EP2603505A1 - Process for making linezolid - Google Patents

Process for making linezolid

Info

Publication number
EP2603505A1
EP2603505A1 EP10747831.5A EP10747831A EP2603505A1 EP 2603505 A1 EP2603505 A1 EP 2603505A1 EP 10747831 A EP10747831 A EP 10747831A EP 2603505 A1 EP2603505 A1 EP 2603505A1
Authority
EP
European Patent Office
Prior art keywords
compound
formula
group
acid
reaction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP10747831.5A
Other languages
German (de)
French (fr)
Inventor
Petr Bartos
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Synthon BV
Original Assignee
Synthon BV
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Synthon BV filed Critical Synthon BV
Publication of EP2603505A1 publication Critical patent/EP2603505A1/en
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D413/00Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and oxygen atoms as the only ring hetero atoms
    • C07D413/02Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and oxygen atoms as the only ring hetero atoms containing two hetero rings
    • C07D413/10Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and oxygen atoms as the only ring hetero atoms containing two hetero rings linked by a carbon chain containing aromatic rings

Definitions

  • the present invention relates to an improved process for making the compound linezolid.
  • Linezolid is a pharmaceutically active compound useful as an antibacterial agent, e.g. for the treatment of diabetic food infections caused by Gram-positive bacteria. It is represented by the formula (I).
  • compositions are a sterile isotonic solution for an i.v. infusion, a tablet for oral administration and an aqueous suspension for oral administration. They are marketed, i.e., under brand name ZYVOX by Pfizer.
  • linezolid has one asymmetric carbon in the molecule allowing for 2 enantiomers; the marketed compound is the (S)-enantiomer.
  • linezolid is present as a free base.
  • This amine precursor (II) may be made from various starting materials, e.g.:
  • the starting compound (III) may be made from the corresponding tosylate or of general formula (VII) below (WO 2005/099353).
  • the starting compound (IV) may be made from the same tosylate or chloride as sub a) (WO2005/099353) or by a cyclization of the oxazolidine ring (WO 99/24393,
  • R2 is a chlorophenyl, bromophenyl or 2,4,-dichlorophenyl moiety (WO 2007/1 16284).
  • L is a suitable leaving group, for instance a halogen or an alkyl-or aryl sulfonyloxy group,
  • the present invention relates to a discovery of an improved process of making linezolid, which is simple in respect to process conditions and provides low amounts of reaction side products.
  • the invention provides a process for making the compound 3-(3- fluoro-4-(morpholin-4-yl)phenyl)-2-oxooxazolidin-5(S)-ylmethyl)amine of formula (II) and/or an acid addition salt thereof
  • the leaving group is preferably a halo group or an alkyl- or aryl-sulfonyloxy group.
  • the compound (II) is converted to linezolid by acetylation, preferably as an acid addition salt and more preferably in water.
  • the compound (IXb) is a novel compound and thus represents a specific aspect of the invention.
  • the compound (IXa) and/or the compound (IXb) may be used in the making of linezolid.
  • the starting material in the process of making linezolid according to the present invention is a compound of general formula (VII)
  • L is a leaving group, typically a halo group or an alkyl- or aryl-sulfonyloxy group.
  • the "halo” group comprises chloro- or bromo-group, preferably chloro- group.
  • the "alkyl” comprises C1-C4 alkyl group and preferably a methyl group.
  • the "aryl” comprises phenyl group, which may be optionally substituted by at least one C1-C4 alkyl group, a nitro- group, a hydroxyl group, an C1-C4 alkoxy group, and is preferably p-tolyl or p-nitrophenyl group.
  • the compounds are known in the art or may be prepared according to processes known in the art, e.g. from corresponding hydroxyl-methyl compounds of the formula (X).
  • the second reaction partner is a metal salt of diformylamide of the formula (VIII).
  • the "Me + " is typically sodium or potassium, preferably sodium.
  • the compound (VIII) is known in the art and is commonly obtainable by a reaction of the corresponding metal methoxide with formamide, see US5488188 and US5599986. It may be isolated as a solid and stored at ambient conditions.
  • the reaction between the compounds (VII) and (VIII) may typically proceed in an inert solvent, which preferably is a polar aprotic solvent, for instance ⁇ , ⁇ -dimethyl formamide, dimethyl sulfoxide , acetonitrile, N-methylpyrrolidone, ⁇ , ⁇ -dimethylacetamide or acetone and mixtures thereof.
  • an inert solvent which preferably is a polar aprotic solvent, for instance ⁇ , ⁇ -dimethyl formamide, dimethyl sulfoxide , acetonitrile, N-methylpyrrolidone, ⁇ , ⁇ -dimethylacetamide or acetone and mixtures thereof.
  • molar ratio between compound (VII) and compound (VIII) is from 1 :1 to 1 :3, preferably of from about 1:1.1 to about 1 : 1.7.
  • the reaction temperature is typically from 50 to 100°C, preferably from 60 to 90°C. At these conditions, the reaction time is about 0.5
  • the volatile residues are advantageously removed, e.g. by evaporation, and the residual metal salts are also removed, e.g. by an extraction with water.
  • the reaction product comprises a mixture of compounds of formula (IXa) and (IXb).
  • both compounds depends on the relative amount of the compound (VIII) in respect to the compound (VII).
  • the reaction mixture comprises only the compound (IXa) and/or only the compound (IXb).
  • both compounds (IXa) and (IXb) are equally convertible into the amine of the formula (II) in the next step, there is no objective need to separate them or enhance their mutual ratio in the mixture.
  • both compounds of the reaction mixture are separated by a suitable separation technique, for instance for analytical purposes.
  • the compounds (IXa) and (IXb) may also be obtained in the form of an acid addition salt, e.g. as a hydrochloride, hydrobromide, sulphate, nitrate , phosphate, formate, acetate, propionate, oxalate, malonate, maleate, fumarate, citrate, malate etc.
  • any of the compounds (IXa) and (IXb) and/or a mixture thereof is converted, in a next step, into the compound of formula (II) by a mild acid hydrolysis.
  • the acid useful for this purpose is a strong mineral or organic acid, for instance hydrochloric acid, sulphuric acid, phosphoric acid,or hydrobromic acid. In general, a molar extent of the acid is used.
  • the hydrolysis may proceed in a solvent, which may be water, a lower alcohol (C1-C4 aliphatic alcohol) or a mixture of both.
  • Typical reaction temperature is between 0 and 80 °C.
  • the course of reaction may be monitored by a suitable analytical technique, e.g. HPLC or TLC.
  • the hydrolysis step may be advantageously combined with the preceded step in a one- pot arrangement.
  • the product of the reaction comprises the raw amine compound of formula (II). It is formed after the hydrolysis as the corresponding acid addition salt (e.g. hydrochloride or dihydrochloride), which may be optionally neutralized into free amine, if necessary, by a treatment with an equivalent of a base, optionally followed by an extraction.
  • the raw compound (II) and/or its acid addition salt, e.g. a hydrochloride or acetate may be, if necessary, purified by known processes and/or isolated in any solid state form , e.g. that as disclosed in US 2006/0258655. Hydrochloride or acetate salt of the compound (II) are the preferred salts.
  • Crude or purified amine (II) may be converted to linezolid by a reaction with an acetyl halide or acetic acid anhydride, under conditions known well in the art.
  • the acetylation may be performed under conditions of Schotten-Baumann reaction or a modification thereof .
  • the name "Schotten-Baumann reaction conditions" indicates the use of an acetylation agent in a presence of a base.
  • the acetylation runs in a two-phase solvent system, consisting of water and a water immiscible organic solvent. A base is present within the water phase, which neutralizes the acid generated in the reaction, while the starting materials and product remain in the organic phase.
  • a water immiscible organic solvent are toluene, dichloromethane and/or diethyl ether.
  • (II) is converted, with or without isolation, into a water soluble acid addition salt of an inorganic acid or acetic acid, e.g. into a hydrochloride, hydrobromide, sulphate, nitrate, phosphate, and/or acetate.
  • the salt is dissolved in water, the solution is cooled as close to 0°C as possible, the acetylation agent, preferably acetic anhydride, is added, and the acetylation process is started by continuous addition of a base (preferably an inorganic base, such as sodium carbonate or sodium acetate).
  • a base preferably an inorganic base, such as sodium carbonate or sodium acetate.
  • the desired linezolid precipitates from the reaction mixture as it is not soluble therein. In this modification, organic solvents are completely avoided.
  • the produced linezolid may be isolated in any solid state form known in the art [ Form I (J.Med.Chem. 39(3), 673 (1996)), Form II (WO 01/057035, US 6,559,305), Form III (WO 2005/035530) and many others (WO 2006/004922 , US 2006/0142283), amorphous form (WO 2007/026369) and hydrated forms (US 2006/1 1 1350, EP 20033960 )] and/or may be converted in a suitable acid addition salt.
  • the linezolid prepared by the process of the present invention can be formulated and used in pharmaceutical compositions.
  • a suitable pharmaceutical composition may comprise linezolid and at least one pharmaceutically acceptable excipient.
  • the compositions are useful as antibacterial agents, in treating various diseases caused by some types of bacteria, by administering an effective amount thereof to a patient in need of such treatment. In particular, they are useful in treatment of diabetic food infections caused by Gram-positive bacteria.
  • the effective amounts range from 1 mg to 500 mg, expressed as the amount of linezolid base, per day.
  • the solid was mixed with 10 ml of methanol an 0.438ml of concentrated hydrochloric acid ( 5.00 mmol) was added.
  • the reaction mixture was warmed up in an oil bath to 65°C and stirred at this temperature for 2 hours.
  • the mixture was evaporated at diminished pressure and then co-evaporated with toluene ( 60°C, 25 mbar) to yield 220 mg of white glassy solid.
  • the reaction mixture was transferred to a 500 ml round bottom flask and cooled down in an ice- water bath.
  • Dichoromethane 150 ml was charged to the flask.
  • the mixture was vigorously stirred and a solution of NaOH (54.0 g) in water (100 ml) was added, such that the internal temperature did not exceed 20°C.
  • the mixture was filtered.
  • the filtrate was transfered to a 500 ml separatory funnel and the organic layer was separated. The filter cake was discarded.
  • the water layer was extracted with dichloromethane (2 x 50 ml).
  • the combined organic layer was dried over Na2S04 (25 g), filtered, and concentrated (60°C, 50 mbar) to provide the product as a tan crystalline solid (18.87 g).

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Plural Heterocyclic Compounds (AREA)

Abstract

The present invention relates to a process for making the compound 3-(3-fluoro-4- (morpholin-4-yl)phenyl)-2-oxooxazolidin-5(S)-ylmethyl)amine of formula (II) and/or an acid addition salt thereof comprising b) reacting the compound of formula (VII) wherein L is a leaving group, with a metal salt of diformylamide of formula (VIII) wherein Me+ is a sodium or potassium cation, b) subjecting the reaction product of the step (a) comprising, alone or in admixture, compounds of formula (IXa) and/or (IXb), to a reaction with an acid, and to the making of linezolid by acetylation of the compound of formula (II), and to the compounds (IXa) and (IXb) in making linezolid.

Description

PROCESS FOR MAKING LINEZOLID
BACKGROUND OF THE INVENTION
The present invention relates to an improved process for making the compound linezolid.
Linezolid is a pharmaceutically active compound useful as an antibacterial agent, e.g. for the treatment of diabetic food infections caused by Gram-positive bacteria. It is represented by the formula (I).
The marketed pharmaceutical compositions are a sterile isotonic solution for an i.v. infusion, a tablet for oral administration and an aqueous suspension for oral administration. They are marketed, i.e., under brand name ZYVOX by Pfizer.
The molecule of linezolid has one asymmetric carbon in the molecule allowing for 2 enantiomers; the marketed compound is the (S)-enantiomer. In the above-marketed compositions, linezolid is present as a free base.
Hereinunder, the name linezolid will be used as the generic name for N-(3-(3-fluoro-4- (morpholin-4-yl)phenyl)-2-oxooxazolidin-5(S)-ylmethyl)acetamide, unless indicated to the contrary.
Linezolid was first disclosed in WO 95/07271 (EP 0717738, US 5,688,792) of the Upjohn Company.
l Various processes for making linezolid are known in the art. In particular, the important ones are these, the final step of which comprises acetylation of an amine precursor of the formula (II) with an acetylhalide or acetic anhydride ( see, e.g., WO 2005 099353 ) .
This amine precursor (II) may be made from various starting materials, e.g.:
a) By a reduction of an azide compound of formula (III) by a suitable reductant (WO2006/091731, WO 95/07271, US 5837870, W02009/063505, US 7291614)
The starting compound (III) may be made from the corresponding tosylate or of general formula (VII) below (WO 2005/099353).
b) By a decomposition of a phthalimide compound of formula (IV), e.g. by
methylamine (WO95/07271) or by hydrazine (US 5837870)
The starting compound (IV) may be made from the same tosylate or chloride as sub a) (WO2005/099353) or by a cyclization of the oxazolidine ring (WO 99/24393,
WO2006/008754)
c) From a sulfonate compound of formula (V) (V) by treatment with ammonium hydroxide in isopropanol or THF (WO 95/07271) or by treatment with ammonia under enhanced pressure (WO 97/37980)
d) By a reduction of an imine (VI)
wherein R2 is a chlorophenyl, bromophenyl or 2,4,-dichlorophenyl moiety (WO 2007/1 16284).
Except of the imine (VI), each of the preceded synthetic approaches is based on a step of converting a starting material of the general formula (VII)
wherein L is a suitable leaving group, for instance a halogen or an alkyl-or aryl sulfonyloxy group,
by a reaction with a nitrogen nucleophile (an azide salt, phthalimide salt, ammonia or ammonium hydroxide), followed, if necessary, by a next step of conversion of the formed reaction intermediate ( e.g., compound (III) or compound (IV) ) into the amino/compound (II). Apparently, making the starting amine-compound (II) in a good yield and purity is the key aspect of commercial success of any of the above synthetic routes yielding linezolid. However, the known approaches have various drawbacks, for instance serious toxicity and explosion hazard of the azide salts, long reaction times and hazardous agents ( hydrazine, methyl amine) in using the phthalimide intermediate, low yields and many side products at the ammonium hydroxide approach, or harsh reaction conditions in reaction with ammonia.
Thus, while many synthetic processes in making the compound (II) and the linezolid are known in the art, there still exists a need of an improvement. It would be desirable to have an alternate process of making the amine-intermediate of linezolid, which process is simple, runs at moderate reaction conditions and does not exhibit the above disadvantages.
SUMMARY OF THE INVENTION
The present invention relates to a discovery of an improved process of making linezolid, which is simple in respect to process conditions and provides low amounts of reaction side products.
In a main aspect, the invention provides a process for making the compound 3-(3- fluoro-4-(morpholin-4-yl)phenyl)-2-oxooxazolidin-5(S)-ylmethyl)amine of formula (II) and/or an acid addition salt thereof
comprising a) reacting the compound of formula (VII)
wherein L is a leaving group, with a metal salt of diformylamide of formula (VIII)
O O
H^N-^H
e+ (VIII) wherein Me+ is a sodium or potassium cation, b) subjecting the reaction product of the step (a) comprising a mixture of compounds of formula (IXa) and (IXb),
to a reaction with an acid, preferably with hydrochloric acid. The leaving group is preferably a halo group or an alkyl- or aryl-sulfonyloxy group.The compound (II) is converted to linezolid by acetylation, preferably as an acid addition salt and more preferably in water.
The compound (IXb) is a novel compound and thus represents a specific aspect of the invention.
The compound (IXa) and/or the compound (IXb) may be used in the making of linezolid.
DETAILED DESCRIPTION OF THE INVENTION
The starting material in the process of making linezolid according to the present invention is a compound of general formula (VII)
wherein L is a leaving group, typically a halo group or an alkyl- or aryl-sulfonyloxy group. The "halo" group comprises chloro- or bromo-group, preferably chloro- group. The "alkyl" comprises C1-C4 alkyl group and preferably a methyl group. The "aryl" comprises phenyl group, which may be optionally substituted by at least one C1-C4 alkyl group, a nitro- group, a hydroxyl group, an C1-C4 alkoxy group, and is preferably p-tolyl or p-nitrophenyl group.
The compounds are known in the art or may be prepared according to processes known in the art, e.g. from corresponding hydroxyl-methyl compounds of the formula (X).
The second reaction partner is a metal salt of diformylamide of the formula (VIII).
The "Me+" is typically sodium or potassium, preferably sodium. The compound (VIII) is known in the art and is commonly obtainable by a reaction of the corresponding metal methoxide with formamide, see US5488188 and US5599986. It may be isolated as a solid and stored at ambient conditions.
The reaction between the compounds (VII) and (VIII) may typically proceed in an inert solvent, which preferably is a polar aprotic solvent, for instance Ν,Ν-dimethyl formamide, dimethyl sulfoxide , acetonitrile, N-methylpyrrolidone, Ν,Ν-dimethylacetamide or acetone and mixtures thereof. Typically, molar ratio between compound (VII) and compound (VIII) is from 1 :1 to 1 :3, preferably of from about 1:1.1 to about 1 : 1.7. The reaction temperature is typically from 50 to 100°C, preferably from 60 to 90°C. At these conditions, the reaction time is about 0.5 to 2 hours. The course of reaction may be monitored by common analytical techniques, e.g. by TLC or HPLC.
After the reaction is complete, the volatile residues are advantageously removed, e.g. by evaporation, and the residual metal salts are also removed, e.g. by an extraction with water.
The reaction product comprises a mixture of compounds of formula (IXa) and (IXb).
Mutual ratio of both compounds depends on the relative amount of the compound (VIII) in respect to the compound (VII). In borderline cases, the reaction mixture comprises only the compound (IXa) and/or only the compound (IXb). As both compounds (IXa) and (IXb) are equally convertible into the amine of the formula (II) in the next step, there is no objective need to separate them or enhance their mutual ratio in the mixture. However, it is not excluded that both compounds of the reaction mixture are separated by a suitable separation technique, for instance for analytical purposes. The compounds (IXa) and (IXb) may also be obtained in the form of an acid addition salt, e.g. as a hydrochloride, hydrobromide, sulphate, nitrate , phosphate, formate, acetate, propionate, oxalate, malonate, maleate, fumarate, citrate, malate etc.
Any of the compounds (IXa) and (IXb) and/or a mixture thereof is converted, in a next step, into the compound of formula (II) by a mild acid hydrolysis. Typically, the acid useful for this purpose is a strong mineral or organic acid, for instance hydrochloric acid, sulphuric acid, phosphoric acid,or hydrobromic acid. In general, a molar extent of the acid is used. The hydrolysis may proceed in a solvent, which may be water, a lower alcohol (C1-C4 aliphatic alcohol) or a mixture of both. Typical reaction temperature is between 0 and 80 °C. The course of reaction may be monitored by a suitable analytical technique, e.g. HPLC or TLC.
The hydrolysis step may be advantageously combined with the preceded step in a one- pot arrangement.
As the rests of the reagents and solvents, as well as side products formed during the reaction are volatile compounds, the easiest way for removing them is evaporation, preferably at diminished pressure.
The product of the reaction comprises the raw amine compound of formula (II). It is formed after the hydrolysis as the corresponding acid addition salt ( e.g. hydrochloride or dihydrochloride), which may be optionally neutralized into free amine, if necessary, by a treatment with an equivalent of a base, optionally followed by an extraction. The raw compound (II) and/or its acid addition salt, e.g. a hydrochloride or acetate may be, if necessary, purified by known processes and/or isolated in any solid state form , e.g. that as disclosed in US 2006/0258655. Hydrochloride or acetate salt of the compound (II) are the preferred salts.
Crude or purified amine (II) may be converted to linezolid by a reaction with an acetyl halide or acetic acid anhydride, under conditions known well in the art. In an advantageous way, the acetylation may be performed under conditions of Schotten-Baumann reaction or a modification thereof . The name "Schotten-Baumann reaction conditions" indicates the use of an acetylation agent in a presence of a base. Typically, the acetylation runs in a two-phase solvent system, consisting of water and a water immiscible organic solvent. A base is present within the water phase, which neutralizes the acid generated in the reaction, while the starting materials and product remain in the organic phase. Non-limiting examples of a water immiscible organic solvent are toluene, dichloromethane and/or diethyl ether.
In a suitable modification of the Schotten-Baumann reaction conditions, the compound
(II) is converted, with or without isolation, into a water soluble acid addition salt of an inorganic acid or acetic acid, e.g. into a hydrochloride, hydrobromide, sulphate, nitrate, phosphate, and/or acetate. The salt is dissolved in water, the solution is cooled as close to 0°C as possible, the acetylation agent, preferably acetic anhydride, is added, and the acetylation process is started by continuous addition of a base (preferably an inorganic base, such as sodium carbonate or sodium acetate). The desired linezolid precipitates from the reaction mixture as it is not soluble therein. In this modification, organic solvents are completely avoided.
The produced linezolid may be isolated in any solid state form known in the art [ Form I (J.Med.Chem. 39(3), 673 (1996)), Form II (WO 01/057035, US 6,559,305), Form III (WO 2005/035530) and many others (WO 2006/004922 , US 2006/0142283), amorphous form (WO 2007/026369) and hydrated forms (US 2006/1 1 1350, EP 20033960 )] and/or may be converted in a suitable acid addition salt.
The linezolid prepared by the process of the present invention can be formulated and used in pharmaceutical compositions. A suitable pharmaceutical composition may comprise linezolid and at least one pharmaceutically acceptable excipient. The compositions are useful as antibacterial agents, in treating various diseases caused by some types of bacteria, by administering an effective amount thereof to a patient in need of such treatment. In particular, they are useful in treatment of diabetic food infections caused by Gram-positive bacteria. Typically the effective amounts range from 1 mg to 500 mg, expressed as the amount of linezolid base, per day.
The invention will be further described with reference to the following non-limiting examples. Example 1 3-(3-fluoro-4-(morpholin-4-yl)phenyl)-2-oxooxazolidin-5(S)- ylmethyl)amine (II) hydrochloride
To a 5 ml, reaction vial equipped with a magnetic stirring bar, 225 mg (0.5 mmol) of the compound (VII) [ L= p-toluenesulfonyloxy group] was added followed by 96 mg (lmmol) of sodium diformylamide and 2.5 ml of Ν,Ν-dimethylformamide. The vessel was immersed into an oil bath, which was preheated to 85°C and the mixture was stirred at external temperature of 85°C for 1 hour. The volatiles were evaporated at diminished temperature ( 30 mbar, 60°C ), the residue was mixed with 10 ml of ethyl acetate and extracted with 10 ml of water. The organic layer was evaporated to dryness (45°C , 25 mbar) to yield a white solid.
The solid was mixed with 10 ml of methanol an 0.438ml of concentrated hydrochloric acid ( 5.00 mmol) was added. The reaction mixture was warmed up in an oil bath to 65°C and stirred at this temperature for 2 hours. The mixture was evaporated at diminished pressure and then co-evaporated with toluene ( 60°C, 25 mbar) to yield 220 mg of white glassy solid.
Example 2 3-(3-fluoro-4- morpholin-4-yl)phenyl)-2-oxooxazolidin-5(S)- ylmethyl)amine (II)
A 250 ml, three-necked, round-bottomed flask equipped with a blade mechanical stirrer and Ar inlet combined with a temperature probe was placed under an argon atmosphere and charged with sodium diformylamide (5.6 g) and the compound (VII) [ L= p- toluenesulfonyloxy group] (20.8 g). N,N-Dimethylformamide (52 ml) was added and the reaction mixture was heated to 85°C for 2 h. Hydrochloric acid (98 ml) was carefully added into the reaction mixture, such that the internal temperature did not exceed 96°C. The heterogeneous reaction mixture was heated to 85°C and the reaction was continued for 2.5 h. The reaction mixture was transferred to a 500 ml round bottom flask and cooled down in an ice- water bath. Dichoromethane (150 ml) was charged to the flask. The mixture was vigorously stirred and a solution of NaOH (54.0 g) in water (100 ml) was added, such that the internal temperature did not exceed 20°C. The mixture was filtered. The filtrate was transfered to a 500 ml separatory funnel and the organic layer was separated. The filter cake was discarded. The water layer was extracted with dichloromethane (2 x 50 ml). The combined organic layer was dried over Na2S04 (25 g), filtered, and concentrated (60°C, 50 mbar) to provide the product as a tan crystalline solid (18.87 g).
Example 3
To a 25 ml, round-bottomed flask equipped with a magnetic stirring bar was charged "amine" (0.49 g) followed by water (8.30 ml). A heterogeneous mixture was stirred and hydrochloric acid (0.12 mL, 35 %) was added. A homogenous solution was obtained. The solution was cooled down in an ice- water bath to 0 °C. Acetic anhydride (0.31 mL) was added followed by sodium bicarbonate (0.45 g). Carbon dioxide was immediately released and a formation of white precipitate was observed. The precipitate was filtered off and the filter cake was washed with water (10 ml). The filter cake was collected and dried (100 mbar) at 70°C overnight. An off-white solid linezolid (0.26 g) was isolated.

Claims

Claims
1. A process for making the compound 3-(3-fluoro-4-(morpholin-4-yl)phenyl)-2- oxooxazolidin-5(S)-ylmethyl)amine of formula (II) and/or an acid addition salt thereof
comprising
a) reacting the compound of formula (VII)
wherein L is a leaving group,
with a metal salt of diformylamide of formula (VIII)
O O
Me+ (VIII)
wherein Me+ is a sodium or potassium cation,
b) subjecting the reaction product of the step (a) comprising, alone or in admixture, compounds of formula (IXa) and/or (IXb),
to a reaction with an acid.
2. The process according to claim 1 , wherein the leaving group L is a halo group or an (Cl-C4)-alkyl- or aryl-sulfonyloxy group, wherein aryl comprises a phenyl group, which may be optionally substituted by at least one C1-C4 alkyl group, a nitro-group, a hydroxyl group, or an C1-C4 alkoxy group.
3. The process according to claim 2, wherein the leaving group L is a chloro group, a bromo group, a methylsulfonyloxy group, a phenylsulfonyloxy group, a p-tolylsulfonyloxy group or a p-nitrophenylsulfonyloxy group.
4. The process according to claims 1-3, wherein the acid is a strong mineral or organic acid, preferably hydrochloric acid, sulphuric acid, phosphoric acid, or hydrobromic acid, and more preferably is hydrochloric acid.
5. The process according to claims 1-4, wherein the reaction between the compound (VII) and (VIII) proceeds in an inert solvent, which preferably is a polar aprotic solvent, more preferably selected from Ν,Ν-dimethyl formamide, dimethyl sulfoxide , acetonitrile, N- methylpyrrolidone, Ν,Ν-dimethylacetamide or acetone and mixtures thereof.
6. The process according to claims 1-5, wherein the molar ratio between compound
(VII) and compound (VIII) is from 1 : 1 to 1 :3, preferably from about 1 : 1.1 to about 1 : 1.7.
7. The process according to claims 1-6, wherein the temperature of the reaction between compound (VII) and compound (VIII) is from 50 to 100°C, preferably from 60 to 90°C
8. The process according to claims 1-7, wherein the compound (II) is isolated from the reaction mixture.
9. The process according to claims 1-8 further comprising a step of converting the compound of formula (II) and/or an acid addition salt thereof to linezolid by a reaction thereof with an acetyl halide or acetic acid anhydride, preferably in the presence of a base and/or in a solvent system comprising water and/or an organic solvent.
10. The process according to the claim 9, wherein the compound of formula (II) is in a form of a water soluble acid addition salt with an inorganic acid or acetic acid and the solvent system is water.
1 1. A process for making linezolid comprising reacting the compound of formula (II) and/or an acid addition salt thereof
with acetyl halide or acetic acid anhydride in the presence of a base and in a solvent comprising water, wherein the compound of formula (II) is in a form of a water soluble acid addition salt with an inorganic acid or acetic acid .
12. The compound of formula (IXb), optionally in an admixture with the compound of formula (IXa)
13. Use of a compound of formula (IXb), and/or a compound of formula (IXa)
and/or an acid addition salt thereof, in making linezolid or an acid addition salt thereof.
EP10747831.5A 2010-08-11 2010-08-11 Process for making linezolid Withdrawn EP2603505A1 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/EP2010/005209 WO2012019632A1 (en) 2010-08-11 2010-08-11 Process for making linezolid

Publications (1)

Publication Number Publication Date
EP2603505A1 true EP2603505A1 (en) 2013-06-19

Family

ID=42829562

Family Applications (1)

Application Number Title Priority Date Filing Date
EP10747831.5A Withdrawn EP2603505A1 (en) 2010-08-11 2010-08-11 Process for making linezolid

Country Status (3)

Country Link
EP (1) EP2603505A1 (en)
CN (2) CN103140487A (en)
WO (2) WO2012019632A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2603252T3 (en) 2012-11-09 2017-02-24 Synthon Bv Process to prepare linezolid
WO2015068121A1 (en) 2013-11-06 2015-05-14 Unimark Remedies Ltd. Process for preparation of crystalline form i of linezolid and its compositions
CN104262280B (en) * 2014-09-22 2016-07-20 山东华生化学股份有限公司 A kind of preparation method of linezolid

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005035530A1 (en) 2003-10-16 2005-04-21 Symed Labs Limited A novel crystalline form of linezolid
WO2006008754A1 (en) 2004-07-20 2006-01-26 Symed Labs Limited Novel intermediates for linezolid and related compounds

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
MY115155A (en) 1993-09-09 2003-04-30 Upjohn Co Substituted oxazine and thiazine oxazolidinone antimicrobials.
US5688792A (en) 1994-08-16 1997-11-18 Pharmacia & Upjohn Company Substituted oxazine and thiazine oxazolidinone antimicrobials
US5599986A (en) 1994-09-29 1997-02-04 Hoechst Marion Roussel Inc. Process for the preparation of alkali metal salts of diformylamide
US5488188A (en) 1994-09-29 1996-01-30 Merrell Dow Pharmaceuticals Inc. Process for the preparation of (E)-1-amino-2-(fluoromethylene)-4-(p-fluorophenyl)butane, novel processes for preparing an intermediate thereof, and novel intermediates thereof
CZ298060B6 (en) 1996-04-11 2007-06-06 Pharmacia & Upjohn Company Process for preparing oxazolidinones
KR100619639B1 (en) 1997-11-07 2006-09-06 파마시아 앤드 업존 캄파니 엘엘씨 Process to Produce Oxazolidinones
US6444813B2 (en) 2000-02-02 2002-09-03 Pharmacia & Upjohn Company Linezolid-crystal form II
AR027261A1 (en) 2000-02-02 2003-03-19 Upjohn Co LINEZOLID CRYSTAL FORM II
DE602004009344T2 (en) 2004-04-19 2008-07-10 Symed Labs Ltd., Hyderabad A NEW METHOD FOR THE PRODUCTION OF LINEZOLID AND RELATED COMPOUNDS
EP1745028A2 (en) 2004-06-29 2007-01-24 Teva Pharmaceutical Industries Ltd Solid forms of linezolid and processes for preparation thereof
CA2572054A1 (en) 2004-06-29 2006-01-12 Teva Pharmaceutical Industries Ltd. Crystalline form iv of linezolid
CN101128442A (en) * 2005-02-24 2008-02-20 特瓦制药工业有限公司 Processes for the preparation of linezolid intermediate
EP1866295A2 (en) 2005-02-24 2007-12-19 Teva Pharmaceutical Industries Ltd Processes for the preparation of linezolid intermediate
WO2007026369A1 (en) 2005-08-29 2007-03-08 Symed Labs Limited A novel amorphous form of linezolid
DE502006002556D1 (en) 2005-09-06 2009-02-26 Ernst Schenkel Water-cooled grate element
MX2008012941A (en) * 2006-04-07 2008-10-15 Pfizer Prod Inc Process for preparing linezolid.
EP2033960A3 (en) 2007-09-04 2009-04-29 Dipharma Francis S.r.l. Linezolid crystalline hydrate form and linezolid salts
WO2009063505A2 (en) 2007-10-08 2009-05-22 Usv Limited Process for preparation of (s) (n-[[3-[3-fluoro-4-(4-morpholinyl) hen l -2-oxo-5-oxazolidin l methyl]acetamide
EP2163547A1 (en) * 2008-09-16 2010-03-17 Unión Químico Farmacéutica, S.A. (UQUIFA) Process for the preparation of an oxazolidinone antibacterial agent and intermediates thereof

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005035530A1 (en) 2003-10-16 2005-04-21 Symed Labs Limited A novel crystalline form of linezolid
WO2006008754A1 (en) 2004-07-20 2006-01-26 Symed Labs Limited Novel intermediates for linezolid and related compounds

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of WO2012019632A1

Also Published As

Publication number Publication date
WO2012019862A1 (en) 2012-02-16
CN103119040A (en) 2013-05-22
WO2012019632A1 (en) 2012-02-16
CN103140487A (en) 2013-06-05

Similar Documents

Publication Publication Date Title
WO2006010831A1 (en) 4-substituted quinoline derivatives, method and intermediates for preparing same and pharmaceutical compositions containing same
US20040242556A1 (en) Novel crystalline form of cefdinir
KR20150041650A (en) Processes for the preparation of (s)-3-4-((4-(morpholinomethyl) benzyl)oxy)-1-oxoisoindolin-2-yl) piperidine-2,6-dione and pharmaceutically acceptable forms thereof
WO2008149228A1 (en) An improved process for the preparation of substantially pure (2s,3s,5s)-5-amino-2-n,n-dibenzylamino-3-hydroxy-1,6-diphenylhexane
WO2022214645A1 (en) Processes and intermediates for the preparation of relugolix
KR101653570B1 (en) Novel Oxazolidinone derivatives and Pharmaceutical Compositions Comprising the Same
US10934289B2 (en) Solid state forms of venetoclax and its process for the preparation there of
EP2603505A1 (en) Process for making linezolid
US20220306650A1 (en) Process and polymorphic forms of bictegravir and its pharmaceutically acceptable salts or co-crystals thereof
US11236050B2 (en) Polymorphs of 4-[3-chloro-4-(n′-cyclopropyl ureido)phenoxy] -7-methoxyquinoline-6-carboxamide, its salts and process for the preparation thereof
EP2603506A1 (en) Process for making linezolid
EP2573084A1 (en) Novel crystalline forms of rivaroxaban and processes for their preparation
WO2007040326A1 (en) A novel oxazolidinone formamide derivative and preparation method therof
JP2000229978A (en) Oxazolidinone and its use as antibacterial agent
KR19980084677A (en) Oxazolidinone derivative, preparation method thereof and antimicrobial composition containing the same
KR101128029B1 (en) Method for preparing of R-3-3-fluoro-4-1-methyl-5,6-dihydro-1,2,4-triazin-41H-ylphenyl-5-substituted methyloxazolidin-2-one derivatives
EP2917189B1 (en) Process for making linezolid
KR100467309B1 (en) Oxazolidinone derivatives, a method for producing the same and antibacterial pharmaceutical composition
AU2018374838A1 (en) Process for preparing acylated amphetamine derivatives
US20110071302A1 (en) Process for preparing intermediate compound for synthesizing an antiulcerant
HUT65885A (en) Process for preparing heterocyclyl-phenoxyalkyl-piperidinylpyridazines and pharmaceutical compositions containing them
RU2190597C2 (en) Method of synthesis of antagonists of nmda (n-methyl-d-aspartate)
AU2016399299B2 (en) Crystalline form
JPH04270272A (en) Production of aminoalkylmorpholine derivative
KR100463111B1 (en) Oxazolidinone derivatives, methods for producing the same and antibacterial composition containing the said compounds

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20130311

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

TPAC Observations by third parties

Free format text: ORIGINAL CODE: EPIDOSNTIPA

DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20131030