WO2012019054A2 - Expression of antibody or a fragment thereof in lactobacillus - Google Patents

Expression of antibody or a fragment thereof in lactobacillus Download PDF

Info

Publication number
WO2012019054A2
WO2012019054A2 PCT/US2011/046665 US2011046665W WO2012019054A2 WO 2012019054 A2 WO2012019054 A2 WO 2012019054A2 US 2011046665 W US2011046665 W US 2011046665W WO 2012019054 A2 WO2012019054 A2 WO 2012019054A2
Authority
WO
WIPO (PCT)
Prior art keywords
lactobacillus
microorganism
fragment
streptomyces
antibody
Prior art date
Application number
PCT/US2011/046665
Other languages
French (fr)
Other versions
WO2012019054A3 (en
Inventor
Lennart HAMMARSTRÖM
Harold Marcotte
Original Assignee
Hera Pharmaceuticals, Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hera Pharmaceuticals, Inc. filed Critical Hera Pharmaceuticals, Inc.
Publication of WO2012019054A2 publication Critical patent/WO2012019054A2/en
Publication of WO2012019054A3 publication Critical patent/WO2012019054A3/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K35/00Medicinal preparations containing materials or reaction products thereof with undetermined constitution
    • A61K35/66Microorganisms or materials therefrom
    • A61K35/74Bacteria
    • A61K35/741Probiotics
    • A61K35/744Lactic acid bacteria, e.g. enterococci, pediococci, lactococci, streptococci or leuconostocs
    • A61K35/747Lactobacilli, e.g. L. acidophilus or L. brevis
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/18Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
    • C07K16/28Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants
    • C07K16/2803Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants against the immunoglobulin superfamily
    • C07K16/2821Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants against the immunoglobulin superfamily against ICAM molecules, e.g. CD50, CD54, CD102
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/18Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
    • C07K16/28Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants
    • C07K16/2839Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants against the integrin superfamily
    • C07K16/2845Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants against the integrin superfamily against integrin beta2-subunit-containing molecules, e.g. CD11, CD18
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N1/00Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
    • C12N1/20Bacteria; Culture media therefor
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/74Vectors or expression systems specially adapted for prokaryotic hosts other than E. coli, e.g. Lactobacillus, Micromonospora
    • C12N15/746Vectors or expression systems specially adapted for prokaryotic hosts other than E. coli, e.g. Lactobacillus, Micromonospora for lactic acid bacteria (Streptococcus; Lactococcus; Lactobacillus; Pediococcus; Enterococcus; Leuconostoc; Propionibacterium; Bifidobacterium; Sporolactobacillus)
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/505Medicinal preparations containing antigens or antibodies comprising antibodies
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/10Immunoglobulins specific features characterized by their source of isolation or production
    • C07K2317/14Specific host cells or culture conditions, e.g. components, pH or temperature
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/20Immunoglobulins specific features characterized by taxonomic origin
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/50Immunoglobulins specific features characterized by immunoglobulin fragments
    • C07K2317/56Immunoglobulins specific features characterized by immunoglobulin fragments variable (Fv) region, i.e. VH and/or VL
    • C07K2317/569Single domain, e.g. dAb, sdAb, VHH, VNAR or nanobody®
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/60Immunoglobulins specific features characterized by non-natural combinations of immunoglobulin fragments
    • C07K2317/62Immunoglobulins specific features characterized by non-natural combinations of immunoglobulin fragments comprising only variable region components
    • C07K2317/622Single chain antibody (scFv)
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/30Against vector-borne diseases, e.g. mosquito-borne, fly-borne, tick-borne or waterborne diseases whose impact is exacerbated by climate change

Definitions

  • a Generally Regarded As Safe for humans (GRAS) microorganism is a Food and Drug Administration (FDA) designation for a microorganism regarded as safe for consumption.
  • Lactobacilli are Gram positive bacteria that are currently used in food fermentation and preservation. Lactobacilli are also normal constituents of human microbiota and are classified as GRAS organisms. Lactobacilli are useful system for delivery of therapeutic and prophylactic bio-molecules.
  • Some infectious diseases are transmitted through the passage of mucosal layer into the cell environment in which the infectious agent multiplies. Blocking the passage through the mucosal layer can be an effective measure against an infection.
  • a therapeutic product combined with a vehicle capable of safe and long-term delivery of the therapeutic product is useful: it reduces hospital visits, economic cost of administration and can provide prevention of a disease.
  • a drug-containing stent has been used for long-term release of a drug at the site of implantation.
  • a vehicle that can produce therapeutics is useful for continuous delivery of the therapeutics.
  • a genetically modified microorganism is suitable to produce biological therapeutics, such as nucleic acids or proteins, and can deliver the biological therapeutics continuously.
  • composition comprising a Lactobacillus comprising one or more exogenous nucleic acid sequences encoding one ore more antibodies or a fragment thereof wherein said one or more exogenous nucleic acid sequences is integrated into a chromosome of said Lactobacillus, wherein said
  • Lactobacillus expresses said antibodies or a fragment thereof, and wherein said antibodies or a fragment thereof bind to at least one of a host mammal's cell surface molecules so as to inhibit the infection of said host by a pathogen.
  • a composition comprising a Lactobacillus comprising one or more nucleic acid sequences encoding one or more antibodies or a fragment thereof wherein said one or more exogenous nucleic acid sequences is integrated into a chromosome of said microorganism, wherein said one ore more antibodies or a fragment thereof binds to ICAM-1, CD 18 or CDl 1, wherein said Lactobacillus expresses said antibodies or a fragment thereof.
  • a composition comprising a Lactobacillus, comprising one or more exogenous nucleic acid sequences encoding a camelid single chain antibody or a fragment thereof, wherein said antibody or a fragment thereof binds to ICAM-1, CD 18 or CDl 1, wherein said one or more exogenous nucleic acid sequences is integrated into a chromosome of said Lactobacillus.
  • said Lactobacillus is a food-grade Lactobacillus.
  • said Lactobacillus is a vaginal floral strain.
  • said Lactobacillus is a Lactobacillus paracasei.
  • said Lactobacillus is a Lactobacillus rhamnosus.
  • said Lactobacillus is a Lactobacillus rhamnosus GR-1. In one embodiment, said Lactobacillus is a Lactobacillus reuteri RC-14. In one embodiment, said Lactobacillus is a Lactobacillus iners. In one embodiment, said Lactobacillus is a Lactobacillus crispatus. In one embodiment, said
  • Lactobacillus is a Lactobacillus gasseri. In one embodiment, said Lactobacillus is a Lactobacillus jensenei. In one embodiment, said antibody or a fragment thereof binds to ICAM-1. In one embodiment, said antibody or a fragment thereof binds to CD 18. In one embodiment, said antibody or a fragment thereof binds to CD1 la or CD1 lb. In one embodiment, said one ore more antibodies or a fragment thereof is presented on the surface of said Lactobacillus. In one embodiment, said one ore more antibodies or a fragment thereof is anchored on the surface of said Lactobacillus. In one embodiment, said one ore more antibodies or a fragment thereof is secreted from said Lactobacillus.
  • At least one of said one ore more antibodies or a fragment thereof is a single-chain camelid antibody or a fragment thereof.
  • said antibody or a fragment thereof is a VHH or VNAR antibody or a fragment thereof.
  • at least one of said one ore more antibodies or a fragment thereof is a scFv antibody or a fragment thereof.
  • compositions described herein further comprises one or more exogenous nucleic acid sequences encoding another antibody or a fragment thereof that binds to a pathogen.
  • Described herein is a use of the Lactobacillus for the treatment or prevention of infection in a mammal by a pathogen in a mammal comprising, administering said Lactobacillus to said mammal and inhibiting transepithelial viral transmission or cell adhesion to an epithelial layer so as to inhibit the infection of said mammal by said pathogen.
  • Described herein is a use of the Lactobacillus for the treatment or prevention of infection in a mammal by a pathogen comprising, administering said Lactobacillus to said mammal and binding said antibody or a fragment thereof to at least one of a host mammal's cell surface molecules so as to inhibit the infection of said mammal by said pathogen.
  • said administering comprises delivery of said Lactobacillus to a nose of a human subject. In one embodiment, said administering comprises delivery of said Lactobacillus to an eye of a human subject. In one embodiment, said administering comprises delivery of said Lactobacillus to a vagina of a human subject. In one embodiment, said administering comprises delivery of said Lactobacillus to a rectum of a human subject. In one embodiment, said administering comprises delivery of said Lactobacillus to a urethra of a human subject. In one embodiment, said administering comprises delivery of said Lactobacillus to a mouth of a human subject. In one embodiment, said administering comprises delivery of said Lactobacillus is administered by intranasal delivery.
  • said administering comprises rectal delivery of said Lactobacillus. In one embodiment, said administering comprises vaginal delivery of said Lactobacillus. In one embodiment, said administering comprises urethral delivery of said Lactobacillus. In one embodiment, said administering comprises hypodermic delivery of said Lactobacillus. In one embodiment, said administering comprises oral delivery of said Lactobacillus. In one embodiment, said administering comprises delivery of said Lactobacillus in a carrier. In one embodiment, said carrier comprises a lubricant. In one embodiment, said carrier comprises a surfactant. In one embodiment, said carrier comprises a gel. In one embodiment, said carrier comprises an organic solvent. In one embodiment, said carrier comprises an emulsifier.
  • said carrier comprises a gelling agent. In one embodiment, said carrier comprises a moisturizer. In one embodiment, said carrier comprises a stabilizer. In one embodiment, said carrier comprises a wetting agent. In one embodiment, said carrier comprises a time release agent. In one embodiment, said administering comprises delivery of said Lactobacillus is administered in a carrier comprising a sequestering agent. In one embodiment, said carrier comprises a dye. In one embodiment, said carrier comprises a perfume. In one embodiment, said carrier comprises a cream. In one embodiment, said carrier comprises a foam. In one embodiment, said carrier comprises a vaginal wash. In one embodiment, said carrier comprises a vaginal douche. In one embodiment, said carrier comprises an oral solution. In one embodiment, said carrier comprises a suppository.
  • said carrier comprises a breast milk supplement. In one embodiment, said carrier comprises an infant formula. In one embodiment, said administering comprises delivery of said Lactobacillus in conjunction with a contraceptive. In one embodiment, said contraceptive is a condom. In one embodiment, said contraceptive is a sponge. In one embodiment, said contraceptive is an intrauterine device. In one embodiment, said contraceptive is a cervical ring. In one embodiment, said contraceptive is a diaphragm. In one embodiment, said contraceptive is a cervical cap. In one embodiment, said pathogen is an HIV virus. In one embodiment, said pathogen is an HPV virus. In one embodiment, said pathogen is an HSV virus. In one embodiment, said inhibition is complete blocking.
  • said inhibition is partial blocking.
  • said viral infection is sexually transmitted.
  • said mammal is a human.
  • said Lactobacillus is used prophylaticly for said treatment or prevention of a viral infection in said mammal.
  • a microorganism comprising one or more exogenous nucleic acid sequences encoding an antibody or a fragment thereof, wherein said antibody or a fragment binds to a host mammalian protein, wherein said one or more exogenous nucleic acid sequences is integrated into a chromosome of said microorganism, wherein said microorganism expresses said antibodies or a fragment thereof and survives on a mucosal surface of a host mammal.
  • a microorganism comprising one or more exogenous nucleic acid sequences encoding an antibody or a fragment thereof, wherein said antibody or a fragment thereof inhibits transepithelial viral transmission or cell adhesion to an epithelial layer, wherein said one or more exogenous nucleic acid sequences is integrated into a chromosome of said microorganism, wherein said microorganism expresses said antibodies or a fragment thereof and survives on a mucosal surface of a host mammal.
  • said microorganism is a GRAS microorganism.
  • said microorganism is a food-grade microorganism.
  • said microorganism is a gastrointestinal flora bacterium. In one embodiment, said microorganism is a vaginal flora bacterium. In one embodiment, said microorganism is a Lactobacillus. In one embodiment, said microorganism is a Bifidobacterium. In one embodiment, said microorganism is a Lactobacillus paracasei. In one embodiment, said microorganism is a Lactobacillus rhamnosus. In one embodiment, said microorganism is a Lactobacillus rhamnosus GR-1. In one embodiment, said microorganism is a Lactobacillus reuteri RC-14. In one embodiment, said virus is an HIV virus.
  • said virus is an HPV virus. In one embodiment, said virus is an HSV virus. In one embodiment, said antibody or a fragment thereof binds to ICAM-1. In one embodiment, said antibody or a fragment thereof binds to CD 18. In one embodiment, said antibody or a fragment thereof binds to CD1 la or CD1 lb,. In one embodiment, said antibody or a fragment thereof is a VHH or VNAR antibody or a fragment thereof. In one embodiment, said antibody or a fragment thereof is a scFv antibody or a fragment thereof. In one embodiment, said antibody or a fragment thereof is a single-chain camelid antibody or a fragment thereof. In one embodiment, said one ore more antibodies or a fragment thereof is presented on the surface of said
  • said one ore more antibodies or a fragment thereof is anchored on the surface of said Lactobacillus.
  • said antibody or a fragment thereof is secreted from said microorganism.
  • microorganism described herein further comprises one or more exogenous nucleic acid sequences encoding another antibody or a fragment thereof that binds to a pathogen.
  • Described herein is a use of the microorganism for the treatment or prevention of infection in a mammal by a pathogen comprising administering said microorganism to said mammal and binding said antibody or a fragment thereof to at least one of said mammal's cell surface molecules so as to inhibit the infection of said mammal by a pathogen.
  • Described herein is a use of the microorganism for the treatment or prevention of infection in a mammal by a pathogen comprising administering said microorganism to said mammal and inhibiting transepithelial viral transmission or cell adhesion to an epithelial layer so as to inhibit the infection of said mammal by a pathogen.
  • said administering comprises delivery of said microorganism to a nose of a human subject. In one embodiment, said administering comprises delivery of said microorganism to an eye of a human subject. In one embodiment, said administering comprises delivery of said microorganism to a vagina of a human subject. In one embodiment, said administering comprises delivery of said
  • said administering comprises delivery of said microorganism to a rectum of a human subject.
  • said administering comprises delivery of said microorganism to a urethra of a human subject.
  • said administering comprises delivery of said microorganism to a mouth of a human subject.
  • said administering comprises intranasal delivery of said microorganism is administered by.
  • said administering comprises rectal delivery of said microorganism.
  • said administering comprises vaginal delivery of said microorganism..
  • said administering comprises urethral delivery of said microorganism..
  • said administering comprises hypodermic delivery of said microorganism.
  • said administering comprises oral delivery of said microorganism.
  • said microorganism is administered in a carrier.
  • said carrier comprises a lubricant.
  • said carrier comprises a surfactant.
  • said carrier comprises a gel.
  • said carrier comprises an organic solvent.
  • said carrier comprises an emulsifier.
  • said carrier comprises a gelling agent.
  • said carrier comprises a moisturizer.
  • said carrier comprises a stabilizer.
  • said carrier comprises a wetting agent.
  • said carrier comprises a time release agent.
  • said carrier comprises a sequestering agent.
  • said carrier comprises a dye.
  • said carrier comprises a perfume.
  • said carrier comprises a cream.
  • said carrier comprises a foam. In one embodiment, said carrier comprises a vaginal wash. In one embodiment, said carrier comprises a vaginal douche. In one embodiment, said carrier comprises an oral solution. In one embodiment, said carrier comprises a suppository. In one embodiment, said carrier comprises a breast milk supplement. In one embodiment, said carrier comprises an infant formula. In one embodiment, said microorganism is administered in conjunction with a contraceptive. In one embodiment, said contraceptive is a condom. In one embodiment, said contraceptive is a sponge. In one embodiment, said contraceptive is an intrauterine device. In one embodiment, said contraceptive is a cervical ring. In one embodiment, said contraceptive is a diaphragm.
  • said contraceptive is a cerivical cap.
  • said pathogen is an HIV virus.
  • said pathogen is an HPV virus.
  • said pathogen is an HSV virus.
  • said inhibition is complete blocking.
  • said inhibition is partial blocking.
  • said viral infection is sexually transmitted.
  • said mammal is a human.
  • said microorganism is used prophylaticly for said treatment or prevention of a viral infection in said mammal.
  • Described herein is a use of a bacteria comprising one or more exogenous nucleic acid sequences integrated into a bacterial chromosome that encodes an antibody or a fragment thereof, wherein said bacteria expresses an antibody or a fragment thereof to ICAM-1, CD- 18 or CD-I 1, comprising administering to a woman a cream, gel, vaginal wash or vaginal douche that comprises said bacteria to treat or prevent HIV, HPV, or HSV infection in said woman.
  • FIG. 1 illustrates amplified PCR fragments used for the construction of the different expression cassettes.
  • FIG. 2 illustrates scFv production by Lactobacilli transformed with plasmids containing different expression cassettes.
  • FIG. 3 illustrates evaluation of display of scFv to the surface of modified L. paracasei.
  • FIG. 4 illustrates production of scFv and VHH antibody or a fragment thereof by modified Lactobacilli.
  • FIG. 5 illustrates binding activity of antibody or a fragment thereof to antigens in ELISA.
  • FIG. 6 illustrates production and binding activity of scFv using plasmid and chromosomal integration- based expression system.
  • FIG. 7 illustrates production and binding activity of Lactobacilli producing surface-anchored ARP1 using plasmid pAF900-ARPl and chromosomal integration based expression system (L. paracasei EM233).
  • Fig. 8 illustrates nucleotide and amino acid sequences of human or mouse CD18, CDl la, CDl lb, CDl lc, and CDl ld.
  • a delivery system includes, but is not limited to, a delivery vehicle; a therapeutic product; methods of producing a delivery vehicle, methods of delivering the vehicle to a target area; methods of carrying a therapeutic product by a delivery vehicle; methods of releasing therapeutic product by a delivery vehicle; and methods of treating diseases with the delivery system.
  • a delivery vehicle is disclosed.
  • a delivery vehicle is a microorganism.
  • a microorganism is a naturally occurring microorganism, a genetically engineered microorganism, or an artificially evolved organism.
  • the microorganism expresses one or more exogenous proteins.
  • the one or more exogenous proteins treats or prevents a pathogenic infection.
  • the pathogen is a virus.
  • the pathogen is an HIV, HSV or HPV virus.
  • the one or more exogenous proteins inhibits transepithelial migration by a virus.
  • the one or more exogenous proteins inhibits mammalian cell adhesion to an epithelial layer of said mammal.
  • the one or more exogenous proteins binds to a host cell protein.
  • the host cell protein is expressed on the cell surface.
  • the one or more exogenous proteins binds to ICAM-1 (CD54), LFA-1, or Mac-1. In another embodiment the one or more exogenous proteins binds to CD 18 or CD 11. In another embodiment the one or more exogenous proteins binds to CD 18 or CD 11 , and ICAM- 1. In another embodiment the one or more exogenous proteins binds to CDl la, CDl lb, CDl lc or CDl Id. In another embodiment the one or more proteins comprises one or more antibodies. In another embodiment the one or more antibodies comprises heavy and light chains. In one embodiment the one or more antibodies are single chain antibodies. In one embodiment the one or more antibodies are scFv antibodies. In one embodiment the one or more antibodies are camelid antibodies. In one embodiment the one or more antibodies are VHH antibodies.
  • a CD 18 protein is mammalian protein.
  • a CD 18 protein is a human protein encoded by a nucleotide SEQ. ID. No. 28 or a homolog thereof.
  • a CDl 8 protein is a human protein comprising the sequence of SEQ. ID. No. 29 or a homolog thereof.
  • a CDl 8 protein is a human protein having the sequence of SEQ. ID. No. 29 or a homolog thereof.
  • a CDl 8 protein is a mouse protein encoded by a nucleotide SEQ. ID. No. 38 or a homolog thereof.
  • a CDl 8 protein is a mouse protein comprising the sequence of SEQ.
  • a CDl 8 protein is a mouse protein having the sequence of SEQ. ID. No. 39 or a homolog thereof.
  • a homolog refers to a nucleotide or amino acid sequence having about 90% or higher sequence similarities to the sequences described herein.
  • a CDl la protein is a human protein encoded by a nucleotide SEQ. ID. No. 30 or a homolog thereof. In another embodiment, a CDl la protein is a human protein comprising the sequence of SEQ. ID. No. 31 or a homolog thereof. In another embodiment, a CDl la protein is a human protein having the sequence of SEQ. ID. No. 31 or a homolog thereof. In another embodiment, a CDl la protein is a mouse protein encoded by the polynucleotide sequence SEQ. ID. No. 40 or a homolog thereof. In another embodiment, a CDl la protein is a mouse protein comprising the sequence of SEQ. ID. No. 41 or a homolog thereof.
  • a CDl la protein is a mouse protein having the sequence of SEQ. ID. No. 41 or a homolog thereof.
  • a homolog refers to a nucleotide or amino acid sequence having about 90% or higher sequence similarities to the sequences described herein.
  • a CDl lb protein is a human protein encoded by a nucleotide SEQ. ID. No. 32 or a homolog thereof. In another embodiment, a CDl lb protein is a human protein comprising the sequence of SEQ. ID. No. 33 or a homolog thereof. In another embodiment, a CDl lb protein is a human protein having the sequence of SEQ. ID. No. 33 or a homolog thereof. In another embodiment, a CDl lb protein is a mouse protein encoded by a nucleotide SEQ. ID. No. 42 or a homolog thereof. In another embodiment, a CDl lb protein is a mouse protein comprising the sequence of SEQ. ID. No.
  • a CDl lb protein is a mouse protein having the sequence of SEQ. ID. No. 43 or a homolog thereof.
  • a homolog refers to a nucleotide or amino acid sequence having about 90%o or higher sequence similarities to the sequences described herein.
  • a CDl lc protein is a human protein encoded by a nucleotide SEQ. ID. No. 34 or a homolog thereof. In another embodiment, a CDl lc protein is a human protein comprising the sequence of SEQ. ID. No. 35 or a homolog thereof. In another embodiment, a CDl lc protein is a human protein having the sequence of SEQ. ID. No. 35 or a homolog thereof. In another embodiment, a CDl lc protein is a mouse protein encoded by a nucleotide SEQ. ID. No. 44 or a homolog thereof. In another embodiment, a CDl lc protein is a mouse protein comprising the sequence of SEQ. ID. No.
  • a CD1 lc protein is a mouse protein having the sequence of SEQ. ID. No. 45 or a homolog thereof.
  • a homolog refers to a nucleotide or amino acid sequence having about 90% or higher sequence similarities to the sequences described herein.
  • a CD1 Id protein is a human protein encoded by a nucleotide SEQ. ID. No. 36 or a homolog thereof. In another embodiment, a CD1 Id protein is a human protein comprising the sequence of SEQ. ID. No. 37 or a homolog thereof. In another embodiment, a CD1 Id protein is a human protein having the sequence of SEQ. ID. No. 37 or a homolog thereof. In another embodiment, a CD1 Id protein is a mouse protein encoded by a nucleotide SEQ. ID. No. 46 or a homolog thereof. In another embodiment, a CD1 Id protein is a mouse protein comprising the sequence of SEQ. ID. No.
  • a CD1 Id protein is a mouse protein having the sequence of SEQ. ID. No. 47 or a homolog thereof.
  • a homolog refers to a nucleotide or amino acid sequence having about 90% or higher sequence similarities to the sequences described herein.
  • a delivery vehicle is a Gram-positive bacterium. In another embodiment, a delivery vehicle is a Gram -negative bacterium. In another embodiment, a microorganism is a GRAS (generally recognized as safe) organism. In another embodiment, a microorganism is produced as a food-grade microorganism. In another embodiment, a microorganism is produced as a Gram-positive GLP-grade microorganism. In another embodiment, a delivery vehicle is a Lactobacillus microorganism or a genetically engineered microorganism derived from a Lactobacillus. In another embodiment, a delivery vehicle is L.
  • a delivery vehicle is a pharmaceutical grade microorganism.
  • the pharmaceutical grade microorganism is a Good Manufacturing Practices (GMP) -certified pharmaceutical grade microorganism.
  • a Gram-positive bacterium includes, but is not limited to, a species of Staphylococcus aureus, Staphylococcus saprophyticus, Enterococcus spp., Enterococcus faecalis, Enterococcus faecium, Streptococcus pneumoniae, Group A Streptococcus, Bacillus subtilis, Bacillus cereus, Bacillus circulans, Bacillus licheniformis, Paenibacillus alvei, Rhodococcus spp., Rhodococcus equi, Gordona bronchialis, Gordona sputi, Listeria monocytogenes, cornybacterium diphtheriae, nocardia asteroides, Norcardia farcinica, Lactobacillus spp., Lactococcus lactis, Bifidobacterium spp, arcanobacterium haemolyticum or gardnerella vaginalis.
  • a Gram -negative bacterium includes, but is not limited to, a species of Escherichia coli, Salmonella, Shigella, Enterobacteriaceae, Psudomonas, Moraxella, Helicobacter, Stenotrophomonas, Bdellovibrio, Legionella, Wolbachia, cyanobacteria, Spirochaetes, or Coccobacilli.
  • a GRAS organism refers to an organism recognized by the Food and Drug Administration as generally safe.
  • a GRAS organism has been found in a variety of microorganisms such as bacteria, yeast, brown algae, or red algae. Examples of GRAS organism includes, but is not limited to, Saccharomyces cerevisiae,
  • Saccharomyces fragilis dried torula yeast, Candida utilis, Candida guilliermondii, Candida lipolytica, Candida pseudotropicalis Analipus japonicus, Eisenia bicyclis, Hizikia fusiforme, Kjellmaniella gyrata, Laminaria angustata, Laminaria longirruris, Laminaria Longissima, Laminaria ochotensis, Laminaria claustonia, Laminaria saccharina, Laminaria digitata, Laminaria japonica, Macrocystis pyrifera, Petalonia fascia, Scytosiphon lome, Gloiopeltis furcata, Porphyra crispata, Porhyra deutata, Porhyra perforata, Porhyra suborbiculata, Porphyra tenera, Rhodymenis palmata, Lactobacillus acidophilus, Lactobacillus bulgaricus and Streptoc
  • a food-grade microorganism is an organism as a probiotic nutrients, i.e., safe to consume as a live form.
  • a probiotic organism can be modified to a vehicle as described herein.
  • a probiotic organism includes, but is not limited to, a member of the genera Lactobacillus or Bifidobacterium.
  • a probiotic organism can be derived from a natural or commercially available strains including, but is not limited to, Bifidobacterium LAFT B94, Lactobacillus acidophilus, Lactobacillus acidophilus LAFTI LI 0, Lactobacillus casei, Lactobacillus casei LAFTI L26, Bifidobacterium animalis subsp. Bifidobacterium lactis, Bifidobacterium lactis BB-12,
  • Lactobacillus acidophilus DDS-1 Lactobacillus acidophilus LA-5
  • Lactobacillus acidophilus NCFM Lactobacillus acidophilus NCFM
  • Lactobacillus acidophilus CD 1285 Lactobacillus casei 431, Lactobacillus casei F19, Lactobacillus casei Shirota, Lactobacillus paracasei, Lactobacillus paracasei Stl 1, Lactobacillus johnsonii, Lactobacillus johnsonii Lai, Lactobacillus lactis, Lactobacillus lactis L1A,
  • Lactobacillus plantarum Lactobacillus plantarum 299v, Lactobacillus reuteri, Lactobacillus reuteri ATTC 55730, Lactobacillus rhamnosus, Lactobacillus rhamnosus ATCC 53013, Lactobacillus rhamnosus LB21, Lactobacillus rhamnosus GR-1, Lactobacillus reuteri RC-14, , Lactobacillus rhamnosus R011, Lactobacillus helveticus, and Lactobacillus helveticus R0052.
  • any Lactobacillus or Bifidobacterium strain can be usefulfor methods disclosed herein.
  • the strains include, but are not limited to, Lactobacillus acetotolerans, Lactobacillus acidipiscis, Lactobacillus acidophilus, Lactobacillus agilis, Lactobacillus algidus, Lactobacillus alimentarius, Lactobacillus amylolyticus, Lactobacillus amylophilus, Lactobacillus amylovorus, Lactobacillus animalis, Lactobacillus arizonensis, Lactobacillus aviarius, Lactobacillus bifermentans, Lactobacillus brevis, Lactobacillus buchneri, Lactobacillus casei, Lactobacillus coelohominis, Lactobacillus collinoides,
  • Lactobacillus delbrueckii subsp delbrueckii Lactobacillus delbrueckii subsp. lactis, Lactobacillus durianus, Lactobacillus equi, Lactobacillus farciminis, Lactobacillus ferintoshensis, Lactobacillus fermentum,
  • Lactobacillus formicalis Lactobacillus fructivorans, Lactobacillus frumenti, Lactobacillus fuchuensis, Lactobacillus gallinarum, Lactobacillus gasseri, Lactobacillus graminis, Lactobacillus hamsteri, Lactobacillus helveticus, Lactobacillus helveticus subsp. jugurti, Lactobacillus heterohiochii, Lactobacillus hilgardii, Lactobacillus homohiochii, Lactobacillus iners, Lactobacillus intestinalis, Lactobacillus japonicus,
  • Lactobacillus jensenii Lactobacillus johnsonii, Lactobacillus kefiri, Lactobacillus kimchii, Lactobacillus kunkeei, Lactobacillus leichmannii, Lactobacillus letivazi, Lactobacillus lindneri, Lactobacillus
  • Lactobacillus mali Lactobacillus maltaromicus
  • Lactobacillus manihotivorans Lactobacillus mindensis
  • Lactobacillus mucosae Lactobacillus murinus
  • Lactobacillus nagelii Lactobacillus oris
  • Lactobacillus panis Lactobacillus pantheri, Lactobacillus parabuchneri, Lactobacillus paracasei subsp.
  • Lactobacillus paracasei Lactobacillus paracasei subsp. pseudoplantarum, Lactobacillus paracasei subsp. tolerans, Lactobacillus parakefiri, Lactobacillus paralimentarius, Lactobacillus paraplantarum, Lactobacillus pentosus, Lactobacillus perolens, Lactobacillus plantarum, Lactobacillus pontis, Lactobacillus psittaci, Lactobacillus reuteri, Lactobacillus rhamnosus, Lactobacillus ruminis, Lactobacillus sakei, Lactobacillus salivarius,
  • Lactobacillus vitulinus Lactobacillus vermiforme, Lactobacillus zeae, Bifidobacterium adolescentis,
  • Bifidobacterium psychroaerophilum Bifidobacterium pullorum
  • Bifidobacterium ruminantium Bifidobacterium saeculare
  • Bifidobacterium scardovii Bifidobacterium subtile
  • Bifidobacterium thermoacidophilum Bifidobacterium thermoacidophilum subsp. suis
  • Bifidobacterium thermophilum Bifidobacterium urinalis.
  • an intestinal microorganism grows on food ingested by a host, fluid secreted from the intestinal tube and/or mucus covering the intestinal wall.
  • Intestinal microorganisms are composed of different kinds and amounts. They also differ by portions of the gastrointestinal tracts they occupy.
  • a group of intestinal microorganisms occupying an area or a section of intestine is referred to as an intestinal microflora.
  • intestinal microflora is bacterial flora.
  • human intestinal bacterial flora comprises anaerobic bacteria.
  • human intestinal bacterial flora comprises aerobic bacteria
  • the intestinal bacterial flora occupies a human colon.
  • the colon tissue contacting the intestinal normal bacterial flora is a mucosal layer comprising epithelium, crypt cells, lamina intestinal and muscularis mucosa.
  • a microorganism found in the intestinal microflora is used as a delivery vehicle.
  • a strain of microorganism that can colonize the stomach is utilized as a delivery vehicle.
  • Helicobacter pylori can be used as a delivery vehicle.
  • a strain of microorganism that can colonize the intestine is utilized as a delivery vehicle.
  • a strain of microorganism that can colonize a vagina is utilized as a delivery vehicle.
  • a species of Lactobacillus or Bifidobacterium can be utilized as a delivery vehicle for colonization of the vagina.
  • a human vagina is colonized with a microorganism that express one or more exogenous proteins.
  • a strain of microorganism that can colonize a urethra is utilized as a delivery vehicle.
  • a strain of microorganism that can colonize a nose is utilized as a delivery vehicle.
  • a strain of microorganism that can colonize an eye or orbital socket is utilized as a delivery vehicle.
  • a strain of microorganism that can colonize mouth is utilized as a delivery vehicle.
  • a strain of microorganism that can colonize the throat is utilized as a delivery vehicle.
  • a non-pathogenic microorganism for human use is employed as a delivery vehicle.
  • the microorganism is a non-pathogenic organism.
  • the microorganism is naturally occurring, non-pathogenic organism.
  • the microorganism is rendered non-pathogenic, such as by genetic modification or by artificial evolution.
  • a microorganism that can be used as a delivery vehicle either naturally or by genetic modification includes, but is not limited to, Chaetomiaceae such as the genera Chaetomium e.g.
  • Choanephoraceae such as the genera Blakeslea, Choanephora e.g. the species Blakeslea trispora, Choanephora cucurbitarum or Choanephora infundibulifera var. cucurbitarum
  • Cryptococcaceae such as the genera Candida, Crytococcus, Rhodotorula, Torulopsis e.g. the species Candida albicans, Candida albomarginata, Candida antarctica,
  • Cunninghamella elegans or Cunninghamella homothallica Cunninghamella elegans or Cunninghamella homothallica; Demetiaceae such as the genera Alternaria,
  • Bipolaris Cercospora, Chalara, Cladosporium, Curvularia, Exophilia, Helicosporium, Helminthosporium, Orbimyces, Philalophora, Pithomyces, Spilocaea, Thielaviopsis, Wangiella e.g.
  • Curvularia affiinis Curvularia clavata, Curvularia fallax, Curvularia inaequalis, Curvularia indica, Curvularia lunata, Curvularia pallescens, Curvularia verruculosa or Helminothosporium sp.
  • Moniliaceae such as the genera Arthrobotrys, Aspergillus, Epidermophyton, Geotrichum, Gliocladium, Histoplasma, Microsporum, Monilia, Oedocephalum, Oidium, Penicillium, Trichoderma, Trichophyton, Thrichoteclum, Verticillium e.g.
  • Aspergillus aculeatus Aspergillus albus, Aspergillus alliaceus, Aspergillus asperescens , Aspergillus awamori, Aspergillus candidus, Aspergillus carbonarius, Aspergillus carneus, Aspergillus chevalieri, Aspergillus chevalieri var. intermedius, Aspergillus clavatus, Aspergillus ficuum, Aspergillus flavipes, Aspergillus flavus, Aspergillus foetidus, Aspergillus fumigatus, Aspergillus giganteus, Aspergillus humicola, Aspergillus intermedius,
  • Aspergillus japonicus Aspergillus nidulans, Aspergillus niger, Aspergillus niveus, Aspergillus ochraceus, Aspergillus oryzae, Aspergillus ostianus, Aspergillus parasiticus, Aspergillus parasiticus var. globosus, Aspergillus penicillioides, Aspergillus phoenicis, Aspergillus rugulosus, Aspergillus sclerotiorum, Aspergillus sojae var.
  • Penicillium divaricatum Penicillium divaricatum
  • -Penicillium diversum PeniciUium duclauxii
  • PeniciUium echinosporum PeniciUium expansum
  • PeniciUium fellutanum PeniciUium frequentans
  • -PeniciUium funiculosum PeniciUium glabrum
  • PeniciUium gladioli PeniciUium griseofulvum
  • PeniciUium hirsutum -PeniciUium hispanicum
  • -PeniciUium islandicum PeniciUium ita cum,- PeniciUium itaUcum var.
  • PeniciUium striatisporum PeniciUium striatum, PeniciUium tardum, PeniciUium thomii, PeniciUium turbatum, PeniciUium variabile, PeniciUium vermiculatum, PeniciUium vermoesenii, PeniciUium verrucosum, PeniciUium verrucosum var. corymbiferum, PeniciUium verrucosum var.
  • Mortierellaceae such as the genera Mortierella e.g. the species Mortierella isabellina, Mortierella polycephala , Mortierella ramanniana , Mortierella vinacea or
  • Mucoraceae such as the genera Actinomucor, Mucor, Phycomyces, Rhizopus, Zygorhynchus e.g. the species Mucor amphibiorum, Mucor circinelloides f. circinelloides, Mucor circinelloides var.
  • griseocyanus Mucor flavus, Mucor fuscus, Mucor griseocyanus, Mucor heterosporus, Mucor hiemalis, Mucor hiemalis f. hiemalis, Mucor inaequisporus, Mucor indicus, Mucor javanicus, Mucor mucedo, Mucor mucilagineus, Mucor piriformis, Mucor plasmaticus, Mucor plumbeus, Mucor racemosus, Mucor racemosus f. racemosus, Mucor racemosus f.
  • Rhizopus microsporus var. rhizopodiformis Rhizopus nigricans, Rhizopus niveus, Rhizopus oligosporus, Rhizopus oryzae, Rhizopus pygmaeus, Rhizopus rhizopodiformis, Rhizopus semarangensis, Rhizopus thankii, Rhizopus stolonifer, Rhizopus thermosus, Rhizopus tonkinensis, Rhizopus tritici or Rhizopus usamii; Pythiaceae such as the genera Phytium, Phytophthora e.g.
  • Phytophthora citricola Phytophthora citrophthora, Phytophthora cryptogea, Phytophthora drechsleri, Phytophthora erythroseptica, Phytophthora lateralis, Phytophthora megasperma, Phytophthora nicotianae, Phytophthora nicotianae var. parasitica, Phytophthora palmivora, Phytophthora parasitica or Phytophthora syringae; Sacharomycetaceae such as the genera Hansenula, Pichia, Saccharomyces, Saccharomycodes, Yarrowia e.g.
  • Saccharomyces bailii Saccharomyces bay anus, Saccharomyces bisporus, Saccharomyces capensis,
  • Saccharomyces carlsbergensis Saccharomyces cerevisiae, Saccharomyces cerevisiae var. ellipsoideus, Saccharomyces chevalieri, Saccharomyces delbrueckii, Saccharomyces diastaticus, Saccharomyces drosophilarum, Saccharomyces elegans, Saccharomyces ellipsoideus, Saccharomyces fermentati,
  • Saccharomyces florentinus Saccharomyces fragilis, Saccharomyces heterogenous, Saccharomyces hienipiensis, Saccharomyces inusitatus, Saccharomyces italicus, Saccharomyces kiuyveri, Saccharomyces krusei,
  • Saccharomyces lactis Saccharomyces marxianus, Saccharomyces microellipsoides, Saccharomyces montanus, Saccharomyces norbensis, Saccharomyces oleaceus, Saccharomyces paradoxus, Saccharomyces pastorianus, Saccharomyces pretoriensis, Saccharomyces rosei, Saccharomyces rouxii, Saccharomyces uvarum,
  • Saccharomycodes ludwigii or Yarrowia lipolytica such as the genera Saprolegnia e.g. the species Saprolegnia ferax; Schizosacharomycetaceae such as the genera Schizo saccharomyces e.g. the species Schizosaccharomyces japonicus var. japonicus, Schizosaccharomyces japonicus var. versatilis,
  • Schizosaccharomyces malidevorans Schizosaccharomyces octosporus, Schizosaccharomyces pombe var. malidevorans or Schizosaccharomyces pombe var. pombe; Sodariaceae such as the genera Neurospora, Sordaria e.g.
  • Tuberculariaceae such as the genera Epicoccum, Fusarium, Myrothecium, Sphacelia, Starkeyomyces, Tubercularia e.g. the species Fusarium acuminatum, Fusarium anthophilum, Fusarium aquaeductuum, Fusarium aquaeductuum var. medium, Fusarium avenaceum, Fusarium buharicum, Fusarium camptoceras, Fusarium cerealis, Fusarium
  • Fusarium moniliforme var. subglutinans Fusarium nivale, Fusarium nivale var. majus, Fusarium oxysporum, Fusarium oxysporum f. sp. aechmeae, Fusarium oxysporum f. sp. cepae, Fusarium oxysporum f. sp. conglutinans, Fusarium oxysporum f. sp. cucumerinum, Fusarium oxysporum f. sp. cyclaminis, Fusarium oxysporum f. sp. dianthi, Fusarium oxysporum f.
  • Fusarium oxysporum f. sp. melonis Fusarium oxysporum f. sp. passiflorae
  • Fusarium oxysporum f. sp. pisi Fusarium oxysporum f. sp. tracheiphilum
  • Fusarium oxysporum f. sp. tuberosi Fusarium oxysporum f. sp. tulipae
  • Fusarium oxysporum f. sp. vasinfectum Fusarium pallidoroseum, Fusarium poae, Fusarium proliferatum,
  • Dinophyceae such as the genera Crypthecodinium, Phaeodactylum e.g. the species Crypthecodinium cohnii or Phaeodactylum tricornutum; Ditrichaceae such as the genera Ceratodon, Pleuridium, Astomiopsis, Ditrichum, Philibertiella, Ceratodon, Distichium, Skottsbergia e.g. the species Ceratodon antarcticus, Ceratodon purpureus, Ceratodon purpureus ssp. convolutes or Ceratodon purpureus ssp.
  • Ditrichaceae such as the genera Ceratodon, Pleuridium, Astomiopsis, Ditrichum, Philibertiella, Ceratodon, Distichium, Skottsbergia e.g. the species Ceratodon antarcticus, Ceratodon purpureus, Ceratodon pur
  • Prasinophyceae such as the genera Nephroselmis, Prasinococcus, Scherffelia, Tetraselmis, Mantoniella, Ostreococcus e.g. the species Nephroselmis olivacea, Prasinococcus capsulatus, Scherffelia dubia, Tetraselmis chui, Tetraselmis suecica, Mantoniella squamata or Ostreococcus tauri; Actinomycetaceae such as the genera Actinomyces, Actinobaculum, Arcanobacterium, Mobiiuncus e.g.
  • curtisii Mobiiuncus curtisii subsp. holmesii or Mobiiuncus mulieris
  • Bacillaceae such as the genera Amphibacillus, Anoxybacillus, Bacillus, Exiguobacterium, Gracilibacillus, Holobacillus, Saccharococcus, Salibacillus, Virgibacillus e.g.
  • arseniciselenatis Bacillus atrophaeus, Bacillus azotofixans, Bacillus azotoformans, Bacillus badius, Bacillus barbaricus, Bacillus benzoevorans, Bacillus borstelensis, Bacillus brevis, Bacillus carboniphilus, Bacillus centrosporus, Bacillus cereus, Bacillus chitinolyticus, Bacillus chondroitinus, Bacillus choshinensis, Bacillus circulans, Bacillus clarkii, Bacillus clausii, Bacillus coagulans, Bacillus cohnii, Bacillus curdlanolyticus, Bacillus cycloheptanicus, Bacillus decolorationis, Bacillus dipsosauri, Bacillus edaphicus, Bacillus ehimensis, Bacillus endophytics, Bacillus fastidiosus, Bacillus firmus, Bacill
  • Bacillus thermantarcticus Bacillus thermoaerophilus, Bacillus thermoamylovorans, Bacillus thermoantarcticus, Bacillus thermocatenulatus, Bacillus thermocloacae, Bacillus thermodenitrificans, Bacillus
  • thermoglucosidasius Bacillus thermoleovorans, Bacillus thermoruber, Bacillus thermosphaericus, Bacillus thiaminolyticus, Bacillus thuringiensis, Bacillus tusciae, Bacillus validus, Bacillus vallismortis, Bacillus vedderi, Bacillus vulcani, Bacillus weihenstephanensis, Exiguob acterium acetylicum, Exiguob acterium antarcticum, Exiguob acterium aurantiacum, Exiguob acterium undae, Gracilibacillus dipsosauri,
  • Gracilibacillus halotolerans Halobacillus halophilus, Halobacillus karajensis, Halobacillus litoralis, Halobacillus salinus, Halobacillus trueperi, Saccharococcus caldoxylosilyticus, Saccharo coccus thermophilus, Salibacillus marismortui, Salibacillus salexigens, Virgibacillus carmonensis, Virgibacillus marismortui, Virgibacillus necropolis, Virgibacillus pantothenticus, Virgibacillus picturae, Virgibacillus proomii or
  • Brevibacteriaceae such as the genera Brevibacterium e.g. the species Brevib acterium acetylicum, Brevibacterium albidum, Brevibacterium ammoniagenes, Brevibacterium avium, Brevibacterium casei, Brevibacterium citreum, Brevibacterium divahcatum, Brevibacterium epidermidis, Brevibacterium fermentans, Brevibacterium frigoritolerans, Brevibacterium halotolerans, Brevibacterium imperiale,
  • Corynebacterium accolens Corynebacterium afermentans subsp. afermentans, Corynebacterium afermentans subsp. lipophilum, Corynebacterium ammoniagenes, Corynebacterium amycolatum, Corynebacterium appendicis, Corynebacterium aquilae, Corynebacterium argentoratense, Corynebacterium atypicum,
  • Corynebacterium aurimucosum Corynebacterium auris, Corynebacterium auriscanis, Corynebacterium betae, Corynebacterium beticola, Corynebacterium bovis, Corynebacterium callunae, Corynebacterium
  • camporealensis Corynebacterium capitovis, Corynebacterium casei, Corynebacterium confusum
  • Escherichia coH-mutabile Escherichia fergusonii
  • Escherichia hermannii Escherichia sp.
  • Escherichia vulneris Escherichia vulneris
  • Ewingella americana Hafnia alvei
  • Klebsiella aerogenes Klebsiella edwardsii subsp. atlantae
  • Klebsiella ornithinolytica Klebsiella oxytoca
  • Klebsiella planticola Klebsiella pneumoniae
  • Klebsiella pneumoniae subsp Klebsiella pneumoniae subsp.
  • Pectobacterium carotovorum subsp. atrosepticum Pectobacterium carotovorum subsp. carotovorum,
  • Salmonella choleraesuis subsp. bongori Salmonella choleraesuis subsp. cholereasuis, Salmonella choleraesuis subsp. diarizonae, Salmonella choleraesuis subsp. houtenae, Salmonella choleraesuis subsp. indica, Salmonella choleraesuis subsp. salamae, Salmonella daressalaam, Salmonella enterica subsp. houtenae, Salmonella enterica subsp.
  • Micrococcus lylae Micrococcus nishinomiyaensis, Micrococcus roseus, Micrococcus sedentarius, Micrococcus varians, Arthrobacter agilis, Arthrobacter albus, Arthrobacter atrocyaneus, Arthrobacter aurescens,
  • Arthrobacter nasiphocae Arthrobacter nicotianae, Arthrobacter nicotinovorans, Arthrobacter oxydans, Arthrobacter pascens, Arthrobacter picolinophilus, Arthrobacter polychromogenes, Arthrobacter
  • Stomatococcus mucilaginosus such as the genera Mycobacterium e.g. the species
  • Mycobacterium africanum, Mycobacterium agri, Mycobacterium aichiense, Mycobacterium alvei,
  • Mycobacterium chitae Mycobacterium chlorophenolicum, Mycobacterium chubuense, Mycobacterium confluentis, Mycobacterium cookii, Mycobacterium diernhoferi, Mycobacterium doricum, Mycobacterium duvalii, Mycobacterium fallax, Mycobacterium farcinogenes, Mycobacterium flavescens, Mycobacterium frederiksbergense, Mycobacterium gadium, Mycobacterium gilvum, Mycobacterium gordonae, Mycobacterium hassiacum, Mycobacterium hiberniae, Mycobacterium hodleri, Mycobacterium holsaticum, Mycobacterium komossense, Mycobacterium lacus, Mycobacterium madagascariense, Mycobacterium mageritense,
  • Pseudomonas acidovorans Pseudomonas aeruginosa, Pseudomonas agarici, Pseudomonas alcaligenes, Pseudomonas aminovorans, Pseudomonas amygdali, Pseudomonas andropogonis, Pseudomonas
  • Pseudomonas aptata Pseudomonas an/illa, Pseudomonas asplenii, Pseudomonas atlantica, Pseudomonas atrofaciens, Pseudomonas aureofaciens, Pseudomonas avellanae, Pseudomonas azelaica, Pseudomonas azotocolligans, Pseudomonas balearica, Pseudomonas barken, Pseudomonas bathycetes, Pseudomonas beijerinckii, Pseudomonas brassicacearum, Pseudomonas brenneri, Pseudomonas butanovora, Pseudomonas carboxydoflava, Pseudomonas carboxydohydrogena, Pseudomonas carb
  • Pseudomonas fragi Pseudomonas frederiksbergensis, Pseudomonas fulgida, Pseudomonas fuscovaginae, Pseudomonas gazotropha, Pseudomonas gladioli, Pseudomonas glathei, Pseudomonas glumae, Pseudomonas graminis, Pseudomonas halophila, Pseudomonas helianthi, Pseudomonas huttiensis, Pseudomonas hydrogenothermophila, Pseudomonas hydrogenovora, Pseudomonas indica, Pseudomonas indigofera, Pseudomonas iodinum, Pseudomonas kiionensis, Pseudomonas lachryman
  • naraensis Pseudomonas putrefaciens, Pseudomonas pyrrocinia, Pseudomonas radiora, Pseudomonas reptilivora, Pseudomonas rhodesiae, Pseudomonas rhodos, Pseudomonas hboflavina, Pseudomonas rubescens, Pseudomonas rubrisubalbicans, Pseudomonas ruhlandii, Pseudomonas saccharophila, Pseudomonas savastanoi,
  • coronafaciens Pseudomonas syringae pvar. delphinii, Pseudomonas syringae pvar. glycinea, Pseudomonas syringae pvar. helianthi, Pseudomonas syringae pvar. lachrymans, Pseudomonas syringae pvar. lapsa, Pseudomonas syringae pvar. morsprunorum, Pseudomonas syringae pvar. phaseolicola, Pseudomonas syringae pyar.
  • Rhizobiaceae such as the genera
  • Streptomycetaceae such as the genera Kitasatosprora, Streptomyces, Streptoverticillium e.g. the species Streptomyces abikoensis, Streptomyces aburaviensis, Streptomyces achromogenes subsp. achromogenes, Streptomyces achromogenes subsp. rubradiris, Streptomyces acidiscabies, Streptomyces acrimycini,
  • Streptomyces almquistii Streptomyces althioticus, Streptomyces amakusaensis, Streptomyces ambofaciens, Streptomyces aminophilus, Streptomyces anandii, Streptomyces anthocyanicus, Streptomyces antibioticus, Streptomyces antimycoticus, Streptomyces anulatus, Streptomyces arabicus, Streptomyces ardus, Streptomyces arenae, Streptomyces argenteolus, Streptomyces armeniacus, Streptomyces asiaticus,
  • Streptomyces asterosporus Streptomyces atratus, Streptomyces atroaurantiacus, Streptomyces atroolivaceus, Streptomyces atrovirens, Streptomyces aurantiacus, Streptomyces aurantiogriseus, Streptomyces
  • Streptomyces aureoverticillatus Streptomyces aureus, Streptomyces avellaneus, Streptomyces avermectinius, Streptomyces avermitilis, Streptomyces avidinii, Streptomyces azaticus, Streptomyces azureus, Streptomyces baarnensis, Streptomyces bacillaris, Streptomyces badius, Streptomyces baldaccii, Streptomyces bambergiensis,
  • Streptomyces cellostaticus Streptomyces celluloflavus
  • Streptomyces cellulolyticus Streptomyces cellulosae
  • Streptomyces champavatii Streptomyces chartrates, Streptomyces chattanoogensis, Streptomyces chibaensis, Streptomyces chrestomyceticus, Streptomyces chromofuscus, Streptomyces chryseus, Streptomyces chrysomallus subsp. chrysomallus, Streptomyces chrysomallus subsp.
  • Streptomyces cinereorectus fumigatus, Streptomyces cinereorectus, Streptomyces cinereoruber subsp. cinereoruber, Streptomyces cinereoruber subsp. fructofermentans, Streptomyces cinereospinus, Streptomyces cinereus, Streptomyces cinerochromogenes, Streptomyces cinnabarinus, Streptomyces cinnamonensis, Streptomyces cinnamoneus, Streptomyces cinnamoneus subsp. albosporus, Streptomyces cinnamoneus subsp. cinnamoneus, Streptomyces cinnamoneus subsp. lanosus, Streptomyces cinnamoneus subsp. sparsus, Streptomyces cirratus, Streptomyces ciscaucasicus, Streptomyces
  • Streptomyces durhamensis Streptomyces echinatus, Streptomyces echinoruber, Streptomyces ederensis, Streptomyces ehimensis, Streptomyces endus, Streptomyces enissocaesilis, Streptomyces erumpens,
  • Streptomyces erythraeus Streptomyces erythrogriseus, Streptomyces eurocidicus, Streptomyces
  • Streptomyces filamentosus Streptomyces filipinensis, Streptomyces fimbriatus, Streptomyces fimicarius, Streptomyces finlayi, Streptomyces flaveolus, Streptomyces flaveus, Streptomyces flavidofuscus, Streptomyces flavidovirens, Streptomyces flaviscleroticus, Streptomyces flavofungini, Streptomyces flavofuscus, Streptomyces flavogriseus, Streptomyces flavopersicus, Streptomyces flavotricini, Streptomyces flavovariabilis, Streptomyces flavovirens, Streptomyces flavoviridis, Streptomyces flocculus, Streptomyces floridae, Streptomyces fluorescens,
  • Streptomyces fradiae Streptomyces fragilis, Streptomyces fulvissimus, Streptomyces fulvorobeus, Streptomyces fumanus, Streptomyces fumigatiscleroticus, Streptomyces galbus, Streptomyces galilaeus, Streptomyces gancidicus, Streptomyces gardneri, Streptomyces gelaticus, Streptomyces geysiriensis, Streptomyces ghanaensis, Streptomyces gibsonii, Streptomyces glaucescens, Streptomyces glaucosporus, Streptomyces glaucus, Streptomyces globisporus subsp. caucasicus, Streptomyces globisporus subsp. flavofuscus,
  • Streptomyces javensis Streptomyces kanamyceticus, Streptomyces kashmirensis, Streptomyces kasugaensis, Streptomyces katrae, Streptomyces kentuckensis, Streptomyces kifunensis, Streptomyces kishiwadensis, Streptomyces kunmingensis, Streptomyces kurssanovii, Streptomyces labedae, Streptomyces laceyi,
  • Streptomyces lavenduligriseus Streptomyces lavendulocolor, Streptomyces levis, Streptomyces libani subsp. libani, Streptomyces libani subsp. rufus, Streptomyces lienomycini, Streptomyces lilacinus, Streptomyces limosus, Streptomyces Uncolnensis, Streptomyces Upmanii, Streptomyces Utmocidini, Streptomyces lomondensis, Streptomyces longisporoflavus, Streptomyces longispororuber, Streptomyces longisporus, Streptomyces longwoodensis, Streptomyces lucensis, Streptomyces luridiscabiei, Streptomyces luridus, Streptomyces lusitanus, Streptomyces luteireticuli, Streptomyces luteogriseus
  • Streptomyces mexicanus Streptomyces michiganensis, Streptomyces microflavus, Streptomyces
  • ochraceiscleroticus Streptomyces odorifer, Streptomyces olivaceiscleroticus, Streptomyces olivaceovihdis, Streptomyces oUvaceus, Streptomyces olivochromogenes, Streptomyces olivomycini, Streptomyces olivoreticuli,
  • Streptomyces polychromogenes Streptomyces poonensis, Streptomyces praecox, Streptomyces prasinopilosus, Streptomyces prasinosporus, Streptomyces prasinus, Streptomyces prunicolor, Streptomyces psammoticus, Streptomyces pseudoechinosporeus, Streptomyces pseudogriseolus, Streptomyces pseudovenezuelae,
  • Streptomyces pulveraceus Streptomyces puniceus, Streptomyces puniciscabiei, Streptomyces purpeofuscus, Streptomyces purpurascens, Streptomyces purpureus, Streptomyces purpurogeneiscleroticus, Streptomyces racemochromogenes, Streptomyces rameus, Streptomyces ramulosus, Streptomyces rangoonensis, Streptomyces recifensis, Streptomyces rectiverticillatus, Streptomyces rectiviolaceus, Streptomyces regensis, Streptomyces resistomycificus, Streptomyces reticuliscabiei, Streptomyces rhizosphaericus, Streptomyces rimosus subsp.
  • Streptomyces rutgersensis subsp. rutgersensis Streptomyces salmonis, Streptomyces sampsonii, Streptomyces sanglieri, Streptomyces sannanensis, Streptomyces sapporonensis, Streptomyces scabiei, Streptomyces sclerotialus, Streptomyces scopiformis, Streptomyces seoulensis, Streptomyces septatus, Streptomyces setae, Streptomyces setonii, Streptomyces showdoensis, Streptomyces Sindenensis, Streptomyces sioyaensis, Streptomyces somaliensis, Streptomyces sparsogenes, Streptomyces spectabilis, Streptomyces speibonae, Streptomyces speleomycini, Streptomyces spectabilis, Strepto
  • Streptomyces sporoclivatus Streptomyces spororaveus, Streptomyces sporoverrucosus, Streptomyces stelliscabiei, Streptomyces stramineus, Streptomyces subrutilus, Streptomyces sulfonofaciens, Streptomyces sulphurous, Streptomyces syringium, Streptomyces tanashiensis, Streptomyces tauricus, Streptomyces tendae, Streptomyces termitum, Streptomyces thermoalcalitolerans, Streptomyces thermoautotrophicus, Streptomyces thermocarboxydovorans, Streptomyces thermocarboxydus, Streptomyces thermocoprophilus, Streptomyces thermodiastaticus, Streptomyces thermogriseus, Streptomyces thermolineatus, Streptomyces thermonitrificans, Streptomyces thermospinos
  • thermoviolaceus subsp. thermoviolaceus, Streptomyces thermovulgaris, Streptomyces thioluteus, Streptomyces torulosus, Streptomyces toxytricini, Streptomyces tricolor, Streptomyces tubercidicus, Streptomyces tuirus, Streptomyces turgidiscabies, Streptomyces umbrinus, Streptomyces variabilis, Streptomyces variegates,
  • Streptomyces varsoviensis Streptomyces vastus, Streptomyces venezuelae, Streptomyces vinaceus, Streptomyces vinaceusdrappus, Streptomyces violaceochromogenes, Streptomyces violaceolatus, Streptomyces
  • Streptomyces violens Streptomyces violens, Streptomyces virens, Streptomyces virginiae, Streptomyces viridiflavus, Streptomyces viridiviolaceus, Streptomyces viridobrunneus, Streptomyces viridochromogenes, Streptomyces viridodiastaticus, Streptomyces viridosporus, Streptomyces vitaminophileus, Streptomyces vitaminophilus, Streptomyces wedmorensis, Streptomyces werraensis, Streptomyces willmorei, Streptomyces xanthochromogenes,
  • Streptoverticillium alboverticillatum Streptoverticillatum
  • Streptoverticillium album Streptoverticillium ardum
  • Streptoverticillium aureoversale Streptoverticillium aureoversile
  • Streptoverticillium baldaccii Streptoverticillium biverticillatum
  • Streptoverticillium blastmyceticum Streptoverticillium cinnamoneum subsp. albosporum, Streptomyces cinnamoneus subsp. albosporus, Streptoverticillium cinnamoneum subsp. cinnamoneum, Streptoverticillium cinnamoneum subsp. lanosum, Streptoverticillium cinnamoneum subsp.
  • Streptoverticillium distallicum Streptoverticillium ehimense, Streptoverticillium eurocidicum, Streptoverticillium fen/ens subsp. fervens, Streptoverticillium fervens subsp. melrosporus, Streptoverticillium flavopersicum, Streptoverticillium griseocarneum, Streptoverticillium griseoverticillatum, Streptoverticillium hachijoense, Streptoverticillium hiroshimense, Streptoverticillium kashmirense, Streptoverticillium kentuckense, Streptoverticillium
  • Streptoverticillium ladakanum Streptoverticillium lavenduligriseum
  • Streptoverticillium lilacinum Streptoverticillium luteoverticillatum
  • Streptoverticillium mashuense Streptoverticillium mobaraense
  • Streptoverticillium morookaense Streptoverticillium netropsis
  • Streptoverticillium olivomycini Streptomyces olivomycini
  • a delivery vehicle is made by the methods disclosed in Appl Environ Microbiol.
  • a deliver vehicle has one or more attributes disclosed in in Appl Environ Microbiol. 2011 Mar;77(6):2174-9), which is herein incorporated by reference in tis entirety.
  • a delivery vehicle is a microorganism.
  • a microorganism is delivered to a target area by directly applying the delivery vehicle to the target area. Methods of delivery include, but are not limited to, ingestion, inhalation, injection, sprays, and topical application.
  • a microorganism is delivered in a pharmaceutical composition, such as a foam, cream, patch, gel, powder, solution, liquid, oil, oral solution, vaginal wash, vaginal douche, breast milk supplement, infant formula or petroleum jelly.
  • a microorganism is delivered in a pharmaceutical composition formulated as a suppository, as an aerosol, as a liquid, as a tampon, or as a tablet.
  • Routes of administration include, but are not limited to, intranasal, rectal, vaginal, intraperitoneal, intravascular, hypodermic, oral, intraurethral, intraocular, inhalation, or other routes known in the art as medically safe route of administration.
  • a microorganism is delivered to a mammal by a medical device.
  • the medical device is a syringe, catheter, eye dropper, pills, spreader, speculum, or other invasive instruments.
  • a delivery vehicle is provided as a delayed release delivery system.
  • a delivery vehicle is provided is provided with a contraceptive device, such as a cervical ring diaphragm, sponge, condom, intrauterine device, or capsule.
  • a delivery vehicle is coadministered with a chemical contraceptive, such as estradiol, progesterone, nonoyxnol-9, octoxynol-9, benzalkonium chloride, sodium chlorate, or analogs thereof.
  • a composition comprises a delivery vehicle and one or more lubricants.
  • the lubricant is water-based, oil-based, or silicone-based.
  • the lubricant is water, glycerin, propylene glycol, polyquaternium 15, methylparaben, propylparaben, propylene glycol, glycerin, methylparaben, butylene glycol, xylitol, cyclomethiocone, or cyclopentasiloxane.
  • the delivery vehicle comprises antibiotics.
  • the delivery vehicle is provided as part of a stent, delivering therapeutic products as disclosed herein at the site of implantation of the stent.
  • the delivery vehicle can be packaged as part of a hollow tube that does not block a lumen but expanded to fit along the circumference of a tubal lumen.
  • a delivery vehicle described herein is provided as a prophylactic composition.
  • a prophylactic composition comprises a delivery vehicle and a contraceptive chemical or device.
  • a prophylactic composition comprises a delivery vehicle co-administered with a lubricant.
  • a kit comprising a delivery vehicle and a contraceptive device and optionally directions for use.
  • the contraceptive device comprises a sponge, condom, intrauterine devices, a diaphragm, cervical cap, an expandable body or another physical barrier contraceptive.
  • the contraceptive device comprises a foaming agent.
  • the kit comprises a delivery vehicle provided in a container separate from the contraceptive device.
  • the delivery vehicle is provided in a lyophilized composition.
  • the delivery vehicle is provided in a liquid, gel or cream composition.
  • the kit comprises a delivery vehicle provided in the same container as the contraceptive device.
  • the kit comprises directions that explain how to use the delivery vehicle in conjunction with the contraceptive device in order to reduce the risk of infection.
  • the directions explain how to use the delivery vehicle in conjunction with the contraceptive device in order to reduce the risk of pregnancy and infection.
  • the directions contain graphical illustrations.
  • a pharmaceutical composition comprises a delivery vehicle.
  • a pharmaceutical composition comprises a delivery vehicle and maltodextrin beads.
  • the delivery vehicle is a microorganism.
  • the medicament is manufactured using a fluid bed dryer.
  • the fluid bed dryer has a sterilized component assembled for use.
  • maltodextrin beads are placed into the fluid bed dryer and are dried at about 30°C to 33 °C until sufficiently dry.
  • a suspension of microorganisms is sprayed onto the beads using a peristaltic pump. After about half of the microorganism suspension is sprayed onto the maltodextrin beads, the heat is increased to about 35°C to 38°C.
  • the coated beads are then allowed to dry at about 37°C to 38°C for about 15-30 additional minutes.
  • the coated maltodextrin beads can be frozen, stored as a powder, placed into gelatin capsules, or pressed into tablets.
  • the coated maltodextrin beads are used as a vaginal medicament.
  • the coated maltodextrin beads are used in an oral tablet.
  • the coated maltodextrin beads are used in a suppository.
  • the coated maltodextrin beads are used in a suspension for delivery to a target surface on a mammal.
  • a pharmaceutical composition comprises a delivery vehicle and
  • a pharmaceutical composition comprises a delivery vehicle and maltodextrin/sucrose co-agglomerates.
  • a pharmaceutical composition comprises a delivery vehicle and maltodextrin/fructose co-agglomerates.
  • sorbitol, mannitol, glycerol, or another dextrose equivalent is used for preparing a pharmaceutical composition comprising a delivery vehicle.
  • a vaginal cream that comprises a delivery vehicle.
  • the vaginal cream comprises one or more ingredients such as a stabilizer, pharmaceutically acceptable excipient, stiffening agent, oil, solvent, emulsifier, humectant, buffering agent, or emollient.
  • vaginal cream is a vaginal ointment, or vaginal emulsion.
  • a pharmaceutically acceptable excipient includes a substance, or mixture of substances, that is used in the formulation of vaginal cream compositions to give desirable physical characteristics to the formulation.
  • pharmaceutically acceptable excipients are those approved by a regulatory agency of the Federal or a state government or listed in the U.S. Pharmacopeia or other generally recognized international pharmacopeia for use in animals, and more particularly in humans.
  • a pharmaceutically acceptable excipient is a carrier for active pharmaceutical ingredient.
  • the pharmaceutically acceptable excipient or a carrier can be, but is not limited to, a stiffening agent, oil, a solvent, an emulsifier, a humectant, a buffering agent, a filler, an emollient, a stabilizer, a lubricant, a surfactant, gel, an organic solvent, a gelling agent, a moisturizer, an wetting agent, a time release agent, a sequestering agent, a dye, a perfume or combinations thereof.
  • a stiffening agent oil, a solvent, an emulsifier, a humectant, a buffering agent, a filler, an emollient, a stabilizer, a lubricant, a surfactant, gel, an organic solvent, a gelling agent, a moisturizer, an wetting agent, a time release agent, a sequestering agent, a dye, a perfume or combinations thereof.
  • a stabilizer comprises a substance that keeps a formulation chemically stable.
  • a stabilizer protects a formulation from instability caused by light, moisture, heat, or oxidation.
  • the stabilizer is lipophilic.
  • the stabilizer is hydrophilic.
  • the stabilizer can prevent or retard the oxidation of an oil.
  • the stabilizer is butylated hydroxyanisole (BHA), butylated hydroxytoluene (BHT), ascorbic acid and its esters, vitamin E and its esters, e.g., vitamin E acetate, sodium bisulfite, sodium metabisulfite, 3-dehydroshikimic acid (DHS), tocopherols and their esters, alkyl gallates, chelating agents, EDTA (ethylenediaminetetraacetic acid; edetate disodium), citric acid, benzyl alcohol, or a combination thereof.
  • the stabilizer is edetate disodium, butylated hydroxyanisole, butylated hydroxytoluene, or a combination thereof.
  • a stiffening agent comprises a substance, or mixture of substances, added to make a cream composition more viscous at room temperature.
  • the cream is a vaginal cream.
  • a stiffening agent is any substance that promotes formation of a formulation having a semisolid consistency.
  • the stiffening agent can be hydrophilic (e.g., carbopol, carboxymethylcellulose, hydroxypropylmethylcellulose, alginate, polyethylene glycol).
  • the stiffening agent has low hydrophilic-lipophilic balance (HLB).
  • HLB value is less than 7.
  • the HLB value is less than 5.
  • the HLB value is about 4.
  • stiffening agents include, but are not limited to, hydrogenated vegetable oil, cetyl alcohol, cetyl esters wax, microcrystalline wax, paraffin, stearyl alcohol, lauryl alcohol, myristal alcohol, cetostearyl alcohol, white wax, yellow wax, beeswax, candelilla wax, cotton wax, carnauba wax, bayberry wax, rice-bran wax, and combinations thereof.
  • the stiffening agent is a mixture of cetyl esters wax, cetyl alcohol, and beeswax.
  • an oil includes any pharmaceutically acceptable hydrophobic liquid.
  • oil is an ester of glycerol (1,2,3-propanetriol) and fatty acids.
  • Each of the fatty acid hydrocarbon chain can contain greater than 8 carbons.
  • each hydrocarbon chain can contain from about 12 to about 36 carbon atoms.
  • the hydrocarbon chains can contain a variety of functional groups.
  • the hydrocarbon chain can be branched.
  • the hydrocarbon chains are unsaturated or polyunsaturated.
  • the hydrocarbon chains are saturated. The degree of saturation can affect the physical state, for example viscosity, of the oil.
  • the oil can be, but is not limited to, vegetable, nut, and seed oils (e.g., almond oil, castor oil, coconut oil, corn oil, cotton seed oil, jojoba oil, linseed oil, grape seed oil, rape seed oil, mustard oil, olive oil, palm and palm kernel oil, peanut oil, safflower oil, sesame oil, soybean oil, sunflower-seed oil, crambe oil, wheat germ oil, and cocoa butter), hydrocarbon and petroleum oils (e.g., petrolatum, mineral oil, and liquid paraffin).
  • vegetable, nut, and seed oils e.g., almond oil, castor oil, coconut oil, corn oil, cotton seed oil, jojoba oil, linseed oil, grape seed oil, rape seed oil, mustard oil, olive oil, palm and palm kernel oil, peanut oil, safflower oil, sesame oil, soybean oil, sunflower-seed oil, crambe oil, wheat germ oil, and cocoa butter
  • hydrocarbon and petroleum oils e
  • the term "oil” refers to higher fatty acids (e.g., lauric acid, myristic acid, palmitic acid, stearic acid, behenic acid, oleic acid, 12-hydroxystearic acid, undecylenic acid, tall acid, lanolin fatty acid, isostearic acid, linoleic acid, and linolenic acid) and combinations thereof.
  • the oil is not an ester of glycerol, e.g., mineral oil and silicone oil.
  • a solvent comprises a substance capable of dissolving or dispersing one or more of the therapeutic product or the excipients of the present invention.
  • the solvent can be aqueous or non-aqueous.
  • the solvent is hydrophilic, and is 10% to 15% by weight, or 20%o to 60%o by weight, of the total composition.
  • the solvent is lipophilic, and is 20%o to 60%o by weight, or 25%> to 50%> by weight, of the total composition.
  • the solvent is water, a polyol (e.g., glycerol) or combinations thereof.
  • the solvent is oil as described above.
  • an emulsifier comprises a substance that promotes formation and stabilization of an emulsion or suspension.
  • the emulsifier includes, but is not limited to, sodium lauryl sulfate, propylene glycol monostearate, methyl stearate, glyceryl monostearate, and combinations thereof.
  • a humectant comprises a substance that promotes retention of moisture in the composition of the present invention.
  • the humectant includes, but is not limited to, polyethylene glycol, propylene glycol, glycerin, polyol, polyol derivatives, and combinations thereof.
  • a buffering agent comprises a substance capable of neutralizing both acids and bases and thereby maintaining the desired pH of the composition.
  • the buffering agent affects the emulsifying properties.
  • different buffering agents can be provided to increase or decrease the emulsification of a formulation.
  • the buffer can be, but is not limited to, Tris buffers (Tris EDTA (TE), Tris acetate (TAE), Tris phosphate (TPE), Tris glycine), phosphate buffers (e.g., sodium phosphate, potassium phosphate), bicarbonate buffers, acetate buffers (e.g., sodium acetate), ammonium buffers, citrate buffers, and derivatives and combinations thereof.
  • Tris buffers Tris EDTA (TE), Tris acetate (TAE), Tris phosphate (TPE), Tris glycine
  • phosphate buffers e.g., sodium phosphate, potassium phosphate
  • bicarbonate buffers e.g., sodium phosphate, potassium phosphate
  • acetate buffers e.g., sodium acetate
  • ammonium buffers citrate buffers
  • citrate buffers e.g., sodium acetate
  • an organic acid buffer is used.
  • the buffering agent is a phosphate buffer (e.g., sodium phosphate dibasic).
  • a phosphate buffer e.g., sodium phosphate dibasic.
  • the composition of the present invention can have a pH of 5 to 9 (such as about pH 5, 5.1, 5.2, 5.3, 5.4, 5.5, 5.6, 5.7, 5.8, 5.9, 6, 6.1, 6.2, 6.3, 6.4, 6.5, 6.6, 6.7, 6.8, 6.9, 7, 7.1, 7.2, 7.3, 7.4, 7.5, 7.6, 7.7, 7.8, 7.9, 8, 8.1, 8.2, 8.3, 8.4, 8.5, 8.6, 8.7, 8.8, 8,or 9), or a pH of 6.5 to 8.
  • An emollient includes any substance that moisturizes and increases the pliability of the vaginal epithelium.
  • the emollient is lanolin, isopropyl myristate, palmitate, oleyl alcohol, beeswax, mineral oil, silicone oil, or combinations thereof.
  • a gel comprises a delivery vehicle.
  • the gel is a vaginal gel.
  • a vaginal gel comprises a pharmaceutically acceptable excipient, a gelling agent such as glycerin, water, hydroxyethylcellulose, methylcellulose, a buffering agent such as glucono-delta-lactone, citric acid, sodium bicarbonate, a diluents for GRAS organism such as magnesium stearate, or mannitol.
  • a delivery vehicles described herein is provided as a kit comprising a delivery vehicle in a storage medium and a contraceptive.
  • the kit comprises a temperature-controlled container.
  • the kit comprises a moisture-controlled container.
  • the kit comprises an air-tight container.
  • a storage medium comprises a buffered solution safe for human use.
  • a buffered solution comprises glycerin.
  • the concentration of glycerin can be about 5%, 7%, 10%, 13%, 15%, 18%, 20%, 23%, 27%, 30%, 35%, 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85% 90%, 95%, or 99% of the storage solution.
  • a buffered solution comprises dimethyl sulfoxide.
  • the concentration of dimethyl sulfoxide can be about 5%, 7%, 10%, 13%, 15%, 18%, 20%, 23%, 27%, or 30% of the storage solution.
  • the contraceptive is a condom.
  • the condom is a male condom.
  • the condom is a female condom.
  • the condom is a latex condom. In another embodiment, the condom is a silicone-based condom. In another embodiment, the condom is polyurethane-based condom. In another embodiment, the condom is nitrile-based condom. In another embodiment the condom is biological material-based condom (e.g., sheep skin).
  • the contraceptive vaginal ring In another embodiment, the vaginal ring comprises an ethylene vinylacetate copolymer. In another embodiment, the vaginal ring comprises magnesium stearate. In another embodiment, the vaginal ring comprises chemical contraceptives such as progestin or estradiol analogs. In one embodiment, the contraceptive is a diaphragm.
  • the diaphragm comprises plastic.
  • the contraceptive is a sponge.
  • the sponge comprises an expandable polymer, such as polyurethane.
  • a sponge is impregnated with a delivery vehicle described herein.
  • a sponge is impregnable with delivery vehicles described herein.
  • a sponge is immersible in a solution comprising water.
  • a pharmaceutical composition comprises a microorganism described herein which is lyophilized or freeze-dried. In another embodiment, a pharmaceutical composition comprises a microorganism described herein which has undergone sporulation or is present as a spore. In one embodiment, a
  • a pharmaceutical composition described herein are formulated by directly mixing lyophilized microorganisms with one or more excipients.
  • a pharmaceutical composition described is formulated by resuspending lyophilized microorganisms in a suitable solution and mixing the resuspended solution with one or more excipients.
  • a suitable solution is phosphate-buffered saline.
  • a suitable solution is water.
  • an the pharmaceutical composition is a foam, cream, patch, gel, powder, solution, liquid, oil, oral solution, vaginal wash, vaginal douche, breast milk supplement, infant formula, petroleum jelly, a suppository, an aerosol, a liquid, tampon component, or a tablet.
  • a pharmaceutical composition comprises a sufficient amount of microorganism described herein (such as a Lactobacilli strain) to deliver number of colony- forming units (CFU) of the microorganism so that an adequate amount of therapeutic product is expressed in a subject.
  • the pharmaceutical composition comprises 10 4 to 10 18 CFU/g of composition.
  • the pharmaceutical composition comprises 10 5 to 10 16 CFU/g of composition.
  • the pharmaceutical composition comprises 10 6 to 10 12 CFU/g of composition.
  • the pharmaceutical composition comprises 10 4 , 10 5 , 10 6 , 10 7 , 10 8 , 10 9 , 10 10 , 10 11 , 10 12 , 10 13 , 10 14 , 10 15 , 10 16 , 10 17 , or 10 18 CFU/g of composition.
  • the pharmaceutical composition comprises 10 4 to 10 18
  • the pharmaceutical composition comprises 10 5 to 10 16 CFU/ml of composition. In another embodiment the pharmaceutical composition comprises 10 6 to 10 12 CFU/ml of composition. In another embodiment the pharmaceutical composition comprises 10 4 , 10 5 , 10 6 , 10 7 , 10 8 , 10 9 , 10 10 , 10 11 , 10 12 , 10 13 , 10 14 , 10 15 , 10 16 , 10 17 , or 10 18 CFU/ml of composition.
  • a microorganism is suitably freeze-dried so as to provide live microorganisms upon reconstitution.
  • a pharmaceutical composition comprising a freeze-dried microorganism obtained as described in Korean patents KR 429494B or KR 429495 B, the contents of which are incorporated herein by reference in their entirety.
  • a microorganism may be dried by spray drying or fluid bed drying.
  • the dried microorganism can have a coating, such as a gastric juice resistant coating.
  • a dried microorganism used in a blending or compacting step has a coating or is embedded in matrix material.
  • a freeze-dried preparation of a microorganism can be obtained by treatment of a cell suspension of the microorganism with compounds such as proteins (whey, milk, others), sugars (maltose, trehalose, lactose, sucrose), starch, cellulose, and optionally, other stabilizing or freeze protecting agents like ascorbic acid.
  • the cell suspension is treated with proteins, maltodextrins, trehalose, and optionally, other stabilizing or freeze protecting agents like ascorbic acid to form a viscous paste, which is submitted to freeze-drying.
  • the so-obtained material can be ground to a size of about 10 ⁇ to about 800 ⁇ .
  • the microorganism is coated by or embedded within a salt of a medium or long-chain fatty acid, wherein the microorganism optionally has a first coating layer below the coating by the salt of the medium or long-chain fatty acid.
  • a pharmaceutical composition is prepared using the methods of US20090214647 (which is herein incorporated by reference in its entirety), such as to prepare an enteric tablet.
  • a pharmaceutical composition comprising a microorganism described herein is formulated for administration to the vagina, such as the formulations described in US 20050276836, which is herein incorporated by reference in its entirety.
  • the pharmaceutical composition is a
  • the pellet is formulated with polyethylene glycol, a lyophilized microorganism described herein, one or more excipients, (such as Povidone K29) and optionally citric acid and sodium bicarbonate.
  • excipients such as Povidone K29
  • citric acid and sodium bicarbonate optionally citric acid and sodium bicarbonate.
  • a lyophilized vaginal foam is provided.
  • the vaginal foam is prepared as follows: about 20 g of a microorganism described herein (such as a lactobacillus that expresses one or more antibodies of interest) with at least 10 6 cfu/mL and supplemented with one or more of p-aminobenzoic acid, D-pantothenic acid, niacinamide, riboflavin, thiamine, L-arginine, L-cystine, L-tyrosine, L-tryptophane, or L-aspartic acid is combined with about 20 mL of a solution containing alginic acid, sodium salt, and PEG 400 in distilled water.
  • a pharmaceutical composition of the invention is prepared in the form of a suspension, spray, gel, cream, powder, capsule, solution for lavages, ovules, a vaginal insert, tablets or a microencapsulated product employing excipients and formulation techniques know to those skilled in the art.
  • the formulation is one described in formulations described in US 20050220776, which is herein incorporated by reference in its entirety.
  • a pharmaceutical composition is formulated to adhere to a mucosal membrane.
  • mucous adhesive excipients may be added to comprise up to about 10% of the pharmaceutical composition.
  • the mucous adhesive excipient is a hydrocolloid, more preferably the hydrocolloid is selected from the group comprising xanthan gum, locust bean gum alginate and most preferably the hydrocolloid is xanthan gum.
  • Candida albicans are not able to ferment lactitol, this may also be the case for E. coli or other Gram negative bacteria.
  • a prebiotic substrate which is not fermented by Candida albicans or by pathogenic bacteria is employed in a vaginal pharmaceutical composition formulations comprising a microorganism described herein (such as a Lactobacilli strain) in order to suppress the growth of Candida albicans.
  • prebiotic substrate can be an oligosaccharide, such as lactitol, oligofructose or lactulose.
  • the substrate is lactitol.
  • a pharmaceutical composition that is a absorbent product comprising a microorganism described herein (such as a Lactobacilli strain).
  • the microorganism is incorporated into absorbent products in order to allow the convenient administration of the microorganism during use of the absorbent product.
  • the absorbent product is a feminine hygiene diaper, sanitary napkin, impregnated tampon, panty guard or an incontinence guard comprising a microorganism described herein (such as a Lactobacilli strain).
  • a microorganism described herein such as a Lactobacilli strain
  • the microorganism employed in the absorbent product is used in a bacterial concentrations of 10 5 to 10 13 CFU/g.
  • the microorganism (such as a Lactobacilli strain) employed in the absorbent product is used in a bacterial concentrations of 10 6 to 10 12 CFU/g.
  • the microorganism (such as a Lactobacilli strain) employed in the absorbent product is used in a bacterial concentrations of 10 4 , 10 5 , 10 6 , 10 7 , 10 8 , 10 9 , 10 10 , 10 11 , 10 12 , 10 13 , 10 14 , 10 15 , 10 16 , 10 17 , or 10 18 CFU/g of absorbent product.
  • a microorganism described herein (such as a Lactobacilli strain) is mixed with one ore more protective solutions to increase the survival rate of live microorganism through the formulation process.
  • a protective solution is oil.
  • a protective solution is a long- chain fatty acid.
  • a protective solution is a salt-containing medium.
  • a microorganism is first mixed with a protective solution prior to drying, compaction, granulation or grinding.
  • microorganism is mixed with protective solution, compacted, granulated and then processed for further coating.
  • a mixture of microorganism and protective solution is converted to a powder in which the powder is added to the coating process.
  • long-chain fatty acid useful for formulations described herein is CIO to C30 fatty acid.
  • the fatty acid is a stearate.
  • the fatty acid is a palmitate.
  • the salt useful for formulations described herein is non-toxic salt.
  • the salt is calcium salt.
  • the sale is magnesium salt.
  • oil useful for formulation described herein is edible oil.
  • the oil is tocopherol.
  • the oil is soy oil, palm oil, or sunflower oil.
  • the amount of salt, fatty acid or oil can be from about 5 to about 90 % of the dried weight of the formulation.
  • a microorganism described herein (such as a Lactobacilli strain) is coated.
  • the coating material suitable for formulations containing microorganism is a water-soluble material.
  • the water-soluble material is carbohydrate.
  • the water- soluble material renders the solution viscous.
  • carbohydrates useful for coating include but are not limited to oligosaccharides, disaccharides or monosaccharides.
  • carbohydrates useful for coating include but are not limited to alginate, pectin, starch, modified starch, maltodextrin, carrageenan, gum arabic, guar gum, xanthan, cellulose or cellulose derivatives, such as hydroxypropyl methylcellulose, hydroxypropyl methylcellulose phthalate or acetate-succinate,.
  • a protein such as gelatin is used in coating process.
  • the treatment schedule of a subject with a pharmaceutical composition comprising a microorganism described herein depends on the product in question and the route of administration.
  • the route of administration of a pharmaceutical composition comprising a microorganism described herein is intranasal, rectal, vaginal, intraperitoneal, intravascular, hypodermic, oral, intraurethral, intraocular, or by inhalation.
  • the subject is administered a pharmaceutical composition comprising a microorganism described herein (such as a Lactobacilli strain) one to six times a day (such as 1, 2, 3, 4, 5, or 6 times a day).
  • the subject is administered a pharmaceutical composition comprising a microorganism described herein (such as a Lactobacilli strain) from 1 to 90 days (such as 1, 2, 3, 4, 5, 6, 7,8, 9, 10 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23,24, 25, 26 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 88, 83, 84, 85, 86, 87, 88, 89, or 90 days).
  • a microorganism described herein such as a Lactobacilli strain
  • the subject is administered a pharmaceutical composition comprising a microorganism described herein (such as a Lactobacilli strain) from 1 to 60 days. In another embodiment the subject is administered a pharmaceutical composition comprising a microorganism described herein (such as a Lactobacilli strain) from 1 to 30 days. In another embodiment the subject is administered a pharmaceutical composition comprising a microorganism described herein (such as a
  • Lactobacilli strain from 1 to 14 days.
  • the subject is administered a pharmaceutical composition comprising a microorganism described herein (such as a Lactobacilli strain) from 1 to 7 days.
  • the subject is administered a pharmaceutical composition comprising a microorganism described herein (such as a Lactobacilli strain) about each day on a continuous basis.
  • the subject is administered a pharmaceutical composition comprising a microorganism described herein (such as a Lactobacilli strain) prior to, during or after sexual intercourse.
  • the microorganism described herein (such as a Lactobacilli strain) is administered to specific mucosal layer (such as an oral, anal, vaginal or urethral mucosal layer) prior to, during or after sexual intercourse.
  • specific mucosal layer such as an oral, anal, vaginal or urethral mucosal layer
  • the subject is administered a pharmaceutical composition comprising a microorganism described herein (such as a Lactobacilli strain) once a day for 1 to 30 days.
  • a pharmaceutical composition comprising a microorganism described herein such as a Lactobacilli strain
  • twice a day for 1 to 30 days in another embodiment the subject is administered a pharmaceutical composition comprising a microorganism described herein (such as a Lactobacilli strain) twice a day for 1 to 30 days.
  • a pharmaceutical composition comprising a microorganism described herein such as a
  • Lactobacilli strain three times a day for 1 to 30 days.
  • the subject is administered a pharmaceutical composition comprising a microorganism described herein (such as a Lactobacilli strain) four times a day for 1 to 30 days.
  • a pharmaceutical composition comprising a microorganism described herein (such as a Lactobacilli strain) is administered to a subject in sufficient quantities and at sufficient intervals so as to maintain a stable population of the microorganism in the subject in vivo.
  • the microorganism described herein (such as a Lactobacilli strain) is maintained in a subject in sufficient numbers to express an amount of a therapeutic product sufficient to inhibit infection of the subject by a pathogen.
  • the pathogen is HIV.
  • the therapeutic product is an anti-CD 18 or anti-CDl 1 antibody.
  • a target area is a biological area accessible by a delivery vehicle.
  • a target area includes, but is not limited to the skin, dermis, epithelium, vascular surface, interstitial fluid, extracellular matrix, mucosal layer, cuticle, or a subcutaneous layer.
  • a target area is an oral cavity.
  • a target area is a vaginal cavity.
  • a target area is a vaginal epithelium.
  • a target area is a uterine wall.
  • a target area is an endometrium.
  • a target area is a perimetrium.
  • a target area is a myometrium.
  • a target area is a cervix. In another embodiment, a target area is a uterine tube. In another embodiment, a target area is a vaginal wall. In another embodiment, a target area is a sinus cavity. In another embodiment, a target area is an anus. In another embodiment, a target area is a colon. In another embodiment, a target area is a urethra. In another embodiment, a target area is an airway. In another embodiment, a target area is an ear canal. In another embodiment, a target area is an ocular cavity. In another embodiment, a target area is an eye. In another embodiment, a target area is an oral mucosa. In another embodiment, a target area is a stomach. In another embodiment, a target area is a rectum or a portion of a gastrointestinal tract.
  • a delivery vehicle expresses a therapeutic product.
  • the delivery vehicle is a microorganism.
  • a therapeutic product is biological material.
  • Biological material includes, but is not limited to, an antibody or a fragment thereof, a polypeptide, a protein, a glycoprotein, a carbohydrate, a co- factor of an enzyme such as vitamin, flavin, a fatty acid, or a nucleic acid.
  • a therapeutic product is a protein.
  • a therapeutic product is a glycoprotein.
  • a therapeutic product is a polypeptide.
  • a therapeutic product is an antibody or a fragment thereof.
  • An antibody or a fragment thereof includes, but is not limited to an antibody that comprises one or more light chains and one or more heavy chains, a single-chain antibody, a VHH antibody (variable domain of a heavy chain), a VNAR antibody, or a scFv antibody (a single-chain Fv fragment).
  • a therapeutic product is a VHH or VNAR antibody or a fragment thereof.
  • a single-chain antibody is a single heavy- chain antibody that forms a homodimer.
  • a single heavy-chain antibody is a camelid antibody.
  • a single heavy- chain antibody is a camel antibody.
  • a VHH antibody is a llama antibody.
  • a therapeutic product is a scFv antibody or a fragment thereof.
  • an antibody or a fragment there of is a human antibody.
  • an antibody or a fragment there of is a humanized antibody.
  • a therapeutic product is an antibody or a fragment thereof fused to a polypeptide that is not an antibody or a fragment derived from an antibody.
  • a therapeutic product is a single heavy-chain antibody or a fragment thereof.
  • a single heavy chain antibody is a VNAR antibody (see US 20080206233, which is herein incorporated by reference in its entirety. It has been shown that sharks also have a single VH-like domain in their antibodies termed VNAR (Nuttall et al. "Isolation and characterization of an IgNAR variable domain specific for the human mitochondrial translocase receptor Tom70" Eur. J. Biochem. (2003) 270, 3543- 3554; Dooley et al. "Selection and characterization of naturally occurring single-domain (IgNAR) antibody fragments from immunized sharks by phage display” Molecular Immunology (2003) 40, 25-33; Nuttall et al. “Selection and affinity maturation of IgNAR variable domains targeting Plasmodium falciparum AMAl "
  • VNAR variable domain
  • CNAR constant domains
  • VNAR and VHH domains both contain disulfide bonds and have binding affinities in the nanomolar range.
  • a VNAR-type immunoglobulin or fragments thereof can be expressed by a microorganism described herein.
  • a delivery vehicle described herein express full-length IgNAR or a fragment thereof. In one embodiment, a delivery vehicle described herein express a single VNAR domain. In another embodiment, a delivery vehicle described herein express a VNAR domain and one or more CNAR domains. In one embodiment, the sequence of VNAR domain is humanized.
  • a baby shark is immunized with a polypeptide binding target such as CD18, CD1 la, or ICAM-1 to obtain IgNAR.
  • a polypeptide binding target such as CD18, CD1 la, or ICAM-1 to obtain IgNAR.
  • the immunization procedure has been described (for example, Suran et al., J. Immunology, 99:679-686, 1967).
  • the polypeptide is dissolved in keyhole limpet hemocyanin (KLH) supplemented with complete Freund's adjuvant and then injected intramuscularly.
  • Booster shots are administered as necessary. In one embodiment, booster shots are administered in every two weeks for four weeks after the initial injection is administered.
  • blood is withdrawn from the shark and the total IgG is precipitated from the blood.
  • fractions binding to the polypeptide are separated from the total IgG through affinity chromatography methods. The purified, polyp eptide-binding antibodies are sequenced.
  • lymphocytes are isolated from immunized shark blood. RNAs purified from the lymphocytes are reverse-transcribed. PCR primers are prepared based on sequence information generated by amino acid sequencing and used to amplify cDNAs expressing antigen-specific IgNAR. In one embodiment, the amplified sequence is cloned to an expression vector to recombinantly express antigen-specific IgNAR or a fragment thereof.
  • a fragment of IgNAR is chemically synthesized by digesting isolated antigen- specific IgNAR.
  • controlled digestion utilizing proteolytic enzyme, such as trypsin is performed for a limited digestion of the full-length IgNAR.
  • Resulting fragments are tested for antigen-binding in a conventional laboratory protein-protein binding assay.
  • testing is performed by affinity chromatography using the antigen polypeptide as bait protein.
  • testing is performed in a pull-down assay using a bead-antigen conjugate as bait protein.
  • a fragment retaining the antigen-specific binding is sequenced.
  • the sequence information is utilized to express the fragment in a microorganism described herein.
  • a VNAR domain or a fragment thereof is secreted.
  • a VNAR domain or a fragment thereof is anchored to the surface of a delivery vehicle described herein.
  • a VNAR domain or a fragment thereof is covalently linked to a scFv.
  • a VNAR domain or a fragment thereof is covalently linked to a scFv recognizing SAI/II adhesion.
  • a VNAR domain or a fragment thereof is fused with the APF protein.
  • a VNAR domain or a fragment thereof is covalently linked to scFv and the APF protein.
  • scFv is fused to the APF protein via a VNAR domain or a fragment thereof.
  • a region of the APF protein is selected for expression and secretion of a VNAR domain or a fragment thereof.
  • a domain refers to a folded protein structure that retains its tertiary structure independently of the rest of the protein. Generally, domains are responsible for discrete functional properties of proteins, and in many cases may be added, removed, or transferred to other proteins without loss of function of the remainder of the protein and/or of the domain.
  • An antibody domain is a folded polypeptide domain which comprises a sequence characteristic of immunoglobulin variable domains and which specifically binds an antigen, including complete antibody variable domains as well as modified variable domains, such as one or more loops have been replaced by sequences which are not characteristic of antibody variable domains or antibody variable domains.
  • an antibody produced from a camelid species is devoid of any light chains.
  • a camelid antibody is devoid of any light chains and comprises one or more heavy chains.
  • the one or more heavy chains have variable domains with properties differing from the variable domains of four-chain immunoglobulins. As used herein, this variable domain is called VHH to distinguish it from the classical VH of four-chain immunoglobulins.
  • the variable domain has no normal interaction sites with the VL or with the CHI domain which do not exist in the heavy- chain immunoglobulins.
  • VHH the heavy chain variable region
  • VH antibodies
  • differences between camelid VHH variable regions and those derived from conventional antibodies (VH) include; (a) more hydrophobic amino acids in the light chain contact surface of VH as compared to the corresponding region in VHH; (b) a longer CDR3 in VHH; and (c) the frequent occurrence of a disulfide bond between CDRl and CDR3 in VHH.
  • a nucleotide sequence of camel VHH was produced by Muyldermans et al., WO2009150539.
  • the VHH produced in camelid species can also be generated in a cell by genetic engineering or by chemical synthesis.
  • a cell is a microorganism.
  • the microorganism is a delivery vehicle.
  • the microorganism is non-pathogenic.
  • the VHH produced in camelid species can also be generated in a cell by genetic engineering or by chemical synthesis.
  • a cell is a microorganism.
  • the microorganism is a delivery vehicle.
  • the microorganism is non-pathogenic.
  • the VHH produced in camelid species can also be generated in a cell by genetic engineering or by chemical synthesis.
  • a cell is a microorganism.
  • the microorganism is a delivery vehicle.
  • the microorganism is non-pathogenic.
  • the VHH produced in camelid species can also be generated in a cell by genetic engineering or by chemical synthesis.
  • a cell is a microorganism.
  • the microorganism is a delivery vehicle.
  • microorganism is a strain of Lactobacillus. In another embodiment, the microorganism is a GRAS
  • microorganism In another embodiment, the microorganism is a food-grade edible microorganism. In another embodiment, a GRAS microorganism is a GLP-certified grade microorganism. In another embodiment, the microorganism is a pharmaceutical grade microorganism. In another embodiment, the pharmaceutical grade microorganism is a Good Manufacturing Practices (GMP)-certified pharmaceutical grade microorganism.
  • GMP Good Manufacturing Practices
  • a delivery vehicle delivers an antibody or antigen-binding fragment, variant, or derivative thereof.
  • the antibody or antigen-binding fragment, variant, or derivative thereof is a polyclonal, monoclonal, multispecific, single chain antibody, or epitope-binding fragment.
  • the antibody or antigen-binding fragment, variant, or derivative thereof is an Fab, Fab' and F(ab')2, Fd, Fvs, single-chain Fvs (scFv), single-chain antibody, disulfide-linked Fvs (sdFv), a fragment comprising either a VL or VH domain, a fragment produced by a Fab expression library, or an anti-idiotypic (anti-Id)
  • antibody e.g., anti-Id antibody to TNF-alpha antibody.
  • ScFv molecules are described, e.g., in U.S. Pat. No.
  • an antibody is an IgG, IgE, IgM, IgD, IgA, orlgY antibody.
  • IgG, IgE, IgM, IgD, IgA, orlgY antibody In another embodiment
  • an antibody is a IgGl, IgG2, IgG3, IgG4, IgAl or IgA2 antibody.
  • the antibody or antigen-binding fragment, variant, or derivative thereof is human.
  • antigen-binding fragment, variant, or derivative thereof is humanized. In one embodiment the antibody or antigen-binding fragment, variant, or derivative thereof is camelid. In another embodiment an antibody or fragment thereof is a single chain antibody or fragment thereof.
  • An antibody or a fragment thereof including a single-chain antibody can comprise variable region(s) alone or in combination with the entirety or a portion of the following: hinge region, CHI, 3 ⁇ 42, or (3 ⁇ 4 3 domains.
  • An antigen-binding fragment can also comprise any combination of variable region(s) with a hinge region, CHI, CH2, or CH 3 domains.
  • An antibody or an immunospecific fragment thereof includes humanized or fully human antibodies, antibodies where at least all of the CDRs within the variable domain(s) have the amino acid
  • the non-CDR regions of an antibody is from any animal origin such as a bird or a mammal and can comprise primate, murine, donkey, rabbit, goat, guinea pig, camel, llama, horse, or chicken non-CDR immunoglobulin region.
  • a heavy chain portion of an antibody includes amino acid sequences derived from an immunoglobulin heavy chain.
  • a polypeptide comprising a heavy chain portion comprises at least one of: a CHI domain, a hinge (e.g., upper, middle, and/or lower hinge region) domain, a C m domain, a C ro domain, or a variant or fragment thereof.
  • a binding polypeptide comprises a polypeptide chain comprising a CHI domain; a polypeptide chain comprising a CHI domain, at least a portion of a hinge domain, and a C m domain; a polypeptide chain comprising a C H i domain and a C ro domain; a polypeptide chain comprising a CHI domain, at least a portion of a hinge domain, and a CH 3 domain; or a polypeptide chain
  • a polypeptide comprises a polypeptide chain comprising a CH 3 domain.
  • a binding polypeptide can lack at least a portion of a (3 ⁇ 4 2 domain (e.g., all or part of a (3 ⁇ 4 2 domain).
  • an antibody domain e.g., the heavy chain portions is modified such that they vary in amino acid sequence from the naturally occurring immunoglobulin domains.
  • a therapeutic product is a polypeptide that binds to cell surface molecule.
  • a therapeutic product is a polypeptide that binds to a cell surface molecule and blocks a pathogen from binding to the surface molecule.
  • the polypeptide is an antibody or a fragment thereof.
  • the polypeptide binds to ICAM-1.
  • the polypeptide binds to CD18.
  • the polypeptide binds to CD11.
  • a polypeptide is not an antibody or a fragment thereof.
  • a pathogen is a virus, bacteria or a fungus.
  • a therapeutic product that binds to a cell surface molecule is identified by screening with a high-throughput screening method.
  • the high-throughput screening method is phage display.
  • An example of a suitable phage display technique is described in U.S. Patent Application No.
  • a therapeutic product is that binds to a cell surface molecule is further screened for an ability to block one or more pathogens from interacting with the cell surface molecule.
  • the screening method is a transwell assay system where pathogens bound to cell surface are identified by relative location in a transwell in comparison to unbound pathogens.
  • the screening method is a competition assay where the therapeutic product is bound to a cell surface, and in a subsequent step the amount of freed therapeutic product is measured in relation to increasing concentration of a pathogen.
  • a dissociation constant of a polypeptide capable of binding to CD11 is measured in a competition assay against an HIV virus.
  • a dissociation constant of a polypeptide that binds to CD 18 is measured in a competition assay against an HIV virus.
  • a dissociation constant of a polypeptide capable of binding to ICAM-1 is measured in a competition assay against an HIV virus.
  • an antibody therapeutic product is an antibody or a fragment thereof that binds to a cell surface molecule.
  • the cell surface molecule is ICAM.
  • the cell surface molecule is CD 18.
  • the cell surface molecule CD11.
  • the cell surface molecule is ICAM-1.
  • the cell surface molecule is CD60b, CD la, CD lb, CDlc, CDld, CDle, CD2, CD3, CD3d, CD3e, CD3g, CD4, CD5, CD6, CD7, CD8a, CD8b, CD9, CD10, CDl la, CDl lb, CDl lc, CDl ld, CDW12, CD13, CD14, CD15, CD16a, CD16b, CD17, CD18, CD19, CD20, CD21, CD22, CD23, CD24, CD25, CD26, CD27, CD28, CD29, CD30, CD31, CD32a, CD32b, CD32c, CD33, CD34, CD35, CD36, CD37, CD38, CD39, CD40, CD41, CD42a, CD42b, CD42c, CD42d, CD43, CD44, CD45, CD45RA, CD45RB, CD45RC, CD45RO, CD46, CD47, CD48, CD49a, CD49
  • CD49f CD50, CD51, CD52, CD53, CD54, CD55, CD56, CD57, CD58, CD59, CD60a, CD60b, CD60c, CD61, CD62E, CD62L, CD62P, CD63, CD64a, CD65, CD65s, CD66a, CD66b, CD66c, SynCAMs, NCAMs, VCAMOl, LI, CHL1, MAG, Nectin or a nectin-like molecules.
  • CD11 means molecules and subunits known as cluster of differentiation 11 such as CD1 la, CD1 lb, or CD1 lc.
  • CD designated molecules are also known by common names.
  • CD54 is also known as ICAM-1.
  • CD1 la is also known as lymphocyte function associated antigen 1 alpha polypeptide, integrin alpha L or ITGAL.
  • Each molecule described herein by its commonly known name refers to human nucleotide or polypeptide sequence in public sequence databases that can be identified by the commonly known name.
  • VHH or VNAR antibody sequences recognizing a cellular or viral protein are obtained by immunizing a transgenic mammal capable of expressing heavy chain antibodies.
  • heavy chain antibody includes heavy chain antibodies with single variable domain, such as human single variable domains, Camelid single variable domains or shark single variable domains, synthetic or semisynthetic single variable domains. Animals, such as a mouse, with a confirmed immune response can be used to obtain nucleic acid sequence to clone the antibody of VHH sequence.
  • phage display techniques known in the art e.g., McCafferty et al, Phage display of peptides and proteins.
  • a llama can be immunized with a human cell surface protein or a viral protein as described herein. From the immunized llama, lymphocytes can be harvested from a blood sample to test and screen for antibody response.
  • an antibody therapeutic product is an antibody or a fragment thereof that binds to a viral molecule.
  • the viral molecule is a viral envelope protein.
  • the envelope protein is HIV gp 120.
  • the area recognized by the antibody is CD4 binding site of gp 120.
  • the area recognized by the antibody is the co-receptor binding site on gp 120.
  • the area recognized by the antibody is V3 loop of gp 120.
  • the area recognized by the antibody is the glycans on gp 120.
  • the envelope protein is HIV gp 41.
  • the area recognized by the antibody is membrane proximal external region of gp 41.
  • the area recognized by the antibody is glycoprotein C of HS V- 1. In another embodiment, the area recognized by the antibody is ICP5 major capsid protein of HSV. In another embodiment, the area recognized by the antibody is glycoprotein D of HSV-2. In one embodiment, the area recognized by the antibody is Hepatitis B core antigen (HBcAg). In another embodiment, the area recognized by the antibody is Hepatitis B surface antigen (HBsAg).
  • an antibody therapeutic product is an antibody or a fragment thereof that binds to a virus.
  • a virus includes, but is not limited to, Adenovirus, Astrovirus, Avian influenza virus, Coxsackievirus, Dengue virus, Ebola virus, Echovirus, Enteric adenovirus, Enterovirus, Hantaviruses, Hepatitis A virus,
  • Hepatitis B virus Hepatitis C virus, Hepatitis D virus, Hepatitis E virus, Herpes simplex virus (HSV), Human cytomegalovirus, Human immunodeficiency virus (HIV), Human papillomavirus (HPV), Influenza virus, Japanese encephalitis virus (JEV), Lassa virus, Marburg virus, Measles virus, Mumps virus, Norovirus, Parainfluenza virus, Poliovirus, Rabies virus, Respiratory syncytial virus, Rotavirus, Rubella virus, SARS coronavirus, Tick-borne encephalitis virus (TBEV), Variola virus, West Nile virus, and Yellow fever virus.
  • HSV Herpes simplex virus
  • HCV Human cytomegalovirus
  • HCV Human immunodeficiency virus
  • HPV Human papillomavirus
  • Influenza virus Japanese encephalitis virus
  • JEV Japanese encephalitis virus
  • Lassa virus Marburg virus
  • Measles virus Me
  • a therapeutic product is a nucleic acid.
  • a nucleic acid is a DNA or a RNA molecule capable of interacting with a cell surface molecule.
  • a nucleic acid is selected for its ability to interact with ICAM- 1.
  • a nucleic acid is selected for its ability to interact with CD 18.
  • a nucleic acid is selected for its ability to interact with CD 11.
  • a therapeutic product is an aptamer.
  • an aptamer is an oligonucleotide aptamer.
  • an oligonucleotide aptamer is a DNA aptamer.
  • an oligonucleotide aptamer is a RNA aptamer.
  • an oligonucleotide aptamer is selected by an in vitro selection process, such as SELEX (systematic evolution of ligands by exponential enrichment).
  • an oligonucleotide aptamer is selected for its ability to bind to a cell surface antigen.
  • an oligonucleotide aptamer is selected for its ability to bind to ICAM- 1. In another embodiment, an oligonucleotide aptamer is selected for its ability to bind to CD18. In another embodiment, an oligonucleotide aptamer is selected for its ability to bind to CD11. In another aspect, an aptamer is a peptide aptamer. In one embodiment, a peptide aptamer is selected by an in vitro method, such as yeast-two-hybrid. In another embodiment, a peptide aptamer is selected for its ability to bind to a cell surface antigen. In another embodiment, an oligonucleotide aptamer is selected for its ability to bind to ICAM- 1. In another embodiment, an oligonucleotide aptamer is selected for its ability to bind to CD 18. In another embodiment, an
  • oligonucleotide aptamer is selected for its ability to bind to CD11.
  • a therapeutic product is a ligand.
  • a ligand is selected for its ability to interact with a cell surface molecule.
  • a ligand is selected for its ability to interact with ICAM- 1.
  • a ligand is selected for its ability to interact with CD 18.
  • a ligand is selected for its ability to interact with CD11.
  • a ligand upon binding to one or more cell surface molecules, prevents other molecules from interacting with the cell surface molecule.
  • a ligand is a competitive ligand that displaces other molecules already bound to a cell surface molecule.
  • a therapeutic product is produced in a delivery vehicle.
  • the delivery vehicle is a microorganism.
  • a microorganism delivers a polypeptide.
  • the polypeptide is encoded by a nucleic acid sequence in the microorganism.
  • the polypeptide is produced from a plasmid transcribed and translated by the microorganism.
  • the polypeptide is encoded by an exogenous nucleic acid sequence integrated into the microorganism's genome.
  • a therapeutic product is produced within a vehicle from a plasmid or other vector.
  • a therapeutic product is produced within a vehicle by a nucleic acid sequence integrated to the chromosome.
  • the microorganism is a Lactobacillus.
  • Chromosomal integration of recombinant DNA ensures stable expression of heterologous antigens both in vitro and in vivo.
  • Various systems have previously been developed to stably integrate a heterologous gene into the chromosome, generating food grade expression systems devoid of antibiotic selection genes.
  • One of these systems is based on the site-specific integration apparatus of temperate bacteriophage A2 of Lactobacillus.
  • an antibody or its fragment is produced from a chromosomally integrated nucleic acids sequence encoding the antibody or a fragment thereof.
  • Methods of chromosomal integration include, but are not limited to, homologous recombination or use of insertion sequences (e.g., a transposon).
  • two-chain antibody production in a microorganism involves a heterodimerization and/or post-translational modification of polypeptide.
  • a microorganism produces a single heavy-chain antibody.
  • a nucleic sequence encoding an antibody is modified by introducing changes in the length of nucleotide introduced into a microorganism's chromosome, adjusting codon usage to suit the microorganism, such as by replacing an amino acid codon with another amino acid, or adjusting various transcription-controlling sequences (such as operator, promoter, enhancer, Shine-Dalgarno, or Kozak sequences) to find right codon for expression.
  • a chromosomal integration system further comprises a safety switch.
  • the safety switch returns the genetically engineered microorganism to substantially natural state, renders the
  • microorganism incapable of producing a therapeutic product renders the microorganism incapable of
  • the safety switch comprises a
  • the system is a Cre-loxP system in which foreign genes flanked by two loxP sequences are
  • Cre recombinase removed from the genome by Cre recombinase.
  • the Cre recombinase is a part of the foreign gene inserted but controlled under an inducible promoter.
  • a purified Cre recombinase is applied to sites that therapeutic product is produced.
  • the safety switch comprises a
  • the safety switch comprises an inducible promoter that
  • compositions for integrating and producing antibody or a fragment thereof in a microorganism are provided.
  • the microorganism is a Lactobacillus.
  • antibody production is based on a system utilizing the APF protein of L. crispatus M247 to direct the expression and secretion of an antibody or its fragments.
  • an antibody or fragment thereof is expressed as an APF-fusion protein.
  • APF can be divided into N- and C-terminal domains separated by a central region rich in asparagine, glutamine, threonine and alanine.
  • the APF protein is positively charged. It can interact electrostatically with the negatively charged cell envelope teichoic acid.
  • antibodies are secreted as an APF-fusion protein.
  • APF-fusion proteins located within bacterial cell membrane that are in the process of being
  • the APF system utilizes a site-specific integration apparatus of the temperate
  • the APF protein is expressed and present in
  • the APF protein is expressed and secreted from
  • the APF protein is N-(2-aminoethyl)-2-aminoethyl-N-(2-aminoethyl)-2-aminoethyl-N-(2-aminoethyl)-2-aminoethyl-N-(2-aminoethyl)-2-aminoethyl-N-(2-aminoethyl)-2-aminoethyl-N-oxidative Lactobacilli or other Gram positive bacteria.
  • the APF protein is N-oxidative Lactobacilli or other Gram positive bacteria.
  • an antibody or a fragment thereof is covalently linked to a scFv. In another embodiment, an antibody or a fragment thereof is covalently linked to a scFv recognizing
  • an antibody or a fragment thereof is fused with the APF protein. In another embodiment, an antibody or a fragment thereof is covalently linked to scFv and the APF protein.
  • scFv is fused to the APF protein via an antibody or a fragment thereof.
  • a region of the APF protein is selected for expression and secretion of an antibody or a fragment thereof.
  • an APF protein is an APF protein of Lactobacillus crispatus.
  • an APF protein of Lactobacillus crispatus is an APF of strain M247 or Mu5 (Table 2).
  • a fusion protein of an antibody or a fragment thereof is produced with the N- terminal portion of the APF protein.
  • a fusion protein of antibody or a fragment thereof is produced by fusing an scFv antibody or a fragment thereof to the middle region and C-terminal part of APF.
  • fusions with the middle region and C-terminal part of APF are produced to attach
  • an antibody either attached to a cell or cell-free form, is detected by flow cytometry.
  • varying amounts of covalent surface anchored proteins are detected in the supernatant.
  • three expression cassettes are selected based on the amount of scFv produced and the location of the scFv (supernatant only, cell surface and supernatant, cell wall anchored).
  • expression cassettes are used to produce scFv against ICAM-I as well as VHHs against rotavirus and the SAI/II adhesion of S. mutans.
  • the scFv anti-ICAM- 1 produced by Lactobacilli has a higher binding activity than the scFv anti-SAI/II.
  • fusion to the C-terminal APF part increases the level of antibody secretion.
  • a sequence is inserted between the middle region of APF and the antibody or a fragment thereof to elongate the fusion protein and to improve the display of antibody or a fragment thereof.
  • the pEM76 delivery system is used to catalyze the integration of the fusion
  • the system uses site-specific integration apparatus of
  • temperate bacteriophage A2 of Lactobacillus in another embodiment, the system creates integration of
  • a gene encoding surface anchored VHH antibody is integrated to the genome of a microorganism.
  • a gene encoding surface anchored VNAR antibody is integrated to the microorganism.
  • a gene encoding surface anchored scFv is integrated to the microorganism.
  • microorganism In another embodiment, up to about 2000 antibody molecules are displayed on the surface of a microorganism. The number of antibody molecules that are displayed on the surface of a microorganism
  • the integrated VHH gene is stable over 50
  • the integrated VHH sequence is stable over 100 generations.
  • the apf promoter originally from L. crispatus is used in L.
  • antibody or a fragment thereof is produced in L. rhamnosus GG using the cassettes described herein.
  • sequence of the attB site is utilized for the application in L. lactis.
  • two or more expression cassettes encoding antibodies of different specificities are integrated.
  • a first cassette encodes and expresses and ICAM-specific antibody.
  • a first cassette encodes and expresses a CD18-specific antibody.
  • a first cassette encodes and expresses a CD11-specific antibody.
  • a cassette encodes and expresses an ICAM-specific and a CD18-specific antibody.
  • a cassette encodes and expresses an ICAM-specific, a CDl l-specific and a CD18-specific antibody.
  • a cell surface, cell wall, or secreted protein of a microorganism can be used as a fusion partner to express, display or secrete the antibodies or fragments thereof at the delivered sites.
  • bacterial proteins examples include, but are not limited to, periplasmic ABC-type metal ion transport system, component/surface adhesion lemA protein FmtB surface protein sixty seven kDa Myosin-crossreactive streptococcal antigen, Myosin-crossreactive antigen, Sortase, Mucus binding protein precursor, Mucus binding protein, Mucus binding protein precursor, Steroid binding protein, Surface exclusion protein, Tropomyosin-like protein, Biofilm-associated surface protein, Aggregation promoting protein, Aggregation promoting protein, Fibrinogen-binding protein, Surface layer protein, Autolysin; amidase, Cell shape-determining protein (MreB), Cell shape-determining protein (MreB), Cell shape-determining protein (MreC), Cell shape-determining protein (MreD), Rod shape-determining protein (RodA), UDP-N-acetylmuramate-alanine ligase, UDP-N-acety
  • the microorganism is a Lactobacillus strain.
  • the microorganism is a Lactobacillus paracasei.
  • a Lactobacillus APF protein directs the expression and secretion of antibody or a fragment thereof.
  • a site-specific integration apparatus of the temperate bacteriophage A2 is used to mediate chromosomal integration of exogenous nucleic acid sequence that encodes an ICAM- 1 antibody or a fragment thereof.
  • a fusion between the antibody or a fragment thereof and the apf gene is generated to optimize the level of expression, secretion and location of the antibody or a fragment thereof.
  • non-covalent and covalent anchoring systems are used for expression.
  • an expression cassette is integrated in the chromosome using site-specific integration vectors, generating food grade Lactobacilli producing antibody or a fragment thereof.
  • a microorganism is used to produce CD18-specific antibody or a fragment thereof.
  • the microorganism is Lactobacillus paracasei.
  • a Lactobacillus APF protein directs the expression and secretion of antibody or a fragment thereof.
  • the expression utilizes site-specific integration apparatus of the temperate bacteriophage A2 to mediate chromosomal integration for CD 18 antibody expression.
  • a fusion between the antibody or a fragment thereof and the apf gene is generated to optimize the level of expression, secretion and location of the antibody or a fragment thereof.
  • non-covalent and covalent anchoring systems are used for expression.
  • an expression cassette is integrated in the chromosome using site-specific integration vectors, generating food grade Lactobacilli producing antibody or a fragment thereof.
  • a microorganism is used to produce a CDl 1-specific antibody or a fragment thereof.
  • a CDl 1 antibody as used herein can be a CDl la, CDl lb, CDl lc or CDl Id antibody.
  • the CDl 1-specific antibody is a human antibody.
  • the CDl 1-specific antibody is a humanized antibody.
  • the CDl 1-specific antibody is a camelid antibody.
  • the CDl 1-specific antibody is a VHH or VNAR antibody.
  • the microorganism is Lactobacillus paracasei.
  • a Lactobacillus APF protein directs the expression and secretion of antibody or a fragment thereof.
  • the expression utilizes site- specific integration apparatus of the temperate bacteriophage A2 to mediate chromosomal integration for CDl 1 antibody expression.
  • a fusion between the antibody or a fragment thereof and the apf gene is generated to optimize the level of expression, secretion and location of the antibody or a fragment thereof.
  • non-covalent or covalent anchoring systems are used for expression.
  • an expression cassette is integrated in the chromosome using site-specific integration vectors, generating food grade Lactobacilli producing antibody or a fragment thereof.
  • methods and compositions described herein are related to expression of a therapeutic product by a delivery vehicle.
  • a therapeutic product is expressed intracellularly.
  • a therapeutic product is anchored on the surface of the delivery vehicle.
  • the anchoring can be enabled by fusing the therapeutic product to a known cell surface protein of the delivery vehicle.
  • Various fusion combinations between the fusion partner and the heterologous gene can be performed to obtain production of the protein at different cellular locations and to optimize expression and secretion.
  • cell wall sorting and covalent anchoring mechanisms of the M protein and prtP proteases is used.
  • anchoring comprises the cell wall spanning (CWS) domain of the Lactococcus lactis protein PrtP or a functional part thereof, derivative and/or analogue thereof.
  • anchoring comprises AcmA or AcmD type protein anchors, the AcmA and AcmD-type carbohydrate binding domains, or their homologs thereof.
  • therapeutic products are fused to anchoring system of S-layer and Sep proteins.
  • a therapeutic product comprises one or more antibodies that bind to a human ICAM-1, CD18, or CDl 1 (e.g. CDl la, CDl lb, CDl lc or CDl Id subunits).
  • the one or more antibodies are single chain antibodies.
  • the one or more antibodies are camelid or camelid modified antibodies.
  • the one or more antibodies are VHH antibodies.
  • a method of releasing a therapeutic product comprises a constitutive release.
  • a method of producing a therapeutic product comprises an inductive release.
  • releasing includes, but is not limited to, secretion, active transport, exocytosis, phagocytosis, and passive diffusion.
  • a therapeutic product is diffused out from a vehicle.
  • a therapeutic product is exported from a vehicle.
  • a therapeutic product is secreted from a vehicle.
  • a system comprises a delivery vehicle, a therapeutic product, medical devices or chemicals employed in delivering the vehicle to a target area.
  • the system is used for treating or preventing a medical condition.
  • a treatment includes medical treatment upon observing a condition in situ.
  • a medical disease or a condition is prevented by employing a delivery system described herein.
  • the system produces a therapeutic product that prevents infection by a pathogen.
  • a disease is an pathogenic infection or disease.
  • an infection is a viral infection.
  • a viral infection is a human immunodeficiency virus infection.
  • a viral infection is human papilloma virus infection.
  • a viral infection is herpes virus infection.
  • a viral infection is sexually transmitted infection.
  • a disease is bacterial infection.
  • a disease is a fungal infection.
  • a disease is infection by a prion.
  • a disease is parasitic infection.
  • a disease is a condition of the immune system.
  • a disease is a cancer.
  • a cancer is a cervical cancer.
  • An infectious or parasitic disease includes, but is not limited to, intestinal infectious diseases, tuberculosis, zoonotic bacterial diseases, other bacterial diseases, human immunodeficiency virus (HIV) infection, poliomyelitis and other non arthropod borne viral diseases of central nervous system, viral diseases accompanied by exanthem, arthropod borne viral diseases, other diseases due to viruses and chlamydiae, rickettsioses and other arthropod borne diseases, syphilis and other venereal diseases, other spirochetal diseases, mycoses, helminthiases, other infectious and parasitic diseases, and late effects of infectious and parasitic diseases.
  • HIV human immunodeficiency virus
  • Intestinal infectious diseases include, but are not limited to cholera, typhoid and paratyphoid fevers, salmonella gastroenteritis, shigellosis, shigellosis, staphylococcal food poisoning, amoebiasis, acute amoebic dysentery without mention of abscess, chronic intestinal amoebiasis without mention of abscess, amoebic nondysenteric colitis, amoebic liver abscess, amoebic lung abscess, amoebic brain abscess, amoebic skin ulceration, amoebic infection of other sites, amoebiasis, balantidiasis, giardiasis, coccidiosis, intestinal trichomoniasis, cryptosporidiosis, cyclosporiasis, protozoal intestinal disease, intestinal infections due to other organisms, enteritis due to rotavirus, enteritis due to other viral enteritis, intestinal infection due to
  • Tuberculosis includes, but is not limited to primary tuberculous infection, pulmonary tuberculosis, tuberculosis of meninges and central nervous system, tuberculosis of intestines, peritoneum, and mesenteric glands, tuberculosis of bones and joints, tuberculosis of vertebral column, pott's disease, tuberculosis of genitourinary system, tuberculosis of other organs, erythema nodosum with hypersensitivity reaction in tuberculosis, avama nodosum with hypersensitivity reaction in tuberculosis, avama nodosum with hypersensitivity reaction in tuberculosis, avain disease, tuberculosis of peripheral lymph nodes, scrofula, and miliary tuberculosis.
  • Zoonotic bacterial diseases includes, but is not limited to plague, bubonic plague, tularemia, anthrax, brucellosis, glanders, melioidosis, rat bite fever, listeriosis, erysipelothrix infection, and pasteurellosis.
  • Other bacterial diseases include, but are not limited to leprosy, diseases due to other mycobacteria, diphtheria, whooping cough, streptococcal sore throat and scarlatina, strep throat, scarlet fever, erysipelas, meningococcal meningitis, tetanus, septicemia, pneumococcal septicemia, gram negative septicemia, septicemia, and actinomycotic infections.
  • a human immunodeficiency virus infection includes, but is not limited to human immunodeficiency virus infection with specified conditions, human immunodeficiency virus infection causing other specified, and other human immunodeficiency virus infection.
  • a poliomyelitis and other non arthropod borne viral diseases of central nervous system include, but are not limited to acute poliomyelitis, slow virus infection of central nervous system, kuru, creutzfeld jakob disease, Prion diseases, meningitis due to enterovirus, other enterovirus diseases of central nervous system, and other non arthropod borne viral diseases of central nervous system.
  • Viral diseases accompanied by exanthem include, but are not limited to smallpox, cowpox and paravaccinia, chickenpox, herpes zoster, herpes simplex, genital herpes, herpetic gingivostomatitis, herpetic disease, uncomplicated, measles, rubella, other viral exanthemata, fifth disease, viral exanthems, roseola infantum, other human herpesvirus encephalitis, other human herpesvirus infections, other poxvirus infections, other orthopoxvirus infections, monkeypox, other parapoxvirus infections, bovine stomatitis, sealpox, yatapoxvirus infections, tanapox, yaba monkey tumor virus, other poxvirus infections, and poxvirus infections.
  • Arthropod borne viral diseases include, but are not limited to yellow fever, dengue fever, mosquito borne viral encephalitis, encephalitis, tick borne viral encephalitis, viral encephalitis transmitted by other and arthropods, arthropod borne hemorrhagic fever, ebola hemorrhagic fever, other arthropod borne viral diseases, and west nile virus.
  • Other pathogenic diseases due to viruses and chlamydiae include, but are not limited to viral hepatitis, hepatitis a with hepatic coma, hepatitis a without coma, hepatitis b with hepatic coma, hepatitis b without coma, acute, other specified viral hepatitis with mention of hepatic coma, other specified viral hepatitis without mention of hepatic coma, viral hepatitis c, viral hepatitis c without hepatic coma, viral hepatitis c with hepatic coma, hepatitis, viral, , rabies, mumps, mumps, uncomplicated, ornithosis, specific diseases due to coxsackie virus, herpangina, hand, foot, mouth disease, mononucleosis, trachoma, other diseases of conjunctiva due to viruses and chlamyd
  • Rickettsioses and other arthropod borne diseases include, but are not limited to louse borne epidemic typhus, other typhus, tick borne rickettsioses, rocky mountain spotted fever, other rickettsioses, malaria, leishmaniasis, trypa omiasis, relapsing fever, other arthropod borne diseases, other specified arthropod borne diseases, lyme disease, and babesiosis.
  • Syphilis and other venereal diseases include, but are not limited to congenital syphilis, early syphilis, symptomatic, syphilis, primary, genital, early syphilis, latent, cardiovascular syphilis, neurosyphilis, other forms of late syphilis, with symptoms, late syphilis, latent, other and syphilis, gonococcal infections, gonorrhoea, acute, lower GU tract, gonococcal conjunctivitis, and nongonococcal urethritis.
  • spirochetal diseases include, but are not limited to leptospirosis, Vincent's angina, yaws, and pinta.
  • Mycoses include, but are not limited to dermatophytosis, dermatophytosis of scalp/beard, onychomycosis, dermatophytosis of hand, tinea cruris, tinea pedis, tinea corporis, dermatomycosis, tinea versicolor, dermatomycosis, candidiasis, moniliasis, oral, moniliasis, vulva/vagina, monilial balanitis, moniliasis, skin/nails, coccidioidomycosis, histoplasmosis, histoplasma infection, blastomycotic infection, other mycoses, and opportunistic mycoses.
  • Helminthiases include, but are not limited to schistosomiasis bilharziasis, other trematode infections, echinococcosis, other cestode infection, trichi is, filarial infection and dracontiasis, ancylostomiasis and necatoriasis, other intestinal helminthiases, ascariasis, anisakiasis, strongyloidiasis, trichuriasis, enterobiasis, capillariasis, trichostrongyliasis, helminthiases, intestinal parasitism.
  • pathogenic diseases include, but are not limited to toxoplasmosis, toxoplasmosis, trichomoniasis, urogenital trichomoniasis, trichomonal vaginitis, trichomoniasis, urethritis, pediculosis and phthirus infestation, pediculosis, head lice, pediculosis, body lice, pediculosis, pubic lice, pediculosis, acariasis, scabies, chiggers, sarcoidosis, ainhum, behcet's syndrome, pneumocystosis, psorospermiasis, and sarcosporidiosis.
  • Late effects of infectious and parasitic diseases include, but are not limited to late effects of tuberculosis, and late effects of polio.
  • a pathogenic infection or disease can arise from bacterial, viral, fungal, or other parasitic infection.
  • a bacterial pathogen includes, but is not limited to Acinetobacter baumannii, Bacillus anthracis, Bartonella, Bordetella pertussis, Borrelia, Brucella, Chlamydia pneumoniae, Chlamydia trachomatis, Clostridium botulinum, Clostridium difficile, Corynebacterium diphtheriae, Coxiella burnetii, Ehrlichia, Enterococci, Enterovirulent Escherichia coli, Francisella tularensis, Haemophilus ducreyi, Helicobacter pylori, Klebsiella pneumoniae, Legionella pneumophila, Leptospira interrogans, Mycobacterium tuberculosis, Mycoplasma genitalium, Mycoplasma pneumoniae, Neisseria gonorrhoeae, Neisseria
  • a viral pathogen includes, but is not limited to Adenovirus, Astrovirus, Avian influenza virus, Coxsackievirus, Dengue virus, Ebola virus, Echovirus, Enteric adenovirus, Enterovirus, Hantaviruses, Hepatitis A virus, Hepatitis B virus, Hepatitis C virus, Hepatitis D virus, Hepatitis E virus, Herpes simplex virus (HSV), Human cytomegalovirus, Human immunodeficiency virus (HIV), Human papillomavirus (HPV), Influenza virus, Japanese encephalitis virus (JEV), Lassa virus, Marburg virus, Measles virus, Mumps virus, Norovirus, Parainfluenza virus, Poliovirus, Rabies virus, Respiratory syncytial virus, Rotavirus, Rubella virus, SARS coronavirus, Tick-borne encephalitis virus (TBEV), Variola virus, West Nile virus, and Yellow fever virus.
  • Adenovirus Astrovirus
  • a fungal pathogen includes, but is not limited to Candida albicans.
  • a parasitic pathogen includes, but is not limited to Plasmodium, Schistosoma mansoni, and
  • a pathogenic infection is an HIV infection.
  • An HIV infection can be caused by any infectious HIV type or subtype, such as HIV-1, HIV-2, or HIV-3, or HIVs with various envelop proteins such as group M (subtypes A, B, C, D, E [ ⁇ ], F, G, H, I [A/G/I or A/G/H/K/] J, K, or circulating recombinant forms), group N, group O, or group P.
  • a pathogenic infection is an HPV (human papilloma virus) infection.
  • An HPV infection can be caused by any infectious HPV type or subtype, such as HPV-1, HPV-2, HPV-3, HPV-4, HPV- 6, HPV-7, HPV-10, HPV-11, HPV-16, HPV-18, HPV-31, HPV-32, HPV-33, HPV-39, HPV-42, HPV-44, HPV- 45, HPV-51, HPV-52, HPV-53, HPV-56, HPV-58, HPV-59, HPV-66, HPV-68, HPV-73, or HPV-82.
  • a disease is HPV-16 infection.
  • a disease is HPV-18 infection. In another embodiment, a disease is HPV-31 infection. In another embodiment, a disease is HPV-45 infection. In another embodiment, a disease is HPV-6 infection. In another embodiment, a disease is HPV-11 infection.
  • a pathogenic infection is an HSV (herpes simplex virus) infection.
  • An HSV infection can be caused by any infectious HSV type or subtype, such as HSV-1, HSV-2, HHV-1 (Human herpes virus), or HHV-2.
  • a pathogenic infection is an infection by a virus in the genus of Parvovirus.
  • a virus in the genus of Parvovirus includes, but is not limited to, Canine parvovirus, Chicken parvovirus, Feline panleukopenia virus, Feline parvovirus, HB virus, H-l virus, Kilham rat virus, Lapine parvovirus, LUIII virus, Mink enteritis virus, Minute virus of mice, Murine parvovirus 1, Porcine parvovirus, Raccoon parvovirus, RT parvovirus, and Tumor virus X.
  • a pathogenic infection is an infection by a virus in the family of Parvoviridae.
  • a virus in the family of Parvoviridae includes, but is not limited to, parvovirus B19, and Adeno-associated virus 2.
  • an infection is rotavirus infection.
  • a delivery vehicle is used to treat or prevent infection by a pathogen.
  • a delivery vehicle is used to provide passive immunization against infectious disease.
  • a delivery vehicle described herein is used for providing a preventive measure against prolonged infection.
  • a delivery vehicle described herein is used for providing a preventive measure against reentry of infectious virus.
  • a delivery vehicle described herein is used for providing a preventive measure against virus passing through an epithelial layer of an animal, such as gut epithelia or vaginal epithelia.
  • a delivery vehicle described herein is used for inhibiting transmigration of virus through an epithelial layer.
  • a delivery vehicle described herein is used for inhibiting transmigration of virus through a vaginal epithelial layer. In another embodiment, a delivery vehicle described herein is used for inhibiting transmigration of virus through a rectal epithelial layer. In another embodiment, a delivery vehicle described herein is used for inhibiting transmigration of virus through an oral epithelial layer. In another embodiment, a delivery vehicle described herein is used for inhibiting transmigration of virus through an ocular epithelial layer. In another embodiment, a delivery vehicle described herein is used for inhibiting transmigration of virus through a gastrointestinal epithelial layer. In one embodiment, the transmigration of virus through an epithelial layer is completely blocked by a delivery vehicle described herein. In another embodiment, the transmigration of virus is partially blocked by a delivery vehicle described herein. In another embodiment, a delivery vehicle described herein blocks up to about 10%, 20%, 30%>, 40%>, 50%>,
  • a virus that can transmigrate through an epithelial layer is collected in a laboratory transwell migration assay and its quantity is measured by an enzyme-linked immunoabsorbent assay (ELISA).
  • ELISA enzyme-linked immunoabsorbent assay
  • a delivery vehicle described herein is used for preventing cell adhesion and/or internalization of a virus.
  • a delivery vehicle described herein is used to prevent cell adhesion.
  • a delivery vehicle described herein is used to prevent cell adhesion to an epithelial layer of a mammal.
  • a delivery vehicle described herein is used for preventing virus adhering to cell surface molecules.
  • a delivery vehicle described herein is used for preventing virus from binding to a host cell or cells. In another embodiment, a delivery vehicle described herein is used for preventing virus from gaining entry into the bloodstream. In another embodiment, a delivery vehicle described herein is used for preventing virus from attaching to a host cell that expresses a cell surface molecule recognized by virus. In another embodiment, a delivery vehicle described herein is used for preventing viral entry and neutralizing a virus. In one embodiment the virus is an HIV, HPV or HSV virus. In one embodiment the delivery vehicle comprises a recombinant microorganism (such as a lactobacillus) that expresses an antibody or fragment thereof that inhibits transepithelial migration of a virus through an epithelial layer.
  • a recombinant microorganism such as a lactobacillus
  • the recombinant microorganism comprises one or more polynucleotides that encode one or more antibodies or fragments thereof. In one embodiment the one or more polynucleotides are integrated into a chromosome of the recombinant microorganism. In another embodiment the one or more polynucleotides are not integrated into a chromosome of the recombinant microorganism.
  • a lactobacillus comprises an exogenous nucleic acid integrated into a chromosome of the lactobacillus that encodes an antibody or fragment thereof. In another embodiment a lactobacillus comprises more than one exogenous nucleic acid integrated into a chromosome of the lactobacillus that encodes an antibody or fragment thereof. In one embodiment the lactobacillus expresses the antibody or fragment thereof. In one embodiment the antibody or fragment thereof binds to human CD18, CD11, ICAM-1 or a subunit thereof. In another embodiment the lactobacillus expresses two or more antibodies or fragments thereof that bind to human CD 18, CD11, ICAM-1 or a subunit thereof.
  • the lactobacillus is administered to a human to treat or prevent infection from a pathogen.
  • the pathogen is a virus.
  • the virus is a HIV, HPV or HSV.
  • the virus is HIV.
  • the human is a man.
  • the lactobacillus is administered to the man's genitals.
  • the lactobacillus is administered to the man's rectum.
  • the lactobacillus is administered to the man's urethra.
  • the lactobacillus is administered to a man in conjunction with a contraceptive.
  • the lactobacillus is administered to a man in conjunction with a prophylactic.
  • the human is a woman.
  • the lactobacillus is administered to the woman's genitals. In another embodiment the lactobacillus is administered to the woman's vagina. In another embodiment the lactobacillus is administered to the woman's urethra. In another embodiment the lactobacillus is administered to the woman's rectum. In one embodiment the lactobacillus administered to the woman's vagina expresses an antibody or fragment thereof bind to human CD 18, CD11, ICAM-1 which inhibits viral transmigration through an epithelial layer. In one embodiment the inhibited virus is a HIV, HPV or HSV virus. In one embodiment the inhibited virus is a HIV.
  • treatment of a human population with a lactobacillus that comprises an exogenous nucleic acid integrated into a chromosome of the lactobacillus encodes an antibody or fragment thereof that binds to human CD 18, CD11, ICAM-1 and expresses said antibody or fragment thereof decreases the rate of HIV infection in said human population by 1-100%, such as 10-90% or 20-80% or 30-70& or 40-60% or 50% compared to a human population that is not treated with said lactobacillus.
  • the rate of decrease is 1, 2, 3, 4, 5, 6, 7,8, 9, 10 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23,24, 25, 26 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 88, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, or 100%o.
  • the human population comprises males and females. In another embodiment the human population consists of females. In another embodiment the human population consists of males. In another embodiment the human population comprises humans from newborns to those that are 80 years old. In another embodiment the human population comprises humans from newborns to those that are 10 years old. In another embodiment the human population comprises humans from newborns to those that are 20 years old. In another embodiment the human population comprises humans from newborns to those that are 10 years old.
  • anti-ICAM- 1 and anti-CD 18 significantly reduced cell migration at all concentrations when tested over a range of 10-100 ⁇ g/ml when compared to both untreated and isotype controls.
  • anti-CD 18 blocked cell migration significantly better than anti-ICAM- 1 at all concentrations tested, further reducing the number of cells detected in the basal compartment when compared to blocking by the corresponding concentration of anti- ICAM-1.
  • commercially available free antibodies to CD 18 and ICAM-I when mixed at a 50:50 ratio successfully block transmigration of PBMC from infected cultures (US 20090317404). Increased efficacy was also observed at lower concentrations of anti-CD 18 and anti-ICAM- 1, in combination, than at higher concentrations of anti-CD 18 and anti-ICAM- 1, individually.
  • Example 1 The aggregation-promoting factor (APF) protein of Lactobacillus crispatus was used as a vector molecule to deliver antibody or a fragment thereof.
  • APF protein has useful characteristics such as high secretion level and non-covalent anchoring to the bacterium.
  • the integration vector contains the phage A2 integrase gene (A2-int) which catalyses the insertion of vector DNA containing the A2-attP site into an attB site present in the genome of all lactic acid bacteria tested so far. Subsequent expression of a ⁇ -recombinase catalyses the deletion of non "food grade" DNA (antibiotic resistance gene, E. coli DNA) located between two six sites.
  • A2-int phage A2 integrase gene
  • Bacterial strains, plasmids and growth conditions are listed in Table 1. Escherichia coli DH5a was grown with shaking at 37°C in Luria-Bertani (LB) medium.
  • LB Luria-Bertani
  • Lactobacillus paracasei (previously known as L. casei or L. zeae ATCC 393 pLZ15 " ) was grown in MRS broth at 37°C under static conditions (DifcoTM, Becton Dickinson, Sparks, MD) and on MRS agar plates at 37°C in anaerobic conditions.
  • concentration of antibiotics used was 100 ⁇ g/ampicillin or 300 g ml erythromycin for E. coli transformants and 5 ⁇ erythromycin for L. paracasei transformants.
  • psp72SalBamAS pSP72 with Fragment 1 encoding the promoter region the signal peptide (33 amino acids) and the first 4 amino acids of the N-terminal domain of the apf gene psp72SalBamAS2 pSP72 with Fragment 2 encoding the promoter region, the signal peptide (33 amino acids), the whole N-terminal domain (75 amino acids) and the middle region (37 amino acids) of the apf gene psp72SalBamAS3 pSP72 with Fragment 3 encoding the promoter region, the signal peptide and the whole
  • FIG. 1 illustrates an amplified PCR fragments used for the construction of the different expression cassettes.
  • the APF proteins can be divided in three domains, N- terminal, C-terminal and a central region which is rich in asparagine, glutamine, threonine and alanine.
  • PCR fragments are designated from 1 to 5 (see material and methods).
  • Fragment 1 The region encoding the promoter region, the signal peptide (33 amino acids) and the 4 amino acid of the N-terminal domain.
  • Fragment 2 The promoter region and the gene encoding the signal peptide (33 amino acids), the whole N-terminal domain (75 amino acid) and the middle region (37 amino acid).
  • Fragment 3 The promoter region and the genes encoding the signal peptide and the whole N-terminal domain.
  • Fragment 4 The gene encoding the C-terminal domain (last 78 amino acids) and the terminator region.
  • Fragment 5 The gene encoding the middle region, the C- terminal domain and the terminator region.
  • the apf gene of L. crispatus M247 encodes a 223 amino acid protein containing a signal peptide (33 amino acids), a N-terminal domain (75 amino acids), a central region rich in asparagine, glutamine, threonine and alanine (37 amino acids) and a C-terminal domain (the last 78 amino acids) (GeneBank AF492458) (Fig. 1).
  • Eleven expression cassettes were generated by fusing a model scFv antibody or a fragment thereof directed against the SAI/II adhesion of S. mutans with the promoter region and the gene encoding the APF protein of L. crispatus M247.
  • the expression cassettes differ by the APF region encoding gene fragments included (N-terminal domain, central region and C-terminal domain) or by the insertion of the anchored region of the prtP gene for covalent surface binding of the antibody or a fragment thereof.
  • Genomic DNA from L. crispatus M247 was purified and used as a template for amplification of five DNA fragments, 1 to 5, corresponding to different regions of the apf gene (Fig. 1).
  • the sequences of the primers used for amplification are shown in Table 4.
  • E-tagAS 5 ' TGCGGCACGCGGTTCCAGCGGATCCGGATACGGCACC
  • ICAM-NcoI 5 ' -CATGCCATGGATGGGGTCAATTCAGAGGTTCAGCT- 3 '
  • the 486-bp Fragment 1 containing the promoter region, the signal peptide (33 amino acids) and the first 4 amino acid of the N-terminal domain was amplified using primers APFSalS and APFBamAS; the 810-bp Fragment 2, containing the promoter region and the gene segment encoding the signal peptide (33 amino acids), the whole N-terminal domain (75 amino acid) and the central region (37 amino acid), using primers APFSalS and APFBamAS2; the 699-bp Fragment 3 containing the promoter region, the signal peptide and the whole N- terminal domain using primers APFSalS and BamAS3; the 492-bp Fragment 4 containing the gene segment encoding the C-terminal domain (last 78 amino acids) and the terminator region using primers APFSacS and EcoAS2, and the 609-bp Fragment 5 containing the gene encoding the middle region, the C-terminal domain and the terminat
  • Fragments 1 to 3 were digested with Sail and BamHl and ligated to a similarly digested pSP72 plasmid, generating psp72SalBamAS, psp72SalBamAS2 and psp72SalBamAS3, respectively.
  • Fragment 4 was cloned between Sad and icoRI sites in psp72SalBamAS, psp72SalBamAS2 and psp72SalBamAS3 vectors yielding pSPIO, pSP20, and pSP30, respectively.
  • Fragment 5 was also digested with Sad and EcoRl and ligated to similarly digested pSP72SalBamAS and pSP72SalBamAS3 vectors resulting in pSP40 and pSP50, respectively.
  • the scFv-E-tag gene was further amplified using the primers scFvBgl/Sfi/NcoIS and etagNhe/Sac to introduce the restriction sites Bglll, Sfil and Ncol upstream the scFv gene and the restriction site Nhel and Sad downstream the E-tag gene.
  • the PCR product was digested with BgRl and Sad and cloned in pSPIO, pSP20, pSP30, pSP40 and pSP50 generating pSP600, pSP700, pSP800, pSP400 and pSP500, respectively.
  • the scFv-E-tag gene was also amplified using the primers scFvBgl/Sfi/NcoIS and etagNhe/Sacstop, introducing a stop codon after the E-tag.
  • the PCR product was digested with BgRl and Sad and cloned between BamHl and Sad in pSPIO, pSP20, pSP30 yielding pSPlOO, pSP200 and pSP300, respectively.
  • the prtP anchor region encoding gene was amplified from pLP401-scFv-long anchor using the primers PrtPNhelS and PrtPSacIAS.
  • the PCR product was inserted between the Nhel and Sad sites in psp600, psp700 and psp800 resulting in psp900, psplOOO and pspl 100.
  • the 1 1 expression cassettes were subsequently released from the pSPlOO to pSPl 100 vectors using Sail and EcoRl and ligated into a similarly digested shuttle E.
  • FIG. 2 illustrates scFv production by Lactobacilli transformed with plasmids containing different expression cassettes.
  • L. paracasei was transformed with the plasmids pAFlOO to pAFl 100.
  • the scFv production in cell extract (C) and supernatant (S) was analyzed in two separate experiments (1 and 2). For each experiment, all transformants were analyzed at the same time. An equivalent of 125 ⁇ supernatant and extract from 1 x 10 8 cells was loaded in each well.
  • scFv antibody or a fragment thereof against human ICAM-1 and VHH fragments against SAI/II adhesion of S. mutans and rotavirus was derived from the mouse monoclonal antibody MTM5. Total RNA was extracted from the monoclonal antibody secreting hybridomas.
  • VH and VK variable region encoding sequences of both the heavy (VH) and light (VK) chains were amplified using specific primers with a 5 ' RACE kit.
  • the VH and VK sequences were fused together with a linker gene encoding the amino acid sequence (6 4 8)3 and cloned into a pGEM ® -T vector after addition of overhang A using Tag DNA polymerase.
  • the scFv anti -human ICAM- 1 encoding gene was subsequently amplified using the primers ICAM- Ncol and reverse primers ICAM -Notl.
  • the gene encoding S36-VHH directed against the SAI/II adhesion of S.
  • mutans was amplified from the pUR5850S36 plasmid using the primers S36NcoI and S36NotI.
  • the gene encoding ARP1 (previously called VHH1) directed against rotavirus was amplified from the pLP501-ARPl plasmid using the primers VHHINcol and VHHINotl.
  • the amplified DNA fragments containing the antibody or a fragment thereof genes were digested with Ncol and Notl and cloned between the Ncol and Notl restriction sites into pAF 100, pAF400 and pAF900 plasmids. [00184] Chromosomal integration of expression cassettes containing the scFv anti-SAI/II gene and anti- rotavirus genes.
  • the plasmid pEM171 was constructed in four steps: i) The 519-bp Sall-Ncol fragment of plasmid pAF400, containing the promoter, the signal peptide and the short N-terminal domain of the apf gene, was ligated with pGEM5Z digested with the same enzymes, to generate pEM157; ii) The 1415-bp Ncol-BglU fragment, containing the scFv gene and the C-terminal region of the apf gene, was obtained from pAF400 and inserted in pUC21 digested with the same enzymes, resulting in pEM158.
  • Plasmids pEM181, pEM182 and pEM233 were constructed by interchange of the fragment Ncol-EcoRi of plasmid pEM 171 by the corresponding fragments of pAF900, pAF 100, and pAF900-ARP 1 , respectively.
  • the integrative plasmids pEM171, pEM181, pEM182, and pEM233 were independently introduced by electroporation into L. paracasei. Resulting strains were subsequently electro-transformed with pEM94, a replicative plasmid that carries the ⁇ -recombinase gene, in order to delete, by site-specific recombination, the non-food-grade DNA present in the integrated plasmids. After this depuration step, the strains were cultured at 37°C to eliminate pEM94 (which carries a temperature sensitive origin of replication). The obtained strains were designated L. paracasei EM171 (secreted and attached scFv), L. paracasei EM181 (anchored scFv), L.
  • Concentrated supernatant was mixed with 2x Laemmli buffer and boiled for 5 min.
  • the cell culture pellet was washed twice with PBS, resuspended in 200 ⁇ Laemmli buffer and boiled for 5 min.
  • the cell extract was centrifuged at 16,000 x g to remove cell debris and the supernatant containing soluble proteins was saved.
  • the supernatant and cell extract was run on a 10% SDS-polyacrylamide gel at 170 volts and the proteins were transferred onto a nitrocellulose membrane.
  • the membrane was blocked with PBS-TM (PBS with 0.05% (v/v) Tween 20 + 5%> (w/v) milk powder) and successively incubated with mouse anti-E-tag antibodies (1 ⁇ ), and HRP (horse radish peroxidase) labelled goat anti-mouse antibodies.
  • the signal was detected by chemiluminescence using the ECL PlusTM Western Blotting detection system.
  • Non-transformed Lactobacilli and Lactobacilli containing the plasmid pAF400 and pAF900 (2 x 10 9 bacteria) were washed three times with PBS and incubated with 10 ml LiCl 5M on a rocking table for 30 min at 4°C.
  • the cells were pelleted at 8,000 x g and resuspended in 200 ⁇ loading buffer. The samples were run on SDS-PAGE and transferred on nitrocellulose as described above.
  • Fluid based assay The assay was similarly performed as for the flow cytometry but the anti-E-tag antibody bound to the bacteria was detected with an alkaline phosphatase conjugated rabbit anti-mouse antibody (1/1,000). Following incubation for 30 min on ice, the bacteria were resuspended in diethanolamine buffer (1 M, pH 10.0) and 100 ⁇ of the bacterial suspension was added in duplicate to an ELISA plate. 100 ⁇ of 2-fold concentrated p-nitrophenyl phosphate (pNPP) (2 mg/ml) was added to the wells. After 30 min incubation, the absorbance was read at 405 nm in a Varioskan Flash microplate reader.
  • pNPP 2-fold concentrated p-nitrophenyl phosphate
  • Enzyme-linked immunosorbent Assay 96-well plates were coated with 100 ⁇ recombinant human ICAM-l/Fc, SAI/II antigen (1 ⁇ in PBS) or rotavirus overnight at 4°C. After washing with PBS containing 0.05% Tween 20 (PBS-T), dilutions of the supernatant from L. paracasei cultures secreting scFv anti-ICAM-1, ARP1 or S36 as well as bacterial cells of anchored constructs, were added and incubated at room temperature for 2 h. Supernatants and cells from culture of non -transformed L. paracasei were used as negative controls.
  • Lactobacilli containing pAFlOO and pAF600 show expression only in the supernatant while the other constructs showed expression both in the supernatant and cell extract.
  • L. paracasei pAF400 produced the highest level of scFv in the supernatant while the lowest level was obtained with the Lactobacillus containing pAF300, pAF700 and pAF800.
  • the amount of scFv produced by L. paracasei transformed with the three plasmids mediating surface anchoring of scFv (pAF900, pAFlOOO and pAFl 100) was shown to be similar. In these constructs, shedding of the fusion proteins into the supernatant was also observed.
  • FIG. 3 illustrates evaluation of display of scFv to the surface of modified L. paracasei.
  • A demonstration of non-covalent attachment of scFv to the surface of L. paracasei pAF400 by Western Blot
  • i The bacterial pellet was treated with LiCl 5M to remove surface proteins and Western Blot of the cell extract was performed.
  • Lane 1 L. paracasei pAF400, untreated pellet
  • lane 2 L. paracasei pAF400, LiCl treated pellet
  • lane 3 L. paracasei pAF900, untreated pellet
  • lane 4 L.
  • paracasei pAF400 was pretreated with 5M LiCl before protein extraction and Western Blot analysis.
  • scFv anti-ICAM-1 and VHHs in selected expression cassettes.
  • the plasmids pAFlOO, pAF400 and pAF900 were subsequently used for expression of a scFv directed against human ICAM-1 in L. paracasei generating L. paracasei pAFlOO-ICAM, pAF400-ICAM, and pAF900-ICAM.
  • the same plasmids were also use for expression of VHH antibody or a fragment thereof against SAI/II (S36-VHH) (L. paracasei pAF100-S36, pAF400-S36, pAF900-S36) and rotavirus (ARP1) (L.
  • the band is larger than the theoretical molecular weight (42 kDa), which could be related to posttranslational modification of the C-terminal part of APF.
  • a 60 kDa-band was detected in the cell extract of the Lactobacilli transformed with pAF900-ICAM corresponding to the surface anchored scFv.
  • pAF900-ICAM corresponding to the surface anchored scFv.
  • a protein near the predicted size (16.5 kDa) was detected in the supernatant of L. paracasei pAFlOO-ARPl and pAF100-S36 (Fig. 4A).
  • paracasei pAF400-S36 showed a band of 40 kDa in both the supernatant and the cell extract which is higher than the predicted size of the fusion protein (29 kDa) (as previously observed for the similar scFv fusion).
  • the cell extract of Lactobacilli transformed with pAF900- VHH and pAF900-S36 showed a major band at 47 kDa, corresponding to the theoretical molecular weight of the surface anchored VHHs.
  • the additional bands detected in the cell extract are most probably degradation products or antibody or a fragment thereof linked to cell wall residues.
  • FIG. 4 illustrates production of scFv and VHH antibody or a fragment thereof by modified Lactobacilli.
  • the level of scFv and VHH antibody or a fragment thereof in the supernatant was 7 and 4 times higher
  • the amount of scFv in the supernatant and bacterial extract was estimated by Western Blot densitometry using a purified E-tag scFv as a standard.
  • FIG. 5 illustrates binding
  • VHH fragments produced by Lactobacilli were shown to bind with higher activity than scFv antibody or a fragment thereof.
  • the supernatant of Lactobacilli transformed with pAFlOO-ARPl and pAF400-ARPl (Fig.
  • Lactobacilli producing surface expressed ARP1 To ascertain binding activity of Lactobacilli producing surface expressed ARP1, transformed Lactobacilli were preincubated with RRV and subsequently with rabbit anti-sera against rotavirus and donkey anti -rabbit PE conjugated antibodies. Lactobacilli producing surface anchored ARP1 were shown to bind to rotavirus as detected by flow cytometry.
  • FIG. 6 illustrates production and binding activity of scFv using plasmid- and chromosomally integrated-based expression system.
  • A Production of scFv anti-SAI/II by Western Blot analysis of supernatant and cell extract. Lane 1 : L. paracasei; lane 2: L. paracasei pAFlOO, secreted; lane 3: L. paracasei EM 182, secreted; lane 4: L. paracasei pAF400, secreted and attached; lane 5: L. paracasei EM171, secreted and attached; lane 6: L.
  • scFv on the surface was shown by detecting the E-tag using a mouse anti-E-tag antibody and Cy-2 conjugated goat anti -mouse immunoglobulin.
  • C Binding activity of scFv antibody or a fragment thereof produced by plasmid- and chromosomally integrated-based expression systems to SAI/II antigen using supernatant and bacterial cell suspension in ELISA. The three selected cassettes fused to the gene encoding the scFv anti-SAI/II were integrated into the chromosome of L. paracasei using site-specific integration. scFv expression was analysed by immunoblotting (Fig.
  • the amount of scFv produced in the supernatant and cell extract was evaluated by densitometry.
  • the amount of scFv in the supernatant of L. paracasei EM 182 (secreted scFv) and in the cell extract of L. paracasei EMI 81 (surface anchored scFv) was about 10-fold lower than when using the corresponding plasmid construct (respectively 12 ng/ml and 100 molecules/bacteria).
  • a 10-fold decrease in fluorescence intensity was also observed by flow cytometry using an anti-E-tag antibody (Fig. 6B).
  • the amount of scFv detected in the supernatant and cell extract of EMI 71 (secreted and attached scFv) was shown to be only 2-fold lower (450 ng/ml and 450 molecules/bacterium) than the plasmid system (1000 ng/ml and 1000 molecules/bacterium).
  • Binding activity against SAI/II antigen was observed using the supernatant and whole bacterial cells in ELISA but at a reduced level than when using the corresponding plasmid system (Fig. 6C). In the supernatant, a 4-fold reduction in binding activity was observed for the secreted and attached scFv (L. paracasei EM171) and at least, a 8-fold reduction for the secreted scFv (L. paracasei EMI 82).
  • Whole bacterial cells of L. paracasei EM181 were binding at a level less than 16-fold lower than L. paracasei pAF900. No binding activity was observed using whole cells of transformed Lactobacilli producing attached scFv (L. paracasei pAF400 and L. paracasei EM 171).
  • FIG. 7 illustrates A) Production and binding activity of Lactobacilli producing surface anchored ARP1 using plasmid - (L. paracasei pAF900- ARP1) and chromosomally integrated - (L. paracasei EM233) based expression system.
  • A Production of ARP1 by Western Blot analysis of supernatant and cell extract. Lane 1 : L. paracasei pAF900-ARPl, supernatant; lane 2: L. paracasei pAF900-ARPl, cell extract; lane 3: L. paracasei EM233, supernatant; lane 4: L.
  • L. paracasei EM233 was also grown for 50 generations and fluorescence intensity was evaluated at generation 10, 20, 30, 40 and 50. No difference was observed in the fluorescence intensity between the different generations showing that the integrated gene is stable.
  • L. paracasei pAF900-ARPl and L. paracasei EM233 reduced the duration and severity of diarrhea to a similar level (Table 6).
  • Expression cassettes comprising one or more sequences in Table 7 are made to express antibody fragments in a microorganism.
  • a recombinant bacteria (such as a Lactobacilli) will be used to express a functional single chain antibody or fragment thereof against ICAM-1 and/or CD 18 and/or a CD11 subunit.
  • a recombinant bacteria such as a Lactobacilli
  • polynucleotides that encode a functional single chain antibody or fragment thereof against ICAM-1 and/or CD18 and/or a CD11 subunit will be stably integrated into a chromosome of the recombinant bacteria.
  • the recombinant bacteria will be delivered to a human male or female at risk for infection with HIV.
  • the recombinant bacteria will be delivered in a pharmaceutical composition to the oral mucosa, urethra, vagina or rectum.
  • the pharmaceutical composition will be in the form of a cream or a gel.
  • the recombinant bacteria will express a functional single chain antibody or fragment thereof against ICAM-1 and/or CD 18 and/or a CD11 subunit at a level sufficient to inhibit transmission of an HIV virus across a vaginal epithelial layer.
  • a population of women at risk for contraction of HIV will be recruited for participation in a protocol that decreases rates of HIV infection.
  • the women will be administered one of two pharmaceutical compositions.
  • One pharmaceutical composition will comprise recombinant bacteria (such as a Lactobacilli) that will express a functional single chain antibody or fragment thereof against ICAM-1 and/or CD18 and/or a CD11 ("Treatment composition").
  • recombinant bacteria such as a Lactobacilli
  • One or more polynucleotides that encode a functional single chain antibody or fragment thereof against ICAM-1 and/or CD18 and/or a CD11 subunit will be stably integrated into a chromosome of the recombinant bacteria.
  • a second pharmaceutical composition will not comprise the recombinant bacteria ("Placebo composition").
  • the population of women will be divided into two groups: group One will receive the Treatment composition; and group Two will receive the Placebo composition.
  • Group One will be administered the Treatment composition at intervals sufficient to maintain colonization of their vaginal tracts and/ or rectums with the recombinant bacteria.
  • Group Two will be administered the Placebo composition at the same intervals as group one.
  • Periodic tissue and or blood samples will be obtained from Groups One and Two to monitor their rate of infection of HIV.
  • the protocol will continue for a length of time sufficient to determine the efficacy of the Treatment composition. At the end of protocol the rate of HIV infection in Group One will be compared to group Two. It is expected that the rate of HIV infection will be lower in Group One than Group Two.
  • a population of women at risk for contraction of HIV will be recruited for participation in a protocol that decreases rates of HIV infection.
  • the women will be administered one of two pharmaceutical compositions.
  • One pharmaceutical composition will comprise recombinant bacteria (such as a Lactobacilli) that will express a functional single chain antibody or fragment thereof against ICAM-1 and/or CD18 and/or a CD11 ("Treatment composition").
  • recombinant bacteria such as a Lactobacilli
  • One or more polynucleotides that encode a functional single chain antibody or fragment thereof against ICAM-1 and/or CD18 and/or a CD11 subunit will be stably integrated into a chromosome of the recombinant bacteria.
  • a second pharmaceutical composition will comprise bacteria that do not express a functional a functional single chain antibody or fragment thereof against ICAM-1 and/or CD18 and/or a CD11 ("Placebo composition").
  • the population of women will be divided into two groups: group One will receive the Treatment composition; and group Two will receive the Placebo composition.
  • Groups One will be administered the Treatment composition at intervals sufficient to maintain colonization of their vaginal tracts and/ or rectums with the recombinant bacteria.
  • Group Two will be administered the Placebo composition at the same intervals as group one.
  • Periodic tissue and or blood samples will be obtained from Groups One and Two to monitor their rate of infection of HIV.
  • the protocol will continue for a length of time sufficient to determine the efficacy of the Treatment composition. At the end of protocol the rate of HIV infection in Group One will be compared to group Two. It is expected that the rate of HIV infection will be lower in Group One than Group Two.
  • a population of women at risk for contraction of HIV will be recruited for participation in a protocol that decreases rates of HIV infection.
  • the women will be administered one of two pharmaceutical compositions.
  • One pharmaceutical composition will comprise recombinant bacteria (such as a Lactobacilli) that will express a functional single chain antibody or fragment thereof against ICAM-1 and/or CD18 and/or a CD11 ("Treatment composition").
  • recombinant bacteria such as a Lactobacilli
  • One or more polynucleotides that encode a functional single chain antibody or fragment thereof against ICAM-1 and/or CD18 and/or a CD11 subunit will be stably integrated into a chromosome of the recombinant bacteria.
  • a second pharmaceutical composition will not comprise the recombinant bacteria ("Placebo composition").
  • the population of women will be divided into two groups: group One will receive the Treatment composition; and group Two will receive the Placebo composition.
  • Group One will be administered the Treatment composition at intervals sufficient to maintain colonization of their oral mucosas with the recombinant bacteria.
  • Group Two will be administered the Placebo composition at the same intervals as group one.
  • Periodic tissue and or blood samples will be obtained from Groups One and Two to monitor their rate of infection of HIV.
  • the protocol will continue for a length of time sufficient to determine the efficacy of the Treatment composition. At the end of protocol the rate of HIV infection in Group One will be compared to group Two. It is expected that the rate of HIV infection will be lower in Group One than Group Two.
  • a population of women at risk for contraction of HIV will be recruited for participation in a protocol that decreases rates of HIV infection.
  • the women will be administered one of two pharmaceutical compositions.
  • One pharmaceutical composition will comprise recombinant bacteria (such as a Lactobacilli) that will express a functional single chain antibody or fragment thereof against ICAM-1 and/or CD18 and/or a CD11 ("Treatment composition").
  • recombinant bacteria such as a Lactobacilli
  • One or more polynucleotides that encode a functional single chain antibody or fragment thereof against ICAM-1 and/or CD18 and/or a CD11 subunit will be stably integrated into a chromosome of the recombinant bacteria.
  • a second pharmaceutical composition will comprise bacteria that do not express a functional a functional single chain antibody or fragment thereof against ICAM-1 and/or CD18 and/or a CD11 ("Placebo composition").
  • the population of women will be divided into two groups: group One will receive the Treatment composition; and group Two will receive the Placebo composition.
  • Group One will be administered the Treatment composition at intervals sufficient to maintain colonization of their oral mucosas with the recombinant bacteria.
  • Group Two will be administered the Placebo composition at the same intervals as group one.
  • Periodic tissue and or blood samples will be obtained from Groups One and Two to monitor their rate of infection of HIV.
  • the protocol will continue for a length of time sufficient to determine the efficacy of the Treatment composition. At the end of protocol the rate of HIV infection in Group One will be compared to group Two. It is expected that the rate of HIV infection will be lower in Group One than Group Two.
  • a population of men at risk for contraction of HIV will be recruited for participation in a protocol that decreases rates of HIV infection.
  • the men will be administered one of two pharmaceutical compositions.
  • One pharmaceutical composition will comprise recombinant bacteria (such as a Lactobacilli) that will express a functional single chain antibody or fragment thereof against ICAM-1 and/or CD18 and/or a CD11 ("Treatment composition").
  • recombinant bacteria such as a Lactobacilli
  • One or more polynucleotides that encode a functional single chain antibody or fragment thereof against ICAM-1 and/or CD18 and/or a CD11 subunit will be stably integrated into a chromosome of the recombinant bacteria.
  • a second pharmaceutical composition will not comprise the recombinant bacteria
  • Group One will receive the Treatment composition; and group Two will receive the Placebo composition.
  • Group One will be administered the Treatment composition at intervals sufficient to maintain colonization of their urethras or rectums with the recombinant bacteria.
  • Group Two will be administered the Placebo composition at the same intervals as group one.
  • Periodic tissue and or blood samples will be obtained from Groups One and Two to monitor their rate of infection of HIV.
  • the protocol will continue for a length of time sufficient to determine the efficacy of the Treatment composition. At the end of protocol the rate of HIV infection in Group One will be compared to group Two. It is expected that the rate of HIV infection will be lower in Group One than Group Two.
  • a population of men at risk for contraction of HIV will be recruited for participation in a protocol that decreases rates of HIV infection.
  • the men will be administered one of two pharmaceutical compositions.
  • One pharmaceutical composition will comprise recombinant bacteria (such as a Lactobacilli) that will express a functional single chain antibody or fragment thereof against ICAM-1 and/or CD18 and/or a CD11 ("Treatment composition").
  • recombinant bacteria such as a Lactobacilli
  • One or more polynucleotides that encode a functional single chain antibody or fragment thereof against ICAM- 1 and/or CD18 and/or a CD11 subunit will be stably integrated into a chromosome of the recombinant bacteria.
  • a second pharmaceutical composition will comprise bacteria that do not express a functional a functional single chain antibody or fragment thereof against ICAM-1 and/or CD 18 and/or a CD11 ("Placebo composition").
  • the population of men will be divided into two groups: group One will receive the Treatment composition; and group Two will receive the Placebo composition.
  • Group One will be administered the Treatment composition at intervals sufficient to maintain colonization of their urethras or rectums with the recombinant bacteria.
  • Group Two will be administered the Placebo composition at the same intervals as group one.
  • Periodic tissue and or blood samples will be obtained from Groups One and Two to monitor their rate of infection of HIV.
  • the protocol will continue for a length of time sufficient to determine the efficacy of the Treatment composition. At the end of protocol the rate of HIV infection in Group One will be compared to group Two. It is expected that the rate of HIV infection will be lower in Group One than Group Two.
  • a population of men at risk for contraction of HIV will be recruited for participation in a protocol that decreases rates of HIV infection.
  • the men will be administered one of two pharmaceutical compositions.
  • One pharmaceutical composition will comprise recombinant bacteria (such as a Lactobacilli) that will express a functional single chain antibody or fragment thereof against ICAM-1 and/or CD18 and/or a CD11 ("Treatment composition").
  • recombinant bacteria such as a Lactobacilli
  • One or more polynucleotides that encode a functional single chain antibody or fragment thereof against ICAM-1 and/or CD18 and/or a CD11 subunit will be stably integrated into a chromosome of the recombinant bacteria.
  • a second pharmaceutical composition will not comprise the recombinant bacteria ("Placebo composition").
  • the population of men will be divided into two groups: group One will receive the Treatment composition; and group Two will receive the Placebo composition.
  • Group One will be administered the Treatment composition at intervals sufficient to maintain colonization of their oral mucosas with the recombinant bacteria.
  • Group Two will be administered the Placebo composition at the same intervals as group one.
  • Periodic tissue and or blood samples will be obtained from Groups One and Two to monitor their rate of infection of HIV.
  • the protocol will continue for a length of time sufficient to determine the efficacy of the Treatment composition. At the end of protocol the rate of HIV infection in Group One will be compared to group Two. It is expected that the rate of HIV infection will be lower in Group One than Group Two.
  • a population of men at risk for contraction of HIV will be recruited for participation in a protocol that decreases rates of HIV infection.
  • the men will be administered one of two pharmaceutical compositions.
  • One pharmaceutical composition will comprise recombinant bacteria (such as a Lactobacilli) that will express a functional single chain antibody or fragment thereof against ICAM-1 and/or CD18 and/or a CD11 ("Treatment composition").
  • recombinant bacteria such as a Lactobacilli
  • One or more polynucleotides that encode a functional single chain antibody or fragment thereof against ICAM-1 and/or CD18 and/or a CD11 subunit will be stably integrated into a chromosome of the recombinant bacteria.
  • a second pharmaceutical composition will comprise bacteria that do not express a functional a functional single chain antibody or fragment thereof against ICAM-1 and/or CD 18 and/or a CD11 ("Placebo composition").
  • the population of men will be divided into two groups: group One will receive the Treatment composition; and group Two will receive the Placebo composition.
  • Group One will be administered the Treatment composition at intervals sufficient to maintain colonization of their oral mucosas with the recombinant bacteria.
  • Group Two will be administered the Placebo composition at the same intervals as group one.
  • Periodic tissue and or blood samples will be obtained from Groups One and Two to monitor their rate of infection of HIV.
  • the protocol will continue for a length of time sufficient to determine the efficacy of the Treatment composition. At the end of protocol the rate of HIV infection in Group One will be compared to group Two. It is expected that the rate of HIV infection will be lower in Group One than Group Two.

Abstract

Described herein are methods and compositions for expressing an antibody or a fragment thereof in a microorganism and use of the microorganism to treat or prevent a pathogenic infection in a mammal.

Description

EXPRESSION OF ANTIBODY OR A FRAGMENT THEREOF IN LACTOBACILLUS
CROSS REFERENCE
[0001] This application claims the benefit of United Kingdom Patent Application No.: GB1013215.7; filed on August 5, 2010 under 35 USC § 365(b), which is incorporated herein by reference in its entirety.
BACKGROUND OF THE INVENTION
[0002] A Generally Regarded As Safe for humans (GRAS) microorganism is a Food and Drug Administration (FDA) designation for a microorganism regarded as safe for consumption. Lactobacilli are Gram positive bacteria that are currently used in food fermentation and preservation. Lactobacilli are also normal constituents of human microbiota and are classified as GRAS organisms. Lactobacilli are useful system for delivery of therapeutic and prophylactic bio-molecules.
[0003] Some infectious diseases are transmitted through the passage of mucosal layer into the cell environment in which the infectious agent multiplies. Blocking the passage through the mucosal layer can be an effective measure against an infection.
[0004] A therapeutic product combined with a vehicle capable of safe and long-term delivery of the therapeutic product is useful: it reduces hospital visits, economic cost of administration and can provide prevention of a disease. For example, a drug-containing stent has been used for long-term release of a drug at the site of implantation.
[0005] In addition to delivery capability, a vehicle that can produce therapeutics is useful for continuous delivery of the therapeutics. A genetically modified microorganism is suitable to produce biological therapeutics, such as nucleic acids or proteins, and can deliver the biological therapeutics continuously.
SUMMARY OF THE INVENTION
[0006] Described herein is a composition comprising a Lactobacillus comprising one or more exogenous nucleic acid sequences encoding one ore more antibodies or a fragment thereof wherein said one or more exogenous nucleic acid sequences is integrated into a chromosome of said Lactobacillus, wherein said
Lactobacillus expresses said antibodies or a fragment thereof, and wherein said antibodies or a fragment thereof bind to at least one of a host mammal's cell surface molecules so as to inhibit the infection of said host by a pathogen. Described herein is a composition comprising a Lactobacillus comprising one or more nucleic acid sequences encoding one or more antibodies or a fragment thereof wherein said one or more exogenous nucleic acid sequences is integrated into a chromosome of said microorganism, wherein said one ore more antibodies or a fragment thereof binds to ICAM-1, CD 18 or CDl 1, wherein said Lactobacillus expresses said antibodies or a fragment thereof. Described herein is a composition comprising a Lactobacillus, comprising one or more exogenous nucleic acid sequences encoding a camelid single chain antibody or a fragment thereof, wherein said antibody or a fragment thereof binds to ICAM-1, CD 18 or CDl 1, wherein said one or more exogenous nucleic acid sequences is integrated into a chromosome of said Lactobacillus. In one embodiment, said Lactobacillus is a food-grade Lactobacillus. In one embodiment, said Lactobacillus is a vaginal floral strain. In one embodiment, said Lactobacillus is a Lactobacillus paracasei. In one embodiment, said Lactobacillus is a Lactobacillus rhamnosus. In one embodiment, said Lactobacillus is a Lactobacillus rhamnosus GR-1. In one embodiment, said Lactobacillus is a Lactobacillus reuteri RC-14. In one embodiment, said Lactobacillus is a Lactobacillus iners. In one embodiment, said Lactobacillus is a Lactobacillus crispatus. In one embodiment, said
Lactobacillus is a Lactobacillus gasseri. In one embodiment, said Lactobacillus is a Lactobacillus jensenei. In one embodiment, said antibody or a fragment thereof binds to ICAM-1. In one embodiment, said antibody or a fragment thereof binds to CD 18. In one embodiment, said antibody or a fragment thereof binds to CD1 la or CD1 lb. In one embodiment, said one ore more antibodies or a fragment thereof is presented on the surface of said Lactobacillus. In one embodiment, said one ore more antibodies or a fragment thereof is anchored on the surface of said Lactobacillus. In one embodiment, said one ore more antibodies or a fragment thereof is secreted from said Lactobacillus. In one embodiment, at least one of said one ore more antibodies or a fragment thereof is a single-chain camelid antibody or a fragment thereof. In one embodiment, said antibody or a fragment thereof is a VHH or VNAR antibody or a fragment thereof. In one embodiment, at least one of said one ore more antibodies or a fragment thereof is a scFv antibody or a fragment thereof. In one embodiment, compositions described herein further comprises one or more exogenous nucleic acid sequences encoding another antibody or a fragment thereof that binds to a pathogen.
[0007] Described herein is a use of the Lactobacillus for the treatment or prevention of infection in a mammal by a pathogen in a mammal comprising, administering said Lactobacillus to said mammal and inhibiting transepithelial viral transmission or cell adhesion to an epithelial layer so as to inhibit the infection of said mammal by said pathogen. Described herein is a use of the Lactobacillus for the treatment or prevention of infection in a mammal by a pathogen comprising, administering said Lactobacillus to said mammal and binding said antibody or a fragment thereof to at least one of a host mammal's cell surface molecules so as to inhibit the infection of said mammal by said pathogen. In one embodiment, said administering comprises delivery of said Lactobacillus to a nose of a human subject. In one embodiment, said administering comprises delivery of said Lactobacillus to an eye of a human subject. In one embodiment, said administering comprises delivery of said Lactobacillus to a vagina of a human subject. In one embodiment, said administering comprises delivery of said Lactobacillus to a rectum of a human subject. In one embodiment, said administering comprises delivery of said Lactobacillus to a urethra of a human subject. In one embodiment, said administering comprises delivery of said Lactobacillus to a mouth of a human subject. In one embodiment, said administering comprises delivery of said Lactobacillus is administered by intranasal delivery. In one embodiment, said administering comprises rectal delivery of said Lactobacillus. In one embodiment, said administering comprises vaginal delivery of said Lactobacillus. In one embodiment, said administering comprises urethral delivery of said Lactobacillus. In one embodiment, said administering comprises hypodermic delivery of said Lactobacillus. In one embodiment, said administering comprises oral delivery of said Lactobacillus. In one embodiment, said administering comprises delivery of said Lactobacillus in a carrier. In one embodiment, said carrier comprises a lubricant. In one embodiment, said carrier comprises a surfactant. In one embodiment, said carrier comprises a gel. In one embodiment, said carrier comprises an organic solvent. In one embodiment, said carrier comprises an emulsifier. In one embodiment, said carrier comprises a gelling agent. In one embodiment, said carrier comprises a moisturizer. In one embodiment, said carrier comprises a stabilizer. In one embodiment, said carrier comprises a wetting agent. In one embodiment, said carrier comprises a time release agent. In one embodiment, said administering comprises delivery of said Lactobacillus is administered in a carrier comprising a sequestering agent. In one embodiment, said carrier comprises a dye. In one embodiment, said carrier comprises a perfume. In one embodiment, said carrier comprises a cream. In one embodiment, said carrier comprises a foam. In one embodiment, said carrier comprises a vaginal wash. In one embodiment, said carrier comprises a vaginal douche. In one embodiment, said carrier comprises an oral solution. In one embodiment, said carrier comprises a suppository. In one embodiment, said carrier comprises a breast milk supplement. In one embodiment, said carrier comprises an infant formula. In one embodiment, said administering comprises delivery of said Lactobacillus in conjunction with a contraceptive. In one embodiment, said contraceptive is a condom. In one embodiment, said contraceptive is a sponge. In one embodiment, said contraceptive is an intrauterine device. In one embodiment, said contraceptive is a cervical ring. In one embodiment, said contraceptive is a diaphragm. In one embodiment, said contraceptive is a cervical cap. In one embodiment, said pathogen is an HIV virus. In one embodiment, said pathogen is an HPV virus. In one embodiment, said pathogen is an HSV virus. In one embodiment, said inhibition is complete blocking. In one embodiment, said inhibition is partial blocking. In one embodiment, said viral infection is sexually transmitted. In one embodiment, said mammal is a human. In one embodiment, said Lactobacillus is used prophylaticly for said treatment or prevention of a viral infection in said mammal.
[0008] Described herein is a microorganism comprising one or more exogenous nucleic acid sequences encoding an antibody or a fragment thereof, wherein said antibody or a fragment binds to a host mammalian protein, wherein said one or more exogenous nucleic acid sequences is integrated into a chromosome of said microorganism, wherein said microorganism expresses said antibodies or a fragment thereof and survives on a mucosal surface of a host mammal. Described herein is a microorganism, comprising one or more exogenous nucleic acid sequences encoding an antibody or a fragment thereof, wherein said antibody or a fragment thereof inhibits transepithelial viral transmission or cell adhesion to an epithelial layer, wherein said one or more exogenous nucleic acid sequences is integrated into a chromosome of said microorganism, wherein said microorganism expresses said antibodies or a fragment thereof and survives on a mucosal surface of a host mammal. In one embodiment, said microorganism is a GRAS microorganism. In one embodiment, said microorganism is a food-grade microorganism. In one embodiment, said microorganism is a gastrointestinal flora bacterium. In one embodiment, said microorganism is a vaginal flora bacterium. In one embodiment, said microorganism is a Lactobacillus. In one embodiment, said microorganism is a Bifidobacterium. In one embodiment, said microorganism is a Lactobacillus paracasei. In one embodiment, said microorganism is a Lactobacillus rhamnosus. In one embodiment, said microorganism is a Lactobacillus rhamnosus GR-1. In one embodiment, said microorganism is a Lactobacillus reuteri RC-14. In one embodiment, said virus is an HIV virus. In one embodiment, said virus is an HPV virus. In one embodiment, said virus is an HSV virus. In one embodiment, said antibody or a fragment thereof binds to ICAM-1. In one embodiment, said antibody or a fragment thereof binds to CD 18. In one embodiment, said antibody or a fragment thereof binds to CD1 la or CD1 lb,. In one embodiment, said antibody or a fragment thereof is a VHH or VNAR antibody or a fragment thereof. In one embodiment, said antibody or a fragment thereof is a scFv antibody or a fragment thereof. In one embodiment, said antibody or a fragment thereof is a single-chain camelid antibody or a fragment thereof. In one embodiment, said one ore more antibodies or a fragment thereof is presented on the surface of said
Lactobacillus. In one embodiment, said one ore more antibodies or a fragment thereof is anchored on the surface of said Lactobacillus. In one embodiment, said antibody or a fragment thereof is secreted from said microorganism. In one embodiment, microorganism described herein further comprises one or more exogenous nucleic acid sequences encoding another antibody or a fragment thereof that binds to a pathogen.
[0009] Described herein is a use of the microorganism for the treatment or prevention of infection in a mammal by a pathogen comprising administering said microorganism to said mammal and binding said antibody or a fragment thereof to at least one of said mammal's cell surface molecules so as to inhibit the infection of said mammal by a pathogen. Described herein is a use of the microorganism for the treatment or prevention of infection in a mammal by a pathogen comprising administering said microorganism to said mammal and inhibiting transepithelial viral transmission or cell adhesion to an epithelial layer so as to inhibit the infection of said mammal by a pathogen. In one embodiment, said administering comprises delivery of said microorganism to a nose of a human subject. In one embodiment, said administering comprises delivery of said microorganism to an eye of a human subject. In one embodiment, said administering comprises delivery of said microorganism to a vagina of a human subject. In one embodiment, said administering comprises delivery of said
microorganism to a rectum of a human subject. In one embodiment, said administering comprises delivery of said microorganism to a urethra of a human subject. In one embodiment, said administering comprises delivery of said microorganism to a mouth of a human subject. In one embodiment, said administering comprises intranasal delivery of said microorganism is administered by. In one embodiment, said administering comprises rectal delivery of said microorganism. In one embodiment, said administering comprises vaginal delivery of said microorganism.. In one embodiment, said administering comprises urethral delivery of said microorganism.. In one embodiment, said administering comprises hypodermic delivery of said microorganism. In one embodiment, said administering comprises oral delivery of said microorganism. In one embodiment, said microorganism is administered in a carrier. In one embodiment, said carrier comprises a lubricant. In one embodiment, said carrier comprises a surfactant. In one embodiment, said carrier comprises a gel. In one embodiment, said carrier comprises an organic solvent. In one embodiment, said carrier comprises an emulsifier. In one embodiment, said carrier comprises a gelling agent. In one embodiment, said carrier comprises a moisturizer. In one embodiment, said carrier comprises a stabilizer. In one embodiment, said carrier comprises a wetting agent. In one embodiment, said carrier comprises a time release agent. In one embodiment, said carrier comprises a sequestering agent. In one embodiment, said carrier comprises a dye. In one embodiment, said carrier comprises a perfume. In one embodiment, said carrier comprises a cream. In one embodiment, said carrier comprises a foam. In one embodiment, said carrier comprises a vaginal wash. In one embodiment, said carrier comprises a vaginal douche. In one embodiment, said carrier comprises an oral solution. In one embodiment, said carrier comprises a suppository. In one embodiment, said carrier comprises a breast milk supplement. In one embodiment, said carrier comprises an infant formula. In one embodiment, said microorganism is administered in conjunction with a contraceptive. In one embodiment, said contraceptive is a condom. In one embodiment, said contraceptive is a sponge. In one embodiment, said contraceptive is an intrauterine device. In one embodiment, said contraceptive is a cervical ring. In one embodiment, said contraceptive is a diaphragm. In one embodiment, said contraceptive is a cerivical cap. In one embodiment, said pathogen is an HIV virus. In one embodiment, said pathogen is an HPV virus. In one embodiment, said pathogen is an HSV virus. In one embodiment, said inhibition is complete blocking. In one embodiment, said inhibition is partial blocking. In one embodiment, said viral infection is sexually transmitted. In one embodiment, said mammal is a human. In one embodiment, said microorganism is used prophylaticly for said treatment or prevention of a viral infection in said mammal.
[0010] Described herein is a use of a bacteria comprising one or more exogenous nucleic acid sequences integrated into a bacterial chromosome that encodes an antibody or a fragment thereof, wherein said bacteria expresses an antibody or a fragment thereof to ICAM-1, CD- 18 or CD-I 1, comprising administering to a woman a cream, gel, vaginal wash or vaginal douche that comprises said bacteria to treat or prevent HIV, HPV, or HSV infection in said woman.
INCORPORATION BY REFERENCE
[0011] All publications, patents, and patent applications mentioned in this specification are herein incorporated by reference to the same extent as if each individual publication, patent, or patent application was specifically and individually indicated to be incorporated by reference.
BRIEF DESCRIPTION OF THE DRAWINGS
[0012] The novel features of the invention are set forth with particularity in the appended claims. A better understanding of the features and advantages of the present invention will be obtained by reference to the following detailed description that sets forth illustrative embodiments, in which the principles of the invention are utilized, and the accompanying drawings of which:
[0013] FIG. 1 illustrates amplified PCR fragments used for the construction of the different expression cassettes.
[0014] FIG. 2 illustrates scFv production by Lactobacilli transformed with plasmids containing different expression cassettes.
[0015] FIG. 3 illustrates evaluation of display of scFv to the surface of modified L. paracasei.
[0016] FIG. 4 illustrates production of scFv and VHH antibody or a fragment thereof by modified Lactobacilli.
[0017] FIG. 5 illustrates binding activity of antibody or a fragment thereof to antigens in ELISA.
[0018] FIG. 6 illustrates production and binding activity of scFv using plasmid and chromosomal integration- based expression system.
[0019] FIG. 7 illustrates production and binding activity of Lactobacilli producing surface-anchored ARP1 using plasmid pAF900-ARPl and chromosomal integration based expression system (L. paracasei EM233).
[0020] Fig. 8 illustrates nucleotide and amino acid sequences of human or mouse CD18, CDl la, CDl lb, CDl lc, and CDl ld.
DETAILED DESCRIPTION OF THE INVENTION
[0021] Provided herein are methods and compositions for a delivery system for delivering a therapeutic product to a target area for treating a disease. A delivery system includes, but is not limited to, a delivery vehicle; a therapeutic product; methods of producing a delivery vehicle, methods of delivering the vehicle to a target area; methods of carrying a therapeutic product by a delivery vehicle; methods of releasing therapeutic product by a delivery vehicle; and methods of treating diseases with the delivery system.
[0022] Delivery vehicle
[0023] In one aspect a delivery vehicle is disclosed. In one embodiment, a delivery vehicle is a microorganism. In one embodiment, a microorganism is a naturally occurring microorganism, a genetically engineered microorganism, or an artificially evolved organism.
[0024] In one embodiment the microorganism expresses one or more exogenous proteins. In one embodiment the one or more exogenous proteins treats or prevents a pathogenic infection. In one embodiment the pathogen is a virus. In another embodiment the pathogen is an HIV, HSV or HPV virus. In one embodiment the one or more exogenous proteins inhibits transepithelial migration by a virus. In another embodiment the one or more exogenous proteins inhibits mammalian cell adhesion to an epithelial layer of said mammal. In another embodiment the one or more exogenous proteins binds to a host cell protein. In one embodiment the host cell protein is expressed on the cell surface. In another embodiment the one or more exogenous proteins binds to ICAM-1 (CD54), LFA-1, or Mac-1. In another embodiment the one or more exogenous proteins binds to CD 18 or CD 11. In another embodiment the one or more exogenous proteins binds to CD 18 or CD 11 , and ICAM- 1. In another embodiment the one or more exogenous proteins binds to CDl la, CDl lb, CDl lc or CDl Id. In another embodiment the one or more proteins comprises one or more antibodies. In another embodiment the one or more antibodies comprises heavy and light chains. In one embodiment the one or more antibodies are single chain antibodies. In one embodiment the one or more antibodies are scFv antibodies. In one embodiment the one or more antibodies are camelid antibodies. In one embodiment the one or more antibodies are VHH antibodies.
[0025] In one embodiment, a CD 18 protein is mammalian protein. In one embodiment, a CD 18 protein is a human protein encoded by a nucleotide SEQ. ID. No. 28 or a homolog thereof. In another embodiment, a CDl 8 protein is a human protein comprising the sequence of SEQ. ID. No. 29 or a homolog thereof. In another embodiment, a CDl 8 protein is a human protein having the sequence of SEQ. ID. No. 29 or a homolog thereof. In another embodiment, a CDl 8 protein is a mouse protein encoded by a nucleotide SEQ. ID. No. 38 or a homolog thereof. In another embodiment, a CDl 8 protein is a mouse protein comprising the sequence of SEQ. ID. No. 39 or a homolog thereof. In another embodiment, a CDl 8 protein is a mouse protein having the sequence of SEQ. ID. No. 39 or a homolog thereof. As used herein, a homolog refers to a nucleotide or amino acid sequence having about 90% or higher sequence similarities to the sequences described herein.
[0026] In one embodiment, a CDl la protein is a human protein encoded by a nucleotide SEQ. ID. No. 30 or a homolog thereof. In another embodiment, a CDl la protein is a human protein comprising the sequence of SEQ. ID. No. 31 or a homolog thereof. In another embodiment, a CDl la protein is a human protein having the sequence of SEQ. ID. No. 31 or a homolog thereof. In another embodiment, a CDl la protein is a mouse protein encoded by the polynucleotide sequence SEQ. ID. No. 40 or a homolog thereof. In another embodiment, a CDl la protein is a mouse protein comprising the sequence of SEQ. ID. No. 41 or a homolog thereof. In another embodiment, a CDl la protein is a mouse protein having the sequence of SEQ. ID. No. 41 or a homolog thereof. As used herein, a homolog refers to a nucleotide or amino acid sequence having about 90% or higher sequence similarities to the sequences described herein.
[0027] In one embodiment, a CDl lb protein is a human protein encoded by a nucleotide SEQ. ID. No. 32 or a homolog thereof. In another embodiment, a CDl lb protein is a human protein comprising the sequence of SEQ. ID. No. 33 or a homolog thereof. In another embodiment, a CDl lb protein is a human protein having the sequence of SEQ. ID. No. 33 or a homolog thereof. In another embodiment, a CDl lb protein is a mouse protein encoded by a nucleotide SEQ. ID. No. 42 or a homolog thereof. In another embodiment, a CDl lb protein is a mouse protein comprising the sequence of SEQ. ID. No. 43 or a homolog thereof. In another embodiment, a CDl lb protein is a mouse protein having the sequence of SEQ. ID. No. 43 or a homolog thereof. As used herein, a homolog refers to a nucleotide or amino acid sequence having about 90%o or higher sequence similarities to the sequences described herein.
[0028] In one embodiment, a CDl lc protein is a human protein encoded by a nucleotide SEQ. ID. No. 34 or a homolog thereof. In another embodiment, a CDl lc protein is a human protein comprising the sequence of SEQ. ID. No. 35 or a homolog thereof. In another embodiment, a CDl lc protein is a human protein having the sequence of SEQ. ID. No. 35 or a homolog thereof. In another embodiment, a CDl lc protein is a mouse protein encoded by a nucleotide SEQ. ID. No. 44 or a homolog thereof. In another embodiment, a CDl lc protein is a mouse protein comprising the sequence of SEQ. ID. No. 45 or a homolog thereof. In another embodiment, a CD1 lc protein is a mouse protein having the sequence of SEQ. ID. No. 45 or a homolog thereof. As used herein, a homolog refers to a nucleotide or amino acid sequence having about 90% or higher sequence similarities to the sequences described herein.
[0029] In one embodiment, a CD1 Id protein is a human protein encoded by a nucleotide SEQ. ID. No. 36 or a homolog thereof. In another embodiment, a CD1 Id protein is a human protein comprising the sequence of SEQ. ID. No. 37 or a homolog thereof. In another embodiment, a CD1 Id protein is a human protein having the sequence of SEQ. ID. No. 37 or a homolog thereof. In another embodiment, a CD1 Id protein is a mouse protein encoded by a nucleotide SEQ. ID. No. 46 or a homolog thereof. In another embodiment, a CD1 Id protein is a mouse protein comprising the sequence of SEQ. ID. No. 47 or a homolog thereof. In another embodiment, a CD1 Id protein is a mouse protein having the sequence of SEQ. ID. No. 47 or a homolog thereof. As used herein, a homolog refers to a nucleotide or amino acid sequence having about 90% or higher sequence similarities to the sequences described herein.
[0030] In one embodiment, a delivery vehicle is a Gram-positive bacterium. In another embodiment, a delivery vehicle is a Gram -negative bacterium. In another embodiment, a microorganism is a GRAS (generally recognized as safe) organism. In another embodiment, a microorganism is produced as a food-grade microorganism. In another embodiment, a microorganism is produced as a Gram-positive GLP-grade microorganism. In another embodiment, a delivery vehicle is a Lactobacillus microorganism or a genetically engineered microorganism derived from a Lactobacillus. In another embodiment, a delivery vehicle is L.
paracasei or a genetically engineered microorganism derived from L. paracasei. In another embodiment, a delivery vehicle is a pharmaceutical grade microorganism. In another embodiment, the pharmaceutical grade microorganism is a Good Manufacturing Practices (GMP) -certified pharmaceutical grade microorganism.
[0031] A Gram-positive bacterium includes, but is not limited to, a species of Staphylococcus aureus, Staphylococcus saprophyticus, Enterococcus spp., Enterococcus faecalis, Enterococcus faecium, Streptococcus pneumoniae, Group A Streptococcus, Bacillus subtilis, Bacillus cereus, Bacillus circulans, Bacillus licheniformis, Paenibacillus alvei, Rhodococcus spp., Rhodococcus equi, Gordona bronchialis, Gordona sputi, Listeria monocytogenes, cornybacterium diphtheriae, nocardia asteroides, Norcardia farcinica, Lactobacillus spp., Lactococcus lactis, Bifidobacterium spp, arcanobacterium haemolyticum or gardnerella vaginalis.
[0032] A Gram -negative bacterium includes, but is not limited to, a species of Escherichia coli, Salmonella, Shigella, Enterobacteriaceae, Psudomonas, Moraxella, Helicobacter, Stenotrophomonas, Bdellovibrio, Legionella, Wolbachia, cyanobacteria, Spirochaetes, or Coccobacilli.
[0033] A GRAS organism refers to an organism recognized by the Food and Drug Administration as generally safe. A GRAS organism has been found in a variety of microorganisms such as bacteria, yeast, brown algae, or red algae. Examples of GRAS organism includes, but is not limited to, Saccharomyces cerevisiae,
Saccharomyces fragilis, dried torula yeast, Candida utilis, Candida guilliermondii, Candida lipolytica, Candida pseudotropicalis Analipus japonicus, Eisenia bicyclis, Hizikia fusiforme, Kjellmaniella gyrata, Laminaria angustata, Laminaria longirruris, Laminaria Longissima, Laminaria ochotensis, Laminaria claustonia, Laminaria saccharina, Laminaria digitata, Laminaria japonica, Macrocystis pyrifera, Petalonia fascia, Scytosiphon lome, Gloiopeltis furcata, Porphyra crispata, Porhyra deutata, Porhyra perforata, Porhyra suborbiculata, Porphyra tenera, Rhodymenis palmata, Lactobacillus acidophilus, Lactobacillus bulgaricus and Streptococcus thermophillus, Kluyveromyces lactis, and Lactobacillus, paracasei. [0034] The United Nations' Food and Agricultural Organization accepts certain microorganism as a food-grade microorganism. A food-grade microorganism is an organism as a probiotic nutrients, i.e., safe to consume as a live form. A probiotic organism can be modified to a vehicle as described herein. A probiotic organism includes, but is not limited to, a member of the genera Lactobacillus or Bifidobacterium. A probiotic organism can be derived from a natural or commercially available strains including, but is not limited to, Bifidobacterium LAFT B94, Lactobacillus acidophilus, Lactobacillus acidophilus LAFTI LI 0, Lactobacillus casei, Lactobacillus casei LAFTI L26, Bifidobacterium animalis subsp. Bifidobacterium lactis, Bifidobacterium lactis BB-12,
Bifidobacterium lactis HN019, Bifidobacterium breve, Bifidobacterium breve Yakult, Bifidobacterium infantis Bifidobacterium, Bifidobacterium infantis 35624, Bifidobacterium longum, Bifidobacterium longum BB536, Bifidobacterium bifidum BB012, E. coli M-17, E. coli Nissle 1917, Baccillus coagulans, and Streptococcus thermophilus, Lactobacillus acidophilus DDS-1, Lactobacillus acidophilus LA-5, Lactobacillus acidophilus NCFM, Lactobacillus acidophilus NCFM, Lactobacillus acidophilus CD 1285, Lactobacillus casei 431, Lactobacillus casei F19, Lactobacillus casei Shirota, Lactobacillus paracasei, Lactobacillus paracasei Stl 1, Lactobacillus johnsonii, Lactobacillus johnsonii Lai, Lactobacillus lactis, Lactobacillus lactis L1A,
Lactobacillus plantarum, Lactobacillus plantarum 299v, Lactobacillus reuteri, Lactobacillus reuteri ATTC 55730, Lactobacillus rhamnosus, Lactobacillus rhamnosus ATCC 53013, Lactobacillus rhamnosus LB21, Lactobacillus rhamnosus GR-1, Lactobacillus reuteri RC-14, , Lactobacillus rhamnosus R011, Lactobacillus helveticus, and Lactobacillus helveticus R0052. Generally, any Lactobacillus or Bifidobacterium strain can be usefulfor methods disclosed herein. The strains include, but are not limited to, Lactobacillus acetotolerans, Lactobacillus acidipiscis, Lactobacillus acidophilus, Lactobacillus agilis, Lactobacillus algidus, Lactobacillus alimentarius, Lactobacillus amylolyticus, Lactobacillus amylophilus, Lactobacillus amylovorus, Lactobacillus animalis, Lactobacillus arizonensis, Lactobacillus aviarius, Lactobacillus bifermentans, Lactobacillus brevis, Lactobacillus buchneri, Lactobacillus casei, Lactobacillus coelohominis, Lactobacillus collinoides,
Lactobacillus coryniformis subsp. coryniformis, Lactobacillus coryniformis subsp. torquens, Lactobacillus crispatus, Lactobacillus curvatus, Lactobacillus cypricasei, Lactobacillus delbrueckii subsp. bulgaricus,
Lactobacillus delbrueckii subsp delbrueckii, Lactobacillus delbrueckii subsp. lactis, Lactobacillus durianus, Lactobacillus equi, Lactobacillus farciminis, Lactobacillus ferintoshensis, Lactobacillus fermentum,
Lactobacillus formicalis, Lactobacillus fructivorans, Lactobacillus frumenti, Lactobacillus fuchuensis, Lactobacillus gallinarum, Lactobacillus gasseri, Lactobacillus graminis, Lactobacillus hamsteri, Lactobacillus helveticus, Lactobacillus helveticus subsp. jugurti, Lactobacillus heterohiochii, Lactobacillus hilgardii, Lactobacillus homohiochii, Lactobacillus iners, Lactobacillus intestinalis, Lactobacillus japonicus,
Lactobacillus jensenii, Lactobacillus johnsonii, Lactobacillus kefiri, Lactobacillus kimchii, Lactobacillus kunkeei, Lactobacillus leichmannii, Lactobacillus letivazi, Lactobacillus lindneri, Lactobacillus
malefermentans, Lactobacillus mali, Lactobacillus maltaromicus, Lactobacillus manihotivorans, Lactobacillus mindensis, Lactobacillus mucosae, Lactobacillus murinus, Lactobacillus nagelii, Lactobacillus oris,
Lactobacillus panis, Lactobacillus pantheri, Lactobacillus parabuchneri, Lactobacillus paracasei subsp.
paracasei, Lactobacillus paracasei subsp. pseudoplantarum, Lactobacillus paracasei subsp. tolerans, Lactobacillus parakefiri, Lactobacillus paralimentarius, Lactobacillus paraplantarum, Lactobacillus pentosus, Lactobacillus perolens, Lactobacillus plantarum, Lactobacillus pontis, Lactobacillus psittaci, Lactobacillus reuteri, Lactobacillus rhamnosus, Lactobacillus ruminis, Lactobacillus sakei, Lactobacillus salivarius,
Lactobacillus salivarius subsp. salicinius, Lactobacillus salivarius subsp. salivarius, Lactobacillus sanfranciscensis, Lactobacillus sharpeae, Lactobacillus suebicus, Lactobacillus thermophilus, Lactobacillus thermotolerans, Lactobacillus vaccinostercus, Lactobacillus vaginalis, Lactobacillus versmoldensis,
Lactobacillus vitulinus, Lactobacillus vermiforme, Lactobacillus zeae, Bifidobacterium adolescentis,
Bifidobacterium aerophilum, Bifidobacterium angulatum, Bifidobacterium animalis, Bifidobacterium asteroides, Bifidobacterium bifidum, Bifidobacterium bourn, Bifidobacterium breve, Bifidobacterium catenulatum, Bifidobacterium choerinum, Bifidobacterium coryneforme, Bifidobacterium cuniculi,
Bifidobacterium dentium, Bifidobacterium gallicum, Bifidobacterium gallinarum, Bifidobacterium indicum, Bifidobacterium longum, Bifidobacterium longum subsp. longum, Bifidobacterium longum subsp. infantis, Bifidobacterium longum subsp. suis, Bifidobacterium magnum, Bifidobacterium merycicum, Bifidobacterium minimum, Bifidobacterium pseudocatenulatum, Bifidobacterium pseudolongum, Bifidobacterium pseudolongum subsp. globosum, Bifidobacterium pseudolongum subsp. pseudolongum, Bifidobacterium psychroaerophilum, Bifidobacterium pullorum, Bifidobacterium ruminantium, Bifidobacterium saeculare, Bifidobacterium scardovii, Bifidobacterium subtile, Bifidobacterium thermoacidophilum, Bifidobacterium thermoacidophilum subsp. suis, Bifidobacterium thermophilum, or Bifidobacterium urinalis.
[0035] In one embodiment, an intestinal microorganism grows on food ingested by a host, fluid secreted from the intestinal tube and/or mucus covering the intestinal wall. Intestinal microorganisms are composed of different kinds and amounts. They also differ by portions of the gastrointestinal tracts they occupy. A group of intestinal microorganisms occupying an area or a section of intestine is referred to as an intestinal microflora. In one embodiment intestinal microflora is bacterial flora. In one embodiment human intestinal bacterial flora comprises anaerobic bacteria. In one embodiment human intestinal bacterial flora comprises aerobic bacteria In one embodiment the intestinal bacterial flora occupies a human colon. The colon tissue contacting the intestinal normal bacterial flora is a mucosal layer comprising epithelium, crypt cells, lamina propria and muscularis mucosa. In one embodiment a microorganism found in the intestinal microflora is used as a delivery vehicle. In another embodiment, a strain of microorganism that can colonize the stomach is utilized as a delivery vehicle. For example, Helicobacter pylori can be used as a delivery vehicle. In one embodiment, a strain of microorganism that can colonize the intestine is utilized as a delivery vehicle.
[0036] In another embodiment, a strain of microorganism that can colonize a vagina is utilized as a delivery vehicle. For example, a species of Lactobacillus or Bifidobacterium can be utilized as a delivery vehicle for colonization of the vagina. In one embodiment a human vagina is colonized with a microorganism that express one or more exogenous proteins. In another embodiment, a strain of microorganism that can colonize a urethra is utilized as a delivery vehicle. In another embodiment, a strain of microorganism that can colonize a nose is utilized as a delivery vehicle. In another embodiment, a strain of microorganism that can colonize an eye or orbital socket is utilized as a delivery vehicle. In another embodiment, a strain of microorganism that can colonize mouth is utilized as a delivery vehicle. In another embodiment, a strain of microorganism that can colonize the throat is utilized as a delivery vehicle.
[0037] Production of delivery vehicle
[0038] In another aspect methods and compositions described herein are related to producing a delivery vehicle. To use as a delivery vehicle, a non-pathogenic microorganism for human use is employed as a delivery vehicle. In one embodiment, the microorganism is a non-pathogenic organism. In another embodiment, the microorganism is naturally occurring, non-pathogenic organism. In another embodiment, the microorganism is rendered non-pathogenic, such as by genetic modification or by artificial evolution. A microorganism that can be used as a delivery vehicle either naturally or by genetic modification includes, but is not limited to, Chaetomiaceae such as the genera Chaetomium e.g. the species Chaetomidium fimeti; Choanephoraceae such as the genera Blakeslea, Choanephora e.g. the species Blakeslea trispora, Choanephora cucurbitarum or Choanephora infundibulifera var. cucurbitarum; Cryptococcaceae such as the genera Candida, Crytococcus, Rhodotorula, Torulopsis e.g. the species Candida albicans, Candida albomarginata, Candida antarctica,
Candida bacarum, Candida bogoriensis, Candida boidinii, Candida bovina, Candida brumptii, Candida cacaoi, Candida cariosilignicola, Candida catenulata, Candida chalmersii, Candida ciferrii, Candida cylindracea, Candida edax, Candida ernobii, Candida famata, Candida freyschussii, Candida friedrichii, Candida glabrata, Candida guilliermondii, Candida haemulonii, Candida humicola, Candida inconspicua, Candida ingens, Candida intermedia, Candida kefyr, Candida krusei, Candida lactiscondensi, Candida lambica, Candida lipolytica, Candida lusitaniae, Candida macedoniensis, Candida magnoliae, Candida membranaefaciens, Candida mesenterica, Candida multigemmis, Candida mycoderma, Candida nemodendra, Candida nitratophila, Candida norvegensis, Candida norvegica, Candida parapsilosis, Candida pelliculosa, Candida peltata, Candida pini, Candida pseudotropicalis, Candida pulcherrima, Candida punicea, Candida pustula, Candida ravautii, Candida reukaufii, Candida rugosa, Candida sake, Candida silvicola, Candida solani, Candida sp., Candida spandovensis, Candida succiphila, Candida tropicalis, Candida utilis, Candida valida, Candida versatilis, Candida vini, Candida zeylanoides, Cryptococcus albidus, Cryptococcus curvatus, Cryptococcus flavus, Cryptococcus humicola, Cryptococcus hungaricus, Cryptococcus kuetzingii, Cryptococcus laurentii, Cryptococcus macerans, Cryptococcus neoformans, Cryptococcus terreus, Cryptococcus uniguttulatus, Rhodotorula acheniorum, Rhodotorula bacarum, Rhodotorula bogoriensis, Rhodotorula flava, Rhodotorula glutinis, Rhodotorula macerans, Rhodotorula minuta, Rhodotorula mucilaginosa, Rhodotorula pilimanae, Rhodotorula pustula, Rhodotorula rubra, Rhodotorula tokyoensis, Torulopsis colliculosa, Torulopsis dattila or Torulopsis neoformans; Cunninghamellaceae such as the genera Cunninghamella e.g. the species
Cunninghamella blakesleeana, Cunninghamella echinulata, Cunninghamella echinulata var. elegans,
Cunninghamella elegans or Cunninghamella homothallica; Demetiaceae such as the genera Alternaria,
Bipolaris, Cercospora, Chalara, Cladosporium, Curvularia, Exophilia, Helicosporium, Helminthosporium, Orbimyces, Philalophora, Pithomyces, Spilocaea, Thielaviopsis, Wangiella e.g. the species Curvularia affiinis, Curvularia clavata, Curvularia fallax, Curvularia inaequalis, Curvularia indica, Curvularia lunata, Curvularia pallescens, Curvularia verruculosa or Helminothosporium sp.; Moniliaceae such as the genera Arthrobotrys, Aspergillus, Epidermophyton, Geotrichum, Gliocladium, Histoplasma, Microsporum, Monilia, Oedocephalum, Oidium, Penicillium, Trichoderma, Trichophyton, Thrichoteclum, Verticillium e.g. the species Aspergillus aculeatus, Aspergillus albus, Aspergillus alliaceus, Aspergillus asperescens , Aspergillus awamori, Aspergillus candidus, Aspergillus carbonarius, Aspergillus carneus, Aspergillus chevalieri, Aspergillus chevalieri var. intermedius, Aspergillus clavatus, Aspergillus ficuum, Aspergillus flavipes, Aspergillus flavus, Aspergillus foetidus, Aspergillus fumigatus, Aspergillus giganteus, Aspergillus humicola, Aspergillus intermedius,
Aspergillus japonicus, Aspergillus nidulans, Aspergillus niger, Aspergillus niveus, Aspergillus ochraceus, Aspergillus oryzae, Aspergillus ostianus, Aspergillus parasiticus, Aspergillus parasiticus var. globosus, Aspergillus penicillioides, Aspergillus phoenicis, Aspergillus rugulosus, Aspergillus sclerotiorum, Aspergillus sojae var. gymnosardae, Aspergillus sydowi, Aspergillus tamarii, Aspergillus terreus, Aspergillus terricola, Aspergillus toxicarius, Aspergillus unguis, Aspergillus ustus, Aspergillus versicolor, Aspergillus vitricolae,
Aspergillus wentii, -Penicillium adametzi, -PeHiCilliUm albicans, Penicillium arabicum, Penicillium arenicola, PeniciUium argillaceum, PeniciUium arvense, PeniciUium asperosporum, -PeniciUium aurantiogriseum,- Penicillium avellaneum, -PeniciUium baarnense, PeniciUium bacillisporum, PeniciUium brasilianum,- Penicillium brevicompactum,-Penicillium camemberti,-Penicillium canadense,- PeniciUium canescens,- Penicillium caperatum, -PeniciUium capsulatum,- PeniciUium caseicolum,- PeniciUium chrysogenum, PeniciUium citreonigrum,- PeniciUium citrinum,-Penicillium claviforme,- PeniciUium commune,- PeniciUium corylophilum, PeniciUium corymbiferum, PeniciUium crustosum, PeniciUium cyclopium,- PeniciUium daleae, PeniciUium decumbens,- PeniciUium dierc xii,- PeniciUium digitatum, -PeniciUium digitatum var. latum,- Penicillium divaricatum,-Penicillium diversum, -PeniciUium duclauxii, PeniciUium echinosporum, PeniciUium expansum, PeniciUium fellutanum, -PeniciUium frequentans, -PeniciUium funiculosum, PeniciUium glabrum, PeniciUium gladioli, PeniciUium griseofulvum,- PeniciUium hirsutum, -PeniciUium hispanicum, -PeniciUium islandicum,- PeniciUium ita cum,- PeniciUium itaUcum var. avellaneum, -PeniciUium janczewskii, -PeniciUium janthinellum, -PeniciUium japonicum,- PeniciUium lavendulum,- PeniciUium Iilacinum, -PeniciUium Iividum,- Penicillium martensii, PeniciUium megasporum,- PeniciUium miczynskii,- PeniciUium nalgiovense,- PeniciUium nigricans, PeniciUium notatum, PeniciUium ochrochloron, PeniciUium odoratum, PeniciUium oxalicum,- PeniciUium paraherquei, PeniciUium patulum, -PeniciUium pinophilum, -PeniciUium piscarium,- PeniciUium pseudostromaticum, -PeniciUium puberulum,- PeniciUium purpurogenum, -PeniciUium raciborskii,- PeniciUium roqueforti,- PeniciUium rotundum, - PeniciUium rubrum,- PeniciUium sacculum, - PeniciUium simplicissimum, PeniciUium sp., PeniciUium spinulosum, PeniciUium steckii, PeniciUium stoloniferum, PeniciUium
striatisporum, PeniciUium striatum, PeniciUium tardum, PeniciUium thomii, PeniciUium turbatum, PeniciUium variabile, PeniciUium vermiculatum, PeniciUium vermoesenii, PeniciUium verrucosum, PeniciUium verrucosum var. corymbiferum, PeniciUium verrucosum var. cyclopium, PeniciUium verruculosum, PeniciUium vinaceum, PeniciUium violaceum, PeniciUium viridicatum, PeniciUium vulpinum, Trichoderma hamatum, Trichoderma harzianum, Trichoderma koningii, Trichoderma longibrachiatum, Trichoderma polysporum, Trichoderma reesei, Trichoderma virens or Trichoderma viride; Mortierellaceae such as the genera Mortierella e.g. the species Mortierella isabellina, Mortierella polycephala , Mortierella ramanniana , Mortierella vinacea or
Mortierella zonata; Mucoraceae such as the genera Actinomucor, Mucor, Phycomyces, Rhizopus, Zygorhynchus e.g. the species Mucor amphibiorum, Mucor circinelloides f. circinelloides, Mucor circinelloides var.
griseocyanus, Mucor flavus, Mucor fuscus, Mucor griseocyanus, Mucor heterosporus, Mucor hiemalis, Mucor hiemalis f. hiemalis, Mucor inaequisporus, Mucor indicus, Mucor javanicus, Mucor mucedo, Mucor mucilagineus, Mucor piriformis, Mucor plasmaticus, Mucor plumbeus, Mucor racemosus, Mucor racemosus f. racemosus, Mucor racemosus f. sphaerosporus, Mucor rouxianus, Mucor rouxii, Mucor sinensis, Mucor sp., Mucor spinosus, Mucor tuberculisporus, Mucor variisporus, Mucor variosporus, Mucor wosnessenskii, Phycomyces blakesleeanus, Rhizopus achlamydosporus, Rhizopus arrhizus, Rhizopus chinensis, Rhizopus delemar, Rhizopus formosaensis, Rhizopus japonicus, Rhizopus javanicus, Rhizopus microsporus, Rhizopus microsporus var. chinensis, Rhizopus microsporus var. oligosporus, Rhizopus microsporus var. rhizopodiformis, Rhizopus nigricans, Rhizopus niveus, Rhizopus oligosporus, Rhizopus oryzae, Rhizopus pygmaeus, Rhizopus rhizopodiformis, Rhizopus semarangensis, Rhizopus sontii, Rhizopus stolonifer, Rhizopus thermosus, Rhizopus tonkinensis, Rhizopus tritici or Rhizopus usamii; Pythiaceae such as the genera Phytium, Phytophthora e.g. the species Pythium debaryanum, Pythium intermedium, Pythium irregulare, Pythium megalacanthum, Pythium paroecandrum, Pythium sylvaticum, Pythium ultimum, Phytophthora cactorum, Phytophthora cinnamomi,
Phytophthora citricola, Phytophthora citrophthora, Phytophthora cryptogea, Phytophthora drechsleri, Phytophthora erythroseptica, Phytophthora lateralis, Phytophthora megasperma, Phytophthora nicotianae, Phytophthora nicotianae var. parasitica, Phytophthora palmivora, Phytophthora parasitica or Phytophthora syringae; Sacharomycetaceae such as the genera Hansenula, Pichia, Saccharomyces, Saccharomycodes, Yarrowia e.g. the species Hansenula anomala, Hansenula californica, Hansenula canadensis, Hansenula capsulata, Hansenula ciferni, Hansenula glucozyma, Hansenula henricii, Hansenula holstii, Hansenula minuta, Hansenula nonfermentans, Hansenula philodendri, Hansenula polymorphs, Hansenula satumus, Hansenula subpelliculosa, Hansenula wickerhamii, Hansenula wingei, Pichia alcoholophila, Pichia angusta, Pichia anomala, Pichia bispora, Pichia burtonii, Pichia canadensis, Pichia capsulata, Pichia carsonii, Pichia cellobiosa, Pichia ciferrii, Pichia farinosa, Pichia fermentans, Pichia finlandica, Pichia glucozyma, Pichia guilliermondii, Pichia haplophila, Pichia henricii, Pichia holstii, Pichia jadinii, Pichia lindnerii, Pichia membranaefaciens, Pichia methanol ica, Pichia minuta var. minuta, Pichia minuta var. nonfermentans, Pichia norvegensis, Pichia ohmeri, Pichia pastoris, Pichia philodendri, Pichia pini, Pichia polymorpha, Pichia quercuum, Pichia rhodanensis, Pichia sargentensis, Pichia stipitis, Pichia strasburgensis, Pichia
subpelliculosa, Pichia toletana, Pichia trehalophila, Pichia vini, Pichia xylosa, Saccharomyces aceti,
Saccharomyces bailii, Saccharomyces bay anus, Saccharomyces bisporus, Saccharomyces capensis,
Saccharomyces carlsbergensis, Saccharomyces cerevisiae, Saccharomyces cerevisiae var. ellipsoideus, Saccharomyces chevalieri, Saccharomyces delbrueckii, Saccharomyces diastaticus, Saccharomyces drosophilarum, Saccharomyces elegans, Saccharomyces ellipsoideus, Saccharomyces fermentati,
Saccharomyces florentinus, Saccharomyces fragilis, Saccharomyces heterogenous, Saccharomyces hienipiensis, Saccharomyces inusitatus, Saccharomyces italicus, Saccharomyces kiuyveri, Saccharomyces krusei,
Saccharomyces lactis, Saccharomyces marxianus, Saccharomyces microellipsoides, Saccharomyces montanus, Saccharomyces norbensis, Saccharomyces oleaceus, Saccharomyces paradoxus, Saccharomyces pastorianus, Saccharomyces pretoriensis, Saccharomyces rosei, Saccharomyces rouxii, Saccharomyces uvarum,
Saccharomycodes ludwigii or Yarrowia lipolytica; Saprolegniaceae such as the genera Saprolegnia e.g. the species Saprolegnia ferax; Schizosacharomycetaceae such as the genera Schizo saccharomyces e.g. the species Schizosaccharomyces japonicus var. japonicus, Schizosaccharomyces japonicus var. versatilis,
Schizosaccharomyces malidevorans, Schizosaccharomyces octosporus, Schizosaccharomyces pombe var. malidevorans or Schizosaccharomyces pombe var. pombe; Sodariaceae such as the genera Neurospora, Sordaria e.g. the species Neurospora africana, Neurospora crassa, Neurospora intermedia, Neurospora sitophila, Neurospora tetrasperma, Sordaria fimicola or Sordaria macrospora; Tuberculariaceae such as the genera Epicoccum, Fusarium, Myrothecium, Sphacelia, Starkeyomyces, Tubercularia e.g. the species Fusarium acuminatum, Fusarium anthophilum, Fusarium aquaeductuum, Fusarium aquaeductuum var. medium, Fusarium avenaceum, Fusarium buharicum, Fusarium camptoceras, Fusarium cerealis, Fusarium
chlamydosporum, Fusarium ciliatum, Fusarium coccophilum, Fusarium coeruleum, Fusarium concolor, Fusarium crookwellense, Fusarium culmorum, Fusarium dimerum, Fusarium diversisporum, Fusarium equiseti, Fusarium equiseti var. bullatum, Fusarium eumartii, Fusarium flocciferum, Fusarium fujikuroi, Fusarium graminearum, Fusarium graminum, Fusarium heterosporum, Fusarium incarnatum, Fusarium inflexum, Fusarium javanicum, Fusarium lateritium, Fusarium lateritium var. majus, Fusarium longipes, Fusarium melanochlorum, Fusarium merismoides, Fusarium merismoides var. chlamydosporale, Fusarium moniliforme, Fusarium moniliforme var. anthophilum, Fusarium moniliforme var. subglutinans, Fusarium nivale, Fusarium nivale var. majus, Fusarium oxysporum, Fusarium oxysporum f. sp. aechmeae, Fusarium oxysporum f. sp. cepae, Fusarium oxysporum f. sp. conglutinans, Fusarium oxysporum f. sp. cucumerinum, Fusarium oxysporum f. sp. cyclaminis, Fusarium oxysporum f. sp. dianthi, Fusarium oxysporum f. sp. lycopersici, Fusarium oxysporum f. sp. melonis, Fusarium oxysporum f. sp. passiflorae, Fusarium oxysporum f. sp. pisi, Fusarium oxysporum f. sp. tracheiphilum, Fusarium oxysporum f. sp. tuberosi, Fusarium oxysporum f. sp. tulipae, Fusarium oxysporum f. sp. vasinfectum, Fusarium pallidoroseum, Fusarium poae, Fusarium proliferatum,
Fusarium proliferatum var. minus, Fusarium redolens, Fusarium redolens f. sp. dianthi, Fusarium reticulatum, Fusarium roseum, Fusarium sacchari var. elongatum, Fusarium sambucinum, Fusarium sambucinum var. coeruleum, Fusarium semitectum, Fusarium semitectum var. majus, Fusarium solani, Fusarium solanif. sp. pisi, Fusarium sporotrichioides, Fusarium sporotrichioides var. minus, Fusarium sublunatum, Fusarium succisae, Fusarium sulphureum, Fusarium tabacinum, Fusarium tricinctum, Fusarium udum, Fusarium ventricosum, Fusarium verticillioides, Fusarium xylarioides or Fusarium zonatum; Sporobolomycetaceae such as the genera Bullera, Sporobolomyces, Itersonilia e.g. the species Sporobolomyces holsaticus, Sporobolomyces odorus, Sporobolomyces puniceus, Sporobolomyces salmonicolor, Sporobolomyces singularis or
Sporobolomyces tsugae; Adelotheciaceae such as the genera e.g. the species Physcomitrella patens;
Dinophyceae such as the genera Crypthecodinium, Phaeodactylum e.g. the species Crypthecodinium cohnii or Phaeodactylum tricornutum; Ditrichaceae such as the genera Ceratodon, Pleuridium, Astomiopsis, Ditrichum, Philibertiella, Ceratodon, Distichium, Skottsbergia e.g. the species Ceratodon antarcticus, Ceratodon purpureus, Ceratodon purpureus ssp. convolutes or Ceratodon purpureus ssp. stenocarpus; Prasinophyceae such as the genera Nephroselmis, Prasinococcus, Scherffelia, Tetraselmis, Mantoniella, Ostreococcus e.g. the species Nephroselmis olivacea, Prasinococcus capsulatus, Scherffelia dubia, Tetraselmis chui, Tetraselmis suecica, Mantoniella squamata or Ostreococcus tauri; Actinomycetaceae such as the genera Actinomyces, Actinobaculum, Arcanobacterium, Mobiiuncus e.g. the species Actinomyces bernardiae, Actinomyces bovis, Actinomyces bowdenii, Actinomyces canis, Actinomyces cardiffensis, Actinomyces catuli, Actinomyces coleocanis, Actinomyces denticolens, Actinomyces europaeus, Actinomyces funkei, Actinomyces georgiae, Actinomyces gerencsehae, Actinomyces hordeovulnehs, Actinomyces howellii, Actinomyces humiferus, Actinomyces hyovaginalis, Actinomyces israelii, Actinomyces marimammaOum, Actinomyces meyeri, Actinomyces naeslundii, Actinomyces nasicola, Actinomyces neuii subsp. anitratus, Actinomyces neuii subsp. neuii, Actinomyces odontolyticus, Actinomyces oricola, Actinomyces pyogenes, Actinomyces radicidentis, Actinomyces radingae, Actinomyces slackii, Actinomyces suimastitidis, Actinomyces suis, Actinomyces turicensis, Actinomyces urogenitalis, Actinomyces vaccimaxillae, Actinomyces viscosus, Actinobaculum schaalii, Actinobaculum suis, Actinobaculum urinale, Arcanobacterium bernardiae, Arcanobacterium haemolyticum, Arcanobactehum hippocoleae, Arcanobacterium phocae, Arcanobacterium pluranimalium, Arcanobacterium pyogenes, Mobiiuncus curtisii subsp. curtisii, Mobiiuncus curtisii subsp. holmesii or Mobiiuncus mulieris; Bacillaceae such as the genera Amphibacillus, Anoxybacillus, Bacillus, Exiguobacterium, Gracilibacillus, Holobacillus, Saccharococcus, Salibacillus, Virgibacillus e.g. the species Amphibacillus fermentum, Amphibacillus tropicus, Amphibacillus xylanus, Anoxybacillus flavithermus, Anoxybacillus gonensis, Anoxybacillus pushchinoensis, Bacillus acidocaldarius, Bacillus acidoterrestris, Bacillus aeolius, Bacillus agaradhaerens, Bacillus agri, Bacillus alcalophilus, Bacillus alginolyticus, Bacillus alvei, Bacillus amyloliquefaciens, Bacillus amylolyticus, Bacillus aneurinilyticus, Bacillus aquimaris, Bacillus
arseniciselenatis, Bacillus atrophaeus, Bacillus azotofixans, Bacillus azotoformans, Bacillus badius, Bacillus barbaricus, Bacillus benzoevorans, Bacillus borstelensis, Bacillus brevis, Bacillus carboniphilus, Bacillus centrosporus, Bacillus cereus, Bacillus chitinolyticus, Bacillus chondroitinus, Bacillus choshinensis, Bacillus circulans, Bacillus clarkii, Bacillus clausii, Bacillus coagulans, Bacillus cohnii, Bacillus curdlanolyticus, Bacillus cycloheptanicus, Bacillus decolorationis, Bacillus dipsosauri, Bacillus edaphicus, Bacillus ehimensis, Bacillus endophytics, Bacillus fastidiosus, Bacillus firmus, Bacillus flexus, Bacillus formosus, Bacillus fumarioli, Bacillus funiculus, Bacillus fusiformis, Bacillus sphaericus subsp. fusiformis, Bacillus galactophilus, Bacillus globisporus, Bacillus globisporus subsp. marinus, Bacillus glucanolyticus, Bacillus gordonae, Bacillus halmapalus, Bacillus haloalkaliphilus, Bacillus halodenitrificans, Bacillus halodurans, Bacillus halophilus, Bacillus horikoshii, Bacillus horti, Bacillus infernos, Bacillus insolitus, Bacillus jeotgali, Bacillus kaustophilus, Bacillus kobensis, Bacillus krulwichiae, Bacillus laevolacticus, Bacillus larvae, Bacillus laterosporus, Bacillus lautus, Bacillus lentimorbus, Bacillus lentus, Bacillus licheniformis, Bacillus luciferensis, Bacillus macerans, Bacillus macquariensis, Bacillus marinus, Bacillus marisflavi, Bacillus marismortui, Bacillus megaterium, Bacillus methanolicus, Bacillus migulanus, Bacillus mojavensis, Bacillus mucilaginosus, Bacillus mycoides, Bacillus naganoensis, Bacillus nealsonii, Bacillus neidei, Bacillus niacini, Bacillus okuhidensis, Bacillus oleronius, Bacillus pabuli, Bacillus pallidas, Bacillus pantothenticus, Bacillus parabrevis, Bacillus pasteurii, Bacillus peoriae, Bacillus polymyxa, Bacillus popilliae, Bacillus pseudalcaliphilus, Bacillus pseudofirmus, Bacillus pseudomycoides, Bacillus psychrodurans, Bacillus psychrophilus, Bacillus psychrosaccharolyticus, Bacillus psychrotolerans, Bacillus pulvifaciens, Bacillus pumilus, Bacillus pycnus, Bacillus reuszeri, Bacillus salexigens, Bacillus schlegelii, Bacillus selenitireducens, Bacillus silvestris, Bacillus simplex, Bacillus siralis, Bacillus smithii, Bacillus sonorensis, Bacillus sphaericus, Bacillus sporothermodurans, Bacillus
stearothermophilus , Bacillus subterraneus, Bacillus subtilis subsp. spizizenii, Bacillus subtilis subsp. subtilis,
Bacillus thermantarcticus, Bacillus thermoaerophilus, Bacillus thermoamylovorans, Bacillus thermoantarcticus, Bacillus thermocatenulatus, Bacillus thermocloacae, Bacillus thermodenitrificans, Bacillus
thermoglucosidasius, Bacillus thermoleovorans, Bacillus thermoruber, Bacillus thermosphaericus, Bacillus thiaminolyticus, Bacillus thuringiensis, Bacillus tusciae, Bacillus validus, Bacillus vallismortis, Bacillus vedderi, Bacillus vulcani, Bacillus weihenstephanensis, Exiguob acterium acetylicum, Exiguob acterium antarcticum, Exiguob acterium aurantiacum, Exiguob acterium undae, Gracilibacillus dipsosauri,
Gracilibacillus halotolerans, Halobacillus halophilus, Halobacillus karajensis, Halobacillus litoralis, Halobacillus salinus, Halobacillus trueperi, Saccharococcus caldoxylosilyticus, Saccharo coccus thermophilus, Salibacillus marismortui, Salibacillus salexigens, Virgibacillus carmonensis, Virgibacillus marismortui, Virgibacillus necropolis, Virgibacillus pantothenticus, Virgibacillus picturae, Virgibacillus proomii or
Virgibacillus salexigens, Brevibacteriaceae such as the genera Brevibacterium e.g. the species Brevib acterium acetylicum, Brevibacterium albidum, Brevibacterium ammoniagenes, Brevibacterium avium, Brevibacterium casei, Brevibacterium citreum, Brevibacterium divahcatum, Brevibacterium epidermidis, Brevibacterium fermentans, Brevibacterium frigoritolerans, Brevibacterium halotolerans, Brevibacterium imperiale,
Brevibacterium incertum, Brevibacterium iodinum, Brevibacterium linens, Brevibacterium liquefaciens, Brevibacterium lutescens, Brevibacterium luteum, Brevibacterium lyticum, Brevibacterium mcbrellneri, Brevibacterium otitidis, Brevibacterium oxydans, Brevibacterium paucivorans, Brevibacterium protophormiae, Brevibacterium pusillum, Brevibacterium saperdae, Brevibacterium stationis, Brevibacterium testaceum or Brevibacterium vitaeruminis; Corynebacteriaceae such as the genera Corynebacterium e.g. the species Corynebacterium accolens, Corynebacterium afermentans subsp. afermentans, Corynebacterium afermentans subsp. lipophilum, Corynebacterium ammoniagenes, Corynebacterium amycolatum, Corynebacterium appendicis, Corynebacterium aquilae, Corynebacterium argentoratense, Corynebacterium atypicum,
Corynebacterium aurimucosum, Corynebacterium auris, Corynebacterium auriscanis, Corynebacterium betae, Corynebacterium beticola, Corynebacterium bovis, Corynebacterium callunae, Corynebacterium
camporealensis, Corynebacterium capitovis, Corynebacterium casei, Corynebacterium confusum,
Corynebacterium coyleae, Corynebacterium cystitidis, Corynebacterium durum, Corynebacterium efficiens, Corynebacterium equi, Corynebacterium falsenii, Corynebacterium fascians, Corynebacterium felinum, Corynebacterium flaccumfaciens, Corynebacterium flavescens, Corynebacterium freneyi, Corynebacterium glaucum, Corynebacterium glucuronolyticum, Corynebacterium glutamicum, Corynebacterium hoagii, Corynebacterium ilicis, Corynebacterium imitans, Corynebacterium insidiosum, Corynebacterium iranicum, Corynebacterium jeikeium, Corynebacterium kroppenstedtii, Corynebacterium kutscheri, Corynebacterium lilium, Corynebacterium lipophiloflavum, Corynebacterium macginleyi, Corynebacterium mastitidis,
Corynebacterium matruchotii, Corynebacterium michiganense, Corynebacterium michiganense subsp.
tessellarius, Corynebacterium minutissimum, Corynebacterium mooreparkense, Corynebacterium mucifaciens, Corynebacterium mycetoides, Corynebacterium nebraskense, Corynebacterium oortii, Corynebacterium paurometabolum, Corynebacterium phocae, Corynebacterium pilosum, Corynebacterium poinsettiae,
Corynebacterium propinquum, Corynebacterium pseudodiphtheriticum, Corynebacterium pseudotuberculosis, Corynebacterium pyogenes, Corynebacterium rathayi, Corynebacterium renale, Corynebacterium riegelii, Corynebacterium seminale, Corynebacterium sepedonicum, Corynebacterium simulans, Corynebacterium singulare, Corynebacterium sphenisci, Corynebacterium spheniscorum, Corynebacterium striatum,
Corynebacterium suicordis, Corynebacterium sundsvallense, Corynebacterium terpenotabidum,
Corynebacterium testudinoris, Corynebacterium thomssenii, Corynebacterium tritici, Corynebacterium ulcerans, Corynebacterium urealyticum, Corynebacterium variabile, Corynebacterium vitaeruminis or Corynebacterium xerosis; Enterobacteriacae such as the genera Alterococcus, Arsenophonus, Brenneria, Buchnera, Budvicia, Buttiauxella, Calymmatobacterium, Cedecea, Citrobacter, Edwardsiella, Enterobacter, Erwinia, Escherichia, Ewingella, Hafnia, Klebsiella, Kluyvera, Leclercia, Leminorella, Moellerella,
Morganella, Obesumbacterium, Pantoea, Pectobacterium, Photorhabdus, Plesiomonas, Pragia, Proteus, Providencia, Rahnella, Saccharobacter, Salmonella, Shigella, Serratia, Sodalis, Tatumella, Trabulsiella, Wigglesworthia, Xenorhabdus. Yersinia and Yokenella e.g. the species Arsenophonus nasoniae, Brenneria alni, Brenneria nigrifiuens, Brenneria quercina, Brenneria rubrifaciens, Brenneria salicis, Budvicia aquatica, Buttiauxella agrestis, Buttiauxella brennerae, Buttiauxella ferragutiae, Buttiauxella gaviniae, Buttiauxella izardii, Buttiauxella noackiae, Buttiauxella warmboldiae, Cedecea davisae, Cedecea lapagei, Cedecea neteri, Citrobacter amalonaticus, Citrobacter diversus, Citrobacter freundii, Citrobacter genomospecies, Citrobacter gillenii, Citrobacter intermedium, Citrobacter koseri, Citrobacter murliniae, Citrobacter sp., Edwardsiella hoshinae, Edwardsiella ictaluri, Edwardsiella tarda, Erwinia alni, Erwinia amylovora, Erwinia ananatis, Erwinia aphidicola, Erwinia billingiae, Erwinia cacticida, Erwinia cancerogena, Erwinia carnegieana, Erwinia carotovora subsp. atroseptica, Erwinia carotovora subsp. betavasculorum, Erwinia carotovora subsp. odohfera, Erwinia carotovora subsp. wasabiae, Erwinia chrysanthemi, Erwinia cypripedii, Erwinia dissolvens, Erwinia herbicola, Erwinia mallotivora, Erwinia milletiae, Erwinia nigrifiuens, Erwinia nimipressuralis, Erwinia persicina, Erwinia psidii, Erwinia pyrifoliae, Erwinia quercina, Erwinia rhapontici, Erwinia rubrifaciens, Erwinia salicis, Erwinia stewartii, Erwinia tracheiphila, Erwinia uredovora, Escherichia adecarboxylata, Escherichia anindolica, Escherichia aurescens, Escherichia blattae, Escherichia coli, Escherichia coli var. communior, Escherichia coH-mutabile, Escherichia fergusonii, Escherichia hermannii, Escherichia sp., Escherichia vulneris, Ewingella americana, Hafnia alvei, Klebsiella aerogenes, Klebsiella edwardsii subsp. atlantae, Klebsiella ornithinolytica, Klebsiella oxytoca, Klebsiella planticola, Klebsiella pneumoniae, Klebsiella pneumoniae subsp. pneumoniae, Klebsiella sp., Klebsiella terrigena, Klebsiella trevisanii, Kluyvera ascorbata, Kluyvera citrophila, Kluyvera cochleae, Kluyvera cryocrescens, Kluyvera georgiana, Kluyvera noncitrophila, Kluyvera sp., Leclercia adecarboxylata, Leminorella grimontii, Leminorella richardii, Moellerella wisconsensis, Morganella morganii, Morganella morganii subsp. morganii, Morganella morganii subsp.
sibonii, Obesumbaterium proteus, Pantoea agglomerans, Pantoea ananatis, Pantoea citrea, Pantoea dispersa, Pantoea punctata, Pantoea stewartii subsp. stewartii, Pantoea terrea, Pectobacterium atrosepticum,
Pectobacterium carotovorum subsp. atrosepticum, Pectobacterium carotovorum subsp. carotovorum,
Pectobacterium chrysanthemi, Pectobacterium cypripedii, Photorhabdus asymbiotica, Photorhabdus luminescens, Photorhabdus luminescens subsp. akhurstii, Photorhabdus luminescens subsp. laumondii, Photorhabdus luminescens subsp. luminescens, Photorhabdus sp., Photorhabdus temperata, Plesiomonas shigelloides, Pragia fontium, Proteus hauseri, Proteus ichthyosmius, Proteus inconstans, Proteus mirabilis, Proteus morganii, Proteus myxofaciens, Proteus penned, Proteus rettgeri, Proteus shigelloides, Proteus vulgaris, Providencia alcalifaciens, Providencia friedericiana, Providencia heimbachae, Providencia rettgeri, Providencia rustigianii, Providencia stuartii, Rahnella aquatilis, Salmonella abony, Salmonella arizonae, Salmonella bongori, Salmonella choleraesuis subsp. arizonae, Salmonella choleraesuis subsp. bongori, Salmonella choleraesuis subsp. cholereasuis, Salmonella choleraesuis subsp. diarizonae, Salmonella choleraesuis subsp. houtenae, Salmonella choleraesuis subsp. indica, Salmonella choleraesuis subsp. salamae, Salmonella daressalaam, Salmonella enterica subsp. houtenae, Salmonella enterica subsp. salamae, Salmonella entehtidis, Salmonella gallinarum, Salmonella heidelberg, Salmonella panama, Salmonella senftenberg, Salmonella typhimurium, Serratia entomophila, Serratia ficaria, Serratia fonticola, Serratia grimesii, Serratia liquefaciens, Serratia marcescens, Serratia marcescens subsp. marcescens, Serratia marinorubra, Serratia odorifera, Serratia plymouthensis, Serratia plymuthica, Serratia proteamaculans, Serratia proteamaculans subsp. quinovora, Serratia quinivorans, Serratia rubidaea, Shigella boydii, Shigella flexneri, Shigella paradysenteriae, Shigella sonnei, Tatumella ptyseos, Xenorhabdus beddingii, Xenorhabdus bovienii,
Xenorhabdus luminescens, Xenorhabdus nematophila, Xenorhabdus nematophila subsp. beddingii,
Xenorhabdus nematophila subsp. bovienii, Xenorhabdus nematophila subsp. poinarii or Xenorhabdus poinarii; Gordoniaceae such as the genera Gordonia, Skermania e.g. the species Gordonia aichiensis, Gordonia alkanivorans, Gordonia amarae, Gordonia amicalis, Gordonia bronchialis, Gordonia desulfuricans, Gordonia hirsuta, Gordonia hydrophobica, Gordonia namibiensis, Gordonia nitida, Gordonia paraffinivorans, Gordonia polyisoprenivorans, Gordonia rhizosphera, Gordonia rubripertincta, Gordonia sihwensis, Gordonia sinesedis, Gordonia sputi, Gordonia terrae or Gordonia westfalica; Micrococcaceae such as the genera Micrococcus, Arthrobacter, Kocuria, Nesterenkonia, Renibacterium, Rothia, Stomatococcus e.g. the species Micrococcus agilis, Micrococcus antarcticus, Micrococcus halobius, Micrococcus kristinae, Micrococcus luteus,
Micrococcus lylae, Micrococcus nishinomiyaensis, Micrococcus roseus, Micrococcus sedentarius, Micrococcus varians, Arthrobacter agilis, Arthrobacter albus, Arthrobacter atrocyaneus, Arthrobacter aurescens,
Arthrobacter chlorophenolicus, Arthrobacter citreus, Arthrobacter creatinolyticus, Arthrobacter
crystallopoietes, Arthrobacter cumminsii, Arthrobacter duodecadis, Arthrobacter flavescens, Arthrobacter flavus, Arthrobacter gandavensis, Arthrobacter globiformis, Arthrobacter histidinolovorans, Arthrobacter ilicis, Arthrobacter koreensis, Arthrobacter luteolus, Arthrobacter methylotrophus, Arthrobacter mysorens,
Arthrobacter nasiphocae, Arthrobacter nicotianae, Arthrobacter nicotinovorans, Arthrobacter oxydans, Arthrobacter pascens, Arthrobacter picolinophilus, Arthrobacter polychromogenes, Arthrobacter
protophormiae, Arthrobacter psychrolactophilus, Arthrobacter radiotolerans, Arthrobacter ramosus, Arthrobacter rhombi, Arthrobacter roseus, Arthrobacter siderocapsulatus, Arthrobacter simplex, Arthrobacter sulfonivorans, Arthrobacter sulfureus, Arthrobacter terregens, Arthrobacter tumescens, Arthrobacter uratoxydans, Arthrobacter ureafaciens, Arthrobacter variabilis, Arthrobacter viscosus, Arthrobacter woluwensis, Kocuria erythromyxa, Kocuria kristinae, Kocuria palustris, Kocuria polaris, Kocuria rhizophila, Kocuria rosea, Kocuria varians, Nesterenkonia halobia, Nesterenkonia lacusekhoensis, Renibacterium salmoninarum, Rothia amarae, Rothia dentocariosa, Rothia mucilaginosa, Rothia nasimurium or
Stomatococcus mucilaginosus; Mycobacteriaceae such as the genera Mycobacterium e.g. the species
Mycobacterium africanum, Mycobacterium agri, Mycobacterium aichiense, Mycobacterium alvei,
Mycobacterium asiaticum, Mycobacterium aurum, Mycobacterium austroafricanum, Mycobacterium bohemicum, Mycobacterium botniense, Mycobacterium brumae, Mycobacterium chelonae subsp. abscessus, Mycobacterium chitae, Mycobacterium chlorophenolicum, Mycobacterium chubuense, Mycobacterium confluentis, Mycobacterium cookii, Mycobacterium diernhoferi, Mycobacterium doricum, Mycobacterium duvalii, Mycobacterium fallax, Mycobacterium farcinogenes, Mycobacterium flavescens, Mycobacterium frederiksbergense, Mycobacterium gadium, Mycobacterium gilvum, Mycobacterium gordonae, Mycobacterium hassiacum, Mycobacterium hiberniae, Mycobacterium hodleri, Mycobacterium holsaticum, Mycobacterium komossense, Mycobacterium lacus, Mycobacterium madagascariense, Mycobacterium mageritense,
Mycobacterium montefiorense, Mycobacterium moriokaense, Mycobacterium murale, Mycobacterium neoaurum, Mycobacterium nonchromogenicum, Mycobacterium obuense, Mycobacterium palustre,
Mycobacterium parafortuitum, Mycobacterium peregrinum, Mycobacterium phlei, Mycobacterium pinnipedii, Mycobacterium poriferae, Mycobacterium pulveris, Mycobacterium rhodesiae, Mycobacterium shottsii, Mycobacterium sphagni, Mycobacterium terrae, Mycobacterium thermoresistibile, Mycobacterium tokaiense, Mycobacterium triviale, Mycobacterium tusciae or Mycobacterium vanbaalenii; Nocardiaceae such as the genera Nocardia, Rhodococcus e.g. the species Nocardia abscessus, Nocardia africana, Nocardia amarae, Nocardia asteroides, Nocardia autotrophica, Nocardia beijingensis, Nocardia brasiliensis, Nocardia brevicatena, Nocardia caishijiensis, Nocardia calcarea, Nocardia carnea, Nocardia cellulans, Nocardia cerradoensis, Nocardia coeliaca, Nocardia corynebacterioides, Nocardia crassostreae, Nocardia cummidelens, Nocardia cyriacigeorgica, Nocardia farcinica, Nocardia flavorosea, Nocardia fluminea, Nocardia globerula, Nocardia hydrocarbonoxydans, Nocardia ignorata, Nocardia mediterranei, Nocardia nova, Nocardia orientalis, Nocardia otitidis-caviarum, Nocardia otitidiscaviarum, Nocardia paucivorans, Nocardia petroleophila, Nocardia pinensis, Nocardia pseudobrasiliensis, Nocardia pseudovaccinii, Nocardia puris, Nocardia restricta, Nocardia rugosa, Nocardia salmonicida, Nocardia saturnea, Nocardia seriolae, Nocardia soli, Nocardia sulphurea, Nocardia transvalensis, Nocardia uniformis, Nocardia vaccinii, Nocardia veterana or Nocardia vinacea; Pseudomonaceae such as the genera Azomonas, Azotobacter, Cellvibrio, Chryseomonas, Flaviomonas, Lampropedia, Mesophilobacter, Morococcus, Oligella, Pseudomonas, Rhizobacter, Rugamonas, Serpens, Thermoleophilum, Xylophilus e.g. the species Azomonas agilis, Azomonas insignis, Azomonas macrocytogenes, Azotobacter agilis, Azotobacter agilis subsp. armeniae, Azotobacter armeniacus, Azotobacter beijerinckii, Azotobacter chroococcum, Azotobacter indicum, Azotobacter macrocytogenes, Azotobacter miscellum, Azotobacter nigricans subsp. nigricans, Azotobacter paspali, Azotobacter salinestris, Azotobacter sp., Azotobacter vinelandii, Flavimonas oryzihabitans, Mesophilobacter marinus, Oligella urethralis,
Pseudomonas acidovorans, Pseudomonas aeruginosa, Pseudomonas agarici, Pseudomonas alcaligenes, Pseudomonas aminovorans, Pseudomonas amygdali, Pseudomonas andropogonis, Pseudomonas
anguilliseptica, Pseudomonas antarctica, Pseudomonas antimicrobica, Pseudomonas antimycetica,
Pseudomonas aptata, Pseudomonas an/illa, Pseudomonas asplenii, Pseudomonas atlantica, Pseudomonas atrofaciens, Pseudomonas aureofaciens, Pseudomonas avellanae, Pseudomonas azelaica, Pseudomonas azotocolligans, Pseudomonas balearica, Pseudomonas barken, Pseudomonas bathycetes, Pseudomonas beijerinckii, Pseudomonas brassicacearum, Pseudomonas brenneri, Pseudomonas butanovora, Pseudomonas carboxydoflava, Pseudomonas carboxydohydrogena, Pseudomonas carboxydovorans, Pseudomonas carrageenovora, Pseudomonas caryophylli, Pseudomonas cepacia, Pseudomonas chlohtidismutans,
Pseudomonas chlororaphis, Pseudomonas cichorii, Pseudomonas citronellolis, Pseudomonas cocovenenans, Pseudomonas compransoris, Pseudomonas congelans, Pseudomonas coronafaciens, Pseudomonas corrugata, Pseudomonas dacunhae, Pseudomonas delafieldii, Pseudomonas delphinii, Pseudomonas denitrificans, Pseudomonas desmolytica, Pseudomonas diminuta, Pseudomonas doudoroffii, Pseudomonas echinoides, Pseudomonas elongata, Pseudomonas extorquens, Pseudomonas extremorientalis, Pseudomonas facilis, Pseudomonas ficuserectae, Pseudomonas flava, Pseudomonas flavescens, Pseudomonas fluorescens,
Pseudomonas fragi, Pseudomonas frederiksbergensis, Pseudomonas fulgida, Pseudomonas fuscovaginae, Pseudomonas gazotropha, Pseudomonas gladioli, Pseudomonas glathei, Pseudomonas glumae, Pseudomonas graminis, Pseudomonas halophila, Pseudomonas helianthi, Pseudomonas huttiensis, Pseudomonas hydrogenothermophila, Pseudomonas hydrogenovora, Pseudomonas indica, Pseudomonas indigofera, Pseudomonas iodinum, Pseudomonas kiionensis, Pseudomonas lachrymans, Pseudomonas lapsa, Pseudomonas lemoignei, Pseudomonas lemonnieri, Pseudomonas lundensis, Pseudomonas luteola, Pseudomonas maltophilia, Pseudomonas marginalis, Pseudomonas marginata, Pseudomonas marina, Pseudomonas meliae, Pseudomonas mendocina, Pseudomonas mesophilica, Pseudomonas mixta, Pseudomonas monteilii, Pseudomonas morsprunorum, Pseudomonas multivorans, Pseudomonas natriegens, Pseudomonas nautica, Pseudomonas nitroreducens, Pseudomonas oleovorans, Pseudomonas oryzihabitans, Pseudomonas ovalis, Pseudomonas oxalaticus, Pseudomonas palleronii, Pseudomonas paucimobilis, Pseudomonas phaseolicola, Pseudomonas phenazinium, Pseudomonas pickettii, Pseudomonas pisi, Pseudomonas plantarii, Pseudomonas plecoglossicida, Pseudomonas poae, Pseudomonas primulae, Pseudomonas proteolytica, Pseudomonas pseudoalcaligenes, Pseudomonas pseudoalcaligenes subsp. konjaci, Pseudomonas pseudoalcaligenes subsp. pseudoalcaligenes, Pseudomonas pseudoflava, Pseudomonas putida, Pseudomonas putida var. naraensis, Pseudomonas putrefaciens, Pseudomonas pyrrocinia, Pseudomonas radiora, Pseudomonas reptilivora, Pseudomonas rhodesiae, Pseudomonas rhodos, Pseudomonas hboflavina, Pseudomonas rubescens, Pseudomonas rubrisubalbicans, Pseudomonas ruhlandii, Pseudomonas saccharophila, Pseudomonas savastanoi,
Pseudomonas savastanoi pvar. glycinea, Pseudomonas savastanoi pvar. phaseolicola, Pseudomonas solanacearum, Pseudomonas sp., Pseudomonas spinosa, Pseudomonas stanieri, Pseudomonas stutzeri, Pseudomonas syringae, Pseudomonas syringae pvar. aptata, Pseudomonas syringae pvar. atrofaciens, Pseudomonas syringae pvar. coronafaciens, Pseudomonas syringae pvar. delphinii, Pseudomonas syringae pvar. glycinea, Pseudomonas syringae pvar. helianthi, Pseudomonas syringae pvar. lachrymans, Pseudomonas syringae pvar. lapsa, Pseudomonas syringae pvar. morsprunorum, Pseudomonas syringae pvar. phaseolicola, Pseudomonas syringae pyar. primulae, Pseudomonas syringae pyar. syringae, Pseudomonas syringae pyar. tabaci, Pseudomonas syringae pvar. tomato, Pseudomonas syringae subsp. glycinea, Pseudomonas syringae subsp. savastanoi, Pseudomonas syringae subsp. syringae, Pseudomonas syzygii, Pseudomonas tabaci, Pseudomonas taeniospiralis, Pseudomonas testosteroni, Pseudomonas thermocarboxydovorans, Pseudomonas thermotolerans, Pseudomonas thivervalensis, Pseudomonas tomato, Pseudomonas trivialis, Pseudomonas veronii, Pseudomonas vesicularis, Pseudomonas viridiflava, Pseudomonas viscogena, Pseudomonas woodsii, Rhizobacter dauci, Rhizobacter daucus or Xylophilus ampelinus; Rhizobiaceae such as the genera
Agrobacterium, Carbophilus, Chelatobacter, Ensifer, Rhizobium, Sinorhizobium e.g. the species Agrobacterium atlanticum, Agrobacterium ferrugineum, Agrobacterium gelatinovorum, Agrobacterium larrymoorei,
Agrobacterium meteori, Agrobacterium radiobacter, Agrobacterium rhizogenes, Agrobacterium rubi, Agrobacterium stellulatum, Agrobacterium tumefaciens, Agrobacterium vitis, Carbophilus carboxidus, Chelatobacter heintzii, Ensifer adhaerens, Ensifer arboris, Ensifer fredii, Ensifer kostiensis, Ensifer kummerowiae, Ensifer medicae, Ensifer meliloti, Ensifer saheli, Ensifer terangae, Ensifer xinjiangensis, Rhizobium ciceri Rhizobium etli, Rhizobium fredii, Rhizobium galegae, Rhizobium gallicum, Rhizobium giardinii, Rhizobium hainanense, Rhizobium huakuii, Rhizobium huautlense, Rhizobium indigoferae, Rhizobium japonicum, Rhizobium leguminosarum, Rhizobium loessense, Rhizobium loti, Rhizobium lupini, Rhizobium mediterraneum, Rhizobium meliloti, Rhizobium mongolense, Rhizobium phaseoli, Rhizobium radiobacter, Rhizobium rhizogenes, Rhizobium rubi, Rhizobium sullae, Rhizobium tianshanense, Rhizobium trifolii, Rhizobium tropici, Rhizobium undicola, Rhizobium vitis, Sinorhizobium adhaerens, Sinorhizobium arboris, Sinorhizobium fredii, Sinorhizobium kostiense, Sinorhizobium kummerowiae, Sinorhizobium medicae, Sinorhizobium meliloti, Sinorhizobium morelense, Sinorhizobium saheli or Sinorhizobium xinjiangense;
Streptomycetaceae such as the genera Kitasatosprora, Streptomyces, Streptoverticillium e.g. the species Streptomyces abikoensis, Streptomyces aburaviensis, Streptomyces achromogenes subsp. achromogenes, Streptomyces achromogenes subsp. rubradiris, Streptomyces acidiscabies, Streptomyces acrimycini,
Streptomyces aculeolatus, Streptomyces afghaniensis, Streptomyces alanosinicus, Streptomyces albaduncus, Streptomyces albiaxialis, Streptomyces albidochromogenes, Streptomyces albidoflavus, Streptomyces albireticuli, Streptomyces albofaciens, Streptomyces alboflavus, Streptomyces albogriseolus, Streptomyces albolongus, Streptomyces alboniger, Streptomyces albospinus, Streptomyces albosporeus subsp. albosporeus, Streptomyces albosporeus subsp. labilomyceticus, Streptomyces alboverticillatus, Streptomyces albovinaceus, Streptomyces alboviridis, Streptomyces albulus, Streptomyces albus subsp. albus, Streptomyces albus subsp. pathocidicus, Streptomyces almquistii, Streptomyces althioticus, Streptomyces amakusaensis, Streptomyces ambofaciens, Streptomyces aminophilus, Streptomyces anandii, Streptomyces anthocyanicus, Streptomyces antibioticus, Streptomyces antimycoticus, Streptomyces anulatus, Streptomyces arabicus, Streptomyces ardus, Streptomyces arenae, Streptomyces argenteolus, Streptomyces armeniacus, Streptomyces asiaticus,
Streptomyces asterosporus, Streptomyces atratus, Streptomyces atroaurantiacus, Streptomyces atroolivaceus, Streptomyces atrovirens, Streptomyces aurantiacus, Streptomyces aurantiogriseus, Streptomyces
aureocirculatus, Streptomyces aureofaciens, Streptomyces aureorectus, Streptomyces aureoversilis,
Streptomyces aureoverticillatus, Streptomyces aureus, Streptomyces avellaneus, Streptomyces avermectinius, Streptomyces avermitilis, Streptomyces avidinii, Streptomyces azaticus, Streptomyces azureus, Streptomyces baarnensis, Streptomyces bacillaris, Streptomyces badius, Streptomyces baldaccii, Streptomyces bambergiensis,
Streptomyces beijiangensis, Streptomyces bellus, Streptomyces bikiniensis, Streptomyces biverticillatus, Streptomyces blastmyceticus, Streptomyces bluensis, Streptomyces bobili, Streptomyces bottropensis, Streptomyces brasiliensis, Streptomyces bungoensis, Streptomyces cacaoi subsp. asoensis, Streptomyces cacaoi subsp. cacaoi, Streptomyces caelestis, Streptomyces caeruleus, Streptomyces californicus, Streptomyces calvus, Streptomyces canaries, Streptomyces candidus, Streptomyces canescens, Streptomyces cangkringensis, Streptomyces caniferus, Streptomyces canus, Streptomyces capillispiralis, Streptomyces capoamus,
Streptomyces carpaticus, Streptomyces carpinensis, Streptomyces catenulae, Streptomyces caviscabies, Streptomyces cavourensis subsp. cavourensis, Streptomyces cavourensis subsp. washingtonensis, Streptomyces cellostaticus, Streptomyces celluloflavus, Streptomyces cellulolyticus, Streptomyces cellulosae, Streptomyces champavatii, Streptomyces chartreuses, Streptomyces chattanoogensis, Streptomyces chibaensis, Streptomyces chrestomyceticus, Streptomyces chromofuscus, Streptomyces chryseus, Streptomyces chrysomallus subsp. chrysomallus, Streptomyces chrysomallus subsp. fumigatus, Streptomyces cinereorectus, Streptomyces cinereoruber subsp. cinereoruber, Streptomyces cinereoruber subsp. fructofermentans, Streptomyces cinereospinus, Streptomyces cinereus, Streptomyces cinerochromogenes, Streptomyces cinnabarinus, Streptomyces cinnamonensis, Streptomyces cinnamoneus, Streptomyces cinnamoneus subsp. albosporus, Streptomyces cinnamoneus subsp. cinnamoneus, Streptomyces cinnamoneus subsp. lanosus, Streptomyces cinnamoneus subsp. sparsus, Streptomyces cirratus, Streptomyces ciscaucasicus, Streptomyces
citreofluorescens, Streptomyces clavifer, Streptomyces clavuligerus, Streptomyces cochleatus, Streptomyces coelescens, Streptomyces coelicoflavus, Streptomyces coelicolor, Streptomyces coeruleoflavus, Streptomyces coeruleofuscus, Streptomyces coeruleoprunus, Streptomyces coeruleorubidus, Streptomyces coerulescens, Streptomyces collinus, Streptomyces colombiensis, Streptomyces corchorusii, Streptomyces costaricanus, Streptomyces cremeus, Streptomyces crystallinus, Streptomyces curacoi, Streptomyces cuspidosporus, Streptomyces cyaneofuscatus, Streptomyces cyaneus, Streptomyces cyanoalbus, Streptomyces cystargineus, Streptomyces daghestanicus, Streptomyces diastaticus subsp. ardesiacus, Streptomyces diastaticus subsp. diastaticus, Streptomyces diastatochromogenes, Streptomyces distallicus, Streptomyces djakartensis,
Streptomyces durhamensis, Streptomyces echinatus, Streptomyces echinoruber, Streptomyces ederensis, Streptomyces ehimensis, Streptomyces endus, Streptomyces enissocaesilis, Streptomyces erumpens,
Streptomyces erythraeus, Streptomyces erythrogriseus, Streptomyces eurocidicus, Streptomyces
europaeiscabiei, Streptomyces eurythermus, Streptomyces exfoliates, Streptomyces felleus, Streptomyces fervens, Streptomyces fervens subsp. fervens, Streptomyces fervens subsp. melrosporus, Streptomyces filamentosus, Streptomyces filipinensis, Streptomyces fimbriatus, Streptomyces fimicarius, Streptomyces finlayi, Streptomyces flaveolus, Streptomyces flaveus, Streptomyces flavidofuscus, Streptomyces flavidovirens, Streptomyces flaviscleroticus, Streptomyces flavofungini, Streptomyces flavofuscus, Streptomyces flavogriseus, Streptomyces flavopersicus, Streptomyces flavotricini, Streptomyces flavovariabilis, Streptomyces flavovirens, Streptomyces flavoviridis, Streptomyces flocculus, Streptomyces floridae, Streptomyces fluorescens,
Streptomyces fradiae, Streptomyces fragilis, Streptomyces fulvissimus, Streptomyces fulvorobeus, Streptomyces fumanus, Streptomyces fumigatiscleroticus, Streptomyces galbus, Streptomyces galilaeus, Streptomyces gancidicus, Streptomyces gardneri, Streptomyces gelaticus, Streptomyces geysiriensis, Streptomyces ghanaensis, Streptomyces gibsonii, Streptomyces glaucescens, Streptomyces glaucosporus, Streptomyces glaucus, Streptomyces globisporus subsp. caucasicus, Streptomyces globisporus subsp. flavofuscus,
Streptomyces globisporus subsp. globisporus, Streptomyces globosus, Streptomyces glomeratus, Streptomyces glomeroaurantiacus, Streptomyces gobitricini, Streptomyces goshikiensis, Streptomyces gougerotii, Streptomyces graminearus, Streptomyces graminofaciens, Streptomyces ghseinus, Streptomyces griseoaurantiacus, Streptomyces griseobrunneus, Streptomyces griseocarneus, Streptomyces
griseochromogenes, Streptomyces griseoflavus, Streptomyces griseofuscus, Streptomyces griseoincarnatus, Streptomyces griseoloalbus, Streptomyces griseolosporeus, Streptomyces griseolus, Streptomyces griseoluteus, Streptomyces griseomycini, Streptomyces griseoplanus, Streptomyces griseorubens, Streptomyces griseoruber, Streptomyces griseorubiginosus, Streptomyces griseosporeus, Streptomyces griseostramineus, Streptomyces griseoverticillatus, Streptomyces griseoviridis, Streptomyces griseus subsp. alpha, Streptomyces griseus subsp. cretosus, Streptomyces griseus subsp. griseus, Streptomyces griseus subsp. solvifaciens, Streptomyces hachijoensis, Streptomyces halstedii, Streptomyces hawaiiensis, Streptomyces heliomycini, Streptomyces helvaticus, Streptomyces herbaricolor, Streptomyces hiroshimensis, Streptomyces hirsutus, Streptomyces humidus, Streptomyces humiferus, Streptomyces hydrogenans, Streptomyces hygroscopicus subsp.
angustmyceticus, Streptomyces hygroscopicus subsp. decoyicus, Streptomyces hygroscopicus subsp. glebosus, Streptomyces hygroscopicus subsp. hygroscopicus, Streptomyces hygroscopicus subsp. ossamyceticus, Streptomyces iakyrus, Streptomyces indiaensis, Streptomyces indigoferus, Streptomyces indonesiensis, Streptomyces intermedius, Streptomyces inusitatus, Streptomyces ipomoeae, Streptomyces janthinus,
Streptomyces javensis, Streptomyces kanamyceticus, Streptomyces kashmirensis, Streptomyces kasugaensis, Streptomyces katrae, Streptomyces kentuckensis, Streptomyces kifunensis, Streptomyces kishiwadensis, Streptomyces kunmingensis, Streptomyces kurssanovii, Streptomyces labedae, Streptomyces laceyi,
Streptomyces ladakanum, Streptomyces lanatus, Streptomyces lateritius, Streptomyces laurentii, Streptomyces lavendofoliae, Streptomyces lavendulae subsp. grasserius: Streptomyces lavendulae subsp. lavendulae,
Streptomyces lavenduligriseus, Streptomyces lavendulocolor, Streptomyces levis, Streptomyces libani subsp. libani, Streptomyces libani subsp. rufus, Streptomyces lienomycini, Streptomyces lilacinus, Streptomyces limosus, Streptomyces Uncolnensis, Streptomyces Upmanii, Streptomyces Utmocidini, Streptomyces lomondensis, Streptomyces longisporoflavus, Streptomyces longispororuber, Streptomyces longisporus, Streptomyces longwoodensis, Streptomyces lucensis, Streptomyces luridiscabiei, Streptomyces luridus, Streptomyces lusitanus, Streptomyces luteireticuli, Streptomyces luteogriseus, Streptomyces luteosporeus, Streptomyces luteoverticillatus, Streptomyces lydicus, Streptomyces macrosporus, Streptomyces malachitofuscus,
Streptomyces malachitospinus, Streptomyces malaysiensis, Streptomyces mashuensis, Streptomyces massasporeus, Streptomyces matensis, Streptomyces mauvecolor, Streptomyces mediocidicus, Streptomyces mediolani, Streptomyces megasporus, Streptomyces melanogenes, Streptomyces melanosporofaciens,
Streptomyces mexicanus, Streptomyces michiganensis, Streptomyces microflavus, Streptomyces
minutiscleroticus, Streptomyces mirabilis, Streptomyces misakiensis, Streptomyces misionensis, Streptomyces mobaraensis, Streptomyces monomycini, Streptomyces morookaensis, Streptomyces murinus, Streptomyces mutabilis, Streptomyces mutomycini, Streptomyces naganishii, Streptomyces narbonensis, Streptomyces nashvillensis, Streptomyces netropsis, Streptomyces neyagawaensis, Streptomyces niger, Streptomyces nigrescens, Streptomyces nigrifaciens, Streptomyces nitrosporeus, Streptomyces niveiciscabiei, Streptomyces niveoruber, Streptomyces niveus, Streptomyces noboritoensis, Streptomyces nodosus, Streptomyces nogalater, Streptomyces nojiriensis, Streptomyces noursei, Streptomyces novaecaesareae, Streptomyces
ochraceiscleroticus: Streptomyces odorifer, Streptomyces olivaceiscleroticus, Streptomyces olivaceovihdis, Streptomyces oUvaceus, Streptomyces olivochromogenes, Streptomyces olivomycini, Streptomyces olivoreticuli,
Streptomyces olivoreticuli subsp. cellulophilus, Streptomyces olivoreticuli subsp. olivoreticuli, Streptomyces olivoverticillatus, Streptomyces olivoviridis, Streptomyces omiyaensis, Streptomyces orinoci, Streptomyces pactum, Streptomyces paracochleatus, Streptomyces paradoxus, Streptomyces parvisporogenes, Streptomyces parvulus, Streptomyces parvus, Streptomyces peucetius, Streptomyces phaeochromogenes, Streptomyces phaeofaciens, Streptomyces phaeopurpureus, Streptomyces phaeoviridis, Streptomyces phosalacineus, Streptomyces pilosus, Streptomyces platensis, Streptomyces plicatus, Streptomyces pluricolorescens,
Streptomyces polychromogenes, Streptomyces poonensis, Streptomyces praecox, Streptomyces prasinopilosus, Streptomyces prasinosporus, Streptomyces prasinus, Streptomyces prunicolor, Streptomyces psammoticus, Streptomyces pseudoechinosporeus, Streptomyces pseudogriseolus, Streptomyces pseudovenezuelae,
Streptomyces pulveraceus, Streptomyces puniceus, Streptomyces puniciscabiei, Streptomyces purpeofuscus, Streptomyces purpurascens, Streptomyces purpureus, Streptomyces purpurogeneiscleroticus, Streptomyces racemochromogenes, Streptomyces rameus, Streptomyces ramulosus, Streptomyces rangoonensis, Streptomyces recifensis, Streptomyces rectiverticillatus, Streptomyces rectiviolaceus, Streptomyces regensis, Streptomyces resistomycificus, Streptomyces reticuliscabiei, Streptomyces rhizosphaericus, Streptomyces rimosus subsp. paromomycinus, Streptomyces rimosus subsp. rimosus, Streptomyces rishiriensis, Streptomyces rochei, Streptomyces roseiscleroticus, Streptomyces roseodiastaticus, Streptomyces roseoflavus, Streptomyces roseofulvus, Streptomyces roseolilacinus, Streptomyces roseolus, Streptomyces roseosporus, Streptomyces roseoverticillatus, Streptomyces roseoviolaceus, Streptomyces roseoviridis, Streptomyces rubber, Streptomyces rubiginosohelvolus, Streptomyces rubiginosus, Streptomyces rubrogriseus, Streptomyces rutgersensis subsp. castelarensis, Streptomyces rutgersensis subsp. rutgersensis, Streptomyces salmonis, Streptomyces sampsonii, Streptomyces sanglieri, Streptomyces sannanensis, Streptomyces sapporonensis, Streptomyces scabiei, Streptomyces sclerotialus, Streptomyces scopiformis, Streptomyces seoulensis, Streptomyces septatus, Streptomyces setae, Streptomyces setonii, Streptomyces showdoensis, Streptomyces sindenensis, Streptomyces sioyaensis, Streptomyces somaliensis, Streptomyces sparsogenes, Streptomyces spectabilis, Streptomyces speibonae, Streptomyces speleomycini, Streptomyces spheroids, Streptomyces spinoverrucosus, Streptomyces spiralis, Streptomyces spiroverticillatus, Streptomyces spitsbergensis, Streptomyces sporocinereus,
Streptomyces sporoclivatus, Streptomyces spororaveus, Streptomyces sporoverrucosus, Streptomyces stelliscabiei, Streptomyces stramineus, Streptomyces subrutilus, Streptomyces sulfonofaciens, Streptomyces sulphurous, Streptomyces syringium, Streptomyces tanashiensis, Streptomyces tauricus, Streptomyces tendae, Streptomyces termitum, Streptomyces thermoalcalitolerans, Streptomyces thermoautotrophicus, Streptomyces thermocarboxydovorans, Streptomyces thermocarboxydus, Streptomyces thermocoprophilus, Streptomyces thermodiastaticus, Streptomyces thermogriseus, Streptomyces thermolineatus, Streptomyces thermonitrificans, Streptomyces thermospinosisporus, Streptomyces thermoviolaceus subsp. apingens, Streptomyces
thermoviolaceus subsp. thermoviolaceus, Streptomyces thermovulgaris, Streptomyces thioluteus, Streptomyces torulosus, Streptomyces toxytricini, Streptomyces tricolor, Streptomyces tubercidicus, Streptomyces tuirus, Streptomyces turgidiscabies, Streptomyces umbrinus, Streptomyces variabilis, Streptomyces variegates,
Streptomyces varsoviensis, Streptomyces vastus, Streptomyces venezuelae, Streptomyces vinaceus, Streptomyces vinaceusdrappus, Streptomyces violaceochromogenes, Streptomyces violaceolatus, Streptomyces
violaceorectus, Streptomyces violaceoruber, Streptomyces violaceorubidus, Streptomyces violaceus,
Streptomyces violaceusniger, Streptomyces violarus, Streptomyces violascens, Streptomyces violatus,
Streptomyces violens, Streptomyces virens, Streptomyces virginiae, Streptomyces viridiflavus, Streptomyces viridiviolaceus, Streptomyces viridobrunneus, Streptomyces viridochromogenes, Streptomyces viridodiastaticus, Streptomyces viridosporus, Streptomyces vitaminophileus, Streptomyces vitaminophilus, Streptomyces wedmorensis, Streptomyces werraensis, Streptomyces willmorei, Streptomyces xanthochromogenes,
Streptomyces xanthocidicus, Streptomyces xantholiticus, Streptomyces xanthophaeus, Streptomyces yatensis, Streptomyces yerevanensis, Streptomyces yogyakartensis, Streptomyces yokosukanensis, Streptomyces yunnanensis, Streptomyces zaomyceticus, Streptoverticillium abikoense, Streptoverticillium albireticuli,
Streptoverticillium alboverticillatum, Streptoverticillium album, Streptoverticillium ardum, Streptoverticillium aureoversale, Streptoverticillium aureoversile, Streptoverticillium baldaccii , Streptoverticillium biverticillatum, Streptoverticillium blastmyceticum, Streptoverticillium cinnamoneum subsp. albosporum, Streptomyces cinnamoneus subsp. albosporus, Streptoverticillium cinnamoneum subsp. cinnamoneum, Streptoverticillium cinnamoneum subsp. lanosum, Streptoverticillium cinnamoneum subsp. sparsum, Streptoverticillium distallicum, Streptoverticillium ehimense, Streptoverticillium eurocidicum, Streptoverticillium fen/ens subsp. fervens, Streptoverticillium fervens subsp. melrosporus, Streptoverticillium flavopersicum, Streptoverticillium griseocarneum, Streptoverticillium griseoverticillatum, Streptoverticillium hachijoense, Streptoverticillium hiroshimense, Streptoverticillium kashmirense, Streptoverticillium kentuckense, Streptoverticillium
kishiwadense, Streptoverticillium ladakanum, Streptoverticillium lavenduligriseum, Streptoverticillium lilacinum, Streptoverticillium luteoverticillatum, Streptoverticillium mashuense, Streptoverticillium mobaraense, Streptoverticillium morookaense, Streptoverticillium netropsis, Streptoverticillium olivomycini, Streptomyces olivomycini, Streptoverticillium olivoreticuli subsp. cellulophilum, Streptoverticillium olivoreticuli subsp. olivoreticuli, Streptoverticillium olivoreticulum, Streptoverticillium olivoreticulum subsp. cellulophilum, Streptoverticillium olivoverticillatum, Streptoverticillium orinoci, Streptoverticillium parvisporogenes,
Streptoverticillium parvisporogenum, Streptoverticillium rectiverticillatum, Streptoverticillium reticulum subsp. protomycicum, Streptoverticillium roseoverticillatum, Streptoverticillium salmonis, Streptoverticillium sapporonense, Streptoverticillium septatum, Streptoverticillium syringium, Streptoverticillium thioluteum, Streptoverticillium verticillium subsp. quantum, Streptoverticillium verticillium subsp. tsukushiense and Streptoverticillium viridoflavum. In one embodiment a delivery vehicle is made by the methods disclosed in Appl Environ Microbiol. 2011 Mar;77(6):2174-9), which is herein incorporated by reference in tis entirety. In another embodiment a deliver vehicle has one or more attributes disclosed in in Appl Environ Microbiol. 2011 Mar;77(6):2174-9), which is herein incorporated by reference in tis entirety.
[0039] Delivering a vehicle to target area
[0040] In one aspect, methods and compositions described herein relate to delivering a delivery vehicle to a target area. In one embodiment, a delivery vehicle is a microorganism. In one embodiment, a microorganism is delivered to a target area by directly applying the delivery vehicle to the target area. Methods of delivery include, but are not limited to, ingestion, inhalation, injection, sprays, and topical application. In one embodiment, a microorganism is delivered in a pharmaceutical composition, such as a foam, cream, patch, gel, powder, solution, liquid, oil, oral solution, vaginal wash, vaginal douche, breast milk supplement, infant formula or petroleum jelly. In another embodiment, a microorganism is delivered in a pharmaceutical composition formulated as a suppository, as an aerosol, as a liquid, as a tampon, or as a tablet. Routes of administration include, but are not limited to, intranasal, rectal, vaginal, intraperitoneal, intravascular, hypodermic, oral, intraurethral, intraocular, inhalation, or other routes known in the art as medically safe route of administration. In another embodiment, a microorganism is delivered to a mammal by a medical device. In one embodiment the medical device is a syringe, catheter, eye dropper, pills, spreader, speculum, or other invasive instruments. [0041] In one embodiment, a delivery vehicle is provided as a delayed release delivery system. In another embodiment a delivery vehicle is provided is provided with a contraceptive device, such as a cervical ring diaphragm, sponge, condom, intrauterine device, or capsule. In another embodiment, a delivery vehicle is coadministered with a chemical contraceptive, such as estradiol, progesterone, nonoyxnol-9, octoxynol-9, benzalkonium chloride, sodium chlorate, or analogs thereof. In another embodiment, a composition comprises a delivery vehicle and one or more lubricants. In one embodiment, the lubricant is water-based, oil-based, or silicone-based. In one embodiment the lubricant is water, glycerin, propylene glycol, polyquaternium 15, methylparaben, propylparaben, propylene glycol, glycerin, methylparaben, butylene glycol, xylitol, cyclomethiocone, or cyclopentasiloxane. In one embodiment, the delivery vehicle comprises antibiotics.
[0042] In another embodiment, the delivery vehicle is provided as part of a stent, delivering therapeutic products as disclosed herein at the site of implantation of the stent. In another embodiment, the delivery vehicle can be packaged as part of a hollow tube that does not block a lumen but expanded to fit along the circumference of a tubal lumen.
[0043] In one embodiment, a delivery vehicle described herein is provided as a prophylactic composition. In one embodiment, a prophylactic composition comprises a delivery vehicle and a contraceptive chemical or device. In another embodiment, a prophylactic composition comprises a delivery vehicle co-administered with a lubricant.
[0044] In one embodiment, a kit is provided that comprises a delivery vehicle and a contraceptive device and optionally directions for use. In one embodiment the contraceptive device comprises a sponge, condom, intrauterine devices, a diaphragm, cervical cap, an expandable body or another physical barrier contraceptive. In another embodiment the contraceptive device comprises a foaming agent.
[0045] In one embodiment the kit comprises a delivery vehicle provided in a container separate from the contraceptive device. In one embodiment the delivery vehicle is provided in a lyophilized composition. In another embodiment the delivery vehicle is provided in a liquid, gel or cream composition. In anther embodiment the kit comprises a delivery vehicle provided in the same container as the contraceptive device.
[0046] In one embodiment the kit comprises directions that explain how to use the delivery vehicle in conjunction with the contraceptive device in order to reduce the risk of infection. In one embodiment the directions explain how to use the delivery vehicle in conjunction with the contraceptive device in order to reduce the risk of pregnancy and infection. In one embodiment the directions contain graphical illustrations.
[0047] In one embodiment, a pharmaceutical composition comprises a delivery vehicle. In another embodiment, a pharmaceutical composition comprises a delivery vehicle and maltodextrin beads. In one embodiment the delivery vehicle is a microorganism. In one embodiment the medicament is manufactured using a fluid bed dryer. In one embodiment the fluid bed dryer has a sterilized component assembled for use. In one embodiment maltodextrin beads are placed into the fluid bed dryer and are dried at about 30°C to 33 °C until sufficiently dry. A suspension of microorganisms is sprayed onto the beads using a peristaltic pump. After about half of the microorganism suspension is sprayed onto the maltodextrin beads, the heat is increased to about 35°C to 38°C. After all of the microorganism suspension has been sprayed onto the beads, the coated beads are then allowed to dry at about 37°C to 38°C for about 15-30 additional minutes. The coated maltodextrin beads can be frozen, stored as a powder, placed into gelatin capsules, or pressed into tablets. In one embodiment the coated maltodextrin beads are used as a vaginal medicament. In another embodiment, the coated maltodextrin beads are used in an oral tablet. In another embodiment, the coated maltodextrin beads are used in a suppository. In another embodiment, the coated maltodextrin beads are used in a suspension for delivery to a target surface on a mammal.
[0048] In another embodiment, a pharmaceutical composition comprises a delivery vehicle and
maltodextrin/dextrose co-agglomerates. In another embodiment, a pharmaceutical composition comprises a delivery vehicle and maltodextrin/sucrose co-agglomerates. In another embodiment, a pharmaceutical composition comprises a delivery vehicle and maltodextrin/fructose co-agglomerates. In another embodiment, sorbitol, mannitol, glycerol, or another dextrose equivalent is used for preparing a pharmaceutical composition comprising a delivery vehicle.
[0049] In one embodiment, a vaginal cream is provided that comprises a delivery vehicle. In one embodiment, the vaginal cream comprises one or more ingredients such as a stabilizer, pharmaceutically acceptable excipient, stiffening agent, oil, solvent, emulsifier, humectant, buffering agent, or emollient. In some embodiment, vaginal cream is a vaginal ointment, or vaginal emulsion. A pharmaceutically acceptable excipient includes a substance, or mixture of substances, that is used in the formulation of vaginal cream compositions to give desirable physical characteristics to the formulation. Examples of those compounds, materials, compositions, and/or dosage forms are, within the scope of sound medical judgment, suitable for contact with the tissues of human and animals without excessive toxicity, irritation, allergic response, or other complications. In some embodiments pharmaceutically acceptable excipients are those approved by a regulatory agency of the Federal or a state government or listed in the U.S. Pharmacopeia or other generally recognized international pharmacopeia for use in animals, and more particularly in humans. Various pharmaceutically acceptable excipients can be used. In one embodiment, a pharmaceutically acceptable excipient is a carrier for active pharmaceutical ingredient. In some embodiments, the pharmaceutically acceptable excipient or a carrier can be, but is not limited to, a stiffening agent, oil, a solvent, an emulsifier, a humectant, a buffering agent, a filler, an emollient, a stabilizer, a lubricant, a surfactant, gel, an organic solvent, a gelling agent, a moisturizer, an wetting agent, a time release agent, a sequestering agent, a dye, a perfume or combinations thereof.
[0050] In one embodiment a stabilizer comprises a substance that keeps a formulation chemically stable. F In one embodiment a stabilizer protects a formulation from instability caused by light, moisture, heat, or oxidation. In some embodiments, the stabilizer is lipophilic. In some embodiments, the stabilizer is hydrophilic. In some embodiments, the stabilizer can prevent or retard the oxidation of an oil. In some embodiments, the stabilizer is butylated hydroxyanisole (BHA), butylated hydroxytoluene (BHT), ascorbic acid and its esters, vitamin E and its esters, e.g., vitamin E acetate, sodium bisulfite, sodium metabisulfite, 3-dehydroshikimic acid (DHS), tocopherols and their esters, alkyl gallates, chelating agents, EDTA (ethylenediaminetetraacetic acid; edetate disodium), citric acid, benzyl alcohol, or a combination thereof. In some embodiments, the stabilizer is edetate disodium, butylated hydroxyanisole, butylated hydroxytoluene, or a combination thereof.
[0051] In one embodiment a stiffening agent comprises a substance, or mixture of substances, added to make a cream composition more viscous at room temperature. In one embodiment the cream is a vaginal cream. In some embodiments, a stiffening agent is any substance that promotes formation of a formulation having a semisolid consistency. The stiffening agent can be hydrophilic (e.g., carbopol, carboxymethylcellulose, hydroxypropylmethylcellulose, alginate, polyethylene glycol). In some embodiments, the stiffening agent has low hydrophilic-lipophilic balance (HLB). In some embodiments, the HLB value is less than 7. In some embodiments, the HLB value is less than 5. In some embodiments, the HLB value is about 4. Examples of suitable stiffening agents include, but are not limited to, hydrogenated vegetable oil, cetyl alcohol, cetyl esters wax, microcrystalline wax, paraffin, stearyl alcohol, lauryl alcohol, myristal alcohol, cetostearyl alcohol, white wax, yellow wax, beeswax, candelilla wax, cotton wax, carnauba wax, bayberry wax, rice-bran wax, and combinations thereof. In some embodiments, the stiffening agent is a mixture of cetyl esters wax, cetyl alcohol, and beeswax.
[0052] In one embodiment an oil includes any pharmaceutically acceptable hydrophobic liquid. In some embodiments, oil is an ester of glycerol (1,2,3-propanetriol) and fatty acids. Each of the fatty acid hydrocarbon chain can contain greater than 8 carbons. In some embodiments, each hydrocarbon chain can contain from about 12 to about 36 carbon atoms. In some embodiments, the hydrocarbon chains can contain a variety of functional groups. In some embodiments, the hydrocarbon chain can be branched. In some embodiments, the hydrocarbon chains are unsaturated or polyunsaturated. In some embodiments, the hydrocarbon chains are saturated. The degree of saturation can affect the physical state, for example viscosity, of the oil. In some embodiments, the oil can be, but is not limited to, vegetable, nut, and seed oils (e.g., almond oil, castor oil, coconut oil, corn oil, cotton seed oil, jojoba oil, linseed oil, grape seed oil, rape seed oil, mustard oil, olive oil, palm and palm kernel oil, peanut oil, safflower oil, sesame oil, soybean oil, sunflower-seed oil, crambe oil, wheat germ oil, and cocoa butter), hydrocarbon and petroleum oils (e.g., petrolatum, mineral oil, and liquid paraffin). In some embodiments, the term "oil" refers to higher fatty acids (e.g., lauric acid, myristic acid, palmitic acid, stearic acid, behenic acid, oleic acid, 12-hydroxystearic acid, undecylenic acid, tall acid, lanolin fatty acid, isostearic acid, linoleic acid, and linolenic acid) and combinations thereof. In some embodiments, the oil is not an ester of glycerol, e.g., mineral oil and silicone oil.
[0053] In one embodiment a solvent comprises a substance capable of dissolving or dispersing one or more of the therapeutic product or the excipients of the present invention. The solvent can be aqueous or non-aqueous. In some embodiments, the solvent is hydrophilic, and is 10% to 15% by weight, or 20%o to 60%o by weight, of the total composition. In some embodiments, the solvent is lipophilic, and is 20%o to 60%o by weight, or 25%> to 50%> by weight, of the total composition. In some embodiments, the solvent is water, a polyol (e.g., glycerol) or combinations thereof. In some embodiments, the solvent is oil as described above.
[0054] In one embodiment an emulsifier comprises a substance that promotes formation and stabilization of an emulsion or suspension. In some embodiments, the emulsifier includes, but is not limited to, sodium lauryl sulfate, propylene glycol monostearate, methyl stearate, glyceryl monostearate, and combinations thereof.
[0055] In one embodiment a humectant comprises a substance that promotes retention of moisture in the composition of the present invention. In some embodiments, the humectant includes, but is not limited to, polyethylene glycol, propylene glycol, glycerin, polyol, polyol derivatives, and combinations thereof.
[0056] In one embodiment a buffering agent comprises a substance capable of neutralizing both acids and bases and thereby maintaining the desired pH of the composition. In some embodiments, the buffering agent affects the emulsifying properties. For example, different buffering agents can be provided to increase or decrease the emulsification of a formulation. In some embodiments, the buffer can be, but is not limited to, Tris buffers (Tris EDTA (TE), Tris acetate (TAE), Tris phosphate (TPE), Tris glycine), phosphate buffers (e.g., sodium phosphate, potassium phosphate), bicarbonate buffers, acetate buffers (e.g., sodium acetate), ammonium buffers, citrate buffers, and derivatives and combinations thereof. In some embodiments, an organic acid buffer is used. In some embodiments, an acetate buffer, a phosphate buffer, or a citrate buffer can be used. In some embodiments, a zwitterionic buffer can be used. In some embodiments, the buffering agent is a phosphate buffer (e.g., sodium phosphate dibasic). [0057] The pH of a composition of the invention can be physiologically compatible and/or sufficient to maintain stability of a composition or a delivery vehicle contained therein. In some embodiments, the composition of the present invention can have a pH of 5 to 9 (such as about pH 5, 5.1, 5.2, 5.3, 5.4, 5.5, 5.6, 5.7, 5.8, 5.9, 6, 6.1, 6.2, 6.3, 6.4, 6.5, 6.6, 6.7, 6.8, 6.9, 7, 7.1, 7.2, 7.3, 7.4, 7.5, 7.6, 7.7, 7.8, 7.9, 8, 8.1, 8.2, 8.3, 8.4, 8.5, 8.6, 8.7, 8.8, 8,or 9), or a pH of 6.5 to 8. An emollient includes any substance that moisturizes and increases the pliability of the vaginal epithelium. In some embodiments, the emollient is lanolin, isopropyl myristate, palmitate, oleyl alcohol, beeswax, mineral oil, silicone oil, or combinations thereof.
[0058] In one embodiment, a gel comprises a delivery vehicle. In one embodiment the gel is a vaginal gel. In one embodiment, a vaginal gel comprises a pharmaceutically acceptable excipient, a gelling agent such as glycerin, water, hydroxyethylcellulose, methylcellulose, a buffering agent such as glucono-delta-lactone, citric acid, sodium bicarbonate, a diluents for GRAS organism such as magnesium stearate, or mannitol.
[0059] In some embodiments, a delivery vehicles described herein is provided as a kit comprising a delivery vehicle in a storage medium and a contraceptive. In one embodiment, the kit comprises a temperature-controlled container. In one embodiment, the kit comprises a moisture-controlled container. In another embodiment, the kit comprises an air-tight container. In one embodiment, a storage medium comprises a buffered solution safe for human use. In another embodiment, a buffered solution comprises glycerin. In one embodiment the concentration of glycerin can be about 5%, 7%, 10%, 13%, 15%, 18%, 20%, 23%, 27%, 30%, 35%, 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85% 90%, 95%, or 99% of the storage solution. In another embodiment, a buffered solution comprises dimethyl sulfoxide. In one embodiment the concentration of dimethyl sulfoxide can be about 5%, 7%, 10%, 13%, 15%, 18%, 20%, 23%, 27%, or 30% of the storage solution. In one embodiment, the contraceptive is a condom. In another embodiment, the condom is a male condom. In another embodiment, the condom is a female condom. In another embodiment, the condom is a latex condom. In another embodiment, the condom is a silicone-based condom. In another embodiment, the condom is polyurethane-based condom. In another embodiment, the condom is nitrile-based condom. In another embodiment the condom is biological material-based condom (e.g., sheep skin). In one embodiment, the contraceptive vaginal ring. In another embodiment, the vaginal ring comprises an ethylene vinylacetate copolymer. In another embodiment, the vaginal ring comprises magnesium stearate. In another embodiment, the vaginal ring comprises chemical contraceptives such as progestin or estradiol analogs. In one embodiment, the contraceptive is a diaphragm. In another embodiment, the diaphragm comprises plastic. In another embodiment, the contraceptive is a sponge. In another embodiment, the sponge comprises an expandable polymer, such as polyurethane. In another embodiment, a sponge is impregnated with a delivery vehicle described herein. In another embodiment, a sponge is impregnable with delivery vehicles described herein. In another embodiment, a sponge is immersible in a solution comprising water.
[0060] In one embodiment, a pharmaceutical composition comprises a microorganism described herein which is lyophilized or freeze-dried. In another embodiment, a pharmaceutical composition comprises a microorganism described herein which has undergone sporulation or is present as a spore. In one embodiment, a
pharmaceutical composition described herein are formulated by directly mixing lyophilized microorganisms with one or more excipients. In another embodiment, a pharmaceutical composition described is formulated by resuspending lyophilized microorganisms in a suitable solution and mixing the resuspended solution with one or more excipients. In one embodiment, a suitable solution is phosphate-buffered saline. In another embodiment, a suitable solution is water. In one embodiment, an the pharmaceutical composition is a foam, cream, patch, gel, powder, solution, liquid, oil, oral solution, vaginal wash, vaginal douche, breast milk supplement, infant formula, petroleum jelly, a suppository, an aerosol, a liquid, tampon component, or a tablet.
[0061] In one embodiment a pharmaceutical composition comprises a sufficient amount of microorganism described herein (such as a Lactobacilli strain) to deliver number of colony- forming units (CFU) of the microorganism so that an adequate amount of therapeutic product is expressed in a subject. In one embodiment the pharmaceutical composition comprises 104 to 1018 CFU/g of composition. In another embodiment the pharmaceutical composition comprises 105 to 1016 CFU/g of composition. In another embodiment the pharmaceutical composition comprises 106 to 1012 CFU/g of composition. In another embodiment the pharmaceutical composition comprises 104, 105, 106, 107, 108, 109, 1010, 1011, 1012, 1013, 1014, 1015, 1016, 1017, or 1018 CFU/g of composition. In another embodiment the pharmaceutical composition comprises 104 to 1018
CFU/ml of composition. In another embodiment the pharmaceutical composition comprises 105 to 1016 CFU/ml of composition. In another embodiment the pharmaceutical composition comprises 106 to 1012 CFU/ml of composition. In another embodiment the pharmaceutical composition comprises 104, 105, 106, 107, 108, 109, 1010, 1011, 1012, 1013, 1014, 1015, 1016, 1017, or 1018 CFU/ml of composition.
[0062] In one embodiment a microorganism is suitably freeze-dried so as to provide live microorganisms upon reconstitution. In one embodiment a pharmaceutical composition is provided, comprising a freeze-dried microorganism obtained as described in Korean patents KR 429494B or KR 429495 B, the contents of which are incorporated herein by reference in their entirety. In another embodiment a microorganism may be dried by spray drying or fluid bed drying. In one embodiment the dried microorganism can have a coating, such as a gastric juice resistant coating. In one embodiment a dried microorganism used in a blending or compacting step has a coating or is embedded in matrix material. In one embodiment a freeze-dried preparation of a microorganism can be obtained by treatment of a cell suspension of the microorganism with compounds such as proteins (whey, milk, others), sugars (maltose, trehalose, lactose, sucrose), starch, cellulose, and optionally, other stabilizing or freeze protecting agents like ascorbic acid. In another embodiment, the cell suspension is treated with proteins, maltodextrins, trehalose, and optionally, other stabilizing or freeze protecting agents like ascorbic acid to form a viscous paste, which is submitted to freeze-drying. The so-obtained material can be ground to a size of about 10 μΜ to about 800 μΜ. In one embodiment, the microorganism is coated by or embedded within a salt of a medium or long-chain fatty acid, wherein the microorganism optionally has a first coating layer below the coating by the salt of the medium or long-chain fatty acid. In one embodiment a pharmaceutical composition is prepared using the methods of US20090214647 (which is herein incorporated by reference in its entirety), such as to prepare an enteric tablet.
[0063] Other methods of lyophilizing live microorganisms for use in a pharmaceutical composition known in the art can be used with the microorganisms described herein. For example, AU 2005251397, which is herein incorporated by reference in its entirety, describes methods of lyophilizing live bacteria for use in cancer treatment. Remington: The Science and Practice of Pharmacy (21st edition, Lippincott Williams & Wilkins,
2005), which is herein incorporated by reference in its entirely, describes methods of formulating a medicament containing microorganism.
[0064] In another embodiment a pharmaceutical composition comprising a microorganism described herein is formulated for administration to the vagina, such as the formulations described in US 20050276836, which is herein incorporated by reference in its entirety. In one embodiment the pharmaceutical composition is a
Suppository-Type Vaginal Pellet. In one embodiment the pellet is formulated with polyethylene glycol, a lyophilized microorganism described herein, one or more excipients, (such as Povidone K29) and optionally citric acid and sodium bicarbonate.
[0065] In another embodiment a lyophilized vaginal foam is provided. In one embodiment the vaginal foam is prepared as follows: about 20 g of a microorganism described herein (such as a lactobacillus that expresses one or more antibodies of interest) with at least 106 cfu/mL and supplemented with one or more of p-aminobenzoic acid, D-pantothenic acid, niacinamide, riboflavin, thiamine, L-arginine, L-cystine, L-tyrosine, L-tryptophane, or L-aspartic acid is combined with about 20 mL of a solution containing alginic acid, sodium salt, and PEG 400 in distilled water. Aliquots of about 5 mL of the suspension are filled into plastic syringes and subjected to a complete freezing process for about 12 h at -80. degree. C. The samples are removed from the syringe mold and lyophilized to yield a vaginal foam devices.
[0066] In one embodiment a pharmaceutical composition of the invention is prepared in the form of a suspension, spray, gel, cream, powder, capsule, solution for lavages, ovules, a vaginal insert, tablets or a microencapsulated product employing excipients and formulation techniques know to those skilled in the art. In one embodiment the formulation is one described in formulations described in US 20050220776, which is herein incorporated by reference in its entirety.
[0067] In one embodiment a pharmaceutical composition is formulated to adhere to a mucosal membrane. In one embodiment mucous adhesive excipients may be added to comprise up to about 10% of the pharmaceutical composition. In one embodiment the mucous adhesive excipient is a hydrocolloid, more preferably the hydrocolloid is selected from the group comprising xanthan gum, locust bean gum alginate and most preferably the hydrocolloid is xanthan gum.
[0068] Candida albicans are not able to ferment lactitol, this may also be the case for E. coli or other Gram negative bacteria. In one embodiment a prebiotic substrate which is not fermented by Candida albicans or by pathogenic bacteria is employed in a vaginal pharmaceutical composition formulations comprising a microorganism described herein (such as a Lactobacilli strain) in order to suppress the growth of Candida albicans. In one embodiment prebiotic substrate can be an oligosaccharide, such as lactitol, oligofructose or lactulose. In one embodiment the substrate is lactitol.
[0069] In another embodiment of the present invention, a pharmaceutical composition that is a absorbent product is provided comprising a microorganism described herein (such as a Lactobacilli strain). The microorganism is incorporated into absorbent products in order to allow the convenient administration of the microorganism during use of the absorbent product.
[0070] In one embodiment the absorbent product is a feminine hygiene diaper, sanitary napkin, impregnated tampon, panty guard or an incontinence guard comprising a microorganism described herein (such as a Lactobacilli strain). In one embodiment the microorganism employed in the absorbent product is used in a bacterial concentrations of 105 to 1013CFU/g. In another embodiment the microorganism (such as a Lactobacilli strain) employed in the absorbent product is used in a bacterial concentrations of 106 to 1012CFU/g. In another embodiment the microorganism (such as a Lactobacilli strain) employed in the absorbent product is used in a bacterial concentrations of 104, 105, 106, 107, 108, 109, 1010, 1011, 1012, 1013, 1014, 1015, 1016, 1017, or 1018 CFU/g of absorbent product.
[0071] In one embodiment a microorganism described herein (such as a Lactobacilli strain) is mixed with one ore more protective solutions to increase the survival rate of live microorganism through the formulation process. In one embodiment, a protective solution is oil. In another embodiment, a protective solution is a long- chain fatty acid. In another embodiment, a protective solution is a salt-containing medium. In one embodiment, a microorganism is first mixed with a protective solution prior to drying, compaction, granulation or grinding. In another embodiment, microorganism is mixed with protective solution, compacted, granulated and then processed for further coating. In another embodiment, a mixture of microorganism and protective solution is converted to a powder in which the powder is added to the coating process.
[0072] In one embodiment, long-chain fatty acid useful for formulations described herein is CIO to C30 fatty acid. In one embodiment, the fatty acid is a stearate. In another embodiment, the fatty acid is a palmitate.
[0073] In one embodiment, the salt useful for formulations described herein is non-toxic salt. In one embodiment, the salt is calcium salt. In another embodiment, the sale is magnesium salt.
[0074] In one embodiment, oil useful for formulation described herein is edible oil. In one embodiment, the oil is tocopherol. In another embodiment, the oil is soy oil, palm oil, or sunflower oil.
[0075] In one embodiment, the amount of salt, fatty acid or oil can be from about 5 to about 90 % of the dried weight of the formulation.
[0076] In one embodiment a microorganism described herein (such as a Lactobacilli strain) is coated. In one embodiment the coating material suitable for formulations containing microorganism is a water-soluble material. In one embodiment, the water-soluble material is carbohydrate. In another embodiment, the water- soluble material renders the solution viscous. In one embodiment carbohydrates useful for coating include but are not limited to oligosaccharides, disaccharides or monosaccharides. In another embodiment carbohydrates useful for coating include but are not limited to alginate, pectin, starch, modified starch, maltodextrin, carrageenan, gum arabic, guar gum, xanthan, cellulose or cellulose derivatives, such as hydroxypropyl methylcellulose, hydroxypropyl methylcellulose phthalate or acetate-succinate,. In another embodiment, a protein such as gelatin is used in coating process.
[0077] In another embodiment the treatment schedule of a subject with a pharmaceutical composition comprising a microorganism described herein (such as a Lactobacilli strain) depends on the product in question and the route of administration. In one embodiment the route of administration of a pharmaceutical composition comprising a microorganism described herein (such as a Lactobacilli strain) is intranasal, rectal, vaginal, intraperitoneal, intravascular, hypodermic, oral, intraurethral, intraocular, or by inhalation, In one embodiment the subject is administered a pharmaceutical composition comprising a microorganism described herein (such as a Lactobacilli strain) one to six times a day (such as 1, 2, 3, 4, 5, or 6 times a day). In one embodiment the subject is administered a pharmaceutical composition comprising a microorganism described herein (such as a Lactobacilli strain) from 1 to 90 days (such as 1, 2, 3, 4, 5, 6, 7,8, 9, 10 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23,24, 25, 26 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 88, 83, 84, 85, 86, 87, 88, 89, or 90 days). In another embodiment the subject is administered a pharmaceutical composition comprising a microorganism described herein (such as a Lactobacilli strain) from 1 to 60 days. In another embodiment the subject is administered a pharmaceutical composition comprising a microorganism described herein (such as a Lactobacilli strain) from 1 to 30 days. In another embodiment the subject is administered a pharmaceutical composition comprising a microorganism described herein (such as a
Lactobacilli strain) from 1 to 14 days. In another embodiment the subject is administered a pharmaceutical composition comprising a microorganism described herein (such as a Lactobacilli strain) from 1 to 7 days. In another embodiment the subject is administered a pharmaceutical composition comprising a microorganism described herein (such as a Lactobacilli strain) about each day on a continuous basis. In another embodiment the subject is administered a pharmaceutical composition comprising a microorganism described herein (such as a Lactobacilli strain) prior to, during or after sexual intercourse. In one embodiment the microorganism described herein (such as a Lactobacilli strain) is administered to specific mucosal layer (such as an oral, anal, vaginal or urethral mucosal layer) prior to, during or after sexual intercourse.
[0078] In another embodiment the subject is administered a pharmaceutical composition comprising a microorganism described herein (such as a Lactobacilli strain) once a day for 1 to 30 days. In another embodiment the subject is administered a pharmaceutical composition comprising a microorganism described herein (such as a Lactobacilli strain) twice a day for 1 to 30 days. In another embodiment the subject is administered a pharmaceutical composition comprising a microorganism described herein (such as a
Lactobacilli strain) three times a day for 1 to 30 days. In another embodiment the subject is administered a pharmaceutical composition comprising a microorganism described herein (such as a Lactobacilli strain) four times a day for 1 to 30 days.
[0079] In another embodiment a pharmaceutical composition comprising a microorganism described herein (such as a Lactobacilli strain) is administered to a subject in sufficient quantities and at sufficient intervals so as to maintain a stable population of the microorganism in the subject in vivo. In one embodiment the microorganism described herein (such as a Lactobacilli strain) is maintained in a subject in sufficient numbers to express an amount of a therapeutic product sufficient to inhibit infection of the subject by a pathogen. In one embodiment the pathogen is HIV. In another embodiment the therapeutic product is an anti-CD 18 or anti-CDl 1 antibody.
[0080] Target area
[0081] In one aspect a target area is a biological area accessible by a delivery vehicle. A target area includes, but is not limited to the skin, dermis, epithelium, vascular surface, interstitial fluid, extracellular matrix, mucosal layer, cuticle, or a subcutaneous layer. In one embodiment, a target area is an oral cavity. In another embodiment, a target area is a vaginal cavity. In another embodiment, a target area is a vaginal epithelium. In another embodiment, a target area is a uterine wall. In another embodiment, a target area is an endometrium. In another embodiment, a target area is a perimetrium. In another embodiment, a target area is a myometrium. In another embodiment, a target area is a cervix. In another embodiment, a target area is a uterine tube. In another embodiment, a target area is a vaginal wall. In another embodiment, a target area is a sinus cavity. In another embodiment, a target area is an anus. In another embodiment, a target area is a colon. In another embodiment, a target area is a urethra. In another embodiment, a target area is an airway. In another embodiment, a target area is an ear canal. In another embodiment, a target area is an ocular cavity. In another embodiment, a target area is an eye. In another embodiment, a target area is an oral mucosa. In another embodiment, a target area is a stomach. In another embodiment, a target area is a rectum or a portion of a gastrointestinal tract.
[0082] Therapeutic product
[0083] In one aspect, a delivery vehicle expresses a therapeutic product. In one embodiment the delivery vehicle is a microorganism. In one embodiment a therapeutic product is biological material. Biological material includes, but is not limited to, an antibody or a fragment thereof, a polypeptide, a protein, a glycoprotein, a carbohydrate, a co- factor of an enzyme such as vitamin, flavin, a fatty acid, or a nucleic acid. In one embodiment, a therapeutic product is a protein. In another embodiment, a therapeutic product is a glycoprotein.
In another embodiment, a therapeutic product is a polypeptide. [0084] In one embodiment, a therapeutic product is an antibody or a fragment thereof. An antibody or a fragment thereof includes, but is not limited to an antibody that comprises one or more light chains and one or more heavy chains, a single-chain antibody, a VHH antibody (variable domain of a heavy chain), a VNAR antibody, or a scFv antibody (a single-chain Fv fragment). In another embodiment, a therapeutic product is a VHH or VNAR antibody or a fragment thereof. In one embodiment, a single-chain antibody is a single heavy- chain antibody that forms a homodimer. In another embodiment, a single heavy-chain antibody is a camelid antibody. In another embodiment, a single heavy- chain antibody is a camel antibody. In another embodiment, a VHH antibody is a llama antibody. In another embodiment, a therapeutic product is a scFv antibody or a fragment thereof. In one embodiment, an antibody or a fragment there of is a human antibody. In another embodiment, an antibody or a fragment there of is a humanized antibody. In another embodiment, a therapeutic product is an antibody or a fragment thereof fused to a polypeptide that is not an antibody or a fragment derived from an antibody. In another embodiment, a therapeutic product is a single heavy-chain antibody or a fragment thereof.
[0085] In one embodiment, a single heavy chain antibody is a VNAR antibody (see US 20080206233, which is herein incorporated by reference in its entirety. It has been shown that sharks also have a single VH-like domain in their antibodies termed VNAR (Nuttall et al. "Isolation and characterization of an IgNAR variable domain specific for the human mitochondrial translocase receptor Tom70" Eur. J. Biochem. (2003) 270, 3543- 3554; Dooley et al. "Selection and characterization of naturally occurring single-domain (IgNAR) antibody fragments from immunized sharks by phage display" Molecular Immunology (2003) 40, 25-33; Nuttall et al. "Selection and affinity maturation of IgNAR variable domains targeting Plasmodium falciparum AMAl "
Proteins: Structure, Function and Bioinformatics (2004) 55, 187-197). Each IgNAR contains a single variable domain (VNAR) and five constant domains (CNAR). VNAR and VHH domains both contain disulfide bonds and have binding affinities in the nanomolar range. In another embodiment a VNAR-type immunoglobulin or fragments thereof can be expressed by a microorganism described herein.
[0086] In one embodiment, a delivery vehicle described herein express full-length IgNAR or a fragment thereof. In one embodiment, a delivery vehicle described herein express a single VNAR domain. In another embodiment, a delivery vehicle described herein express a VNAR domain and one or more CNAR domains. In one embodiment, the sequence of VNAR domain is humanized.
[0087] In one embodiment, a baby shark is immunized with a polypeptide binding target such as CD18, CD1 la, or ICAM-1 to obtain IgNAR. The immunization procedure has been described (for example, Suran et al., J. Immunology, 99:679-686, 1967). In one embodiment, the polypeptide is dissolved in keyhole limpet hemocyanin (KLH) supplemented with complete Freund's adjuvant and then injected intramuscularly. Booster shots are administered as necessary. In one embodiment, booster shots are administered in every two weeks for four weeks after the initial injection is administered. After immunization, blood is withdrawn from the shark and the total IgG is precipitated from the blood. In one embodiment, fractions binding to the polypeptide are separated from the total IgG through affinity chromatography methods. The purified, polyp eptide-binding antibodies are sequenced.
[0088] In another embodiment, lymphocytes are isolated from immunized shark blood. RNAs purified from the lymphocytes are reverse-transcribed. PCR primers are prepared based on sequence information generated by amino acid sequencing and used to amplify cDNAs expressing antigen-specific IgNAR. In one embodiment, the amplified sequence is cloned to an expression vector to recombinantly express antigen-specific IgNAR or a fragment thereof.
[0089] In another embodiment, a fragment of IgNAR is chemically synthesized by digesting isolated antigen- specific IgNAR. In one embodiment, controlled digestion utilizing proteolytic enzyme, such as trypsin, is performed for a limited digestion of the full-length IgNAR. Resulting fragments are tested for antigen-binding in a conventional laboratory protein-protein binding assay. In one embodiment, testing is performed by affinity chromatography using the antigen polypeptide as bait protein. In another embodiment, testing is performed in a pull-down assay using a bead-antigen conjugate as bait protein. In one embodiment, a fragment retaining the antigen-specific binding is sequenced. In another embodiment, the sequence information is utilized to express the fragment in a microorganism described herein.
[0090] In one embodiment, a VNAR domain or a fragment thereof is secreted. In another embodiment, a VNAR domain or a fragment thereof is anchored to the surface of a delivery vehicle described herein. In one embodiment, a VNAR domain or a fragment thereof is covalently linked to a scFv. In another embodiment, a VNAR domain or a fragment thereof is covalently linked to a scFv recognizing SAI/II adhesion. In another embodiment, a VNAR domain or a fragment thereof is fused with the APF protein. In another embodiment, a VNAR domain or a fragment thereof is covalently linked to scFv and the APF protein. In another embodiment, scFv is fused to the APF protein via a VNAR domain or a fragment thereof. In one embodiment, a region of the APF protein is selected for expression and secretion of a VNAR domain or a fragment thereof.
[0091] A domain refers to a folded protein structure that retains its tertiary structure independently of the rest of the protein. Generally, domains are responsible for discrete functional properties of proteins, and in many cases may be added, removed, or transferred to other proteins without loss of function of the remainder of the protein and/or of the domain. An antibody domain is a folded polypeptide domain which comprises a sequence characteristic of immunoglobulin variable domains and which specifically binds an antigen, including complete antibody variable domains as well as modified variable domains, such as one or more loops have been replaced by sequences which are not characteristic of antibody variable domains or antibody variable domains.
[0092] In one embodiment, an antibody produced from a camelid species is devoid of any light chains. In another embodiment a camelid antibody is devoid of any light chains and comprises one or more heavy chains. In one embodiment the one or more heavy chains have variable domains with properties differing from the variable domains of four-chain immunoglobulins. As used herein, this variable domain is called VHH to distinguish it from the classical VH of four-chain immunoglobulins. The variable domain has no normal interaction sites with the VL or with the CHI domain which do not exist in the heavy- chain immunoglobulins.
[0093] In camelid species, the heavy chain variable region, referred to as VHH, forms the entire antigen-binding domain. Differences between camelid VHH variable regions and those derived from conventional antibodies (VH) include; (a) more hydrophobic amino acids in the light chain contact surface of VH as compared to the corresponding region in VHH; (b) a longer CDR3 in VHH; and (c) the frequent occurrence of a disulfide bond between CDRl and CDR3 in VHH. A nucleotide sequence of camel VHH was produced by Muyldermans et al., WO2009150539.
[0094] Table 1. Camel VHH Sequence
Figure imgf000034_0001
AGGCGGTCGCGATTATAAATAGCCTTGGTCAAACGATCTATGTCGCCGACCCCGTGAAGGGCCGATTC TCCATCTCCCAAGACAACGCCAAGGACACGGTGTATCTGCAAATGAACAGCCTGAAACTTAACGACAC GGCCATGTATTACTGTGCGGTAGCCAATGGTGGTTGTGGTGAGTCGTGGCGCCCTGATTACGTCGGCC AGGGGACCCAGGTCACCGTCTCCTCACACCACCATCACCATCACTAA
[0095] The VHH produced in camelid species can also be generated in a cell by genetic engineering or by chemical synthesis. In one embodiment, a cell is a microorganism. In one embodiment, the microorganism is a delivery vehicle. In another embodiment, the microorganism is non-pathogenic. In one embodiment, the
microorganism is a strain of Lactobacillus. In another embodiment, the microorganism is a GRAS
microorganism. In another embodiment, the microorganism is a food-grade edible microorganism. In another embodiment, a GRAS microorganism is a GLP-certified grade microorganism. In another embodiment, the microorganism is a pharmaceutical grade microorganism. In another embodiment, the pharmaceutical grade microorganism is a Good Manufacturing Practices (GMP)-certified pharmaceutical grade microorganism.
[0096] In one embodiment, a delivery vehicle delivers an antibody or antigen-binding fragment, variant, or derivative thereof. In one embodiment the antibody or antigen-binding fragment, variant, or derivative thereof is a polyclonal, monoclonal, multispecific, single chain antibody, or epitope-binding fragment. In another
embodiment the antibody or antigen-binding fragment, variant, or derivative thereof is an Fab, Fab' and F(ab')2, Fd, Fvs, single-chain Fvs (scFv), single-chain antibody, disulfide-linked Fvs (sdFv), a fragment comprising either a VL or VH domain, a fragment produced by a Fab expression library, or an anti-idiotypic (anti-Id)
antibody (e.g., anti-Id antibody to TNF-alpha antibody). ScFv molecules are described, e.g., in U.S. Pat. No.
5,892,019. In one embodiment an antibody is an IgG, IgE, IgM, IgD, IgA, orlgY antibody. In another
embodiment an antibody is a IgGl, IgG2, IgG3, IgG4, IgAl or IgA2 antibody. In one embodiment the antibody or antigen-binding fragment, variant, or derivative thereof is human. In one embodiment the antibody or
antigen-binding fragment, variant, or derivative thereof is humanized. In one embodiment the antibody or antigen-binding fragment, variant, or derivative thereof is camelid. In another embodiment an antibody or fragment thereof is a single chain antibody or fragment thereof.
[0097] An antibody or a fragment thereof including a single-chain antibody can comprise variable region(s) alone or in combination with the entirety or a portion of the following: hinge region, CHI, ¾2, or (¾3 domains.
An antigen-binding fragment can also comprise any combination of variable region(s) with a hinge region, CHI, CH2, or CH3 domains. An antibody or an immunospecific fragment thereof includes humanized or fully human antibodies, antibodies where at least all of the CDRs within the variable domain(s) have the amino acid
sequence of a human immunoglobulin variable domain or the amino acid sequence of a human immunoglobulin CDR. In one embodiment, the non-CDR regions of an antibody is from any animal origin such as a bird or a mammal and can comprise primate, murine, donkey, rabbit, goat, guinea pig, camel, llama, horse, or chicken non-CDR immunoglobulin region.
[0098] In one embodiment, a heavy chain portion of an antibody includes amino acid sequences derived from an immunoglobulin heavy chain. In one embodiment, a polypeptide comprising a heavy chain portion comprises at least one of: a CHI domain, a hinge (e.g., upper, middle, and/or lower hinge region) domain, a Cm domain, a Cro domain, or a variant or fragment thereof. In another embodiment, a binding polypeptide comprises a polypeptide chain comprising a CHI domain; a polypeptide chain comprising a CHI domain, at least a portion of a hinge domain, and a Cm domain; a polypeptide chain comprising a CHi domain and a Cro domain; a polypeptide chain comprising a CHI domain, at least a portion of a hinge domain, and a CH3 domain; or a polypeptide chain
comprising a CHI domain, at least a portion of a hinge domain, a CH2 domain, and a CH3 domain. In another embodiment, a polypeptide comprises a polypeptide chain comprising a CH3 domain. In another embodiment, a binding polypeptide can lack at least a portion of a (¾2 domain (e.g., all or part of a (¾2 domain). In another embodiment, an antibody domain (e.g., the heavy chain portions) is modified such that they vary in amino acid sequence from the naturally occurring immunoglobulin domains.
[0099] In one embodiment, a therapeutic product is a polypeptide that binds to cell surface molecule. In another embodiment, a therapeutic product is a polypeptide that binds to a cell surface molecule and blocks a pathogen from binding to the surface molecule. In one embodiment the polypeptide is an antibody or a fragment thereof. In another embodiment, the polypeptide binds to ICAM-1. In another embodiment, the polypeptide binds to CD18. In another embodiment, the polypeptide binds to CD11. In another embodiment, a polypeptide is not an antibody or a fragment thereof. In another embodiment, a pathogen is a virus, bacteria or a fungus.
[00100] In one embodiment, a therapeutic product that binds to a cell surface molecule is identified by screening with a high-throughput screening method. In one embodiment, the high-throughput screening method is phage display. An example of a suitable phage display technique is described in U.S. Patent Application No.
2004000940, which is herein incorporated by reference in its entirety. Other high-throughput, screening techniques for identifying protein-protein interactions, such as cDNA library screening, yeast-two hybridization, or affinity column chromatography can be used for screening.
[00101] In one embodiment, a therapeutic product is that binds to a cell surface molecule is further screened for an ability to block one or more pathogens from interacting with the cell surface molecule. In one embodiment, the screening method is a transwell assay system where pathogens bound to cell surface are identified by relative location in a transwell in comparison to unbound pathogens. In another embodiment, the screening method is a competition assay where the therapeutic product is bound to a cell surface, and in a subsequent step the amount of freed therapeutic product is measured in relation to increasing concentration of a pathogen. In one embodiment, a dissociation constant of a polypeptide capable of binding to CD11 is measured in a competition assay against an HIV virus. In another embodiment, a dissociation constant of a polypeptide that binds to CD 18 is measured in a competition assay against an HIV virus. In another embodiment, a dissociation constant of a polypeptide capable of binding to ICAM-1 is measured in a competition assay against an HIV virus.
[00102] In one embodiment, an antibody therapeutic product is an antibody or a fragment thereof that binds to a cell surface molecule. In one embodiment, the cell surface molecule is ICAM. In another embodiment, the cell surface molecule is CD 18. In another embodiment, the cell surface molecule CD11. In another embodiment, the cell surface molecule is ICAM-1. In another embodiment, the cell surface molecule is CD60b, CD la, CD lb, CDlc, CDld, CDle, CD2, CD3, CD3d, CD3e, CD3g, CD4, CD5, CD6, CD7, CD8a, CD8b, CD9, CD10, CDl la, CDl lb, CDl lc, CDl ld, CDW12, CD13, CD14, CD15, CD16a, CD16b, CD17, CD18, CD19, CD20, CD21, CD22, CD23, CD24, CD25, CD26, CD27, CD28, CD29, CD30, CD31, CD32a, CD32b, CD32c, CD33, CD34, CD35, CD36, CD37, CD38, CD39, CD40, CD41, CD42a, CD42b, CD42c, CD42d, CD43, CD44, CD45, CD45RA, CD45RB, CD45RC, CD45RO, CD46, CD47, CD48, CD49a, CD49b, CD49c, CD49d, CD49e,
CD49f, CD50, CD51, CD52, CD53, CD54, CD55, CD56, CD57, CD58, CD59, CD60a, CD60b, CD60c, CD61, CD62E, CD62L, CD62P, CD63, CD64a, CD65, CD65s, CD66a, CD66b, CD66c, SynCAMs, NCAMs, VCAMOl, LI, CHL1, MAG, Nectin or a nectin-like molecules.
[00103] The "CD" notation for cell surface molecules described herein mean one or more molecules collectively known as or assigned to a particular "CD" number. For example, CD11 means molecules and subunits known as cluster of differentiation 11 such as CD1 la, CD1 lb, or CD1 lc. CD designated molecules are also known by common names. For example, CD54 is also known as ICAM-1. CD1 la is also known as lymphocyte function associated antigen 1 alpha polypeptide, integrin alpha L or ITGAL. Each molecule described herein by its commonly known name refers to human nucleotide or polypeptide sequence in public sequence databases that can be identified by the commonly known name.
[00104] In one embodiment, VHH or VNAR antibody sequences recognizing a cellular or viral protein are obtained by immunizing a transgenic mammal capable of expressing heavy chain antibodies. In one embodiment, heavy chain antibody includes heavy chain antibodies with single variable domain, such as human single variable domains, Camelid single variable domains or shark single variable domains, synthetic or semisynthetic single variable domains. Animals, such as a mouse, with a confirmed immune response can be used to obtain nucleic acid sequence to clone the antibody of VHH sequence. In another embodiment, phage display techniques known in the art (e.g., McCafferty et al, Phage display of peptides and proteins. Academic Press, San Diego, 1996) can be used to screen for antibodies recognizing a cellular protein (such as CD 18, CD1 la, b, c, or d) or viral protein. In another embodiment, a llama can be immunized with a human cell surface protein or a viral protein as described herein. From the immunized llama, lymphocytes can be harvested from a blood sample to test and screen for antibody response.
[00105] In one embodiment, an antibody therapeutic product is an antibody or a fragment thereof that binds to a viral molecule. In one embodiment, the viral molecule is a viral envelope protein. In one embodiment, the envelope protein is HIV gp 120. In another embodiment, the area recognized by the antibody is CD4 binding site of gp 120. In another embodiment, the area recognized by the antibody is the co-receptor binding site on gp 120. In another embodiment, the area recognized by the antibody is V3 loop of gp 120. In another embodiment, the area recognized by the antibody is the glycans on gp 120. In another embodiment, the envelope protein is HIV gp 41. In another embodiment, the area recognized by the antibody is membrane proximal external region of gp 41. In one embodiment, the area recognized by the antibody is glycoprotein C of HS V- 1. In another embodiment, the area recognized by the antibody is ICP5 major capsid protein of HSV. In another embodiment, the area recognized by the antibody is glycoprotein D of HSV-2. In one embodiment, the area recognized by the antibody is Hepatitis B core antigen (HBcAg). In another embodiment, the area recognized by the antibody is Hepatitis B surface antigen (HBsAg).
[00106] In one embodiment, an antibody therapeutic product is an antibody or a fragment thereof that binds to a virus. A virus includes, but is not limited to, Adenovirus, Astrovirus, Avian influenza virus, Coxsackievirus, Dengue virus, Ebola virus, Echovirus, Enteric adenovirus, Enterovirus, Hantaviruses, Hepatitis A virus,
Hepatitis B virus, Hepatitis C virus, Hepatitis D virus, Hepatitis E virus, Herpes simplex virus (HSV), Human cytomegalovirus, Human immunodeficiency virus (HIV), Human papillomavirus (HPV), Influenza virus, Japanese encephalitis virus (JEV), Lassa virus, Marburg virus, Measles virus, Mumps virus, Norovirus, Parainfluenza virus, Poliovirus, Rabies virus, Respiratory syncytial virus, Rotavirus, Rubella virus, SARS coronavirus, Tick-borne encephalitis virus (TBEV), Variola virus, West Nile virus, and Yellow fever virus.
[00107] In one embodiment, a therapeutic product is a nucleic acid. In one embodiment, a nucleic acid is a DNA or a RNA molecule capable of interacting with a cell surface molecule. In another embodiment, a nucleic acid is selected for its ability to interact with ICAM- 1. In another embodiment, a nucleic acid is selected for its ability to interact with CD 18. In another embodiment, a nucleic acid is selected for its ability to interact with CD 11.
[00108] In one embodiment, a therapeutic product is an aptamer. In one aspect, an aptamer is an oligonucleotide aptamer. In one embodiment, an oligonucleotide aptamer is a DNA aptamer. In another embodiment, an oligonucleotide aptamer is a RNA aptamer. In another embodiment, an oligonucleotide aptamer is selected by an in vitro selection process, such as SELEX (systematic evolution of ligands by exponential enrichment). In another embodiment, an oligonucleotide aptamer is selected for its ability to bind to a cell surface antigen. In another embodiment, an oligonucleotide aptamer is selected for its ability to bind to ICAM- 1. In another embodiment, an oligonucleotide aptamer is selected for its ability to bind to CD18. In another embodiment, an oligonucleotide aptamer is selected for its ability to bind to CD11. In another aspect, an aptamer is a peptide aptamer. In one embodiment, a peptide aptamer is selected by an in vitro method, such as yeast-two-hybrid. In another embodiment, a peptide aptamer is selected for its ability to bind to a cell surface antigen. In another embodiment, an oligonucleotide aptamer is selected for its ability to bind to ICAM- 1. In another embodiment, an oligonucleotide aptamer is selected for its ability to bind to CD 18. In another embodiment, an
oligonucleotide aptamer is selected for its ability to bind to CD11.
[00109] In one embodiment, a therapeutic product is a ligand. In one embodiment, a ligand is selected for its ability to interact with a cell surface molecule. In another embodiment, a ligand is selected for its ability to interact with ICAM- 1. In another embodiment, a ligand is selected for its ability to interact with CD 18. In another embodiment, a ligand is selected for its ability to interact with CD11. In one aspect, a ligand, upon binding to one or more cell surface molecules, prevents other molecules from interacting with the cell surface molecule. In another aspect, a ligand is a competitive ligand that displaces other molecules already bound to a cell surface molecule.
[00110] Production of therapeutic product
[00111] In one embodiment, a therapeutic product is produced in a delivery vehicle. In one embodiment, the delivery vehicle is a microorganism. In one embodiment, a microorganism delivers a polypeptide. In one embodiment, the polypeptide is encoded by a nucleic acid sequence in the microorganism. In one embodiment, the polypeptide is produced from a plasmid transcribed and translated by the microorganism. In another embodiment, the polypeptide is encoded by an exogenous nucleic acid sequence integrated into the microorganism's genome. In one embodiment, a therapeutic product is produced within a vehicle from a plasmid or other vector. In another embodiment, a therapeutic product is produced within a vehicle by a nucleic acid sequence integrated to the chromosome. In one embodiment the microorganism is a Lactobacillus.
Chromosomal integration of recombinant DNA ensures stable expression of heterologous antigens both in vitro and in vivo. Various systems have previously been developed to stably integrate a heterologous gene into the chromosome, generating food grade expression systems devoid of antibiotic selection genes. One of these systems is based on the site-specific integration apparatus of temperate bacteriophage A2 of Lactobacillus. In another embodiment, an antibody or its fragment is produced from a chromosomally integrated nucleic acids sequence encoding the antibody or a fragment thereof.
[00112] Methods of chromosomal integration include, but are not limited to, homologous recombination or use of insertion sequences (e.g., a transposon). In one embodiment, two-chain antibody production in a microorganism involves a heterodimerization and/or post-translational modification of polypeptide. In another embodiment, a microorganism produces a single heavy-chain antibody. In one embodiment, a nucleic sequence encoding an antibody is modified by introducing changes in the length of nucleotide introduced into a microorganism's chromosome, adjusting codon usage to suit the microorganism, such as by replacing an amino acid codon with another amino acid, or adjusting various transcription-controlling sequences (such as operator, promoter, enhancer, Shine-Dalgarno, or Kozak sequences) to find right codon for expression. [00113] In one aspect, a chromosomal integration system further comprises a safety switch. In one embodiment the safety switch returns the genetically engineered microorganism to substantially natural state, renders the
microorganism incapable of producing a therapeutic product, renders the microorganism incapable of
reproduction or cell division, or kills the microorganism. In one embodiment, the safety switch comprises a
system capable of removing foreign gene inserted into the chromosome upon external stimulus. In one
embodiment, the system is a Cre-loxP system in which foreign genes flanked by two loxP sequences are
removed from the genome by Cre recombinase. In one embodiment, the Cre recombinase is a part of the foreign gene inserted but controlled under an inducible promoter. In another embodiment, a purified Cre recombinase is applied to sites that therapeutic product is produced. In another embodiment, the safety switch comprises a
sensitivity gene that renders the microorganism susceptible to an exogenous compound or energy source, such as an antibiotic or radiation. In another embodiment, the safety switch comprises an inducible promoter that
requires the presence of an exogenous compound before it allows expression of a gene of interest (such as an antibody or fragment thereof).
[00114] In one aspect, methods and use of compositions for integrating and producing antibody or a fragment thereof in a microorganism are provided. In one embodiment, the microorganism is a Lactobacillus. In one
embodiment, antibody production is based on a system utilizing the APF protein of L. crispatus M247 to direct the expression and secretion of an antibody or its fragments.
[00115] In one embodiment, an antibody or fragment thereof is expressed as an APF-fusion protein. APF can be divided into N- and C-terminal domains separated by a central region rich in asparagine, glutamine, threonine and alanine. The APF protein is positively charged. It can interact electrostatically with the negatively charged cell envelope teichoic acid. In one embodiment, antibodies are secreted as an APF-fusion protein. In another embodiment, APF-fusion proteins located within bacterial cell membrane that are in the process of being
secreted can be extracted by treating the cell with 5 M LiCl.
[00116] In one embodiment, the APF system utilizes a site-specific integration apparatus of the temperate
bacteriophage A2 of Lactobacillus. In one embodiment, the APF protein is expressed and present in
homofermentative Lactobacillii. In another embodiment, the APF protein is expressed and secreted from
heterofermentative Lactobacilli or other Gram positive bacteria. In another embodiment, the APF protein is
expressed and present in culture medium. In another embodiment, the APF protein is expressed and present on the surface of a Lactobacillus. In one embodiment, an antibody or a fragment thereof is covalently linked to a scFv. In another embodiment, an antibody or a fragment thereof is covalently linked to a scFv recognizing
SAI/II adhesion. In another embodiment, an antibody or a fragment thereof is fused with the APF protein. In another embodiment, an antibody or a fragment thereof is covalently linked to scFv and the APF protein. In
another embodiment, scFv is fused to the APF protein via an antibody or a fragment thereof. In one
embodiment, a region of the APF protein is selected for expression and secretion of an antibody or a fragment thereof. In one embodiment, an APF protein is an APF protein of Lactobacillus crispatus. In one embodiment, an APF protein of Lactobacillus crispatus is an APF of strain M247 or Mu5 (Table 2).
[00117] Table 2. Sequence of APF
SEQ. ID. No. Sequence
2 TTGAAAATTAAATCTATCTTAGTTAAGTCAATTGCAGTAACTGCTTTATCAGTTACAGGTTTAGTAGCAG
CTAATAACAACACTAATACTGCTCAAGCTGCTATTGTAGAAAACGATACAGCTGTTGTAACAGTTAAGAA CGTTTCAGACAACGCAATCACTGTTTACAACAGCTACAAGAATCCAGAGGCTACTGGCCAAACTTTGGCA AGCAACACCTCATGGAAAGTAATTAAGACTGCTTACGATGCCAAAGGTCACAAGTGGTATGACTTAGGCA AGAACCAATGGGTTCGTGCTAAGTATGTAACTCGCGGCTACCACACTCAAGCTGCTGTAACCCAAGCTCC AG AC AAC ACC AAAC T CAAAC GAAAA AC AAT C GC AGC AAC AC AC GC AGC AAA AAC ACC AAC ACTCAAACTACTACTTCAACTGTAAGTGGTTCAGAAGCTAGTGCTAAGGAATGGATTGCCGGTAGAGAAT CTGGTGGCTCATACGGTGCTTCAAATGGTCAATACGTTGGTAAATACCAACTTTCAGCTTCATACTTGAA TGGTGACTATTCAGCAGCTAACCAAGAGCGAGTAGCTGATAACTATGTCAAAGGTCGTTATGGCTCATGG AC T GC T GC T AAGGC AT T C T GGC AAGC AAACGGC T GGT AC T AA
[00118] In one embodiment, a fusion protein of an antibody or a fragment thereof is produced with the N- terminal portion of the APF protein. In another embodiment, a fusion protein of antibody or a fragment thereof is produced by fusing an scFv antibody or a fragment thereof to the middle region and C-terminal part of APF.
In another embodiment, fusions with the middle region and C-terminal part of APF are produced to attach
antibody or a fragment thereof to the surface of a bacterium.
[00119] In one embodiment, in order to produce antibody or a fragment thereof covalently bound to the cell
surface via the carboxyterminal LPXTG, scFv is fused to the anchoring signal sequence of the L. casei prtP
gene. In one embodiment, an antibody, either attached to a cell or cell-free form, is detected by flow cytometry.
In another embodiment, varying amounts of covalent surface anchored proteins are detected in the supernatant.
[00120] In one embodiment, three expression cassettes are selected based on the amount of scFv produced and the location of the scFv (supernatant only, cell surface and supernatant, cell wall anchored). In another
embodiment, expression cassettes are used to produce scFv against ICAM-I as well as VHHs against rotavirus and the SAI/II adhesion of S. mutans. In another embodiment, the scFv anti-ICAM- 1 produced by Lactobacilli has a higher binding activity than the scFv anti-SAI/II. In another embodiment, fusion to the C-terminal APF part increases the level of antibody secretion. In another embodiment, a sequence is inserted between the middle region of APF and the antibody or a fragment thereof to elongate the fusion protein and to improve the display of antibody or a fragment thereof.
[00121] In one embodiment, the pEM76 delivery system is used to catalyze the integration of the fusion
between the apf gene and the gene encoding the scFv directed against the SAI/II adhesion of S. mutans into the attB site of L. paracasei. In another embodiment, the system uses site-specific integration apparatus of
temperate bacteriophage A2 of Lactobacillus. In another embodiment, the system creates integration of
expression cassettes mediating secretion, secretion and attachment, and surface anchoring of the scFv.
[00122] In one embodiment, a gene encoding surface anchored VHH antibody is integrated to the genome of a microorganism. In another embodiment, a gene encoding surface anchored VNAR antibody is integrated to the microorganism.
[00123] In another embodiment, a gene encoding surface anchored scFv is integrated to the microorganism.
[00124] In another embodiment, up to about 1000 antibody molecules are displayed on the surface of a
microorganism. In another embodiment, up to about 2000 antibody molecules are displayed on the surface of a microorganism. The number of antibody molecules that are displayed on the surface of a microorganism
includes, but is not limited to, up to about 10,000, 20, 000, 30,000, 40,000, 50,000, 75,000, 100,000, 200,000,
500,000, 750,000, and 1,000,000. In another embodiment, the integrated VHH gene is stable over 50
generations. In another embodiment, the integrated VHH sequence is stable over 100 generations.
[00125] In one aspect, integration and expression methods described herein is applied to other lactic acid
bacteria, including L. lactis. In one embodiment, the apf promoter originally from L. crispatus is used in L.
paracasei. In another embodiment, antibody or a fragment thereof is produced in L. rhamnosus GG using the cassettes described herein. In one embodiment, sequence of the attB site is utilized for the application in L. lactis.
[00126] In one aspect, two or more expression cassettes encoding antibodies of different specificities are integrated. In one embodiment, a first cassette encodes and expresses and ICAM-specific antibody. In another embodiment, a first cassette encodes and expresses a CD18-specific antibody. In another embodiment, a first cassette encodes and expresses a CD11-specific antibody. In another embodiment, a cassette encodes and expresses an ICAM-specific and a CD18-specific antibody. In another embodiment, a cassette encodes and expresses an ICAM-specific, a CDl l-specific and a CD18-specific antibody.
[00127] In addition to APF system, a cell surface, cell wall, or secreted protein of a microorganism can be used as a fusion partner to express, display or secrete the antibodies or fragments thereof at the delivered sites.
Examples of bacterial proteins that can be useful for methods disclosed herein include, but are not limited to, periplasmic ABC-type metal ion transport system, component/surface adhesion lemA protein FmtB surface protein sixty seven kDa Myosin-crossreactive streptococcal antigen, Myosin-crossreactive antigen, Sortase, Mucus binding protein precursor, Mucus binding protein, Mucus binding protein precursor, Steroid binding protein, Surface exclusion protein, Tropomyosin-like protein, Biofilm-associated surface protein, Aggregation promoting protein, Aggregation promoting protein, Fibrinogen-binding protein, Surface layer protein, Autolysin; amidase, Cell shape-determining protein (MreB), Cell shape-determining protein (MreB), Cell shape-determining protein (MreC), Cell shape-determining protein (MreD), Rod shape-determining protein (RodA), UDP-N-acetylmuramate-alanine ligase, UDP-N-acetylmuramyl tripeptide synthetase, UDP-N- acetylmuramoyl-L-alanyl-D-glutamyl-lysine ligase, UDP-N-acetylmuramoylalanine-D-glutamate ligase, p-N- acetylmuramoyl-pentapeptide-transferase, p-N-acetylmuramoyl-pentapeptide-transferase, N-acetylmuramidase, d-alanine-d-alanine ligase, Permease, d-ala-d-ala adding enzyme, d-alanyl-d-alanine carboxypeptidase, UDP-N- acetylglucosamine 1-carboxyvinyltransferase, UDP-N-acetylglucosamine pyrophosphorylase, Undecaprenyl pyrophosphate synthetase, Undecaprenyl-phosphate N-acetyl-glucosaminyltransferase, Penicillin binding protein, Penicillin binding protein 1A, Penicillin binding protein-related factor A, Penicillin binding protein 2B, DltA D-alanine-D-alanyl carrier protein ligase, DltB basic membrane protein, DltC D-alanyl carrier protein, DltD extramembranal transfer protein, Oligosaccharide repeat unit transporter (Epsl), UDP-galactopyranose mutase, Polysaccharide polymerase, Glycosyltransferase, Galactosyl transferase, Phospho-glucosyltransferase (EpsE), EpsD, EpsC, EpsB, EpsA, GTP-binding protein, Cell wall-associated hydrolase, Guanylate kinase, Cell surface, cell membrane or secreted protein, Membrane protein, Cell surface, cell membrane or secreted protein, Ribonucleotide reductase (Nrdl), Ribonucleotide reductase, Cell surface, cell membrane or secreted protein, Cell surface, cell membrane or secreted protein, Cell surface, cell membrane or secreted protein, ABC transporter component, ABC transporter, ATPase component of ABC transporter, Acetyltransferase,
Transcriptional regulator, Polysaccharide transporter, EpsV, EpsU, EpsA, Capsular polysaccharide biosynthesis protein J (capj), Cap5P, Cap5P, CpsIVN, Lipopolysaccharide biosynthesis protein, Cellulose synthase, Sucrose phosphorylase, Polysaccharide transporter, LPS biosynthesis protein, Oligo-1, 6-glucosidase, Alpha- glucosidase, Glucan 1, 6-alpha-glucosidase, Alpha-glucosidase II, Dextran glucosidase, 1, 4-alpha-glucan branching enzyme, Neopullulanase, Pullulanase, Amylopullulanase, Cyclomaltodextrin transport membrane protein, bacterial cell division membrane protein, Membrane protein, Membrane protein, DNA methylase, tRNA (guanine-Nl)-methyltransferase, Theronyl-tRNA synthetase, Surface protein, Transport accessory protein, Methionine synthase, Autoinducer-2 production protein (LuxS), or Cell division protein (cdpA) or Bioflim-associated surface protein.
[00128] In one embodiment, methods and compositions for producing ICAM-1 antibody in a microorganism are described. In one embodiment, the microorganism is a Lactobacillus strain. In another embodiment, the microorganism is a Lactobacillus paracasei. In one embodiment, a Lactobacillus APF protein directs the expression and secretion of antibody or a fragment thereof. In another embodiment, a site-specific integration apparatus of the temperate bacteriophage A2 is used to mediate chromosomal integration of exogenous nucleic acid sequence that encodes an ICAM- 1 antibody or a fragment thereof. In one embodiment, a fusion between the antibody or a fragment thereof and the apf gene is generated to optimize the level of expression, secretion and location of the antibody or a fragment thereof. In one embodiment, non-covalent and covalent anchoring systems are used for expression. In one embodiment, an expression cassette is integrated in the chromosome using site-specific integration vectors, generating food grade Lactobacilli producing antibody or a fragment thereof.
[00129] In one embodiment, a microorganism is used to produce CD18-specific antibody or a fragment thereof. In one embodiment, the microorganism is Lactobacillus paracasei. In one embodiment, a Lactobacillus APF protein directs the expression and secretion of antibody or a fragment thereof. In one embodiment, the expression utilizes site-specific integration apparatus of the temperate bacteriophage A2 to mediate chromosomal integration for CD 18 antibody expression. In one embodiment, a fusion between the antibody or a fragment thereof and the apf gene is generated to optimize the level of expression, secretion and location of the antibody or a fragment thereof. In one embodiment, non-covalent and covalent anchoring systems are used for expression. In one embodiment, an expression cassette is integrated in the chromosome using site-specific integration vectors, generating food grade Lactobacilli producing antibody or a fragment thereof.
[00130] In one embodiment, a microorganism is used to produce a CDl 1-specific antibody or a fragment thereof. A CDl 1 antibody as used herein can be a CDl la, CDl lb, CDl lc or CDl Id antibody. In one embodiment the CDl 1-specific antibody is a human antibody. In another embodiment the CDl 1-specific antibody is a humanized antibody. In another embodiment the CDl 1-specific antibody is a camelid antibody. In another embodiment the CDl 1-specific antibody is a VHH or VNAR antibody. In one embodiment, the microorganism is Lactobacillus paracasei. In one embodiment, a Lactobacillus APF protein directs the expression and secretion of antibody or a fragment thereof. In one embodiment, the expression utilizes site- specific integration apparatus of the temperate bacteriophage A2 to mediate chromosomal integration for CDl 1 antibody expression. In one embodiment, a fusion between the antibody or a fragment thereof and the apf gene is generated to optimize the level of expression, secretion and location of the antibody or a fragment thereof. In one embodiment, non-covalent or covalent anchoring systems are used for expression. In one embodiment, an expression cassette is integrated in the chromosome using site-specific integration vectors, generating food grade Lactobacilli producing antibody or a fragment thereof.
[00131] Delivery of a therapeutic product
[00132] In one aspect, methods and compositions described herein are related to expression of a therapeutic product by a delivery vehicle. In one embodiment, a therapeutic product is expressed intracellularly. In another embodiment, a therapeutic product is anchored on the surface of the delivery vehicle. The anchoring can be enabled by fusing the therapeutic product to a known cell surface protein of the delivery vehicle. Various fusion combinations between the fusion partner and the heterologous gene can be performed to obtain production of the protein at different cellular locations and to optimize expression and secretion. In one embodiment, to achieve cell surface display of heterologous proteins in Lactobacilli, cell wall sorting and covalent anchoring mechanisms of the M protein and prtP proteases is used. In another embodiment, anchoring comprises the cell wall spanning (CWS) domain of the Lactococcus lactis protein PrtP or a functional part thereof, derivative and/or analogue thereof. In another embodiment, anchoring comprises AcmA or AcmD type protein anchors, the AcmA and AcmD-type carbohydrate binding domains, or their homologs thereof. In another embodiment, therapeutic products are fused to anchoring system of S-layer and Sep proteins.
[00133] In one embodiment a therapeutic product comprises one or more antibodies that bind to a human ICAM-1, CD18, or CDl 1 (e.g. CDl la, CDl lb, CDl lc or CDl Id subunits). In one embodiment the one or more antibodies are single chain antibodies. In another embodiment the one or more antibodies are camelid or camelid modified antibodies. In another embodiment the one or more antibodies are VHH antibodies.
[00134] Releasing therapeutic product at target area
[00135] In one aspect, methods and compositions described herein are related to releasing of a therapeutic product by a delivery vehicle. In one embodiment, a method of releasing a therapeutic product comprises a constitutive release. A method of producing a therapeutic product comprises an inductive release. In one embodiment, releasing includes, but is not limited to, secretion, active transport, exocytosis, phagocytosis, and passive diffusion. In one embodiment, a therapeutic product is diffused out from a vehicle. In another embodiment, a therapeutic product is exported from a vehicle. In another embodiment, a therapeutic product is secreted from a vehicle.
[00136] Disease
[00137] In one aspect, methods and compositions described herein are related to methods of treating or preventing a disease with a delivery system. In one embodiment, a system comprises a delivery vehicle, a therapeutic product, medical devices or chemicals employed in delivering the vehicle to a target area. In another embodiment, the system is used for treating or preventing a medical condition.
[00138] In one embodiment, a treatment includes medical treatment upon observing a condition in situ. In one embodiment, a medical disease or a condition is prevented by employing a delivery system described herein. In another embodiment, the system produces a therapeutic product that prevents infection by a pathogen.
[00139] In one embodiment, a disease is an pathogenic infection or disease. In another embodiment, an infection is a viral infection. In another embodiment, a viral infection is a human immunodeficiency virus infection. In another embodiment, a viral infection is human papilloma virus infection. In another embodiment, a viral infection is herpes virus infection. In another embodiment, a viral infection is sexually transmitted infection. In another embodiment, a disease is bacterial infection. In another embodiment, a disease is a fungal infection. In another embodiment, a disease is infection by a prion. In another embodiment, a disease is parasitic infection. In another embodiment, a disease is a condition of the immune system. In another embodiment, a disease is a cancer. In another embodiment, a cancer is a cervical cancer.
[00140] An infectious or parasitic disease includes, but is not limited to, intestinal infectious diseases, tuberculosis, zoonotic bacterial diseases, other bacterial diseases, human immunodeficiency virus (HIV) infection, poliomyelitis and other non arthropod borne viral diseases of central nervous system, viral diseases accompanied by exanthem, arthropod borne viral diseases, other diseases due to viruses and chlamydiae, rickettsioses and other arthropod borne diseases, syphilis and other venereal diseases, other spirochetal diseases, mycoses, helminthiases, other infectious and parasitic diseases, and late effects of infectious and parasitic diseases.
[00141] Intestinal infectious diseases include, but are not limited to cholera, typhoid and paratyphoid fevers, salmonella gastroenteritis, shigellosis, shigellosis, staphylococcal food poisoning, amoebiasis, acute amoebic dysentery without mention of abscess, chronic intestinal amoebiasis without mention of abscess, amoebic nondysenteric colitis, amoebic liver abscess, amoebic lung abscess, amoebic brain abscess, amoebic skin ulceration, amoebic infection of other sites, amoebiasis, balantidiasis, giardiasis, coccidiosis, intestinal trichomoniasis, cryptosporidiosis, cyclosporiasis, protozoal intestinal disease, intestinal infections due to other organisms, enteritis due to rotavirus, enteritis due to other viral enteritis, intestinal infection due to other organism not elsewhere classified, ill defined intestinal infections, colitis enteritis and gastroenteritis of presumed infectious origin.
[00142] Tuberculosis includes, but is not limited to primary tuberculous infection, pulmonary tuberculosis, tuberculosis of meninges and central nervous system, tuberculosis of intestines, peritoneum, and mesenteric glands, tuberculosis of bones and joints, tuberculosis of vertebral column, pott's disease, tuberculosis of genitourinary system, tuberculosis of other organs, erythema nodosum with hypersensitivity reaction in tuberculosis, bazin disease, tuberculosis of peripheral lymph nodes, scrofula, and miliary tuberculosis.
[00143] Zoonotic bacterial diseases includes, but is not limited to plague, bubonic plague, tularemia, anthrax, brucellosis, glanders, melioidosis, rat bite fever, listeriosis, erysipelothrix infection, and pasteurellosis.
[00144] Other bacterial diseases include, but are not limited to leprosy, diseases due to other mycobacteria, diphtheria, whooping cough, streptococcal sore throat and scarlatina, strep throat, scarlet fever, erysipelas, meningococcal meningitis, tetanus, septicemia, pneumococcal septicemia, gram negative septicemia, septicemia, and actinomycotic infections.
[00145] A human immunodeficiency virus infection includes, but is not limited to human immunodeficiency virus infection with specified conditions, human immunodeficiency virus infection causing other specified, and other human immunodeficiency virus infection.
[00146] A poliomyelitis and other non arthropod borne viral diseases of central nervous system include, but are not limited to acute poliomyelitis, slow virus infection of central nervous system, kuru, creutzfeld jakob disease, Prion diseases, meningitis due to enterovirus, other enterovirus diseases of central nervous system, and other non arthropod borne viral diseases of central nervous system.
[00147] Viral diseases accompanied by exanthem include, but are not limited to smallpox, cowpox and paravaccinia, chickenpox, herpes zoster, herpes simplex, genital herpes, herpetic gingivostomatitis, herpetic disease, uncomplicated, measles, rubella, other viral exanthemata, fifth disease, viral exanthems, roseola infantum, other human herpesvirus encephalitis, other human herpesvirus infections, other poxvirus infections, other orthopoxvirus infections, monkeypox, other parapoxvirus infections, bovine stomatitis, sealpox, yatapoxvirus infections, tanapox, yaba monkey tumor virus, other poxvirus infections, and poxvirus infections.
[00148] Arthropod borne viral diseases include, but are not limited to yellow fever, dengue fever, mosquito borne viral encephalitis, encephalitis, tick borne viral encephalitis, viral encephalitis transmitted by other and arthropods, arthropod borne hemorrhagic fever, ebola hemorrhagic fever, other arthropod borne viral diseases, and west nile virus.
[00149] Other pathogenic diseases due to viruses and chlamydiae include, but are not limited to viral hepatitis, hepatitis a with hepatic coma, hepatitis a without coma, hepatitis b with hepatic coma, hepatitis b without coma, acute, other specified viral hepatitis with mention of hepatic coma, other specified viral hepatitis without mention of hepatic coma, viral hepatitis c, viral hepatitis c without hepatic coma, viral hepatitis c with hepatic coma, hepatitis, viral, , rabies, mumps, mumps, uncomplicated, ornithosis, specific diseases due to coxsackie virus, herpangina, hand, foot, mouth disease, mononucleosis, trachoma, other diseases of conjunctiva due to viruses and chlamydiae, other diseases due to viruses and chlamydiae, molluscum contagiosum, warts, all sites, condyloma acuminata, sweating fever, cat scratch disease, foot and mouth disease, cmv disease, rhinovirus, HIV, HPV, and respiratory syncytial virus.
[00150] Rickettsioses and other arthropod borne diseases include, but are not limited to louse borne epidemic typhus, other typhus, tick borne rickettsioses, rocky mountain spotted fever, other rickettsioses, malaria, leishmaniasis, trypa omiasis, relapsing fever, other arthropod borne diseases, other specified arthropod borne diseases, lyme disease, and babesiosis.
[00151] Syphilis and other venereal diseases include, but are not limited to congenital syphilis, early syphilis, symptomatic, syphilis, primary, genital, early syphilis, latent, cardiovascular syphilis, neurosyphilis, other forms of late syphilis, with symptoms, late syphilis, latent, other and syphilis, gonococcal infections, gonorrhoea, acute, lower GU tract, gonococcal conjunctivitis, and nongonococcal urethritis.
[00152] Other spirochetal diseases include, but are not limited to leptospirosis, Vincent's angina, yaws, and pinta.
[00153] Mycoses include, but are not limited to dermatophytosis, dermatophytosis of scalp/beard, onychomycosis, dermatophytosis of hand, tinea cruris, tinea pedis, tinea corporis, dermatomycosis, tinea versicolor, dermatomycosis, candidiasis, moniliasis, oral, moniliasis, vulva/vagina, monilial balanitis, moniliasis, skin/nails, coccidioidomycosis, histoplasmosis, histoplasma infection, blastomycotic infection, other mycoses, and opportunistic mycoses.
[00154] Helminthiases include, but are not limited to schistosomiasis bilharziasis, other trematode infections, echinococcosis, other cestode infection, trichi is, filarial infection and dracontiasis, ancylostomiasis and necatoriasis, other intestinal helminthiases, ascariasis, anisakiasis, strongyloidiasis, trichuriasis, enterobiasis, capillariasis, trichostrongyliasis, helminthiases, intestinal parasitism.
[00155] Other pathogenic diseases include, but are not limited to toxoplasmosis, toxoplasmosis, trichomoniasis, urogenital trichomoniasis, trichomonal vaginitis, trichomoniasis, urethritis, pediculosis and phthirus infestation, pediculosis, head lice, pediculosis, body lice, pediculosis, pubic lice, pediculosis, acariasis, scabies, chiggers, sarcoidosis, ainhum, behcet's syndrome, pneumocystosis, psorospermiasis, and sarcosporidiosis.
[00156] Late effects of infectious and parasitic diseases include, but are not limited to late effects of tuberculosis, and late effects of polio.
[00157] A pathogenic infection or disease can arise from bacterial, viral, fungal, or other parasitic infection. A bacterial pathogen includes, but is not limited to Acinetobacter baumannii, Bacillus anthracis, Bartonella, Bordetella pertussis, Borrelia, Brucella, Chlamydia pneumoniae, Chlamydia trachomatis, Clostridium botulinum, Clostridium difficile, Corynebacterium diphtheriae, Coxiella burnetii, Ehrlichia, Enterococci, Enterovirulent Escherichia coli, Francisella tularensis, Haemophilus ducreyi, Helicobacter pylori, Klebsiella pneumoniae, Legionella pneumophila, Leptospira interrogans, Mycobacterium tuberculosis, Mycoplasma genitalium, Mycoplasma pneumoniae, Neisseria gonorrhoeae, Neisseria meningitidis, Orientia tsutsugamushi, Pseudomonas aeruginosa, Rickettsia, Salmonella, Shigella, Staphylococcus aureus, Streptococcus pneumoniae, Streptococcus pyogenes, Treponema pallidum, Ureaplasma urealyticum, Vibrio cholerae, Vibrio vulnificus, and Yersinia pestis.
[00158] A viral pathogen includes, but is not limited to Adenovirus, Astrovirus, Avian influenza virus, Coxsackievirus, Dengue virus, Ebola virus, Echovirus, Enteric adenovirus, Enterovirus, Hantaviruses, Hepatitis A virus, Hepatitis B virus, Hepatitis C virus, Hepatitis D virus, Hepatitis E virus, Herpes simplex virus (HSV), Human cytomegalovirus, Human immunodeficiency virus (HIV), Human papillomavirus (HPV), Influenza virus, Japanese encephalitis virus (JEV), Lassa virus, Marburg virus, Measles virus, Mumps virus, Norovirus, Parainfluenza virus, Poliovirus, Rabies virus, Respiratory syncytial virus, Rotavirus, Rubella virus, SARS coronavirus, Tick-borne encephalitis virus (TBEV), Variola virus, West Nile virus, and Yellow fever virus.
[00159] A fungal pathogen includes, but is not limited to Candida albicans.
[00160] A parasitic pathogen includes, but is not limited to Plasmodium, Schistosoma mansoni, and
Trichomonas vaginalis.
[00161] In one embodiment, a pathogenic infection is an HIV infection. An HIV infection can be caused by any infectious HIV type or subtype, such as HIV-1, HIV-2, or HIV-3, or HIVs with various envelop proteins such as group M (subtypes A, B, C, D, E [ΑΈ], F, G, H, I [A/G/I or A/G/H/K/] J, K, or circulating recombinant forms), group N, group O, or group P.
[00162] In another embodiment, a pathogenic infection is an HPV (human papilloma virus) infection. An HPV infection can be caused by any infectious HPV type or subtype, such as HPV-1, HPV-2, HPV-3, HPV-4, HPV- 6, HPV-7, HPV-10, HPV-11, HPV-16, HPV-18, HPV-31, HPV-32, HPV-33, HPV-39, HPV-42, HPV-44, HPV- 45, HPV-51, HPV-52, HPV-53, HPV-56, HPV-58, HPV-59, HPV-66, HPV-68, HPV-73, or HPV-82. In one embodiment, a disease is HPV-16 infection. In another embodiment, a disease is HPV-18 infection. In another embodiment, a disease is HPV-31 infection. In another embodiment, a disease is HPV-45 infection. In another embodiment, a disease is HPV-6 infection. In another embodiment, a disease is HPV-11 infection.
[00163] In another embodiment, a pathogenic infection is an HSV (herpes simplex virus) infection. An HSV infection can be caused by any infectious HSV type or subtype, such as HSV-1, HSV-2, HHV-1 (Human herpes virus), or HHV-2.
[00164] In another embodiment, a pathogenic infection is an infection by a virus in the genus of Parvovirus. A virus in the genus of Parvovirus includes, but is not limited to, Canine parvovirus, Chicken parvovirus, Feline panleukopenia virus, Feline parvovirus, HB virus, H-l virus, Kilham rat virus, Lapine parvovirus, LUIII virus, Mink enteritis virus, Minute virus of mice, Murine parvovirus 1, Porcine parvovirus, Raccoon parvovirus, RT parvovirus, and Tumor virus X.
[00165] In another embodiment, a pathogenic infection is an infection by a virus in the family of Parvoviridae. A virus in the family of Parvoviridae includes, but is not limited to, parvovirus B19, and Adeno-associated virus 2. In another embodiment, an infection is rotavirus infection.
[00166] In one embodiment, a delivery vehicle is used to treat or prevent infection by a pathogen. In another embodiment, a delivery vehicle is used to provide passive immunization against infectious disease. In another embodiment, a delivery vehicle described herein is used for providing a preventive measure against prolonged infection. In another embodiment, a delivery vehicle described herein is used for providing a preventive measure against reentry of infectious virus. In another embodiment, a delivery vehicle described herein is used for providing a preventive measure against virus passing through an epithelial layer of an animal, such as gut epithelia or vaginal epithelia. In another embodiment, a delivery vehicle described herein is used for inhibiting transmigration of virus through an epithelial layer. In another embodiment, a delivery vehicle described herein is used for inhibiting transmigration of virus through a vaginal epithelial layer. In another embodiment, a delivery vehicle described herein is used for inhibiting transmigration of virus through a rectal epithelial layer. In another embodiment, a delivery vehicle described herein is used for inhibiting transmigration of virus through an oral epithelial layer. In another embodiment, a delivery vehicle described herein is used for inhibiting transmigration of virus through an ocular epithelial layer. In another embodiment, a delivery vehicle described herein is used for inhibiting transmigration of virus through a gastrointestinal epithelial layer. In one embodiment, the transmigration of virus through an epithelial layer is completely blocked by a delivery vehicle described herein. In another embodiment, the transmigration of virus is partially blocked by a delivery vehicle described herein. In another embodiment, a delivery vehicle described herein blocks up to about 10%, 20%, 30%>, 40%>, 50%>,
60%>, 70%>, 80%>, or 90%> of virus capable of transmigration from transmigration. In another embodiment, a virus that can transmigrate through an epithelial layer is collected in a laboratory transwell migration assay and its quantity is measured by an enzyme-linked immunoabsorbent assay (ELISA). In another embodiment, a delivery vehicle described herein is used for preventing cell adhesion and/or internalization of a virus. In another embodiment, a delivery vehicle described herein is used to prevent cell adhesion. In another embodiment, a delivery vehicle described herein is used to prevent cell adhesion to an epithelial layer of a mammal. In another embodiment, a delivery vehicle described herein is used for preventing virus adhering to cell surface molecules. In another embodiment, a delivery vehicle described herein is used for preventing virus from binding to a host cell or cells. In another embodiment, a delivery vehicle described herein is used for preventing virus from gaining entry into the bloodstream. In another embodiment, a delivery vehicle described herein is used for preventing virus from attaching to a host cell that expresses a cell surface molecule recognized by virus. In another embodiment, a delivery vehicle described herein is used for preventing viral entry and neutralizing a virus. In one embodiment the virus is an HIV, HPV or HSV virus. In one embodiment the delivery vehicle comprises a recombinant microorganism (such as a lactobacillus) that expresses an antibody or fragment thereof that inhibits transepithelial migration of a virus through an epithelial layer. In one embodiment the recombinant microorganism comprises one or more polynucleotides that encode one or more antibodies or fragments thereof. In one embodiment the one or more polynucleotides are integrated into a chromosome of the recombinant microorganism. In another embodiment the one or more polynucleotides are not integrated into a chromosome of the recombinant microorganism.
[00167] In one embodiment a lactobacillus comprises an exogenous nucleic acid integrated into a chromosome of the lactobacillus that encodes an antibody or fragment thereof. In another embodiment a lactobacillus comprises more than one exogenous nucleic acid integrated into a chromosome of the lactobacillus that encodes an antibody or fragment thereof. In one embodiment the lactobacillus expresses the antibody or fragment thereof. In one embodiment the antibody or fragment thereof binds to human CD18, CD11, ICAM-1 or a subunit thereof. In another embodiment the lactobacillus expresses two or more antibodies or fragments thereof that bind to human CD 18, CD11, ICAM-1 or a subunit thereof. In one embodiment the lactobacillus is administered to a human to treat or prevent infection from a pathogen. In one embodiment the pathogen is a virus. In one embodiment the virus is a HIV, HPV or HSV. In another embodiment the virus is HIV. In one embodiment the human is a man. In one embodiment the lactobacillus is administered to the man's genitals. In another embodiment the lactobacillus is administered to the man's rectum. In another embodiment the lactobacillus is administered to the man's urethra. In another embodiment the lactobacillus is administered to a man in conjunction with a contraceptive. In another embodiment the lactobacillus is administered to a man in conjunction with a prophylactic. In another embodiment the human is a woman. In one embodiment the lactobacillus is administered to the woman's genitals. In another embodiment the lactobacillus is administered to the woman's vagina. In another embodiment the lactobacillus is administered to the woman's urethra. In another embodiment the lactobacillus is administered to the woman's rectum. In one embodiment the lactobacillus administered to the woman's vagina expresses an antibody or fragment thereof bind to human CD 18, CD11, ICAM-1 which inhibits viral transmigration through an epithelial layer. In one embodiment the inhibited virus is a HIV, HPV or HSV virus. In one embodiment the inhibited virus is a HIV.
[00168] In one embodiment treatment of a human population with a lactobacillus that comprises an exogenous nucleic acid integrated into a chromosome of the lactobacillus encodes an antibody or fragment thereof that binds to human CD 18, CD11, ICAM-1 and expresses said antibody or fragment thereof decreases the rate of HIV infection in said human population by 1-100%, such as 10-90% or 20-80% or 30-70& or 40-60% or 50% compared to a human population that is not treated with said lactobacillus. In another embodiment the rate of decrease is 1, 2, 3, 4, 5, 6, 7,8, 9, 10 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23,24, 25, 26 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 88, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, or 100%o. In one embodiment the human population comprises males and females. In another embodiment the human population consists of females. In another embodiment the human population consists of males. In another embodiment the human population comprises humans from newborns to those that are 80 years old. In another embodiment the human population comprises humans from newborns to those that are 10 years old. In another embodiment the human population comprises humans from newborns to those that are 20 years old. In another embodiment the human population comprises humans from newborns to those that are 10 years old.
[00169] Blocking transmission of of cell-associated HIV-1 across a cervical epithelial monolayer
[00170] It has been previously shown that commercially available free anti CD18 or anti-ICAM- 1 antibodies block transmission of cell-associated HIV-1 across a cervical epithelial monolayer (US 6,566,095 and US 20090317404, which are herein incorporated by reference in their entirety). Anti-ICAM- 1 (clone MT-M5), anti- CD 18 (clone H52), or isotype control mouse IgGl were added to HIV-infected PBMC immediately prior to their addition to the apical chamber of cervical epithelial transwell cultures (US 20090317404). PBMC were allowed to migrate for 24 hours and antibodies remained present for the duration of the assay. It was shown that both anti-ICAM- 1 and anti-CD 18 significantly reduced cell migration at all concentrations when tested over a range of 10-100 μg/ml when compared to both untreated and isotype controls. However, anti-CD 18 blocked cell migration significantly better than anti-ICAM- 1 at all concentrations tested, further reducing the number of cells detected in the basal compartment when compared to blocking by the corresponding concentration of anti- ICAM-1. Further, it was observed that commercially available free antibodies to CD 18 and ICAM-I when mixed at a 50:50 ratio successfully block transmigration of PBMC from infected cultures (US 20090317404). Increased efficacy was also observed at lower concentrations of anti-CD 18 and anti-ICAM- 1, in combination, than at higher concentrations of anti-CD 18 and anti-ICAM- 1, individually.
EXAMPLES
[00171] Example 1. [00172] The aggregation-promoting factor (APF) protein of Lactobacillus crispatus was used as a vector molecule to deliver antibody or a fragment thereof. APF protein has useful characteristics such as high secretion level and non-covalent anchoring to the bacterium.
[00173] The integration vector contains the phage A2 integrase gene (A2-int) which catalyses the insertion of vector DNA containing the A2-attP site into an attB site present in the genome of all lactic acid bacteria tested so far. Subsequent expression of a β-recombinase catalyses the deletion of non "food grade" DNA (antibiotic resistance gene, E. coli DNA) located between two six sites. The system can generate stable integration without the use of selection markers and as it presents some flexibility with regard to the sequence of the attB site, it can be use for integration of heterologous genes in various lactic acid bacteria.
[00174] Bacterial strains, plasmids and growth conditions. The bacterial strains and plasmids used are listed in Table 1. Escherichia coli DH5a was grown with shaking at 37°C in Luria-Bertani (LB) medium.
Lactobacillus paracasei (previously known as L. casei or L. zeae ATCC 393 pLZ15") was grown in MRS broth at 37°C under static conditions (Difco™, Becton Dickinson, Sparks, MD) and on MRS agar plates at 37°C in anaerobic conditions. When appropriate, the concentration of antibiotics used was 100 μg/ampicillin or 300 g ml erythromycin for E. coli transformants and 5 μ^πιΐ erythromycin for L. paracasei transformants.
[00175] Table 3. Strains and plasmids.
Srains or plasmid Relevant properties
STRAINS
E. coli DH5a
L. paracasei Previously considered a plasmid free L. casei 393
L. paracasei pAFlOO L. paracasei with pAFlOO plasmid, secreted scFv anti-SAI/II
L. paracasei pAF400 L. paracasei with pAF400 plasmid, secreted and attached scFv anti-SAI/II
L. paracasei pAF900 L. paracasei with pAF900 plasmid, surface anchored scFv anti-SAI/II
L. paracasei pAFlOO-ICAM L. paracasei with pAFlOO-ICAM plasmid, secreted scFv anti-ICAM-1
L. paracasei pAF400-ICAM L. paracasei with pAF400-ICAM plasmid, secreted and attached scFv anti-ICAM-1
L. paracasei pAF900-ICAM L. paracasei with pAF900-ICAM plasmid, surface anchored scFv anti-ICAM-1
L. paracasei pAFlOO-ARPl L. paracasei with pAFlOO-ARPl plasmid, secreted ARP1 anti -rotavirus
L. paracasei pAF400-ARPl L. paracasei with pAF400-ARPl plasmid, secreted and attached ARP1
L. paracasei pAF900-ARPl L. paracasei with pAF900-ARPl plasmid, surface anchored ARP1
L. paracasei pAF100-S36 L. paracasei with pAF100-S36 plasmid, secreted S36-VHH anti-SAI/II
L. paracasei pAF400-S36 L. paracasei with pAF400-S36 plasmid, secreted and attached S36-VHH
L. paracasei pAF900-S36 L. paracasei with pAF900-S36 plasmid, surface anchored S36-VHH
L. paracasei EMI 71 L. paracasei with integrated pAF400 cassette, secreted and attached scFv anti-SAI/II
L. paracasei EMI 81 L. paracasei with integrated pAF900 cassette, surface anchored scFv anti-SAI/II
L. paracasei EMI 82 L. paracasei with integrated pAFlOO cassette, secreted scFv anti-SAI/II
pGEM-T Apr, 3 'T overhangs
pSP72 Apr, multiple cloning region
pIAV7 Broad range vector, Err, lacZ, pWVO 1 replication origin
pLP402-scFv-long anchor Apr, Emr, scFv anti-SAI/II and prtP anchor region
psp72SalBamAS pSP72 with Fragment 1 encoding the promoter region, the signal peptide (33 amino acids) and the first 4 amino acids of the N-terminal domain of the apf gene psp72SalBamAS2 pSP72 with Fragment 2 encoding the promoter region, the signal peptide (33 amino acids), the whole N-terminal domain (75 amino acids) and the middle region (37 amino acids) of the apf gene psp72SalBamAS3 pSP72 with Fragment 3 encoding the promoter region, the signal peptide and the whole
N-terminal domain
pSPIO pSP72SalBamAS with Fragment 4 encoding the C-terminal domain (last 78 amino acids) and the terminator region of the apf gene
pSP20 pSP72SalBamAS2 with Fragment 4
pSP30 pSP72SalBamAS3 with Fragment 4
pSP40 pSP72SalBamAS with Fragment 5 encoding the middle region, the C-terminal domain and the terminator region of the apf gene
pSP50 pSP72SalBamAS3 with Fragment 5
pSPlOO pSPIO with scFv (anti-SAI/II)-E-tag gene followed by a stop codon
pSP200 pSP20 with scFv (anti-SAI/II)-E-tag gene followed by a stop codon
pSP300 pSP30 with scFv (anti-SAI/II)-E-tag gene followed by a stop codon
pSP400 pSP40 with scFv (anti-SAI/II)-E-tag gene translationally fused to the downstream apf gene region
pSP500 pSP50 with scFv (anti-SAI/II)-E-tag gene translationally fused to the downstream apf gene region
pSP600 pSPIO with scFv (anti-SAI/II)-E-tag gene translationally fused to the downstream apf gene region
pSP700 pSP20 with scFv (anti-SAI/II)-E-tag gene translationally fused to the downstream apf gene region
pSP800 pSP30 with scFv (anti-SAI/II)-E-tag gene translationally fused to the downstream apf gene region
pSP900 pSP600 with prtP anchored region encoding gene following the scFv (anti-SAI/II)-E- tag gene
pSPlOOO pSP700 with prtP anchored region encoding gene following the scFv (anti-SAI/II)-E- tag gene
pSPHOO pSP800 with prtP anchored region encoding gene following the scFv (anti-SAI/II)-E- tag gene
pAFlOO to pAFl 100 series pIAV7 with Sail and EcoRI fragment of pSPlOO to pSPl 100 series
pAFlOO-ICAM pAFlOO with scFv anti-human ICAM-1
pAF400-ICAM pAF400 with scFv anti-human ICAM-1
pAF900-ICAM pAF900 with scFv anti-human ICAM-1
pAFlOO-ARPl pAFlOO with ARP1 anti -rotavirus
pAF400-ARPl pAF400 with ARP1 anti-rotavirus
pAF900-ARPl pAF900 with ARP1 anti-rotavirus
pAF100-S36 pAFlOO with S36 anti-SAI/II
pAF400-S36 pAF400 with S36 anti-SAI/II
pAF900-S36 pAF900 with S36 anti-SAI/II
pEM76 Integrative vector containing si l, A2 int, attP and six2
pEM94 Containing the β-recombinase gene in order to delete the non-food-grade DNA present in the integrated plasmids by site-specific recombination
pEM171 pEM76 with expression cassette of pAF400
pEM181 pEM76 with expression cassette of pAF900
pEM182 pEM76 with expression cassette of pAFlOO
[00176] Construction of expression cassettes. FIG. 1 illustrates an amplified PCR fragments used for the construction of the different expression cassettes. The APF proteins can be divided in three domains, N- terminal, C-terminal and a central region which is rich in asparagine, glutamine, threonine and alanine. PCR fragments are designated from 1 to 5 (see material and methods). Fragment 1: The region encoding the promoter region, the signal peptide (33 amino acids) and the 4 amino acid of the N-terminal domain. Fragment 2: The promoter region and the gene encoding the signal peptide (33 amino acids), the whole N-terminal domain (75 amino acid) and the middle region (37 amino acid). Fragment 3: The promoter region and the genes encoding the signal peptide and the whole N-terminal domain. Fragment 4: The gene encoding the C-terminal domain (last 78 amino acids) and the terminator region. Fragment 5: The gene encoding the middle region, the C- terminal domain and the terminator region. The apf gene of L. crispatus M247 encodes a 223 amino acid protein containing a signal peptide (33 amino acids), a N-terminal domain (75 amino acids), a central region rich in asparagine, glutamine, threonine and alanine (37 amino acids) and a C-terminal domain (the last 78 amino acids) (GeneBank AF492458) (Fig. 1). Eleven expression cassettes were generated by fusing a model scFv antibody or a fragment thereof directed against the SAI/II adhesion of S. mutans with the promoter region and the gene encoding the APF protein of L. crispatus M247. The expression cassettes differ by the APF region encoding gene fragments included (N-terminal domain, central region and C-terminal domain) or by the insertion of the anchored region of the prtP gene for covalent surface binding of the antibody or a fragment thereof.
[00177] Genomic DNA from L. crispatus M247 was purified and used as a template for amplification of five DNA fragments, 1 to 5, corresponding to different regions of the apf gene (Fig. 1). The sequences of the primers used for amplification are shown in Table 4.
[00178] TABLE 4. Primer sequences
SEQ. ID. Primer SEQUENCE
3. APFSalS 5 ' -CGCGTCGACGGATAAGGCAGAATAATGGAATAA- 3 '
4. APFBamAS 5 ' -CGGGATCCTTCTACAATAGCAGCTTGAGCAGT- 3 '
5. APFBamAS2 5 ' -CGGGATCCAGTAGTAGTTTGAGTGTTGGTGTT- 3 '
6. APFBamAS3 5 ' -CGGGATCCGTGGTAGCCGCGAGTTACATACT- 3 '
7. APFSacS 5 ' - CGAGC C C AAC GTAAGTGG CAGAAGC - 3 '
8. APFEcoAS2 5 ' -CGGAATTCCTTGAACCGTTTGTGGTGTCGTTT- 3 '
9. APFSacS2 5 ' -CGAGCTCTACCACACTCAAGCTGCTGTAACC- 3 '
10. scFvS 5 ' -GCCCAGGTGAAACTGCAGGAGT- 3 '
11. E-tagAS 5 ' -TGCGGCACGCGGTTCCAGCGGATCCGGATACGGCACC
GGCGCACCTGCGGCCGCCGCCCGTTTTATTTCCAACT- 3 '
12. scFvBgl/Sfi/NcoIS 5 ' -CATGAGATCTGCGGCCCAGCCGGCCATGGATGCCCAGGTGAAACTGCAG- 3 '
13. etagNhe/Sacstop 5 ' -CCGGAGCTCCTCGCTAGCCTATGCGGCACGCGGTTCCAGCGGA- 3 '
14. etagNhe/Sac 5 ' -CCGGAGCTCCTCGCTAGCTGCGGCACGCGGTTCCAGCGGA- 3 '
15. PrtPNhelS 5 ' -GCTCTAGC AGC AAGAAGAC TTCGCTGCT TAACCAG - 3 '
16. PrtPSacIAS 5 ' -TAAGCGAGCTCCTATTCTTCACGTTGTTTCCGTT- 3 '
17. ICAM-NcoI 5 ' -CATGCCATGGATGGGGTCAATTCAGAGGTTCAGCT- 3 '
18. ICAM-NotI 5 ' -GCATGCGGCCGCTTTGATTTCCAGCTTGGTGCCT- 3 '
19. S36NcoI 5 ' - AGCGGCCCAGCCGGCCATGGCCCAGG - 3 '
20. S36NotI 5 ' -TAAGCGGCCGCGGTGACCTGGGTTCCCTGGCCCGA- 3 '
21. VHHlNcoI 5 ' -AGCGGCCCAGCCGGCCATGGCCCAGG - 3 '
22. VHHINot 5 ' -TAAGCGGCCGCGGTGACCTGGGTTCCCTGGCCCGA- 3 '
[00179] The 486-bp Fragment 1 containing the promoter region, the signal peptide (33 amino acids) and the first 4 amino acid of the N-terminal domain was amplified using primers APFSalS and APFBamAS; the 810-bp Fragment 2, containing the promoter region and the gene segment encoding the signal peptide (33 amino acids), the whole N-terminal domain (75 amino acid) and the central region (37 amino acid), using primers APFSalS and APFBamAS2; the 699-bp Fragment 3 containing the promoter region, the signal peptide and the whole N- terminal domain using primers APFSalS and BamAS3; the 492-bp Fragment 4 containing the gene segment encoding the C-terminal domain (last 78 amino acids) and the terminator region using primers APFSacS and EcoAS2, and the 609-bp Fragment 5 containing the gene encoding the middle region, the C-terminal domain and the terminator region using primers APFSacS2 and EcoAS2. [00180] Fragments 1 to 3 were digested with Sail and BamHl and ligated to a similarly digested pSP72 plasmid, generating psp72SalBamAS, psp72SalBamAS2 and psp72SalBamAS3, respectively. Fragment 4 was cloned between Sad and icoRI sites in psp72SalBamAS, psp72SalBamAS2 and psp72SalBamAS3 vectors yielding pSPIO, pSP20, and pSP30, respectively. Fragment 5 was also digested with Sad and EcoRl and ligated to similarly digested pSP72SalBamAS and pSP72SalBamAS3 vectors resulting in pSP40 and pSP50, respectively.
[00181] The gene encoding a scFv antibody or a fragment thereof directed against the SAI/II adhesion of S. mutans was amplified from the pLP402-scFv-long anchor vector using the primers scFvS and E-tagAS, thus introducing an E-tag gene downstream of the scFv and a Notl restriction site between the scFv and E-tag encoding genes. The PCR product was cloned in pGEM-T vector. The scFv-E-tag gene was further amplified using the primers scFvBgl/Sfi/NcoIS and etagNhe/Sac to introduce the restriction sites Bglll, Sfil and Ncol upstream the scFv gene and the restriction site Nhel and Sad downstream the E-tag gene. The PCR product was digested with BgRl and Sad and cloned in pSPIO, pSP20, pSP30, pSP40 and pSP50 generating pSP600, pSP700, pSP800, pSP400 and pSP500, respectively. The scFv-E-tag gene was also amplified using the primers scFvBgl/Sfi/NcoIS and etagNhe/Sacstop, introducing a stop codon after the E-tag. The PCR product was digested with BgRl and Sad and cloned between BamHl and Sad in pSPIO, pSP20, pSP30 yielding pSPlOO, pSP200 and pSP300, respectively.
[00182] In order to mediate covalent attachment of the fusion protein to the cell surface, the prtP anchor region encoding gene was amplified from pLP401-scFv-long anchor using the primers PrtPNhelS and PrtPSacIAS. The PCR product was inserted between the Nhel and Sad sites in psp600, psp700 and psp800 resulting in psp900, psplOOO and pspl 100. The 1 1 expression cassettes were subsequently released from the pSPlOO to pSPl 100 vectors using Sail and EcoRl and ligated into a similarly digested shuttle E. colli Lactobacillus vector pIAV7 resulting in the pAF plasmid series (pAFlOO to pAFl 100) (Fig. 2). The pAF plasmids were produced in E. coli and then introduced in L. paracasei by electroporation as previously described. FIG. 2 illustrates scFv production by Lactobacilli transformed with plasmids containing different expression cassettes. L. paracasei was transformed with the plasmids pAFlOO to pAFl 100. The scFv production in cell extract (C) and supernatant (S) was analyzed in two separate experiments (1 and 2). For each experiment, all transformants were analyzed at the same time. An equivalent of 125 μΐ supernatant and extract from 1 x 108 cells was loaded in each well.
[00183] Cloning of scFv antibody or a fragment thereof against human ICAM-1 and VHH fragments against SAI/II adhesion of S. mutans and rotavirus. The scFv anti-ICAM-1 was derived from the mouse monoclonal antibody MTM5. Total RNA was extracted from the monoclonal antibody secreting hybridomas.
Variable region encoding sequences of both the heavy (VH) and light (VK) chains were amplified using specific primers with a 5 ' RACE kit. The VH and VK sequences were fused together with a linker gene encoding the amino acid sequence (648)3 and cloned into a pGEM®-T vector after addition of overhang A using Tag DNA polymerase. The scFv anti -human ICAM- 1 encoding gene was subsequently amplified using the primers ICAM- Ncol and reverse primers ICAM -Notl. The gene encoding S36-VHH directed against the SAI/II adhesion of S. mutans was amplified from the pUR5850S36 plasmid using the primers S36NcoI and S36NotI. The gene encoding ARP1 (previously called VHH1) directed against rotavirus was amplified from the pLP501-ARPl plasmid using the primers VHHINcol and VHHINotl. The amplified DNA fragments containing the antibody or a fragment thereof genes were digested with Ncol and Notl and cloned between the Ncol and Notl restriction sites into pAF 100, pAF400 and pAF900 plasmids. [00184] Chromosomal integration of expression cassettes containing the scFv anti-SAI/II gene and anti- rotavirus genes. The plasmid pEM171 was constructed in four steps: i) The 519-bp Sall-Ncol fragment of plasmid pAF400, containing the promoter, the signal peptide and the short N-terminal domain of the apf gene, was ligated with pGEM5Z digested with the same enzymes, to generate pEM157; ii) The 1415-bp Ncol-BglU fragment, containing the scFv gene and the C-terminal region of the apf gene, was obtained from pAF400 and inserted in pUC21 digested with the same enzymes, resulting in pEM158. iii) A Xbal (blunt-ended) - Bglll insert from pEM158 was cloned into the Ecll36U-BamKl sites of the integrative pEM76 vector thus yielding pEM170. iv) The Ndel-Ncol fragment of pEM157 was inserted into the same sites of pEM170 to yield pEM171.
[00185] Plasmids pEM181, pEM182 and pEM233 were constructed by interchange of the fragment Ncol-EcoRi of plasmid pEM 171 by the corresponding fragments of pAF900, pAF 100, and pAF900-ARP 1 , respectively.
[00186] The integrative plasmids pEM171, pEM181, pEM182, and pEM233 were independently introduced by electroporation into L. paracasei. Resulting strains were subsequently electro-transformed with pEM94, a replicative plasmid that carries the β-recombinase gene, in order to delete, by site-specific recombination, the non-food-grade DNA present in the integrated plasmids. After this depuration step, the strains were cultured at 37°C to eliminate pEM94 (which carries a temperature sensitive origin of replication). The obtained strains were designated L. paracasei EM171 (secreted and attached scFv), L. paracasei EM181 (anchored scFv), L.
paracasei EMI 82 (secreted scFv), and L. paracasei EM233 (anchored VHH1) respectively. Each step
(integration, depuration, and curation) was confirmed by PCR analysis and by Southern blotting.
[00187] Western Blot. Expression levels of scFv produced by the different Lactobacillus transformants were determined by Western Blot. The transformants were grown in MRS medium containing erythromycin (3 μg/ml) until OD60o 0.8. Non-transformed L. paracasei were used as a negative control and grown in MRS only. The cultures were centrifuged at 3,200 x g to separate the pellet from the supernatant. The supernatant was filter sterilized, pH adjusted to 7.3-7.6, dialyzed against 10 mM Tris (pH 8.0) and concentrated using Amicon Ultra-4 centrifugal filter units (10 kDa cut off, Millipore, Carrigtwohill, Co. Cork, Ireland). Concentrated supernatant was mixed with 2x Laemmli buffer and boiled for 5 min. The cell culture pellet was washed twice with PBS, resuspended in 200 μΐ Laemmli buffer and boiled for 5 min. The cell extract was centrifuged at 16,000 x g to remove cell debris and the supernatant containing soluble proteins was saved. The supernatant and cell extract was run on a 10% SDS-polyacrylamide gel at 170 volts and the proteins were transferred onto a nitrocellulose membrane. The membrane was blocked with PBS-TM (PBS with 0.05% (v/v) Tween 20 + 5%> (w/v) milk powder) and successively incubated with mouse anti-E-tag antibodies (1 μ^πιΐ), and HRP (horse radish peroxidase) labelled goat anti-mouse antibodies. The signal was detected by chemiluminescence using the ECL Plus™ Western Blotting detection system.
[00188] Treatment with LiCl. Non-transformed Lactobacilli and Lactobacilli containing the plasmid pAF400 and pAF900 (2 x 109 bacteria) were washed three times with PBS and incubated with 10 ml LiCl 5M on a rocking table for 30 min at 4°C. The cells were pelleted at 8,000 x g and resuspended in 200 μΐ loading buffer. The samples were run on SDS-PAGE and transferred on nitrocellulose as described above.
[00189] Quantification by densitometry. The amount of scFv in the supernatant and bacterial extract was estimated by Western Blot densitometry using a purified E-tag scFv as a standard. Two- fold dilutions of the standard scFv and dilutions of the supernatant and bacterial extract were loaded on a 10%o polyacrylamide gel and Western Blot was performed as described above. The amount of scFv in the extract was calculated using the Gel Doc™ image analysis system and Quantity One® analysis software.
[00190] Flow cytometry. 50 μΐ (107 bacteria) of each culture of Lactobacillus transformants grown until OD60o of 0.8 were washed three times in PBS by centrifugation (10,000 x g for 2 min) before resuspension in 100 μΐ of PBS. An equal amount of mouse anti-E-tag antibody diluted 1/100 was added and the samples were incubated on ice for 30 min. The washing procedure in PBS was repeated and the samples were resuspended in 100 μΐ PBS and mixed with 100 μΐ Cy-2 conjugated goat anti-mouse immunoglobulin (Jackson Immunoresearch Laboratories, West Grove, PA) (final dilution 1/200) and incubated on ice for 30 min. The Lactobacilli were fixed using 2% paraformaldehyde. After washing, the samples were resuspended in 1 ml of PBS and analysed in a FACS Calibur machine.
[00191] To ascertain binding to rhesus rotavirus (RRV), Lactobacilli grown to an OD of 0.8 were incubated with a 10-fold excess of RRV. This was followed by successive incubation with 1:200 dilution of rabbit anti- rotavirus serum (a generous gift from Dr Lennart Svensson, University of Linkoping) and a 1:200 dilution of donkey anti-rabbit PE conjugate antibody. All incubations were performed on ice for 30 min. The Lactobacilli were fixed using 2% paraformaldehyde. After washing, the samples were resuspended in 1 ml of PBS and analysed in a FACS Calibur machine.
[00192] Fluid based assay. The assay was similarly performed as for the flow cytometry but the anti-E-tag antibody bound to the bacteria was detected with an alkaline phosphatase conjugated rabbit anti-mouse antibody (1/1,000). Following incubation for 30 min on ice, the bacteria were resuspended in diethanolamine buffer (1 M, pH 10.0) and 100 μΐ of the bacterial suspension was added in duplicate to an ELISA plate. 100 μΐ of 2-fold concentrated p-nitrophenyl phosphate (pNPP) (2 mg/ml) was added to the wells. After 30 min incubation, the absorbance was read at 405 nm in a Varioskan Flash microplate reader.
[00193] Enzyme-linked immunosorbent Assay. 96-well plates were coated with 100 μΐ recombinant human ICAM-l/Fc, SAI/II antigen (1 μ^πιΐ in PBS) or rotavirus overnight at 4°C. After washing with PBS containing 0.05% Tween 20 (PBS-T), dilutions of the supernatant from L. paracasei cultures secreting scFv anti-ICAM-1, ARP1 or S36 as well as bacterial cells of anchored constructs, were added and incubated at room temperature for 2 h. Supernatants and cells from culture of non -transformed L. paracasei were used as negative controls. Plates were washed twice and a mouse anti-E-tag antibody (1/1,000) was added to the wells. After 1 h incubation at room temperature, plates were washed twice and an alkaline phosphatase conjugated rabbit anti- mouse antibody (1/1,000) was added to the plates. Following incubation for 1 h at room temperature, diethanolamine buffer (1 M, pH 10.0) containing 1 mg/ml of pNPP was added to the wells. After 30 min incubation, the absorbance was read at 405 nm in a Varioskan Flash microplate reader.
[00194] Mouse model of rotavirus infection. Four-day-old BALB/c pups were used for the study. Lactobacilli (108) were administered to pups once daily in a 10-μ1 volume, starting on day -1 and continuing until day 3. Infections were made orally on day 0 using 2 x 107 ffu RRV (20 diarrhea doses (DD50)), a dose which causes diarrhea in more than 90%o of inoculated animals. Occurrence and severity of diarrhea was recorded daily until day 4. Diarrhea in the pups was assessed on the basis of consistency of feces. Watery diarrhea was given a score of 2, loose stool a score of 1, and no stool or normal stool a score of 0. Severity was defined as the sum of diarrhea scores for each pup during the course of the experiment (severity =∑ diarrhea score [day 1 + day 2 + day 3 + day 4]) and duration was defined as the total sum of days with diarrhea. [00195] Statistical analysis. Both severity and duration were analyzed using Kruskal-Wallis and Dunn tests.
[00196] Comparison of production of scFv anti-SAI/II using different expression cassettes. In order to optimize the production of antibody or a fragment thereof in Lactobacilli, eleven different expression cassettes were made using the secretion machinery of the APF protein of L. crispatus M247 and the scFv anti-SAI/II adhesion of S. mutans. In some of the cassettes, the gene encoding the Proteinase P (prtP) anchored region, which mediates covalent binding to the bacterial surface was fused to the antibody or a fragment thereof. The production of scFv by the modified Lactobacilli was compared by Western Blot in two different experiments (Fig. 2). Lactobacilli containing pAFlOO and pAF600 show expression only in the supernatant while the other constructs showed expression both in the supernatant and cell extract. L. paracasei pAF400 produced the highest level of scFv in the supernatant while the lowest level was obtained with the Lactobacillus containing pAF300, pAF700 and pAF800. The amount of scFv produced by L. paracasei transformed with the three plasmids mediating surface anchoring of scFv (pAF900, pAFlOOO and pAFl 100) was shown to be similar. In these constructs, shedding of the fusion proteins into the supernatant was also observed.
[00197] The conserved C-terminal part of APF may mediate non-covalent binding of the protein to the bacterial surface. FIG. 3 illustrates evaluation of display of scFv to the surface of modified L. paracasei. (A), demonstration of non-covalent attachment of scFv to the surface of L. paracasei pAF400 by Western Blot, (i) The bacterial pellet was treated with LiCl 5M to remove surface proteins and Western Blot of the cell extract was performed. Lane 1 : L. paracasei pAF400, untreated pellet; lane 2: L. paracasei pAF400, LiCl treated pellet; lane 3: L. paracasei pAF900, untreated pellet; lane 4: L. paracasei pAF900, LiCl treated pellet, (ii) Wild type L. paracasei was incubated with the culture supernatant of wild type L. paracasei (lane 5), L. paracasei pAFlOO (lane 6), and L. paracasei pAF400 (lane 7) to evaluate the binding of scFv. (B) Flow cytometry analysis of Lactobacillus transformants producing surface anchored scFv anti-SAI/II antibody or a fragment thereof. The production of scFv on the surface was shown by detecting the E-tag using a mouse anti-E-tag antibody and Cy-2 conjugated goat anti -mouse immunoglobulin. L. paracasei pAF900 (black line), L. paracasei pAFlOOO (dark grey line), pAFl 100 (light grey line), and non -transformed L. paracasei (black filled).
[00198] Fusion of scFv to both the middle region and C-terminal part of APF {Lactobacillus pAF400 and Lactobacillus pAF500) results in a higher amount of recombinant protein in the cell fraction. Since the APF was previously shown to be removed from the surface of Lactobacilli by LiCl treatment, the cell pellet of L.
paracasei pAF400 was pretreated with 5M LiCl before protein extraction and Western Blot analysis.
Pretreatment of the cell pellet with LiCl was shown to remove 75% of the scFv fusion protein (55-kDa band) in the cell pellet extract. In comparison, lower amounts of scFv were extracted from the surface of L. paracasei pAF900 (surface anchored scFv) (Fig. 3A). In addition, a 55-kDa band, corresponding to the scFv fusion protein, was observed in the cell extract of non -transformed L. paracasei pre-incubated for two hours with the culture supernatant of L. paracasei pAF400 (Fig. 3A). No band was detected when L. paracasei was previously incubated with the supernatant of L. paracasei pAFlOO or non-transformed Lactobacilli. Although other mechanisms might be involved, these results suggest that the scFv can attach to the cell wall through the middle region and C-terminal part of the APF protein.
[00199] Surface expression of scFv by the transformed Lactobacilli was also analysed by flow cytometry using an anti-E-tag antibody. A positive signal was obtained with the Lactobacillus transformed with pAF900, pAFlOOO and pAFl 100 which display surface anchored scFv (Fig. 3B). No significant difference was observed in the level of expression between these three constructs. L. paracasei transformed with the plasmids pAFl 00 to pAF800 did not show any signal by flow cytometry. Although detected on the surface of L. paracasei pAF400 in Western Blot, the scFv attached on the surface of Lactobacilli can not be protrud sufficiently outside the bacterial surface to be recognised by the anti-E-tag in flow cytometry.
[00200] Quantification of scFv anti-SAI/II produced by selected expression cassettes. Expression cassettes producing fusion proteins with short APF N-terminals were utilized herein. The three selected plasmids were pAFlOO, generating secreted scFv only, pAF400, generating both secreted and cell wall attached scFv and pAF900, generating surface anchored scFv. The amount of scFv in the supernatant of L. paracasei pAFlOO and L. paracasei pAF400 was shown to be 100 ng/ml and 1000 ng/ml, respectively. The amount of scFv present in the cell extract of L. paracasei pAF400 and pAF900 was estimated to be approximately 1000 and 2000 scFv fusion molecules/bacterium.
[00201] Expression of scFv anti-ICAM-1 and VHHs in selected expression cassettes. The plasmids pAFlOO, pAF400 and pAF900 were subsequently used for expression of a scFv directed against human ICAM-1 in L. paracasei generating L. paracasei pAFlOO-ICAM, pAF400-ICAM, and pAF900-ICAM. The same plasmids were also use for expression of VHH antibody or a fragment thereof against SAI/II (S36-VHH) (L. paracasei pAF100-S36, pAF400-S36, pAF900-S36) and rotavirus (ARP1) (L. paracasei pAFlOO-ARPl, pAF400-ARPl, pAF900-ARPl). ScFv expression was analysed by immunoblotting supernatant or cell extract of L. paracasei- transformed strains using a mouse monoclonal anti-E-tag antibody. A band of 30 kDa was detected in the supernatant of L. paracasei pAFlOO-ICAM, which migrated at the expected size of the secreted scFv (Fig. 4A). The supernatant and cell extract of Lactobacilli pAF400-ICAM showed a band of 55 kDa which correspond to the scFv secreted in the supernatant and attached on the surface. The band is larger than the theoretical molecular weight (42 kDa), which could be related to posttranslational modification of the C-terminal part of APF. A 60 kDa-band was detected in the cell extract of the Lactobacilli transformed with pAF900-ICAM corresponding to the surface anchored scFv. For the VHHs against SAI/II and rotavirus, a protein near the predicted size (16.5 kDa) was detected in the supernatant of L. paracasei pAFlOO-ARPl and pAF100-S36 (Fig. 4A). L. paracasei pAF400-ARPl and L. paracasei pAF400-S36 showed a band of 40 kDa in both the supernatant and the cell extract which is higher than the predicted size of the fusion protein (29 kDa) (as previously observed for the similar scFv fusion). The cell extract of Lactobacilli transformed with pAF900- VHH and pAF900-S36 showed a major band at 47 kDa, corresponding to the theoretical molecular weight of the surface anchored VHHs. The additional bands detected in the cell extract are most probably degradation products or antibody or a fragment thereof linked to cell wall residues. FIG. 4 illustrates production of scFv and VHH antibody or a fragment thereof by modified Lactobacilli. (A) Western Blot analysis of Lactobacilli producing scFv anti-ICAM-1, ARP1 anti-rotavirus, and VHH anti-SAI/II (S36). Lane 1: pAFlOO, secreted, supernatant; lane 2: pAFlOO, secreted, cell extract; lane 3: pAF400, secreted and attached, supernatant; lane 4: pAF400, secreted and attached, cell extract; lane 5: pAF900, surface anchored, supernatant; lane 6: pAF900, surface anchored, cell extract; lane 7: L. paracasei, supernatant; lane 8: L. paracasei, cell extract. An equivalent of 40 μΐ supernatant and extract from 3.5 x 107 cells was loaded in each well. (B) Flow cytometry analysis of Lactobacillus transformants producing surface anchored scFv anti -human ICAM- 1 and VHH antibody or a fragment thereof. The production of scFv on the surface was shown by detecting the E-tag using a mouse anti-E- tag antibody and Cy-2 conjugated goat anti-mouse immunoglobulin. L. paracasei pAF900-ICAM (grey filled), L. paracasei pAF900-ARPl (black line), L. paracasei pAF900-S36 (grey line), and non-transformed L.
paracasei (black filled). [00202] The amount of scFv and VHH antibody or a fragment thereof was estimated by densitometry (Table 5).
The level of scFv and VHH antibody or a fragment thereof in the supernatant was 7 and 4 times higher
respectively, using the pAF400 than the pAFlOO plasmid. In addition, the level of antibody expressed in the
supernatant or in the cell extract was 7-10 times higher for VHH than for scFv.
[00203] TABLE 5. Amount of scFv and VHH antibody or a fragment thereof produced by the transformed
Lactobacilli using densitometry1
Antibody or a fragment thereof
anti-ICAM ARP1 S36
Construct Location Supernatant Cell extract Supernatant Cell extract Superna Cell extract of (ng/ml) (molecules/ (ng/ml) (molecules/ tant (molecules/ antibody bacteria) bacteria) (ng/ml) bacteria)
L. paracasei Secreted 150 ND3 500 ND 700 ND pAFlOO
L. paracasei Secreted 900 650 3000 330 5000 1300 pAF400 and
attached
L. paracasei Surface ND 650 ND 6000 ND 3000 pAF900 anchored
The amount of scFv in the supernatant and bacterial extract was estimated by Western Blot densitometry using a purified E-tag scFv as a standard.
Supernatant from a culture grown until an OD60onm of 0.8.
ND, not done.
[00204] Flow cytometry showed that the scFv and VHHs fragments fused to the prtP anchored region were
displayed on the surface of Lactobacilli transformed with the pAF900 plasmids (Fig. 4B). However, as observed for the scFv anti-SAI/II, no signal was observed for the Lactobacilli transformed with pAF400 (secreted and
attached antibody or a fragment thereof). In order to confirm cell attachment, the cells were treated as for the
flow cytometry but detected using an enzyme-substrate reaction and the absorbance was read at 405 nm. In
comparison to non-transformed Lactobacilli (OD405 0.249), antibody or a fragment thereof could be detected on the surface of Lactobacilli transformed with pAF400-ICAM (OD405 0.429), pAF400-ARPl (OD405 0.478) and pAF400-S36 (OD405 1.086). The signal was equivalent to a 30-fold dilution of Lactobacilli expressing the
corresponding surface anchored fragment.
[00205] Binding of scFv and VHH antibody or a fragment thereof in ELISA. FIG. 5 illustrates binding
activity of antibody or a fragment thereof to antigens in ELISA. Culture supernatant (A, C, E) or bacterial cells
(B, D, F) were added to plates coated with human ICAM-1 (A,B), SAI/II (C, D) and rotavirus (E, F). The
binding activity of scFv and VHH antibody or a fragment thereof produced by Lactobacilli, secreted in the
supernatant or expressed on the bacterial surface, was analysed by ELISA (Fig. 5). Binding activity of scFv to recombinant human ICAM-1 was observed using the supernatant of Lactobacilli transformed with pAFlOO- ICAM and pAF400-ICAM. A 4-fold higher binding activity was observed in the supernatant of L. paracasei
pAF400-ICAM than L. paracasei pAFlOO-ICAM that correlates with the higher amount of scFv produced by the former (Fig. 5A, Table 3). Whole bacterial cells of L. paracasei pAF900-ICAM (surface anchored scFv)
were also shown to bind to human ICAM-1 (Fig. 5B).
[00206] VHH fragments produced by Lactobacilli were shown to bind with higher activity than scFv antibody or a fragment thereof. The supernatant of Lactobacilli transformed with pAFlOO-ARPl and pAF400-ARPl (Fig.
5C) or whole cells of L. paracasei pAF900-ARPl (Fig. 5D) showed good binding to rotavirus particles in
ELISA. Transformed Lactobacilli producing S36-VHH also showed high binding activity to the SAI/II antigen
(Fig. 5E and 5F). The supernatant of Lactobacilli transformed with pAF400-ARPl and pAF400-S36 only showed marginally higher binding activity than Lactobacilli transformed with the corresponding pAFlOO plasmids.
[00207] No binding activity was observed using whole Lactobacilli transformed with pAF400-ICAM, pAF400- S36 and pAF400-ARPl . The latter could be due to that the E-tag is poorly detected when the antibody is attached to the cell through the C-terminal of APF as observed above. However, using 5acLight™ Green- stained bacteria in a spectrofluorometric assay, binding to antigen coated plates by Lactobacilli transformed with pAF900 was observed but not with pAF400 plasmids.
[00208] To ascertain binding activity of Lactobacilli producing surface expressed ARP1, transformed Lactobacilli were preincubated with RRV and subsequently with rabbit anti-sera against rotavirus and donkey anti -rabbit PE conjugated antibodies. Lactobacilli producing surface anchored ARP1 were shown to bind to rotavirus as detected by flow cytometry.
[00209] Chromosomal integration of the gene encoding the scFv anti-SAI/II. FIG. 6 illustrates production and binding activity of scFv using plasmid- and chromosomally integrated-based expression system. (A) Production of scFv anti-SAI/II by Western Blot analysis of supernatant and cell extract. Lane 1 : L. paracasei; lane 2: L. paracasei pAFlOO, secreted; lane 3: L. paracasei EM 182, secreted; lane 4: L. paracasei pAF400, secreted and attached; lane 5: L. paracasei EM171, secreted and attached; lane 6: L. paracasei pAF900, surface anchored; lane 7: L. paracasei EM181, surface anchored. An equivalent of 125 μΐ supernatant and extract from 1 x 108 cells was loaded in each well. (B) Flow cytometry analysis of L. paracasei producing surface anchored scFv anti-human SAI/II using plasmid- (L. paracasei pAF900, black line) and chromosomally-integrated (L. paracasei EM181, grey line) based expression system. Non-transformed Lactobacilli (black filled). The production of scFv on the surface was shown by detecting the E-tag using a mouse anti-E-tag antibody and Cy-2 conjugated goat anti -mouse immunoglobulin. (C) Binding activity of scFv antibody or a fragment thereof produced by plasmid- and chromosomally integrated-based expression systems to SAI/II antigen using supernatant and bacterial cell suspension in ELISA. The three selected cassettes fused to the gene encoding the scFv anti-SAI/II were integrated into the chromosome of L. paracasei using site-specific integration. scFv expression was analysed by immunoblotting (Fig. 6A) and the amount of scFv produced in the supernatant and cell extract was evaluated by densitometry. When integrated on the chromosome, the amount of scFv in the supernatant of L. paracasei EM 182 (secreted scFv) and in the cell extract of L. paracasei EMI 81 (surface anchored scFv) was about 10-fold lower than when using the corresponding plasmid construct (respectively 12 ng/ml and 100 molecules/bacteria). A 10-fold decrease in fluorescence intensity was also observed by flow cytometry using an anti-E-tag antibody (Fig. 6B). The amount of scFv detected in the supernatant and cell extract of EMI 71 (secreted and attached scFv) was shown to be only 2-fold lower (450 ng/ml and 450 molecules/bacterium) than the plasmid system (1000 ng/ml and 1000 molecules/bacterium).
[00210] Binding activity against SAI/II antigen was observed using the supernatant and whole bacterial cells in ELISA but at a reduced level than when using the corresponding plasmid system (Fig. 6C). In the supernatant, a 4-fold reduction in binding activity was observed for the secreted and attached scFv (L. paracasei EM171) and at least, a 8-fold reduction for the secreted scFv (L. paracasei EMI 82). Whole bacterial cells of L. paracasei EM181 were binding at a level less than 16-fold lower than L. paracasei pAF900. No binding activity was observed using whole cells of transformed Lactobacilli producing attached scFv (L. paracasei pAF400 and L. paracasei EM 171).
[00211] Chromosomal integration of the ARPl anti-rotavirus gene. FIG. 7 illustrates A) Production and binding activity of Lactobacilli producing surface anchored ARP1 using plasmid - (L. paracasei pAF900- ARP1) and chromosomally integrated - (L. paracasei EM233) based expression system. (A) Production of ARP1 by Western Blot analysis of supernatant and cell extract. Lane 1 : L. paracasei pAF900-ARPl, supernatant; lane 2: L. paracasei pAF900-ARPl, cell extract; lane 3: L. paracasei EM233, supernatant; lane 4: L. paracasei EM233, cell extract; lane 5: L. paracasei, supernatant; lane 6: L. paracasei, cell extract. An equivalent of 40 μΐ supernatant and extract from 3.5 x 107 cells was loaded in each well. (B) Flow cytometry analysis showing the display of ARP1 on the surface by detecting the E-tag using a mouse anti-E-tag antibody and Cy-2 conjugated goat anti -mouse immunoglobulin. L. paracasei pAF900-ARPl (black line), L. paracasei EM233 (grey line), and non-transformed Lactobacilli (black filled). (C) Binding activity of Lactobacilli producing surface anchored ARP1 to rotavirus measured by flow cytometry. Modified Lactobacilli were incubated with rotavirus and stained with rabbit anti-rotavirus serum and anti-rabbit PE conjugate antibody. L. paracasei pAF900-ARPl (black line), L. paracasei EM233 (grey line), non-transformed Lactobacilli (black filled). (D) Binding activity of modified Lactobacilli producing surface anchored ARP1 to rotavirus measured by ELISA. Plates coated with RRV rotavirus particles were incubated with serial dilutions of intact bacterial cells. The bound bacteria were detected using a mouse anti-E-tag antibody, an anti -mouse IgG alkaline phosphatase-conjugated and p-nitrophenyl phosphate substrate.
[00212] The cassette mediating surface anchoring of ARP1 was integrated on the chromosome of L. paracasei. In Western blot, the intensity of the bands was 10 times lower with the integrated construct corresponding to 600 molecules/bacteria (Fig. 7A). However, when evaluating the surface display of the ARP1 fragment on the surface of bacteria by flow cytometry using an anti-E-tag antibody, the fluorescence intensity was shown to be only 6-fold lower for L. paracasei EM233 than the corresponding plasmid construct, L. paracasei pAF900- ARP1 (Fig. 7B).
[00213] L. paracasei EM233 was also grown for 50 generations and fluorescence intensity was evaluated at generation 10, 20, 30, 40 and 50. No difference was observed in the fluorescence intensity between the different generations showing that the integrated gene is stable.
[00214] The binding of whole cells of L. paracasei EM233 to rotavirus was shown to be similar using flow cytometry (Fig. 7C) while using ELISA, whole cells of L. paracasei EM233 was shown to bind to rotavirus particles at a level about 3 times lower than the corresponding plasmid construct (Fig. 7D). Binding to rotavirus was also observed using immunofluorescence microscopy and the intensity was shown to be similar between both constructs (data not shown).
[00215] The transformed Lactobacilli were administered prophylactically to mice, one day before infection, and the treatment was continued once daily. L. paracasei pAF900-ARPl and L. paracasei EM233 reduced the duration and severity of diarrhea to a similar level (Table 6).
[00216] TABLE 6. Duration and severity of rotavirus induced diarrhea in the different treatment groups.
Group Duration Severity
Mean ± SE, days Mean ± SE
L. paracasei pAF900-ARPl 1.00 ± 0.22 1.00 ± 0.22*
L. paracasei EM233 1.14 ± 0.14 1.14 ± 0.14*
L. paracasei 1.43 ± 0.20 2.29 ± 0.36
* Statistically significant from L. paracasei group by Kruskal-Wallis (P=0.007) and Dunn test (P<0.05).
[00217] Example 2. Expression cassettes
[00218] Expression cassettes comprising one or more sequences in Table 7 are made to express antibody fragments in a microorganism.
[00219] Table 7. Expression cassette sequences
SEQ. Sequence Remarks ID.
23 AGGTCTAATTATTAGGGGGAGAAGGAGAGAGTAGCCCGAAAACTTTTAGTTGGCTTGGAC Fragment sixl-int- TGAACGAAGTGAGGGAAAGGCTACTAAAACGTCGAGGGGCAGTGAGAGCGAAGCGAACAC attP-six2 of TTGATCTTTTAAGTTGCTATCTTTTATAGGTCAATAGAGTATACTTATTTGTCCTATTGA integrative vector T T AGAT AGCAGT AT AAT AGCT T T AT AGAGT AGGTCAT T T AAGT TGAGCAT AAT AGGAGGA pEM76
TCAAGAATGAAAAAATTTATTTATCGAGTTTTAGAAAATGACGAAGTGGTGGCTATTTTT AAT GAGC AAGAAT AT GCGC AAGAT TTTATCGCT T ACGAAAAGAC AAT T T C T GAT AAGC AA T T T GAAAT T GAAAAAGT AGC AC T CGC AGAT TGGTTATT GC AACCGAGAGAAT TTTAGGGG TTGGTTGAAAATGGCTAAAATTGGTTATGCACGACTCTAGGGGAGCTCGAATTCGAAGCT TCTGCAGACGCGTCGACGTCATATGGATCCAAAATAAAAAGCGCCTACCCCACCGACCAA AGTGAATGGGTAGACGCCTAACAAATACTCGGAGCAACAAGGCTCTTTGTATACACATTT TTACACAGGAGGGCAATAATATGGCGGTATTCAAGCGAGCTAACCGAAAAAGTAAGCCTT GGGGAT T CC AGT AT T C AT AC AAAGT GGAT GGC AT C T CC AAGC AGAAAAC AT C AT T T T AC A AAACAAGAAAAGAAGCTAAGGCTGCTGAGGCGAAGTACCTCGCTTCTACTGGCGGATCTG TAAAAATCGATCCAGTGATCACTTTCGCAGATTGGTATGACAAGTGGTTGCATACCTACA AGATACGTTCTGTTTCCGAACTGACGATGACCAAGTATGCAACTTCGGGTACAATCATCA GAAACTACTTCAAAGACCTTAAATTAATTGACTTAACGCGCATGATTTATCAACAGTTTA TTAACAACTATATTGATGACGGTTACGGCCACAAGCACGCAAGGCAATCAGTCCAGAAGC TACATTCACACGCTCATCAAGCAATTATGGCCGCAGCAGACGAAGGTTTGATTAGGCGCG ATTATGCCGCTCATGCAGAACTGGGTGGTACCGCAGGCAGATCAGAAGACACAAAATTTC TTGAAGCTGATCAGTTCGAGAAACTGCGAGATTATGTTGATCAATTTGCCAACCCGCAAC GAATTGCTCTCATGATGGTTCAAACGGCCATATACTCTGGCGCTCGGCTTGGAGAAATTG GTGGCTTAACGTGGGAAGATATTGATGAGAAGAAGAGCACCATCAGTATCGACAAGACCT TCAAGTACAGGTTTGTCATTCGTAACGCGGATGGTAGCTGGCCAGACCGTGAAAAAGTCT TCGGTCCGACCAAGACTCCTTCAAGTGTTCGTACTATCAAAGTAAGCCCAGTTCTTATCG CTAGCCTCCATAAGCTCATATTGGCTGACAGAATAAAAGCGATTAACAATCCGTACCATT TACTGTTTCTTGGGCCGACCGGCTTGCCAATATATAGCAATGGTGTCAACAAGGAACTTC GCCGCGCTCTCAAACATCTTGGTATTGAGCGTCCTGGGTTCGGTTTCCACGGATTGCGGC ACACGCATGGCAGCTACTTGCTTTATAAAGGCCTTGACATTCAGTATGTATCACATCGCC TCGGACACGAAAACGTTGGCATTACCACCAAGATCTATACACATCTGCTGGATGCGATGA CACAGAAGCAGGACGAGAAAGCAATGAATGTGTTGTGACTAAAAATCGAACCAGAGAAAG CGGCTCAATGTCAACTGCCACAAGGTTTACAGCACACATTCAATTTTCGATCACGAACCA TTTTCCTAAAAAATCGCAATTTCAGGCTATTTGGTTCGATGTGGTTCGATGGATTATATT TTTTAGGGGTTTTTCGGAGTTCAGATAAATGCAAGAATGCCGGTTTAAAGCCATTTCTGA GCACTAAAAAAGACCCTCTAGGGGGCTTTGATACCGGTGATCGGGGTATCACGGAATGTA TACGTACTGATATGATTGCATTTATGACAAAAAGTGGTTCGATGTGGTTCGATGCTTCAA ACGACAGCGACCAACAACACATCTCTATATAATAGGTAGAAATAGCTTTTAAGAGTTCAG AAATATGGGCACACAAGACCGGGGTCTAATTATTAGGGGGAGAAGGAGAGAGTAGCCCGA AAACTTTTAGTTGGCTTGGACTGAACGAAGTGAGGGAAAGGCTACTAAAACGTCGAGGGG CAGTGAGAGCGAAGCGAACACTTGATCTTTTAAGTTGCTATCTTTTATAGGTCAATAGAG TATACTTATTTGTCCTATTGATTAGATAGCAGTATAATAGCTTTATAGAGTAGGTCATTT AAGT T GAGC AT AAT AGGAGGAT C AAGAAT GAAAAAAT T T AT T T AT CGAGT T T T AGAAAAT GACGAAGTGGTGGCTATTTTTAATGAGCAAGAATATGCGCAAGATTTTATCGCTTACGAA AAGAC AAT T T C T GAT AAGC AAT TTGAAAT T GAAAAAGT AGC AC T CGC AGAT TGGTTATTG CAACCGAGAGAATTTTAGGGGTTGGTTGAAAATGGCTAAAATTGGTTATGCACGACTC
24 AGGTCTAATTATTAGGGGGAGAAGGAGAGAGTAGCCCGAAAACTTTTAGTTGGCTTGGAC Fragment sixl- TGAACGAAGTGAGGGAAAGGCTACTAAAACGTCGAGGGGCAGTGAGAGCGAAGCGAACAC (cassette TTGATCTTTTAAGTTGCTATCTTTTATAGGTCAATAGAGTATACTTATTTGTCCTATTGA mediating T T AGAT AGCAGT AT AAT AGCT T TAT AGAGT AGGTCAT T T AAGT TGAGCAT AAT AGGAGGA expression of TCAAGAATGAAAAAATTTATTTATCGAGTTTTAGAAAATGACGAAGTGGTGGCTATTTTT secreted/ attached AAT GAGC AAGAAT AT GCGC AAGAT TTTATCGCT T ACGAAAAGAC AAT T T C T GAT AAGC AA ScFv anti-SAI/II)- T T T GAAAT T GAAAAAGT AGC AC T CGC AGAT TGGTTATT GC AACCGAGAGAAT TTTAGGGG int-attP-six2 of TTGGTTGAAAATGGCTAAAATTGGTTATGCACGACTCTAGGGGAGCTAGAGCGGCCGCCA pEM171 CGGCGATATCGGATCCATATGGTCGACGGATAAGGCAGAATAATGGAATAAATTAATAAA AAAT T T GT GAGAAT T AAAAAAGAAAGAGGAAAC T C T T T C T T T T T T CGT T T T GC AAAAGT G TTTCAATATATTAAATGCGAACAAGCTTTTGCACATAGCAAATAAAAATTAAAAATCGAG TTAAATGGCGATCTGATGCGGTTTTGTATCATCTGAATAAATTTACATAAATATTACAAT TGTTACAATTTTGACATACTTTGCAATAGTTTCTTAATCTGCAGGTGATATTCCTGTTAT AGTTCTGCAATTTAAGCAAGGTAGTATATGCTGTGTCAATTGAATGGGACGGACGAATAA GGT GAAAAT T CGT T AC T T AT GAC T T T T AAAAT T T T AAGGAGAGAAT T T T T T T GAAAAT T A AATCTATCTTAGTTAAGTCAATTGCAGTAACTGCTTTATCAGTTACAGGTTTAGTAGCAG CTAATAACAACACTAATACTGCTCAAGCTGCTATTGTAGAAGGATCTGCGGCCCAGCCGG CCATGGATGCCCAGGTGAAACTGCAGGAGTCTGGACCTGACCTGGTGAAACCTGGGGCCT C AGT GAAGA AT CC T GCAAGGC T TC T GGAT AC AC AT T C AC T GAC T AC AAC AT AC AC TGGG TGAAGCAGAGCCGTGGAAAGAGCCTTGAGTGGATTGGATATATTTATCCTTACAATGGTA ATACTTACTACAACCAGAAGTTCAAGAACAAGGCCACATTGACTGTAGACAATTCCTCCA CCTCAGCCTACATGGAGCTCCGCAGCCTGACACCTGAGGACTCTGCAGTCTATTACTGTG CAACCTACTTTGACTACTGGGGCCAAGGCACCACGGTCACCGTCTCCTCAGGTGGAGGCG GTTCAGGCGGAGGTGGCTCTGGCGGTGGCGGATCGGACATCGAGCTCACTCAGTCTCCAG CAATCATGTCTGCATCTCCAGGGGAGAAGGTCACCATAACCTGCAGTGCCAGCTCAAGTG TAAGTTACATGCACTGGTTCCAGCAGAAGCCAGGCACTTCTCCCAAACTCTGGCTTTATA GCACATCCAACCTGGCTTCTGGAGTCCCTGCTCGCTTCAGTGGCAGTGGATCTGGGACCT CTTACTCTCTCACAATCAGCCGAATGGAGGCTGAAGATGCTGCCACTTATTACTGCCATC AAAGGACTAGTTACCCGTACACGTTCGGAGGGGGGACAAAGTTGGAAATAAAACGGGCGG CGGCCGCAGGTGCGCCGGTGCCGTATCCGGATCCGCTGGAACCGCGTGCCGCAGCTAGCG AGGAGCTCTACCACACTCAAGCTGCTGTAACCCAAGCTCCAGTACAACACCAAACTCAAA C T GAAAAT AC T AAT T C T GC AGC AAC T AC T AC T GC AGC AAAT AAC ACC AAC AC T CAAAC T A CTACTTCAACTGTAAGTGGTTCAGAAGCTAGTGCTAAGGAATGGATTGCCGGTAGAGAAT CTGGTGGCTCATACGGTGCTTCAAATGGTCAATACGTTGGTAAATACCAACTTTCAGCTT CATACTTGAATGGTGACTATTCAGCAGCTAACCAAGAGCGAGTAGCTGATAACTATGTCA AAGGTCGTTATGGCTCATGGACTGCTGCTAAGGCATTCTGGCAAGCAAACGGCTGGTACT AAAAAT AAACC T C T T T T CAAAAC T AAAT AAAAT CAAAC T AAC T TAAAGGAGGC AT GC T GT CAAAATGATAGTGTGTCTCTTTTTGATTTTTTTAATTAAATAAATACGATATAATTTAAA T AAC AAAT AT T AAT AAT CAAAAC AT AC AGAAAGT GGAAC AGC TAT GAAGC AAAAAT T AAT TGTGACTTTGTTGACTAGTGTTTGCCTGATGGGGACGGCTAGTGTAATACACGAAACGAC ACCACAAACGGTTCAAGGAATTCATCGATGATATCAGATCCAAAATAAAAAGCGCCTACC CCACCGACCAAAGTGAATGGGTAGACGCCTAACAAATACTCGGAGCAACAAGGCTCTTTG T AT ACACAT T T T T ACACAGGAGGGCAAT AAT ATGGCGGT AT TCAAGCGAGCT AACCGAAA AAGTAAGCCTTGGGGATTCCAGTATTCATACAAAGTGGATGGCATCTCCAAGCAGAAAAC AT C AT T T T AC AAAAC AAGAAAAGAAGC TAAGGC T GC T GAGGCGAAGT ACC T CGC T T C T AC TGGCGGATCTGTAAAAATCGATCCAGTGATCACTTTCGCAGATTGGTATGACAAGTGGTT GCATACCTACAAGATACGTTCTGTTTCCGAACTGACGATGACCAAGTATGCAACTTCGGG T AC AAT CAT C AGAAAC T AC T T C AAAGACC T T AAAT T AAT T GAC T T AACGCGC AT GAT T T A TCAACAGTTTATTAACAACTATATTGATGACGGTTACGGCCACAAGCACGCAAGGCAATC AGTCCAGAAGCTACATTCACACGCTCATCAAGCAATTATGGCCGCAGCAGACGAAGGTTT GATTAGGCGCGATTATGCCGCTCATGCAGAACTGGGTGGTACCGCAGGCAGATCAGAAGA C AC AAAAT T T C T T GAAGC T GAT C AGT T CGAGAAAC T GCGAGAT TATGTTGAT C AAT T T GC CAACCCGCAACGAATTGCTCTCATGATGGTTCAAACGGCCATATACTCTGGCGCTCGGCT TGGAGAAATTGGTGGCTTAACGTGGGAAGATATTGATGAGAAGAAGAGCACCATCAGTAT CGACAAGACCTTCAAGTACAGGTTTGTCATTCGTAACGCGGATGGTAGCTGGCCAGACCG TGAAAAAGTCTTCGGTCCGACCAAGACTCCTTCAAGTGTTCGTACTATCAAAGTAAGCCC AGTTCTTATCGCTAGCCTCCATAAGCTCATATTGGCTGACAGAATAAAAGCGATTAACAA TCCGTACCATTTACTGTTTCTTGGGCCGACCGGCTTGCCAATATATAGCAATGGTGTCAA CAAGGAACTTCGCCGCGCTCTCAAACATCTTGGTATTGAGCGTCCTGGGTTCGGTTTCCA CGGATTGCGGCACACGCATGGCAGCTACTTGCTTTATAAAGGCCTTGACATTCAGTATGT ATCACATCGCCTCGGACACGAAAACGTTGGCATTACCACCAAGATCTATACACATCTGCT GGATGCGATGACACAGAAGCAGGACGAGAAAGCAATGAATGTGTTGTGACTAAAAATCGA ACCAGAGAAAGCGGCTCAATGTCAACTGCCACAAGGTTTACAGCACACATTCAATTTTCG ATCACGAACCATTTTCCTAAAAAATCGCAATTTCAGGCTATTTGGTTCGATGTGGTTCGA TGGATTATATTTTTTAGGGGTTTTTCGGAGTTCAGATAAATGCAAGAATGCCGGTTTAAA GCCATTTCTGAGCACTAAAAAAGACCCTCTAGGGGGCTTTGATACCGGTGATCGGGGTAT CACGGAATGTATACGTACTGATATGATTGCATTTATGACAAAAAGTGGTTCGATGTGGTT CGATGCTTCAAACGACAGCGACCAACAACACATCTCTATATAATAGGTAGAAATAGCTTT TAAGAGTTCAGAAATATGGGCACACAAGACCGGGGTCTAATTATTAGGGGGAGAAGGAGA GAGTAGCCCGAAAACTTTTAGTTGGCTTGGACTGAACGAAGTGAGGGAAAGGCTACTAAA ACGTCGAGGGGCAGTGAGAGCGAAGCGAACACTTGATCTTTTAAGTTGCTATCTTTTATA GGTCAATAGAGTATACTTATTTGTCCTATTGATTAGATAGCAGTATAATAGCTTTATAGA GT AGGT C AT T TAAGTT GAGC AT AAT AGGAGGAT CAAGAAT GAAAAAAT T T AT T T AT CGAG TTTTAGAAAATGACGAAGTGGTGGCTATTTTTAATGAGCAAGAATATGCGCAAGATTTTA
TCGC ACGAAAAGAC AAT T C GA AAGC AAT T T GAAAT T GAAAAAGT AGC AC T CGC AG ATTGGTTATTGCAACCGAGAGAATTTTAGGGGTTGGTTGAAAATGGCTAAAATTGGTTAT GCACGACTC
AGGTCTAATTATTAGGGGGAGAAGGAGAGAGTAGCCCGAAAACTTTTAGTTGGCTTGGAC Fragment sixl- TGAACGAAGTGAGGGAAAGGCTACTAAAACGTCGAGGGGCAGTGAGAGCGAAGCGAACAC (cassette TTGATCTTTTAAGTTGCTATCTTTTATAGGTCAATAGAGTATACTTATTTGTCCTATTGA mediating T T AGAT AGCAGT AT AAT AGCT T T AT AGAGT AGGTCAT T T AAGT TGAGCAT AAT AGGAGGA expression of TCAAGAATGAAAAAATTTATTTATCGAGTTTTAGAAAATGACGAAGTGGTGGCTATTTTT anchored ScFv AAT GAGC AAGAAT AT GCGC AAGAT TTTATCGCT T ACGAAAAGAC AAT T T C T GAT AAGC AA anti-SAI/II)-z'»i- T T T GAAAT T GAAAAAGT AGC AC T CGC AGAT TGGTTATT GC AACCGAGAGAAT TTTAGGGG attP-six2 of TTGGTTGAAAATGGCTAAAATTGGTTATGCACGACTCTAGGGGAGCTAGAGCGGCCGCCA pEM181 CGGCGATATCGGATCCATATGGTCGACGGATAAGGCAGAATAATGGAATAAATTAATAAA AAAT T T GT GAGAAT T AAAAAAGAAAGAGGAAAC T C T T T C T T T T T T CGT T T T GC AAAAGT G TTTCAATATATTAAATGCGAACAAGCTTTTGCACATAGCAAATAAAAATTAAAAATCGAG TTAAATGGCGATCTGATGCGGTTTTGTATCATCTGAATAAATTTACATAAATATTACAAT TGTTACAATTTTGACATACTTTGCAATAGTTTCTTAATCTGCAGGTGATATTCCTGTTAT AGTTCTGCAATTTAAGCAAGGTAGTATATGCTGTGTCAATTGAATGGGACGGACGAATAA GGT GAAAAT T CGT T AC T T AT GAC T T T T AAAAT T T T AAGGAGAGAAT T T T T T T GAAAAT T A AATCTATCTTAGTTAAGTCAATTGCAGTAACTGCTTTATCAGTTACAGGTTTAGTAGCAG CTAATAACAACACTAATACTGCTCAAGCTGCTATTGTAGAAGGATCTGCGGCCCAGCCGG CCATGGATGCCCAGGTGAAACTGCAGGAGTCTGGACCTGACCTGGTGAAACCTGGGGCCT C AGT GAAGAT AT CC T GC AAGGC T TC T GGAT AC AC AT T C AC T GAC T AC AAC AT AC AC TGGG TGAAGCAGAGCCGTGGAAAGAGCCTTGAGTGGATTGGATATATTTATCCTTACAATGGTA ATACTTACTACAACCAGAAGTTCAAGAACAAGGCCACATTGACTGTAGACAATTCCTCCA CCTCAGCCTACATGGAGCTCCGCAGCCTGACACCTGAGGACTCTGCAGTCTATTACTGTG CAACCTACTTTGACTACTGGGGCCAAGGCACCACGGTCACCGTCTCCTCAGGTGGAGGCG GTTCAGGCGGAGGTGGCTCTGGCGGTGGCGGATCGGACATCGAGCTCACTCAGTCTCCAG CAATCATGTCTGCATCTCCAGGGGAGAAGGTCACCATAACCTGCAGTGCCAGCTCAAGTG TAAGTTACATGCACTGGTTCCAGCAGAAGCCAGGCACTTCTCCCAAACTCTGGCTTTATA GCACATCCAACCTGGCTTCTGGAGTCCCTGCTCGCTTCAGTGGCAGTGGATCTGGGACCT CTTACTCTCTCACAATCAGCCGAATGGAGGCTGAAGATGCTGCCACTTATTACTGCCATC AAAGGACTAGTTACCCGTACACGTTCGGAGGGGGGACAAAGTTGGAAATAAAACGGGCGG CGGCCGCAGGTGCGCCGGTGCCGTATCCGGATCCGCTGGAACCGCGTGCCGCAGCTAGCA AGAAGACTTCGCTGCTTAACCAGTTGCAATCTGTGAAGGCTGCGCTGGGAACGGACTTGG GCAATCAAACTGATCCAAGCACTGGCAAAACATTTATGGCAGCGTTAGACGATCTAGTGG CACAAGCTCAAGCAGGCACGCAAACGGCCGACCAGCTTCAAGCGAGTCTTGCCAAGGTAC TTGATGCAGTATTAGCAAAACTTGCGGAGGGTATTAAAGCGGCAACACCGGCTGAGGTTG GC AAT GC TAAAGAT GC T GCGAC T GGC AAAAC T T GGT AT GCCGAC AT T GC T GAC AC AT T GA CGTCTGGTCAAGCCAGTGCTGATGCGTCTGACAAGCTTGCACATTTACAAGCTTTGCAAA GTCTGAAAACGAAGGTGGCAGCTGCCGTTGAAGCGGCCAAGACAGCTGGTAAAGGCGACG ATACAAGCGGTACTAGCGACAAAGGCGGCGGTCAAGGTACCCCGGCGCCCGCTCCAGGCG ACACAGGTAAGAACAAAGGCGATGAGGGCAGCCAGCCTAGTTCTGGCGGTAATATCCCAA CAAAGCCAGCCACAACGACGTCAACGAGCACGGATGATACGACTGATCGTAATGGTCAAC ATACATCCGGTAAGGGAGCATTACCCAAGACAGCAGAGACAACTGAGCGGCCAGCGTTTG GCTTCTTGGGTGTCATTGTGGTCAGTCTGATGGGGGTATTAGGATTGAAACGGAAACAAC GT GAAGAAT AGGAGC T C T C AAC T GT AAGT GGT T CAGAAGC T AGT GC T AAGGAAT GGAT T G CCGGTAGAGAATCTGGTGGCTCATACGGTGCTTCAAATGGTCAATACGTTGGTAAATACC AAC T T T C AGC T T C AT AC T T GAAT GGT GAC T AT T C AGC AGC T AACC AAGAGCGAGT AGC T G AT AAC TAT GT C AAAGGT CGT TAT GGC T CAT GGAC T GC T GC T AAGGC AT T C T GGC AAGC AA ACGGC T GGT AC TAAAAATAAACC TC T T T T C AAAAC T AAAT AAAAT CAAAC T AAC T TAAAG GAGGCATGCTGTCAAAATGATAGTGTGTCTCTTTTTGATTTTTTTAATTAAATAAATACG ATATAATTTAAATAACAAATATTAATAATCAAAACATACAGAAAGTGGAACAGCTATGAA GCAAAAATTAATTGTGACTTTGTTGACTAGTGTTTGCCTGATGGGGACGGCTAGTGTAAT ACACGAAACGACACCACAAACGGTTCAAGGAATTCATCGATGATATCAGATCCAAAATAA AAAGCGCCTACCCCACCGACCAAAGTGAATGGGTAGACGCCTAACAAATACTCGGAGCAA CAAGGCTCTTTGTATACACATTTTTACACAGGAGGGCAATAATATGGCGGTATTCAAGCG AGCTAACCGAAAAAGTAAGCCTTGGGGATTCCAGTATTCATACAAAGTGGATGGCATCTC C AAGC AGAAAAC AT C AT T T T AC AAAAC AAGAAAAGAAGC T AAGGC T GC T GAGGCGAAGT A CCTCGCTTCTACTGGCGGATCTGTAAAAATCGATCCAGTGATCACTTTCGCAGATTGGTA TGACAAGTGGTTGCATACCTACAAGATACGTTCTGTTTCCGAACTGACGATGACCAAGTA T GCAAC CGGG AC AA CAT C AGAAAC T AC T T C AAAGACC T TAAAT T AAT T GAC T T AAC
GCGCATGATTTATCAACAGTTTATTAACAACTATATTGATGACGGTTACGGCCACAAGCA CGCAAGGCAATCAGTCCAGAAGCTACATTCACACGCTCATCAAGCAATTATGGCCGCAGC AGACGAAGGTTTGATTAGGCGCGATTATGCCGCTCATGCAGAACTGGGTGGTACCGCAGG C AGAT C AGAAGAC AC AAAAT T T C T T GAAGC T GAT C AG T T C G AGAAAC T GCGAGAT T AT GT TGATCAATTTGCCAACCCGCAACGAATTGCTCTCATGATGGTTCAAACGGCCATATACTC TGGCGCTCGGCTT GGAGAAAT TGGTGGCT T AACGT GGGAAGAT AT T GAT GAGAAGAAGAG CACCATCAGTATCGACAAGACCTTCAAGTACAGGTTTGTCATTCGTAACGCGGATGGTAG CTGGCCAGACCGTGAAAAAGTCTTCGGTCCGACCAAGACTCCTTCAAGTGTTCGTACTAT CAAAGTAAGCCCAGTTCTTATCGCTAGCCTCCATAAGCTCATATTGGCTGACAGAATAAA AGCGATTAACAATCCGTACCATTTACTGTTTCTTGGGCCGACCGGCTTGCCAATATATAG CAATGGTGTCAACAAGGAACTTCGCCGCGCTCTCAAACATCTTGGTATTGAGCGTCCTGG GTTCGGTTTCCACGGATTGCGGCACACGCATGGCAGCTACTTGCTTTATAAAGGCCTTGA CATTCAGTATGTATCACATCGCCTCGGACACGAAAACGTTGGCATTACCACCAAGATCTA TACACATCTGCTGGATGCGATGACACAGAAGCAGGACGAGAAAGCAATGAATGTGTTGTG ACTAAAAATCGAACCAGAGAAAGCGGCTCAATGTCAACTGCCACAAGGTTTACAGCACAC ATTCAATTTTCGATCACGAACCATTTTCCTAAAAAATCGCAATTTCAGGCTATTTGGTTC GATGTGGTTCGATGGATTATATTTTTTAGGGGTTTTTCGGAGTTCAGATAAATGCAAGAA TGCCGGTTTAAAGCCATTTCTGAGCACTAAAAAAGACCCTCTAGGGGGCTTTGATACCGG TGATCGGGGTATCACGGAATGTATACGTACTGATATGATTGCATTTATGACAAAAAGTGG TTCGATGTGGTTCGATGCTTCAAACGACAGCGACCAACAACACATCTCTATATAATAGGT AGAAAT AGC T T T T AAGAGT T C AGAAAT AT GGGC AC AC AAGACCGGGGT C T AAT T AT T AGG GGGAGAAGGAGAGAGTAGCCCGAAAACTTTTAGTTGGCTTGGACTGAACGAAGTGAGGGA AAGGCTACTAAAACGTCGAGGGGCAGTGAGAGCGAAGCGAACACTTGATCTTTTAAGTTG CTATCTTTTATAGGTCAATAGAGTATACTTATTTGTCCTATTGATTAGATAGCAGTATAA T AGC T T T AT AGAGT AGGT C AT T TAAGTT GAGC AT AAT AGGAGGAT C AAGAAT GAAAAAAT TTATTTATCGAGTTTTAGAAAATGACGAAGTGGTGGCTATTTTTAATGAGCAAGAATATG CGC AAGAT TTTATCGCT T ACGAAAAGAC AAT T T C T GAT AAGC AAT T T GAAAT T GAAAAAG TAGCACTCGCAGATTGGTTATTGCAACCGAGAGAATTTTAGGGGTTGGTTGAAAATGGCT AAAATTGGTTATGCACGACTC
AGGTCTAATTATTAGGGGGAGAAGGAGAGAGTAGCCCGAAAACTTTTAGTTGGCTTGGAC Fragment sixl- TGAACGAAGTGAGGGAAAGGCTACTAAAACGTCGAGGGGCAGTGAGAGCGAAGCGAACAC (cassette TTGATCTTTTAAGTTGCTATCTTTTATAGGTCAATAGAGTATACTTATTTGTCCTATTGA mediating T T AGAT AGCAGT AT AAT AGCT T TAT AGAGT AGGTCAT T T AAGT TGAGCAT AAT AGGAGGA expression of TCAAGAATGAAAAAATTTATTTATCGAGTTTTAGAAAATGACGAAGTGGTGGCTATTTTT secreted ScFv AAT GAGC AAGAAT AT GCGC AAGAT TTTATCGCT T ACGAAAAGAC AAT T T C T GAT AAGC AA anti-SAI/II)-z'»i- T T T GAAAT T GAAAAAGT AGC AC T CGC AGAT TGGTTATT GC AACCGAGAGAAT TTTAGGGG attP-six2 of TTGGTTGAAAATGGCTAAAATTGGTTATGCACGACTCTAGGGGAGCTAGAGCGGCCGCCA pEM182 CGGCGATATCGGATCCATATGGTCGACGGATAAGGCAGAATAATGGAATAAATTAATAAA AAAT T T GT GAGAAT T AAAAAAGAAAGAGGAAAC T C T T T C T T T T T T CGT T T T GC AAAAGT G TTTCAATATATTAAATGCGAACAAGCTTTTGCACATAGCAAATAAAAATTAAAAATCGAG TTAAATGGCGATCTGATGCGGTTTTGTATCATCTGAATAAATTTACATAAATATTACAAT TGTTACAATTTTGACATACTTTGCAATAGTTTCTTAATCTGCAGGTGATATTCCTGTTAT AGTTCTGCAATTTAAGCAAGGTAGTATATGCTGTGTCAATTGAATGGGACGGACGAATAA GGT GAAAAT T CGT T AC T T AT GAC T T T T AAAAT T T T AAGGAGAGAAT T T T T T T GAAAAT T A AATCTATCTTAGTTAAGTCAATTGCAGTAACTGCTTTATCAGTTACAGGTTTAGTAGCAG CTAATAACAACACTAATACTGCTCAAGCTGCTATTGTAGAAGGATCTGCGGCCCAGCCGG CCATGGATGCCCAGGTGAAACTGCAGGAGTCTGGACCTGACCTGGTGAAACCTGGGGCCT C AGT GAAGAT AT CC T GC AAGGC T TC T GGAT AC AC AT T C AC T GAC T AC AAC AT AC AC TGGG TGAAGCAGAGCCGTGGAAAGAGCCTTGAGTGGATTGGATATATTTATCCTTACAATGGTA ATACTTACTACAACCAGAAGTTCAAGAACAAGGCCACATTGACTGTAGACAATTCCTCCA CCTCAGCCTACATGGAGCTCCGCAGCCTGACACCTGAGGACTCTGCAGTCTATTACTGTG CAACCTACTTTGACTACTGGGGCCAAGGCACCACGGTCACCGTCTCCTCAGGTGGAGGCG GTTCAGGCGGAGGTGGCTCTGGCGGTGGCGGATCGGACATCGAGCTCACTCAGTCTCCAG CAATCATGTCTGCATCTCCAGGGGAGAAGGTCACCATAACCTGCAGTGCCAGCTCAAGTG TAAGTTACATGCACTGGTTCCAGCAGAAGCCAGGCACTTCTCCCAAACTCTGGCTTTATA GCACATCCAACCTGGCTTCTGGAGTCCCTGCTCGCTTCAGTGGCAGTGGATCTGGGACCT CTTACTCTCTCACAATCAGCCGAATGGAGGCTGAAGATGCTGCCACTTATTACTGCCATC AAAGGACTAGTTACCCGTACACGTTCGGAGGGGGGACAAAGTTGGAAATAAAACGGGCGG CGGCCGCAGGTGCGCCGGTGCCGTATCCGGATCCGCTGGAACCGCGTGCCGCATAGGCTA GCGAGGAGCTCTCAACTGTAAGTGGTTCAGAAGCTAGTGCTAAGGAATGGATTGCCGGTA
GAGAATCTGGTGGCTCATACGGTGCTTCAAATGGTCAATACGTTGGTAAATACCAACTTT C AGC T T C AT AC T T GAAT GGTGAC T AT T C AGC AGC T AACC AAGAGCGAGT AGC T GAT AAC T ATGTCAAAGGTCGTTATGGCTCATGGACTGCTGCTAAGGCATTCTGGCAAGCAAACGGCT GGT AC T AAAAAT AAACC T C T T T T CAAAAC T AAAT AAAAT C AAAC T AAC T T AAAGGAGGC A TGCTGTCAAAATGATAGTGTGTCTCTTTTTGATTTTTTTAATTAAATAAATACGATATAA T T T AAAT AAC AAAT AT T AAT AAT CAAAAC AT AC AGAAAGT GGAAC AGC TAT GAAGC AAAA ATTAATTGTGACTTTGTTGACTAGTGTTTGCCTGATGGGGACGGCTAGTGTAATACACGA AACGACACCACAAACGGTTCAAGGAATTCATCGATGATATCAGATCCAAAATAAAAAGCG CCTACCCCACCGACCAAAGTGAATGGGTAGACGCCTAACAAATACTCGGAGCAACAAGGC TCTTTGTATACACATTTTTACACAGGAGGGCAATAATATGGCGGTATTCAAGCGAGCTAA CCGAAAAAGTAAGCCTTGGGGATTCCAGTATTCATACAAAGTGGATGGCATCTCCAAGCA GAAAAC AT C AT T T T AC AAAAC AAGAAAAGAAGC TAAGGC T GC T GAGGCGAAGT ACC T CGC TTCTACTGGCGGATCTGTAAAAATCGATCCAGTGATCACTTTCGCAGATTGGTATGACAA GTGGTTGCATACCTACAAGATACGTTCTGTTTCCGAACTGACGATGACCAAGTATGCAAC TTCGGGTACAATCATCAGAAACTACTTCAAAGACCTTAAATTAATTGACTTAACGCGCAT GAT T T ATCAACAGT T TAT T AACAACT AT AT TGATGACGGT T ACGGCCACAAGCACGCAAG GCAATCAGTCCAGAAGCTACATTCACACGCTCATCAAGCAATTATGGCCGCAGCAGACGA AGGTTTGATTAGGCGCGATTATGCCGCTCATGCAGAACTGGGTGGTACCGCAGGCAGATC AGAAGACACAAAATTTCTTGAAGCTGATCAGTTCGAGAAACTGCGAGATTATGTTGATCA ATTTGCCAACCCGCAACGAATTGCTCTCATGATGGTTCAAACGGCCATATACTCTGGCGC TCGGCTTGGAGAAATTGGTGGCTTAACGTGGGAAGATATTGATGAGAAGAAGAGCACCAT CAGTATCGACAAGACCTTCAAGTACAGGTTTGTCATTCGTAACGCGGATGGTAGCTGGCC AGACCGTGAAAAAGTCTTCGGTCCGACCAAGACTCCTTCAAGTGTTCGTACTATCAAAGT AAGCCCAGTTCTTATCGCTAGCCTCCATAAGCTCATATTGGCTGACAGAATAAAAGCGAT TAACAATCCGTACCATTTACTGTTTCTTGGGCCGACCGGCTTGCCAATATATAGCAATGG TGTCAACAAGGAACTTCGCCGCGCTCTCAAACATCTTGGTATTGAGCGTCCTGGGTTCGG TTTCCACGGATTGCGGCACACGCATGGCAGCTACTTGCTTTATAAAGGCCTTGACATTCA GTATGTATCACATCGCCTCGGACACGAAAACGTTGGCATTACCACCAAGATCTATACACA TCTGCTGGATGCGATGACACAGAAGCAGGACGAGAAAGCAATGAATGTGTTGTGACTAAA AATCGAACCAGAGAAAGCGGCTCAATGTCAACTGCCACAAGGTTTACAGCACACATTCAA TTTTCGATCACGAACCATTTTCCTAAAAAATCGCAATTTCAGGCTATTTGGTTCGATGTG GTTCGATGGATTATATTTTTTAGGGGTTTTTCGGAGTTCAGATAAATGCAAGAATGCCGG TTTAAAGCCATTTCTGAGCACTAAAAAAGACCCTCTAGGGGGCTTTGATACCGGTGATCG GGGTATCACGGAATGTATACGTACTGATATGATTGCATTTATGACAAAAAGTGGTTCGAT GTGGTTCGATGCTTCAAACGACAGCGACCAACAACACATCTCTATATAATAGGTAGAAAT AGC T T T T AAGAGT T C AGAAAT AT GGGC AC AC AAGACCGGGGT C T AAT TAT T AGGGGGAGA AGGAGAGAGTAGCCCGAAAACTTTTAGTTGGCTTGGACTGAACGAAGTGAGGGAAAGGCT ACTAAAACGTCGAGGGGCAGTGAGAGCGAAGCGAACACTTGATCTTTTAAGTTGCTATCT TTTATAGGTCAATAGAGTATACTTATTTGTCCTATTGATTAGATAGCAGTATAATAGCTT T AT AGAGT AGGT C AT T TAAGTT GAGC AT AAT AGGAGGAT CAAGAAT GAAAAAAT T T AT T T ATCGAGTTTTAGAAAATGACGAAGTGGTGGCTATTTTTAATGAGCAAGAATATGCGCAAG ATTTTATCGCT T ACGAAAAGAC AAT T T C T GAT AAGC AAT T T GAAAT T GAAAAAGT AGC AC TCGCAGATTGGTTATTGCAACCGAGAGAATTTTAGGGGTTGGTTGAAAATGGCTAAAATT GGTTATGCACGACTC
AGGTCTAATTATTAGGGGGAGAAGGAGAGAGTAGCCCGAAAACTTTTAGTTGGCTTGGAC fragment si l TGAACGAAGTGAGGGAAAGGCTACTAAAACGTCGAGGGGCAGTGAGAGCGAAGCGAACAC (cassette TTGATCTTTTAAGTTGCTATCTTTTATAGGTCAATAGAGTATACTTATTTGTCCTATTGA mediating T T AGAT AGCAGT AT AAT AGCT T TAT AGAGT AGGTCAT T T AAGT TGAGCAT AAT AGGAGGA expression of TCAAGAATGAAAAAATTTATTTATCGAGTTTTAGAAAATGACGAAGTGGTGGCTATTTTT anchored ARP1)- AAT GAGC AAGAAT AT GCGC AAGAT TTTATCGCT T ACGAAAAGAC AAT T T C T GAT AAGC AA int-attP-six2 of T T T GAAAT T GAAAAAGT AGC AC T CGC AGAT TGGTTATT GC AACCGAGAGAAT TTTAGGGG pEM233 TTGGTTGAAAATGGCTAAAATTGGTTATGCACGACTCTAGGGGAGCTAGAGCGGCCGCCA CGGCGATATCGGATCCATATGGTCGACGGATAAGGCAGAATAATGGAATAAATTAATAAA AAAT T T GT GAGAAT T AAAAAAGAAAGAGGAAAC T C T T T C T T T T T T CGT T T T GC AAAAGT G TTTCAATATATTAAATGCGAACAAGCTTTTGCACATAGCAAATAAAAATTAAAAATCGAG TTAAATGGCGATCTGATGCGGTTTTGTATCATCTGAATAAATTTACATAAATATTACAAT TGTTACAATTTTGACATACTTTGCAATAGTTTCTTAATCTGCAGGTGATATTCCTGTTAT AGTTCTGCAATTTAAGCAAGGTAGTATATGCTGTGTCAATTGAATGGGACGGACGAATAA GGT GAAAAT T CGT T AC T T AT GAC T T T T AAAAT T T T AAGGAGAGAAT T T T T T T GAAAAT T A AATCTATCTTAGTTAAGTCAATTGCAGTAACTGCTTTATCAGTTACAGGTTTAGTAGCAG CTAATAACAACACTAATACTGCTCAAGCTGCTATTGTAGAAGGATCTGCGGCCCAGCCGG CCATGGATCAGGTGCAGCTGCAGGACTCTGGGGGAGGATTGGTGCAGGTTGGGGACCGTC TGAGTCTCTCCTGTGCAGCATCTGGACGCACCTTCAGTTCGTATGACATGGCTTGGTTCC GCCAGGCTCCAGGGAAGGAGCGTGAGTTTGTCGCAGCTATTACTACATCTGAAGGCACAT GGTATGGAGACGCCGGTAAGGGCCGATTCACCATCGCCAGAGTCAACGCCAAGAACACGG TGTATCTGCACATGAACAGGCTGAAACCTGAGGACACGGCCGTTTATTACTGTGCAGCGT C AA C AAGGAGGC C AC GC AAA A C AC AA A AAC AC GGGGCC AGGGGACCC AGGTCACCGTCTCAAGCGCGGCCGCAGGTGCGCCGGTGCCGTATCCGGATCCGCTGGAAC CGCGTGCCGCAGCTAGCAAGAAGACTTCGCTGCTTAACCAGTTGCAATCTGTGAAGGCTG CGCTGGGAACGGACTTGGGCAATCAAACTGATCCAAGCACTGGCAAAACATTTATGGCAG CGTTAGACGATCTAGTGGCACAAGCTCAAGCAGGCACGCAAACGGCCGACCAGCTTCAAG CGAGTCTTGCCAAGGTACTTGATGCAGTATTAGCAAAACTTGCGGAGGGTATTAAAGCGG CAACACCGGCTGAGGTTGGCAATGCTAAAGATGCTGCGACTGGCAAAACTTGGTATGCCG ACATTGCTGACACATTGACGTCTGGTCAAGCCAGTGCTGATGCGTCTGACAAGCTTGCAC ATTTACAAGCTTTGCAAAGTCTGAAAACGAAGGTGGCAGCTGCCGTTGAAGCGGCCAAGA CAGCTGGTAAAGGCGACGATACAAGCGGTACTAGCGACAAAGGCGGCGGTCAAGGTACCC CGGCGCCCGCTCCAGGCGACACAGGTAAGAACAAAGGCGATGAGGGCAGCCAGCCTAGTT CTGGCGGTAATATCCCAACAAAGCCAGCCACAACGACGTCAACGAGCACGGATGATACGA CTGATCGTAATGGTCAACATACATCCGGTAAGGGAGCATTACCCAAGACAGCAGAGACAA CTGAGCGGCCAGCGTTTGGCTTCTTGGGTGTCATTGTGGTCAGTCTGATGGGGGTATTAG GATTGAAACGGAAACAACGTGAAGAATAGGAGCTCTCAACTGTAAGTGGTTCAGAAGCTA GTGCTAAGGAATGGATTGCCGGTAGAGAATCTGGTGGCTCATACGGTGCTTCAAATGGTC AATACGTTGGTAAATACCAACTTTCAGCTTCATACTTGAATGGTGACTATTCAGCAGCTA ACCAAGAGCGAGTAGCTGATAACTATGTCAAAGGTCGTTATGGCTCATGGACTGCTGCTA AGGC AT T C T GGC AAGC AAACGGC TGGT AC T AAAAAT AAACC T C T T T T C AAAAC T AAAT AA AATCAAACTAACTTAAAGGAGGCATGCTGTCAAAATGATAGTGTGTCTCTTTTTGATTTT T T T AAT T AAAT AAAT AC GAT AT AAT T T AAAT AAC AAAT AT T AAT AAT C AAAAC AT AC AGA AAGTGGAACAGCTATGAAGCAAAAATTAATTGTGACTTTGTTGACTAGTGTTTGCCTGAT GGGGACGGCTAGTGTAATACACGAAACGACACCACAAACGGTTCAAGAATTCATCGATGA TATCAGATCCAAAATAAAAAGCGCCTACCCCACCGACCAAAGTGAATGGGTAGACGCCTA AC AAAT AC T CGGAGC AAC AAGGC TC T T T GT AT AC AC AT T T T T AC AC AGGAGGGC AAT AAT ATGGCGGTATTCAAGCGAGCTAACCGAAAAAGTAAGCCTTGGGGATTCCAGTATTCATAC AAAGT GGAT GGC AT C T CC AAGC AGAAAAC AT C AT T T T AC AAAAC AAGAAAAGAAGC TAAG GCTGCTGAGGCGAAGTACCTCGCTTCTACTGGCGGATCTGTAAAAATCGATCCAGTGATC ACTTTCGCAGATTGGTATGACAAGTGGTTGCATACCTACAAGATACGTTCTGTTTCCGAA CTGACGATGACCAAGTATGCAACTTCGGGTACAATCATCAGAAACTACTTCAAAGACCTT AAATTAATTGACTTAACGCGCATGATTTATCAACAGTTTATTAACAACTATATTGATGAC GGTTACGGCCACAAGCACGCAAGGCAATCAGTCCAGAAGCTACATTCACACGCTCATCAA GCAATTATGGCCGCAGCAGACGAAGGTTTGATTAGGCGCGATTATGCCGCTCATGCAGAA CTGGGTGGTACCGCAGGCAGATCAGAAGACACAAAATTTCTTGAAGCTGATCAGTTCGAG AAACTGCGAGATTATGTTGATCAATTTGCCAACCCGCAACGAATTGCTCTCATGATGGTT CAAACGGCCATATACTCTGGCGCTCGGCTTGGAGAAATTGGTGGCTTAACGTGGGAAGAT ATTGATGAGAAGAAGAGCACCATCAGTATCGACAAGACCTTCAAGTACAGGTTTGTCATT CGTAACGCGGATGGTAGCTGGCCAGACCGTGAAAAAGTCTTCGGTCCGACCAAGACTCCT TCAAGTGTTCGTACTATCAAAGTAAGCCCAGTTCTTATCGCTAGCCTCCATAAGCTCATA TTGGCTGACAGAATAAAAGCGATTAACAATCCGTACCATTTACTGTTTCTTGGGCCGACC GGCTTGCCAATATATAGCAATGGTGTCAACAAGGAACTTCGCCGCGCTCTCAAACATCTT GGTATTGAGCGTCCTGGGTTCGGTTTCCACGGATTGCGGCACACGCATGGCAGCTACTTG CTTTATAAAGGCCTTGACATTCAGTATGTATCACATCGCCTCGGACACGAAAACGTTGGC ATTACCACCAAGATCTATACACATCTGCTGGATGCGATGACACAGAAGCAGGACGAGAAA GCAATGAATGTGTTGTGACTAAAAATCGAACCAGAGAAAGCGGCTCAATGTCAACTGCCA CAAGGTTTACAGCACACATTCAATTTTCGATCACGAACCATTTTCCTAAAAAATCGCAAT TTCAGGCTATTTGGTTCGATGTGGTTCGATGGATTATATTTTTTAGGGGTTTTTCGGAGT TCAGATAAATGCAAGAATGCCGGTTTAAAGCCATTTCTGAGCACTAAAAAAGACCCTCTA GGGGGCTTTGATACCGGTGATCGGGGTATCACGGAATGTATACGTACTGATATGATTGCA TTTATGACAAAAAGTGGTTCGATGTGGTTCGATGCTTCAAACGACAGCGACCAACAACAC AT C T C T AT AT AAT AGGT AGAAAT AGC T T T T AAGAGT T C AGAAAT AT GGGC AC AC AAGACC GGGGTCTAATTATTAGGGGGAGAAGGAGAGAGTAGCCCGAAAACTTTTAGTTGGCTTGGA CTGAACGAAGTGAGGGAAAGGCTACTAAAACGTCGAGGGGCAGTGAGAGCGAAGCGAACA CTTGATCTTTTAAGTTGCTATCTTTTATAGGTCAATAGAGTATACTTATTTGTCCTATTG AT T AGAT AGCAGT AT AAT AGCT T TAT AGAGT AGGTCAT T T AAGT TGAGCAT AAT AGGAGG ATCAAGAATGAAAAAATTTATTTATCGAGTTTTAGAAAATGACGAAGTGGTGGCTATTTT TAA GAGCAAGAA A GCGCAAGATTTTATCGCT ACGAAAAGACAATT C GA AAGCA ATTTGAAATTGAAAAAGTAGCACTCGCAGATTGGTTATTGCAACCGAGAGAATTTTAGGG GTTGGTTGAAAATGGCTAAAATTGGTTATGCACGACTC
[00220] Example 3
[00221] A recombinant bacteria (such as a Lactobacilli) will be used to express a functional single chain antibody or fragment thereof against ICAM-1 and/or CD 18 and/or a CD11 subunit. One or more
polynucleotides that encode a functional single chain antibody or fragment thereof against ICAM-1 and/or CD18 and/or a CD11 subunit will be stably integrated into a chromosome of the recombinant bacteria. The recombinant bacteria will be delivered to a human male or female at risk for infection with HIV. The recombinant bacteria will be delivered in a pharmaceutical composition to the oral mucosa, urethra, vagina or rectum. The pharmaceutical composition will be in the form of a cream or a gel. The recombinant bacteria will express a functional single chain antibody or fragment thereof against ICAM-1 and/or CD 18 and/or a CD11 subunit at a level sufficient to inhibit transmission of an HIV virus across a vaginal epithelial layer.
[00222] Example 4.
[00223] A population of women at risk for contraction of HIV will be recruited for participation in a protocol that decreases rates of HIV infection. The women will be administered one of two pharmaceutical compositions. One pharmaceutical composition will comprise recombinant bacteria (such as a Lactobacilli) that will express a functional single chain antibody or fragment thereof against ICAM-1 and/or CD18 and/or a CD11 ("Treatment composition"). One or more polynucleotides that encode a functional single chain antibody or fragment thereof against ICAM-1 and/or CD18 and/or a CD11 subunit will be stably integrated into a chromosome of the recombinant bacteria. A second pharmaceutical composition will not comprise the recombinant bacteria ("Placebo composition"). The population of women will be divided into two groups: group One will receive the Treatment composition; and group Two will receive the Placebo composition. Group One will be administered the Treatment composition at intervals sufficient to maintain colonization of their vaginal tracts and/ or rectums with the recombinant bacteria. Group Two will be administered the Placebo composition at the same intervals as group one. Periodic tissue and or blood samples will be obtained from Groups One and Two to monitor their rate of infection of HIV. The protocol will continue for a length of time sufficient to determine the efficacy of the Treatment composition. At the end of protocol the rate of HIV infection in Group One will be compared to group Two. It is expected that the rate of HIV infection will be lower in Group One than Group Two.
[00224] Example 5.
[00225] A population of women at risk for contraction of HIV will be recruited for participation in a protocol that decreases rates of HIV infection. The women will be administered one of two pharmaceutical compositions. One pharmaceutical composition will comprise recombinant bacteria (such as a Lactobacilli) that will express a functional single chain antibody or fragment thereof against ICAM-1 and/or CD18 and/or a CD11 ("Treatment composition"). One or more polynucleotides that encode a functional single chain antibody or fragment thereof against ICAM-1 and/or CD18 and/or a CD11 subunit will be stably integrated into a chromosome of the recombinant bacteria. A second pharmaceutical composition will comprise bacteria that do not express a functional a functional single chain antibody or fragment thereof against ICAM-1 and/or CD18 and/or a CD11 ("Placebo composition"). The population of women will be divided into two groups: group One will receive the Treatment composition; and group Two will receive the Placebo composition. Groups One will be administered the Treatment composition at intervals sufficient to maintain colonization of their vaginal tracts and/ or rectums with the recombinant bacteria. Group Two will be administered the Placebo composition at the same intervals as group one. Periodic tissue and or blood samples will be obtained from Groups One and Two to monitor their rate of infection of HIV. The protocol will continue for a length of time sufficient to determine the efficacy of the Treatment composition. At the end of protocol the rate of HIV infection in Group One will be compared to group Two. It is expected that the rate of HIV infection will be lower in Group One than Group Two.
[00226] Example 6.
[00227] A population of women at risk for contraction of HIV will be recruited for participation in a protocol that decreases rates of HIV infection. The women will be administered one of two pharmaceutical compositions. One pharmaceutical composition will comprise recombinant bacteria (such as a Lactobacilli) that will express a functional single chain antibody or fragment thereof against ICAM-1 and/or CD18 and/or a CD11 ("Treatment composition"). One or more polynucleotides that encode a functional single chain antibody or fragment thereof against ICAM-1 and/or CD18 and/or a CD11 subunit will be stably integrated into a chromosome of the recombinant bacteria. A second pharmaceutical composition will not comprise the recombinant bacteria ("Placebo composition"). The population of women will be divided into two groups: group One will receive the Treatment composition; and group Two will receive the Placebo composition. Group One will be administered the Treatment composition at intervals sufficient to maintain colonization of their oral mucosas with the recombinant bacteria. Group Two will be administered the Placebo composition at the same intervals as group one. Periodic tissue and or blood samples will be obtained from Groups One and Two to monitor their rate of infection of HIV. The protocol will continue for a length of time sufficient to determine the efficacy of the Treatment composition. At the end of protocol the rate of HIV infection in Group One will be compared to group Two. It is expected that the rate of HIV infection will be lower in Group One than Group Two.
[00228] Example 7.
[00229] A population of women at risk for contraction of HIV will be recruited for participation in a protocol that decreases rates of HIV infection. The women will be administered one of two pharmaceutical compositions. One pharmaceutical composition will comprise recombinant bacteria (such as a Lactobacilli) that will express a functional single chain antibody or fragment thereof against ICAM-1 and/or CD18 and/or a CD11 ("Treatment composition"). One or more polynucleotides that encode a functional single chain antibody or fragment thereof against ICAM-1 and/or CD18 and/or a CD11 subunit will be stably integrated into a chromosome of the recombinant bacteria. A second pharmaceutical composition will comprise bacteria that do not express a functional a functional single chain antibody or fragment thereof against ICAM-1 and/or CD18 and/or a CD11 ("Placebo composition"). The population of women will be divided into two groups: group One will receive the Treatment composition; and group Two will receive the Placebo composition. Group One will be administered the Treatment composition at intervals sufficient to maintain colonization of their oral mucosas with the recombinant bacteria. Group Two will be administered the Placebo composition at the same intervals as group one. Periodic tissue and or blood samples will be obtained from Groups One and Two to monitor their rate of infection of HIV. The protocol will continue for a length of time sufficient to determine the efficacy of the Treatment composition. At the end of protocol the rate of HIV infection in Group One will be compared to group Two. It is expected that the rate of HIV infection will be lower in Group One than Group Two.
[00230] Example 8.
[00231] A population of men at risk for contraction of HIV will be recruited for participation in a protocol that decreases rates of HIV infection. The men will be administered one of two pharmaceutical compositions. One pharmaceutical composition will comprise recombinant bacteria (such as a Lactobacilli) that will express a functional single chain antibody or fragment thereof against ICAM-1 and/or CD18 and/or a CD11 ("Treatment composition"). One or more polynucleotides that encode a functional single chain antibody or fragment thereof against ICAM-1 and/or CD18 and/or a CD11 subunit will be stably integrated into a chromosome of the recombinant bacteria. A second pharmaceutical composition will not comprise the recombinant bacteria
("Placebo composition"). The population of men will be divided into two groups: group One will receive the Treatment composition; and group Two will receive the Placebo composition. Group One will be administered the Treatment composition at intervals sufficient to maintain colonization of their urethras or rectums with the recombinant bacteria. Group Two will be administered the Placebo composition at the same intervals as group one. Periodic tissue and or blood samples will be obtained from Groups One and Two to monitor their rate of infection of HIV. The protocol will continue for a length of time sufficient to determine the efficacy of the Treatment composition. At the end of protocol the rate of HIV infection in Group One will be compared to group Two. It is expected that the rate of HIV infection will be lower in Group One than Group Two.
[00232] Example 9.
[00233] A population of men at risk for contraction of HIV will be recruited for participation in a protocol that decreases rates of HIV infection. The men will be administered one of two pharmaceutical compositions. One pharmaceutical composition will comprise recombinant bacteria (such as a Lactobacilli) that will express a functional single chain antibody or fragment thereof against ICAM-1 and/or CD18 and/or a CD11 ("Treatment composition"). One or more polynucleotides that encode a functional single chain antibody or fragment thereof against ICAM- 1 and/or CD18 and/or a CD11 subunit will be stably integrated into a chromosome of the recombinant bacteria. A second pharmaceutical composition will comprise bacteria that do not express a functional a functional single chain antibody or fragment thereof against ICAM-1 and/or CD 18 and/or a CD11 ("Placebo composition"). The population of men will be divided into two groups: group One will receive the Treatment composition; and group Two will receive the Placebo composition. Group One will be administered the Treatment composition at intervals sufficient to maintain colonization of their urethras or rectums with the recombinant bacteria. Group Two will be administered the Placebo composition at the same intervals as group one. Periodic tissue and or blood samples will be obtained from Groups One and Two to monitor their rate of infection of HIV. The protocol will continue for a length of time sufficient to determine the efficacy of the Treatment composition. At the end of protocol the rate of HIV infection in Group One will be compared to group Two. It is expected that the rate of HIV infection will be lower in Group One than Group Two.
[00234] Example 10.
[00235] A population of men at risk for contraction of HIV will be recruited for participation in a protocol that decreases rates of HIV infection. The men will be administered one of two pharmaceutical compositions. One pharmaceutical composition will comprise recombinant bacteria (such as a Lactobacilli) that will express a functional single chain antibody or fragment thereof against ICAM-1 and/or CD18 and/or a CD11 ("Treatment composition"). One or more polynucleotides that encode a functional single chain antibody or fragment thereof against ICAM-1 and/or CD18 and/or a CD11 subunit will be stably integrated into a chromosome of the recombinant bacteria. A second pharmaceutical composition will not comprise the recombinant bacteria ("Placebo composition"). The population of men will be divided into two groups: group One will receive the Treatment composition; and group Two will receive the Placebo composition. Group One will be administered the Treatment composition at intervals sufficient to maintain colonization of their oral mucosas with the recombinant bacteria. Group Two will be administered the Placebo composition at the same intervals as group one. Periodic tissue and or blood samples will be obtained from Groups One and Two to monitor their rate of infection of HIV. The protocol will continue for a length of time sufficient to determine the efficacy of the Treatment composition. At the end of protocol the rate of HIV infection in Group One will be compared to group Two. It is expected that the rate of HIV infection will be lower in Group One than Group Two.
[00236] Example 11.
[00237] A population of men at risk for contraction of HIV will be recruited for participation in a protocol that decreases rates of HIV infection. The men will be administered one of two pharmaceutical compositions. One pharmaceutical composition will comprise recombinant bacteria (such as a Lactobacilli) that will express a functional single chain antibody or fragment thereof against ICAM-1 and/or CD18 and/or a CD11 ("Treatment composition"). One or more polynucleotides that encode a functional single chain antibody or fragment thereof against ICAM-1 and/or CD18 and/or a CD11 subunit will be stably integrated into a chromosome of the recombinant bacteria. A second pharmaceutical composition will comprise bacteria that do not express a functional a functional single chain antibody or fragment thereof against ICAM-1 and/or CD 18 and/or a CD11 ("Placebo composition"). The population of men will be divided into two groups: group One will receive the Treatment composition; and group Two will receive the Placebo composition. Group One will be administered the Treatment composition at intervals sufficient to maintain colonization of their oral mucosas with the recombinant bacteria. Group Two will be administered the Placebo composition at the same intervals as group one. Periodic tissue and or blood samples will be obtained from Groups One and Two to monitor their rate of infection of HIV. The protocol will continue for a length of time sufficient to determine the efficacy of the Treatment composition. At the end of protocol the rate of HIV infection in Group One will be compared to group Two. It is expected that the rate of HIV infection will be lower in Group One than Group Two.
[00238] While preferred embodiments of the present invention have been shown and described herein, it will be obvious to those skilled in the art that such embodiments are provided by way of example only. Numerous variations, changes, and substitutions will now occur to those skilled in the art without departing from the invention. It should be understood that various alternatives to the embodiments of the invention described herein can be employed in practicing the invention. It is intended that the following claims define the scope of the invention and that methods and structures within the scope of these claims and their equivalents be covered thereby.

Claims

WHAT IS CLAIMED IS:
1. A Lactobacillus comprising one or more exogenous nucleic acid sequences encoding one ore more antibodies or a fragment thereof wherein said one or more exogenous nucleic acid sequences is integrated into a chromosome of said Lactobacillus, wherein said Lactobacillus expresses said antibodies or a fragment thereof, and wherein said antibodies or a fragment thereof bind to at least one of a host mammal's cell surface molecules so as to inhibit the infection of said host by a pathogen.
2. A Lactobacillus comprising one or more nucleic acid sequences encoding one or more antibodies or a fragment thereof wherein said one or more exogenous nucleic acid sequences is integrated into a chromosome of said microorganism, wherein said one ore more antibodies or a fragment thereof binds to ICAM-1, CD 18 or CD11, wherein said Lactobacillus expresses said antibodies or a fragment thereof.
3. A Lactobacillus, comprising one or more exogenous nucleic acid sequences encoding a camelid single chain antibody or a fragment thereof, wherein said antibody or a fragment thereof binds to ICAM-1, CD 18 or CD11, wherein said one or more exogenous nucleic acid sequences is integrated into a chromosome of said
Lactobacillus.
4. The Lactobacillus of claims 1 to 3, wherein said Lactobacillus is a food-grade Lactobacillus.
5. The Lactobacillus of claims 1 to 3, wherein said Lactobacillus is a vaginal floral strain.
6. The Lactobacillus of claims 1 to 3, wherein said Lactobacillus is a Lactobacillus paracasei.
7. The Lactobacillus of claims 1 to 3, wherein said Lactobacillus is a Lactobacillus rhamnosus.
8. The Lactobacillus of claims 1 to 3, wherein said Lactobacillus is a Lactobacillus rhamnosus GR-1.
9. The Lactobacillus of claims 1 to 3, wherein said Lactobacillus is a Lactobacillus reuteri RC-14.
10. The Lactobacillus of claims 1 to 3, wherein said Lactobacillus is a Lactobacillus iners.
11. The Lactobacillus of claims 1 to 3, wherein said Lactobacillus is a Lactobacillus crispatus.
12. The Lactobacillus of claims 1 to 3, wherein said Lactobacillus is a Lactobacillus gasseri.
13. The Lactobacillus of claims 1 to 3, wherein said Lactobacillus is a Lactobacillus jensenei.
14. The Lactobacillus of claims 1 to 13, wherein said antibody or a fragment thereof binds to ICAM-1.
15. The Lactobacillus of claims 1 to 13, wherein said antibody or a fragment thereof binds to CD 18.
16. The Lactobacillus of claims 1 to 13, wherein said antibody or a fragment thereof binds to CD1 la or CD1 lb.
17. The Lactobacillus of claims 1 to 16, wherein said one ore more antibodies or a fragment thereof is presented on the surface of said Lactobacillus.
18. The Lactobacillus of claims 1 to 16, wherein said one ore more antibodies or a fragment thereof is anchored on the surface of said Lactobacillus.
19. The Lactobacillus of claims 1 to 16, wherein said one ore more antibodies or a fragment thereof is secreted from said Lactobacillus.
20. The Lactobacillus of claims 1 to 19, wherein at least one of said one ore more antibodies or a fragment thereof is a single-chain camelid antibody or a fragment thereof.
21. The Lactobacillus of claims 1 to 19, wherein said antibody or a fragment thereof is a VHH or VNAR2 antibody or a fragment thereof.
22. The Lactobacillus of claims 1 or 2, wherein at least one of said one ore more antibodies or a fragment thereof is a scFv antibody or a fragment thereof.
23. The Lactobacillus of claims 1 to 22, further comprising one or more exogenous nucleic acid sequences encoding another antibody or a fragment thereof that binds to a pathogen.
24. A Lactobacillus of claims 1 to 23 for use in the treatment or prevention of infection in a mammal by a pathogen in a mammal, for example by administering said Lactobacillus to said mammal and inhibiting transepithelial viral transmission or cell adhesion to an epithelial layer so as to inhibit the infection of said mammal by said pathogen.
25. A Lactobacillus of claims 1 to 23 for use in the treatment or prevention of infection in a mammal by a pathogen, for example by administering said Lactobacillus to said mammal and binding said antibody or a fragment thereof to at least one of a host mammal's cell surface molecules so as to inhibit the infection of said mammal by said pathogen.
26. A Lactobacillus for use as in claims 24 or 25, wherein said administering comprises delivery of said Lactobacillus to a nose of a human subject.
27. A Lactobacillus for use as in claims 24 or 25, wherein said administering comprises delivery of said Lactobacillus to an eye of a human subject.
28. A Lactobacillus for use as in claims 24 or 25, wherein said administering comprises delivery of said Lactobacillus to a vagina of a human subject.
29. A Lactobacillus for use as in claims 24 or 25, wherein said administering comprises delivery of said Lactobacillus to a rectum of a human subject.
30. A Lactobacillus for use as in claims 24 or 25, wherein said administering comprises delivery of said Lactobacillus to a urethra of a human subject.
31. A Lactobacillus for use as in claims 24 or 25, wherein said administering comprises delivery of said Lactobacillus to a mouth of a human subject.
32. A Lactobacillus for use as in claims 24 or 25, wherein said administering comprises delivery of said Lactobacillus is administered by intranasal delivery.
33. A Lactobacillus for use as in claims 24 or 25, wherein said administering comprises rectal delivery of said Lactobacillus.
34. A Lactobacillus for use as in claims 24 or 25, wherein said administering comprises vaginal delivery of said Lactobacillus.
35. A Lactobacillus for use as in claims 24 or 25, wherein said administering comprises urethral delivery of said Lactobacillus.
36. A Lactobacillus for use as in claims 24 or 25, wherein said administering comprises hypodermic delivery of said Lactobacillus.
37. A Lactobacillus for use as in claims 24 or 25, wherein said administering comprises oral delivery of said Lactobacillus.
38. A Lactobacillus for use as in claims 24 or 25, wherein said administering comprises delivery of said Lactobacillus in a carrier.
39. A Lactobacillus for use as in claim 38, wherein said carrier comprises a lubricant.
40. A Lactobacillus for use as in claim 38, wherein said carrier comprises a surfactant.
41. A Lactobacillus for use as in claim 38, wherein said carrier comprises a gel.
42. A Lactobacillus for use as in claim 38, wherein said carrier comprises an organic solvent.
43. A Lactobacillus for use as in claim 38, wherein said carrier comprises an emulsifier.
44. A Lactobacillus for use as in claim 38, wherein said carrier comprises a gelling agent.
45. A Lactobacillus for use as in claim 38, wherein said carrier comprises a moisturizer.
46. A Lactobacillus for use as in claim 38, wherein said carrier comprises a stabilizer.
47. A Lactobacillus for use as in claim 38, wherein said carrier comprises a wetting agent.
48. A Lactobacillus for use as in claim 38, wherein said carrier comprises a time release agent.
49. A Lactobacillus for use as in claims 24 or 25, wherein said administering comprises delivery of said Lactobacillus is administered in a carrier comprising a sequestering agent.
50. A Lactobacillus for use as in claim 38, wherein said carrier comprises a dye.
51. A Lactobacillus for use as in claim 38, wherein said carrier comprises a perfume.
52. A Lactobacillus for use as in claim 38, wherein said carrier comprises a cream.
53. A Lactobacillus for use as in claim 38, wherein said carrier comprises a foam.
54. A Lactobacillus for use as in claim 38, wherein said carrier comprises a vaginal wash.
55. A Lactobacillus for
56. A Lactobacillus for
57. A Lactobacillus for
58. A Lactobacillus for
59. A Lactobacillus for
60. A Lactobacillus for
61. A Lactobacillus for
62. A Lactobacillus for
63. A Lactobacillus for
64. A Lactobacillus for
65. A Lactobacillus for
66. A Lactobacillus for
67. A Lactobacillus for
68. A Lactobacillus for
69. A Lactobacillus for
70. A Lactobacillus for
71. A Lactobacillus for
72. A Lactobacillus for
73. A Lactobacillus for
74. A Lactobacillus for
treatment or prevention of a viral infection in said mammal.
75. A microorganism, comprising one or more exogenous nucleic acid sequences encoding an antibody or a fragment thereof, wherein said antibody or a fragment binds to a host mammalian protein, wherein said one or more exogenous nucleic acid sequences is integrated into a chromosome of said microorganism, wherein said microorganism expresses said antibodies or a fragment thereof and survives on a mucosal surface of a host mammal.
76. A microorganism, comprising one or more exogenous nucleic acid sequences encoding an antibody or a fragment thereof, wherein said antibody or a fragment thereof inhibits transepithelial viral transmission or cell adhesion to an epithelial layer, wherein said one or more exogenous nucleic acid sequences is integrated into a chromosome of said microorganism, wherein said microorganism expresses said antibodies or a fragment thereof and survives on a mucosal surface of a host mammal.
77. The microorganism of claims 75 or 76, wherein said microorganism is a GRAS microorganism.
78. The microorganism of claims 75 or 76, wherein said microorganism is a food-grade microorganism.
79. The microorganism of claims 75 or 76, wherein said microorganism is a gastrointestinal flora bacterium.
80. The microorganism of claims 75 or 76, wherein said microorganism is a vaginal flora bacterium.
81. The microorganism of claims 75 to 80, wherein said microorganism is a Lactobacillus.
82. The microorganism of claims 75 to 80, wherein said microorganism is a Bifidobacterium.
83. The microorganism of claims 75 to 81, wherein said microorganism is a Lactobacillus paracasei.
84. The microorganism of claims 75 to 81, wherein said microorganism is a Lactobacillus rhamnosus.
85. The microorganism of claims 75 to 81, wherein said microorganism is a Lactobacillus rhamnosus GR- 1.
86. The microorganism of claims 75 to 81, wherein said microorganism is a Lactobacillus reuteri RC-14.
87. The microorganism of claims 76 to 86, wherein said virus is an HIV virus.
88. The microorganism of claims 76 to 86, wherein said virus is an HPV virus.
89. The microorganism of claims 76 to 86, wherein said virus is an HSV virus.
90. The microorganism of claims 75 to 89, wherein said antibody or a fragment thereof binds to ICAM-1.
91. The microorganism of claims 75 to 89, wherein said antibody or a fragment thereof binds to CD 18.
92. The microorganism of claims 75 to 89, wherein said antibody or a fragment thereof binds to CD1 la or
CDl lb.
93. The microorganism of claims 75 to 89, wherein said antibody or a fragment thereof is a VHH or VNAR2 antibody or a fragment thereof.
94. The microorganism of claims 75 to 92, wherein said antibody or a fragment thereof is a scFv antibody or fragment thereof.
95. The microorganism of claims 75 to 92, wherein said antibody or a fragment thereof is a single-chain camelid antibody or a fragment thereof.
96. The microorganism of claims 75 to 95, wherein said one ore more antibodies or a fragment thereof is presented on the surface of said Lactobacillus.
97. The microorganism of claims 75 to 95, wherein said one ore more antibodies or a fragment thereof is anchored on the surface of said Lactobacillus.
98. The microorganism of claims 75 to 97, wherein said antibody or a fragment thereof is secreted from said microorganism.
99. The microorganism of claims 75 to 98, further comprising one or more exogenous nucleic acid sequences encoding another antibody or a fragment thereof that binds to a pathogen.
100. A microorganism of claims 75 to 99, for use for the treatment or prevention of infection in a mammal by a pathogen, for example by administering said microorganism to said mammal and binding said antibody or a fragment thereof to at least one of said mammal's cell surface molecules so as to inhibit the infection of said mammal by a pathogen.
101. A microorganism of claims 75 to 99, for use for the treatment or prevention of infection in a mammal by a pathogen, for example by administering said microorganism to said mammal and inhibiting transepithelial viral transmission or cell adhesion to an epithelial layer so as to inhibit the infection of said mammal by a pathogen.
102. A microorganism for use as claimed in claims 100 or 101, wherein said administering comprises delivery of said microorganism to a nose of a human subject.
103. A microorganism for use as claimed in claims 100 or 101, wherein said administering comprises delivery of said microorganism to an eye of a human subject.
104. A microorganism for use as claimed in claims 100 or 101, wherein said administering comprises delivery of said microorganism to a vagina of a human subject.
105. A microorganism for use as claimed in claims 100 or 101, wherein said administering comprises delivery of said microorganism to a rectum of a human subject.
106. A microorganism for use as claimed in claims 100 or 101, wherein said administering comprises delivery of said microorganism to a urethra of a human subject.
107. A microorganism for use as claimed in claims 100 or 101, wherein said administering comprises delivery of said microorganism to a mouth of a human subject.
108. A microorganism for use as claimed in claims 100 or 101, wherein said administering comprises intranasal delivery of said microorganism is administered by.
109. A microorganism for use as claimed in claims 100 or 101, wherein said administering comprises rectal delivery of said microorganism.
110. A microorganism for use as claimed in claims 100 or 101, wherein said administering comprises vaginal delivery of said microorganism..
111. A microorganism for use as claimed in claims 100 or 101, wherein said administering comprises urethral delivery of said microorganism..
112. A microorganism for use as claimed in claims 100 or 101, wherein said administering comprises hypodermic delivery of said microorganism.
113. A microorganism for use as claimed in claims 100 or 101, wherein said administering comprises oral delivery of said microorganism.
114. A microorganism for use as claimed in claims 100 or 101, wherein said microorganism is administered in a carrier.
115. A microorganism for use as claimed in claim ] 4, wherein said carrier comprises a lubricant.
116. A microorganism for use as claimed in claim ] 4, wherein said carrier comprises a surfactant.
117. A microorganism for use as claimed in claim ] 4, wherein said carrier comprises a gel.
118. A microorganism for use as claimed in claim ] 4, wherein said carrier comprises an organic solvent.
119. A microorganism for use as claimed in claim ] 4, wherein said carrier comprises an emulsifier.
120. A microorganism for use as claimed in claim ] 4, wherein said carrier comprises a gelling agent.
121. A microorganism for use as claimed in claim ] 4, wherein said carrier comprises a moisturizer.
122. A microorganism for use as claimed in claim ] 4, wherein said carrier comprises a stabilizer.
123. A microorganism for use as claimed in claim ] 4, wherein said carrier comprises a wetting agent.
124. A microorganism for use as claimed in claim ] 4, wherein said carrier comprises a time release agent.
125. A microorganism for use as claimed in claim ] 4, wherein said carrier comprises a sequestering agent.
126. A microorganism for use as claimed in claim ] 4, wherein said carrier comprises a dye.
127. A microorganism for use as claimed in claim ] 4, wherein said carrier comprises a perfume.
128. A microorganism for use as claimed in claim ] 4, wherein said carrier comprises a cream.
129. A microorganism for use as claimed in claim ] 4, wherein said carrier comprises a foam.
130. A microorganism for use as claimed in claim ] 4, wherein said carrier comprises a vaginal wash.
131. A microorganism for use as claimed in claim ] 4, wherein said carrier comprises a vaginal douche.
132. A microorganism for use as claimed in claim ] 4, wherein said carrier comprises an oral solution.
133. A microorganism for use as claimed in claim ] 4, wherein said carrier comprises a suppository.
134. A microorganism for use as claimed in claim ] 4, wherein said carrier comprises a breast milk supplement.
135. A microorganism for use as claimed in claim ] 4, wherein said carrier comprises an infant formula.
136. A microorganism for use as claimed in claims 00 or 101, wherein said microorganism is administered in conjunction with a contraceptive.
137. A microorganism for use as claimed in claim 136, wherein said contraceptive is a condom.
138. A microorganism for use as claimed in claim 136, wherein said contraceptive is a sponge.
139. A microorganism for use as claimed in claim 136, wherein said contraceptive is an intrauterine device.
140. A microorganism for use as claimed in claim 136, wherein said contraceptive is a cervical ring.
141. A microorganism for use as claimed in claim 136, wherein said contraceptive is a diaphragm.
142. A microorganism for use as claimed in claim 136, wherein said contraceptive is a cervical cap.
143. A microorganism for use as claimed in claims 100-142, wherein said pathogen is an HIV virus.
144. A microorganism for use as claimed in claims 100-142, wherein said pathogen is an HPV virus.
145. A microorganism for use as claimed in claims 100-142, wherein said pathogen is an HSV virus.
146. A microorganism for use as claimed in claims 100-145, wherein said inhibition is complete blocking.
147. A microorganism for use as claimed in claims 100-145, wherein said inhibition is partial blocking.
148. A microorganism for use as claimed in claims 96-147, wherein said viral infection is sexually transmitted.
149. A microorganism for use as claimed in claims 96-148, wherein said mammal is a human.
150. A microorganism for use as claimed in claims 96-148, wherein said microorganism is used prophylaticly for said treatment or prevention of a viral infection in said mammal.
151. A bacteria comprising one or more exogenous nucleic acid sequences integrated into a bacterial chromosome that encodes an antibody or a fragment thereof, wherein said bacteria expresses an antibody or a fragment thereof to ICAM-1, CD- 18 or CD-I 1, for use in administering to a woman in a cream, gel, vaginal wash or vaginal douche that comprises said bacteria to treat or prevent HIV, HPV, or HSV infection in said woman.
152. A cream, gel, vaginal wash, vaginal douche suitable for administering to a woman which contains a bacteria as claimed in any of claims 1-23 or as set forth in claim 151.
153. A pharmaceutical composition which comprises a bacteria as claimed in any of claims 1-23 or as set forth in claim 151 and a pharmaceutically acceptable carrier therefore.
154. A pharmaceutical composition as claimed in claim 153 wherein the carrier is as set forth in any of claims 115-142.
155. A pharmaceutical composition as claimed in claim 153 or 154 which is adapted for administration to a human subject, for example by a route as set forth in any of claims 102-113.
156. A Lactobacillus of any of claims 1 to 23 wherein the pathogen is a rotavirus.
157. A Lactobacillus for use of any of claims 24 to 73 wherein the pathogen is a rotavirus.
158. A microorganism of any of claims 75 to 101 wherein the virus is a rotavirus.
159. A microorganism for use of any of claims 102 to 150 wherein the virus is a rotavirus.
160. A Lactobacillus of claim 156, & Lactobacillus for use of claim 157, a microorganism of claim 158 or a microorganism for use of claim 159, for the treatment of diarrhea, for example to reduce the severity of infection and/or the length of infection.
161. A Lactobacillus of claim 156, a Lactobacillus for use of claim 157, a microorganism of claim 158 or a microorganism for use of claim 159, for the treatment of diarrhea, by oral administration
PCT/US2011/046665 2010-08-05 2011-08-04 Expression of antibody or a fragment thereof in lactobacillus WO2012019054A2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
GB10/132,157 2010-08-05
GB1013215.7A GB2482535A (en) 2010-08-05 2010-08-05 Expression of antibody or a fragment thereof in lactobacillus

Publications (2)

Publication Number Publication Date
WO2012019054A2 true WO2012019054A2 (en) 2012-02-09
WO2012019054A3 WO2012019054A3 (en) 2014-03-20

Family

ID=42931266

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2011/046665 WO2012019054A2 (en) 2010-08-05 2011-08-04 Expression of antibody or a fragment thereof in lactobacillus

Country Status (2)

Country Link
GB (1) GB2482535A (en)
WO (1) WO2012019054A2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110408559A (en) * 2019-07-05 2019-11-05 青岛农业大学 One plant of rose streptomyces verticillus and its application
CN111004734A (en) * 2019-03-21 2020-04-14 江南大学 Lactobacillus rhamnosus capable of regulating and controlling relative abundance of acinetobacter in intestinal tract
WO2020163284A1 (en) 2019-02-05 2020-08-13 Elanco Us Inc. A genetically modified lactobacillus and uses thereof
CN114652741A (en) * 2022-01-19 2022-06-24 昆明野水生物科技有限公司 Composition and preparation for inhibiting HPV and application thereof
CN114874944A (en) * 2022-05-24 2022-08-09 西南大学 Lactobacillus Coli for controlling pepper bacterial soft rot and application thereof
CN115281316A (en) * 2022-06-24 2022-11-04 黄淮学院 Composite fermentation microbial inoculum for degrading mycotoxin in meat product and preparation method of high-digestibility fermented dried chicken

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20150037953A (en) * 2012-07-13 2015-04-08 각코호진 데이쿄 헤이세이 다이가쿠 Anti-tumour agent, marker for tumour detection, and oral vaccine agent
CN112522164B (en) * 2020-12-25 2023-04-21 新疆农业科学院微生物应用研究所(中国新疆-亚美尼亚生物工程研究开发中心) Forest fruit branch decomposition microbial inoculum and preparation method and application thereof
CN115895967B (en) * 2022-12-01 2024-01-12 上海利康精准医疗技术有限公司 Lactobacillus rhamnosus for resisting human papillomavirus HPV and application thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060134101A1 (en) * 2003-01-30 2006-06-22 Immun System I.M.S. Ab Use of avian antibodies
US20070071742A1 (en) * 1998-11-30 2007-03-29 Fang Fang Humanized antibodies
US20070092535A1 (en) * 1997-04-18 2007-04-26 Archimedes Development Limited Delivery of drugs to mucosal surfaces
US20090226418A1 (en) * 2005-08-19 2009-09-10 Leo Gerardus Frenken Food Products Comprising Probiotic Micro-Organisms and Antibodies
US20100080869A1 (en) * 2004-05-25 2010-04-01 Watson James B Live Bacteria product

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5747310A (en) * 1992-07-10 1998-05-05 Meiji Milk Products Co., Ltd. Gene integration into chromosomes of lactobacillus delbrueckii species and integrants thereof
JP2009511601A (en) * 2005-10-14 2009-03-19 ザ ジョンズ ホプキンス スクール オブ メディシン Reduction and prevention of cell-related HIV transepithelial migration, bactericides and other formulations and methods

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070092535A1 (en) * 1997-04-18 2007-04-26 Archimedes Development Limited Delivery of drugs to mucosal surfaces
US20070071742A1 (en) * 1998-11-30 2007-03-29 Fang Fang Humanized antibodies
US20060134101A1 (en) * 2003-01-30 2006-06-22 Immun System I.M.S. Ab Use of avian antibodies
US20100080869A1 (en) * 2004-05-25 2010-04-01 Watson James B Live Bacteria product
US20090226418A1 (en) * 2005-08-19 2009-09-10 Leo Gerardus Frenken Food Products Comprising Probiotic Micro-Organisms and Antibodies

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020163284A1 (en) 2019-02-05 2020-08-13 Elanco Us Inc. A genetically modified lactobacillus and uses thereof
CN111004734A (en) * 2019-03-21 2020-04-14 江南大学 Lactobacillus rhamnosus capable of regulating and controlling relative abundance of acinetobacter in intestinal tract
CN110408559A (en) * 2019-07-05 2019-11-05 青岛农业大学 One plant of rose streptomyces verticillus and its application
CN110408559B (en) * 2019-07-05 2021-04-23 青岛农业大学 Streptomyces roseosporus and application thereof
CN114652741A (en) * 2022-01-19 2022-06-24 昆明野水生物科技有限公司 Composition and preparation for inhibiting HPV and application thereof
CN114652741B (en) * 2022-01-19 2023-08-25 昆明野水生物科技有限公司 Composition and preparation for inhibiting HPV and application of composition and preparation
CN114874944A (en) * 2022-05-24 2022-08-09 西南大学 Lactobacillus Coli for controlling pepper bacterial soft rot and application thereof
CN114874944B (en) * 2022-05-24 2023-04-18 西南大学 Lactobacillus Coli for controlling pepper bacterial soft rot and application thereof
CN115281316A (en) * 2022-06-24 2022-11-04 黄淮学院 Composite fermentation microbial inoculum for degrading mycotoxin in meat product and preparation method of high-digestibility fermented dried chicken
CN115281316B (en) * 2022-06-24 2023-07-21 黄淮学院 Composite fermentation microbial inoculum for degrading mycotoxin in meat product and preparation method of high-digestibility fermented chicken jerky

Also Published As

Publication number Publication date
GB2482535A (en) 2012-02-08
GB201013215D0 (en) 2010-09-22
WO2012019054A3 (en) 2014-03-20

Similar Documents

Publication Publication Date Title
US8853382B2 (en) Expression of antibody or a fragment thereof in lactobacillus
WO2012019054A2 (en) Expression of antibody or a fragment thereof in lactobacillus
KR102554351B1 (en) Treatment of Clostridium difficile infection
AU2016361583B2 (en) Methods and compositions for reducing vancomycin-resistant enterococci infection or colonization
Loschko et al. Absence of MHC class II on cDCs results in microbial-dependent intestinal inflammation
Campieri et al. Probiotics in inflammatory bowel disease: new insight to pathogenesis or a possible therapeutic alternative?
Zuo et al. Engineer probiotic bifidobacteria for food and biomedical applications-Current status and future prospective
Bereta et al. Improving tumor targeting and therapeutic potential of Salmonella VNP20009 by displaying cell surface CEA-specific antibodies
JP2018521013A (en) Treatment of cancer by manipulation of symbiotic microbiota
AU2020273293A1 (en) Compositions and methods for induction of Th17 cells
IL286962B (en) Selectively altering microbiota for immune modulation
KR20220020893A (en) secreted microbial extracellular vesicles
EP2085466A1 (en) Non-pathogenic and/or attenuated bacteria capable of inducing apoptosis in macrophages, process of manufacturing and uses thereof
Mishra et al. Inflammatory bowel disease therapeutics: A focus on probiotic engineering
US20220378851A1 (en) Compositions and methods for enhancing immune checkpoint inhibitor therapy
WO2023173637A1 (en) Bifidobacterium animalis subsp. lactis bla36 for relieving constipation, method for culturing same, and use thereof
JP6963999B2 (en) In vitro culture method of segmented bacteria
US20130202571A1 (en) Use of probiotic bacteria to prevent and treat listerial infections
US11278587B2 (en) Treatment of cancer with larazotide derivatives in combination with immune checkpoint inhibitors
US20200000876A1 (en) Bioengineered lactobacillus probiotics and the uses thereof
Wagner et al. Potential hazards of probiotic bacteria for immunodeficient patients
US20230293602A1 (en) Combination immunotherapy methods for the treatment of cancer
de Jesus et al. Recombinant probiotics and microbiota modulation as a good therapy for diseases related to the GIT
JP2023552341A (en) Engineered probiotic compositions and methods of use thereof
CN110734888B (en) TIM3 human single-chain antibody fusion gene transformed lactic acid bacteria and application thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11815349

Country of ref document: EP

Kind code of ref document: A2

122 Ep: pct application non-entry in european phase

Ref document number: 11815349

Country of ref document: EP

Kind code of ref document: A2