WO2012018086A1 - Magnesium bis(dialkylamide) compound, and process for production of magnesium-containing thin film using the magnesium compound - Google Patents

Magnesium bis(dialkylamide) compound, and process for production of magnesium-containing thin film using the magnesium compound Download PDF

Info

Publication number
WO2012018086A1
WO2012018086A1 PCT/JP2011/067880 JP2011067880W WO2012018086A1 WO 2012018086 A1 WO2012018086 A1 WO 2012018086A1 JP 2011067880 W JP2011067880 W JP 2011067880W WO 2012018086 A1 WO2012018086 A1 WO 2012018086A1
Authority
WO
WIPO (PCT)
Prior art keywords
magnesium
compound
dialkylamide
group
general formula
Prior art date
Application number
PCT/JP2011/067880
Other languages
French (fr)
Japanese (ja)
Inventor
藤村 整
宏樹 金戸
Original Assignee
宇部興産株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 宇部興産株式会社 filed Critical 宇部興産株式会社
Priority to KR1020137005201A priority Critical patent/KR20130136445A/en
Priority to JP2012527770A priority patent/JP5817727B2/en
Publication of WO2012018086A1 publication Critical patent/WO2012018086A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/40Oxides
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C211/00Compounds containing amino groups bound to a carbon skeleton
    • C07C211/65Metal complexes of amines
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F3/00Compounds containing elements of Groups 2 or 12 of the Periodic Table
    • C07F3/02Magnesium compounds
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/40Oxides
    • C23C16/403Oxides of aluminium, magnesium or beryllium

Definitions

  • the present invention relates to a novel magnesium bis (dialkylamide) compound and a method for producing a magnesium-containing thin film by a chemical vapor deposition method (hereinafter referred to as a CVD method) using the magnesium compound.
  • magnesium compound for producing a magnesium-containing thin film various types of magnesium compounds such as alkyl magnesium, magnesium alkoxide, magnesium diketonate have been studied (for example, see Patent Documents 1 and 2). Among them, bis (cyclopentadienyl) magnesium and related compounds are mainly used.
  • Patent Document 3 As raw materials for forming other metal-containing thin films such as titanium-containing thin films, zirconium-containing thin films, hafnium-containing thin films, and aluminum-containing thin films, compounds having a dialkylamide ligand have been proposed (Patent Document 3). reference).
  • Magnesium bis (dialkylamide) compounds are also known, and are used, for example, as polymerization catalysts, raw materials for producing pharmaceuticals, agricultural chemicals, and the like (see, for example, Non-Patent Document 1 and Patent Document 4).
  • magnesium compounds are not necessarily optimal in the production of magnesium-containing thin films, such as vapor pressure, thermal stability, and reactivity, and even the most adopted bis (cyclopentadienyl) magnesium contains magnesium. It was difficult to say that the magnesium compound was sufficient to produce a thin film. Therefore, a magnesium compound that satisfies all physical properties such as vapor pressure, thermal stability, and reactivity has been demanded.
  • An object of the present invention is to provide an industrially suitable magnesium compound, more specifically, production of a magnesium-containing thin film by a CVD method, which can solve the above-mentioned problems and can produce a magnesium-containing thin film by a simple method.
  • the present invention provides a magnesium compound suitable for the above.
  • Another object of the present invention is to provide a method for producing a magnesium-containing thin film using the magnesium compound.
  • the present invention relates to the following matters.
  • R 1 represents an isopropyl group or a branched alkyl group having 4 to 6 carbon atoms
  • R 2 represents a linear or branched alkyl group having 1 to 5 carbon atoms, provided that R 1 and R 2 are both isopropyl groups, R 1 and R 2 are both isobutyl groups, and R 1 is an isopropyl group and R 2 is a methyl group.
  • R 3 and R 4 may be the same or different and each independently represents a linear or branched alkyl group having 1 to 10 carbon atoms.
  • R 1 represents an isopropyl group or a branched alkyl group having 4 to 6 carbon atoms
  • R 2 represents a linear or branched alkyl group having 1 to 5 carbon atoms, provided that R 1 and R 2 are both isopropyl groups, R 1 and R 2 are both isobutyl groups, and R 1 is an isopropyl group and R 2 is a methyl group.
  • R 1 represents an isopropyl group or a branched alkyl group having 4 to 6 carbon atoms
  • R 2 represents a linear or branched alkyl group having 1 to 5 carbon atoms, provided that R 1 and R 2 are both isopropyl groups, R 1 and R 2 are both isobutyl groups, and R 1 is an isopropyl group and R 2 is a methyl group.
  • a novel magnesium bis (dialkylamide) compound particularly suitable for film formation by the CVD method.
  • a magnesium compound Using the magnesium compound, a magnesium-containing thin film can be produced with good film forming characteristics by a CVD method.
  • the magnesium bis (dialkylamide) compound of the present invention is represented by the general formula (1).
  • R 1 represents an isopropyl group or a branched alkyl group having 4 to 6 carbon atoms such as t-butyl group, t-pentyl group or neopentyl group
  • R 2 represents a methyl group
  • R 1 and R 2 are both isopropyl groups
  • R 1 and R 2 are both isobutyl groups
  • R 1 is an isopropyl group and R 2 is a methyl group.
  • Two R 1 may be different, two R 2 may be different, but the two R 1 are the same, since the two R 2 may be the same compound can be relatively easily synthesized, preferable.
  • R 1 is a branched alkyl group having 4 to 5 carbon atoms
  • R 2 is a linear or branched alkyl group having 1 to 5 carbon atoms.
  • R 1 is particularly preferably a t-butyl group, a t-pentyl group, or a neopentyl group.
  • R 2 is particularly preferably a methyl group, an ethyl group, an isopropyl group, a t-butyl group, a t-pentyl group, or a neopentyl group.
  • R 1 is a t-butyl group, a t-pentyl group, more preferably a t-butyl group
  • R 2 is a linear or branched alkyl group having 1 to 5 carbon atoms, more preferably a methyl group.
  • Ethyl group isopropyl group, t-butyl group, t-pentyl group, and neopentyl group.
  • magnesium bis (dialkylamide) compound of the present invention examples include compounds represented by the following formulas (6) to (20).
  • the synthesis of the magnesium bis (dialkylamide) compound of the present invention can be carried out by the following method (A) or (B) (hereinafter also referred to as the reaction of the present invention).
  • R 1 and R 2 are as defined above, and R 3 and R 4 represent a linear or branched alkyl group having 1 to 10 carbon atoms. R 3 and R 4 are the same. Or they may be different, and X represents a halogen atom.
  • Method (A) is a method of synthesizing a magnesium bis (dialkylamide) compound by reacting a dialkylmagnesium compound with a dialkylamine.
  • the dialkylmagnesium compound used in the reaction (A) of the present invention is represented by the general formula (2).
  • R 3 and R 4 are methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, isobutyl group, t-butyl group, n-pentyl group, t-pentyl group.
  • R 3 and R 4 may be the same or different.
  • dialkylmagnesium compound used in the reaction (A) of the present invention a commercially available product can be used, and it can be produced from metallic magnesium by a known method.
  • di (n-butyl) magnesium or n-butylethylmagnesium is preferably used.
  • the dialkylamine used in the reaction (A) of the present invention is represented by the general formula (3).
  • R 1 and R 2 correspond to R 1 and R 2 in the formula (1), respectively, and have the same meanings as described above.
  • the dialkylamine used in the reaction (A) of the present invention includes t-butylmethylamine, t-butylethylamine, t-butylisopropylamine, di-t-butylamine, t-butyl-t-pentylamine, di- -T-pentylamine and the like are preferable.
  • the amount of the dialkylamine used is preferably 1.5 to 3.0 mol, more preferably 1.8 to 2.2 mol, per 1 mol of dialkylmagnesium.
  • the reaction (A) of the present invention is preferably performed in an organic solvent.
  • the organic solvent used is not particularly limited as long as it does not inhibit the reaction.
  • ethers such as diethyl ether, tetrahydrofuran, dimethoxyethane, and dioxane
  • aliphatics such as hexane, heptane, cyclohexane, methylcyclohexane, and ethylcyclohexane
  • hydrocarbons include aromatic hydrocarbons such as toluene and xylene, and ethers, aliphatic hydrocarbons, and mixed solvents of ethers and aliphatic hydrocarbons are preferably used.
  • the amount of the organic solvent used is preferably 1 to 100 g, more preferably 1 to 10 g, with respect to 1 g of dialkyl magnesium.
  • the reaction (A) of the present invention is performed by, for example, a method of mixing a dialkylmagnesium compound, a dialkylamine and an organic solvent and reacting them with stirring.
  • the reaction temperature at that time is preferably ⁇ 20 to 120 ° C., more preferably 0 to 100 ° C., and the reaction pressure is not particularly limited.
  • Method (B) is a method of synthesizing a magnesium bis (dialkylamide) compound by reacting lithium dialkylamide synthesized from dialkylamine and alkyllithium with dihalogenomagnesium.
  • the dialkylamine used in the reaction (B) of the present invention is represented by the general formula (3).
  • R 1 and R 2 correspond to R 1 and R 2 in the formula (1), respectively, and have the same meanings as described above.
  • the alkyl lithium used in the reaction (B) of the present invention is not particularly limited, and examples thereof include methyl lithium, ethyl lithium, n-butyl lithium, s-butyl lithium, t-butyl lithium, etc., preferably n- Butyl lithium is used.
  • the amount of the alkyl lithium used is preferably 0.8 to 1.2 mol, more preferably 0.9 to 1.1 mol, per 1 mol of dialkylamine.
  • lithium dialkylamide is synthesized from dialkylamine and alkyllithium, and this lithium dialkylamide is reacted with dihalogenomagnesium.
  • the dihalogeno magnesium used in the reaction (B) of the present invention is represented by the general formula (5).
  • X represents a halogen atom such as a fluorine atom, a chlorine atom, a bromine atom or an iodine atom, preferably a chlorine atom.
  • the amount of dihalogenomagnesium used is preferably 0.3 to 0.6 mol, more preferably 0.45 to 0.55 mol, per 1 mol of dialkylamine.
  • the amount of lithium dialkylamide used is preferably 1.5 to 3.0 mol, more preferably 1.8 to 2.2 mol, per 1 mol of dihalogenomagnesium. .
  • the reaction (B) of the present invention is preferably performed in an organic solvent.
  • the organic solvent used is not particularly limited as long as it does not inhibit the reaction.
  • ethers such as diethyl ether, tetrahydrofuran, dimethoxyethane, and dioxane
  • aliphatics such as hexane, heptane, cyclohexane, methylcyclohexane, and ethylcyclohexane
  • hydrocarbons include aromatic hydrocarbons such as toluene and xylene, and ethers, aliphatic hydrocarbons, and mixed solvents of ethers and aliphatic hydrocarbons are preferably used.
  • the amount of the organic solvent used is preferably 1 to 100 g, more preferably 1 to 10 g, with respect to 1 g of dialkylamine.
  • the amount of the organic solvent used in the reaction of lithium dialkylamide with dihalogenomagnesium is preferably 1 to 100 g, more preferably 1 to 10 g, relative to 1 g of dihalogenomagnesium. is there.
  • a dialkylamine, an alkyllithium and an organic solvent are mixed and reacted with stirring to synthesize a lithium dialkylamide compound, and then a dihalogenomagnesium is added and further reacted with stirring. Or isolating the synthesized lithium dialkylamide, and then mixing the resulting lithium dialkylamide, dihalogenomagnesium and an organic solvent and reacting with stirring.
  • the reaction temperature at that time is preferably ⁇ 20 to 100 ° C., more preferably 0 to 50 ° C., and the reaction pressure is not particularly limited.
  • the lithium dialkylamide compound may be isolated once before the reaction with dihalogenomagnesium or may not be used, and the reaction solution may be used as it is, and the organic solvent may be changed, removed and / or added as appropriate. You may do it.
  • the target magnesium bis (dialkylamide) compound is obtained by the reaction (A) or (B) of the present invention.
  • the synthesized magnesium bis (dialkylamide) compound is isolated and purified by a known method such as extraction, filtration, concentration, distillation, sublimation, recrystallization, column chromatography, etc. after completion of the reaction.
  • the magnesium bis (dialkylamide) compound which is the object of the present invention, and the dialkylmagnesium used in the production thereof are often unstable with respect to moisture and oxygen in the atmosphere. It is desirable to perform a reaction operation or a post-treatment of the reaction solution under gas conditions.
  • a magnesium-containing thin film can be formed with good film forming characteristics, for example, by the CVD method.
  • a method for vapor-depositing a magnesium-containing thin film on a film formation target it can be performed by a known CVD method or atomic layer deposition method (ALD method), for example, magnesium bis (dialkylamide) under normal pressure or reduced pressure.
  • Compound vapor as an oxygen source eg, oxidizing gas such as oxygen or ozone; water; alcohols such as methanol, ethanol, n-propyl alcohol, isopropyl alcohol, n-butanol
  • reducing gas eg, hydrogen gas or It is possible to use a method of depositing a magnesium-containing thin film by feeding onto a film-forming target heated together with ammonia gas or a mixed gas thereof. Note that these gases (including vaporized liquids) may be diluted with an inert gas or the like.
  • a magnesium-containing thin film can be deposited by plasma CVD using the same raw material supply.
  • magnesium bis (dialkylamide) compound for thin film formation.
  • a method for vaporizing the magnesium bis (dialkylamide) compound used in the present invention for example, magnesium bis (dialkylamide) is used.
  • (Amide) compound itself is not only filled into the vaporization chamber or transported and vaporized, but also magnesium bis (dialkylamide) compound in a suitable solvent (eg hexane, cyclohexane, methylcyclohexane, ethylcyclohexane, heptane, octane, etc.)
  • a suitable solvent eg hexane, cyclohexane, methylcyclohexane, ethylcyclohexane, heptane, octane, etc.
  • Aromatic hydrocarbons such as toluene, ethylbenzene, xylene, etc .
  • ethers such as glyme, diglyme, triglyme, dioxane, tetrahydrofuran, etc.
  • the deposition conditions are, for example, that the pressure in the reaction system is preferably 1 Pa to 200 kPa, more preferably 10 Pa to 110 kPa.
  • the film object temperature is preferably 50 to 900 ° C., more preferably 100 to 600 ° C., and the temperature for vaporizing the magnesium bis (dialkylamide) compound is preferably 30 to 250 ° C., more preferably 60 to 200 ° C. .
  • an oxygen source for example, oxidizing gas, water vapor or alcohol vapor, or a mixed gas thereof
  • a reducing gas for example, hydrogen gas or ammonia gas, or these gases
  • the content ratio of the mixed gas is preferably 3 to 99% by volume, more preferably 5 to 98% by volume.
  • Example 1 (Method (A); synthesis of magnesium bis (t-butylmethylamide) (compound (6)))
  • metal magnesium 5.5 g (0.23 mol)
  • diethyl ether 20 ml
  • diethyl ether 25 g (0.18 mol)
  • bromobutane 25 g (0.18 mol)
  • Magnesium bis (t-butylmethylamide) was a novel compound represented by the following physical property values.
  • Example 2 (Method (A); synthesis of magnesium bis (t-butylethylamide) (compound (7))
  • the reaction was conducted in the same manner as in Example 1 except that dialkylamine was changed to 11 g (0.11 mol) of t-butylethylamine in Example 1.
  • 5.8 g of magnesium bis (t-butylethylamide) was obtained as a white solid (isolation yield: 52%).
  • Magnesium bis (t-butylethylamide) was a novel compound represented by the following physical property values.
  • Example 3 (Method (B); Synthesis of Magnesium Bis (t-butylisopropylamide) (Compound (8)))
  • 1.8 g (16 mmol) of t-butylisopropylamine and 30 ml of heptane were added in an argon atmosphere.
  • 10 ml (16 mmol) of a 1.6 mol / l n-butyllithium hexane solution was slowly dropped while maintaining the liquid temperature at around 25 ° C., and the mixture was reacted at 25 ° C. for 2 hours with stirring.
  • the reaction solution was concentrated under reduced pressure to obtain 1.7 g of lithium-t-butylisopropylamide (isolation yield: 88%).
  • Magnesium bis (t-butylisopropylamide) was a novel compound represented by the following physical property values.
  • Example 4 Magnesium Bis (t-butyl-t-pentylamide) (Synthesis of Compound (10))
  • a 100 ml flask equipped with a stirrer, a thermometer and a dropping funnel 1.1 g (8.0 mmol) of t-butyl-t-pentylamine and 15 ml of heptane were added to a 100 ml flask equipped with a stirrer, a thermometer and a dropping funnel, and the liquid temperature was 25 ° C.
  • 5.0 ml (8.0 mmol) of a 1.6 mol / l n-butyllithium hexane solution was gently added dropwise and reacted at 25 ° C. for 2 hours with stirring.
  • the reaction solution was concentrated under reduced pressure to obtain 1.1 g of lithium-t-butyl-t-pentylamide (isolated yield; 90%).
  • Magnesium bis (t-butyl-t-pentylamide) was a novel compound represented by the following physical property values.
  • Example 5 (Vapor deposition experiment; Production of magnesium-containing thin film) Using the magnesium bis (t-butylmethylamide) (compound (6)) obtained in Example 1, a vapor deposition experiment by the CVD method was performed to evaluate the film forming characteristics. The apparatus shown in FIG. 1 was used for the vapor deposition experiment. Deposition conditions and film characteristics were as follows.
  • the apparatus shown in FIG. 1 has the following structure.
  • the magnesium compound in the magnesium raw material container (vaporizer) 7 maintained at a constant temperature by the thermostat 8 is heated and vaporized, and leaves the raw material container 7 along with the helium gas introduced through the mass flow controller 4.
  • the gas exiting the raw material container 7 is introduced into the reactor 9 together with the helium gas introduced through the mass flow controller 5.
  • oxygen gas which is a reaction gas, is also introduced into the reactor 9 via the mass flow controller 6.
  • the pressure in the reaction system is monitored by a pressure gauge 12 and controlled to a predetermined pressure by opening and closing a valve in front of the vacuum pump 14.
  • the central part of the reactor 9 has a structure that can be heated by the heater 11.
  • the magnesium compound introduced into the reactor 9 is set in the center of the reactor, and is oxidized and decomposed on the surface of the substrate 10 heated to a predetermined temperature by the heater 11 to form a magnesium-containing thin film on the substrate 10. Is done.
  • the gas exiting the reactor 9 is exhausted to the atmosphere through the trap 13 and the vacuum pump 14.
  • Comparative Example 1 (deposition experiment; production of magnesium-containing thin film) Using bis (cyclopentadienyl) magnesium, a vapor deposition experiment by a CVD method was performed in the same manner as in Example 5 to evaluate the film formation characteristics. Deposition conditions and film characteristics were as follows. In addition, various conditions were adjusted and the amount of raw material supply was equal to Example 5, and the vapor deposition experiment was conducted.
  • magnesium bis (dialkylamide) compound of the present invention a high-quality magnesium-containing thin film (magnesium oxide film) free from impurities such as carbon atoms and nitrogen atoms can be produced. did.
  • an industrially suitable and novel magnesium compound more specifically a magnesium compound suitable for producing a magnesium-containing thin film by a CVD method, which can produce a magnesium-containing thin film by a simple method. I can do it.
  • a method for producing a magnesium-containing thin film on a film formation target using the magnesium compound by a CVD method can be provided.
  • a magnesium bis (dialkylamide) compound is a useful compound as a raw material for producing a magnesium-containing thin film production material, a polymerization catalyst, pharmaceuticals, agricultural chemicals, and the like.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

The present invention relates to: a magnesium bis(dialkylamide) compound represented by general formula (1) (wherein R1 represents an isopropyl group, or a branched alkyl group having 4-6 carbon atoms; and R2 represents a linear or branched alkyl group having 1-5 carbon atoms; wherein a case in which each of R1 and R2 represents an isopropyl group, a case in which each of R1 and R2 represents an isobutyl group and a case in which R1 represents an isopropyl group and R2 represents a methyl group are excluded); and a process for producing a magnesium-containing thin film using the magnesium compound.

Description

マグネシウムビス(ジアルキルアミド)化合物、及び当該マグネシウム化合物を用いるマグネシウム含有薄膜の製造方法Magnesium bis (dialkylamide) compound and method for producing magnesium-containing thin film using the magnesium compound
 本発明は新規なマグネシウムビス(ジアルキルアミド)化合物、及び当該マグネシウム化合物を用いて、化学気相蒸着法(Chemical Vapor Deposition法;以下、CVD法と称する)により、マグネシウム含有薄膜を製造する方法に関する。 The present invention relates to a novel magnesium bis (dialkylamide) compound and a method for producing a magnesium-containing thin film by a chemical vapor deposition method (hereinafter referred to as a CVD method) using the magnesium compound.
 従来、マグネシウム含有薄膜製造用のマグネシウム化合物としては、例えば、アルキルマグネシウム、マグネシウムアルコキシド、マグネシウムジケトナート等の様々な種類のマグネシウム化合物が検討されている(例えば、特許文献1~2参照)。その中でも、ビス(シクロペンタジエニル)マグネシウムやその類縁化合物が主に使用されている。 Conventionally, as a magnesium compound for producing a magnesium-containing thin film, various types of magnesium compounds such as alkyl magnesium, magnesium alkoxide, magnesium diketonate have been studied (for example, see Patent Documents 1 and 2). Among them, bis (cyclopentadienyl) magnesium and related compounds are mainly used.
 一方、チタン含有薄膜、ジルコニウム含有薄膜、ハフニウム含有薄膜、アルミニウム含有薄膜等の他の金属含有薄膜を形成するための原料としては、ジアルキルアミド配位子を有する化合物が提案されている(特許文献3参照)。 On the other hand, as raw materials for forming other metal-containing thin films such as titanium-containing thin films, zirconium-containing thin films, hafnium-containing thin films, and aluminum-containing thin films, compounds having a dialkylamide ligand have been proposed (Patent Document 3). reference).
 また、マグネシウムビス(ジアルキルアミド)化合物も知られており、例えば、重合用触媒、医薬や農薬等の製造原料として用いられている(例えば、非特許文献1及び特許文献4参照)。 Magnesium bis (dialkylamide) compounds are also known, and are used, for example, as polymerization catalysts, raw materials for producing pharmaceuticals, agricultural chemicals, and the like (see, for example, Non-Patent Document 1 and Patent Document 4).
特開2002-170993号公報JP 2002-170993 A 特開2005-298874号公報JP 2005-298874 A 特開2007-153869号公報JP 2007-153869 A 欧州特許出願第1031581号明細書European Patent Application No. 1031581
 しかしながら、従来のマグネシウム化合物は、蒸気圧、熱安定性、反応性等の物性がマグネシウム含有薄膜の製造において必ずしも最適ではなく、最も採用されているビス(シクロペンタジエニル)マグネシウムでさえ、マグネシウム含有薄膜を製造するための十分なマグネシウム化合物とは言い難かった。そのため、蒸気圧、熱安定性、反応性等のいずれの物性も満足させるマグネシウム化合物が求められていた。 However, conventional magnesium compounds are not necessarily optimal in the production of magnesium-containing thin films, such as vapor pressure, thermal stability, and reactivity, and even the most adopted bis (cyclopentadienyl) magnesium contains magnesium. It was difficult to say that the magnesium compound was sufficient to produce a thin film. Therefore, a magnesium compound that satisfies all physical properties such as vapor pressure, thermal stability, and reactivity has been demanded.
 本発明の課題は、即ち、上記問題点を解決し、簡便な方法によってマグネシウム含有薄膜を製造することができる、工業的に好適なマグネシウム化合物、より具体的にはCVD法によるマグネシウム含有薄膜の製造に適したマグネシウム化合物を提供するものである。本発明の課題は、又、当該マグネシウム化合物を用いるマグネシウム含有薄膜の製造方法を提供するものである。 An object of the present invention is to provide an industrially suitable magnesium compound, more specifically, production of a magnesium-containing thin film by a CVD method, which can solve the above-mentioned problems and can produce a magnesium-containing thin film by a simple method. The present invention provides a magnesium compound suitable for the above. Another object of the present invention is to provide a method for producing a magnesium-containing thin film using the magnesium compound.
 本発明は以下の事項に関する。 The present invention relates to the following matters.
 1. 一般式(1) 1. General formula (1)
Figure JPOXMLDOC01-appb-C000009
(式中、Rはイソプロピル基、又は炭素原子数4~6の分岐状のアルキル基を示し、Rは炭素原子数1~5の直鎖状又は分岐状のアルキル基を示す。但し、R及びRが共にイソプロピル基の場合、R及びRが共にイソブチル基の場合、及び、Rがイソプロピル基でありRがメチル基の場合を除く。)
で示されるマグネシウムビス(ジアルキルアミド)化合物。
Figure JPOXMLDOC01-appb-C000009
(Wherein R 1 represents an isopropyl group or a branched alkyl group having 4 to 6 carbon atoms, and R 2 represents a linear or branched alkyl group having 1 to 5 carbon atoms, provided that R 1 and R 2 are both isopropyl groups, R 1 and R 2 are both isobutyl groups, and R 1 is an isopropyl group and R 2 is a methyl group.)
A magnesium bis (dialkylamide) compound represented by the formula:
 2. 一般式(2) 2. General formula (2)
Figure JPOXMLDOC01-appb-C000010
(式中、R及びRは、同一でも異なっていてもよく、それぞれ互いに独立に、炭素原子数1~10の直鎖状又は分岐状のアルキル基を示す。)
で示されるジアルキルマグネシウム化合物と、一般式(3)
Figure JPOXMLDOC01-appb-C000010
(In the formula, R 3 and R 4 may be the same or different and each independently represents a linear or branched alkyl group having 1 to 10 carbon atoms.)
A dialkylmagnesium compound represented by the general formula (3)
Figure JPOXMLDOC01-appb-C000011
(式中、Rはイソプロピル基、又は炭素原子数4~6の分岐状のアルキル基を示し、Rは炭素原子数1~5の直鎖状又は分岐状のアルキル基を示す。但し、R及びRが共にイソプロピル基の場合、R及びRが共にイソブチル基の場合、及び、Rがイソプロピル基でありRがメチル基の場合を除く。)
で示されるジアルキルアミンとを反応させる工程を含むことを特徴とする、上記一般式(1)で示されるマグネシウムビス(ジアルキルアミド)化合物の製造方法。
Figure JPOXMLDOC01-appb-C000011
(Wherein R 1 represents an isopropyl group or a branched alkyl group having 4 to 6 carbon atoms, and R 2 represents a linear or branched alkyl group having 1 to 5 carbon atoms, provided that R 1 and R 2 are both isopropyl groups, R 1 and R 2 are both isobutyl groups, and R 1 is an isopropyl group and R 2 is a methyl group.)
A process for producing a magnesium bis (dialkylamide) compound represented by the above general formula (1), which comprises a step of reacting with a dialkylamine represented by formula (1).
 3. 一般式(3) 3. General formula (3)
Figure JPOXMLDOC01-appb-C000012
(式中、Rはイソプロピル基、又は炭素原子数4~6の分岐状のアルキル基を示し、Rは炭素原子数1~5の直鎖状又は分岐状のアルキル基を示す。但し、R及びRが共にイソプロピル基の場合、R及びRが共にイソブチル基の場合、及び、Rがイソプロピル基でありRがメチル基の場合を除く。)
で示されるジアルキルアミンと、アルキルリチウムとを反応させて、一般式(4)
Figure JPOXMLDOC01-appb-C000012
(Wherein R 1 represents an isopropyl group or a branched alkyl group having 4 to 6 carbon atoms, and R 2 represents a linear or branched alkyl group having 1 to 5 carbon atoms, provided that R 1 and R 2 are both isopropyl groups, R 1 and R 2 are both isobutyl groups, and R 1 is an isopropyl group and R 2 is a methyl group.)
Is reacted with a dialkylamine represented by the general formula (4)
Figure JPOXMLDOC01-appb-C000013
(式中、R及びRは前記と同義である。)
で示されるリチウムジアルキルアミド化合物を合成する工程と、
 前記一般式(4)で示されるリチウムジアルキルアミド化合物と、一般式(5)
Figure JPOXMLDOC01-appb-C000013
(In the formula, R 1 and R 2 are as defined above.)
A step of synthesizing a lithium dialkylamide compound represented by:
A lithium dialkylamide compound represented by the general formula (4); and a general formula (5)
Figure JPOXMLDOC01-appb-C000014
(式中、Xはハロゲン原子を示す。)
で示されるジハロゲノマグネシウムとを反応させる工程を含むことを特徴とする、上記一般式(1)で示されるマグネシウムビス(ジアルキルアミド)化合物の製造方法。
Figure JPOXMLDOC01-appb-C000014
(In the formula, X represents a halogen atom.)
The manufacturing method of the magnesium bis (dialkylamide) compound shown by the said General formula (1) characterized by including the process with the dihalogeno magnesium shown by these.
 4. 上記一般式(1)で示されるマグネシウムビス(ジアルキルアミド)化合物をマグネシウム供給源として用いた化学気相蒸着法によるマグネシウム含有薄膜の製造方法。 4. A method for producing a magnesium-containing thin film by chemical vapor deposition using a magnesium bis (dialkylamide) compound represented by the general formula (1) as a magnesium supply source.
 5. 上記一般式(1)で示されるマグネシウムビス(ジアルキルアミド)化合物を含むマグネシウム含有薄膜形成用原料。 5. A magnesium-containing thin film forming raw material containing a magnesium bis (dialkylamide) compound represented by the general formula (1).
 本発明により、特にCVD法による成膜に適した新規なマグネシウムビス(ジアルキルアミド)化合物を提供することができる。当該マグネシウム化合物を用いて、CVD法により、良好な成膜特性で、マグネシウム含有薄膜を製造することができる。 According to the present invention, it is possible to provide a novel magnesium bis (dialkylamide) compound particularly suitable for film formation by the CVD method. Using the magnesium compound, a magnesium-containing thin film can be produced with good film forming characteristics by a CVD method.
実施例において使用した、マグネシウムビス(ジアルキルアミド)化合物を用いてマグネシウム含有薄膜を製造するための蒸着装置の構成を示す図である。It is a figure which shows the structure of the vapor deposition apparatus for manufacturing a magnesium containing thin film using the magnesium bis (dialkylamide) compound used in the Example.
 本発明のマグネシウムビス(ジアルキルアミド)化合物は、前記の一般式(1)で示される。 The magnesium bis (dialkylamide) compound of the present invention is represented by the general formula (1).
 その一般式(1)において、Rはイソプロピル基、又はt-ブチル基、t-ペンチル基、ネオペンチル基等の炭素原子数4~6の分岐状のアルキル基を示し、Rはメチル基、エチル基、イソプロピル基、t-ブチル基、t-ペンチル基、ネオペンチル基等の炭素原子数1~5の直鎖状又は分岐状のアルキル基を示す。但し、R及びRが共にイソプロピル基の場合、R及びRが共にイソブチル基の場合、及び、Rがイソプロピル基でありRがメチル基の場合を除く。 In the general formula (1), R 1 represents an isopropyl group or a branched alkyl group having 4 to 6 carbon atoms such as t-butyl group, t-pentyl group or neopentyl group, R 2 represents a methyl group, A linear or branched alkyl group having 1 to 5 carbon atoms, such as an ethyl group, an isopropyl group, a t-butyl group, a t-pentyl group, or a neopentyl group. However, R 1 and R 2 are both isopropyl groups, R 1 and R 2 are both isobutyl groups, and R 1 is an isopropyl group and R 2 is a methyl group.
 2つのRは異なっていてもよく、2つのRも異なっていてもよいが、2つのRが同一であり、2つのRも同一である化合物は比較的容易に合成できるので、好ましい。 Two R 1 may be different, two R 2 may be different, but the two R 1 are the same, since the two R 2 may be the same compound can be relatively easily synthesized, preferable.
 本発明の好ましい態様としては、Rが炭素原子数4~5の分岐状のアルキル基であり、Rが炭素原子数1~5の直鎖状又は分岐状のアルキル基である。Rとしては、t-ブチル基、t-ペンチル基、ネオペンチル基が特に好ましい。Rとしては、メチル基、エチル基、イソプロピル基、t-ブチル基、t-ペンチル基、ネオペンチル基が特に好ましい。又、Rがt-ブチル基、t-ペンチル基、更に好ましくはt-ブチル基であり、Rが炭素原子数1~5の直鎖状又は分岐状のアルキル基、更に好ましくはメチル基、エチル基、イソプロピル基、t-ブチル基、t-ペンチル基、ネオペンチル基であることが好ましい。 In a preferred embodiment of the present invention, R 1 is a branched alkyl group having 4 to 5 carbon atoms, and R 2 is a linear or branched alkyl group having 1 to 5 carbon atoms. R 1 is particularly preferably a t-butyl group, a t-pentyl group, or a neopentyl group. R 2 is particularly preferably a methyl group, an ethyl group, an isopropyl group, a t-butyl group, a t-pentyl group, or a neopentyl group. R 1 is a t-butyl group, a t-pentyl group, more preferably a t-butyl group, and R 2 is a linear or branched alkyl group having 1 to 5 carbon atoms, more preferably a methyl group. , Ethyl group, isopropyl group, t-butyl group, t-pentyl group, and neopentyl group.
 本発明のマグネシウムビス(ジアルキルアミド)化合物としては、例えば、以下の式(6)~(20)によって示される化合物が挙げられる。 Examples of the magnesium bis (dialkylamide) compound of the present invention include compounds represented by the following formulas (6) to (20).
Figure JPOXMLDOC01-appb-C000015
Figure JPOXMLDOC01-appb-C000015
 本発明のマグネシウムビス(ジアルキルアミド)化合物の合成は、以下の(A)又は(B)で示す方法(以下、本発明の反応と称することもある。)によって行うことができる。 The synthesis of the magnesium bis (dialkylamide) compound of the present invention can be carried out by the following method (A) or (B) (hereinafter also referred to as the reaction of the present invention).
Figure JPOXMLDOC01-appb-C000016
Figure JPOXMLDOC01-appb-C000016
(式中、R及びRは前記と同義であり、R及びRは炭素原子数1~10の直鎖状又は分岐状のアルキル基を示す。なお、R及びRは同一又は異なっていても良い。又、Xはハロゲン原子を示す。) (Wherein R 1 and R 2 are as defined above, and R 3 and R 4 represent a linear or branched alkyl group having 1 to 10 carbon atoms. R 3 and R 4 are the same. Or they may be different, and X represents a halogen atom.)
[方法(A)]
 方法(A)は、ジアルキルマグネシウム化合物とジアルキルアミンとを反応させて、マグネシウムビス(ジアルキルアミド)化合物を合成する方法である。
[Method (A)]
Method (A) is a method of synthesizing a magnesium bis (dialkylamide) compound by reacting a dialkylmagnesium compound with a dialkylamine.
 本発明の反応(A)において使用するジアルキルマグネシウム化合物は、前記の一般式(2)で示される。その一般式(2)において、R及びRはメチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、t-ブチル基、n-ペンチル基、t-ペンチル基、ネオペンチル基、n-デシル基等の炭素原子数1~10の直鎖状又は分岐状のアルキル基を示す。なお、R及びRは同一又は異なっていても良い。 The dialkylmagnesium compound used in the reaction (A) of the present invention is represented by the general formula (2). In the general formula (2), R 3 and R 4 are methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, isobutyl group, t-butyl group, n-pentyl group, t-pentyl group. Represents a linear or branched alkyl group having 1 to 10 carbon atoms such as neopentyl group and n-decyl group. R 3 and R 4 may be the same or different.
 本発明の反応(A)において使用するジアルキルマグネシウム化合物としては、市販品を使用することができ、又、公知の方法により金属マグネシウムから製造することができる。本発明の反応(A)においては、好適にはジ(n-ブチル)マグネシウム又はn-ブチルエチルマグネシウム等が用いられる。 As the dialkylmagnesium compound used in the reaction (A) of the present invention, a commercially available product can be used, and it can be produced from metallic magnesium by a known method. In the reaction (A) of the present invention, di (n-butyl) magnesium or n-butylethylmagnesium is preferably used.
 本発明の反応(A)において使用するジアルキルアミンは、前記の一般式(3)で示される。その一般式(3)において、R及びRは、それぞれ、式(1)中のR及びRに対応し、前記と同義である。 The dialkylamine used in the reaction (A) of the present invention is represented by the general formula (3). In the general formula (3), R 1 and R 2 correspond to R 1 and R 2 in the formula (1), respectively, and have the same meanings as described above.
 したがって、本発明の反応(A)において使用するジアルキルアミンとしては、t-ブチルメチルアミン、t-ブチルエチルアミン、t-ブチルイソプロピルアミン、ジ-t-ブチルアミン、t-ブチル-t-ペンチルアミン、ジ-t-ペンチルアミン等が好ましい。 Accordingly, the dialkylamine used in the reaction (A) of the present invention includes t-butylmethylamine, t-butylethylamine, t-butylisopropylamine, di-t-butylamine, t-butyl-t-pentylamine, di- -T-pentylamine and the like are preferable.
 前記ジアルキルアミンの使用量は、ジアルキルマグネシウム1モルに対して、好ましくは1.5~3.0モル、更に好ましくは1.8~2.2モルである。 The amount of the dialkylamine used is preferably 1.5 to 3.0 mol, more preferably 1.8 to 2.2 mol, per 1 mol of dialkylmagnesium.
 本発明の反応(A)は、有機溶媒中で行うことが望ましい。使用される有機溶媒としては反応を阻害しないものならば特に限定されないが、例えば、ジエチルエーテル、テトラヒドロフラン、ジメトキシエタン、ジオキサン等のエーテル類;ヘキサン、ヘプタン、シクロヘキサン、メチルシクロヘキサン、エチルシクロヘキサン等の脂肪族炭化水素類;トルエン、キシレン等の芳香族炭化水素類が挙げられるが、好ましくはエーテル類、脂肪族炭化水素類、エーテル類と脂肪族炭化水素類との混合溶媒が使用される。なお、これらの有機溶媒は単独又は二種以上を混合して使用しても良い。 The reaction (A) of the present invention is preferably performed in an organic solvent. The organic solvent used is not particularly limited as long as it does not inhibit the reaction. For example, ethers such as diethyl ether, tetrahydrofuran, dimethoxyethane, and dioxane; aliphatics such as hexane, heptane, cyclohexane, methylcyclohexane, and ethylcyclohexane Examples of hydrocarbons include aromatic hydrocarbons such as toluene and xylene, and ethers, aliphatic hydrocarbons, and mixed solvents of ethers and aliphatic hydrocarbons are preferably used. In addition, you may use these organic solvents individually or in mixture of 2 or more types.
 前記有機溶媒の使用量は、ジアルキルマグネシウム1gに対して、好ましくは1~100g、更に好ましくは1~10gである。 The amount of the organic solvent used is preferably 1 to 100 g, more preferably 1 to 10 g, with respect to 1 g of dialkyl magnesium.
 本発明の反応(A)は、例えば、ジアルキルマグネシウム化合物、ジアルキルアミン及び有機溶媒を混合し、攪拌しながら反応させる等の方法によって行われる。その際の反応温度は、好ましくは-20~120℃、更に好ましくは0~100℃であり、反応圧力は特に制限されない。 The reaction (A) of the present invention is performed by, for example, a method of mixing a dialkylmagnesium compound, a dialkylamine and an organic solvent and reacting them with stirring. The reaction temperature at that time is preferably −20 to 120 ° C., more preferably 0 to 100 ° C., and the reaction pressure is not particularly limited.
[方法(B)]
 方法(B)は、ジアルキルアミンとアルキルリチウムとから合成したリチウムジアルキルアミドと、ジハロゲノマグネシウムとを反応させて、マグネシウムビス(ジアルキルアミド)化合物を合成する方法である。
[Method (B)]
Method (B) is a method of synthesizing a magnesium bis (dialkylamide) compound by reacting lithium dialkylamide synthesized from dialkylamine and alkyllithium with dihalogenomagnesium.
 本発明の反応(B)において使用するジアルキルアミンは、前記の一般式(3)で示される。その一般式(3)において、R及びRは、それぞれ、式(1)中のR及びRに対応し、前記と同義である。 The dialkylamine used in the reaction (B) of the present invention is represented by the general formula (3). In the general formula (3), R 1 and R 2 correspond to R 1 and R 2 in the formula (1), respectively, and have the same meanings as described above.
 本発明の反応(B)において使用するアルキルリチウムは特に限定されないが、例えば、メチルリチウム、エチルリチウム、n-ブチルリチウム、s-ブチルリチウム、t-ブチルリチウム等が挙げられるが、好ましくはn-ブチルリチウムが使用される。 The alkyl lithium used in the reaction (B) of the present invention is not particularly limited, and examples thereof include methyl lithium, ethyl lithium, n-butyl lithium, s-butyl lithium, t-butyl lithium, etc., preferably n- Butyl lithium is used.
 前記アルキルリチウムの使用量は、ジアルキルアミン1モルに対して、好ましくは0.8~1.2モル、更に好ましくは0.9~1.1モルである。 The amount of the alkyl lithium used is preferably 0.8 to 1.2 mol, more preferably 0.9 to 1.1 mol, per 1 mol of dialkylamine.
 本発明の反応(B)では、ジアルキルアミンとアルキルリチウムとからリチウムジアルキルアミドを合成し、このリチウムジアルキルアミドとジハロゲノマグネシウムとを反応させる。 In the reaction (B) of the present invention, lithium dialkylamide is synthesized from dialkylamine and alkyllithium, and this lithium dialkylamide is reacted with dihalogenomagnesium.
 本発明の反応(B)において使用するジハロゲノマグネシウムは、前記の一般式(5)で示される。その一般式(5)において、Xはフッ素原子、塩素原子、臭素原子、ヨウ素原子等のハロゲン原子を示すが、好ましくは塩素原子である。 The dihalogeno magnesium used in the reaction (B) of the present invention is represented by the general formula (5). In the general formula (5), X represents a halogen atom such as a fluorine atom, a chlorine atom, a bromine atom or an iodine atom, preferably a chlorine atom.
 前記ジハロゲノマグネシウムの使用量は、ジアルキルアミン1モルに対して、好ましくは0.3~0.6モル、更に好ましくは0.45~0.55モルである。リチウムジアルキルアミドを単離した場合、リチウムジアルキルアミドの使用量は、ジハロゲノマグネシウム1モルに対して、好ましくは1.5~3.0モル、更に好ましくは1.8~2.2モルである。 The amount of dihalogenomagnesium used is preferably 0.3 to 0.6 mol, more preferably 0.45 to 0.55 mol, per 1 mol of dialkylamine. When lithium dialkylamide is isolated, the amount of lithium dialkylamide used is preferably 1.5 to 3.0 mol, more preferably 1.8 to 2.2 mol, per 1 mol of dihalogenomagnesium. .
 本発明の反応(B)は、有機溶媒中で行うことが望ましい。使用される有機溶媒としては反応を阻害しないものならば特に限定されないが、例えば、ジエチルエーテル、テトラヒドロフラン、ジメトキシエタン、ジオキサン等のエーテル類;ヘキサン、ヘプタン、シクロヘキサン、メチルシクロヘキサン、エチルシクロヘキサン等の脂肪族炭化水素類;トルエン、キシレン等の芳香族炭化水素類が挙げられるが、好ましくはエーテル類、脂肪族炭化水素類、エーテル類と脂肪族炭化水素類との混合溶媒が使用される。なお、これらの有機溶媒は単独又は二種以上を混合して使用しても良い。 The reaction (B) of the present invention is preferably performed in an organic solvent. The organic solvent used is not particularly limited as long as it does not inhibit the reaction. For example, ethers such as diethyl ether, tetrahydrofuran, dimethoxyethane, and dioxane; aliphatics such as hexane, heptane, cyclohexane, methylcyclohexane, and ethylcyclohexane Examples of hydrocarbons include aromatic hydrocarbons such as toluene and xylene, and ethers, aliphatic hydrocarbons, and mixed solvents of ethers and aliphatic hydrocarbons are preferably used. In addition, you may use these organic solvents individually or in mixture of 2 or more types.
 前記有機溶媒の使用量は、ジアルキルアミン1gに対して、好ましくは1~100g、更に好ましくは1~10gである。リチウムジアルキルアミドを単離した場合、リチウムジアルキルアミドとジハロゲノマグネシウムとを反応させる際の有機溶媒の使用量は、ジハロゲノマグネシウム1gに対して、好ましくは1~100g、更に好ましくは1~10gである。 The amount of the organic solvent used is preferably 1 to 100 g, more preferably 1 to 10 g, with respect to 1 g of dialkylamine. When lithium dialkylamide is isolated, the amount of the organic solvent used in the reaction of lithium dialkylamide with dihalogenomagnesium is preferably 1 to 100 g, more preferably 1 to 10 g, relative to 1 g of dihalogenomagnesium. is there.
 本発明の反応(B)は、例えば、ジアルキルアミン、アルキルリチウム及び有機溶媒を混合し、攪拌しながら反応させてリチウムジアルキルアミド化合物を合成し、次いでジハロゲノマグネシウムを加えて、更に攪拌しながら反応させる、又は合成したリチウムジアルキルアミドを単離し、次いで得られたリチウムジアルキルアミド、ジハロゲノマグネシウム及び有機溶媒を混合し、攪拌しながら反応させる等の方法によって行われる。その際の反応温度は、好ましくは-20~100℃、更に好ましくは0~50℃であり、反応圧力は特に制限されない。なお、リチウムジアルキルアミド化合物は、ジハロゲノマグネシウムとの反応前に、一旦単離しても、単離せず、反応液をそのまま使用しても良く、又、適宜有機溶媒を変更、除去および/または追加しても良い。 In the reaction (B) of the present invention, for example, a dialkylamine, an alkyllithium and an organic solvent are mixed and reacted with stirring to synthesize a lithium dialkylamide compound, and then a dihalogenomagnesium is added and further reacted with stirring. Or isolating the synthesized lithium dialkylamide, and then mixing the resulting lithium dialkylamide, dihalogenomagnesium and an organic solvent and reacting with stirring. The reaction temperature at that time is preferably −20 to 100 ° C., more preferably 0 to 50 ° C., and the reaction pressure is not particularly limited. The lithium dialkylamide compound may be isolated once before the reaction with dihalogenomagnesium or may not be used, and the reaction solution may be used as it is, and the organic solvent may be changed, removed and / or added as appropriate. You may do it.
 本発明の反応(A)又は(B)により目的物であるマグネシウムビス(ジアルキルアミド)化合物が得られる。合成したマグネシウムビス(ジアルキルアミド)化合物は、反応終了後、抽出、濾過、濃縮、蒸留、昇華、再結晶、カラムクロマトグラフィー等の公知の方法によって単離・精製される。 The target magnesium bis (dialkylamide) compound is obtained by the reaction (A) or (B) of the present invention. The synthesized magnesium bis (dialkylamide) compound is isolated and purified by a known method such as extraction, filtration, concentration, distillation, sublimation, recrystallization, column chromatography, etc. after completion of the reaction.
 なお、本発明の目的物であるマグネシウムビス(ジアルキルアミド)化合物、及びその製造に使用するジアルキルマグネシウムは、大気中の水分や酸素に対して不安定な場合が多いため、無水条件下や不活性ガス条件下にて、反応操作や反応液の後処理等を行うことが望ましい。 The magnesium bis (dialkylamide) compound, which is the object of the present invention, and the dialkylmagnesium used in the production thereof are often unstable with respect to moisture and oxygen in the atmosphere. It is desirable to perform a reaction operation or a post-treatment of the reaction solution under gas conditions.
 本発明のマグネシウムビス(ジアルキルアミド)化合物を用いて、例えばCVD法により、良好な成膜特性で、マグネシウム含有薄膜を成膜することができる。 Using the magnesium bis (dialkylamide) compound of the present invention, a magnesium-containing thin film can be formed with good film forming characteristics, for example, by the CVD method.
 成膜対象物上へのマグネシウム含有薄膜の蒸着方法としては、公知のCVD法や原子層堆積法(ALD法)で行うことが出来、例えば、常圧又は減圧下にて、マグネシウムビス(ジアルキルアミド)化合物蒸気を酸素源(例えば、酸素、オゾン等の酸化性ガス;水;メタノール、エタノール、n-プロピルアルコール、イソプロピルアルコール、n-ブタノール等のアルコール類)又は還元性ガス(例えば、水素ガス又はアンモニアガス、もしくはこれらの混合ガス)と共に加熱した成膜対象物上に送り込んでマグネシウム含有薄膜を蒸着させる方法が使用出来る。なお、これらのガス(気化した液体も含む)は不活性ガス等で希釈されていても良い。又、同様な原料供給により、プラズマCVD法でマグネシウム含有薄膜を蒸着させることも出来る。 As a method for vapor-depositing a magnesium-containing thin film on a film formation target, it can be performed by a known CVD method or atomic layer deposition method (ALD method), for example, magnesium bis (dialkylamide) under normal pressure or reduced pressure. ) Compound vapor as an oxygen source (eg, oxidizing gas such as oxygen or ozone; water; alcohols such as methanol, ethanol, n-propyl alcohol, isopropyl alcohol, n-butanol) or reducing gas (eg, hydrogen gas or It is possible to use a method of depositing a magnesium-containing thin film by feeding onto a film-forming target heated together with ammonia gas or a mixed gas thereof. Note that these gases (including vaporized liquids) may be diluted with an inert gas or the like. Also, a magnesium-containing thin film can be deposited by plasma CVD using the same raw material supply.
 CVD法においては、薄膜形成のためにマグネシウムビス(ジアルキルアミド)化合物を気化させる必要があるが、本発明で使用するマグネシウムビス(ジアルキルアミド)化合物を気化させる方法としては、例えば、マグネシウムビス(ジアルキルアミド)化合物自体を気化室に充填又は搬送して気化させる方法だけでなく、マグネシウムビス(ジアルキルアミド)化合物を適当な溶媒(例えば、ヘキサン、シクロヘキサン、メチルシクロヘキサン、エチルシクロヘキサン、ヘプタン、オクタン等の脂肪族炭化水素類;トルエン、エチルベンゼン、キシレン等の芳香族炭化水素類;グライム、ジグライム、トリグライム、ジオキサン、テトラヒドロフラン等のエーテル類等が挙げられる。)に希釈した溶液を液体搬送用ポンプで気化室に導入して気化させる方法(溶液法)も使用出来る。 In the CVD method, it is necessary to vaporize a magnesium bis (dialkylamide) compound for thin film formation. As a method for vaporizing the magnesium bis (dialkylamide) compound used in the present invention, for example, magnesium bis (dialkylamide) is used. (Amide) compound itself is not only filled into the vaporization chamber or transported and vaporized, but also magnesium bis (dialkylamide) compound in a suitable solvent (eg hexane, cyclohexane, methylcyclohexane, ethylcyclohexane, heptane, octane, etc.) Aromatic hydrocarbons such as toluene, ethylbenzene, xylene, etc .; ethers such as glyme, diglyme, triglyme, dioxane, tetrahydrofuran, etc.). How to vaporizing by entering (solution method) it can also be used.
 本発明のマグネシウムビス(ジアルキルアミド)化合物を用いてマグネシウム含有薄膜を蒸着させる場合、その蒸着条件としては、例えば、反応系内の圧力は、好ましくは1Pa~200kPa、更に好ましくは10Pa~110kPa、成膜対象物温度は、好ましくは50~900℃、更に好ましくは100~600℃、マグネシウムビス(ジアルキルアミド)化合物を気化させる温度は、好ましくは30~250℃、更に好ましくは60~200℃である。 When a magnesium-containing thin film is deposited using the magnesium bis (dialkylamide) compound of the present invention, the deposition conditions are, for example, that the pressure in the reaction system is preferably 1 Pa to 200 kPa, more preferably 10 Pa to 110 kPa. The film object temperature is preferably 50 to 900 ° C., more preferably 100 to 600 ° C., and the temperature for vaporizing the magnesium bis (dialkylamide) compound is preferably 30 to 250 ° C., more preferably 60 to 200 ° C. .
 なお、マグネシウム含有薄膜を蒸着させる際の全ガス量に対する酸素源(例えば、酸化性ガス、水蒸気又はアルコール蒸気、もしくはこれらの混合ガス)又は還元性ガス(例えば、水素ガス又はアンモニアガス、もしくはこれらの混合ガス)の含有割合としては、好ましくは3~99容量%、更に好ましくは5~98容量%である。 Note that an oxygen source (for example, oxidizing gas, water vapor or alcohol vapor, or a mixed gas thereof) or a reducing gas (for example, hydrogen gas or ammonia gas, or these gases) with respect to the total gas amount when depositing the magnesium-containing thin film. The content ratio of the mixed gas) is preferably 3 to 99% by volume, more preferably 5 to 98% by volume.
 次に、実施例を挙げて本発明を具体的に説明するが、本発明の範囲はこれらに限定されるものではない。 Next, the present invention will be specifically described with reference to examples, but the scope of the present invention is not limited thereto.
実施例1(方法(A);マグネシウムビス(t-ブチルメチルアミド)(化合物(6))の合成)
 攪拌装置、温度計及び滴下漏斗を備えた内容積100mlのフラスコに、アルゴン雰囲気にて、金属マグネシウム5.5g(0.23mol)及びジエチルエーテル20mlを加えた後、ブロモブタン3.0g(21mmol)をゆるやかに滴下した。次いで、ジエチルエーテル180ml及びブロモブタン25g(0.18mol)をゆるやかに滴下し、攪拌しながら40℃で2時間反応させ、更にジオキサン55g(0.62mol)を加えて攪拌しながら40℃で2時間反応させた。反応終了後、アルゴン雰囲気にて反応液を濾過し、濾液を減圧下で濃縮した。濃縮物を加熱しながら真空乾燥させて、ジブチルマグネシウム22gを得た(単離収率;80%)。
Example 1 (Method (A); synthesis of magnesium bis (t-butylmethylamide) (compound (6)))
In an argon atmosphere, 5.5 g (0.23 mol) of metal magnesium and 20 ml of diethyl ether were added to a 100 ml flask equipped with a stirrer, a thermometer and a dropping funnel, and then 3.0 g (21 mmol) of bromobutane was added. It was dripped gently. Next, 180 ml of diethyl ether and 25 g (0.18 mol) of bromobutane were slowly added dropwise and reacted at 40 ° C. for 2 hours with stirring. Further, 55 g (0.62 mol) of dioxane was added and reacted at 40 ° C. for 2 hours with stirring. I let you. After completion of the reaction, the reaction solution was filtered in an argon atmosphere, and the filtrate was concentrated under reduced pressure. The concentrate was vacuum dried with heating to obtain 22 g of dibutyl magnesium (isolated yield; 80%).
 次いで、攪拌装置、温度計及び滴下漏斗を備えた内容積200mlのフラスコに、アルゴン雰囲気にて、先に得られたジブチルマグネシウム7.0g(50mmol)及びヘプタン70mlを加え、液温を25℃付近に維持しながらt-ブチルメチルアミン10g(0.11mol)をゆるやかに滴下し、攪拌しながら25℃で3時間反応させた。反応終了後、反応液を濃縮した後に、減圧下で昇華(140℃、20Pa)させて、白色固体として、マグネシウムビス(t-ブチルメチルアミド)6.4gを得た(単離収率;66%)。 Next, 7.0 g (50 mmol) of dibutylmagnesium obtained above and 70 ml of heptane were added to a 200 ml flask equipped with a stirrer, a thermometer and a dropping funnel in an argon atmosphere, and the liquid temperature was around 25 ° C. While maintaining the temperature at 10 ° C., 10 g (0.11 mol) of t-butylmethylamine was slowly added dropwise and reacted at 25 ° C. for 3 hours with stirring. After completion of the reaction, the reaction solution was concentrated and then sublimated under reduced pressure (140 ° C., 20 Pa) to obtain 6.4 g of magnesium bis (t-butylmethylamide) as a white solid (isolation yield; 66 %).
 なお、マグネシウムビス(t-ブチルメチルアミド)は以下の物性値で示される新規な化合物であった。 Magnesium bis (t-butylmethylamide) was a novel compound represented by the following physical property values.
H-NMR(テトラヒドロフラン-d,δ(ppm));2.58(3H,s)、1.03(9H,s)
融点;140~141℃。
1 H-NMR (tetrahydrofuran-d 8 , δ (ppm)); 2.58 (3H, s), 1.03 (9H, s)
Melting point: 140-141 ° C.
実施例2(方法(A);マグネシウムビス(t-ブチルエチルアミド)(化合物(7))の合成)
 実施例1において、ジアルキルアミンをt-ブチルエチルアミン11g(0.11mol)に変えたこと以外は、実施例1と同様に反応を行った。その結果、白色固体として、マグネシウムビス(t-ブチルエチルアミド)5.8gを得た(単離収率;52%)。
Example 2 (Method (A); synthesis of magnesium bis (t-butylethylamide) (compound (7)))
The reaction was conducted in the same manner as in Example 1 except that dialkylamine was changed to 11 g (0.11 mol) of t-butylethylamine in Example 1. As a result, 5.8 g of magnesium bis (t-butylethylamide) was obtained as a white solid (isolation yield: 52%).
 なお、マグネシウムビス(t-ブチルエチルアミド)は以下の物性値で示される新規な化合物であった。 Magnesium bis (t-butylethylamide) was a novel compound represented by the following physical property values.
H-NMR(テトラヒドロフラン-d,δ(ppm));2.90(2H,q,6.8Hz)、1.07(9H,s)、0.97(3H,t,6.8Hz)
融点;75~78℃
1 H-NMR (tetrahydrofuran-d 8 , δ (ppm)); 2.90 (2H, q, 6.8 Hz), 1.07 (9 H, s), 0.97 (3 H, t, 6.8 Hz)
Melting point: 75-78 ° C
実施例3(方法(B);マグネシウムビス(t-ブチルイソプロピルアミド)(化合物(8))の合成)
 攪拌装置、温度計及び滴下漏斗を備えた内容積100mlのフラスコに、アルゴン雰囲気にて、t-ブチルイソプロピルアミン1.8g(16mmol)及びヘプタン30mlを加えた。次いで、液温を25℃付近に維持しながら1.6mol/lのn-ブチルリチウム・へキサン溶液10ml(16mmol)をゆるやかに滴下し、攪拌しながら25℃で2時間反応させた。反応終了後、反応液を減圧下にて濃縮し、リチウム-t-ブチルイソプロピルアミド1.7gを得た(単離収率;88%)。
Example 3 (Method (B); Synthesis of Magnesium Bis (t-butylisopropylamide) (Compound (8)))
In an argon atmosphere equipped with a stirrer, a thermometer and a dropping funnel, 1.8 g (16 mmol) of t-butylisopropylamine and 30 ml of heptane were added in an argon atmosphere. Next, 10 ml (16 mmol) of a 1.6 mol / l n-butyllithium hexane solution was slowly dropped while maintaining the liquid temperature at around 25 ° C., and the mixture was reacted at 25 ° C. for 2 hours with stirring. After completion of the reaction, the reaction solution was concentrated under reduced pressure to obtain 1.7 g of lithium-t-butylisopropylamide (isolation yield: 88%).
 次いで、攪拌装置、温度計及び滴下漏斗を備えた内容積50mlのフラスコに塩化マグネシウム0.40g(4.2mmol)及びテトラヒドロフラン10mlを加えた。次いで、液温を25℃付近に維持しながら、リチウム-t-ブチルイソプロピルアミド1.0g(8.3mmol)のテトラヒドロフラン溶液10mlをゆるやかに滴下し、攪拌しながら25℃で8時間反応させた。反応終了後、反応液を減圧下で濃縮した後、濃縮物にヘキサン20mlを加えて攪拌した後に濾過した。濾液を減圧下で濃縮し、濃縮物を減圧下で蒸留(120℃、5.7Pa)し、淡黄色液体として、マグネシウムビス(t-ブチルイソプロピルアミド)0.53gを得た(単離収率;50%)。 Next, 0.40 g (4.2 mmol) of magnesium chloride and 10 ml of tetrahydrofuran were added to a flask having an internal volume of 50 ml equipped with a stirrer, a thermometer and a dropping funnel. Next, 10 ml of a tetrahydrofuran solution of 1.0 g (8.3 mmol) of lithium-t-butylisopropylamide was gently dropped while maintaining the liquid temperature at around 25 ° C., and the mixture was reacted at 25 ° C. for 8 hours with stirring. After completion of the reaction, the reaction solution was concentrated under reduced pressure, and 20 ml of hexane was added to the concentrate, followed by stirring and then filtration. The filtrate was concentrated under reduced pressure, and the concentrate was distilled under reduced pressure (120 ° C., 5.7 Pa) to obtain 0.53 g of magnesium bis (t-butylisopropylamide) as a pale yellow liquid (isolated yield). 50%).
 なお、マグネシウムビス(t-ブチルイソプロピルアミド)は以下の物性値で示される新規な化合物であった。 Magnesium bis (t-butylisopropylamide) was a novel compound represented by the following physical property values.
H-NMR(テトラヒドロフラン-d,δ(ppm));2.99(1H,sept,6.6Hz)、1.14(9H,s)、0.99(6H,d,6.6Hz) 1 H-NMR (tetrahydrofuran-d 8 , δ (ppm)); 2.99 (1H, sept, 6.6 Hz), 1.14 (9 H, s), 0.99 (6 H, d, 6.6 Hz)
実施例4(方法(B);マグネシウムビス(t-ブチル-t-ペンチルアミド)(化合物(10))の合成)
 攪拌装置、温度計及び滴下漏斗を備えた内容積100mlのフラスコに、アルゴン雰囲気にて、t-ブチル-t-ペンチルアミン1.1g(8.0mmol)及びヘプタン15mlを加え、液温を25℃付近に維持しながら1.6mol/lのn-ブチルリチウム・へキサン溶液5.0ml(8.0mmol)をゆるやかに滴下し、攪拌しながら25℃で2時間反応させた。反応終了後、反応液を減圧下で濃縮して、リチウム-t-ブチル-t-ペンチルアミド1.1gを得た(単離収率;90%)。
Example 4 (Method (B); Magnesium Bis (t-butyl-t-pentylamide) (Synthesis of Compound (10)))
In an argon atmosphere, 1.1 g (8.0 mmol) of t-butyl-t-pentylamine and 15 ml of heptane were added to a 100 ml flask equipped with a stirrer, a thermometer and a dropping funnel, and the liquid temperature was 25 ° C. While maintaining in the vicinity, 5.0 ml (8.0 mmol) of a 1.6 mol / l n-butyllithium hexane solution was gently added dropwise and reacted at 25 ° C. for 2 hours with stirring. After completion of the reaction, the reaction solution was concentrated under reduced pressure to obtain 1.1 g of lithium-t-butyl-t-pentylamide (isolated yield; 90%).
 次いで、攪拌装置、温度計及び滴下漏斗を備えた内容積50mlのフラスコに塩化マグネシウム0.16g(1.7mmol)及びテトラヒドロフラン10mlを加え、液温を25℃付近に維持しながらリチウム-t-ブチル-t-ペンチルアミド0.51g(3.4mmol)のテトラヒドロフラン溶液10mlをゆるやかに滴下し、攪拌しながら25℃で8時間反応させた。反応終了後、反応液を濃縮した後に、ヘキサン20mlを加えて攪拌した後に濾過した。濾液を減圧下で濃縮し、淡黄色固体として、マグネシウムビス(t-ブチル-t-ペンチルアミド)0.31gを得た(単離収率;60%)。 Next, 0.16 g (1.7 mmol) of magnesium chloride and 10 ml of tetrahydrofuran were added to a 50-ml flask equipped with a stirrer, a thermometer and a dropping funnel, and lithium-t-butyl was maintained while maintaining the liquid temperature at around 25 ° C. 10 ml of a tetrahydrofuran solution of 0.51 g (3.4 mmol) of -t-pentylamide was slowly added dropwise and reacted at 25 ° C. for 8 hours with stirring. After completion of the reaction, the reaction solution was concentrated, 20 ml of hexane was added, and the mixture was stirred and then filtered. The filtrate was concentrated under reduced pressure to obtain 0.31 g of magnesium bis (t-butyl-t-pentylamide) as a pale yellow solid (isolated yield; 60%).
 なお、マグネシウムビス(t-ブチル-t-ペンチルアミド)は以下の物性値で示される新規な化合物であった。 Magnesium bis (t-butyl-t-pentylamide) was a novel compound represented by the following physical property values.
H-NMR(テトラヒドロフラン-d,δ(ppm));1.44(4H,q,7.3Hz)、1.20(18H,s)、1.12(12H,s)、0.85(6H,t,7.3Hz)
融点;170℃以上
1 H-NMR (tetrahydrofuran-d 8 , δ (ppm)); 1.44 (4H, q, 7.3 Hz), 1.20 (18 H, s), 1.12 (12 H, s), 0.85 (6H, t, 7.3Hz)
Melting point: 170 ° C or higher
実施例5(蒸着実験;マグネシウム含有薄膜の製造)
 実施例1で得られたマグネシウムビス(t-ブチルメチルアミド)(化合物(6))を用いて、CVD法による蒸着実験を行い、成膜特性を評価した。蒸着実験には、図1に示す装置を使用した。蒸着条件及び膜特性は以下の通りであった。
Example 5 (Vapor deposition experiment; Production of magnesium-containing thin film)
Using the magnesium bis (t-butylmethylamide) (compound (6)) obtained in Example 1, a vapor deposition experiment by the CVD method was performed to evaluate the film forming characteristics. The apparatus shown in FIG. 1 was used for the vapor deposition experiment. Deposition conditions and film characteristics were as follows.
(蒸着条件)
マグネシウム原料;マグネシウムビス(t-ブチルメチルアミド)(化合物(6))
気化温度;100℃
Heキャリアー流量;100sccm
酸素流量;10sccm
基板材料;SiO/Si
基板温度;300℃
反応系内圧力;1.33kPa
蒸着時間;30分
(Deposition conditions)
Magnesium raw material; magnesium bis (t-butylmethylamide) (compound (6))
Evaporation temperature: 100 ° C
He carrier flow rate: 100 sccm
Oxygen flow rate: 10 sccm
Substrate material: SiO 2 / Si
Substrate temperature: 300 ° C
Reaction system pressure: 1.33 kPa
Deposition time: 30 minutes
(膜特性(XPS-depth測定))
膜厚;50nm以上
XPS分析;マグネシウム酸化膜
炭素含有率;検出されず
窒素含有率;検出されず
(Membrane characteristics (XPS-depth measurement))
Film thickness: 50 nm or more XPS analysis; magnesium oxide film carbon content; not detected; nitrogen content; not detected
 図1に示す装置は以下のような構造となっている。恒温槽8によって一定の温度に保たれたマグネシウム原料容器(気化器)7にあるマグネシウム化合物は加熱されて気化し、マスフローコントローラー4を経て導入されたヘリウムガスに同伴して原料容器7を出る。原料容器7を出たガスは、マスフローコントローラー5を経て導入されたヘリウムガスと共に反応器9に導入される。一方、反応器9には、反応ガスである酸素ガスもマスフローコントローラー6を経て導入される。反応系内圧力は、圧力計12によってモニターされ、真空ポンプ14手前のバルブの開閉により、所定圧力にコントロールされる。反応器9の中央部はヒーター11で加熱可能な構造となっている。反応器9に導入されたマグネシウム化合物は、反応器内中央部にセットされ、ヒーター11で所定の温度に加熱された基板10の表面上で酸化熱分解し、基板10上にマグネシウム含有薄膜が形成される。反応器9を出たガスは、トラップ13、真空ポンプ14を経て、大気中に排気される。 The apparatus shown in FIG. 1 has the following structure. The magnesium compound in the magnesium raw material container (vaporizer) 7 maintained at a constant temperature by the thermostat 8 is heated and vaporized, and leaves the raw material container 7 along with the helium gas introduced through the mass flow controller 4. The gas exiting the raw material container 7 is introduced into the reactor 9 together with the helium gas introduced through the mass flow controller 5. On the other hand, oxygen gas, which is a reaction gas, is also introduced into the reactor 9 via the mass flow controller 6. The pressure in the reaction system is monitored by a pressure gauge 12 and controlled to a predetermined pressure by opening and closing a valve in front of the vacuum pump 14. The central part of the reactor 9 has a structure that can be heated by the heater 11. The magnesium compound introduced into the reactor 9 is set in the center of the reactor, and is oxidized and decomposed on the surface of the substrate 10 heated to a predetermined temperature by the heater 11 to form a magnesium-containing thin film on the substrate 10. Is done. The gas exiting the reactor 9 is exhausted to the atmosphere through the trap 13 and the vacuum pump 14.
比較例1(蒸着実験;マグネシウム含有薄膜の製造)
 ビス(シクロペンタジエニル)マグネシウムを用いて、実施例5と同様にCVD法による蒸着実験を行い、成膜特性を評価した。蒸着条件及び膜特性は以下の通りであった。なお、各種条件を調整して原料の供給量を実施例5と揃えて蒸着実験を行った。
Comparative Example 1 (deposition experiment; production of magnesium-containing thin film)
Using bis (cyclopentadienyl) magnesium, a vapor deposition experiment by a CVD method was performed in the same manner as in Example 5 to evaluate the film formation characteristics. Deposition conditions and film characteristics were as follows. In addition, various conditions were adjusted and the amount of raw material supply was equal to Example 5, and the vapor deposition experiment was conducted.
(蒸着条件)
マグネシウム原料;ビス(シクロペンタジエニル)マグネシウム
気化温度;30℃
Heキャリアー流量;10sccm
希釈He流量;90sccm
酸素流量;10sccm
基板材料;SiO/Si
基板温度;300℃
反応系内圧力;10Torr(約1.33kPa)
蒸着時間;30分
(Deposition conditions)
Magnesium raw material; Bis (cyclopentadienyl) magnesium vaporization temperature; 30 ° C
He carrier flow rate: 10 sccm
Dilution He flow rate: 90sccm
Oxygen flow rate: 10 sccm
Substrate material: SiO 2 / Si
Substrate temperature: 300 ° C
Reaction system pressure: 10 Torr (about 1.33 kPa)
Deposition time: 30 minutes
(膜特性(XPS-depth測定))
膜厚;50nm以上
XPS分析;マグネシウム酸化膜
炭素含有率;30%(炭素原子換算)
窒素含有率;検出されず(そもそも原料に窒素原子が存在しない)
(Membrane characteristics (XPS-depth measurement))
Film thickness: 50 nm or more XPS analysis; magnesium oxide film carbon content: 30% (in terms of carbon atoms)
Nitrogen content: not detected (no nitrogen atoms in the first place)
 以上の結果から、本発明のマグネシウムビス(ジアルキルアミド)化合物を用いることにより、炭素原子や窒素原子等の不純物を含まない高品質のマグネシウム含有薄膜(マグネシウム酸化膜)を製造することができることが判明した。 From the above results, it was found that by using the magnesium bis (dialkylamide) compound of the present invention, a high-quality magnesium-containing thin film (magnesium oxide film) free from impurities such as carbon atoms and nitrogen atoms can be produced. did.
 本発明により、簡便な方法によってマグネシウム含有薄膜を製造することができる、工業的に好適で新規なマグネシウム化合物、より具体的にはCVD法によるマグネシウム含有薄膜の製造に適したマグネシウム化合物を提供することが出来る。又、当該マグネシウム化合物を用いて、CVD法により、成膜対象物上にマグネシウム含有薄膜を製造する方法も提供することが出来る。マグネシウムビス(ジアルキルアミド)化合物は、例えば、マグネシウム含有薄膜製造材料、重合用触媒、医薬や農薬等の製造原料として有用な化合物である。 According to the present invention, an industrially suitable and novel magnesium compound, more specifically a magnesium compound suitable for producing a magnesium-containing thin film by a CVD method, which can produce a magnesium-containing thin film by a simple method, is provided. I can do it. In addition, a method for producing a magnesium-containing thin film on a film formation target using the magnesium compound by a CVD method can be provided. A magnesium bis (dialkylamide) compound is a useful compound as a raw material for producing a magnesium-containing thin film production material, a polymerization catalyst, pharmaceuticals, agricultural chemicals, and the like.
1.キャリアガス(He)
2.希釈ガス(He)
3.反応ガス(O
4.マスフローコントローラー
5.マスフローコントローラー
6.マスフローコントローラー
7.マグネシウム原料容器(気化器)
8.恒温槽
9.反応器
10.基板
11.反応器ヒーター
12.圧力計
13.トラップ
14.真空ポンプ
1. Carrier gas (He)
2. Dilution gas (He)
3. Reaction gas (O 2 )
4). 4. Mass flow controller Mass flow controller 6. Mass flow controller 7. Magnesium raw material container (vaporizer)
8). 8. Thermostatic bath Reactor 10. Substrate 11. Reactor heater 12. Pressure gauge 13. Trap 14. Vacuum pump

Claims (5)

  1.  一般式(1)
    Figure JPOXMLDOC01-appb-C000001
    (式中、Rはイソプロピル基、又は炭素原子数4~6の分岐状のアルキル基を示し、Rは炭素原子数1~5の直鎖状又は分岐状のアルキル基を示す。但し、R及びRが共にイソプロピル基の場合、R及びRが共にイソブチル基の場合、及び、Rがイソプロピル基でありRがメチル基の場合を除く。)
    で示されるマグネシウムビス(ジアルキルアミド)化合物。
    General formula (1)
    Figure JPOXMLDOC01-appb-C000001
    (Wherein R 1 represents an isopropyl group or a branched alkyl group having 4 to 6 carbon atoms, and R 2 represents a linear or branched alkyl group having 1 to 5 carbon atoms, provided that R 1 and R 2 are both isopropyl groups, R 1 and R 2 are both isobutyl groups, and R 1 is an isopropyl group and R 2 is a methyl group.)
    A magnesium bis (dialkylamide) compound represented by the formula:
  2.  一般式(2)
    Figure JPOXMLDOC01-appb-C000002
    (式中、R及びRは、同一でも異なっていてもよく、それぞれ互いに独立に、炭素原子数1~10の直鎖状又は分岐状のアルキル基を示す。)
    で示されるジアルキルマグネシウム化合物と、一般式(3)
    Figure JPOXMLDOC01-appb-C000003
    (式中、Rはイソプロピル基、又は炭素原子数4~6の分岐状のアルキル基を示し、Rは炭素原子数1~5の直鎖状又は分岐状のアルキル基を示す。但し、R及びRが共にイソプロピル基の場合、R及びRが共にイソブチル基の場合、及び、Rがイソプロピル基でありRがメチル基の場合を除く。)
    で示されるジアルキルアミンとを反応させる工程を含むことを特徴とする、一般式(1)
    Figure JPOXMLDOC01-appb-C000004
    (式中、R及びRは前記と同義である。)
    で示される請求項1記載のマグネシウムビス(ジアルキルアミド)化合物の製造方法。
    General formula (2)
    Figure JPOXMLDOC01-appb-C000002
    (In the formula, R 3 and R 4 may be the same or different and each independently represents a linear or branched alkyl group having 1 to 10 carbon atoms.)
    A dialkylmagnesium compound represented by the general formula (3)
    Figure JPOXMLDOC01-appb-C000003
    (Wherein R 1 represents an isopropyl group or a branched alkyl group having 4 to 6 carbon atoms, and R 2 represents a linear or branched alkyl group having 1 to 5 carbon atoms, provided that R 1 and R 2 are both isopropyl groups, R 1 and R 2 are both isobutyl groups, and R 1 is an isopropyl group and R 2 is a methyl group.)
    Which comprises reacting with a dialkylamine represented by the general formula (1)
    Figure JPOXMLDOC01-appb-C000004
    (In the formula, R 1 and R 2 are as defined above.)
    The manufacturing method of the magnesium bis (dialkylamide) compound of Claim 1 shown by these.
  3.  一般式(3)
    Figure JPOXMLDOC01-appb-C000005
    (式中、Rはイソプロピル基、又は炭素原子数4~6の分岐状のアルキル基を示し、Rは炭素原子数1~5の直鎖状又は分岐状のアルキル基を示す。但し、R及びRが共にイソプロピル基の場合、R及びRが共にイソブチル基の場合、及び、Rがイソプロピル基でありRがメチル基の場合を除く。)
    で示されるジアルキルアミンと、アルキルリチウムとを反応させて、一般式(4)
    Figure JPOXMLDOC01-appb-C000006
    (式中、R及びRは前記と同義である。)
    で示されるリチウムジアルキルアミド化合物を合成する工程と、
     前記一般式(4)で示されるリチウムジアルキルアミド化合物と、一般式(5)
    Figure JPOXMLDOC01-appb-C000007
    (式中、Xはハロゲン原子を示す。)
    で示されるジハロゲノマグネシウムとを反応させる工程を含むことを特徴とする、一般式(1)
    Figure JPOXMLDOC01-appb-C000008
    (式中、R及びRは前記と同義である。)
    で示される請求項1記載のマグネシウムビス(ジアルキルアミド)化合物の製造方法。
    General formula (3)
    Figure JPOXMLDOC01-appb-C000005
    (Wherein R 1 represents an isopropyl group or a branched alkyl group having 4 to 6 carbon atoms, and R 2 represents a linear or branched alkyl group having 1 to 5 carbon atoms, provided that R 1 and R 2 are both isopropyl groups, R 1 and R 2 are both isobutyl groups, and R 1 is an isopropyl group and R 2 is a methyl group.)
    Is reacted with a dialkylamine represented by the general formula (4)
    Figure JPOXMLDOC01-appb-C000006
    (In the formula, R 1 and R 2 are as defined above.)
    A step of synthesizing a lithium dialkylamide compound represented by:
    A lithium dialkylamide compound represented by the general formula (4); and a general formula (5)
    Figure JPOXMLDOC01-appb-C000007
    (In the formula, X represents a halogen atom.)
    And a step of reacting with dihalogenomagnesium represented by the general formula (1)
    Figure JPOXMLDOC01-appb-C000008
    (In the formula, R 1 and R 2 are as defined above.)
    The manufacturing method of the magnesium bis (dialkylamide) compound of Claim 1 shown by these.
  4.  請求項1に記載のマグネシウムビス(ジアルキルアミド)化合物をマグネシウム供給源として用いた化学気相蒸着法によるマグネシウム含有薄膜の製造方法。 A method for producing a magnesium-containing thin film by chemical vapor deposition using the magnesium bis (dialkylamide) compound according to claim 1 as a magnesium supply source.
  5.  請求項1に記載のマグネシウムビス(ジアルキルアミド)化合物を含むマグネシウム含有薄膜形成用原料。 A raw material for forming a magnesium-containing thin film comprising the magnesium bis (dialkylamide) compound according to claim 1.
PCT/JP2011/067880 2010-08-06 2011-08-04 Magnesium bis(dialkylamide) compound, and process for production of magnesium-containing thin film using the magnesium compound WO2012018086A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020137005201A KR20130136445A (en) 2010-08-06 2011-08-04 Magnesium bis(dialkylamide)compound, and process for production of magnesium-containing thin film using the magnesium compound
JP2012527770A JP5817727B2 (en) 2010-08-06 2011-08-04 Magnesium bis (dialkylamide) compound and method for producing magnesium-containing thin film using the magnesium compound

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010176838 2010-08-06
JP2010-176838 2010-08-06

Publications (1)

Publication Number Publication Date
WO2012018086A1 true WO2012018086A1 (en) 2012-02-09

Family

ID=45559582

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/067880 WO2012018086A1 (en) 2010-08-06 2011-08-04 Magnesium bis(dialkylamide) compound, and process for production of magnesium-containing thin film using the magnesium compound

Country Status (4)

Country Link
JP (1) JP5817727B2 (en)
KR (1) KR20130136445A (en)
TW (1) TWI504605B (en)
WO (1) WO2012018086A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63238086A (en) * 1987-03-13 1988-10-04 リチウム コーポレーション オブ アメリカ Ether-free organometal amide composition
US5892083A (en) * 1997-12-01 1999-04-06 Wayne State University Organometallic source compounds for chemical vapor deposition
DE10061317C1 (en) * 2000-12-08 2002-04-04 Chemetall Gmbh Synthesis of magnesium bis(di(organo)amides), used in preparative organic synthesis, involves reacting a magnesium metal with a hydrogen acceptor and a secondary amine in a polar, aprotic solvent
JP2005126334A (en) * 2003-10-21 2005-05-19 Mitsubishi Materials Corp Organometallic compound and solution raw material and meal oxide thin film containing the same compound
WO2008039960A1 (en) * 2006-09-28 2008-04-03 Praxair Technology, Inc. Heteroleptic organometallic compounds
JP2009536267A (en) * 2006-05-05 2009-10-08 アプライド マテリアルズ インコーポレイテッド Method and apparatus for photoexcitation of chemicals for atomic layer deposition of dielectric films

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4944894A (en) * 1988-02-25 1990-07-31 Lithium Corporatoin Of America Ether free organometallic amide compositions
TW200941596A (en) * 2008-03-19 2009-10-01 Univ Nat Formosa Method for manufacturing manganese-doped zinc-oxide (Mn-doped ZnO) thin film with adjustable energy gap using sol-gel process and spin coating method

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63238086A (en) * 1987-03-13 1988-10-04 リチウム コーポレーション オブ アメリカ Ether-free organometal amide composition
US5892083A (en) * 1997-12-01 1999-04-06 Wayne State University Organometallic source compounds for chemical vapor deposition
DE10061317C1 (en) * 2000-12-08 2002-04-04 Chemetall Gmbh Synthesis of magnesium bis(di(organo)amides), used in preparative organic synthesis, involves reacting a magnesium metal with a hydrogen acceptor and a secondary amine in a polar, aprotic solvent
JP2005126334A (en) * 2003-10-21 2005-05-19 Mitsubishi Materials Corp Organometallic compound and solution raw material and meal oxide thin film containing the same compound
JP2009536267A (en) * 2006-05-05 2009-10-08 アプライド マテリアルズ インコーポレイテッド Method and apparatus for photoexcitation of chemicals for atomic layer deposition of dielectric films
WO2008039960A1 (en) * 2006-09-28 2008-04-03 Praxair Technology, Inc. Heteroleptic organometallic compounds

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
C.J.ROHBOGNER ET AL., EUROPEAN JOURNAL OF ORGANIC CHEMISTRY, no. 11, 2009, pages 1781 - 1795 *
E.C.ASHBY ET AL.: "Reactions of Magnesium Hydrides. 3.Stereoselective Reduction of Cyclic and Bicyclic Ketones by Dialkylaminomagnesium Hydrides", JOURNAL OF ORGANIC CHEMISTRY, vol. 43, no. 8, 1978, pages 1564 - 1566 *

Also Published As

Publication number Publication date
TWI504605B (en) 2015-10-21
KR20130136445A (en) 2013-12-12
JPWO2012018086A1 (en) 2013-10-03
JP5817727B2 (en) 2015-11-18
TW201223957A (en) 2012-06-16

Similar Documents

Publication Publication Date Title
JP5857970B2 (en) (Amidoaminoalkane) metal compound and method for producing metal-containing thin film using the metal compound
JP6065840B2 (en) Tris (dialkylamide) aluminum compound and method for producing aluminum-containing thin film using the aluminum compound
EP2053036A1 (en) Organoruthenium complex, and method for production of ruthenium thin film using the ruthenium complex
US10014089B2 (en) Liquid precursor compositions, preparation methods thereof, and methods for forming layer using the composition
JP2015224227A (en) Method of producing (acetylene)dicobalt hexacarbonyl compound
JP3321729B2 (en) Trimethyl (ethylcyclopentadienyl) platinum, method for producing the same, and method for producing platinum-containing thin film using the same
US9556212B2 (en) Chemical deposition raw material formed of ruthenium complex and method for producing the same, and chemical deposition method
WO2013054863A1 (en) Raw material for chemical vapor deposition which comprises organic platinum compound, and chemical vapor deposition method using said raw material for chemical vapor deposition
JP5919882B2 (en) Cobalt compound mixture and method for producing cobalt-containing thin film using the cobalt compound mixture
JP5817727B2 (en) Magnesium bis (dialkylamide) compound and method for producing magnesium-containing thin film using the magnesium compound
JP3511228B2 (en) Ethylcyclopentadienyl (1,5-cyclooctadiene) iridium, method for producing the same, and method for producing iridium-containing thin film using the same
JP6565448B2 (en) Method for producing aluminum oxide film and raw material for producing aluminum oxide film
WO2017030150A1 (en) Method for producing aluminum oxide film, material for producing aluminum oxide film and aluminum compound
JP2017081857A (en) Bis(silylamideaminoalkane)metal compound and manufacturing method of metal-containing film using the metal compound
JP5825169B2 (en) Method for producing cobalt-containing thin film
JP5454141B2 (en) Organic platinum complex and method for producing platinum-containing thin film by chemical vapor deposition using the platinum complex
WO2017150212A1 (en) Method for producing aluminum oxide film and production starting material for aluminum oxide film
JP2016222568A (en) Bis(silylamideaminoalkane)iron compound and manufacturing method of iron-containing film using the iron compound
JP2018027921A (en) Method for producing dialkylaluminum compound having amidinate ligand
JP2017110268A (en) Manufacturing material for aluminum oxide film, and manufacturing method for aluminum oxide film
TW202033533A (en) Organometallic compounds

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11814711

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012527770

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20137005201

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 11814711

Country of ref document: EP

Kind code of ref document: A1