WO2012020177A1 - Procede et dispositif de propulsion sous-marine basee sur la trainee et la portance d'un element deformable destines a des missions discretes - Google Patents
Procede et dispositif de propulsion sous-marine basee sur la trainee et la portance d'un element deformable destines a des missions discretes Download PDFInfo
- Publication number
- WO2012020177A1 WO2012020177A1 PCT/FR2010/051679 FR2010051679W WO2012020177A1 WO 2012020177 A1 WO2012020177 A1 WO 2012020177A1 FR 2010051679 W FR2010051679 W FR 2010051679W WO 2012020177 A1 WO2012020177 A1 WO 2012020177A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- aforesaid
- deformable element
- envelope
- integral
- propulsion
- Prior art date
Links
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B63—SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
- B63H—MARINE PROPULSION OR STEERING
- B63H1/00—Propulsive elements directly acting on water
- B63H1/30—Propulsive elements directly acting on water of non-rotary type
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B63—SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
- B63G—OFFENSIVE OR DEFENSIVE ARRANGEMENTS ON VESSELS; MINE-LAYING; MINE-SWEEPING; SUBMARINES; AIRCRAFT CARRIERS
- B63G8/00—Underwater vessels, e.g. submarines; Equipment specially adapted therefor
- B63G8/08—Propulsion
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16H—GEARING
- F16H21/00—Gearings comprising primarily only links or levers, with or without slides
- F16H21/10—Gearings comprising primarily only links or levers, with or without slides all movement being in, or parallel to, a single plane
- F16H21/16—Gearings comprising primarily only links or levers, with or without slides all movement being in, or parallel to, a single plane for interconverting rotary motion and reciprocating motion
- F16H21/18—Crank gearings; Eccentric gearings
- F16H21/36—Crank gearings; Eccentric gearings without swinging connecting-rod, e.g. with epicyclic parallel motion, slot-and-crank motion
- F16H21/365—Crank gearings; Eccentric gearings without swinging connecting-rod, e.g. with epicyclic parallel motion, slot-and-crank motion with planetary gearing having a ratio of 2:1 between sun gear and planet gear
Definitions
- the present invention relates to a method and an underwater propulsion device based on the drag and lift of a deformable element for discrete missions.
- UUVs unmanned and fully autonomous submarines
- the hull thus meets the requirements of laminar hydrodynamics; the shapes are rounded and the connections between appendages are neat.
- the propulsive element in this case the propeller, is the main generator of acoustic noise;
- it is necessary to reduce the intensity of the vibrations generated by the rotation of the blades and the possible phenomena of cavitation characterized by the formation of vapor bubbles on the back of the blades in the area of the exit edge.
- the scorpionfish propels itself in this way by using the drag force: it advances by pushing on its deployed lateral fins, and then layers them to bring them forward, minimizing the drag.
- the technique of diving submerged in the back of the boat is to go back and forth from left to right by changing the inclination at each pass.
- the object of the invention is therefore more particularly to eliminate the drawbacks associated with the use of propellers in the context of discrete missions and to benefit from the so-called "drag” and "lift” techniques.
- It proposes a method of submarine propulsion of a submerged platform comprising a rigid structure of elongated shape along a main axis and at least one elongated deformable element, carried by said rigid structure, knowing that it consists in generating a deformation said deformable element through a plurality of actuators integral with said rigid structure, in the form of a progressive wave in the opposite direction of the propulsion during the acceleration phase or in the forward direction during the deceleration phase, and in a deformation in the form of a sustained wave during the cruising phase, the deformation of said deformable element being directed essentially along the main axis of displacement, the elongations of the aforesaid progressive and maintained waves being oriented perpendicular to said main axis of the rigid structure.
- the deformation in the form of an inverse progressive wave in the direction of propulsion will make it possible to set the immersed platform in motion, the acceleration being generated by the drag force; the deformation in the form of a sustained wave will allow the displacement of said platform, the propulsion using the lift force; the deformation in the form of a direct progressive wave will make it possible to slow down said immersed platform, the deceleration being generated by the drag force.
- the acceleration, deceleration and cruising speed of the submerged platform will be determined by the period of the wave train: the lower the period, the higher the frequency, the higher the speed of travel. .
- the frequency of the wave train can be compared, by analogy, with the speed of rotation of a conventional propeller.
- the amplitude of the wave train can be compared, by analogy, with the pitch of a conventional propeller with variable pitch.
- an asymmetry of the elongations of the deformations relative to the main axis of displacement will create a component of the propulsion force, normal to the displacement of the platform.
- an asymmetry such that the elongations on the starboard side are greater than those on the port side, will cause a port turn of the submerged platform; conversely, an asymmetry such that the starboard side elongations are weaker than those on the port side, will cause a starboard turn of the submerged platform.
- an asymmetry such that the lower elongations are greater than the higher elongations will cause the ascension of the submerged platform; conversely, an asymmetry such that the lower elongations are weaker than the higher elongations, will cause the diving of the submerged platform.
- FIGS. 1a, 1b, 1c, 1d, 1c, 1f and 1g schematically represent a deformable element in the form of a progressive sinusoidal wave
- FIGS. 2a, 2b, 2c, 2d, 2e, 2f, and 2g schematically represent a deformable element in the form of a continuous sinusoidal wave
- FIGS. 3a and 3b schematically represent the structure of an actuator in the closed position
- FIGS. 4a and 4b show schematically the structure of an actuator in the open position
- FIG. 5 schematically represents a module comprising two actuators in the closed position
- FIG. 6 schematically represents a module comprising two actuators in the open position
- FIG. 7 schematically represents a first version of a submerged structure according to the invention
- FIG. 8 schematically represents a second version of a submerged structure according to the invention.
- FIGS. 1a, 1b, 1c, 1d, 1c, 1b and 1g schematically shows a third version of a submerged structure according to the invention.
- a deformable element in the form of a progressive sinusoidal waveform is schematically indicated by two curves C1, C2, situated on either side a straight line D;
- a is the amplitude of the sinusoidal movement
- ⁇ is the pulsation of the sinusoidal motion
- v is the velocity of propagation along the x-axis.
- the elongations defining the deformation of the curves C1, C2 are defined by twelve equidistant and orthogonal segments on the line D, referenced as follows:
- the speed of displacement of the structure is lower, or even close to the speed of displacement of the progressive wave, taking into account the friction forces due to the flow of fluid around the the structure.
- the variation of the displacement speed of the structure is a function of the variation of the amplitude of the progressive wave and the variation of the speed of displacement thereof.
- the variation of the displacement speed of the structure is a function of the variation of the amplitude of the progressive wave and the variation of the traveling speed of the progressive wave, the direction of displacement of the it is the same as that of the structure.
- a deformable element in the form of a continuous sinusoidal wave is schematically indicated by two curves C1, C2, situated on either side a straight line D;
- T being the period at end of which the deformable element is found in the initial state.
- the elongations defining the deformation of the curves C1, C2 are defined by twelve equidistant and orthogonal segments on the line D, referenced as follows:
- 121 0.5 A (1-sin ⁇ / 6)
- the speed of displacement of the structure is a function of the duration of the period; indeed, the shorter the duration of the period, or the higher the deformation frequency, the higher the speed of movement.
- the direction of displacement of the structure will be defined by the initial speed of displacement of the structure; the variation of speed will depend on the variation of the deformation frequency and the amplitude of this one.
- the combination of the two modes of propulsion namely the so-called “drag swimming” mode, followed by the so-called “lift-swimming” mode, allows a start with a strong acceleration, followed by a propulsive efficiency. increasing with speed.
- This combination of two propulsion modes combines efficiency and discretion, especially for submerged structures such as UUVs.
- the deformable element consisting of a submerged thin wall must therefore comprise a series of actuators whose elongations will be in accordance with the above described according to the mode of propulsion; in other words, the elongations must be compatible of the two modes of propulsion in amplitude and in time synchronization; Moreover, the frequency and amplitude of the oscillations generated by the elongations will have to be variable in order to meet the acceleration and deceleration requirements.
- an actuator in the closed position is indicated in a cross section ( Figure 3a) and in a longitudinal section ( Figure 3b).
- an envelope E of square section, constitutes the structure supporting the actuators, Dz being its longitudinal axis, passing through a point O, intersection point, in a plane perpendicular to the axis Dz, d an axis Dy along the ordinates and an axis Dx according to the abscissas.
- An internally toothed crown Co of pitch diameter D, of center O, integral with the envelope E, is shown schematically by the circle C in FIG. 3a.
- a gear with external teeth Col of primitive diameter D / 2, of center 01, constituting a satellite inside said inner gear ring Co, is shown schematically by the circle C1 in FIG. 3a, its center being remote of D / 4 with respect to the center O on the axis Dx.
- Said internally toothed crowns Co and external gearing Col have an identical tooth module.
- Said externally toothed wheel Col is driven in a circular motion along a circle of diameter D / 2, centered at O, via a plate Po, which is integral with a shaft Ao, centered around the axis Dz, said shaft Ao is integral with the rotor of a motor M; said driving is carried out thanks to a shaft A1, centered around an axis D1, said shaft Al is integral with said plate Po, said external gear Col being free to rotate about said shaft A1.
- a circular plate PI integral with the gear with external teeth Col, centered along the axis D1, comprises a shaft A2, centered around an axis D2; said axis D2 is distant from D / 2 with respect to the center O on the axis Dx.
- a transverse partition Cl makes it possible to secure to the envelope E, on the one hand the stator of the motor M and on the other hand, the aforesaid internal gear ring C.
- the rotation drive of the external gear wheel represented by the circle C1, around the point O, causes its rotation about itself around its center 01, which center 01 described by FIG. therefore a circle of diameter D / 2 around the point O;
- the point O2 located on the pitch circle C1 of the external gear wheel moves along the axis Dx by a total amplitude equal to D, the pitch diameter of the internally toothed crown Co, on either side of the center O.
- This is a movement of the connecting rod / crank type, transforming the rotational movement made by the shaft Ao of the motor M, in a movement back and forth of the shaft A2.
- a connecting rod B driven by the shaft A2, actuates a pusher Po, which pusher Po comprises a hemispherical volume Pol and two guide wings Po2, Po3, sliding on either side of the envelope E.
- pusher Po comprises a hemispherical volume Pol and two guide wings Po2, Po3, sliding on either side of the envelope E.
- the actuator is in the closed position, the centers and O2 O, located on the axis Dx, are on the right of the axis Dy, distant respectively of D / 4 and D / 2 with respect to the center O.
- an actuator in the open position is indicated in a cross section ( Figure 4a) and in a longitudinal section ( Figure 4b).
- the rotation drive of the external gear wheel represented by the circle C1, around the point O, causes its rotation on itself around its center Ol, which center O1 described by therefore a circle of diameter D / 2 around the point O;
- the point O2 located on the pitch circle C1 of the external gear wheel moves along the axis Dx by a total amplitude equal to D, the pitch diameter of the internally toothed crown Co, on either side of the center O.
- the connecting rod B driven by the shaft A2, actuates the pusher Po, which pusher Po comprises the hemispherical volume Pol and the two guide wings Po2, Po3, sliding on either side envelope E.
- the actuator is in the open position, the centers 01 and O2, located on the axis Dx, are on the left of the axis Dy, respectively distant from D / 4 and D / 2 with respect to the center O.
- the aforesaid crown with internal teeth Co may comprise 100 teeth of 0.4 module; the aforesaid external gear Col may have 50 module teeth 0.4; the aforesaid motor M may be of the stepper motor type may comprise 200 steps per revolution.
- This structure deserves to be compact and allows to perform translational movements of the pusher from a rotational movement defined in steps of 1.8 degrees.
- a module comprises two actuators, as previously presented, in the closed position, in a longitudinal section.
- a plane P orthogonal to the longitudinal axis Dz, intersects this axis Dz at a point O, which point O is the center of symmetry of the module;
- two motors Ml and M2 are located on both sides of the plane P, mounted head to tail with respect to the point O.
- Each of said motors drives by their shaft, respectively Aol, Ao2, their plate, respectively Pol, Po2, which drive in rotation their shaft, respectively Al 1, A 12.
- said externally-toothed wheels are integral with their plate, respectively Pl i, P 12; which trays Pl i, P12 rotate their shaft, respectively A21, A22.
- the connecting rods B1, B2 are in turn driven by their shaft, respectively A21, A22; which rods B1, B2 actuate their respective pusher, represented by their hemispherical portion, respectively Pol 1, Pol 2.
- Said motor Ml and said internal gear ring Col are integral with the wall Cil; which partition Cil is integral with the envelope E.
- Said motor M2 and said internal gear ring Co2 are integral with the partition C12; which partition C12 is integral with the envelope E.
- the module comprises two actuators in the closed position; said elements Ai 1, Col 1, A21, Pl 1 are situated to the right of the longitudinal axis Dz; reciprocally, said elements A 12, Col 2, A22, P12 are situated to the left of the longitudinal axis Dz.
- a module comprises two actuators, as presented above, in the open position, in a longitudinal section.
- a plane P orthogonal to the longitudinal axis Dz, intersects this axis Dz at a point O, which point O is the center of symmetry of the module; indeed, the two motors Ml and M2 are located on either side of the plane P, mounted head to tail with respect to the point O.
- Each of said motors drives by their shaft, respectively Aol, Ao2, their plate, respectively Pol, Po2, which drive in rotation their shaft, respectively Al 1, A 12.
- said externally-toothed wheels are integral with their plate, respectively Pl i, P 12; which trays Pl i, P12 rotate their shaft, respectively A21, A22.
- the connecting rods B1, B2 are in turn driven by their shaft, respectively A21, A22; which rods B1, B2 actuate their respective pusher, represented by their hemispherical portion, respectively Pol 1, Pol 2.
- Said motor Ml and said internal gear ring Col are integral with the wall Cil; which partition Cil is integral with the envelope E.
- Said motor M2 and said internal gear ring Co2 are integral with the partition C12; which partition C12 is integral with the envelope E.
- the module comprises two actuators in the open position; said elements Ai 1, Col 1, A 21, Pl i are located to the left of the longitudinal axis Dz; reciprocally, said elements A12, Col2, A22, P12 are situated to the right of the longitudinal axis Dz.
- the actuators are respectively indicated in the closed position and in the open position; programming the motors Ml, M2 allows the elongations, on either side of the longitudinal axis Dz, can be asymmetrical and modulated in time according to the propulsion mode as described above.
- the symmetrical modulation of said elongations makes it possible to implement the propulsion mode known as "dragging"; the asymmetrical modulation of said elongations makes it possible to implement the so-called "lift-swimming" propulsion mode.
- each module corresponds to two elongations that can be modulated on either side of the longitudinal axis Dz.
- a schematic structure of a submarine underwater vehicle comprises an elongated body E of square section for example , as shown in the previous Figures 3a, 4a, and longitudinal axis DO; Moreover, this elongated body E is closed at its two ends by two hemispherical walls.
- the center of the elongate body E is the point O, the point of intersection of an axis D1 with the axis DO, the axis D1 being orthogonal to the axis DO.
- a central zone ZO is reserved for different organs necessary for the propulsion of the vehicle and the missions assigned to it; for example, the ZO zone may include the power supply batteries, the electronic actuator control systems of the actuators, described above, the elevators, the ballasts, the navigation system and the gyroscopic unit.
- zones Z1, Z2 are reserved for modules each comprising two actuators, as described above.
- the zone ZI includes:
- zone Z2 comprises:
- Eight port actuators Al, A2b, A3b, A4b, A5b, A6b, A7b, A8b, and eight starboard actuators: Alt, A2t, A3t, A4t, A5t, A6t, A7t, A8t. For reasons of simplicity of representation, only the connecting rods and the associated pushers of said actuators are shown.
- a thin wall PM surrounds the elongated body E, being integral with said body E near each of its two ends, and near the central zone Z0. This thin wall PM ensures the tightness of the assembly, the passage openings of the connecting rods through the elongated body E being not sealed.
- the sixteen pushers that deform the thin wall PM are represented according to different elongations perpendicular to the axis OD, the elongations being symmetrical on either side of the axis DO.
- the amplitudes of the elongations being variable according to the principle represented in the previous figures 1a-1g, the propagation of the traveling wave proceeding from zone ZI to zone Z2, the schematic structure of the vehicle under -marine will move in the opposite direction; the propulsion mode of the vehicle is the so-called "dragging".
- the maintained wave will allow the schematic structure of the underwater vehicle to move in the same direction; the mode of propulsion of the vehicle is that called “swimming by lift".
- the combination of these two modes of propulsion namely the so-called “swimming by drag” mode, followed by the so-called “swimming by "lift”, allows a start with a strong acceleration, followed by a propulsion efficiency increasing with speed.
- an asymmetry of the amplitudes of the port / starboard elongations, for each of the said modes of propulsion, will make it possible to make a change of course, according to the differences between the elongations; in fact, at the magnitudes of unchanged elongations on the starboard side, the corresponding elongations on the port side are proportionately smaller, the vehicle will change course on the port side; conversely, at the magnitudes of the unchanged elongations on the port side, the corresponding starboard-side elongations are proportionately smaller, the vehicle will change course by starboard.
- the rate of change of course will be a function of the difference between the amplitudes of the starboard elongations with respect to the corresponding amplitudes of the port elongations.
- the seal of the assembly is provided essentially by the thin wall PM; this first embodiment has the advantage of a certain simplicity of implementation; nevertheless, the various actuators will be subjected to the surrounding pressure of the water, and some of the electrical energy stored on board the vehicle will be dissipated for this purpose.
- a schematic structure of a submarine underwater vehicle comprises an elongated body E of square section for example , as shown in the previous Figures 3a, 4a, and longitudinal axis D0; Moreover, this elongated body E is closed at its two ends by two hemispherical walls.
- the center of the elongated body E is the point O, the point of intersection of an axis D1 with the axis D0, the axis D1 being orthogonal to the axis D0.
- a central zone ZO is reserved for different organs necessary for the propulsion of the vehicle and the missions assigned to it; for example, the ZO zone may include the power supply batteries, the electronic actuator control systems of the actuators, described above, the elevators, the ballasts, the navigation system and the gyroscopic unit.
- zones Z1, Z2 are reserved for modules each comprising two actuators, as described above.
- the zone ZI includes:
- zone Z2 includes:
- Eight port actuators Al, A2b, A3b, A4b, A5b, A6b, A7b, A8b, and eight starboard actuators: Alt, A2t, A3t, A4t, A5t, A6t, A7t, A8t.
- Each of the three cylindrical bodies comprises orifices passing through said cylindrical bodies whose axes are substantially parallel to the axis OD.
- a thin wall PM surrounds the elongate body E, being integral with said body E near each of its two ends, surrounding said cylindrical bodies CCI, CC2, and in the vicinity of the central zone ZO, surrounding the cylindrical body CCO. This thin wall PM does not seal the assembly, the passage openings of the rods through the elongate body E being sealed.
- the water located between the envelope E and the thin wall PM, can circulate freely through the orifices of said cylindrical bodies CCO, CCI, CC2; thus, the various actuators will not be subjected to the surrounding pressure of the water, and no electrical energy stored in the vehicle will be dissipated for this purpose.
- a schematic structure of a submarine underwater vehicle comprises an elongate body E of square section for example , as shown in the previous Figures 3a, 4a, and longitudinal axis D0; Moreover, this elongated body E is closed at its two ends by two hemispherical walls.
- the center of the elongated body E is the point O, the point of intersection of an axis D1 with the axis D0, the axis D1 being orthogonal to the axis D0.
- zone Z0 is reserved for different organs necessary for the propulsion of the vehicle and the missions assigned to it; for example, zone Z0 could include power supply batteries, electronic control systems Actuator motors, described above, elevators, ballasts, navigation system and gyro.
- zones Z1, Z2 are reserved for modules each comprising two actuators, as described above.
- the zone ZI includes:
- zone Z2 includes:
- Eight port actuators Al, A2b, A3b, A4b, A5b, A6b, A7b, A8b, and eight starboard actuators: Alt, A2t, A3t, A4t, A5t, A6t, A7t, A8t.
- a thin wall PM surrounds the elongated body E, being integral with said body E near each of its two ends, surrounding said cylindrical bodies CCI, CC2, and in the vicinity of the central zone Z0, surrounding the cylindrical body CCO. This thin wall PM does not seal the assembly, the passage openings of the rods through the elongate body E being sealed.
- the water, located between the envelope E and the thin wall PM can circulate freely through the orifices of said cylindrical body CCO, knowing that the elongations will be defined according to additional criterion, namely that the volume of water, located between the thin wall PM and the envelope E, must remain constant at every moment.
- the various actuators will not be subjected to the surrounding pressure of the water, and no electrical energy stored in the vehicle will be dissipated for this purpose.
- the thin wall PM may be an acoustic impedance matching between the surrounding aquatic environment and the envelope E; indeed, the acoustic impedance of the envelope E is significantly greater than that of water; on the other hand, the acoustic impedance of the medium consisting of the thin wall PM and the water situated between the envelope E and the said thin wall PM will be of intermediate value between that of the water and that of the envelope E; this set may be an acoustic impedance matching, attenuating the reflection coefficient sonar waves and thus reduce the sonar signature of the vehicle.
- this mode of propulsion will be able to answer the requirements of maneuverability and discretion imposed on the underwater vehicles of small dimensions for discrete missions.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Aviation & Aerospace Engineering (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Ocean & Marine Engineering (AREA)
- Toys (AREA)
Abstract
Procédé de propulsion sous-marine d'une plate-forme immergée comportant une structure rigide de forme allongée selon un axe principal et au moins un élément déformable allongé (PM), porté par ladite structure rigide, lequel procédé consiste à engendrer une déformation dudit élément déformable (PM) grâce à une pluralité d'actionneurs solidaires de ladite structure rigide, sous forme d'onde progressive dans le sens inverse de la propulsion durant la phase d'accélération ou dans le sens direct durant la phase de décélération, et en une déformation sous forme d'onde entretenue durant la phase de croisière, la déformation dudit élément déformable (PM) étant dirigée essentiellement selon l'axe principal de déplacement (Do), les élongations des susdites ondes progressive et entretenue étant orientées perpendiculairement audit axe principal de la structure rigide.
Description
PROCEDE ET DISPOSITIF DE PROPULSION SOUS-MARINE BASEE SUR LA TRAINEE ET LA PORTANCE D'UN ELEMENT DEFORMABLE DESTINES A DES MISSIONS DISCRETES.
La présente invention concerne un procédé et un dispositif de propulsion sous- marine basée sur la traînée et la portance d'un élément déformable destinés à des missions discrètes.
Elle convient tout particulièrement à la propulsion de petits sous-marins sans équipage et entièrement autonomes (UUV : "Unmanned Underwater Vehicles") devant effectuer des missions en milieu hostile et qui nécessitent par conséquent manœuvrabilité et discrétion.
D'une façon générale, on sait qu'il est d'une importance primordiale que les sous-marins militaires soient capables de vitesses aussi élevées que possible en plongée, et que cette marche en vitesse soit aussi silencieuse que possible sous peine d'être facilement et rapidement détectée.
Ces deux exigences se conjuguent pour faire donner aux sous-marins des formes profilées évitant toute formation de remous constituant des pertes d'énergie et des sources de bruit. La coque répond par conséquent aux exigences de l'hydrodynamique laminaire ; les formes sont arrondies et les raccordements entre appendices sont soignés.
Néanmoins l'élément propulsif, en l'occurrence l'hélice, est le principal générateur de bruit acoustique ; il faut notamment réduire l'intensité des vibrations engendrées par la rotation des pales et les éventuels phénomènes de
cavitation caractérisés par la formation de bulles de vapeur sur le dos des pales dans la région de l'arête de sortie.
Des soins particuliers ont été apportés concernant la réalisation des hélices de sous-marins ; néanmoins, la transposition des caractéristiques obtenues aux hélices de très petites dimensions destinées aux UUV n'est pas aisée.
Dans le milieu subaquatique, il existe bien évidemment d'autres techniques de propulsion et notamment celles utilisées par les poissons ; elles allient pour la plupart efficacité, manoeuvrabilité et discrétion.
D'une manière générale, on sait que les poissons nagent selon des modes comparables aux deux principales techniques de rame qui tirent parti soit de la traînée, soit de la portance.
En effet, certains poissons qui se propulsent grâce à la traînée s'appuient sur l'eau comme le font les rameurs ; quand un rameur tire sur son aviron, tournant le dos à la proue, il déplace sa pelle (partie immergée de la rame) de l'avant vers l'arrière du bateau ; la force de traînée qui s'exerce sur la pelle s'oppose à son mouvement ; dirigée vers l'avant, elle constitue la force propulsive du bateau. Ainsi, pour l'accroître, le rameur s'efforce de présenter une surface maximale à l'eau pendant qu'il tire sur sa pelle immergée ; puis la ramène de l'arrière vers l'avant du bateau, en la sortant de l'eau afin d'éviter de produire une force de traînée de sens contraire.
La rascasse se propulse ainsi en utilisant la force de traînée : elle avance en poussant sur ses nageoires latérales déployées, puis elle les couche pour les ramener vers l'avant en minimisant la traînée.
Cette "nage par traînée" a l'inconvénient ne n'être efficace que si la vitesse de déplacement de la nageoire est supérieure à la vitesse relative de l'eau par rapport au corps du poisson : plus le poisson nage rapidement, moins ses nageoires le propulsent. Inversement, elle est d'autant plus efficace que la vitesse est faible et par conséquent elle permet un démarrage avec une forte accélération.
D'autres poissons se propulsent grâce à la "portance", c'est-à-dire selon une technique proche de la godille. La portance est dirigée perpendiculairement au mouvement de la nageoire par rapport à l'eau. Afin que cette force soit dirigée vers l'avant, le poisson fait aller et venir sa nageoire caudale perpendiculairement à la direction de progression, d'une manière identique à celle de la godille, technique de propulsion des bateaux à une seule rame.
En effet, la technique de la godille immergée à l'arrière du bateau consiste à effectuer un va-et-vient de la gauche vers la droite en changeant l'inclinaison à chaque passage.
La godille a de multiples avantages par rapport à l'aviron :
- la continuité de son mouvement lui confère une grande souplesse,
- son efficacité augmente avec la vitesse.
Les meilleurs nageurs des mers exploitent la technique de la godille ; les poissons et les cétacés possèdent un corps massif suivi d'une queue mince, laquelle est terminée par une large nageoire ; verticale chez les requins et les thons, la nageoire caudale est horizontale chez les dauphins et les baleines.
L'invention a donc plus particulièrement pour but de supprimer les inconvénients liés à l'utilisation d'hélices dans le cadre de missions discrètes et de bénéficier des techniques dites de "traînée" et de "portance".
Elle propose un procédé de propulsion sous-marine d'une plate-forme immergée comportant une structure rigide de forme allongée selon un axe principal et au moins un élément déformable allongé, porté par ladite structure rigide, sachant qu'il consiste à engendrer une déformation dudit élément déformable grâce à une pluralité d'actionneurs solidaires de ladite structure rigide, sous forme d'onde progressive dans le sens inverse de la propulsion durant la phase d'accélération ou dans le sens direct durant la phase de décélération, et en une déformation sous forme d'onde entretenue durant la phase de croisière, la déformation dudit élément déformable étant dirigée
essentiellement selon l'axe principal de déplacement, les élongations des susdites ondes progressives et entretenues étant orientées perpendiculairement audit axe principal de la structure rigide. Ainsi, la déformation sous forme d'onde progressive inverse dans le sens de la propulsion permettra de mettre en mouvement la plate-forme immergée, l'accélération étant générée par la force de traînée ; la déformation sous forme d'onde entretenue permettra le déplacement de ladite plate-forme, la propulsion utilisant la force de portance ; la déformation sous forme d'onde progressive directe permettra de ralentir ladite plate-forme immergée, la décélération étant générée par la force de traînée.
Bien entendu, l'accélération, la décélération et la vitesse de croisière de la plate-forme immergée seront déterminées par la période du train d'ondes : plus la période est faible ou plus la fréquence est élevée, plus la vitesse de déplacement sera élevée. La fréquence du train d'ondes peut être comparée, par analogie, à la vitesse de rotation d'une hélice conventionnelle.
Par ailleurs, plus l'amplitude des élongations des déformations est grande, plus la force propulsive est importante. L'amplitude du train d'ondes peut être comparée, par analogie, au pas d'une hélice conventionnelle à pas variable.
Avantageusement, une dissymétrie des élongations des déformations par rapport à l'axe principal de déplacement permettra de créer une composante de la force de propulsion, normale au déplacement de la plate-forme.
Ainsi, une dissymétrie telle que les élongations côté tribord soient plus importantes que celles côté bâbord, provoquera un virage bâbord de la plateforme immergée ; inversement, une dissymétrie telle que les élongations côté tribord soient plus faibles que celles côté bâbord, provoquera un virage tribord de la plate- forme immergée.
De même, une dissymétrie telle que les élongations inférieures soient plus importantes que les élongations supérieures, provoquera l'ascension de la plate-forme immergée ; inversement, une dissymétrie telle que les élongations inférieures soient plus faibles que les élongations supérieures, provoquera la plongée de la plate- forme immergée.
Par conséquent, ce mode de propulsion permettra d'effectuer les manœuvres de virage tribord/bâbord, ascension/plongée sans aucune gouverne. Un mode d'exécution de l'invention sera décrit ci-après, à titre d'exemple non limitatif, avec référence aux dessins annexés dans lesquels :
- les figures la, lb, le, ld, le, lf, et lg représentent schématiquement un élément déformable sous forme d'onde sinusoïdale progressive,
- les figures 2a, 2b, 2c, 2d, 2e, 2f, et 2g représentent schématiquement un élément déformable sous forme d'onde sinusoïdale entretenue,
- les figures 3a et 3b représentent schématiquement la structure d'un actionneur en position fermée,
- les figures 4a et 4b représentent schématiquement la structure d'un actionneur en position ouverte,
- la figure 5 représente schématiquement un module comprenant deux actionneurs en position fermée,
- la figure 6 représente schématiquement un module comprenant deux actionneurs en position ouverte,
- la figure 7 représente schématiquement une première version d'une structure immergée selon l'invention,
- la figure 8 représente schématiquement une seconde version d'une structure immergée selon l'invention, et
- la figure 9 représente schématiquement une troisième version d'une structure immergée selon l'invention.
Dans l'exemple représenté sur les figures la, lb, le, ld, le, lf, et lg, un élément déformable sous forme d'onde sinusoïdale progressive est schématiquement indiqué par deux courbes Cl, C2, situées de part et d'autre d'une droite D ; la figure la représente l'élément déformable à l'instant t = 0, la figure lb à l'instant t = T/12, la figure le à l'instant t = 2T/12, la figure ld à l'instant t = 3T/12, la figure le à l'instant t = 4T/12, la figure lf à l'instant t = 5T/12, et la figure lg à l'instant t = 6T/12, T étant la période au bout de laquelle l'élément déformable se retrouve à l'état initial. Si le mouvement donné à l'origine est un mouvement sinusoïdal yo = a sin rot, le mouvement qui se propage suivant l'axe des abscisses a pour équation :
a étant l'amplitude du mouvement sinusoïdal, ω étant la pulsation du mouvement sinusoïdal, v étant la vitesse de propagation selon l'axe des abscisses.
Les différents points de la corde représentant l'élément déformable sont animés de mouvements vibratoires de même période et de même amplitude ; le mouvement d'un point M de la corde, situé à une distance x de l'origine, présente sur le mouvement du point A de la corde sur l'axe des ordonnées, un retard τ = x / v, et une différence de phase φ = 2π τ / T, T étant la période du mouvement sinusoïdal.
En posant λ = v T, λ étant la longueur d'onde du mouvement vibratoire, l'équation du mouvement d'un point de la corde, à l'instant t et situé à l'abscisse x, peut être mise sous la forme :
Les élongations définissant la déformation des courbes Cl, C2 sont définies par douze segments équidistants et orthogonaux à la droite D, référencés ainsi :
- concernant la courbe Cl : les segments 11, 21, 31, 41, 51, 61, 71, 81, 91, 101, 111, 121,
concernant la courbe C2 : les segments 12, 22, 32, 42, 52, 62, 72, 82, 92, 102, 112, 122.
Les valeurs de ces élongations sont données par le tableau suivant, A étant l'amplitude maximum de la déformation :
A l'instant t = 0 11 = 0 12 = 0
21 = A sin π/6 22 = A sinπ/6 31 = A sin π/3 32 = A sinπ/3
41 = A 42 = A
51 = A sin π/3 52 = A sinπ/3
61 = A sin π/6 62 = A sinπ/6
71 = 0 72 = 0
81 = A sin π/6 82 = A sinπ/6
91 = A sin π/3 92 = A sinπ/3
101 = A 102 = A
111 = A sin π/3 112 = A sinπ/3
121 = A sin π/6 122 = A sinπ/6
A l'instant t = T/12 11 = A sin π/6 12 = A sinπ/6
21 = 0 22 = 0
31 = A sin π/6 32 = A sinπ/6
41 = A sin π/3 42 = A sinπ/3
51 = A 52 = A
61 = A sin π/3 62 = A sinπ/3
71 = A sin π/6 72 = A sinπ/6
81 = 0 82 = 0
91 = A sin π/6 92 = A sinπ/6
101 = A sin π/3 102 = A sinπ/3
111 = A 112 = A
121 = A sin π/3 122 = A sinπ/3,
et ainsi de suite pour t = 2T/12, t = 3T/12, t = 4T/12, t = 5T/12, et t = 6T/12.
On peut constater qu'à l'instant t = T/2, une demie arche de sinusoïde s'est déplacée vers la droite d'une distance égale à la moitié de la longueur de la droite D. Ainsi, la modulation d'amplitude dans le temps des différents segments équidistants et orthogonaux à la droite D permet de déformer une structure sous forme d'une onde sinusoïdale progressive, le sens du déplacement de cette onde progressive étant défini par la valeur positive ou négative du paramètre t.
Dans le cas présent, la déformation symétrique sous forme sinusoïdale progressive de la structure définie par les courbes Cl, C2 s'effectue de la gauche vers la droite ; ainsi, la structure se déplacera de la droite vers la gauche en exploitant le principe de propulsion dit de la « nage par traînée ».
A amplitude constante de la déformation, la vitesse de déplacement de la structure, en régime établi, est inférieure, voire proche de la vitesse de déplacement de l'onde progressive, compte tenu des forces de frottement dues à l'écoulement du fluide autour de la structure.
En phase d'accélération, la variation de la vitesse de déplacement de la structure est fonction de la variation de l'amplitude de l'onde progressive et de la variation de la vitesse de déplacement de celle-ci.
En phase de décélération, la variation de la vitesse de déplacement de la structure est fonction de la variation de l'amplitude de l'onde progressive et de la variation de la vitesse de déplacement de l'onde progressive, le sens de déplacement de celle-ci étant le même que celui de la structure.
Dans l'exemple représenté sur les figures 2a, 2b, 2c, 2d, 2e, 2f, et 2g, un élément déformable sous forme d'onde sinusoïdale entretenue est schématiquement indiqué par deux courbes Cl, C2, situées de part et d'autre d'une droite D ; la figure 2a représente l'élément déformable à l'instant t = 0, la figure 2b à l'instant t = T/12, la figure 2c à l'instant t = 2T/12, la figure 2d à l'instant t = 3T/12, la figure 2e à l'instant t = 4T/12, la figure 2f à l'instant t = 5T/12, et la figure 2g à l'instant t = 6T/12, T étant la période au bout de laquelle l'élément déformable se retrouve à l'état initial. Les élongations définissant la déformation des courbes Cl, C2 sont définies par douze segments équidistants et orthogonaux à la droite D, référencés ainsi :
- concernant la courbe Cl : les segments 11, 21, 31, 41, 51, 61, 71, 81,
91, 101, 111, 121,
- concernant la courbe C2 : les segments 12, 22, 32, 42, 52, 62, 72, 82,
92, 102, 112, 122.
Les valeurs de ces élongations sont données par le tableau suivant, A étant l'amplitude maximum de la déformation :
A l'instant t = 0 11 = 0 12 = A
21 = 0.5 A (l-sin π/3) 22 = 0.5 A (1+sin π/3)
31 = 0.5 A (l-sin π/6) 31 = 0.5 A (1+sin π/6)
41 = 0.5 A 42 = 0.5 A
51 = 0.5 A (1+sin π/6) 52 = 0.5 A (l-sin π/6)
61 = 0.5 A (l+sin π/3) 62 = 0.5 A (l-sin π/3)
71 = A 72 = 0
81 = 0.5 A (1+sin π/3) 82 = 0.5 A (l-sin π/3)
91 = 0.5 A (1+sin π/6) 92 = 0.5 A (l-sin π/6)
101 - 0.5 A 102 = 0.5 A
111 = 0.5 A (l-sin π/6) 112 = 0.5 A (1+sin π/6)
121 = 0.5 A (l-sin π/3) 122 = 0.5 A (1+sin π/3)
A l'instant t = T/12 11 = 0.5 A (1-sin π/3) 12 = 0.5 A (1+sin π/3)
21 = 0 22 = A
31 = 0.5 A (1-sin π/3) 32 = 0.5 A (1+sin π/3)
41 - 0.5 A (1-sin π/6) 41 = 0.5 A (1+sin π/6)
51 - 0.5 A 52 = 0.5 A
61 - 0.5 A (1+sin π/6) 62 = 0.5 A (1-sin π/6)
71 = 0.5 A (1+sin π/3) 72 = 0.5 A (1-sin π/3)
81 = A 82 = 0
91 = 0.5 A (1+sin π/3) 92 = 0.5 A (1-sin π/3)
101 = 0.5 A (1+sin π/6) 102 = 0.5 A (1-sin π/6)
111 = 0.5 A 112 = 0.5 A
121 = 0.5 A (1-sin π/6) 122 = 0.5 A (1+sin π/6) et ainsi de suite pour t = 2T/12, t = 3T/12, t = 4T/12, t = 5T/12, et t = 6T/12.
On peut constater, qu'à l'instant t = T/2, une demie arche de sinusoïde s'est déplacée vers la droite d'une distance égale à la moitié de la longueur de la droite D. Ainsi, la modulation d'amplitude dans le temps des différents segments équidistants et orthogonaux à la droite D permet de déformer une structure sous forme d'une onde sinusoïdale entretenue.
Dans le cas présent, la déformation sous forme sinusoïdale entretenue de la structure définie par les courbes Cl, C2 s'effectue symétriquement par rapport à la droite D ; ainsi, la structure se déplacera en exploitant le principe de propulsion dit de la « nage par portance ».
A amplitude constante de la déformation, la vitesse de déplacement de la structure, en régime établi, est fonction de la durée de la période ; en effet, plus la durée de la période est courte, ou plus la fréquence de déformation est élevée, plus la vitesse de déplacement est élevée.
A noter que le sens de déplacement de la structure sera défini par la vitesse initiale de déplacement de la structure ; la variation de vitesse sera fonction de la variation de la fréquence de déformation et de l'amplitude de celle-ci.
Avantageusement, la combinaison des deux modes de propulsion, à savoir le mode dit de la « nage par traînée », suivi du mode dit de la « nage par portance », permet un démarrage avec une forte accélération, suivi d'une efficacité de propulsion augmentant avec la vitesse.
Cette combinaison des deux modes de propulsion allie efficacité et discrétion, notamment à destination des structures immergées telles que les UUV.
L'élément déformable constitué d'une paroi mince immergée devra par conséquent comporter une série d'actionneurs dont les élongations seront conformes à celles-ci décrites ci-dessus selon le mode de propulsion ; en d'autres termes, les élongations devront être compatibles des deux modes de propulsion en amplitude et en synchronisation temporelle ; par ailleurs, la fréquence et l'amplitude des oscillations générées par les élongations devront être variables afin de répondre aux exigences d'accélération et de décélération.
Dans l'exemple représenté sur les figures 3a et 3b, un actionneur en position fermée est indiqué selon une coupe transversale (figure 3 a) et selon une coupe longitudinale (figure 3b).
Selon les figures 3a et 3b, une enveloppe E, de section carrée, constitue la structure supportant les actionneurs, Dz étant son axe longitudinal, passant par un point O, point d'intersection, dans un plan perpendiculaire à l'axe Dz, d'un axe Dy selon les ordonnées et d'un axe Dx selon les abscisses.
Un couronne à denture interne Co de diamètre primitif D, de centre O, solidaire de l'enveloppe E, est représentée schématiquement par le cercle C sur la figure 3 a.
Une roue à denture externe Col de diamètre primitif D/2, de centre 01, constituant un satellite à l'intérieur de la susdite couronne à denture interne Co, est représentée schématiquement par le cercle Cl sur la figure 3a, son centre 01 étant distant de D/4 par rapport au centre O sur l'axe Dx.
Lesdites couronnes à denture interne Co et roue à denture externe Col ont un module de denture identique.
Ladite roue à denture externe Col est entraînée dans un mouvement circulaire selon un cercle de diamètre D/2, centré en O, par l'intermédiaire d'un plateau Po, lequel est solidaire d'un arbre Ao, centré autour de l'axe Dz, ledit arbre Ao est solidaire du rotor d'un moteur M ; ledit entraînement est réalisé grâce à un arbre Al, centré autour d'un axe Dl, ledit arbre Al est solidaire dudit plateau Po, ladite roue à denture externe Col étant libre en rotation autour dudit arbre Al.
Un plateau circulaire PI, solidaire de la roue à denture externe Col, centré selon l'axe Dl, comporte un arbre A2, centré autour d'un axe D2 ; ledit axe D2 est distant de D/2 par rapport au centre O sur l'axe Dx.
Une cloison transversale Cl permet de solidariser à l'enveloppe E, d'une part le stator du moteur M et d'autre part, la susdite couronne à denture interne Co.
Ainsi, comme représenté sur la figure 3a, l'entraînement en rotation de la roue à denture externe, représentée par le cercle Cl, autour du point O, provoque sa rotation sur elle-même autour de son centre 01, lequel centre 01 décrit par conséquent un cercle de diamètre D/2 autour du point O ; le point O2, situé sur le cercle primitif Cl de la roue à denture externe, se déplace selon l'axe Dx d'une amplitude totale égale à D, diamètre primitif de la couronne à denture interne Co, de part et d'autre du centre O.
Il s'agit en l'occurrence d'un mouvement de type bielle/manivelle, transformant le mouvement de rotation effectué par l'arbre Ao du moteur M, en un mouvement de va et vient de l'arbre A2. Ainsi, comme représenté sur la figure 3b, une bielle B, entraînée par l'arbre A2, actionne un poussoir Po, lequel poussoir Po comprend un volume hémisphérique Pol et deux ailes de guidage Po2, Po3, coulissant de part et d'autre de l'enveloppe E. Ainsi, dans l'exemple représenté sur les figures 3a et 3b, l'actionneur est en position fermée, les centres Ol et O2, situés sur l'axe Dx, sont à droite de l'axe Dy, distants respectivement de D/4 et D/2 par rapport au centre O.
Dans l'exemple représenté sur les figures 4a et 4b, un actionneur en position ouverte est indiqué selon une coupe transversale (figure 4a) et selon une coupe longitudinale (figure 4b).
Ainsi, comme représenté sur la figure 4a, l'entraînement en rotation de la roue à denture externe, représentée par le cercle Cl, autour du point O, provoque sa rotation sur elle-même autour de son centre Ol, lequel centre Ol décrit par conséquent un cercle de diamètre D/2 autour du point O ; le point O2, situé sur le cercle primitif Cl de la roue à denture externe, se déplace selon l'axe Dx d'une amplitude totale égale à D, diamètre primitif de la couronne à denture interne Co, de part et d'autre du centre O.
Ainsi, comme représenté sur la figure 4b, la bielle B, entraînée par l'arbre A2, actionne le poussoir Po, lequel poussoir Po comprend le volume hémisphérique Pol et les deux ailes de guidage Po2, Po3, coulissant de part et d'autre de l'enveloppe E.
Ainsi, dans l'exemple représenté sur les figures 4a et 4b, l'actionneur est en position ouverte, les centres 01 et O2, situés sur l'axe Dx, sont à gauche de l'axe Dy, distants respectivement de D/4 et D/2 par rapport au centre O. Avantageusement, la susdite couronne à denture interne Co pourra comporter 100 dents de module 0,4 ; la susdite roue à denture externe Col pourra comporter 50 dents de module 0,4 ; le susdit moteur M pourra être de type moteur pas à pas pouvant comporter 200 pas par tour. Cette structure mérite d'être compacte et permet d'effectuer des mouvements de translation du poussoir à partir d'un mouvement de rotation défini par pas de 1,8 degré.
Dans l'exemple représenté sur la figure 5, un module comprend deux actionneurs, tels que présentés précédemment, en position fermée, selon une coupe longitudinale.
Ainsi, un plan P, orthogonal à l'axe longitudinal Dz, coupe cet axe Dz en un point O, lequel point O est le centre de symétrie du module ; en effet, deux moteurs Ml et M2 sont situés de part et d'autre du plan P, montés tête-bêche par rapport au point O.
Chacun desdits moteurs entraîne par leur arbre, respectivement Aol, Ao2, leur plateau, respectivement Pol, Po2, lesquels entraînent en rotation leur arbre, respectivement Al 1, A 12.
Autour desdits arbres Ai l, A 12, tournent librement leur roue à denture externe, respectivement Col 1, Col 2 ; lesquelles roues à denture externe Col 1, Col 2 constituent le satellite de leur couronne à denture interne, respectivement Col, Co2.
Par ailleurs, lesdites roues à denture externe, respectivement Col 1, Col 2, sont solidaires de leur plateau, respectivement Pl i, P12 ; lesquels plateaux Pl i, P12 entraînent en rotation leur arbre, respectivement A21, A22.
Les bielles Bl, B2 sont entraînées à leur tour par leur arbre, respectivement A21, A22 ; lesquelles bielles Bl, B2 actionnent leur poussoir respectif, représentés par leur partie hémisphérique, respectivement Pol 1, Pol2.
Ledit moteur Ml et ladite couronne à denture interne Col sont solidaires de la cloison Cil ; laquelle cloison Cil est solidaire de l'enveloppe E.
Ledit moteur M2 et ladite couronne à denture interne Co2 sont solidaires de la cloison C12 ; laquelle cloison C12 est solidaire de l'enveloppe E.
Ainsi, dans l'exemple représenté sur la figure 5, le module comprend deux actionneurs en position fermée ; lesdits éléments Ai l, Col l, A21, Pl i sont situés à droite de l'axe longitudinal Dz ; réciproquement, lesdits éléments A 12, Col 2, A22, P12 sont situés à gauche de l'axe longitudinal Dz.
Dans l'exemple représenté sur la figure 6, un module comprend deux actionneurs, tels que présentés précédemment, en position ouverte, selon une coupe longitudinale.
Ainsi, un plan P, orthogonal à l'axe longitudinal Dz, coupe cet axe Dz en un point O, lequel point O est le centre de symétrie du module ; en effet, les deux moteurs Ml et M2 sont situés de part et d'autre du plan P, montés tête-bêche par rapport au point O.
Chacun desdits moteurs entraîne par leur arbre, respectivement Aol, Ao2, leur plateau, respectivement Pol, Po2, lesquels entraînent en rotation leur arbre, respectivement Al 1, A 12.
Autour desdits arbres Ai l, A12, tournent librement leur roue à denture externe, respectivement Col 1, Col 2 ; lesquelles roues à denture externe Col 1, Col 2 constituent le satellite de leur couronne à denture interne, respectivement Col, Co2.
Par ailleurs, lesdites roues à denture externe, respectivement Col 1, Col 2, sont solidaires de leur plateau, respectivement Pl i, P12 ; lesquels plateaux Pl i, P12 entraînent en rotation leur arbre, respectivement A21, A22.
Les bielles Bl, B2 sont entraînées à leur tour par leur arbre, respectivement A21, A22 ; lesquelles bielles Bl, B2 actionnent leur poussoir respectif, représentés par leur partie hémisphérique, respectivement Pol 1, Pol2.
Ledit moteur Ml et ladite couronne à denture interne Col sont solidaires de la cloison Cil ; laquelle cloison Cil est solidaire de l'enveloppe E.
Ledit moteur M2 et ladite couronne à denture interne Co2 sont solidaires de la cloison C12 ; laquelle cloison C12 est solidaire de l'enveloppe E.
Ainsi, dans l'exemple représenté sur la figure 6, le module comprend deux actionneurs en position ouverte ; lesdits éléments Ai l, Col l, A21, Pl i sont situés à gauche de l'axe longitudinal Dz ; réciproquement, lesdits éléments A12, Col2, A22, P12 sont situés à droite de l'axe longitudinal Dz.
Dans les exemples représentés sur les figures 5 et 6, les actionneurs sont indiqués respectivement en position fermée et en position ouverte ; la programmation des moteurs Ml, M2 autorise que les élongations, de part et d'autre de l'axe longitudinale Dz, peuvent être dissymétriques et modulées dans le temps selon le mode de propulsion comme décrit précédemment. En effet, la modulation symétrique desdites élongations permet de mettre en œuvre le mode propulsion dit de la « nage par traînée » ; la modulation dissymétrique desdites élongations permet de mettre en œuvre le mode de propulsion dit de la « nage par portance ».
Ainsi, à chaque module correspond deux élongations modulables de part et d'autre de l'axe longitudinal Dz.
Avantageusement, la mise en série de plusieurs modules pourra constituer un ensemble de propulsion ; la multiplicité de modules, tels que décrits précédemment, permettra une meilleure définition de la propulsion ; en effet, une douzaine de tels modules pourra constituer un ensemble dont l'élément déformable pourra répondre aux exigences des missions discrètes.
Dans l'exemple représenté sur la figure 7, une structure schématisée d'un véhicule sous-marin de type (UUV : "Unmanned Underwater Vehicles"), selon un premier mode de réalisation, comprend un corps allongé E, de section carrée par exemple, telle que représentée sur les précédentes figures 3 a, 4a, et d'axe longitudinal DO ; par ailleurs, ce corps allongé E est fermé à ses deux extrémités par deux parois hémisphériques.
Le centre du corps allongé E est le point O, point d'intersection d'un axe Dl avec l'axe DO, l'axe Dl étant orthogonal à l'axe DO.
De part et d'autre de l'axe Dl, une zone centrale ZO est réservée à différents organes nécessaires à la propulsion du véhicule et aux missions qui lui sont attribuées ; à titre d'exemple, la zone ZO pourra comprendre les batteries d'alimentation électrique, les systèmes électroniques de commande des moteurs des actionneurs, décrits précédemment, les gouvernes de profondeur, les ballasts, le système de navigation et la centrale gyroscopique.
De part et d'autre de la zone ZO, deux zones, respectivement ZI, Z2, sont réservées aux modules comprenant chacun deux actionneurs, tels que décrits précédemment.
Ainsi, la zone ZI comprend :
- les actionneurs Alt et Alb constituant le premier module,
- les actionneurs A2t et A2b constituant le deuxième module,
- les actionneurs A3t et A3b constituant le troisième module,
- les actionneurs A4t et A4b constituant le quatrième module,
Ainsi la zone Z2 comprend :
- les actionneurs A5t et A5b constituant le cinquième module,
- les actionneurs A6t et A6b constituant le sixième module,
- les actionneurs A7t et A7b constituant le septième module,
- les actionneurs A8t et Alb constituant le huitième module,
soit huit actionneurs bâbord : Alb, A2b, A3b, A4b, A5b, A6b, A7b, A8b, et huit actionneurs tribord : Alt, A2t, A3t, A4t, A5t, A6t, A7t, A8t. Pour des raisons de simplicité de représentation, seules les bielles et les poussoirs associés desdits actionneurs sont représentés.
Une paroi mince PM entoure le corps allongé E, en étant solidaire dudit corps E à proximité de chacune de ses deux extrémités, ainsi qu'à proximité de la zone centrale Z0. Cette paroi mince PM assure l'étanchéité de l'ensemble, les orifices de passage des bielles au travers du corps allongé E n'étant pas étanches.
Dans l'exemple de la figure 7, les seize poussoirs qui déforment la paroi mince PM sont représentés selon différentes élongations perpendiculaires à l 'axe DO, les élongations étant symétriques de part et d'autre de l'axe DO.
Ainsi, en fonction du temps, les amplitudes des élongations étant variables selon le principe représenté sur les précédentes figures la à lg, la propagation de l'onde progressive s'effectuant de la zone ZI vers la zone Z2, la structure schématisée du véhicule sous-marin se déplacera en sens inverse ; le mode de propulsion du véhicule est celui dit de la « nage par traînée ».
De même, en fonction du temps, si les amplitudes des élongations étant variables selon le principe représenté sur les précédentes figures 2a à 2g, l'onde entretenue permettra à la structure schématisée du véhicule sous-marin de se déplacer dans le même sens ; le mode de propulsion du véhicule est celui dit de la « nage par portance ». Avantageusement, la combinaison de ces deux modes de propulsion, à savoir le mode dit de la « nage par traînée », suivi du mode dit de la « nage par
portance », permet un démarrage avec une forte accélération, suivi d'une efficacité de propulsion augmentant avec la vitesse.
Avantageusement, une dissymétrie des amplitudes des élongations bâbord / tribord, pour chacun desdits modes de propulsion, permettra d'effectuer un changement de cap, selon les écarts entre les élongations ; en effet, à amplitudes des élongations inchangées côté tribord, les élongations correspondantes côté bâbord sont plus faibles proportionnellement, le véhicule changera de cap par bâbord ; réciproquement, à amplitudes des élongations inchangées côté bâbord, les élongations correspondantes côté tribord sont plus faibles proportionnellement, le véhicule changera de cap par tribord.
La vitesse de changement de cap sera fonction de l'écart entre les amplitudes des élongations tribord par rapport aux amplitudes correspondantes des élongations bâbord.
Dans l'exemple représenté sur la figure 7, l'étanchéité de l'ensemble est assurée essentiellement par la paroi mince PM ; ce premier mode de réalisation présente l'avantage d'une certaine simplicité de réalisation ; néanmoins, les différents actionneurs seront soumis à la pression environnante de l'eau, et une partie de l'énergie électrique stockée à bord du véhicule sera dissipée à cet effet.
Dans l'exemple représenté sur la figure 8, une structure schématisée d'un véhicule sous-marin de type (UUV : "Unmanned Underwater Vehicles"), selon un deuxième mode de réalisation, comprend un corps allongé E, de section carrée par exemple, telle que représentée sur les précédentes figures 3a, 4a, et d'axe longitudinal D0 ; par ailleurs, ce corps allongé E est fermé à ses deux extrémités par deux parois hémisphériques.
Le centre du corps allongé E est le point O, point d'intersection d'un axe Dl avec l'axe D0, l'axe Dl étant orthogonal à l'axe D0.
De part et d'autre de l'axe Dl, une zone centrale ZO est réservée à différents organes nécessaires à la propulsion du véhicule et aux missions qui lui sont attribuées ; à titre d'exemple, la zone ZO pourra comprendre les batteries d'alimentation électrique, les systèmes électroniques de commande des moteurs des actionneurs, décrits précédemment, les gouvernes de profondeur, les ballasts, le système de navigation et la centrale gyroscopique.
De part et d'autre de la zone ZO, deux zones, respectivement ZI, Z2, sont réservées aux modules comprenant chacun deux actionneurs, tels que décrits précédemment.
Ainsi, la zone ZI comprend :
- les actionneurs Alt et Al b constituant le premier module,
- les actionneurs A2t et A2b constituant le deuxième module,
- les actionneurs A3t et A3b constituant le troisième module,
- les actionneurs A4t et A4b constituant le quatrième module,
Ainsi, la zone Z2 comprend :
- les actionneurs A5t et A5b constituant le cinquième module,
- les actionneurs A6t et A6b constituant le sixième module,
- les actionneurs A7t et A7b constituant le septième module,
- les actionneurs A8t et Alb constituant le huitième module,
soit huit actionneurs bâbord : Alb, A2b, A3b, A4b, A5b, A6b, A7b, A8b, et huit actionneurs tribord : Alt, A2t, A3t, A4t, A5t, A6t, A7t, A8t.
Pour des raisons de simplicité de représentation, seules les bielles et les poussoirs associés desdits actionneurs sont représentés. Trois corps cylindriques, respectivement CC0, CCI, CC2, sont situés autour de l'enveloppe E, respectivement à proximité de la zone centrale Z0, de
l'extrémité de l'enveloppe E située dans la zone ZI, et de l'extrémité de l'enveloppe E située dans la zone Z2.
Chacun des trois corps cylindriques comprend des orifices traversant lesdits corps cylindriques, dont les axes sont sensiblement parallèles à l'axe DO.
Une paroi mince PM entoure le corps allongé E, en étant solidaire dudit corps E à proximité de chacune de ses deux extrémités, entourant lesdits corps cylindriques CCI, CC2, ainsi qu'à proximité de la zone centrale ZO, entourant le corps cylindrique CCO. Cette paroi mince PM n'assure pas l'étanchéité de l'ensemble, les orifices de passage des bielles au travers du corps allongé E étant étanches.
Lors du mouvement des poussoirs, l'eau, située entre l'enveloppe E et la paroi mince PM, pourra circuler librement grâce aux orifices desdits corps cylindriques CCO, CCI, CC2 ; ainsi, les différents actionneurs ne seront pas soumis à la pression environnante de l'eau, et aucune énergie électrique stockée à bord du véhicule ne sera dissipée à cet effet.
Dans l'exemple représenté sur la figure 9, une structure schématisée d'un véhicule sous-marin de type (UUV : "Unmanned Underwater Vehicles"), selon un troisième mode de réalisation, comprend un corps allongé E, de section carrée par exemple, telle que représentée sur les précédentes figures 3a, 4a, et d'axe longitudinal D0 ; par ailleurs, ce corps allongé E est fermé à ses deux extrémités par deux parois hémisphériques.
Le centre du corps allongé E est le point O, point d'intersection d'un axe Dl avec l'axe D0, l'axe Dl étant orthogonal à l'axe D0.
De part et d'autre de l'axe Dl, une zone centrale Z0 est réservée à différents organes nécessaires à la propulsion du véhicule et aux missions qui lui sont attribuées ; à titre d'exemple, la zone Z0 pourra comprendre les batteries d'alimentation électrique, les systèmes électroniques de commande des
moteurs des actionneurs, décrits précédemment, les gouvernes de profondeur, les ballasts, le système de navigation et la centrale gyroscopique.
De part et d'autre de la zone ZO, deux zones, respectivement ZI, Z2, sont réservées aux modules comprenant chacun deux actionneurs, tels que décrits précédemment.
Ainsi, la zone ZI comprend :
- les actionneurs Alt et Alb constituant le premier module,
- les actionneurs A2t et A2b constituant le deuxième module,
- les actionneurs A3t et A3b constituant le troisième module,
- les actionneurs A4t et A4b constituant le quatrième module,
Ainsi, la zone Z2 comprend :
- les actionneurs A5t et A5b constituant le cinquième module,
- les actionneurs A6t et A6b constituant le sixième module,
- les actionneurs A7t et A7b constituant le septième module,
- les actionneurs A8t et Alb constituant le huitième module,
soit huit actionneurs bâbord : Alb, A2b, A3b, A4b, A5b, A6b, A7b, A8b, et huit actionneurs tribord : Alt, A2t, A3t, A4t, A5t, A6t, A7t, A8t.
Pour des raisons de simplicité de représentation, seules les bielles et les poussoirs associés desdits actionneurs sont représentés. Trois corps cylindriques, respectivement CCO, CCI, CC2, sont situés autour de l'enveloppe E, respectivement à proximité de la zone centrale Z0, de l'extrémité de l'enveloppe E située dans la zone ZI, et de l'extrémité de l'enveloppe E située dans la zone Z2.
Seul le corps cylindrique CCO comprend des orifices traversant ledit corps cylindrique, dont les axes sont sensiblement parallèles à l'axe D0.
Une paroi mince PM entoure le corps allongé E, en étant solidaire dudit corps E à proximité de chacune de ses deux extrémités, entourant lesdits corps cylindriques CCI, CC2, ainsi qu'à proximité de la zone centrale Z0, entourant le corps cylindrique CCO. Cette paroi mince PM n'assure pas l'étanchéité de l'ensemble, les orifices de passage des bielles au travers du corps allongé E étant étanches.
Lors du mouvement des poussoirs, l'eau, située entre l'enveloppe E et la paroi mince PM, pourra circuler librement grâce aux orifices dudit corps cylindrique CCO, sachant que les élongations seront définies selon critère supplémentaire, à savoir que le volume d'eau, situé entre la paroi mince PM et l'enveloppe E, doit resté constant à chaque instant. Les différents actionneurs ne seront pas soumis à la pression environnante de l'eau, et aucune énergie électrique stockée à bord du véhicule ne sera dissipée à cet effet.
Ainsi, la programmation des commandes moteurs pas à pas des différents modules constituant les actionneurs prendra en compte :
- le mode de propulsion dit de la « nage par portance »,
- le mode de propulsion dit de la « nage par traînée »,
- le passage du mode dit de la « nage par portance » au mode dit de la « nage par traînée » en phase d'accélération,
- le passage du mode dit de la « nage par tramée » au mode dit de la « nage par portance » en phase de décélération,
- le changement de cap par bâbord ou par tribord,
l'ensemble de ces déformations de la paroi mince PM, provoquées par les actionneurs, devant répondre au critère de volume constant de l'eau située entre l'enveloppe E et la paroi mince PM.
Ainsi, en répondant à ce critère, aucun flux d'aspiration d'eau ou de refoulement d'eau ne sera provoqué par la déformation de la paroi mince PM.
Avantageusement, la paroi mince PM pourra constituer une adaptation d'impédance acoustique entre le milieu aquatique environnant et l'enveloppe E ; en effet, l'impédance acoustique de l'enveloppe E est nettement supérieure à celle de l'eau ; par contre, l'impédance acoustique du milieu constitué de la paroi mince PM et de l'eau située entre l'enveloppe E et ladite paroi mince PM sera de valeur intermédiaire entre celle de l'eau et celle de l'enveloppe E ; cet ensemble pourra constitué une adaptation d'impédance acoustique, atténuant le coefficient de réflexion des ondes sonar et ainsi réduire la signature sonar du véhicule.
Ainsi, ce mode de propulsion pourra répondre aux exigences de manœuvrabilité et de discrétion imposées aux véhicules sous-marins de faibles dimensions pour des missions discrètes.
Claims
1. Procédé de propulsion sous-marine d'une plate-forme immergée comportant une structure rigide de forme allongée selon un axe principal et au moins un élément déformable allongé (PM), porté par ladite structure rigide, caractérisé en ce qu'il consiste à engendrer une déformation dudit élément déformable (PM) grâce à une pluralité d'actionneurs solidaires de ladite structure rigide, sous forme d'onde progressive dans le sens inverse de la propulsion durant la phase d'accélération ou dans le sens direct durant la phase de décélération, et en une déformation sous forme d'onde entretenue durant la phase de croisière, la déformation dudit élément déformable (PM) étant dirigée essentiellement selon l'axe principal de déplacement (Do), les élongations des susdites ondes progressive et entretenue étant orientées perpendiculairement audit axe principal de la structure rigide.
2. Procédé selon la revendication 1,
caractérisé en ce que l'amplitude et la fréquence de l'onde progressive dans le sens inverse de propulsion sont variables.
3. Procédé selon la revendication 1,
caractérisé en ce que l'amplitude et la fréquence de l'onde progressive dans le sens direct de propulsion sont variables.
4. Procédé selon la revendication 1,
caractérisé en ce que l'amplitude et la fréquence de l'onde entretenue sont variables.
5. Procédé selon la revendication 1,
caractérisé en ce que les élongations des susdites ondes progressive et entretenue, orientées perpendiculairement audit élément déformable (PM), sont dissymétriques par rapport au susdit axe principal de déplacement (Do).
6. Procédé selon les revendications 1 à 5,
caractérisé en ce que les susdites ondes progressive et entretenue sont sinusoïdales.
7. Dispositif pour la mise en œuvre du procédé selon la revendication 1 destiné à la propulsion sous-marine d'une plate-forme immergée comportant une structure rigide de forme allongée selon un axe principal et au moins un élément déformable allongé (PM), porté par ladite structure rigide,
caractérisé en ce qu'une déformation dudit élément déformable (PM) est engendrée grâce à une pluralité d'actionneurs solidaires de ladite structure rigide, sous forme d'onde progressive dans le sens inverse de la propulsion durant la phase d'accélération ou dans le sens direct durant la phase de décélération, et en une déformation sous forme d'onde entretenue durant la phase de croisière, la déformation dudit élément déformable (PM) étant dirigée essentiellement selon l'axe principal de déplacement (Do), les élongations des susdites ondes progressive et entretenue étant orientées perpendiculairement audit axe principal de la structure rigide.
8. Dispositif selon la revendication 7,
caractérisé en ce que le susdit actionneur agissant sur le susdit élément déformable (PM) comprend :
- une roue à denture externe (Col) de diamètre primitif D/2, constituant un satellite à l'intérieur d'une couronne à denture interne (Co) de diamètre primitif D, ladite couronne à denture interne (Co) étant solidaire d'une enveloppe (E), de section carrée et d'axe longitudinal (Dz),
- un plateau (Po), solidaire d'un arbre (Ao), centré autour de l'axe (Dz), lequel arbre (Ao) est solidaire du rotor d'un moteur (M),
- un arbre (Al), solidaire dudit plateau (Po), entraînant ladite roue à denture externe (Col) selon un cercle de diamètre D/2, - un plateau (PI), solidaire de la susdite roue à denture externe (Col), lequel plateau (PI) comprend un arbre (A2) dont l'axe est situé sur le cercle de diamètre primitif de ladite roue à denture externe (Co),
- une bielle (B), entraînée par le susdit arbre (A2), et actionnant un poussoir (Po), lequel poussoir (Po) comprend un volume hémisphérique
(Pol) et deux ailes de guidage (Po2, Po3), coulissant de part et d'autre de la susdite enveloppe (E).
9. Dispositif selon la revendication 8,
caractérisé en ce que la susdite couronne à denture interne (Co) et la susdite roue à denture externe (Col) ont le même module de denture.
10. Dispositif selon la revendication 8,
caractérisé en ce que le susdit moteur (M) est un moteur électrique pas à pas.
11. Dispositif selon la revendication 7,
caractérisé en ce que les susdits actionneurs agissant sur le susdit élément déformable (PM) sont disposés par paire et montés tête-bêche, chaque paire d' actionneurs constituant un module.
12. Dispositif selon la revendication 7,
caractérisé en ce que la susdite plate-forme immergée comprend :
- une pluralité de modules solidaires de la susdite enveloppe (E), lesquels modules sont disposés de part et d'autre d'une zone centrale (Zo), - le susdit élément déformable (PM) entourant l'enveloppe (E), lequel élément déformable (PM) assure l'étanchéité de ladite plate-forme immergée,
- des organes nécessaires à la propulsion sous-marine tels que des batteries d'alimentation électrique, des systèmes électroniques de commande des moteurs des actionneurs, des gouvernes de profondeur, des ballasts, un système de navigation et une centrale gyroscopique, situés dans la susdite zone centrale (Zo).
13. Dispositif selon la revendication 7,
caractérisé en ce que la susdite plate-forme immergée comprend :
- une pluralité de modules solidaires de la susdite enveloppe (E), lesquels modules sont disposés de part et d'autre d'une zone centrale (Zo),
- le susdit élément déformable (PM) entourant l'enveloppe (E), laquelle enveloppe (E) assure l'étanchéité de ladite plate-forme immergée, l'eau circulant entre ledit élément déformable (PM) et ladite enveloppe (E).
14. Dispositif selon la revendication 7,
caractérisé en ce que la susdite plate-forme immergée comprend :
- une pluralité de modules solidaires de la susdite enveloppe (E), lesquels modules sont disposés de part et d'autre d'une zone centrale (Zo),
- le susdit élément déformable (PM) entourant l'enveloppe (E), laquelle enveloppe (E) assure l'étanchéité de ladite plate-forme immergée, le volume d'eau situé entre ledit élément déformable (PM) et ladite enveloppe (E) étant constant.
15. Dispositif selon la revendication 14,
caractérisé en ce que l'ensemble comprenant le susdit élément déformable (PM) et le susdit volume d'eau constant situé entre le susdit élément déformable (PM) et l'enveloppe (E) constitue une adaptation d'impédance acoustique entre le milieu aquatique environnant et l'enveloppe (E).
16. Dispositif selon la revendication 15,
caractérisé en ce que le susdit élément déformable (PM) est une paroi mince.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/FR2010/051679 WO2012020177A1 (fr) | 2010-08-09 | 2010-08-09 | Procede et dispositif de propulsion sous-marine basee sur la trainee et la portance d'un element deformable destines a des missions discretes |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/FR2010/051679 WO2012020177A1 (fr) | 2010-08-09 | 2010-08-09 | Procede et dispositif de propulsion sous-marine basee sur la trainee et la portance d'un element deformable destines a des missions discretes |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2012020177A1 true WO2012020177A1 (fr) | 2012-02-16 |
Family
ID=44070696
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/FR2010/051679 WO2012020177A1 (fr) | 2010-08-09 | 2010-08-09 | Procede et dispositif de propulsion sous-marine basee sur la trainee et la portance d'un element deformable destines a des missions discretes |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2012020177A1 (fr) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108146601A (zh) * | 2017-12-03 | 2018-06-12 | 栾柏瑞 | 一种实现噪声-电能转换的消声瓦 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3154043A (en) * | 1962-10-08 | 1964-10-27 | Jr Charles B Momsen | Hydrodynamic travelling wave propulsion apparatus |
US6029294A (en) * | 1998-07-23 | 2000-02-29 | Saringer Research Inc. | Mechanism for generating wave motion |
US20060172625A1 (en) * | 2005-02-03 | 2006-08-03 | Carl Phillip Gusler | Linear propulsor with linear motion |
WO2007138637A2 (fr) * | 2006-05-31 | 2007-12-06 | La.Me S.R.L. | Matériaux pour dispositif de conversion d'un mouvement alternatif rectiligne en un mouvement de rotation |
EP2128491A1 (fr) * | 2008-05-30 | 2009-12-02 | Fidelio Herrera Seco | Mécanisme et méthode pour la conversion d'un mouvement rotatif en un autre mouvement linéaire alternatif ou vice versa |
-
2010
- 2010-08-09 WO PCT/FR2010/051679 patent/WO2012020177A1/fr active Application Filing
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3154043A (en) * | 1962-10-08 | 1964-10-27 | Jr Charles B Momsen | Hydrodynamic travelling wave propulsion apparatus |
US6029294A (en) * | 1998-07-23 | 2000-02-29 | Saringer Research Inc. | Mechanism for generating wave motion |
US20060172625A1 (en) * | 2005-02-03 | 2006-08-03 | Carl Phillip Gusler | Linear propulsor with linear motion |
WO2007138637A2 (fr) * | 2006-05-31 | 2007-12-06 | La.Me S.R.L. | Matériaux pour dispositif de conversion d'un mouvement alternatif rectiligne en un mouvement de rotation |
EP2128491A1 (fr) * | 2008-05-30 | 2009-12-02 | Fidelio Herrera Seco | Mécanisme et méthode pour la conversion d'un mouvement rotatif en un autre mouvement linéaire alternatif ou vice versa |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108146601A (zh) * | 2017-12-03 | 2018-06-12 | 栾柏瑞 | 一种实现噪声-电能转换的消声瓦 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2005110840A1 (fr) | Ensemble de propulsion pour navire, comprenant une nacelle destinee a une installation sous la carene du navire | |
FR2974760A1 (fr) | Plate-forme mobile telecommandee apte a evoluer dans un milieu tel que l'eau et l'air | |
EP0059652A1 (fr) | Dispositif permettant d'utiliser l'énergie de la houle et des vagues | |
EP0389979A2 (fr) | Transmission de puissance équilibrée et pouvant être dirigée du type en "Z" | |
WO2020212664A1 (fr) | Dispositif rotatif electrique immergeable, moteur de propulsion et embarcation nautique associes | |
NO317623B1 (no) | System for utnyttelse av sinusformet bevegelsesmonster | |
FR3099748A1 (fr) | Dispositif de déplacement d’un véhicule nautique | |
CN113772066A (zh) | 一种混合线驱动连续型仿生机器金枪鱼 | |
CA2611765A1 (fr) | Engin multimilieux | |
WO2016131850A1 (fr) | Système de stabilisation d'un navire | |
FR2902403A1 (fr) | Systeme de propulsion electrique de navire et navire ainsi equipe | |
FR2523654A1 (fr) | Dispositif de production d'energie electrique a partir de la houle | |
FR2942451A1 (fr) | Procede et dispositif de propulsion sous-marine basee sur la trainee et la portance d'un element deformable destines a des missions discretes | |
WO2012020177A1 (fr) | Procede et dispositif de propulsion sous-marine basee sur la trainee et la portance d'un element deformable destines a des missions discretes | |
FR2973330A1 (fr) | Navire pour embarquement-debarquement de charges, du type catamaran a propulsion hybride | |
FR2898580A1 (fr) | Propulsion de vehicules evoluant sur l'eau et/ou dans l'eau, au moyen d'une ou plusieurs ailes immergees, animees de mouvements transversaux par rapport a la trajectoire du vehicule. | |
EP1833719A1 (fr) | Systeme d'acceleration d'un bateau monte sur bande articulee | |
CN104670449A (zh) | 横开式仿生双尾桨 | |
RU2060203C1 (ru) | Циклоидный движитель федчишина в.г. | |
KR20160024526A (ko) | 수상 자전거 | |
WO2000044616A1 (fr) | Propulseurs cycloïdes dont la forme et l'orientation des pales sont modifiees elastiquement par les poussees hydrodynamiques | |
EP4204299B1 (fr) | Dispositif d'entrainement en battement d'un plan porteur | |
FR2591182A1 (fr) | Dispositif de commande d'un objet submerge remorque. | |
EP2539581B1 (fr) | Systeme de conversion de l'energie d'un fluide naturellement en mouvement | |
KR100471689B1 (ko) | 링크벨트 장착선박의 가속장치 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 10765822 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 10765822 Country of ref document: EP Kind code of ref document: A1 |