WO2012019632A1 - Process for making linezolid - Google Patents

Process for making linezolid Download PDF

Info

Publication number
WO2012019632A1
WO2012019632A1 PCT/EP2010/005209 EP2010005209W WO2012019632A1 WO 2012019632 A1 WO2012019632 A1 WO 2012019632A1 EP 2010005209 W EP2010005209 W EP 2010005209W WO 2012019632 A1 WO2012019632 A1 WO 2012019632A1
Authority
WO
WIPO (PCT)
Prior art keywords
compound
formula
group
acid
reaction
Prior art date
Application number
PCT/EP2010/005209
Other languages
French (fr)
Inventor
Petr Bartos
Original Assignee
Synthon B.V.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Synthon B.V. filed Critical Synthon B.V.
Priority to EP10747831.5A priority Critical patent/EP2603505A1/en
Priority to CN2010800692515A priority patent/CN103140487A/en
Priority to PCT/EP2010/005209 priority patent/WO2012019632A1/en
Priority to EP13190043.3A priority patent/EP2690100A1/en
Priority to EP11733678.4A priority patent/EP2603506A1/en
Priority to CN2011800459835A priority patent/CN103119040A/en
Priority to PCT/EP2011/062097 priority patent/WO2012019862A1/en
Publication of WO2012019632A1 publication Critical patent/WO2012019632A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D413/00Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and oxygen atoms as the only ring hetero atoms
    • C07D413/02Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and oxygen atoms as the only ring hetero atoms containing two hetero rings
    • C07D413/10Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and oxygen atoms as the only ring hetero atoms containing two hetero rings linked by a carbon chain containing aromatic rings

Definitions

  • the present invention relates to an improved process for making the compound linezolid.
  • Linezolid is a pharmaceutically active compound useful as an antibacterial agent, e.g. for the treatment of diabetic food infections caused by Gram-positive bacteria. It is represented by the formula (I).
  • compositions are a sterile isotonic solution for an i.v. infusion, a tablet for oral administration and an aqueous suspension for oral administration. They are marketed, i.e., under brand name ZYVOX by Pfizer.
  • linezolid has one asymmetric carbon in the molecule allowing for 2 enantiomers; the marketed compound is the (S)-enantiomer.
  • linezolid is present as a free base.
  • This amine precursor (II) may be made from various starting materials, e.g.:
  • the starting compound (III) may be made from the corresponding tosylate or of general formula (VII) below (WO 2005/099353).
  • the starting compound (IV) may be made from the same tosylate or chloride as sub a) (WO2005/099353) or by a cyclization of the oxazolidine ring (WO 99/24393,
  • R2 is a chlorophenyl, bromophenyl or 2,4,-dichlorophenyl moiety (WO 2007/1 16284).
  • L is a suitable leaving group, for instance a halogen or an alkyl-or aryl sulfonyloxy group,
  • the present invention relates to a discovery of an improved process of making linezolid, which is simple in respect to process conditions and provides low amounts of reaction side products.
  • the invention provides a process for making the compound 3-(3- fluoro-4-(morpholin-4-yl)phenyl)-2-oxooxazolidin-5(S)-ylmethyl)amine of formula (II) and/or an acid addition salt thereof
  • the leaving group is preferably a halo group or an alkyl- or aryl-sulfonyloxy group.
  • the compound (II) is converted to linezolid by acetylation, preferably as an acid addition salt and more preferably in water.
  • the compound (IXb) is a novel compound and thus represents a specific aspect of the invention.
  • the compound (IXa) and/or the compound (IXb) may be used in the making of linezolid.
  • the starting material in the process of making linezolid according to the present invention is a compound of general formula (VII)
  • L is a leaving group, typically a halo group or an alkyl- or aryl-sulfonyloxy group.
  • the "halo” group comprises chloro- or bromo-group, preferably chloro- group.
  • the "alkyl” comprises C1-C4 alkyl group and preferably a methyl group.
  • the "aryl” comprises phenyl group, which may be optionally substituted by at least one C1-C4 alkyl group, a nitro- group, a hydroxyl group, an C1-C4 alkoxy group, and is preferably p-tolyl or p-nitrophenyl group.
  • the compounds are known in the art or may be prepared according to processes known in the art, e.g. from corresponding hydroxyl-methyl compounds of the formula (X).
  • the second reaction partner is a metal salt of diformylamide of the formula (VIII).
  • the "Me + " is typically sodium or potassium, preferably sodium.
  • the compound (VIII) is known in the art and is commonly obtainable by a reaction of the corresponding metal methoxide with formamide, see US5488188 and US5599986. It may be isolated as a solid and stored at ambient conditions.
  • the reaction between the compounds (VII) and (VIII) may typically proceed in an inert solvent, which preferably is a polar aprotic solvent, for instance ⁇ , ⁇ -dimethyl formamide, dimethyl sulfoxide , acetonitrile, N-methylpyrrolidone, ⁇ , ⁇ -dimethylacetamide or acetone and mixtures thereof.
  • an inert solvent which preferably is a polar aprotic solvent, for instance ⁇ , ⁇ -dimethyl formamide, dimethyl sulfoxide , acetonitrile, N-methylpyrrolidone, ⁇ , ⁇ -dimethylacetamide or acetone and mixtures thereof.
  • molar ratio between compound (VII) and compound (VIII) is from 1 :1 to 1 :3, preferably of from about 1:1.1 to about 1 : 1.7.
  • the reaction temperature is typically from 50 to 100°C, preferably from 60 to 90°C. At these conditions, the reaction time is about 0.5
  • the volatile residues are advantageously removed, e.g. by evaporation, and the residual metal salts are also removed, e.g. by an extraction with water.
  • the reaction product comprises a mixture of compounds of formula (IXa) and (IXb).
  • both compounds depends on the relative amount of the compound (VIII) in respect to the compound (VII).
  • the reaction mixture comprises only the compound (IXa) and/or only the compound (IXb).
  • both compounds (IXa) and (IXb) are equally convertible into the amine of the formula (II) in the next step, there is no objective need to separate them or enhance their mutual ratio in the mixture.
  • both compounds of the reaction mixture are separated by a suitable separation technique, for instance for analytical purposes.
  • the compounds (IXa) and (IXb) may also be obtained in the form of an acid addition salt, e.g. as a hydrochloride, hydrobromide, sulphate, nitrate , phosphate, formate, acetate, propionate, oxalate, malonate, maleate, fumarate, citrate, malate etc.
  • any of the compounds (IXa) and (IXb) and/or a mixture thereof is converted, in a next step, into the compound of formula (II) by a mild acid hydrolysis.
  • the acid useful for this purpose is a strong mineral or organic acid, for instance hydrochloric acid, sulphuric acid, phosphoric acid,or hydrobromic acid. In general, a molar extent of the acid is used.
  • the hydrolysis may proceed in a solvent, which may be water, a lower alcohol (C1-C4 aliphatic alcohol) or a mixture of both.
  • Typical reaction temperature is between 0 and 80 °C.
  • the course of reaction may be monitored by a suitable analytical technique, e.g. HPLC or TLC.
  • the hydrolysis step may be advantageously combined with the preceded step in a one- pot arrangement.
  • the product of the reaction comprises the raw amine compound of formula (II). It is formed after the hydrolysis as the corresponding acid addition salt (e.g. hydrochloride or dihydrochloride), which may be optionally neutralized into free amine, if necessary, by a treatment with an equivalent of a base, optionally followed by an extraction.
  • the raw compound (II) and/or its acid addition salt, e.g. a hydrochloride or acetate may be, if necessary, purified by known processes and/or isolated in any solid state form , e.g. that as disclosed in US 2006/0258655. Hydrochloride or acetate salt of the compound (II) are the preferred salts.
  • Crude or purified amine (II) may be converted to linezolid by a reaction with an acetyl halide or acetic acid anhydride, under conditions known well in the art.
  • the acetylation may be performed under conditions of Schotten-Baumann reaction or a modification thereof .
  • the name "Schotten-Baumann reaction conditions" indicates the use of an acetylation agent in a presence of a base.
  • the acetylation runs in a two-phase solvent system, consisting of water and a water immiscible organic solvent. A base is present within the water phase, which neutralizes the acid generated in the reaction, while the starting materials and product remain in the organic phase.
  • a water immiscible organic solvent are toluene, dichloromethane and/or diethyl ether.
  • (II) is converted, with or without isolation, into a water soluble acid addition salt of an inorganic acid or acetic acid, e.g. into a hydrochloride, hydrobromide, sulphate, nitrate, phosphate, and/or acetate.
  • the salt is dissolved in water, the solution is cooled as close to 0°C as possible, the acetylation agent, preferably acetic anhydride, is added, and the acetylation process is started by continuous addition of a base (preferably an inorganic base, such as sodium carbonate or sodium acetate).
  • a base preferably an inorganic base, such as sodium carbonate or sodium acetate.
  • the desired linezolid precipitates from the reaction mixture as it is not soluble therein. In this modification, organic solvents are completely avoided.
  • the produced linezolid may be isolated in any solid state form known in the art [ Form I (J.Med.Chem. 39(3), 673 (1996)), Form II (WO 01/057035, US 6,559,305), Form III (WO 2005/035530) and many others (WO 2006/004922 , US 2006/0142283), amorphous form (WO 2007/026369) and hydrated forms (US 2006/1 1 1350, EP 20033960 )] and/or may be converted in a suitable acid addition salt.
  • the linezolid prepared by the process of the present invention can be formulated and used in pharmaceutical compositions.
  • a suitable pharmaceutical composition may comprise linezolid and at least one pharmaceutically acceptable excipient.
  • the compositions are useful as antibacterial agents, in treating various diseases caused by some types of bacteria, by administering an effective amount thereof to a patient in need of such treatment. In particular, they are useful in treatment of diabetic food infections caused by Gram-positive bacteria.
  • the effective amounts range from 1 mg to 500 mg, expressed as the amount of linezolid base, per day.
  • the solid was mixed with 10 ml of methanol an 0.438ml of concentrated hydrochloric acid ( 5.00 mmol) was added.
  • the reaction mixture was warmed up in an oil bath to 65°C and stirred at this temperature for 2 hours.
  • the mixture was evaporated at diminished pressure and then co-evaporated with toluene ( 60°C, 25 mbar) to yield 220 mg of white glassy solid.
  • the reaction mixture was transferred to a 500 ml round bottom flask and cooled down in an ice- water bath.
  • Dichoromethane 150 ml was charged to the flask.
  • the mixture was vigorously stirred and a solution of NaOH (54.0 g) in water (100 ml) was added, such that the internal temperature did not exceed 20°C.
  • the mixture was filtered.
  • the filtrate was transfered to a 500 ml separatory funnel and the organic layer was separated. The filter cake was discarded.
  • the water layer was extracted with dichloromethane (2 x 50 ml).
  • the combined organic layer was dried over Na2S04 (25 g), filtered, and concentrated (60°C, 50 mbar) to provide the product as a tan crystalline solid (18.87 g).

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Plural Heterocyclic Compounds (AREA)

Abstract

The present invention relates to a process for making the compound 3-(3-fluoro-4- (morpholin-4-yl)phenyl)-2-oxooxazolidin-5(S)-ylmethyl)amine of formula (II) and/or an acid addition salt thereof comprising b) reacting the compound of formula (VII) wherein L is a leaving group, with a metal salt of diformylamide of formula (VIII) wherein Me+ is a sodium or potassium cation, b) subjecting the reaction product of the step (a) comprising, alone or in admixture, compounds of formula (IXa) and/or (IXb), to a reaction with an acid, and to the making of linezolid by acetylation of the compound of formula (II), and to the compounds (IXa) and (IXb) in making linezolid.

Description

PROCESS FOR MAKING LINEZOLID
BACKGROUND OF THE INVENTION
The present invention relates to an improved process for making the compound linezolid.
Linezolid is a pharmaceutically active compound useful as an antibacterial agent, e.g. for the treatment of diabetic food infections caused by Gram-positive bacteria. It is represented by the formula (I).
Figure imgf000002_0001
The marketed pharmaceutical compositions are a sterile isotonic solution for an i.v. infusion, a tablet for oral administration and an aqueous suspension for oral administration. They are marketed, i.e., under brand name ZYVOX by Pfizer.
The molecule of linezolid has one asymmetric carbon in the molecule allowing for 2 enantiomers; the marketed compound is the (S)-enantiomer. In the above-marketed compositions, linezolid is present as a free base.
Hereinunder, the name linezolid will be used as the generic name for N-(3-(3-fluoro-4- (morpholin-4-yl)phenyl)-2-oxooxazolidin-5(S)-ylmethyl)acetamide, unless indicated to the contrary.
Linezolid was first disclosed in WO 95/07271 (EP 0717738, US 5,688,792) of the Upjohn Company.
l Various processes for making linezolid are known in the art. In particular, the important ones are these, the final step of which comprises acetylation of an amine precursor of the formula (II) with an acetylhalide or acetic anhydride ( see, e.g., WO 2005 099353 ) .
Figure imgf000003_0001
This amine precursor (II) may be made from various starting materials, e.g.:
a) By a reduction of an azide compound of formula (III) by a suitable reductant (WO2006/091731, WO 95/07271, US 5837870, W02009/063505, US 7291614)
Figure imgf000003_0002
The starting compound (III) may be made from the corresponding tosylate or of general formula (VII) below (WO 2005/099353).
b) By a decomposition of a phthalimide compound of formula (IV), e.g. by
methylamine (WO95/07271) or by hydrazine (US 5837870)
Figure imgf000003_0003
The starting compound (IV) may be made from the same tosylate or chloride as sub a) (WO2005/099353) or by a cyclization of the oxazolidine ring (WO 99/24393,
WO2006/008754)
c) From a sulfonate compound of formula (V)
Figure imgf000003_0004
(V) by treatment with ammonium hydroxide in isopropanol or THF (WO 95/07271) or by treatment with ammonia under enhanced pressure (WO 97/37980)
d) By a reduction of an imine (VI)
Figure imgf000004_0001
wherein R2 is a chlorophenyl, bromophenyl or 2,4,-dichlorophenyl moiety (WO 2007/1 16284).
Except of the imine (VI), each of the preceded synthetic approaches is based on a step of converting a starting material of the general formula (VII)
Figure imgf000004_0002
wherein L is a suitable leaving group, for instance a halogen or an alkyl-or aryl sulfonyloxy group,
by a reaction with a nitrogen nucleophile (an azide salt, phthalimide salt, ammonia or ammonium hydroxide), followed, if necessary, by a next step of conversion of the formed reaction intermediate ( e.g., compound (III) or compound (IV) ) into the amino/compound (II). Apparently, making the starting amine-compound (II) in a good yield and purity is the key aspect of commercial success of any of the above synthetic routes yielding linezolid. However, the known approaches have various drawbacks, for instance serious toxicity and explosion hazard of the azide salts, long reaction times and hazardous agents ( hydrazine, methyl amine) in using the phthalimide intermediate, low yields and many side products at the ammonium hydroxide approach, or harsh reaction conditions in reaction with ammonia.
Thus, while many synthetic processes in making the compound (II) and the linezolid are known in the art, there still exists a need of an improvement. It would be desirable to have an alternate process of making the amine-intermediate of linezolid, which process is simple, runs at moderate reaction conditions and does not exhibit the above disadvantages.
SUMMARY OF THE INVENTION
The present invention relates to a discovery of an improved process of making linezolid, which is simple in respect to process conditions and provides low amounts of reaction side products.
In a main aspect, the invention provides a process for making the compound 3-(3- fluoro-4-(morpholin-4-yl)phenyl)-2-oxooxazolidin-5(S)-ylmethyl)amine of formula (II) and/or an acid addition salt thereof
Figure imgf000005_0001
comprising a) reacting the compound of formula (VII)
Figure imgf000005_0002
wherein L is a leaving group, with a metal salt of diformylamide of formula (VIII)
O O
H^N-^H
e+ (VIII) wherein Me+ is a sodium or potassium cation, b) subjecting the reaction product of the step (a) comprising a mixture of compounds of formula (IXa) and (IXb),
Figure imgf000006_0001
to a reaction with an acid, preferably with hydrochloric acid. The leaving group is preferably a halo group or an alkyl- or aryl-sulfonyloxy group.The compound (II) is converted to linezolid by acetylation, preferably as an acid addition salt and more preferably in water.
The compound (IXb) is a novel compound and thus represents a specific aspect of the invention.
The compound (IXa) and/or the compound (IXb) may be used in the making of linezolid.
DETAILED DESCRIPTION OF THE INVENTION
The starting material in the process of making linezolid according to the present invention is a compound of general formula (VII)
Figure imgf000006_0002
wherein L is a leaving group, typically a halo group or an alkyl- or aryl-sulfonyloxy group. The "halo" group comprises chloro- or bromo-group, preferably chloro- group. The "alkyl" comprises C1-C4 alkyl group and preferably a methyl group. The "aryl" comprises phenyl group, which may be optionally substituted by at least one C1-C4 alkyl group, a nitro- group, a hydroxyl group, an C1-C4 alkoxy group, and is preferably p-tolyl or p-nitrophenyl group.
The compounds are known in the art or may be prepared according to processes known in the art, e.g. from corresponding hydroxyl-methyl compounds of the formula (X).
Figure imgf000007_0001
The second reaction partner is a metal salt of diformylamide of the formula (VIII).
Figure imgf000007_0002
The "Me+" is typically sodium or potassium, preferably sodium. The compound (VIII) is known in the art and is commonly obtainable by a reaction of the corresponding metal methoxide with formamide, see US5488188 and US5599986. It may be isolated as a solid and stored at ambient conditions.
The reaction between the compounds (VII) and (VIII) may typically proceed in an inert solvent, which preferably is a polar aprotic solvent, for instance Ν,Ν-dimethyl formamide, dimethyl sulfoxide , acetonitrile, N-methylpyrrolidone, Ν,Ν-dimethylacetamide or acetone and mixtures thereof. Typically, molar ratio between compound (VII) and compound (VIII) is from 1 :1 to 1 :3, preferably of from about 1:1.1 to about 1 : 1.7. The reaction temperature is typically from 50 to 100°C, preferably from 60 to 90°C. At these conditions, the reaction time is about 0.5 to 2 hours. The course of reaction may be monitored by common analytical techniques, e.g. by TLC or HPLC.
After the reaction is complete, the volatile residues are advantageously removed, e.g. by evaporation, and the residual metal salts are also removed, e.g. by an extraction with water.
The reaction product comprises a mixture of compounds of formula (IXa) and (IXb).
Figure imgf000007_0003
Mutual ratio of both compounds depends on the relative amount of the compound (VIII) in respect to the compound (VII). In borderline cases, the reaction mixture comprises only the compound (IXa) and/or only the compound (IXb). As both compounds (IXa) and (IXb) are equally convertible into the amine of the formula (II) in the next step, there is no objective need to separate them or enhance their mutual ratio in the mixture. However, it is not excluded that both compounds of the reaction mixture are separated by a suitable separation technique, for instance for analytical purposes. The compounds (IXa) and (IXb) may also be obtained in the form of an acid addition salt, e.g. as a hydrochloride, hydrobromide, sulphate, nitrate , phosphate, formate, acetate, propionate, oxalate, malonate, maleate, fumarate, citrate, malate etc.
Any of the compounds (IXa) and (IXb) and/or a mixture thereof is converted, in a next step, into the compound of formula (II) by a mild acid hydrolysis. Typically, the acid useful for this purpose is a strong mineral or organic acid, for instance hydrochloric acid, sulphuric acid, phosphoric acid,or hydrobromic acid. In general, a molar extent of the acid is used. The hydrolysis may proceed in a solvent, which may be water, a lower alcohol (C1-C4 aliphatic alcohol) or a mixture of both. Typical reaction temperature is between 0 and 80 °C. The course of reaction may be monitored by a suitable analytical technique, e.g. HPLC or TLC.
The hydrolysis step may be advantageously combined with the preceded step in a one- pot arrangement.
As the rests of the reagents and solvents, as well as side products formed during the reaction are volatile compounds, the easiest way for removing them is evaporation, preferably at diminished pressure.
The product of the reaction comprises the raw amine compound of formula (II). It is formed after the hydrolysis as the corresponding acid addition salt ( e.g. hydrochloride or dihydrochloride), which may be optionally neutralized into free amine, if necessary, by a treatment with an equivalent of a base, optionally followed by an extraction. The raw compound (II) and/or its acid addition salt, e.g. a hydrochloride or acetate may be, if necessary, purified by known processes and/or isolated in any solid state form , e.g. that as disclosed in US 2006/0258655. Hydrochloride or acetate salt of the compound (II) are the preferred salts.
Crude or purified amine (II) may be converted to linezolid by a reaction with an acetyl halide or acetic acid anhydride, under conditions known well in the art. In an advantageous way, the acetylation may be performed under conditions of Schotten-Baumann reaction or a modification thereof . The name "Schotten-Baumann reaction conditions" indicates the use of an acetylation agent in a presence of a base. Typically, the acetylation runs in a two-phase solvent system, consisting of water and a water immiscible organic solvent. A base is present within the water phase, which neutralizes the acid generated in the reaction, while the starting materials and product remain in the organic phase. Non-limiting examples of a water immiscible organic solvent are toluene, dichloromethane and/or diethyl ether.
In a suitable modification of the Schotten-Baumann reaction conditions, the compound
(II) is converted, with or without isolation, into a water soluble acid addition salt of an inorganic acid or acetic acid, e.g. into a hydrochloride, hydrobromide, sulphate, nitrate, phosphate, and/or acetate. The salt is dissolved in water, the solution is cooled as close to 0°C as possible, the acetylation agent, preferably acetic anhydride, is added, and the acetylation process is started by continuous addition of a base (preferably an inorganic base, such as sodium carbonate or sodium acetate). The desired linezolid precipitates from the reaction mixture as it is not soluble therein. In this modification, organic solvents are completely avoided.
The produced linezolid may be isolated in any solid state form known in the art [ Form I (J.Med.Chem. 39(3), 673 (1996)), Form II (WO 01/057035, US 6,559,305), Form III (WO 2005/035530) and many others (WO 2006/004922 , US 2006/0142283), amorphous form (WO 2007/026369) and hydrated forms (US 2006/1 1 1350, EP 20033960 )] and/or may be converted in a suitable acid addition salt.
The linezolid prepared by the process of the present invention can be formulated and used in pharmaceutical compositions. A suitable pharmaceutical composition may comprise linezolid and at least one pharmaceutically acceptable excipient. The compositions are useful as antibacterial agents, in treating various diseases caused by some types of bacteria, by administering an effective amount thereof to a patient in need of such treatment. In particular, they are useful in treatment of diabetic food infections caused by Gram-positive bacteria. Typically the effective amounts range from 1 mg to 500 mg, expressed as the amount of linezolid base, per day.
The invention will be further described with reference to the following non-limiting examples. Example 1 3-(3-fluoro-4-(morpholin-4-yl)phenyl)-2-oxooxazolidin-5(S)- ylmethyl)amine (II) hydrochloride
To a 5 ml, reaction vial equipped with a magnetic stirring bar, 225 mg (0.5 mmol) of the compound (VII) [ L= p-toluenesulfonyloxy group] was added followed by 96 mg (lmmol) of sodium diformylamide and 2.5 ml of Ν,Ν-dimethylformamide. The vessel was immersed into an oil bath, which was preheated to 85°C and the mixture was stirred at external temperature of 85°C for 1 hour. The volatiles were evaporated at diminished temperature ( 30 mbar, 60°C ), the residue was mixed with 10 ml of ethyl acetate and extracted with 10 ml of water. The organic layer was evaporated to dryness (45°C , 25 mbar) to yield a white solid.
The solid was mixed with 10 ml of methanol an 0.438ml of concentrated hydrochloric acid ( 5.00 mmol) was added. The reaction mixture was warmed up in an oil bath to 65°C and stirred at this temperature for 2 hours. The mixture was evaporated at diminished pressure and then co-evaporated with toluene ( 60°C, 25 mbar) to yield 220 mg of white glassy solid.
Example 2 3-(3-fluoro-4- morpholin-4-yl)phenyl)-2-oxooxazolidin-5(S)- ylmethyl)amine (II)
A 250 ml, three-necked, round-bottomed flask equipped with a blade mechanical stirrer and Ar inlet combined with a temperature probe was placed under an argon atmosphere and charged with sodium diformylamide (5.6 g) and the compound (VII) [ L= p- toluenesulfonyloxy group] (20.8 g). N,N-Dimethylformamide (52 ml) was added and the reaction mixture was heated to 85°C for 2 h. Hydrochloric acid (98 ml) was carefully added into the reaction mixture, such that the internal temperature did not exceed 96°C. The heterogeneous reaction mixture was heated to 85°C and the reaction was continued for 2.5 h. The reaction mixture was transferred to a 500 ml round bottom flask and cooled down in an ice- water bath. Dichoromethane (150 ml) was charged to the flask. The mixture was vigorously stirred and a solution of NaOH (54.0 g) in water (100 ml) was added, such that the internal temperature did not exceed 20°C. The mixture was filtered. The filtrate was transfered to a 500 ml separatory funnel and the organic layer was separated. The filter cake was discarded. The water layer was extracted with dichloromethane (2 x 50 ml). The combined organic layer was dried over Na2S04 (25 g), filtered, and concentrated (60°C, 50 mbar) to provide the product as a tan crystalline solid (18.87 g).
Example 3
To a 25 ml, round-bottomed flask equipped with a magnetic stirring bar was charged "amine" (0.49 g) followed by water (8.30 ml). A heterogeneous mixture was stirred and hydrochloric acid (0.12 mL, 35 %) was added. A homogenous solution was obtained. The solution was cooled down in an ice- water bath to 0 °C. Acetic anhydride (0.31 mL) was added followed by sodium bicarbonate (0.45 g). Carbon dioxide was immediately released and a formation of white precipitate was observed. The precipitate was filtered off and the filter cake was washed with water (10 ml). The filter cake was collected and dried (100 mbar) at 70°C overnight. An off-white solid linezolid (0.26 g) was isolated.

Claims

Claims
1. A process for making the compound 3-(3-fluoro-4-(morpholin-4-yl)phenyl)-2- oxooxazolidin-5(S)-ylmethyl)amine of formula (II) and/or an acid addition salt thereof
Figure imgf000013_0001
comprising
a) reacting the compound of formula (VII)
Figure imgf000013_0002
wherein L is a leaving group,
with a metal salt of diformylamide of formula (VIII)
O O
Me+ (VIII)
wherein Me+ is a sodium or potassium cation,
b) subjecting the reaction product of the step (a) comprising, alone or in admixture, compounds of formula (IXa) and/or (IXb),
Figure imgf000013_0003
to a reaction with an acid.
2. The process according to claim 1 , wherein the leaving group L is a halo group or an (Cl-C4)-alkyl- or aryl-sulfonyloxy group, wherein aryl comprises a phenyl group, which may be optionally substituted by at least one C1-C4 alkyl group, a nitro-group, a hydroxyl group, or an C1-C4 alkoxy group.
3. The process according to claim 2, wherein the leaving group L is a chloro group, a bromo group, a methylsulfonyloxy group, a phenylsulfonyloxy group, a p-tolylsulfonyloxy group or a p-nitrophenylsulfonyloxy group.
4. The process according to claims 1-3, wherein the acid is a strong mineral or organic acid, preferably hydrochloric acid, sulphuric acid, phosphoric acid, or hydrobromic acid, and more preferably is hydrochloric acid.
5. The process according to claims 1-4, wherein the reaction between the compound (VII) and (VIII) proceeds in an inert solvent, which preferably is a polar aprotic solvent, more preferably selected from Ν,Ν-dimethyl formamide, dimethyl sulfoxide , acetonitrile, N- methylpyrrolidone, Ν,Ν-dimethylacetamide or acetone and mixtures thereof.
6. The process according to claims 1-5, wherein the molar ratio between compound
(VII) and compound (VIII) is from 1 : 1 to 1 :3, preferably from about 1 : 1.1 to about 1 : 1.7.
7. The process according to claims 1-6, wherein the temperature of the reaction between compound (VII) and compound (VIII) is from 50 to 100°C, preferably from 60 to 90°C
8. The process according to claims 1-7, wherein the compound (II) is isolated from the reaction mixture.
9. The process according to claims 1-8 further comprising a step of converting the compound of formula (II) and/or an acid addition salt thereof to linezolid by a reaction thereof with an acetyl halide or acetic acid anhydride, preferably in the presence of a base and/or in a solvent system comprising water and/or an organic solvent.
10. The process according to the claim 9, wherein the compound of formula (II) is in a form of a water soluble acid addition salt with an inorganic acid or acetic acid and the solvent system is water.
1 1. A process for making linezolid comprising reacting the compound of formula (II) and/or an acid addition salt thereof
Figure imgf000015_0001
with acetyl halide or acetic acid anhydride in the presence of a base and in a solvent comprising water, wherein the compound of formula (II) is in a form of a water soluble acid addition salt with an inorganic acid or acetic acid .
12. The compound of formula (IXb), optionally in an admixture with the compound of formula (IXa)
Figure imgf000015_0002
13. Use of a compound of formula (IXb), and/or a compound of formula (IXa)
Figure imgf000015_0003
and/or an acid addition salt thereof, in making linezolid or an acid addition salt thereof.
PCT/EP2010/005209 2010-08-11 2010-08-11 Process for making linezolid WO2012019632A1 (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
EP10747831.5A EP2603505A1 (en) 2010-08-11 2010-08-11 Process for making linezolid
CN2010800692515A CN103140487A (en) 2010-08-11 2010-08-11 Process for making linezolid
PCT/EP2010/005209 WO2012019632A1 (en) 2010-08-11 2010-08-11 Process for making linezolid
EP13190043.3A EP2690100A1 (en) 2010-08-11 2011-07-14 Process for making linezolid
EP11733678.4A EP2603506A1 (en) 2010-08-11 2011-07-14 Process for making linezolid
CN2011800459835A CN103119040A (en) 2010-08-11 2011-07-14 Process for making linezolid
PCT/EP2011/062097 WO2012019862A1 (en) 2010-08-11 2011-07-14 Process for making linezolid

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/EP2010/005209 WO2012019632A1 (en) 2010-08-11 2010-08-11 Process for making linezolid

Publications (1)

Publication Number Publication Date
WO2012019632A1 true WO2012019632A1 (en) 2012-02-16

Family

ID=42829562

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/EP2010/005209 WO2012019632A1 (en) 2010-08-11 2010-08-11 Process for making linezolid
PCT/EP2011/062097 WO2012019862A1 (en) 2010-08-11 2011-07-14 Process for making linezolid

Family Applications After (1)

Application Number Title Priority Date Filing Date
PCT/EP2011/062097 WO2012019862A1 (en) 2010-08-11 2011-07-14 Process for making linezolid

Country Status (3)

Country Link
EP (1) EP2603505A1 (en)
CN (2) CN103140487A (en)
WO (2) WO2012019632A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104262280A (en) * 2014-09-22 2015-01-07 山东华生化学股份有限公司 Method for preparing linezolid

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2603252T3 (en) 2012-11-09 2017-02-24 Synthon Bv Process to prepare linezolid
WO2015068121A1 (en) 2013-11-06 2015-05-14 Unimark Remedies Ltd. Process for preparation of crystalline form i of linezolid and its compositions

Citations (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1995007271A1 (en) 1993-09-09 1995-03-16 The Upjohn Company Substituted oxazine and thiazine oxazolidinone antimicrobials
US5488188A (en) 1994-09-29 1996-01-30 Merrell Dow Pharmaceuticals Inc. Process for the preparation of (E)-1-amino-2-(fluoromethylene)-4-(p-fluorophenyl)butane, novel processes for preparing an intermediate thereof, and novel intermediates thereof
US5599986A (en) 1994-09-29 1997-02-04 Hoechst Marion Roussel Inc. Process for the preparation of alkali metal salts of diformylamide
WO1997037980A1 (en) 1996-04-11 1997-10-16 Pharmacia & Upjohn Company Process to prepare oxazolidinones
US5688792A (en) 1994-08-16 1997-11-18 Pharmacia & Upjohn Company Substituted oxazine and thiazine oxazolidinone antimicrobials
WO1999024393A1 (en) 1997-11-07 1999-05-20 Pharmacia & Upjohn Company Process to produce oxazolidinones
WO2001057035A1 (en) 2000-02-02 2001-08-09 Pharmacia & Upjohn Company Linezolid-crystal form ii
US6559305B1 (en) 2000-02-02 2003-05-06 Pharmacia & Upjohn Company Linezolid—crystal form II
WO2005035530A1 (en) 2003-10-16 2005-04-21 Symed Labs Limited A novel crystalline form of linezolid
WO2005099353A2 (en) 2004-04-19 2005-10-27 Symed Labs Limited A novel process for the preparation of linezolid and related compounds
WO2006004922A1 (en) 2004-06-29 2006-01-12 Teva Pharmaceutical Industries Ltd. Crystalline form iv of linezolid
WO2006008754A1 (en) 2004-07-20 2006-01-26 Symed Labs Limited Novel intermediates for linezolid and related compounds
US20060111350A1 (en) 2004-06-29 2006-05-25 Judith Aronhime Solid forms of linezolid and processes for preparation thereof
WO2006091731A2 (en) 2005-02-24 2006-08-31 Teva Pharmaceutical Industries Ltd. Processes for the preparation of linezolid intermediate
WO2007026369A1 (en) 2005-08-29 2007-03-08 Symed Labs Limited A novel amorphous form of linezolid
WO2007116284A1 (en) 2006-04-07 2007-10-18 Pfizer Products Inc. Process for preparing linezolid
EP2033960A2 (en) 2007-09-04 2009-03-11 Dipharma Francis S.r.l. Linezolid crystalline hydrate form and linezolid salts
WO2009063505A2 (en) 2007-10-08 2009-05-22 Usv Limited Process for preparation of (s) (n-[[3-[3-fluoro-4-(4-morpholinyl) hen l -2-oxo-5-oxazolidin l methyl]acetamide
EP2163547A1 (en) * 2008-09-16 2010-03-17 Unión Químico Farmacéutica, S.A. (UQUIFA) Process for the preparation of an oxazolidinone antibacterial agent and intermediates thereof

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101128442A (en) * 2005-02-24 2008-02-20 特瓦制药工业有限公司 Processes for the preparation of linezolid intermediate
DE502006002556D1 (en) 2005-09-06 2009-02-26 Ernst Schenkel Water-cooled grate element

Patent Citations (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1995007271A1 (en) 1993-09-09 1995-03-16 The Upjohn Company Substituted oxazine and thiazine oxazolidinone antimicrobials
EP0717738A1 (en) 1993-09-09 1996-06-26 PHARMACIA & UPJOHN COMPANY Substituted oxazine and thiazine oxazolidinone antimicrobials
US5688792A (en) 1994-08-16 1997-11-18 Pharmacia & Upjohn Company Substituted oxazine and thiazine oxazolidinone antimicrobials
US5488188A (en) 1994-09-29 1996-01-30 Merrell Dow Pharmaceuticals Inc. Process for the preparation of (E)-1-amino-2-(fluoromethylene)-4-(p-fluorophenyl)butane, novel processes for preparing an intermediate thereof, and novel intermediates thereof
US5599986A (en) 1994-09-29 1997-02-04 Hoechst Marion Roussel Inc. Process for the preparation of alkali metal salts of diformylamide
WO1997037980A1 (en) 1996-04-11 1997-10-16 Pharmacia & Upjohn Company Process to prepare oxazolidinones
US5837870A (en) 1996-04-11 1998-11-17 Pharmacia & Upjohn Company Process to prepare oxazolidinones
WO1999024393A1 (en) 1997-11-07 1999-05-20 Pharmacia & Upjohn Company Process to produce oxazolidinones
WO2001057035A1 (en) 2000-02-02 2001-08-09 Pharmacia & Upjohn Company Linezolid-crystal form ii
US6559305B1 (en) 2000-02-02 2003-05-06 Pharmacia & Upjohn Company Linezolid—crystal form II
WO2005035530A1 (en) 2003-10-16 2005-04-21 Symed Labs Limited A novel crystalline form of linezolid
WO2005099353A2 (en) 2004-04-19 2005-10-27 Symed Labs Limited A novel process for the preparation of linezolid and related compounds
WO2006004922A1 (en) 2004-06-29 2006-01-12 Teva Pharmaceutical Industries Ltd. Crystalline form iv of linezolid
US20060111350A1 (en) 2004-06-29 2006-05-25 Judith Aronhime Solid forms of linezolid and processes for preparation thereof
US20060142283A1 (en) 2004-06-29 2006-06-29 Judith Aronhime Crystalline form IV of linezolid
WO2006008754A1 (en) 2004-07-20 2006-01-26 Symed Labs Limited Novel intermediates for linezolid and related compounds
WO2006091731A2 (en) 2005-02-24 2006-08-31 Teva Pharmaceutical Industries Ltd. Processes for the preparation of linezolid intermediate
US20060258655A1 (en) 2005-02-24 2006-11-16 Tamas Koltai Crystalline forms of linezolid intermediate
US7291614B2 (en) 2005-02-24 2007-11-06 Teva Pharmaceutical Industries Ltd. Processes for the preparation of linezolid intermediate
WO2007026369A1 (en) 2005-08-29 2007-03-08 Symed Labs Limited A novel amorphous form of linezolid
WO2007116284A1 (en) 2006-04-07 2007-10-18 Pfizer Products Inc. Process for preparing linezolid
EP2033960A2 (en) 2007-09-04 2009-03-11 Dipharma Francis S.r.l. Linezolid crystalline hydrate form and linezolid salts
WO2009063505A2 (en) 2007-10-08 2009-05-22 Usv Limited Process for preparation of (s) (n-[[3-[3-fluoro-4-(4-morpholinyl) hen l -2-oxo-5-oxazolidin l methyl]acetamide
EP2163547A1 (en) * 2008-09-16 2010-03-17 Unión Químico Farmacéutica, S.A. (UQUIFA) Process for the preparation of an oxazolidinone antibacterial agent and intermediates thereof

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
J.MED.CHEM., vol. 39, no. 3, 1996, pages 673
See also references of EP2603505A1 *
YU DU ET AL: "Synthesis and antibacterial activity of linezolid analogues", BIOORGANIC & MEDICINAL CHEMISTRY LETTERS, PERGAMON, ELSEVIER SCIENCE, GB LNKD- DOI:10.1016/S0960-894X(02)00043-4, vol. 12, no. 6, 25 March 2002 (2002-03-25), pages 857 - 859, XP002963251, ISSN: 0960-894X *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104262280A (en) * 2014-09-22 2015-01-07 山东华生化学股份有限公司 Method for preparing linezolid
CN104262280B (en) * 2014-09-22 2016-07-20 山东华生化学股份有限公司 A kind of preparation method of linezolid

Also Published As

Publication number Publication date
WO2012019862A1 (en) 2012-02-16
CN103140487A (en) 2013-06-05
CN103119040A (en) 2013-05-22
EP2603505A1 (en) 2013-06-19

Similar Documents

Publication Publication Date Title
WO2006010831A1 (en) 4-substituted quinoline derivatives, method and intermediates for preparing same and pharmaceutical compositions containing same
US20040242556A1 (en) Novel crystalline form of cefdinir
KR20150041650A (en) Processes for the preparation of (s)-3-4-((4-(morpholinomethyl) benzyl)oxy)-1-oxoisoindolin-2-yl) piperidine-2,6-dione and pharmaceutically acceptable forms thereof
WO2022214645A1 (en) Processes and intermediates for the preparation of relugolix
WO2008149228A1 (en) An improved process for the preparation of substantially pure (2s,3s,5s)-5-amino-2-n,n-dibenzylamino-3-hydroxy-1,6-diphenylhexane
KR101653570B1 (en) Novel Oxazolidinone derivatives and Pharmaceutical Compositions Comprising the Same
US10934289B2 (en) Solid state forms of venetoclax and its process for the preparation there of
WO2012019632A1 (en) Process for making linezolid
US20220306650A1 (en) Process and polymorphic forms of bictegravir and its pharmaceutically acceptable salts or co-crystals thereof
US11236050B2 (en) Polymorphs of 4-[3-chloro-4-(n′-cyclopropyl ureido)phenoxy] -7-methoxyquinoline-6-carboxamide, its salts and process for the preparation thereof
EP2603506A1 (en) Process for making linezolid
EP2573084A1 (en) Novel crystalline forms of rivaroxaban and processes for their preparation
WO2007040326A1 (en) A novel oxazolidinone formamide derivative and preparation method therof
JP2000229978A (en) Oxazolidinone and its use as antibacterial agent
AU2018374838B2 (en) Process for preparing acylated amphetamine derivatives
KR19980084677A (en) Oxazolidinone derivative, preparation method thereof and antimicrobial composition containing the same
KR101128029B1 (en) Method for preparing of R-3-3-fluoro-4-1-methyl-5,6-dihydro-1,2,4-triazin-41H-ylphenyl-5-substituted methyloxazolidin-2-one derivatives
EP2917189B1 (en) Process for making linezolid
KR100467309B1 (en) Oxazolidinone derivatives, a method for producing the same and antibacterial pharmaceutical composition
HUT65885A (en) Process for preparing heterocyclyl-phenoxyalkyl-piperidinylpyridazines and pharmaceutical compositions containing them
RU2190597C2 (en) Method of synthesis of antagonists of nmda (n-methyl-d-aspartate)
AU2016399299B2 (en) Crystalline form
JPH04270272A (en) Production of aminoalkylmorpholine derivative
KR100463111B1 (en) Oxazolidinone derivatives, methods for producing the same and antibacterial composition containing the said compounds
JPS6011034B2 (en) Production method of cyanoquinoxaline 1,4-dioxides

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080069251.5

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10747831

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2010747831

Country of ref document: EP