 to 7, wherein a vapor deposition apparatus having an evaporation source and a support rotating mechanism in a vacuum vessel is used. Radiation image conversion characterized in that a phosphor layer is formed by a vapor phase deposition method including a step of evaporating a phosphor material while rotating the support and placing the support on the support rotating mechanism. Panel manufacturing method.
PCT/JP2009/055044 2008-09-22 2009-03-16 Radiation image conversion panel and method for producing the same WO2010032504A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008242242 2008-09-22
JP2008-242242 2008-09-22

Publications (1)

Publication Number Publication Date
WO2010032504A1 true WO2010032504A1 (en) 2010-03-25

Family

ID=42039351

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/055044 WO2010032504A1 (en) 2008-09-22 2009-03-16 Radiation image conversion panel and method for producing the same

Country Status (1)

Country Link
WO (1) WO2010032504A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012098110A (en) * 2010-11-01 2012-05-24 Toshiba Corp Radiation detector and method for producing the same

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20010010831A1 (en) * 2000-01-17 2001-08-02 Siemens Aktiengesellschaft Method for improving the optical separation of fluorescent layers
JP2005069992A (en) * 2003-08-27 2005-03-17 Fuji Photo Film Co Ltd Method for manufacturing radiation image conversion panel
JP2005164380A (en) * 2003-12-02 2005-06-23 Konica Minolta Medical & Graphic Inc Radiation image conversion panel
JP2007070646A (en) * 2005-09-02 2007-03-22 Fujifilm Corp Method and apparatus for manufacturing radiation image conversion panel
JP2008051793A (en) * 2006-03-02 2008-03-06 Canon Inc Radiation detector and scintillator panel
JP2008116462A (en) * 2007-11-07 2008-05-22 Konica Minolta Holdings Inc Radiographic image conversion panel, and manufacturing method of radiographic image conversion panel

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20010010831A1 (en) * 2000-01-17 2001-08-02 Siemens Aktiengesellschaft Method for improving the optical separation of fluorescent layers
JP2005069992A (en) * 2003-08-27 2005-03-17 Fuji Photo Film Co Ltd Method for manufacturing radiation image conversion panel
JP2005164380A (en) * 2003-12-02 2005-06-23 Konica Minolta Medical & Graphic Inc Radiation image conversion panel
JP2007070646A (en) * 2005-09-02 2007-03-22 Fujifilm Corp Method and apparatus for manufacturing radiation image conversion panel
JP2008051793A (en) * 2006-03-02 2008-03-06 Canon Inc Radiation detector and scintillator panel
JP2008116462A (en) * 2007-11-07 2008-05-22 Konica Minolta Holdings Inc Radiographic image conversion panel, and manufacturing method of radiographic image conversion panel

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012098110A (en) * 2010-11-01 2012-05-24 Toshiba Corp Radiation detector and method for producing the same

Similar Documents

Publication Publication Date Title
JP5720566B2 (en) Scintillator panel, scintillator panel manufacturing method, radiographic image detector, and radiographic image detector manufacturing method
JP5862302B2 (en) Radiation image conversion panel and radiation image detector using the same
JP5402933B2 (en) Radiation image conversion panel and manufacturing method thereof
JP5889531B2 (en) Manufacturing method of scintillator panel
JP5050572B2 (en) Radiation image detector
JP4725533B2 (en) Scintillator panel
JP5353886B2 (en) Radiation scintillator and radiation image detector
WO2010103917A1 (en) Radiation detector
WO2010050358A1 (en) Scintillator panel, radiation detector, and processes for producing these
WO2011065302A1 (en) Support for roll-shaped scintillator panel, scintillator panel and process for production thereof, and radiation image detector
JP2010127628A (en) Scintillator panel and radiation detecting device
JP2006098241A (en) Radiation image conversion panel
WO2010032504A1 (en) Radiation image conversion panel and method for producing the same
JP5597930B2 (en) Radiation image detection apparatus and manufacturing method thereof
JP5493577B2 (en) Radiation image detection device
JP5267458B2 (en) Scintillator panel and radiation image sensor
JP5577644B2 (en) Radiation image detection apparatus and manufacturing method thereof
WO2010026789A1 (en) Radiation scintillator and radiation image sensor
WO2009122809A1 (en) Manufacturing equipment for radiographic image conversion panel and manufacturing method for radiographic image conversion panel
JP5347967B2 (en) Scintillator plate
JPWO2008108402A1 (en) Scintillator plate
JP5369906B2 (en) Radiation image conversion panel and radiation image detection apparatus
WO2011086987A1 (en) Radiation image sensor and method for manufacturing same
JP2008232781A (en) Scintillator panel and radiation image sensor
JP2016050873A (en) Scintillator panel, radiation detector, manufacturing method for scintillator panel, and manufacturing method for radiation detector

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09814349

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09814349

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP