WO2012019515A1 - 一种矩形铸坯结晶器 - Google Patents
一种矩形铸坯结晶器 Download PDFInfo
- Publication number
- WO2012019515A1 WO2012019515A1 PCT/CN2011/077938 CN2011077938W WO2012019515A1 WO 2012019515 A1 WO2012019515 A1 WO 2012019515A1 CN 2011077938 W CN2011077938 W CN 2011077938W WO 2012019515 A1 WO2012019515 A1 WO 2012019515A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- copper plate
- curved
- wide
- faced
- narrow
- Prior art date
Links
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22D—CASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
- B22D11/00—Continuous casting of metals, i.e. casting in indefinite lengths
- B22D11/04—Continuous casting of metals, i.e. casting in indefinite lengths into open-ended moulds
- B22D11/0406—Moulds with special profile
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22D—CASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
- B22D11/00—Continuous casting of metals, i.e. casting in indefinite lengths
- B22D11/04—Continuous casting of metals, i.e. casting in indefinite lengths into open-ended moulds
Definitions
- the present invention relates to a rectangular casting mold for use in a continuous casting machine, and more particularly to a rectangular casting mold which can solve the surface cracking defects of the continuous casting blank.
- the billet When the billet is continuously pulled out from the lower mouth of the straight mold (equivalent sliding blank mold), the billet is a liquid core billet whose outer surface is shell-shaped, and the billet state of the straight mold exit is a vertical straight flat shape.
- the billet shell becomes a curved flat square tube shape, and the billet shell needs to resist the bending stress generated by the straight billet shell entering the arc segment, that is, resisting the bending stress from the downward upward surge
- the stress makes the middle portion of the longitudinal direction of the shell extremely easy to be reduced by the deformation of the shape.
- the shape of the flat flat square tube becomes the shape of a curved flat square tube.
- the flat flat square tube is bent into a curved flat square tube shape, and the deformation stress of the inward depression is inevitably generated, so that the curved flat square tube is longitudinally deformed.
- the central portion is recessed.
- the static pressure of the molten steel core in the curved flat square tube prevents the depression from occurring. Therefore, the concave stress is turned into a longitudinal extension, and flows upward along the surface into the crystallizer, resulting in the middle portion of the shell surface of the mold and the uneven stress on both sides. problem.
- the problem of unevenness in the middle part and the two sides is a physical relationship directly related to the cause of the crack.
- the blank of the shell in the crystallizer loses a stable planar shape due to stress, and a gap between the billet and the mold cooled copper plate is formed to effectively block heat transfer, and the heat transfer amount is doubled to increase the volume of the shell shell, and the thickness is expanded.
- Thinning relative to the periphery
- the amount of cooling shrinkage of the part in the secondary cooling zone is greater than the shrinkage of the surrounding shell by the surrounding shell. The crack causes the surface defects of the slab to appear.
- the bending stress of the shell resisted by the above-mentioned straight shell is from the bottom to the top, and the elastic force is the elastic deformation elastic force which is completely yielded by the shell without compressive deformation in the arc segment, and continues to the straight section; Specifically, the compressive stress generated when the inner shell of the billet is bent is transmitted to the end of the mold which is elastically deformed; when the elastic force can be excessively large relative to the static pressure of the molten steel to the shell, the shell is When the planar shape of the blank of the intermediate portion is unstable, surface defects of the cast slab are generated. When the elastic force is less than the static pressure of the molten steel, the shape stability is not easily lost, and the surface defects of the cast slab are not easily generated.
- the stress in the middle part of the width of the slab is the largest when the bending stress is longitudinally surged. Therefore, the longitudinal cracks are concentrated in the middle part of the slab; and the shape of the flat shell is affected by the stress, and the shape loses stability.
- the arc continuous casting machine using the straight crystallizer the probability of surface crack defects in the slab, and the periodic crack defects. Therefore, in order to eliminate the above-mentioned crack defect characteristics of a straight arc type continuous casting machine (straight crystallizer arc continuous casting machine), a rectangular casting mold which can stabilize the shape of the shell in the crystallizer is particularly required.
- the flat mold is a mold-cast blank shell which is necessarily a flat surface tetrahedron, and the flat surface in the flat mold is affected by the upward stress of the bending stress, and the flat surface shape is most susceptible to the unstable deformation.
- the arc shape, and the instability of the edge deformation of the arc and the four corners of the cooling contraction stress are substantially the same in the middle and upper part of the crystallizer.
- Superposition is a physical cause of large cracks.
- the object of the present invention is to provide a rectangular casting mold crystallizer technical solution for the above problems, wherein the molten steel pouring surface of the crystallizer adopts a curved curved surface structure with a certain curvature, which increases the cooling area of the crystallizer and the steel billet.
- the slab is exported from the exit of the crystallizer to the slab of the thickened shell, and the shape stability of the slab shell in the crystallizer is also improved, and the slab shell of the shape disperses the rectangular surface of the flat surface, and the flat shell appears at the bend of the shell.
- the upwardly extending stress solves the problem that the two-dimensional cooling heat dissipation intensity of the rectangular and flat crystallizers is larger than that of the planar portion, and the surface crack phenomenon of the casting shell is effectively avoided.
- the technical solution to solve the technical problem of the present invention is a rectangular casting mold, comprising two sides of a narrow-faced copper plate enclosing a rectangular molten steel casting surface on the inner side of the crystallizer, a rear side back plate of the narrow-faced copper plate, and both sides of the molten steel casting surface
- Wide-faced copper plate, wide-faced copper plate rear side support plate and water tank, narrow-faced copper plate and back plate are bolted into a narrow-faced assembly
- the wide-faced copper plate, support plate and water tank are bolted into a wide-faced or wide-faced copper plate and
- the water tank is spliced into a wide-surface assembly by bolts, wherein the narrow-faced copper plate molten steel casting surface is an arc-shaped curved surface formed by connecting the upper top arc and the lower top arc, and the wide-faced copper plate has at least one side of the molten steel casting surface An arc-shaped curved surface formed by connecting the
- the longitudinal tangent of the curved curved surface is a straight line or a parabola, and the chord height of the top arc on the curved surface of the copper plate intersecting the longitudinal midline of the curved curved surface and the chord height of the top curved line under the copper curved surface are not equal, and the upper top arc is The chord height is greater than the chord height of the top arc of the copper plate.
- the transverse curve of the curved surface on the top and bottom tips of the copper plate is a catenary curve or a hyperbola.
- the ratio of the chord length to the chord height of the curved curve on the curved surface of the narrow-faced copper plate is 15 ⁇ 20: 1 ⁇ 1. 5 or 31. 5 ⁇ 39: 1 ⁇ 1. 5 or 50 ⁇ 60: 1 ⁇ 1. 5, the ratio of the chord length line to the chord height of the top and bottom top curved curves on the wide-faced copper plate surface is 200 ⁇ 235: :! ⁇ 1. 5 or 315 ⁇ 390: 1 ⁇ 1. 5 or 700 ⁇ 900: 1 ⁇ 1. 5.
- the ratio of the chord length to the chord height of the curved curve at the top of the wide-faced copper plate is not equal, and the ratio of the chord length to the chord height of the curved curve at the top of the wide-faced copper plate is 200 ⁇ 235: 1 ⁇ : 1. 5 Or 315 ⁇ 390: 1 ⁇ 1. 5 or 700 ⁇ 900: 1 ⁇ 1. 5, and the ratio of the chord length to the chord height of the curved curve on the other side of the wide-faced copper plate is 315 ⁇ 390: 1 ⁇ 1. 5 or 700 ⁇ 900: 1 ⁇ 1. 5.
- the molten steel casting surface of the two-sided wide-faced copper plate has a curved surface on one side and a flat surface on the other side.
- the curved section of the curved curve on the curved surface of the narrow-faced copper plate and the wide-faced copper plate accounts for two-fifths of the total width of the narrow-faced copper plate and the wide-faced copper plate, and the remaining three-fifths are divided into two segments and the curved segment. Cut the connection.
- the contact surface of the support plate or the water tank and the wide-face copper plate is the same curved surface as the wide-face copper plate.
- the ratio of the chord length to the hammer of the curved curve on the curved surface of the narrow-faced copper plate is 15:1 or 39: 1
- the ratio of the chord length to the chord height of the curved curve at the top of the curved surface of the narrow-faced copper plate is 39: 1 or 60: 1.
- the bolts that are spliced into a wide-surface assembly are hydraulic bolts.
- the bolts of the spliced wide-face assembly are hydraulic bolts, and the hydraulic bolt tails are cross-shaped structures for hammering.
- the lower surface of the support plate, the water tank and the back plate has a stainless steel anti-corrosion layer for preventing hot corrosion.
- the invention has the advantages that: the molten steel casting surface of the crystallizer of the invention is an arc-shaped curved surface which is curved outwards, and the accompanying expansion force when the blank shell has a tendency to decrease can be used to laminate the thinned shell and the copper sheet. More closely, the shell will naturally adjust the tendency of thinning and expansion by increasing the amount of heat transfer to maintain the stability of its shape. The shell naturally adjusts its shape stability and keeps the distance between the corner of the billet and the copper plate stable. This allows the narrow-faced copper plate design to reduce the heat transfer from the top to the bottom by appropriately increasing the distance between the corner and the copper plate.
- the slab produced by the straight-type continuous casting machine can fundamentally eliminate the longitudinal crack defects.
- Figure 1 is a front elevational view showing the structure of the present invention
- Figure 2 is a cross-sectional view taken along line A-A of Figure 1;
- Figure 3 is a cross-sectional view taken along line B-B of Figure 2;
- Figure 4 is a perspective perspective view showing the positional relationship between the crystallizer and the billet with the liquid core
- Figure 5 is a perspective perspective view of a curved surface of a narrow-faced copper plate and a wide-faced copper plate;
- Fig. 6 is a schematic view showing the arc working relationship between the crystallizer and the curved section of the billet, and the curved section raceway is not shown;
- Fig. 7 is a schematic view of the cross section of the billet, and
- Fig. 6 is a C-C view.
- Figure 8 is a perspective schematic view of the method of using hydraulic bolts. detailed description
- the crystallizer comprises two sides of a narrow-faced copper plate enclosing a rectangular molten steel casting surface on the inner side of the crystallizer, a narrow-faced copper plate rear side backing plate 2, and molten steel casting
- the wide-faced copper plate 3 on the sides, the wide-sided copper plate rear support plate 4 and the water tank 5, the narrow-faced copper plate and the back plate are bolted into a narrow-faced assembly, and the wide-faced copper plate, the support plate and the water tank are spliced into a wide surface by bolts
- the narrow-faced copper plate molten steel casting surface 1-1 is an arc-shaped curved surface formed by upper and lower arcs 1-2 and lower top arcs 1-3 connected up and down, and the molten steel casting surface of the wide-faced copper plate is at least One side is an arc-shaped curved surface formed by a lower connection of an upper top arc and a lower top arc
- the shape of the curved curved surface is: the longitudinal tangential line 1-4 of the curved curved surface is a straight line or a parabola, and the chord height of the top arc on the curved surface of the copper plate intersecting the longitudinal middle line of the curved curved surface and the top curved line under the curved surface of the copper plate The chord heights are not equal, and the chord height of the upper top arc is greater than the chord height of the top arc of the lower copper plate.
- the gap between the corner portion and the copper plate is gradually increased from top to bottom.
- the transverse curve of the curved surface on the top and bottom of the copper plate is a catenary curve (i.e., a curve formed by the natural sagging of the ends of the chain) or a hyperbola.
- the ratio of the ratio of the chord length to the chord height of the upper and lower apex curves 1-2 and 1-3 is 15 ⁇ 20: 1 ⁇ 1. 5 or 31. 5 ⁇ 39: 1 ⁇ 1. 5 or 50 ⁇ 60: 1 ⁇ 1. 5, the ratio of the chord length line to the chord height of the curved curve on the top and bottom top of the wide-faced copper plate surface is 200 ⁇ 235: 1 ⁇ 1. 5 Or 315 ⁇ 390: 1 ⁇ 1. 5 or 700 ⁇ 900: 1 ⁇ 1. 5.
- the ratio of the chord length to the chord height of the curved curve at the top of the wide-faced copper plate is not equal, and the ratio of the chord length to the chord height of the curved curve at the top of the wide-faced copper plate is 200 ⁇ 235: 1 ⁇ : 1. 5 Or 315 ⁇ 390: 1 ⁇ 1. 5 or 700 ⁇ 900: 1 ⁇ 1. 5, and the ratio of the chord length to the chord height of the curved curve on the other side of the wide-faced copper plate is 315 ⁇ 390: 1 ⁇ 1. 5 and 700 ⁇ 900: 1 ⁇ 1. 5.
- the curved outer side of the molten steel casting surface of the two sides of the wide copper plate is a curved surface, and the other inner side is a flat surface.
- the curved shape may also be: the curved section of the curved surface of the narrow-faced copper plate and the wide-faced copper plate has a length of two-fifths of the total width of the narrow-faced copper plate and the wide-faced copper plate, and the remaining three-thirds The two sections are connected to the curved section.
- the contact surface of the support plate 4 or the water tank 5 and the wide-face copper plate is the same curved surface as the wide-face copper plate.
- the bolts 6 that are spliced into a wide-surface assembly are hydraulic bolts.
- the bolt head 6-1 of the hydraulic bolt is a "ten" word bar type bolt head.
- a stainless steel anticorrosive layer 7 is attached to the bottom of the water tank.
- Figure 4 and Figure 6 illustrate the application of a straight mold.
- the billet 8 at the exit of the crystallizer is a billet whose surface is the inside of the shell 8-1 or the hot melt 8-2 of the steel. The initial state of the shell is necessarily vertical.
- the billet needs to resist the bending stress generated by the straight shell entering the arc segment; at the same time, the rectangular and flat crystal mold determines four
- the angle is two-dimensional cooling, the intensity is inevitably larger than the one-dimensional cooling of the plane part, and the cooling difference must make the longitudinal contraction rate of the four angles larger than the plane part.
- the stress of the four angle longitudinal contraction and the plane cooling contraction rate difference is initial in the melt surface.
- the crystallized shell is converted to a transverse stress and also has the effect of breaking the initial shell of the melt surface.
- the molten steel pouring surface of the crystallizer is a horizontal curved surface, which can make the blank shell closer to the copper plate when the thinning tendency is inclined, and naturally adjusts the stability of the shape by automatically increasing the heat transfer amount, so that the initial blank shell can be
- the shape is relatively stable and non-planar shape, and when the shell automatically adjusts its shape to be stable, the distance between the corner and the copper plate is also stable, which makes it possible to appropriately increase the distance between the corner and the copper plate to offset the two-dimensional heat transfer.
- the problem is that the corner cooling intensity is also the same as other parts.
- the non-straight straight arc type continuous casting machine crystallizer adopts a hydraulic "ten" word bar type bolt as a connecting piece, as shown in Fig. 8,
- the hydraulic bolt tail portion is a cross-shaped structure for hammering
- the crosshead has a hammer point and does not require a wrench.
- the larger bolt that has been injected with the high pressure liquid can be loosened. Therefore, the disassembly and assembly is convenient, and the labor intensity and work speed of maintenance are greatly reduced.
- the ratio of the horizontal arc chord length to the chord height is 200 ⁇ 235: 1 ⁇ 1.
- 5 have the effect of removing crack defects, but the equipment processing is difficult, 315 ⁇ 390 : 1 ⁇ 1.
- 5 has the effect of removing crack defects, the equipment is relatively easy to process, 1 ⁇ 1.
- the effect of removing crack defects is not obvious. Therefore, the ratio of the horizontal arc chord length to the chord height of the upper plane of the wide-faced copper plate 3 is 200 to 900: 1 to 1.5 is preferably 315 to 390: 1 to 1.5.
- the experiment shows that when the ratio of the horizontal arc chord length to the chord height L1 of the upper top plane of the narrow-faced copper plate is adopted, 15 ⁇ 20:1 ⁇ 1.5 and 31.5 ⁇ 39:1 ⁇ 1.5 and 50 ⁇ 60: 1 ⁇ : 1.5 three Different ratios were used to perform normal production and static pressure removal experiments. Two sets of almost identical results were obtained, indicating that the bending curve of the narrow and downward depression of the slab is independent of the static pressure of the molten steel. The reason is that due to its small size, the cooling shrinkage deformation stress is greater than the static pressure of the molten steel.
- the ratio of the horizontal arc chord length to the chord height of the upper plane of the narrow-faced copper plate is 15 ⁇ 60:1 ⁇ 1.5, preferably: 31.5 ⁇ 39:1 ⁇ 1.5, further preferably: 50 ⁇ 60: 1 ⁇ 1.5.
- the ratio of the chord length to the chord height of the curved curve on the curved surface of the narrow-faced copper plate is 15:1 or 39:1, and the ratio of the chord length to the chord height of the curved curve at the top of the curved surface of the narrow-faced copper plate is 39. :1 or 60:1.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Continuous Casting (AREA)
Description
一种矩形铸坯结晶器
技术领域
本发明涉及一种连铸机使用的矩形铸坯结晶器, 尤其是一种能够解决连铸 坯表面裂紋缺陷的矩形铸坯结晶器。
背景技术
中厚和特厚的钢板轧机前道工序的连续铸坯生产, 其扁矩形坯表面出现裂 纹是一种常见难以根除的钢坯表面质量缺陷, 目前还没有在技术上得到彻底解 决。 尤其是直弧形连铸机 (平直形结晶器弧形连铸机) 生产的扁形、 矩形连铸 钢坯, 钢坯表面裂紋缺陷更显突出。 业内多数人认为该机型表面纵裂纹几率高 的成因是和钢水质量、 工艺参数等波动变化有关, 或者说裂紋是几个原因共同 促成。 但是, 直弧形连铸机的平直形结晶器结构缺陷也是重要原因。 当钢坯从 平直形结晶器 (相当滑动坯模) 的下口连续拉出时, 钢坯是外表面为壳状的带 有液芯钢坯, 直形结晶器出口的钢坯状态是垂直的直扁形状, 但当钢坯进入到 弧形弯曲后, 钢坯的坯壳成为弯曲的扁方管形状, 钢坯壳需要抵抗平直坯壳进 入弧形段产生的弯曲应力, 即要抵抗由下向上涌的弯曲应力, 该应力使坯壳纵 向的中间部分极易以形状失稳的变形方式消减。 平直扁方管形状变成弧形扁方 管形状, 根据几何学原理平直扁方管弯曲变成弧形扁方管形状, 必然产生向内 凹陷的变形应力, 使弧形扁方管纵向中心部分成凹陷状。 但弧形扁方管内钢水 液芯的静压力阻止凹陷发生, 因此, 凹陷应力转向为纵向的延伸, 沿表面向上 涌到结晶器内, 产生结晶器内坯壳面中间部分和两边应力不均的问题。 中间部 分和两边应力不均的问题是和裂纹成因有直接有关的物理关系。 即结晶器内的 坯壳局部因应力失去稳定的平面形状, 而钢坯和结晶器冷却铜板之间产生有效 阻隔传热的缝隙, 倍减传热量使这一局部坯壳温度升高体积膨胀, 厚度也同歩
减薄 (相对周边而言), 当铸坯拉出结晶器 (称一冷区) 后, 这一局部在二冷区 的冷却收缩量, 与周围坯壳相比大于周围坯壳收缩量而产生裂紋导致铸坯表面 缺陷出现。 上述平直形坯壳所抵抗的坯壳弯曲应力是由下向上涌动的, 其弹性 力是因坯壳没有在弧形段压缩变形完全屈服的弹性变形弹性力, 延续到了平直 段; 即确切的说钢坯內弧坯壳弯曲时产生的压缩应力传递到结晶器里已是弹性 变形的末梢; 当弹性力能相对于钢水对坯壳的静压力的力能过大时, 即是坯壳 中间部位坯壳平面形状不稳定之时, 产生了铸坯表面缺陷。 而当弹性力能小于 钢水静压力时, 就不易失去形状稳定性, 不易产生铸坯表面缺陷。 因弯曲应力 纵向上涌时铸坯宽度的中间部位应力最大, 所以, 纵裂纹又有集中出现在铸坯 中间部位的特点; 又因结晶器内平面形坯壳受应力影响, 形状失去稳定性出现 弯曲变形时, 应力得以释放, 其后新生坯壳形状回复平面形状, 再经过一段时 间的应力积聚, 又再次形状失去稳定性而出现弯曲变形; 因而, 使用直形结晶 器的弧形连铸机, 产生铸坯表面裂紋缺陷的几率, 有周期性出现的裂纹缺陷特 征。 因此, 要消除直弧型连铸机(直结晶器弧连铸机) 上述这种裂纹缺陷特征, 特别需要有能够稳定结晶器内坯壳形状的一种矩形铸坯结晶器。
另外, 还有矩形、 扁形结晶器决定了四个角是二维冷却散热, 其散热冷却 强度必然大于平面部分的一维冷却散热度许多, 所以冷却差势必使得四个角纵 向收缩速率大于平面部分, 四个角纵向收缩与平面冷却收缩速率差别积聚的应 力在液面初始结晶的坯壳边缘上转换为横向拉伸应力, 其横向力也有拉断钢液 面附近刚结晶的初始坯壳出现纵向小裂纹的趋势。 所述平直形结晶器做为模体 铸造的坯壳体必然是平直面的四面体, 而平直形结晶器内的平直面受弯曲应力 上涌影响, 平直面形状最易失稳变形为弧形, 而其失稳变形为弧形的边缘应力 和四个角冷却收缩差应力在结晶器内中上部位应力方向基本一致, 两者应力若
叠加是产生较大裂紋的一种物理原因。
综上所诉两种导致铸坯表面裂紋缺陷的应力, 是其裂紋缺陷产生的最重要 的原因。 因此, 改变平直形结晶器为模体铸造的坯壳, 能成为不易失稳变形的 非平面形是克服铸坯表面裂紋缺陷的一种途径。 发明内容 本发明的目的是针对上述问题而提出一种矩形铸坯结晶器技术方案, 该结 晶器的钢水浇注面采用具有一定弧度的弧形曲面结构, 增大了结晶器与钢坯接 触的冷却面积使得铸坯从结晶器出口输出增厚坯壳的钢坯, 也提高了钢坯壳在 结晶器内的形状稳定性, 该形状的铸坯壳分散了平直表面的矩形、 扁形坯壳折 弯处出现的向上延伸的应力, 解决了矩形、 扁形结晶器四个角二维冷却散热强 度大于平面部分的问题, 有效地避免了铸坯壳表面裂纹现象的产生。
本发明解决其技术问题的技术方案是- 一种矩形铸坯结晶器, 包括结晶器内侧围成矩形钢水浇铸面的两侧窄面铜 板、 窄面铜板后侧背板以及钢水浇铸面的两侧宽面铜板、 宽面铜板后侧支撑板 和水箱, 窄面铜板和背板通过螺栓拼接成窄面总成, 宽面铜板、 支撑板和水箱 通过螺栓拼接成宽面总成或宽面铜板和水箱通过螺栓拼接成宽面总成, 其中, 所述窄面铜板钢水浇铸面为上顶端弧线和下顶端弧线上下连接形成的弧形曲 面, 所述宽面铜板的钢水浇铸面至少有一面为上顶端弧线和下顶端弧线上下连 接形成的弧形曲面, 所述弧线是中间向外侧弯曲的弧线, 两侧窄面铜板和两侧 宽面铜板相互衔接围成钢水浇铸模腔。
所述弧形曲面纵向切线是直线或抛物线, 和弧形曲面纵向中线相交的铜板 曲面上顶端弧线的弦高和铜板曲面下顶端弧线的弦高不相等, 且上顶端弧线的
弦高大于铜板下顶端弧线的弦高。
所述曲面在铜板上顶端和下顶端的横向曲线是悬链曲线或双曲线。
所述窄面铜板曲面上顶端和下顶端弧形曲线的弦长与弦高之比为 15〜 20 : 1〜1. 5或 31. 5〜39 : 1〜1. 5或 50〜60: 1〜1. 5, 所述宽面铜板曲面上顶端 和下顶端弧形曲线的弦长线与弦高之比为 200〜235: :!〜 1. 5或 315〜390: 1〜 1. 5或 700〜900: 1〜1. 5。
所述宽面铜板上顶端弧形曲线的弦长与弦高之比不相等, 其一个宽面铜板 上顶端弧形曲线的弦长与弦高之比是 200〜235: 1〜: 1. 5 或 315〜390: 1〜1. 5 或 700〜900: 1〜1. 5, 而与之相对的另一个宽面铜板上顶端弧形曲线的弦长与 弦高之比是 315〜390: 1〜1. 5或 700〜900: 1〜1. 5。
所述两侧宽面铜板的钢水浇铸面一面是曲面, 另一面是平面。
所述窄面铜板和宽面铜板曲面上顶端弧形曲线的弧形段长度占窄面铜板和 宽面铜板总宽度的五分之二, 其余五分之三分为两段与弧形段相切连接。
所述支撑板或水箱与宽面铜板的接触面是与宽面铜板相同曲面。
所述窄面铜板曲面上顶端弧形曲线的弦长与弦髙之比为 15 : 1或 39 : 1,所述 窄面铜板曲面下顶端弧形曲线的弦长与弦高之比为 39 : 1或 60 : 1。
所述拼接成宽面总成的螺栓为液压螺栓。
所述拼接宽面总成的螺栓为液压螺栓, 其液压螺栓尾部是用于锤击的十字 形结构。
所述支撑板、 水箱、 背板下平面有防止热腐蚀的不锈钢防腐层。
本发明与现有技术相比具有的优点是: 本发明结晶器钢水浇铸面为向外侧 弯曲的弧形曲面, 当坯壳有减薄倾向时伴随的膨胀力可使减薄坯壳与铜板贴的 更近, 坯壳会自然通过加大传热量调节减薄膨胀倾向, 保持自身形状的稳定性。 坯壳会自然调节自身形状稳定的特性也使铸坯角部和铜板的距离能保持是稳定 的, 这使窄面铜板设计可以由上而下的适当加大角部与铜板的距离减少传热量,
可以抵消部分两维传热量大于宽面中间的问题, 使得角部冷却强度也和其它部 位接近达到收缩均匀。 当铸坯四角部位冷却强度和收缩速率与其它部位一样均 匀, 加上宽面坯壳通过自动调节自身形状的稳定性, 直弧型连铸机生产的铸坯 可从根本上消除纵裂紋缺陷。
下面结合附图和实施例对本发明做一详细描述。
附图说明
图 1是本发明的结构示意图的主视图;
图 2是图 1的 A-A向剖视图;
图 3是图 2的 B-B向剖视图;
图 4是结晶器和带有液心的钢坯位置关系的立体透视示意图;
图 5是窄面铜板和宽面铜板弧形曲面特点立体透视示意图;
图 6是结晶器与钢坯弯曲段弧形工作关系示意图, 弯曲段滚道未画出; 图 7是钢坯断面结构示意图, 图 6的 C -C 视图。
图 8是液压螺栓使用方法的透视示意图。 具体实施方式
一种矩形铸坯结晶器实施例, 参见图 1至图 7,所述结晶器包括结晶器内侧 围成矩形钢水浇铸面的两侧窄面铜板 1、窄面铜板后侧背板 2以及钢水浇铸面的 两侧宽面铜板 3、 宽面铜板后侧支撑板 4和水箱 5, 窄面铜板和背板通过螺栓拼 接成窄面总成, 宽面铜板、 支撑板和水箱通过螺栓拼接成宽面总成, 其中, 所 述窄面铜板钢水浇铸面 1-1为上顶端弧线 1-2和下顶端弧线 1-3上下连接形成 的弧形曲面, 所述宽面铜板的钢水浇铸面至少有一面为上顶端弧线和下顶端弧 线上下连接形成的弧形曲面, 所述弧线是中间向外侧弯曲的弧线, 两侧窄面铜 板和两侧宽面铜板相互衔接围成钢水浇铸模腔
其中, 所述弧形曲面的形状是: 所述弧形曲面纵向切线 1-4 是直线或抛物 线, 和弧形曲面纵向中线相交的铜板曲面上顶端弧线的弦高和铜板曲面下顶端 弧线的弦高不相等, 且上顶端弧线的弦高大于铜板下顶端弧线的弦高。
为了达到钢坯面和铜板面之间的间隙更均匀、 更顺畅地向下滑动, 及其为 了角部与铜板的间隙由上而下的逐渐变大。 所述曲面在铜板上顶端和下顶端的 横向曲线是悬链曲线 (即链条两端固定中间自然下垂形成的曲线) 或双曲线。
本实施例中, 所述窄面铜板曲面上顶端和下顶端弧形曲线 1-2和 1-3的弦 长与弦高3之比为 15〜20 : 1〜1. 5或31. 5〜39 : 1〜1. 5或50〜60: 1〜1. 5, 所 述宽面铜板曲面上顶端和下顶端弧形曲线的弦长线与弦高之比为 200〜235: 1〜 1. 5或 315〜390: 1〜1. 5或 700〜900: 1〜1. 5。
所述宽面铜板上顶端弧形曲线的弦长与弦高之比不相等, 其一个宽面铜板 上顶端弧形曲线的弦长与弦高之比是 200〜235: 1〜: 1. 5 或 315〜390: 1〜1. 5 或 700〜900: 1〜1. 5, 而与之相对的另一个宽面铜板上顶端弧形曲线的弦长与 弦高之比是 315〜390: 1〜1. 5及 700〜900: 1〜1. 5。
由于钢坯板是朝一个方向弯曲的, 因此, 所述两侧宽面铜板的钢水浇铸面 弯曲的外侧一面是曲面, 另一内侧面则是平面。
其曲面形状还可以是: 所述窄面铜板和宽面铜板曲面上顶端弧形曲线的弧 形段长度占窄面铜板和宽面铜板总宽度的五分之二, 其余五分之三分为两段与 弧形段相切连接。
为了保证铜板厚度的一致性, 所述支撑板 4或水箱 5与宽面铜板的接触面 是与宽面铜板相同曲面。
所述拼接成宽面总成的螺栓 6 为液压螺栓。 所述的液压螺栓的螺栓头 6-1 为 "十"字杠型螺栓头。 所述水箱的箱底上附着有不锈钢防腐层 7。
图 4、 图 6示意了直形结晶器的应用, 结晶器出口的钢坯 8是一个表面是坯 壳 8-1内部还是钢的热熔液 8-2的钢坯, 坯壳初始状态必然是垂直平直形状, 而 当钢坯进入弧形辊道段 9 的过程中将出现一个弧形弯曲, 因此钢坯需要抵抗平 直坯壳进入弧形段产生的弯曲应力; 同时, 矩形、 扁形结晶器决定了四个角是 二维冷却, 强度必然大于平面部分的一维冷却, 冷却差势必使得四个角纵向收 缩速率大于平面部分, 四个角纵向收缩与平面冷却收缩速率差积聚的应力在熔 液面初始结晶的坯壳上转换为横向应力, 也有拉断熔液面结晶的初始坯壳的效 力。 本实施例的结晶器钢水浇注面为水平弧形面, 可使坯壳有减薄倾向时与铜 板贴的更近, 自然通过加大传热量自动调节自身形状的稳定, 可使初始坯壳有 形状较稳定的非平面形状, 而且当坯壳自动调节自身形状的稳定时, 角部和铜 板的距离也是稳定的, 这使设计时可以适当加大角部与铜板的距离, 以抵消两 维传热的问题, 使得角部冷却强度也和其它部位一样均勾。 当四角部冷却强度 均匀、 坯壳形状稳定了, 直弧型连铸机生产的铸坯可从根本上消除纵裂紋缺陷。 另外该非平直形直弧型连铸机结晶器, 采用液压 "十"字杠型螺栓做为连接件, 如图 8所示, 其液压螺栓尾部是用于锤击的十字形结构, 因其十字头有一锤击 点, 不需要扳手, 只要用锤 10击打十字头部分, 就可松动已注入高压液体的较 大螺栓。 因此, 拆装方便, 大幅度减轻了维修的劳动强度和工作速度。
实验表明当采用宽面铜板 3 的上顶端平面水平弧线弦长与弦高之比为, 200〜235: 1〜1. 5和 315〜390: 1〜1. 5及 700〜900: 1〜1. 5三种不同比值, 分别做正常生产和去除静压力实验, 得到两组不相同的结果, 200〜235: 1〜1. 5 有去除裂紋缺陷的效果, 但设备加工困难, 315〜390: 1〜1. 5有去除裂紋缺陷 的效果, 设备加工相对容易, 1〜1. 5及 700〜900: 1〜1. 5去除裂紋缺陷的效果 不明显。因此,采用宽面铜板 3的上平面水平弧线弦长与弦高之比为, 200〜900:
1〜1.5优选为 315〜390: 1〜1.5 。
实验还表明当采用窄面铜板的上顶端平面水平弧线弦长与弦高 L1之比为, 15〜20:1〜1.5和 31.5〜39:1〜1.5及 50〜60: 1〜: 1.5三种不同比值, 分别做 正常生产和去除静压力实验时, 得到两组几乎相同的结果, 表明铸坯窄面向下 凹陷的弯曲曲线大小和钢水静压力无关。 原因是因其尺寸小, 冷却收缩变形应 力大于钢水的静压力。 上述实验基本满足了实际生产需要, 第一组数值满足特 殊坯形生产的参考, 第二组数值满足正常坯形生产的参考, 第三组数值表明小 于该数值坯形开始产生凹陷, 一般不可取。 因此, 窄面铜板的上平面水平弧线 弦长与弦高之比为, 15〜60:1〜1.5, 优选为: 31.5〜39:1〜1.5, 进一步地优 选为: 50〜60: 1〜1.5。 因此所述窄面铜板曲面上顶端弧形曲线的弦长与弦高 之比为 15:1 或 39:1, 所述窄面铜板曲面下顶端弧形曲线的弦长与弦高之比为 39:1或 60:1。
Claims
1. 一种矩形铸坯结晶器, 包括结晶器内侧围成矩形钢水浇铸面的两侧窄面 铜板、 窄面铜板后侧背板以及钢水浇铸面的两侧宽面铜板、 宽面铜板后侧支撑 板和水箱, 窄面铜板和背板通过螺栓拼接成窄面总成, 宽面铜板、 支撑板和水 箱通过螺栓拼接成宽面总成或宽面铜板和水箱通过螺栓拼接成宽面总成, 其特 征在于, 所述窄面铜板钢水浇铸面为上顶端弧线和下顶端弧线上下连接形成的 弧形曲面, 所述宽面铜板的钢水浇铸面至少有一面为上顶端弧线和下顶端弧线 上下连接形成的弧形曲面, 所述弧线是中间向外侧弯曲的弧线, 两侧窄面铜板 和两侧宽面铜板相互衔接围成钢水浇铸模腔。
2.根据权利要求 1所述的一种矩形铸坯结晶器, 其特征在于, 所述弧形曲面 纵向切线是直线或抛物线, 和弧形曲面纵向中线相交的铜板曲面上顶端弧线的 弦高和铜板曲面下顶端弧线的弦高不相等, 且上顶端弧线的弦高大于铜板下顶 端弧线的弦高。
3.根据权利要求 1所述的一种矩形铸坯结晶器, 其特征在于, 所述曲面在铜 板上顶端和下顶端的横向曲线是悬链曲线或双曲线。
4.根据权利要求 1所述的一种矩形铸坯结晶器, 其特征在于, 所述窄面铜板 曲面上顶端和下顶端弧形曲线的弦长与弦高之比为 15〜20 : 1〜1. 5 或 31. 5〜 39 : 1〜1. 5 或 50〜60 : 1〜1. 5, 所述宽面铜板曲面上顶端和下顶端弧形曲线的 弦长线与弦高之比为 200〜235: 1〜1. 5或 315〜390: 1〜1. 5或 700〜900: 1〜 1. 5。
5.根据权利要求 1所述的一种矩形铸坯结晶器, 其特征在于, 所述宽面铜板 上顶端弧形曲线的弦长与弦高之比不相等, 其一个宽面铜板上顶端弧形曲线的 弦长与弦高之比是 200〜235: 1〜1. 5或 315〜390: 1〜1. 5或 700〜900: 1〜1. 5, 而与之相对的另一个宽面铜板上顶端弧形曲线的弦长与弦高之比是 315〜390: 1〜1. 5或 700〜900 : 1〜1. 5。
6.根据权利要求 1所述的一种矩形铸坯结晶器, 其特征在于, 所述两侧宽面 铜板的钢水浇铸面一面是曲面, 另一面是平面。
7.根据权利要求 1所述的一种矩形铸坯结晶器, 其特征在于, 所述窄面铜板 和宽面铜板曲面上顶端弧形曲线的弧形段长度占窄面铜板和宽面铜板总宽度的 五分之二, 其余五分之三分为两段与弧形段相切连接。
S.根据权利要求 1所述的一种矩形铸坯结晶器, 其特征在于, 所述支撑板或 水箱与宽面铜板的接触面是与宽面铜板相同曲面。
9.根据权利要求 1所述的一种矩形铸坯结晶器, 其特征在于, 所述窄面铜板 曲面上顶端弧形曲线的弦长与弦高之比为 15 : 1或 39 : 1,所述窄面铜板曲面下顶 端弧形曲线的弦长与弦高之比为 39: 1或 60: 1。
10.根据权利要求 1所述的一种矩形铸坯结晶器, 其特征在于, 所述拼接宽 面总成的螺栓为液压螺栓, 其液压螺栓尾部是用于锤击的十字形结构。
11.根据权利要求 1所述的一种矩形铸坯结晶器, 其特征在于, 所述支撑板、 水箱、 背板下平面有防止热腐蚀的不锈钢防腐层。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201010248538.6 | 2010-08-09 | ||
CN 201010248538 CN101920317A (zh) | 2010-08-09 | 2010-08-09 | 一种矩形铸坯结晶器 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2012019515A1 true WO2012019515A1 (zh) | 2012-02-16 |
Family
ID=43335675
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2011/077938 WO2012019515A1 (zh) | 2010-08-09 | 2011-08-03 | 一种矩形铸坯结晶器 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN101920317A (zh) |
WO (1) | WO2012019515A1 (zh) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104874754A (zh) * | 2015-06-19 | 2015-09-02 | 东北大学 | 一种板坯窄面内凸型曲面结晶器及其设计方法 |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101920317A (zh) * | 2010-08-09 | 2010-12-22 | 河北文丰钢铁有限公司 | 一种矩形铸坯结晶器 |
CN103894564A (zh) * | 2014-04-17 | 2014-07-02 | 铜陵有色兴铜机电制造有限公司 | 一种整体式结晶器 |
CN105108086B (zh) * | 2015-09-15 | 2018-05-22 | 西峡龙成特种材料有限公司 | 一种带倒角的连铸结晶器窄面动态板 |
CN106862508B (zh) * | 2017-02-14 | 2019-05-31 | 钢铁研究总院 | 一种圆弧形窄面铜板结晶器 |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1121851A (zh) * | 1995-06-19 | 1996-05-08 | 冶金工业部钢铁研究总院 | 连续铸造薄板坯用结晶器 |
CN1303750A (zh) * | 1999-12-15 | 2001-07-18 | Sms舒路曼-斯玛公司 | 连铸结晶器 |
CN1689729A (zh) * | 2004-04-24 | 2005-11-02 | 西峡龙城冶材集团有限公司 | 低应力金属薄板坯结晶器 |
CN1697713A (zh) * | 2003-03-03 | 2005-11-16 | 新日本制铁株式会社 | 连续铸造用铸模 |
CN2801331Y (zh) * | 2005-06-29 | 2006-08-02 | 西安重型机械研究所 | 结晶器宽面铜板 |
CN101920317A (zh) * | 2010-08-09 | 2010-12-22 | 河北文丰钢铁有限公司 | 一种矩形铸坯结晶器 |
CN201799584U (zh) * | 2010-08-09 | 2011-04-20 | 河北文丰钢铁有限公司 | 一种矩形铸坯结晶器 |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
IT1252990B (it) * | 1991-10-31 | 1995-07-10 | Danieli Off Mecc | Cristallizzatore per lingottiera con curvatura longitudinale per colata continua curva per bramme sottili |
IT1262073B (it) * | 1993-02-16 | 1996-06-19 | Danieli Off Mecc | Lingottiera per colata continua di bramme sottili |
CN2225916Y (zh) * | 1995-04-10 | 1996-05-01 | 冶金工业部钢铁研究总院 | 连铸用椭圆形结晶器 |
PT1547705E (pt) * | 2003-12-27 | 2008-06-06 | Concast Ag | Processo para o vazamento contínuo de lingotes em forma de barras e blocos e cavidade de molde de uma lingoteira destinada ao vazamento contínuo |
CN201380275Y (zh) * | 2009-03-17 | 2010-01-13 | 上海梅山钢铁股份有限公司 | 板坯连铸结晶器 |
-
2010
- 2010-08-09 CN CN 201010248538 patent/CN101920317A/zh active Pending
-
2011
- 2011-08-03 WO PCT/CN2011/077938 patent/WO2012019515A1/zh active Application Filing
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1121851A (zh) * | 1995-06-19 | 1996-05-08 | 冶金工业部钢铁研究总院 | 连续铸造薄板坯用结晶器 |
CN1303750A (zh) * | 1999-12-15 | 2001-07-18 | Sms舒路曼-斯玛公司 | 连铸结晶器 |
CN1697713A (zh) * | 2003-03-03 | 2005-11-16 | 新日本制铁株式会社 | 连续铸造用铸模 |
CN1689729A (zh) * | 2004-04-24 | 2005-11-02 | 西峡龙城冶材集团有限公司 | 低应力金属薄板坯结晶器 |
CN2801331Y (zh) * | 2005-06-29 | 2006-08-02 | 西安重型机械研究所 | 结晶器宽面铜板 |
CN101920317A (zh) * | 2010-08-09 | 2010-12-22 | 河北文丰钢铁有限公司 | 一种矩形铸坯结晶器 |
CN201799584U (zh) * | 2010-08-09 | 2011-04-20 | 河北文丰钢铁有限公司 | 一种矩形铸坯结晶器 |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104874754A (zh) * | 2015-06-19 | 2015-09-02 | 东北大学 | 一种板坯窄面内凸型曲面结晶器及其设计方法 |
Also Published As
Publication number | Publication date |
---|---|
CN101920317A (zh) | 2010-12-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2012019515A1 (zh) | 一种矩形铸坯结晶器 | |
CN110394436B (zh) | 一种方坯连铸机的二次冷却区喷淋装置 | |
CN109093084A (zh) | 一种连铸薄板坯的生产方法 | |
CN203091693U (zh) | 一种带纵向凹槽的组合结晶器铜板 | |
CN110860662A (zh) | 一种抑制连铸板坯角部奥氏体晶粒尺寸的方法和装置 | |
CN214867115U (zh) | 一种连铸铸坯冷却装置 | |
US20200290115A1 (en) | Heat Transfer-Based Width Adjustment Method For Continuous Casting Mold | |
TWM552391U (zh) | 具有傾斜軋輥的二輥連鑄坯軋角裝置 | |
CN102069163B (zh) | 结晶器、生产铸坯的装置和方法、铸坯以及超大断面铸坯 | |
CN2885458Y (zh) | 一种新型薄板坯连铸用结晶器组合铜板 | |
US20250108419A1 (en) | Single-tooth track plate cogging-down pass and hot rolling method | |
CN115815545B (zh) | 一种凸型弧面连铸结晶器窄面铜板及其使用方法 | |
CN104624990A (zh) | 一种均匀冷却结晶器铜管及其制造方法 | |
CN201211556Y (zh) | 一种二元冷却型薄板坯连铸结晶器 | |
CN203621418U (zh) | 一种组合式结晶器连续变截面形状的窄边铜板 | |
CN2805982Y (zh) | 可减少铸坯裂纹的板坯连铸机结晶器 | |
CN109822065B (zh) | 一种连铸结晶器的宽面铜板及具有该铜板的连铸结晶器 | |
CN108405819B (zh) | 降低薄板坯连铸液芯压下过程边角部应力的装备及工艺 | |
CN204308149U (zh) | 一种组合式连铸结晶器 | |
CN209288211U (zh) | 一种用于金属型铸造的模具 | |
CN222626129U (zh) | 一种用于铸坯的拱桥式结晶器 | |
CN201603846U (zh) | 改进的连铸坯冷却用结晶器 | |
CN219357868U (zh) | 一种连铸用结晶器弧形窄面铜板 | |
WO2005075131A1 (fr) | Moule a refroidissement par l'eau pour coulee continue d'un metal | |
JP3093533B2 (ja) | 薄肉鋳片の連続鋳造方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 11816074 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 11816074 Country of ref document: EP Kind code of ref document: A1 |