WO2012018082A1 - Nanoparticle containing transition metal compound and process for production thereof, ink having nanoparticles each containing transition metal compound dispersed therein and process for production thereof, and device equipped with hole-injection/transport layer and process for production thereof - Google Patents

Nanoparticle containing transition metal compound and process for production thereof, ink having nanoparticles each containing transition metal compound dispersed therein and process for production thereof, and device equipped with hole-injection/transport layer and process for production thereof Download PDF

Info

Publication number
WO2012018082A1
WO2012018082A1 PCT/JP2011/067871 JP2011067871W WO2012018082A1 WO 2012018082 A1 WO2012018082 A1 WO 2012018082A1 JP 2011067871 W JP2011067871 W JP 2011067871W WO 2012018082 A1 WO2012018082 A1 WO 2012018082A1
Authority
WO
WIPO (PCT)
Prior art keywords
transition metal
group
organic
layer
metal compound
Prior art date
Application number
PCT/JP2011/067871
Other languages
French (fr)
Japanese (ja)
Inventor
洋介 田口
匡哉 下河原
慎也 藤本
正隆 加納
Original Assignee
大日本印刷株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 大日本印刷株式会社 filed Critical 大日本印刷株式会社
Priority to JP2012527769A priority Critical patent/JP5783179B2/en
Publication of WO2012018082A1 publication Critical patent/WO2012018082A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/17Carrier injection layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2102/00Constructional details relating to the organic devices covered by this subclass
    • H10K2102/301Details of OLEDs
    • H10K2102/331Nanoparticles used in non-emissive layers, e.g. in packaging layer

Definitions

  • the element structure of the organic EL element is composed of a cathode / organic layer / anode.
  • This organic layer had a two-layer structure consisting of the light emitting layer / the hole injection layer in the initial organic EL element, but at present, the electron injection layer / electron is to obtain high luminous efficiency and long drive life.
  • Various multilayer structures have been proposed, such as a five-layer structure consisting of transport layer / light emitting layer / hole transport layer / hole injection layer.
  • the layers other than the light emitting layer such as the electron injection layer, the electron transport layer, the hole transport layer, and the hole injection layer have an effect of facilitating injection and transport of charges to the light emitting layer, or blocking by electron current and positive current It is said to have the effect of maintaining the balance of the hole current and the effect of suppressing the diffusion of light energy excitons.
  • Patent Document 6 describes that a charge injection layer is produced by screen printing using a slurry in which molybdenum oxide fine particles having an average particle diameter of 20 nm are dispersed in a solvent, but as in Patent Document 6, MoO 3 powder is used.
  • the lifetime of the organic EL element is the luminance half time when continuously driven by constant current driving or the like, and the longer the luminance half time, the longer the driving lifetime.
  • metal-containing nanoparticles having a particle diameter of 100 nm or less have been utilized in various fields such as, for example, abrasives, various functional fillers, additives of conductive paste, catalysts, etc., taking advantage of the characteristics.
  • metal oxide-containing nanoparticles are used, for example, in phosphors, catalysts, abrasives, transparent conductive films, and the like.
  • the present invention has been made in view of the above problems, and a first object thereof is to provide a novel metal compound-containing nanoparticle which can be stably dispersed in a solvent.
  • the second object of the present invention is a transition metal which is a material capable of forming a hole injecting and transporting layer which is stable even if an organic layer is formed adjacently by a solution coating method using a hydrophobic solvent. It is providing a compound containing nanoparticle.
  • the third object of the present invention is to provide a method for producing the transition metal compound-containing nanoparticles.
  • a fourth object of the present invention is to provide a transition metal compound-containing nanoparticle dispersed ink in which novel transition metal compound-containing nanoparticles are stably dispersed in a solvent.
  • nanoparticles are different from the case where molybdenum oxide or the like of the inorganic compound is used, and an organic containing a hydrophilic group on the nanoparticle surface Since the protective agent having a group is linked by a linking group, it has dispersibility in a hydrophilic solvent and also has high dispersion stability. In addition, it can be stably dispersed in a solvent while containing a specific transition metal compound such as one or more selected from the group consisting of transition metal carbon oxides, transition metal nitride oxides, and transition metal sulfide oxides. Therefore, as a novel nanoparticle, application is expected in various fields.
  • the nanoparticles according to the present invention can be formed into a thin film by a solution coating method using a hydrophilic solvent, they have great merits in the manufacturing process. From the hole injecting and transporting layer to the light emitting layer can be formed sequentially on the substrate having the liquid repellent bank only by the coating process. Therefore, as in the case of the molybdenum oxide of the inorganic compound, after the hole injection layer is deposited by highly precise mask deposition or the like, the hole transport layer and the light emitting layer are formed by solution coating, and the second electrode is further formed. There is the advantage that it is simpler and can produce devices at lower cost compared to processes such as evaporation.
  • the nanoparticles according to the present invention have high reactivity of the specific transition metal compound contained in the nanoparticles and easily form a charge transfer complex. Therefore, the nanoparticles according to the present invention are suitable for hole injection transport layer applications, and the devices provided with the hole injection transport layer containing nanoparticles according to the present invention are low voltage drive, high power efficiency, long. It is possible to realize a lifetime device. Furthermore, by selecting the type of protective agent for nanoparticles, it is easy to make the device multifunctional, such as imparting functionality such as charge transportability or adhesion.
  • the transition metal of the transition metal compound is at least one metal selected from the group consisting of molybdenum, tungsten, vanadium and rhenium. It is preferable from the point of lowering the efficiency and improving the device life.
  • Z 1 , Z 2 and Z 3 each independently represent a halogen atom or an alkoxy group, and R represents a hydrogen atom or a methyl group.
  • the protective agent is represented by the following general formula [I], having the functions of a hydrophilic group and a linking group, and aggregation of the nanoparticles. Is preferable in that a sufficient distance can be secured to prevent the General formula [I] X-Y-Z (In the general formula [I], X is a hydrophilic group, Y is a linear, branched or cyclic saturated or unsaturated aliphatic hydrocarbon group having 1 to 30 carbon atoms and / or an aromatic having 6 to 40 carbon atoms Group hydrocarbon group, Z represents a linking group)
  • the hydrophilic solvent preferably has a water solubility (20 ° C.) of 50 g / L or more.
  • the incompatibility between the transition metal compound-containing nanoparticle and the hydrophobic solvent used in the formation of the adjacent layer and the material of the adjacent layer can be ensured, and the amount of re-dissolution in the adjacent layer during lamination is reduced by the coating step. It can be done.
  • the method for producing a first transition metal compound-containing nanoparticle according to the present invention comprises the steps of: (A) carbonizing a transition metal and / or transition metal complex to form transition metal carbide; (B) protecting the transition metal carbide obtained in the step (A) with a protective agent having an organic group containing a linking group, and (C) oxidizing the transition metal carbide having an organic group obtained in the step (B) to obtain a transition metal carbide oxide having an organic group,
  • the protective agent is a protective agent having an organic group containing a linking group and a hydrophilic group, or the protective agent has an organic group containing a linking group and a hydrophobic group, and the hydrophobic It is characterized by including the process of replacing the protecting agent which has an organic group containing a nature group with the protecting agent which has an organic group containing a hydrophilic group.
  • the method for producing a second transition metal compound-containing nanoparticle according to the present invention comprises the steps of (a) protecting the transition metal and / or transition metal complex with a protective agent having an organic group containing a linking group, (B) carbonizing the transition metal or transition metal complex having an organic group obtained in the step (a) to obtain a transition metal carbide having an organic group; (C) oxidizing the transition metal carbide having an organic group obtained in step (b) to obtain a transition metal carbide oxide having an organic group,
  • the protective agent is a protective agent having an organic group containing a linking group and a hydrophilic group, or the protective agent has an organic group containing a linking group and a hydrophobic group, and the hydrophobic It is characterized by including the process of replacing the protecting agent which has an organic group containing a nature group with the protecting agent which has an organic group containing a hydrophilic group.
  • a step of carbonizing ( ⁇ ) transition metal and / or transition metal complex to form transition metal carbide ( ⁇ ) A step of oxidizing the transition metal carbide obtained in the step ( ⁇ ) into a transition metal carbide oxide, ( ⁇ ) A step of protecting the transition metal carbon oxide obtained in the step ( ⁇ ) with a protective agent having an organic group containing a linking group to obtain a transition metal carbon oxide having an organic group
  • the protective agent is a protective agent having an organic group containing a linking group and a hydrophilic group, or the protective agent has an organic group containing a linking group and a hydrophobic group, and the hydrophobic It is characterized by including the process of replacing the protecting agent which has an organic group containing a nature group with the protecting agent which has an organic group containing a hydrophilic group.
  • nanoparticles having dispersibility in a solvent and capable of being formed into a thin film or supported on the surface of a carrier can be obtained by a solution coating method.
  • performing the step of protecting with the protective agent in a solvent can stably perform the protecting step. preferable.
  • the step of forming the transition metal carbide may be carried out at 150 to 400 ° C. to make the particle diameter uniform and to make the unreacted transition metal It is preferable from the point of suppressing the formation of a complex.
  • performing the step of forming the transition metal carbide in an argon gas atmosphere maintains the dispersion stability in the reaction solution. It is preferable from the point of
  • the first transition metal compound-containing nanoparticle-dispersed ink according to the present invention is characterized by containing the transition metal compound-containing nanoparticle and a hydrophilic solvent.
  • the second transition metal compound-containing nanoparticle-dispersed ink according to the present invention contains at least one compound (U) selected from the group consisting of transition metal nitrides and transition metal sulfides, a linking group and a hydrophilic group.
  • U selected from the group consisting of transition metal nitrides and transition metal sulfides, a linking group and a hydrophilic group.
  • a protecting agent having an organic group and a hydrophilic solvent It is characterized by being used.
  • distribution ink is used suitably for forming the film
  • the method for producing a transition metal compound-containing nanoparticle-dispersed ink according to the present invention comprises: a transition metal complex containing an atom of carbon, nitrogen or sulfur, a protective agent having an organic group containing a linking group and a hydrophilic group, and a boiling point And heating the solution containing a hydrophilic solvent at 160 to 260 ° C. at 150 to 250 ° C., which is used to prepare the transition metal compound-containing nanoparticles of the present invention.
  • the device according to the present invention is a device having two or more electrodes facing each other on a substrate, and a hole injecting and transporting layer disposed between two electrodes of the two or more electrodes. It is characterized in that the hole injecting and transporting layer contains at least the transition metal compound-containing nanoparticle according to the present invention.
  • the device of the present invention is suitable for an embodiment including a charge transport layer containing a charge transport compound which can be dissolved and / or dispersed in a hydrophobic solvent adjacent to the hole injecting and transporting layer.
  • the hole injecting and transporting layer may contain two or more types of the transition metal compound-containing nanoparticles.
  • energy barriers between adjacent layers can be further reduced by enabling holes to move stepwise via two types of nanoparticles using nanoparticles with different work functions (HOMO), or
  • HOMO work functions
  • the device of the present invention is suitably used as an organic EL element containing an organic layer containing at least a light emitting layer.
  • the device according to the present invention is an organic transistor having a gate electrode, an insulating layer, a source electrode and a drain electrode, and an organic semiconductor layer on a substrate, wherein the transition metal compound is formed on at least a part of the surface of the source electrode and the drain electrode. It is suitably used also as an organic transistor which has a containing nanoparticle.
  • a first method of manufacturing a device according to the present invention is a method of manufacturing a device having two or more electrodes facing each other on a substrate, and a hole injecting and transporting layer disposed between two electrodes of the two or more electrodes. Forming a hole injecting and transporting layer on any of the layers on the electrode using the first transition metal compound-containing nanoparticle dispersed ink.
  • a second method of producing a device according to the present invention is a method of producing a device having two or more electrodes facing each other on a substrate, and a hole injecting and transporting layer disposed between two electrodes of the two or more electrodes. Forming a hole injecting and transporting layer on any layer on the electrode using the second transition metal compound-containing nanoparticle-dispersed ink; Oxidizing the compound (U).
  • the first and second device manufacturing methods of the present invention it is possible to provide a device capable of achieving long life while being able to form a hole injection transport layer by a solution coating method and having an easy manufacturing process. Is possible.
  • the step of oxidizing the compound (U) may be performed after the step of forming the hole injecting and transporting layer.
  • the compound (U ) May be performed after the step of preparing the transition metal compound-containing nanoparticle-dispersed ink, and before the step of forming the hole injecting and transporting layer.
  • the second method for producing a device according to the present invention it is preferable to use one of a heating means, a light irradiation means and a means for causing active oxygen in the step of oxidizing the compound (U).
  • a hydrophobic compound containing a hydrophobic solvent and a charge transport compound which can be dissolved and / or dispersed in a hydrophobic solvent is provided adjacent to the hole injecting and transporting layer. It is suitable for an embodiment including the step of forming a charge transport layer by applying a solution of a polarity.
  • the device is an organic EL element containing an organic layer containing at least a light emitting layer, a gate electrode, an insulating layer, a source electrode and a drain on a substrate It is suitable for the aspect which is an organic transistor which has an electrode and an organic-semiconductor layer, Comprising: The transition metal compound containing nanoparticle is provided in at least one part of the said source electrode and drain electrode surface.
  • the present invention can provide a novel transition metal compound-containing nanoparticle that can be stably dispersed in a hydrophilic solvent, and a novel transition metal compound-containing nanoparticle dispersed ink using the nanoparticle.
  • the transition metal compound-containing nanoparticles of the present invention have dispersibility in a solvent, and can be formed into a thin film or supported on the surface of a carrier by a solution coating method.
  • the transition metal compound-containing nanoparticle according to the present invention it is possible to form a hole injecting and transporting layer of a device capable of achieving long life while facilitating the manufacturing process.
  • the method for producing transition metal compound-containing nanoparticles of the present invention can easily produce such transition metal compound-containing nanoparticles.
  • the device of the present invention can achieve a long life while the manufacturing process is easy. According to the device manufacturing method of the present invention, it is possible to provide a device capable of achieving a long life while the manufacturing process is easy.
  • transition metal compound-containing nanoparticle according to the present invention and the method for producing the same, the transition metal compound-containing nanoparticle dispersed ink, the device and the method for producing the same will be described.
  • the transition metal compound-containing nanoparticle according to the present invention contains a hydrophilic group in at least one transition metal compound selected from the group consisting of transition metal carbon oxides, transition metal nitride oxides, and transition metal sulfide oxides.
  • a protective agent having an organic group is linked by a linking group, and is characterized by being dispersible in a hydrophilic solvent.
  • the transition metal compound-containing nanoparticle according to the present invention differs from particles formed simply by crushing the transition metal compound, in which the protective agent having an organic group containing a hydrophilic group is linked by a linking group on the nanoparticle surface There is. Since the protective agent includes a hydrophilic group and a linking group, when the protective agent is linked to the specific transition metal compound by the linking group, the hydrophilic group contained in the protective agent is the surface of the specific transition metal compound. Being disposed on the covered organic group, the surface of the nanoparticles becomes hydrophilic to have dispersibility in a hydrophilic solvent, and also has high dispersion stability.
  • nanoparticles can be dispersed in a hydrophilic solvent or not can be determined, for example, by adding 1 mg of nanoparticles to 1 mL of a hydrophilic solvent having a water solubility (20 ° C.) of 50 g / L or more, and room temperature (20 ° C. After 1 hour of ultrasonic wave irradiation, and if the dry weight of the precipitate becomes less than 0.1 mg after standing for 1 hour at 20 ° C., it is dispersible and the dry weight of the precipitate is 0.1 mg or more If it becomes, it will be judged that distribution is impossible.
  • a hydrophilic solvent having a water solubility (20 ° C.) of 50 g / L or more, and room temperature (20 ° C. After 1 hour of ultrasonic wave irradiation, and if the dry weight of the precipitate becomes less than 0.1 mg after standing for 1 hour at 20 ° C., it is dispersible and the dry weight of the precipitate is 0.1 mg or more If it
  • the hydrophilic solvent is a solvent that is compatible with water at a certain rate.
  • a hydrophilic solvent it can be used without particular limitation, as a standard that the solubility (20 ° C.) in water or water is 50 g / L or more.
  • the hydrophilic solvent is preferably a solvent that can be mixed with water in any proportion.
  • the hydrophilic solvent to be dispersed includes, for example, water, glycerin, 1-propanol, 2-propanol, 1-butanol, ethylene glycol, propylene glycol, methyl diglycol, isopropyl glycol, butyl glycol, isobutyl glycol, methyl propylene diglycol, Propyl propylene glycol, butyl propylene glycol, diethylene glycol monobutyl ether acetate, diethylene glycol monobutyl ether, propylene glycol monomethyl ether, propylene glycol monomethyl ether acetate, diethylene glycol dimethyl ether, diethylene glycol ethyl methyl ether, diethylene glycol diethyl ether, ethylene glycol monoethyl ether, ethylene glycol Glycol monomethyl ether, cyclohexanone, mention may be made of diacetone alcohol.
  • the transition metal compound-containing nanoparticle according to the present invention contains a specific transition metal compound of one or more selected from the group consisting of transition metal carbon oxides, transition metal nitride oxides, and transition metal sulfide oxides.
  • the nanoparticles mean particles having a diameter of nm (nanometer) order, that is, less than 1 ⁇ m.
  • the nanoparticles according to the present invention may have a single structure or a composite structure, and may have a core-shell structure, an alloy, an island structure or the like.
  • the transition metal compound contained in the nanoparticles is at least one selected from the group consisting of transition metal carbide oxides, transition metal nitride oxides, and transition metal sulfide oxides. Other than these, borides, selenides, halides, complexes and the like may be contained.
  • transition metal carbon oxides transition metal nitride oxides or transition metal sulfide oxides
  • the value of ionization potential becomes optimum, or changes due to oxidation from unstable oxidation number +0 metal
  • the transition metal compound which is an oxide having a different oxidation number be contained in the nanoparticles.
  • transition metal atoms and compounds of various valences such as oxides and borides may be mixed according to the processing conditions.
  • the transition metal carbide oxide, transition metal nitride oxide, and transition metal sulfide oxide at least a part of each of the transition metal carbide, transition metal nitride, and transition metal sulfide may be oxidized.
  • the surface layer of about 1 nm is preferably oxidized.
  • the nanoparticles contain a specific metal compound such as transition metal carbide oxide, transition metal nitride oxide or transition metal sulfide oxide, they can be used for various applications as described later.
  • the metal elements of Groups 3 to 11 may be appropriately selected from the transition metal elements according to the application to be used.
  • molybdenum, tungsten, vanadium, rhenium and the like can be mentioned as the hole injecting and transporting layer application in the device from the charge injecting and transporting property of the above-mentioned metal compound.
  • molybdenum, vanadium, titanium, iron, cobalt, nickel, tungsten, palladium, platinum, gold and the like can be mentioned.
  • money, silver, copper, an indium, molybdenum etc. are raised as a wiring use.
  • ferroelectric applications include titanium and zirconium.
  • a transition metal of the transition metal compound at least one metal selected from the group consisting of molybdenum, tungsten, vanadium and rhenium has high reactivity, so it is easy to form a charge transfer complex, It is preferable from the point of reducing the drive voltage in the device and improving the device life.
  • Each element of tungsten, vanadium and rhenium is known to be oxidized in the same manner as molybdenum and to obtain hole injecting and transporting characteristics, in an oxide film forming method using a vacuum evaporation method.
  • vanadium is described in "J. PHYS. D: APPL. PHYS.” 41 (2008) 06 2003 (4 pp)
  • rhenium is described in "APPLIED PHYSICS LETTERS” 91 011113 (2007).
  • the transition metal carbide oxide, transition metal nitride oxide and transition metal sulfide oxide contained in the nanoparticles of the present invention are preferably contained in a total of 90 mol% or more in the transition metal compound. Furthermore, among these three transition metal compounds, it is preferable that 90 mol% or more of a single transition metal compound is contained, from the viewpoint of lowering the drive voltage and improving the device life in the device. It is more preferable to contain mol% or more.
  • the protective agent that protects the nanoparticles has a linking group and an organic group containing a hydrophilic group.
  • the protective agent is linked to the nanoparticle by the linking group, and the surface of the nanoparticle is covered and protected by the organic group containing the hydrophilic group, thereby making the nanoparticle surface hydrophilic which is dispersible in the solvent, the nanoparticle to the hydrophilic solvent Increase the dispersion stability of
  • the protective agent may be a low molecular weight compound or a high molecular weight compound.
  • the linking group is not particularly limited as long as it has a function of linking with a transition metal and / or a transition metal compound.
  • the linkage includes adsorption and coordination, but is preferably a chemical bond such as an ionic bond or a covalent bond.
  • the number of linking groups in the protective agent may be one or more in the molecule. However, when it is desired to obtain more uniform nanoparticles, it is preferable that the linking group and the hydrophilic group described later adopt different substituents, and that there is one linking group in one molecule of the protective agent.
  • the linking group contained in the protective agent is selected from functional groups represented by the following general formulas (1a) to (1o) from the viewpoint of the action of linking with a transition metal and / or a transition metal compound on nanoparticles. It is preferable that it is 1 or more types.
  • Z 1 , Z 2 and Z 3 each independently represent a halogen atom or an alkoxy group, and R represents a hydrogen atom or a methyl group.
  • hydrophilic group contained in the protective agent a substituent having an effect of making the nanoparticle surface hydrophilic is used while covering the nanoparticle surface with an organic group.
  • hydrophilic group include a hydroxyl group, a carbonyl group, a carboxyl group, an amino group, a thiol group, a silanol group, a sulfo group, a sulfonate, and an ammonium group.
  • the hydrophilic group at least one member selected from the group consisting of a hydroxyl group, a carbonyl group, an amino group, a thiol group, a sulfo group, a sulfonate and an ammonium group has an ability to connect to a transition metal compound It is preferable from the relatively weak point, and is further preferably one or more selected from the group consisting of a hydroxyl group, a carbonyl group, a thiol group, a sulfo group and a sulfonate.
  • the linking group and the hydrophilic group may be substituents of the same type, but at least a substituent performing the function of the linking group and a substituent performing the function of the hydrophilic group in one molecule Is included one by one.
  • the protecting agent has a plurality of linking groups, and there is a concern that the nanoparticles may be bound and aggregated via the linking group, so that the stable dispersibility can be obtained.
  • the linking group and the hydrophilic group be different.
  • the protective agent contains one or more hydrophilic groups that are difficult to bind to nanoparticles and one linking group that is easy to bind to nanoparticles.
  • the organic group contained in the protective agent may be any group containing carbon, and has 1 or more carbon atoms, preferably 1 to 30 carbon atoms, more preferably 2 to 25 carbon atoms, still more preferably 4 to 25 carbon atoms.
  • Chain, branched or cyclic saturated or unsaturated aliphatic hydrocarbon group, and / or aromatic hydrocarbon group having 6 to 40 carbon atoms, more preferably 12 to 34 carbon atoms, and / or 12 to 26 carbon atoms and / or hetero atoms A ring group etc. are mentioned.
  • carbon number of an aliphatic hydrocarbon group, an aromatic hydrocarbon group, and the substituent of a heterocyclic group is not included here as carbon number.
  • organic groups having no bulky structure such as a cyclic structure at the part directly bonded to the linking group can be densely protected without defects when the protective agent protects the surface via the linking group.
  • the protective agent contains an aromatic hydrocarbon and / or a heterocyclic ring as an organic group, it has charge transportability, and has an adjacent aromatic hydrocarbon and / or a heterocyclic ring.
  • the dispersion stability of the film can be improved by the improvement of the adhesion to the compound.
  • a linear or branched saturated or unsaturated aliphatic hydrocarbon group As a linear or branched saturated or unsaturated aliphatic hydrocarbon group, a methylene group, an ethylene group, a propylene group, an isopropylene group, a butylene group, an isobutylene group, a sec-butylene group, a tert-butylene group, various pentylene groups, Various hexylene groups, various pentylene groups, various hexylene groups, various heptylene groups, various octylene groups, various nonylene groups, various decylene groups and the like can be mentioned.
  • aromatic hydrocarbon and / or heterocycle examples include, for example, benzene, triphenylamine, fluorene, biphenyl, pyrene, anthracene, carbazole, phenylpyridine, trithiophene, phenyloxadiazole, phenyltriazole, benzimidazole And phenyl triazine, benzodiathiazine, phenyl quinoxaline, phenylene vinylene and phenyl silole, and combinations of these structures.
  • the protective agent preferably also has a charge transporting group.
  • the charge transporting group is a group which exhibits the property that the chemical structure group has drift mobility of electrons or holes, and as another definition, it is known that it can detect charge transporting performance such as time-of-flight method. It can be defined as a group from which a detection current resulting from charge transport can be obtained by the method of In the case where the charge transporting group can not exist alone, a compound obtained by adding a hydrogen atom to the charge transporting group may be a charge transporting compound.
  • charge transporting group examples include residues other than hydrogen atoms in hole transporting compounds (arylamine derivatives, carbazole derivatives, thiophene derivatives, fluorene derivatives, distyrylbenzene derivatives, etc.) as described later.
  • the protective agent is preferably represented by the following general formula [I] from the viewpoint of having each function of a hydrophilic group and a linking group and securing a sufficient distance to prevent aggregation of nanoparticles.
  • General formula [I] X-Y-Z (In the general formula [I], X is a hydrophilic group, Y is a linear, branched or cyclic saturated or unsaturated aliphatic hydrocarbon group having 1 to 30 carbon atoms and / or an aromatic having 6 to 40 carbon atoms Group hydrocarbon group, Z represents a linking group)
  • the protective agent which is a low molecular weight compound include, but are not limited to, thioglycolic acid, thioglycol, malonic acid, maleic acid, succinic acid, glutaric acid, glycolic acid, glycine, 4-hydroxythiophenol, 4-mercaptophenylacetic acid, biphenyl-4,4'-dicarboxylic acid, benzidine, 4- (4-aminophenyl) benzonitrile, 4,4'-diformyltriphenylamine, tris (4- Examples include formylphenyl) amine, N, N, N ', N'-tetrakis (4-aminophenyl) benzidine and the like.
  • the thickness of the protective agent covering the nanoparticle surface is small, so the transition metal-containing compound surface approaches and interacts with the adjacent layer compound. It is preferable because it can be expected that the transition metal-containing compound can easily contribute to the improvement of the hole injection property.
  • the lower limit of the molecular weight of the protective agent is not particularly limited, but may be 50 or more as a standard.
  • the protective agent is a polymer compound
  • a polymer compound containing two or more functional groups functioning as a linking group and a hydrophilic group in one molecule can be appropriately selected and used.
  • the polymer compound a polymer having a repeating unit is suitably used, and the weight average molecular weight is, for example, more than 1000 and about 50000 or less.
  • the weight average molecular weight here means the polystyrene conversion value by GPC (gel permeation chromatography).
  • polymer compound used as the protective agent include, but are not limited to, polyvinyl pyrrolidone, polyglycolide, poly (2-acrylamido-2-methyl-1-propanesulfonic acid), poly ( Acrylamide-acrylic acid) copolymer and the like.
  • the protective agent preferably has a solubility (20 ° C.) in the hydrophilic solvent of 10 g / L or more, more preferably 50 g / L or more, in order to make the nanoparticles dispersible in the hydrophilic solvent. .
  • a solubility (20 ° C.) in the hydrophilic solvent of 10 g / L or more, more preferably 50 g / L or more, in order to make the nanoparticles dispersible in the hydrophilic solvent.
  • a compound having an octanol-water partition coefficient logP of ⁇ 5 to 2 is preferable when adhesion to an adjacent organic layer is important.
  • the octanol-water partition coefficient logP is a parameter representing the balance of hydrophobicity / hydrophilicity.
  • logP is a value calculated using this software "Marvin Calibration Plugin".
  • the content ratio of the transition metal compound to the protective agent is appropriately selected depending on the application and is not particularly limited, but 10 to 40 parts by mass of the protective agent with respect to 100 parts by mass of the transition metal compound. Is preferred.
  • the average particle diameter of the nanoparticles of the present invention is not particularly limited, and may be, for example, 0.5 nm to 999 nm, and may be appropriately selected depending on the application.
  • the average particle size is preferably 0.5 nm to 50 nm, and more preferably 0.5 nm to 20 nm.
  • the thickness is more preferably 15 nm or less, and particularly preferably in the range of 1 nm to 10 nm. If the particle size is too small, production is difficult.
  • the average particle size is a number average particle size measured by a dynamic light scattering method, but in the state of being dispersed in the hole injecting and transporting layer, the average particle size is a transmission electron microscope (TEM) Obtained by selecting the region where it is confirmed that 20 or more nanoparticles are present from the image obtained by using, measuring the particle size of all the nanoparticles in this region, and calculating the average value. Value.
  • TEM transmission electron microscope
  • the nanoparticles according to the present invention have very high dispersion stability in a hydrophilic solvent, and one or more selected from the group consisting of transition metal carbon oxides, transition metal nitride oxides, and transition metal sulfide oxides. It is a novel nanoparticle containing a transition metal compound. Therefore, it can be suitably used in the form of an ink dispersed uniformly with high dispersion stability in a hydrophilic solvent.
  • the dispersion stability is very high in the solvent, it is possible to form a thin film of nm order high in stability and uniformity over time. Since the thin film is hydrophilic, even if an organic layer is formed adjacent to the thin film by a solution coating method using a hydrophobic solvent, the thin film is a stable film without re-dissolution. Conversely, on the other hand, on the organic layer formed by the solution coating method using a hydrophobic solvent, a layer containing the nanoparticles of the present invention is formed by a solution coating method using a hydrophilic solvent. Also, the organic layers can form thin films with high stability without re-dissolution. That is, it is possible to obtain a thin film laminate in which the hydrophobic organic thin film and the hydrophilic coating film containing the nanoparticles according to the present invention are adjacently laminated.
  • the nanoparticles when the highly hydrophobic nanoparticles are dispersed in a hydrophobic solvent and applied adjacent to the organic layer formed by the solution coating method using a hydrophobic solvent, the surface portion of the organic layer is By re-dissolving, the nanoparticles are embedded in the surface portion of the organic layer.
  • the nanoparticles according to the present invention expose the surface of the nanoparticles on the carrier 5 such as a hydrophobic organic layer. It can be made into the aspect supported in the state which it was made to make.
  • the carrier supporting the nanoparticles can be used without being particularly limited to the hydrophobic organic layer, and the nanoparticles according to the present invention are suitably used on a carrier surface by using the nanoparticle surface as a function. Can.
  • the nanoparticles according to the present invention can be used for various applications.
  • examples thereof include hole injection transport materials for devices, in particular devices, catalysts, additives such as friction modifiers used in lubricating oils, anti-wear agents, and antioxidants.
  • the nanoparticles according to the present invention are suitable as a device material in one aspect.
  • the specific transition metal compound is a specific transition metal compound-containing nanoparticle protected by a protective agent having an organic group containing a hydrophilic group
  • holes are injected by a solution coating method. While the transport layer can be formed and the manufacturing process is easy, the charge transfer complex can be formed to improve the hole injection property, and the organic layer can be formed adjacently by the solution coating method using a hydrophobic solvent.
  • It is particularly suitable as a material for forming a hole injecting and transporting layer because it provides a highly stable film. Since the dispersion stability is very high in a hydrophilic solvent, a highly uniform thin film of nm order can be formed. Since the thin film has high temporal stability and uniformity, it is difficult to short-circuit even when used in a device.
  • the nanoparticles according to the present invention can be formed into a thin film by a solution coating method using a hydrophilic solvent, they have great merits in the manufacturing process.
  • the hole injecting and transporting layer to the light emitting layer can be sequentially formed only on the coating process on the substrate having the liquid repellent bank. Therefore, as in the case of the molybdenum oxide of the inorganic compound, after the hole injection layer is deposited by highly precise mask deposition or the like, the hole transport layer and the light emitting layer are formed by solution coating, and the second electrode is further formed.
  • the advantage is simpler and can produce devices at lower cost compared to processes such as evaporation.
  • the nanoparticles according to the present invention have high reactivity of the specific transition metal compound contained in the nanoparticles and easily form a charge transfer complex. Therefore, the device provided with the hole injecting and transporting layer containing the nanoparticle according to the present invention can realize a low voltage drive, high power efficiency, and a long life device. Furthermore, by selecting the type of protective agent for nanoparticles, it is easy to make the device multifunctional, such as imparting functionality such as charge transportability or adhesion. Aspects of the device will be described in detail later.
  • the nanoparticles according to the present invention can also be used as a catalyst.
  • the transition metal compound in the nanoparticles is a transition metal carbide oxide, particularly molybdenum carbide oxide.
  • the carrier supporting the nanoparticles may be appropriately selected according to the reaction of the catalyst. For example, carbon nanotubes, carbon nanohorns, carbon nanofilaments, graphene, graphite, etc. And carbon materials having the conductivity of
  • the method for producing a first transition metal compound-containing nanoparticle according to the present invention comprises the steps of: (A) carbonizing a transition metal and / or transition metal complex to form transition metal carbide; (B) protecting the transition metal carbide obtained in the step (A) with a protective agent having an organic group containing a linking group, and (C) oxidizing the transition metal carbide having an organic group obtained in the step (B) to obtain a transition metal carbide oxide having an organic group,
  • the protective agent is a protective agent having an organic group containing a linking group and a hydrophilic group, or the protective agent has an organic group containing a linking group and a hydrophobic group, and the hydrophobic It is characterized by including the process of replacing the protecting agent which has an organic group containing a nature group with the protecting agent which has an organic group containing a hydrophilic group.
  • the method for producing a second transition metal compound-containing nanoparticle according to the present invention comprises the steps of (a) protecting the transition metal and / or transition metal complex with a protective agent having an organic group containing a linking group, (B) carbonizing the transition metal or transition metal complex having an organic group obtained in the step (a) to obtain a transition metal carbide having an organic group; (C) oxidizing the transition metal carbide having an organic group obtained in step (b) to obtain a transition metal carbide oxide having an organic group,
  • the protective agent is a protective agent having an organic group containing a linking group and a hydrophilic group, or the protective agent has an organic group containing a linking group and a hydrophobic group, and the hydrophobic It is characterized by including the process of replacing the protecting agent which has an organic group containing a nature group with the protecting agent which has an organic group containing a hydrophilic group.
  • a step of carbonizing ( ⁇ ) transition metal and / or transition metal complex to form transition metal carbide ( ⁇ ) A step of oxidizing the transition metal carbide obtained in the step ( ⁇ ) into a transition metal carbide oxide, ( ⁇ ) A step of protecting the transition metal carbon oxide obtained in the step ( ⁇ ) with a protective agent having an organic group containing a linking group to obtain a transition metal carbon oxide having an organic group
  • the protective agent is a protective agent having an organic group containing a linking group and a hydrophilic group, or the protective agent has an organic group containing a linking group and a hydrophobic group, and the hydrophobic It is characterized by including the process of replacing the protecting agent which has an organic group containing a nature group with the protecting agent which has an organic group containing a hydrophilic group.
  • FIG. 2 is a schematic view showing the order of the steps of the method for producing the first to third transition metal compound-containing nanoparticles according to the present invention.
  • FIG. 2 (i) shows an example of the method for producing the first transition metal compound-containing nanoparticle according to the present invention, wherein the transition metal and / or transition metal complex 10 is carbonized to form transition metal carbide 20, Next, the transition metal carbide is protected by linking the linking group of the protective agent 30 having an organic group containing a linking group to the surface of the transition metal carbide, and then the transition metal carbide is oxidized to form a transition metal carbide oxide 40. Compound-containing nanoparticles 1 are obtained.
  • the protective agent is a protective agent having an organic group containing a linking group and a hydrophilic group, or when the protective agent is a protective agent having an organic group containing a linking group and a hydrophobic group And further, replacing the protective agent having an organic group containing the hydrophobic group with a protective agent having an organic group containing a hydrophilic group (not shown), thereby forming the transition metal compound-containing nanoparticle 1 obtain.
  • the protective agent is a protective agent having an organic group containing a linking group and a hydrophobic group
  • the protective agent having an organic group containing the hydrophobic group is replaced with a protective agent having an organic group containing a hydrophilic group
  • the step of (C) may be performed before or after the oxidation step, but there is a concern that the surface state of the nanoparticles may change and the dispersibility may be reduced by the oxidation step, either simultaneously with (C) oxidation step or (C) A) after the oxidation step is preferred.
  • FIG. 2 shows an example of the method for producing the second transition metal compound-containing nanoparticle according to the present invention, and an organic group containing a linking group on the surface of the transition metal and / or the transition metal complex 10 Protected by linking the linking group of the protective agent 30 and then carbonizing the transition metal and / or transition metal complex 10 to form a protected transition metal carbide 20 (having an organic group containing a hydrophilic group) Then, the transition metal carbide is oxidized to obtain transition metal compound-containing nanoparticles 1 as a transition metal carbide oxide 40.
  • the protective agent is a protective agent having an organic group containing a linking group and a hydrophilic group, or when the protective agent is a protective agent having an organic group containing a linking group and a hydrophobic group And further, replacing the protective agent having an organic group containing the hydrophobic group with a protective agent having an organic group containing a hydrophilic group (not shown), thereby forming the transition metal compound-containing nanoparticle 1 obtain.
  • the protective agent is a protective agent having an organic group containing a linking group and a hydrophobic group
  • the protective agent having an organic group containing the hydrophobic group is replaced with a protective agent having an organic group containing a hydrophilic group
  • the step of (b) may be before or after the carbonization step and / or (c) the oxidation step, but the surface state of the nanoparticles is changed by the (b) carbonization step and / or (c) oxidation step, and the dispersibility is It is preferable that the reaction be performed simultaneously with the (c) oxidation step or after the (c) oxidation step, because there is a concern that the amount will decrease.
  • FIG. 2 shows an example of the method for producing the third transition metal compound-containing nanoparticle according to the present invention, wherein the transition metal and / or transition metal complex 10 is carbonized to form transition metal carbide 20, Then, the transition metal carbide is oxidized to form transition metal carbide oxide 40. Next, the surface of the transition metal carbide oxide 40 is protected by linking the linking group of the protective agent 30 having the organic group containing the linking group, and the transition metal compound-containing nanoparticle 1 is obtained.
  • the protective agent is a protective agent having an organic group containing a linking group and a hydrophilic group, or when the protective agent is a protective agent having an organic group containing a linking group and a hydrophobic group And further, replacing the protective agent having an organic group containing the hydrophobic group with a protective agent having an organic group containing a hydrophilic group (not shown), thereby forming the transition metal compound-containing nanoparticle 1 obtain.
  • a transition metal carbide can be obtained by adding a ligand containing a carbon atom such as hexacarbonyl or acetylacetonate and heating.
  • the transition metal complex may be a transition metal complex containing a carbon atom as a ligand, and is preferably a transition metal complex which is decomposed at a temperature as low as possible in a solvent.
  • transition metals such as molybdenum hexacarbonyl, tungsten hexacarbonyl, iron pentacarbonyl, cobalt carbonyl, cyclopentadienyl cobalt dicarbonyl and pentacarbonyl chlororhenium, vanadium acetylacetonate, titanium diisopropoxide bis (acetyl) (Acetonato), iron acetylacetonate, nickel acetylacetonate, palladium acetylacetonate, platinum acetylacetonate, silver acetylacetonate, copper acetylacetonate, acetylacetonate complexes of transition metals such as indium acetylacetonon
  • a method such as heating can be used, for example, when heating, the transition metal and / or transition metal complex can be carbonized by heating at 150 to 400 ° C. can do.
  • the heating in the carbonization step is preferred to be carried out in a solvent from the viewpoint of being able to uniformly carbonize the entire nanoparticles.
  • the transition metal carbide step is preferably performed under an argon gas atmosphere from the viewpoint of maintaining the dispersion stability in the reaction solution.
  • step (B) as the protective agent, those mentioned above for the nanoparticles can be used, and therefore the description thereof is omitted here.
  • the protection step of connecting the linking group of the protective agent having an organic group containing a linking group to the surface of transition metal carbide or the like is preferably performed in a solvent. Specifically, it is preferable to carry out heating and stirring in a solvent in which the protective agent is dispersed. At this time, as the solvent, a solvent having a boiling point of heating temperature + 10 ° C. or more is selected and used. It is preferable to carry out in the presence of a solvent having a boiling point of 200 ° C. or more from the viewpoint that protection with a protective agent can be carried out uniformly and stably in a high temperature environment.
  • heating means for example, heating means, light irradiation means, means for causing active oxygen to act, etc. may be mentioned, and these may be used in combination as appropriate.
  • the heating means may, for example, be a hot plate or an oven.
  • the heating temperature is preferably 50 to 250.degree.
  • An ultraviolet irradiation apparatus is mentioned as a light irradiation means.
  • means for causing active oxygen to act include a method of causing active oxygen to act by ultraviolet light, and a method of causing active oxygen to act by irradiating ultraviolet light to a photocatalyst such as titanium oxide.
  • the interaction between the nanoparticles and the interaction of the nanoparticles with the hole transportable compound are different depending on the heating temperature, the light irradiation amount and the active oxygen amount, so it is preferable to adjust appropriately.
  • oxidizing in order to oxidize transition metal carbide efficiently, it is preferable to carry out in oxygen presence.
  • the protecting agent in the protecting step is a protecting agent having an organic group containing a linking group and a hydrophobic group
  • the protecting agent having an organic group containing the hydrophobic group has an organic group containing a hydrophilic group
  • the step of exchanging for the protective agent is performed in a solvent in which nanoparticles protected with the protective agent having an organic group containing a hydrophobic group can be dispersed, and the protective agent having an organic group containing a hydrophilic group can be dissolved be able to.
  • the protective agent can be exchanged by stirring in a solvent such as chloroform at a temperature of normal temperature (20 ° C.) to about 60 ° C. for about 4 hours to 72 hours.
  • the time required for replacement can be further shortened.
  • the temperature to be heated in the replacement step can be increased by using a high boiling point solvent, and by increasing the temperature, the time required to replace the protective agent can be further shortened. Since aggregation of the nanoparticles is caused by the increase of the protective agent desorbed from the surface, it is preferable to carry out the temperature at the time of replacing the protective agent as low as possible in the temperature range where the protective agent can be exchanged.
  • methods of carbonizing, methods of oxidizing, and methods of protecting with a protective agent can use the respective methods of producing the first nanoparticles described above.
  • the step (A) of carbonizing the transition metal and / or transition metal complex and the step (B) of protecting with a protective agent may be performed simultaneously.
  • the method of producing nanoparticles is a method of producing nanoparticles in the case of containing transition metal carbide oxide as a transition metal compound, it contains transition metal nitride oxide or transition metal sulfide oxide as a transition metal compound.
  • the carbonization raw material added to the transition metal may be a nitriding raw material or a sulfide raw material, or the transition metal complex may be replaced with one containing a nitrogen atom or a sulfur atom, and the same method as described above can be performed.
  • sulfur As a sulfurization raw material added when sulfurizing a transition metal, for example, sulfur, dodecanethiol, benzenethiol and bistrimethylsilyl sulfur can be mentioned.
  • transition metal complex containing a nitrogen atom for example, tungsten pentacarbonyl-N-pentylithonitrile and triamine molybdenum tricarbonyl can be mentioned.
  • the first transition metal compound-containing nanoparticle-dispersed ink according to the present invention is characterized by containing the transition metal compound-containing nanoparticle and a hydrophilic solvent.
  • the first and second transition metal compound-containing nanoparticle-dispersed inks according to the present invention can be used for the above-mentioned applications while facilitating the manufacturing process, and provide, for example, a device capable of achieving long life. It is possible.
  • One or more compounds (U) selected from the group consisting of transition metal carbides, transition metal nitrides and transition metal sulfides contained in the second transition metal compound-containing nanoparticle dispersed ink are described in the above nanoparticles. Transition metal carbide oxides, transition metal nitride oxides and precursors of transition metal sulfide oxides, and their oxidation yields the corresponding oxides. In each of the compounds (U), at least a part of the transition metal and / or the transition metal complex may be carbonized, nitrided or sulfided.
  • transition metal carbide As a method of obtaining transition metal carbide, a conventionally known method can be used, and for example, the carbonization method of the transition metal described in the first method of producing nanoparticles can be used.
  • the carbonization raw material added to the transition metal is a nitriding raw material or a sulfided raw material
  • the transition metal complex may be replaced by one containing a nitrogen atom or a sulfur atom to carbonize the transition metal.
  • hydrophilic solvent As the hydrophilic solvent contained in the first and second transition metal compound-containing nanoparticle dispersion inks, in the first transition metal compound-containing nanoparticle dispersion ink, a transition metal compound-containing nanoparticle and a second transition metal
  • the compound-containing nanoparticle-dispersed ink is not particularly limited as long as the compound (U) and, if necessary, other components such as a protective agent and a hole-transporting compound described later dissolve and disperse well.
  • a hydrophilic solvent a hydrophilic solvent as described in the explanation of the nanoparticles can be used appropriately.
  • an ink for a hole injecting and transporting layer for forming a hole injecting and transporting layer which is used in a device described later
  • a positive electrode to be described later from the viewpoint of further improving the driving voltage of the hole injecting and transporting layer and the device life other than the above essential components.
  • a compound which is soluble in a hydrophilic solvent may be appropriately selected and contained.
  • the content of the hole transportable compound is 10 with respect to 100 parts by mass of the transition metal-containing nanoparticle. It is preferable that the content is about 10000 parts by mass because the hole injecting and transporting property is enhanced and the stability of the film is high to achieve a long life.
  • the hole injecting and transporting layer when the content of the hole transporting compound is too small, it is difficult to obtain the synergistic effect of mixing the hole transporting compound.
  • the content of the hole transportable compound is too large, it is difficult to obtain the effect of using the transition metal-containing nanoparticle.
  • examples of the curable functional group include acrylic functional groups such as acryloyl group and methacryloyl group, vinylene group, epoxy group and isocyanate group.
  • the curable resin may be a thermosetting resin or a photocurable resin, and examples thereof include epoxy resin, phenol resin, melamine resin, polyester resin, polyurethane resin, silicone resin and silane coupling agent. be able to.
  • the transition metal compound-containing nanoparticle dispersion ink generally contains, in a hydrophilic solvent, nanoparticles in the first transition metal compound-containing nanoparticle dispersion ink, and in the second transition metal compound-containing nanoparticle dispersion ink, the transition metal carbide.
  • hole transport in addition to essential components such as at least one compound (U) selected from the group consisting of transition metal nitrides and transition metal sulfides, a protective agent having an organic group including a linking group and a hydrophilic group It is prepared by mixing and dispersing optional components such as sex compounds according to a general preparation method. For mixing and dispersing, a paint shaker or a bead mill can be used.
  • the transition metal compound-containing nanoparticles are filtered out, or purified in one pot without transition metal compound-containing nanoparticles. It is a method of manufacturing a dispersed ink.
  • a second method for producing such a transition metal compound-containing nanoparticle-dispersed ink comprises a transition metal complex containing any atom of carbon, nitrogen or sulfur, a protecting agent having an organic group containing a linking group and a hydrophilic group, And a solution containing a hydrophilic solvent having a boiling point of 160 to 260.degree. C. is heated at 150 to 250.degree.
  • transition metal complex containing any atom of carbon, nitrogen or sulfur a transition metal complex containing an atom of carbon, nitrogen or sulfur as a ligand may be used, and the above-mentioned transition metal compound-containing nano The same ones as described in the particle production method can be used. Moreover, since the protective agent which has an organic group containing a coupling group and a hydrophilic group is the same as that of what was mentioned by the above-mentioned nanoparticle, explanation here is omitted.
  • a hydrophilic solvent having a boiling point of 160 to 260 ° C. can be used as a solvent for the ink as it is relatively easy to perform coating and drying.
  • the hydrophilic solvent having a boiling point of 160 to 260 ° C. include ethylene glycol, propylene glycol, methyl diglycol, butyl glycol, isobutyl glycol, methyl propylene diglycol, butyl propylene glycol, diethylene glycol monobutyl ether acetate, diethylene glycol monobutyl ether, diethylene glycol Dimethyl ether, diethylene glycol ethyl methyl ether, diethylene glycol diethyl ether, ethylene glycol monobutyl ether, diacetone alcohol and the like can be mentioned.
  • the step of carbonizing and the step of protecting with a protective agent are preferably performed under an argon gas atmosphere in order to maintain the dispersion stability in the reaction solution.
  • the heating temperature is preferably in the above temperature range and at least 10 ° C. lower than the boiling point of the hydrophilic solvent.
  • the device according to the present invention is a device having two or more electrodes facing each other on a substrate, and a hole injecting and transporting layer disposed between two electrodes of the two or more electrodes.
  • the hole injection transport layer contains at least the transition metal compound-containing nanoparticle according to the present invention.
  • the hole injecting and transporting layer contains the nanoparticles according to the present invention
  • hole injecting characteristics are improved by the characteristics of the transition metal compound contained, and stability over time and uniformity are achieved. Since the film has high conductivity, it is possible to achieve long life of the device.
  • the lifetime of the nanoparticles used in the device of the present invention can be improved by the reaction of transition metal carbon oxides, transition metal nitride oxides and transition metal compounds such as transition metal sulfide oxides contained in the nanoparticles.
  • the charge transfer complex is easily formed between nanoparticles or when a hole transporting compound is contained, because the nature is high.
  • the formation of the charge transfer complex is, for example, an aromatic ring observed in the vicinity of 6 to 10 ppm of the charge transport compound when the nanoparticles are mixed into a solution of the charge transport compound by 1 H NMR measurement. It is suggested that the phenomenon that the shape and chemical shift value of the proton signal derived from are changed compared with before mixing the nanoparticles is observed.
  • the nanoparticles according to the present invention have very high dispersion stability in a solvent, it is possible to form a nanometer-order thin film having high temporal stability and high uniformity. Since the thin film is hydrophilic, even if an organic layer is formed adjacent to the thin film by a solution coating method using a hydrophobic solvent, the thin film is a film having high stability without being redissolved. . Also, conversely, on the organic layer formed by the solution coating method using a hydrophobic solvent, adjacent to the organic layer formed by the solution coating method using a hydrophilic solvent in which the nanoparticles of the present invention are dispersed. Also, the organic layers can form thin films with high stability without re-dissolution.
  • the device of the present invention provided with a transport layer can realize a device with low voltage drive, high power efficiency, and particularly improved life.
  • the type of the protective agent for nanoparticles it is easy to achieve multifunctionality such as imparting functionality such as charge transportability or adhesion.
  • the device of the present invention is different from the case of using the transition metal oxide of the inorganic compound, and since the nanoparticles have very high dispersion stability in the solvent, the hole injection transport layer is formed by the solution coating method. Manufacturing process is easy because it is possible to form In the device of the present invention, since the hole injecting and transporting layer can be formed by a solution coating method, the hole injecting and transporting layer to the light emitting layer can be formed sequentially on the substrate having a liquid repellent bank only by the application process.
  • the hole injection layer is deposited by high-definition mask deposition or the like
  • the hole transport layer and the light emitting layer are formed by solution coating, and the second electrode is further formed.
  • the device according to the present invention is a device having two or more electrodes facing each other on a substrate, and a hole injecting and transporting layer disposed between the two electrodes.
  • the device according to the present invention includes an organic EL element, an organic transistor, a dye-sensitized solar cell, an organic thin film solar cell, an organic device including an organic semiconductor, a quantum dot light emitting element having a hole injecting and transporting layer, an oxide Also included are compound solar cells and the like.
  • FIG. 3 is a schematic cross-sectional view showing the basic layer configuration of the organic device according to the present invention.
  • the basic layer configuration of the device of the present invention comprises two opposing electrodes (61 and 62) on a substrate 50 and at least a hole injecting and transporting layer 70 disposed between the two electrodes (61 and 62). It has an organic layer 80.
  • the substrate 50 is a support for forming the layers constituting the device, and is not necessarily provided on the surface of the electrode 61, and may be provided on the outermost surface of the device.
  • the hole injecting and transporting layer 70 is a layer containing at least the above-mentioned nanoparticles and responsible for the injection and / or transport of holes from the electrode 61 to the organic layer 80.
  • the organic layer 80 is a layer that exerts various functions depending on the type of device by being subjected to hole injection transport, and may be composed of a single layer or multiple layers.
  • the organic layer is a layer serving as the center of the function of the device (hereinafter referred to as a functional layer) or an auxiliary of the functional layer.
  • the layer hereinafter referred to as an auxiliary layer) is included.
  • the hole transport layer further stacked on the surface of the hole injection transport layer corresponds to the auxiliary layer
  • the light emitting layer stacked on the surface of the hole transport layer corresponds to the functional layer .
  • the electrode 62 is provided where the organic layer 80 including the hole injecting and transporting layer 70 is present between the electrode 62 and the opposing electrode 61.
  • FIG. 4 is a schematic cross-sectional view showing an example of the layer configuration of the organic EL element which is an embodiment of the device according to the present invention.
  • the hole injecting and transporting layer 70 is laminated on the surface of the electrode 61, the hole transporting layer 90a as an auxiliary layer and the light emitting layer 100 as a functional layer are laminated on the surface of the hole injecting and transporting layer 70 It has a form that has been Thus, in the case where the hole injecting and transporting layer characteristic of the present invention is used at the position of the hole injecting layer, the hole injecting and transporting layer forms a charge transfer complex in addition to the improvement of the conductivity.
  • FIG. 5 is a schematic cross-sectional view showing another example of the layer configuration of the organic EL element which is an embodiment of the device according to the present invention.
  • the hole injection layer 90b is formed on the surface of the electrode 61 as an auxiliary layer
  • the hole injection transport layer 70 is laminated on the surface of the hole injection layer 90b
  • the light emitting layer 100 is stacked as a functional layer.
  • FIG. 6 is a schematic cross-sectional view showing another example of the layer configuration of the organic EL element which is an embodiment of the device according to the present invention.
  • the organic EL element of the present invention has a form in which the hole injecting and transporting layer 70 and the light emitting layer 100 as a functional layer are sequentially laminated on the surface of the electrode 61.
  • each of the hole injecting and transporting layer 70, the hole transporting layer 90a, and the hole injecting layer 90b may be composed of a plurality of layers instead of a single layer. .
  • the electrode 61 functions as an anode and the electrode 62 functions as a cathode.
  • the organic EL device when an electric field is applied between the anode and the cathode, holes are injected from the anode through the hole injecting and transporting layer 70 and the hole transporting layer 90a to the light emitting layer 100, and electrons are cathode
  • the holes and electrons injected inside the light emitting layer 100 are recombined to emit light to the outside of the device.
  • all layers present on at least one surface of the light emitting layer need to be transparent to light of at least a part of the visible wavelength range.
  • an electron transport layer and / or an electron injection layer may be provided between the light emitting layer and the electrode 62 (cathode) as required.
  • FIG. 7 is a schematic cross-sectional view showing an example of the layer configuration of an organic transistor which is another embodiment of the device according to the present invention.
  • the organic transistor is disposed on the substrate 50 between the electrode 63 (gate electrode), the opposing electrode 61 (source electrode) and the electrode 62 (drain electrode), and the electrode 63, the electrode 61, and the electrode 62.
  • An organic semiconductor layer 110 as an organic layer, and an insulating layer 120 interposed between the electrode 63 and the electrode 61 and between the electrode 63 and the electrode 61, and on the surface of the electrode 61 and the electrode 62, a hole injecting and transporting layer 70 are formed.
  • the organic transistor has a function of controlling the current between the source electrode and the drain electrode by controlling the charge accumulation in the gate electrode.
  • FIG. 8 is a schematic cross-sectional view showing an example of another layer configuration of the organic transistor which is an embodiment of the device according to the present invention.
  • the organic transistor is disposed on the substrate 50 between the electrode 63 (gate electrode), the opposing electrode 61 (source electrode) and the electrode 62 (drain electrode), and the electrode 63, the electrode 61, and the electrode 62.
  • the hole injecting and transporting layer 70 of the present invention is formed as an organic layer to form an organic semiconductor layer 110, and an insulating layer 120 interposed between the electrode 63 and the electrode 61 and between the electrode 63 and the electrode 62 is provided.
  • the hole injecting and transporting layer 70 is the organic semiconductor layer 110.
  • the hole injecting and transporting layer contains the nanoparticles according to the present invention, can be dispersed in a hydrophilic solvent, and the formed hole injecting and transporting layer becomes hydrophilic. Even if organic layers are formed adjacent to each other by a solution coating method using a hydrophobic solvent, the thin film becomes a stable film without re-dissolution. Therefore, the device of the present invention is suitable for an embodiment including a charge transport layer containing a charge transport compound which can be dissolved and / or dispersed in a hydrophobic solvent adjacent to the hole injection transport layer.
  • the layer configuration of the device of the present invention is not limited to the above-described example, and has substantially the same configuration as the technical idea described in the claims of the present invention, and the same function and effect. Anything that plays is included in the technical scope of the present invention.
  • each layer of the device according to the present invention will be described in detail.
  • the device of the present invention comprises at least a hole injecting and transporting layer.
  • the organic layer is a multilayer, the organic layer further assists the layer serving as the center of the device function and the functional layer in addition to the hole injecting and transporting layer.
  • auxiliary layers that play a role, those functional layers and auxiliary layers will be described in detail in the device examples described later.
  • the hole injecting and transporting layer in the device of the present invention contains at least the nanoparticles according to the present invention, and is preferably formed using the transition metal compound-containing nanoparticle dispersed ink.
  • the hole injecting and transporting layer in the device of the present invention includes not only a continuous layer which completely covers the lower layer surface but also an aspect in which it is a discontinuous layer formed in the form of scattered islands or nets.
  • the hole injecting and transporting layer in the device of the present invention may be composed only of nanoparticles, but may further contain other components. Among them, it is preferable to contain a hole transportable compound from the viewpoint of further reducing the driving voltage and improving the device life.
  • the hole injecting and transporting layer in the device of the present invention may be composed of one mixed layer containing nanoparticles and the hole transporting compound, or the mixture It may consist of a plurality of layers including a layer.
  • the hole injecting and transporting layer may be composed of a plurality of layers in which a layer containing nanoparticles and a layer containing a hole transporting compound are at least laminated.
  • the hole injecting and transporting layer may be a layer in which a layer containing nanoparticles, and a layer containing at least nanoparticles and a hole transporting compound are laminated.
  • the hole injecting and transporting layer of the present invention may contain two or more transition metal compound-containing nanoparticles.
  • the included transition metal and / or transition metal compound may contain two or more different transition metal compound-containing nanoparticles.
  • the energy barrier between the adjacent layers can be further reduced by enabling holes to move stepwise via two types of nanoparticles using nanoparticles with different work functions (HOMO), or
  • HOMO work functions
  • the hole injecting and transporting layer multifunctional by being able to select a plurality of types of protecting agents, for example, nanoparticles protected with a highly liquid repellent protecting agent and a high hole transporting protecting agent By including protected nanoparticles, there is an advantage that a hole injecting and transporting layer having two functions of high liquid repellency and high hole transporting property can be formed.
  • the contained transition metal and / or transition metal compound, and the protective agent may each contain two or more kinds of transition metal compound-containing nanoparticles.
  • the hole transporting compound can be appropriately used as long as it is a compound having a hole transporting property.
  • the hole transportability means that an overcurrent due to hole transport is observed by a known photocurrent method.
  • high molecular weight compounds are also suitably used as the hole transportable compound.
  • the hole transporting high molecular weight compound refers to a high molecular weight compound having a hole transporting property and having a weight average molecular weight of 2,000 or more according to the polystyrene conversion value of gel permeation chromatography (GPC).
  • the hole transporting compound is not particularly limited, and examples thereof include arylamine derivatives, anthracene derivatives, carbazole derivatives, thiophene derivatives, fluorene derivatives, distyrylbenzene derivatives and spiro compounds.
  • arylamine derivatives include N, N′-bis- (3-methylphenyl) -N, N′-bis- (phenyl) -benzidine (TPD), bis (N- (1-naphthyl-N-phenyl) ) Benzidine) ( ⁇ -NPD), 4,4 ′, 4 ′ ′-tris (3-methylphenylphenylamino) triphenylamine (MTDATA) and 4,4 ′, 4 ′ ′-tris (N- (2-naphthyl) And -N-phenylamino) triphenylamine (2-TNATA) and the like.
  • carbazole derivatives examples include 4,4-N, N′-dicarbazole-biphenyl (CBP) and the like.
  • fluorene derivatives examples include N, N′-bis (3-methylphenyl) -N, N′-bis (phenyl) -9,9-dimethylfluorene (DMFL-TPD).
  • distyrylbenzene derivatives include 4- (di-p-tolylamino) -4 ′-[(di-p-tolylamino) styryl] stilbene (DPAVB) and the like.
  • spiro compound for example, 2,7-bis (N-naphthalen-1-yl-N-phenylamino) -9,9-spirobifluorene (Spiro-NPB) and 2,2 ′, 7,7′- And tetrakis (N, N-diphenylamino) -9,9'-spirobifluorene (Spiro-TAD).
  • the polymer which contains an arylamine derivative, an anthracene derivative, a carbazole derivative, a thiophene derivative, a fluorene derivative, a distyryl benzene derivative, a spiro compound etc. in a repeating unit can be mentioned, for example .
  • PC-TPD-DEG copoly [3,3'-hydroxy-tetraphenylbenzidine / diethylene glycol] carbonate
  • PC-TPD-DEG copoly [3,3'-hydroxy-tetraphenylbenzidine / diethylene glycol] carbonate
  • polymer containing anthracene derivative in the repeating unit poly [(9,9-dioctylfluorenyl-2,7-diyl) -co- (9,10-anthracene)] etc. may be mentioned. it can.
  • polymer which contains carbazole in a repeating unit polyvinyl carbazole (PVK) etc. can be mentioned.
  • PVK polyvinyl carbazole
  • Specific examples of the polymer containing a thiophene derivative in the repeating unit include poly [(9,9-dioctylfluorenyl-2,7-diyl) -co- (bithiophene)] and the like.
  • polymer containing a fluorene derivative in the repeating unit examples include poly [(9,9-dioctylfluorenyl-2,7-diyl) -co- (4,4'-) represented by the following formula (1) (N- (4-sec-butylphenyl)) diphenylamine)] (TFB), poly [(9,9-dioctylfluorenyl-2,7-diyl) -alt-co- represented by the following formula (2) (N, N′-bis ⁇ 4-butylphenyl ⁇ -benzidine N, N ′- ⁇ 1,4-diphenylene ⁇ )], poly [(9,9-dioctylfluorenyl- represented by the following formula (3) 2,7-diyl)] (PFO) etc.
  • formula (1) N- (4-sec-butylphenyl)) diphenylamine)
  • TFB poly [(9,9-dioctylfluoreny
  • polymer containing the spiro compound in the repeating unit include poly [(9,9-dioctylfluorenyl-2,7-diyl) -alt-co- (9,9′-spiro-bifluorene-2, 7-diyl)] and the like.
  • hole transportable polymer compounds may be used alone or in combination of two or more.
  • the average film thickness of the hole injecting and transporting layer can be appropriately determined depending on the purpose and the adjacent layer, but it is usually 0.1 to 1000 nm, preferably 1 to 500 nm.
  • the film thickness in the case of having a discontinuous layer such as an island is defined as a film thickness obtained by averaging the whole, and for example, the average film thickness can be obtained by measuring the entire film including the discontinuous layer with an ellipsometer. You can get a value.
  • the work function of the hole injecting and transporting layer is preferably 5.0 to 6.0 eV, more preferably 5.0 to 5.8 eV, from the viewpoint of hole injection efficiency.
  • the hole injecting and transporting layer of the present invention can be formed by a solution coating method.
  • the hole injecting and transporting layer of the present invention is easy to manufacture by being applied by a solution coating method and has a high yield because short circuits are unlikely to occur, and a charge transfer complex is formed to achieve long life. It is preferable from In this case, the hole injecting and transporting layer of the present invention is formed by a solution coating method using a solution (transition metal compound-containing nanoparticle dispersed ink) dispersed in a solvent in which at least the nanoparticles are well dispersed.
  • a solution in which nanoparticles and a hole transporting compound are mixed in a hydrophilic solvent in which both are well dissolved or dispersed is used. It may be formed by a solution coating method.
  • the nanoparticles and the hole transporting compound interact with each other in the solution to form a charge transfer complex. Since this becomes easy, it is possible to form a hole injecting and transporting layer excellent in the hole transporting property and the temporal stability of the film.
  • a layer containing a hole transporting compound may be stacked on a layer containing nanoparticles by a solution coating method.
  • the hole injecting and transporting layer may be a layer in which a layer containing at least nanoparticles and a hole transporting compound is laminated by a solution coating method on a layer containing nanoparticles. The solution coating method will be described below in the section of the device manufacturing method.
  • the substrate is to be a support of the device of the present invention, and may be, for example, a flexible material or a rigid material.
  • materials that can be used include glass, quartz, polyethylene, polypropylene, polyethylene terephthalate, polymethacrylate, polymethylmethacrylate, polymethylacrylate, polyester and polycarbonate.
  • the thickness of the substrate is not particularly limited, but is usually about 0.5 to 2.0 mm.
  • the device of the present invention has two or more opposing electrodes on a substrate.
  • the electrode is preferably formed of a metal or a metal oxide, and known materials can be appropriately adopted. Generally, it can be formed of a metal such as aluminum, gold, silver, nickel, palladium and platinum and a metal oxide such as an oxide of indium and / or tin.
  • the electrode is usually formed on a substrate by a sputtering method, a vacuum evaporation method or the like in many cases, but can also be formed by a wet method such as a coating method or a dip method.
  • the thickness of the electrodes varies depending on the transparency required for each electrode. When transparency is required, it is desirable that the light transmittance of the electrode in the visible light wavelength region is usually 60% or more, preferably 80% or more, and in this case, the thickness is usually 10 to 1000 nm, Preferably, it is about 20 to 500 nm.
  • a metal layer may be further provided on the electrode in order to improve the adhesion stability with the charge injection material.
  • the metal layer is a layer containing a metal, and is formed of the metal or metal oxide generally used for the electrode as described above.
  • the device of the present invention may optionally have a conventionally known electron injection layer and / or electron transport layer between the electron injection electrode and the organic layer.
  • One embodiment of the device of the present invention includes an organic EL element containing an organic layer containing at least the hole injecting and transporting layer of the present invention and the light emitting layer.
  • an organic EL element containing an organic layer containing at least the hole injecting and transporting layer of the present invention and the light emitting layer.
  • each layer constituting the organic EL element will be described in order with reference to FIGS.
  • the substrate 50 is a support of the organic EL element, and may be, for example, a flexible material or a hard material. Specifically, for example, those mentioned in the description of the substrate of the device can be used. In the case where light emitted from the light emitting layer 100 is transmitted through the substrate 50 side and taken out, at least the substrate 50 needs to be a transparent material.
  • the electrodes 61 and 62 differ in which electrode is required to be transparent or not.
  • the electrode 61 is transparent. It needs to be formed of a material, and when light is taken out from the electrode 62 side, the electrode 62 needs to be formed of a transparent material.
  • the electrode 61 provided on the light emitting layer side of the substrate 50 acts as an anode for injecting holes into the light emitting layer, and the electrode 62 provided on the light emitting layer side of the substrate 50 injects electrons into the light emitting layer 100.
  • the anode and the cathode are preferably formed of the metals or metal oxides listed in the description of the electrodes of the device.
  • the hole injecting and transporting layer 70, the hole transporting layer 90a, and the hole injecting layer 90b are appropriately formed between the light emitting layer 100 and the electrode 61 (anode), as shown in FIGS.
  • the hole transport layer 90a may be stacked on the hole injecting and transporting layer 70 according to the present invention, and the light emitting layer 100 may be stacked thereon, as shown in FIG.
  • the hole injecting and transporting layer 70 according to the present invention may be laminated on the injection layer 90b, and the light emitting layer 100 may be laminated thereon, or the electrode 61 according to the present invention as illustrated in FIG.
  • the hole injecting and transporting layer 70 may be stacked, and the light emitting layer 100 may be stacked thereon.
  • the positive hole transport material used for the positive hole transport layer 90a is not specifically limited. It is preferable to use the hole transporting compound described in the hole injecting and transporting layer according to the present invention. Above all, the adhesion stability of the interface between the hole injecting and transporting layer and the hole transporting layer is improved by using the same compound as the hole transporting compound used in the hole injecting and transporting layer 70 according to the present invention adjacent thereto. It is preferable from the point of contributing to long drive life.
  • the hole transport layer 90a can be formed using a hole transport material by the same method as the light emitting layer described later.
  • the thickness of the hole transport layer 90a is usually 0.1 to 1 ⁇ m, preferably 1 to 500 nm.
  • the hole injecting material used for the hole injecting layer 90b is not particularly limited, and The following compounds can be used. For example, oxides such as phenylamine type, star burst type amine type, phthalocyanine type, vanadium oxide, molybdenum oxide, ruthenium oxide, aluminum oxide, amorphous carbon, polyaniline, polythiophene derivatives and the like can be mentioned.
  • the hole injection layer 90 b can be formed using a hole injection material by the same method as the light emitting layer 100 described later.
  • the thickness of the hole injection layer 90b is usually 1 nm to 1 ⁇ m, preferably 2 nm to 500 nm, and more preferably 5 nm to 200 nm.
  • the energy barrier for hole injection at each interface is as small as possible, and the energy barrier for the large hole injection between the electrode 61 and the light emitting layer 100 is complemented.
  • the material constituting the hole injecting and transporting layer 70 Select TFB (work function 5.4 eV) and nanoparticles with a work function of 5.0 to less than 5.4 eV as this and stack them in this order, and the value of the work function of each layer from the electrode 61 side toward the light emitting layer 100 is It is preferable to arrange so that it may take layer structure which becomes large in order.
  • the value of the work function or the HOMO is quoted from the measured value of photoelectron spectroscopy using a photoelectron spectrometer AC-1 (manufactured by Riken Keiki Co., Ltd.).
  • the large energy barrier of hole injection between the electrode 61 (work function 5.0 eV immediately after UV ozone cleaning) and the light emitting layer 100 (eg HOMO 5.7 eV) the value of HOMO is stepped
  • the light emitting layer 100 is formed of a light emitting material between the substrate 50 on which the electrode 61 is formed and the electrode 62, as shown in FIGS.
  • the material used for the light emitting layer of the present invention is not particularly limited as long as it is a material generally used as a light emitting material, and any of fluorescent materials and phosphorescent materials can be used. Specifically, materials such as dye-based light emitting materials and metal complex-based light emitting materials can be mentioned, and any of low molecular weight compounds and high molecular weight compounds can be used.
  • dye-based light emitting materials include arylamine derivatives, anthracene derivatives, (phenylanthracene derivatives), oxadiazole derivatives, oxazole derivatives, oligothiophene derivatives, carbazole derivatives, cyclopentadiene derivatives, silole derivatives, distyrylbenzene derivatives, Distyrylpyrazine derivative, distyrylarylene derivative, silole derivative, stilbene derivative, spiro compound, thiophene ring compound, tetraphenylbutadiene derivative, triazole derivative, triphenylamine derivative, trifnylamine derivative, pyrazoloquinoline derivative, hydrazone derivative, pyra Zorine dimers, pyridine ring compounds, fluorene derivatives, phenanthrolines, perinone derivatives, perylene derivatives and the like can be mentioned. In addition, compounds of these dimers, trimers, oligomers, and derivatives of two
  • metal complex light emitting materials examples include aluminum quinolinol complex, benzoquinolinol beryllium complex, benzoxazole zinc complex, benzothiazole zinc complex, azomethyl zinc complex, porphyrin zinc complex, europium complex, etc., or Al, Zn, Be at the central metal, etc.
  • metal complexes having a rare earth metal such as Tb, Eu, Dy, etc., and having, as a ligand, oxadiazole, thiadiazole, phenylpyridine, phenylbenzimidal, quinoline structure and the like. These materials may be used alone or in combination of two or more.
  • the high molecular weight light emitting material materials in which the low molecular weight material is introduced into the molecule as a straight chain, a side chain or a functional group, a polymer, a dendrimer or the like can be used.
  • materials in which the low molecular weight material is introduced into the molecule as a straight chain, a side chain or a functional group, a polymer, a dendrimer or the like can be used.
  • polyparaphenylene vinylene derivatives, polythiophene derivatives, polyparaphenylene derivatives, polysilane derivatives, polyacetylene derivatives, polyvinylcarbazole, polyfluorenone derivatives, polyfluorene derivatives and polyquinoxaline derivatives, copolymers thereof and the like can be mentioned.
  • a doping material may be added to the light emitting layer for the purpose of improving the light emission efficiency or changing the light emission wavelength.
  • these may be included as a light emitting group in the molecular structure.
  • doping materials for example, perylene derivatives, coumarin derivatives, rubrene derivatives, quinacdrine derivatives, squalium derivatives, porphyrin derivatives, styryl dyes, tetracene derivatives, pyrazoline derivatives, decacyclene, phenoxazone, quinoxaline derivatives, carbazole derivatives and fluorene derivatives Can be mentioned.
  • transduced spiro group into these can also be used. These materials may be used alone or in combination of two or more.
  • any of a low molecular weight compound or a high molecular weight compound which emits fluorescence, and a low molecular weight compound or a high molecular weight compound which emits phosphorescence can be used as a material of the light emitting layer.
  • the hole injecting and transporting layer forms a charge transfer complex, and a hydrophobic solvent such as xylene used in the solution coating method
  • a hydrophobic solvent such as xylene used in the solution coating method
  • a polymer compound that emits fluorescence or a polymer compound that contains a low molecular compound that emits fluorescence, or a polymer compound that emits phosphorescence or a low molecular compound that emits phosphorescence can be suitably used.
  • the light emitting layer can be formed by a solution application method, a vapor deposition method, or a transfer method using a light emitting material.
  • a solution application method the same method as described in the item of the method of manufacturing a device described later can be used.
  • the evaporation method is, for example, in the case of a vacuum evaporation method, the material of the light emitting layer is put in a crucible installed in a vacuum vessel, and the inside of the vacuum vessel is evacuated to about 10 -4 Pa by a suitable vacuum pump.
  • the crucible is heated to evaporate the material of the light emitting layer, and the light emitting layer 100 is placed on the laminate of the substrate 50 placed facing the crucible, the electrode 61, the hole injecting and transporting layer 70, and the hole transporting layer 90a. Let it form.
  • the transfer method is, for example, bonding a light emitting layer previously formed on a film by a solution coating method or a vapor deposition method to a hole injecting and transporting layer 70 provided on an electrode, and heating the light emitting layer 100 by a hole injecting and transporting layer 70. It is formed by transcribing onto.
  • the hole injecting and transporting layer side of the laminate in which the film, the light emitting layer 100, and the hole injecting and transporting layer 70 are laminated in this order may be transferred onto the electrode.
  • the thickness of the light emitting layer is usually about 1 to 500 nm, preferably about 20 to 1000 nm.
  • the present invention is advantageous in that the hole injecting and transporting layer is preferably formed by a solution coating method, so that the process cost can be reduced when the light emitting layer is also formed by a solution coating method.
  • FIG.7 Another embodiment of the device according to the invention is an organic transistor.
  • each layer which comprises an organic transistor is demonstrated using FIG.7 and FIG.8.
  • the hole injection transport layer 70 is formed on the surfaces of the electrode 61 (source electrode) and the electrode 62 (drain electrode), each electrode and the organic semiconductor layer The hole injecting and transporting ability between them is high, and the film stability of the hole injecting and transporting layer of the present invention is high, which contributes to the long drive life.
  • the hole injecting and transporting layer 70 of the present invention as shown in FIG. 8 may function as the organic semiconductor layer 110.
  • a hole injecting and transporting layer 70 is formed on the surfaces of the electrode 61 (source electrode) and the electrode 62 (drain electrode). You may form the positive hole injection transport layer 70 of this invention in which material differs in the formed positive hole injection transport layer.
  • a low molecular weight or high molecular weight organic semiconductor material of donor nature can be used as a material for forming the organic semiconductor layer.
  • the organic semiconductor materials include porphyrin derivatives, arylamine derivatives, polyacene derivatives, perylene derivatives, rubrene derivatives, coronene derivatives, perylenetetracarboxylic acid diimide derivatives, perylenetetracarboxylic acid dianhydride derivatives, polythiophene derivatives, polyparaphenylene derivatives, Polyparaphenylene vinylene derivative, polypyrrole derivative, polyaniline derivative, polyfluorene derivative, polythiophene vinylene derivative, polythiophene-heterocyclic aromatic copolymer and its derivative, ⁇ -6-thiophene, ⁇ -4-thiophene, oligoacene derivative of naphthalene, Oligothiophene derivatives, pyromellitic
  • metal phthalocyanines such as a phthalocyanine and copper phthalocyanine
  • arylamine derivative for example, m-TDATA
  • polyacene derivatives include naphthalene, anthracene, naphthacene and pentacene.
  • the organic transistor including the hole injecting and transporting layer of the present invention as shown in FIG. 7 is formed, as the compound constituting the organic semiconductor layer 110, it can be used in the hole injecting and transporting layer of the present invention
  • a hole transportable compound in particular a hole transportable polymer compound, improves the adhesion stability of the interface between the hole injecting and transporting layer 70 and the organic semiconductor layer 110 of the present invention, and extends the driving life. It is preferable from the point of contribution.
  • the carrier mobility of the organic semiconductor layer is preferably 10 -6 cm / Vs or more, particularly 10 -3 cm / Vs or more for an organic transistor, from the viewpoint of transistor characteristics.
  • the organic semiconductor layer can be formed by a solution coating method or a dry process, similarly to the light emitting layer of the organic EL element.
  • the substrate, the gate electrode, the source electrode, the drain electrode, and the insulating layer are not particularly limited, and can be formed using, for example, the following materials.
  • the substrate 50 is a support of the device of the present invention, and may be, for example, a flexible material or a rigid material.
  • the same substrate as the substrate of the organic EL element can be used.
  • the gate electrode, the source electrode, and the drain electrode are not particularly limited as long as they are conductive materials, but from the viewpoint of forming the hole injecting and transporting layer 70 using the transition metal compound-containing nanoparticle according to the present invention Or it is preferable that it is a metal oxide.
  • the same metal or metal oxide as the electrode in the above-mentioned organic EL element can be used, but platinum, gold, silver, copper, aluminum, indium, ITO and carbon are particularly preferable.
  • an inorganic oxide having a high dielectric constant is particularly preferable.
  • silicon oxide, aluminum oxide, tantalum oxide, titanium oxide, tin oxide, vanadium oxide, barium strontium titanate, barium zirconate titanate, lead zirconate titanate, lead lanthanum titanate, strontium titanate examples thereof include barium titanate, barium magnesium fluoride, bismuth titanate, strontium bismuth titanate, strontium bismuth tantalate, bismuth tantalate niobate and yttrium trioxide.
  • Inorganic nitrides such as silicon nitride and aluminum nitride can also be suitably used.
  • organic compound polyimide, polyamide, polyester, polyacrylate, radical photopolymerization system, photocurable resin of cationic photopolymerization system, copolymer containing an acrylonitrile component, polyvinyl phenol, polyvinyl alcohol, novolac resin and cyanoethyl pullulan , Polymer bodies, phosphazene compounds including elastomer bodies, and the like can be used.
  • the hole injection transport layer is also used for dye-sensitized solar cells, organic thin film solar cells, other organic devices such as organic semiconductors, quantum dot light emitting devices having a hole injection transport layer, oxide compound solar cells, etc. If it is set as the hole injection transport layer which concerns on the said invention, the other structure will not be specifically limited, It may be suitably the same as a well-known structure.
  • a first method of manufacturing a device according to the present invention is a method of manufacturing a device having two or more electrodes facing each other on a substrate, and a hole injecting and transporting layer disposed between two electrodes of the two or more electrodes. Forming a hole injecting and transporting layer on any of the layers on the electrode using the first transition metal compound-containing nanoparticle dispersed ink.
  • a second method of producing a device according to the present invention is a method of producing a device having two or more electrodes facing each other on a substrate, and a hole injecting and transporting layer disposed between two electrodes of the two or more electrodes. Forming a hole injecting and transporting layer on any layer on the electrode using the second transition metal compound-containing nanoparticle-dispersed ink; Oxidizing the compound (U).
  • the hole injecting and transporting layer containing nanoparticles is formed by the solution coating method using the first or second transition metal compound-containing nanoparticle dispersed ink as described above. Be done.
  • a deposition apparatus is not required at the time of formation of the hole injecting and transporting layer, and coating can be separately performed without using mask deposition and the like, productivity is high, and electrodes and holes are formed. It is possible to form a device with high adhesion stability between the interface of the injection and transport layer and the interface between the hole injection and transport layer and the organic layer.
  • the solution coating method is a method in which the first or second transition metal compound-containing nanoparticle dispersed ink is coated on an electrode or layer serving as a base and dried to form a hole injecting and transporting layer.
  • a liquid dropping method such as immersion method, spray coating method, spin coating method, blade coating method, dip coating method, casting method, roll coating method, bar coating method, die coating method and ink jet method etc. may be mentioned.
  • spin coating is preferably used.
  • a liquid dropping method such as an ink jet method capable of depositing the hole injecting and transporting layer regioselectively on the substrate is preferably used.
  • the immersion method and the dip coating method are suitably used.
  • the second method for producing a device at least one compound selected from the group consisting of transition metal carbides, transition metal nitrides and transition metal sulfides contained in transition metal compound-containing nanoparticle dispersed ink
  • oxidizing (U) it is possible to form a layer containing a transition metal oxide having no solvent solubility using a solution coating method without using a vapor deposition method.
  • the compound (U) in the hole injecting and transporting layer into the corresponding transition metal carbide, transition metal nitride, or transition metal sulfide, the adjacent organic layer and the hole injecting and transporting layer are solution-coated with each other.
  • the step of oxidizing the compound (U) may be performed before the step of forming a hole injecting and transporting layer, or a hole injecting and transporting layer is formed. It may be performed after the process.
  • examples of the oxidation method include heating means, light irradiation means, means for causing active oxygen, and the like in the presence of oxygen, and these may be used in combination as appropriate.
  • the method may be the same as the method described in the above-described method of producing nanoparticles.
  • transition metal carbide, transition metal on any layer on the electrode, using the second transition metal compound-containing nanoparticle dispersed ink Forming a hole injecting and transporting layer containing at least one compound (U) selected from the group consisting of nitrides and transition metal sulfides and a protective agent, and the compound in the hole injecting and transporting layer
  • the production method may include the step of oxidizing U) to transition metal carbon oxides, transition metal nitride oxides or transition metal sulfide oxides, respectively. In this way, a hole injecting and transporting layer containing nanoparticles can be formed.
  • the transition metal carbide and transition contained in the second transition metal compound-containing nanoparticle dispersed ink before the step of forming the hole injecting and transporting layer A step of oxidizing one or more types of compounds (U) selected from the group consisting of metal nitrides and transition metal sulfides is performed to make the compounds (U) into nanoparticles.
  • the oxidized transition metal compound-containing nanoparticle dispersed ink is used to form a hole injection transport layer containing nanoparticles. After the formation of the layer, an oxidation step may be further performed.
  • the thickness of the layer or film is represented by the average film thickness.
  • the mixed solution is cooled to room temperature (24 ° C.), and the atmosphere is changed from an argon gas atmosphere to an air atmosphere to disperse polyvinyl pyrrolidone protected molybdenum carbide oxide-containing nanoparticles in a solvent; A substance-containing nanoparticle ink is obtained.
  • the mixture was brought to an argon gas atmosphere and heated to 280 ° C. with stirring, and the temperature was maintained for 1 hour. Thereafter, the mixture is cooled to room temperature (24 ° C.), and after changing from an argon gas atmosphere to the atmosphere, 20 g of ethanol is added, and then the precipitate is separated from the reaction solution by centrifugation, as shown below Purification by reprecipitation was performed according to the procedure. That is, the precipitate was mixed with 3 g of chloroform to form a dispersion, and 6 g of ethanol was dropped to this dispersion to obtain a purified precipitate.
  • the reprecipitated solution thus obtained is centrifuged, and the precipitate is separated from the reaction solution, and then dried to obtain a purified product of black n-hexadecylamine-protected molybdenum carbide oxide nanoparticles I got Next, 0.1 g of the synthesized n-hexadecylamine-protected molybdenum carbide oxide nanoparticles, 0.8 g of thioglycollic acid (manufactured by Tokyo Kasei Kogyo Co., Ltd.) and 20 g of chloroform are weighed in a 50 ml eggplant flask, The mixture was heated to 50.degree. C. with stirring at and maintained at that temperature for 2 days.
  • the mixture was cooled to room temperature (24 ° C.), and the precipitate was separated from the reaction solution by centrifugation, and purification by reprecipitation was performed according to the following procedure. That is, the precipitate was mixed with 5 g of 2-propanol to make a dispersion, and 12 g of hexane was dropped to this dispersion to obtain a purified precipitate. Next, the reprecipitated solution was centrifuged, and the precipitate was separated from the reaction solution, and then dried to obtain thioglycolic acid-protected molybdenum carbide oxide nanoparticles. A molybdenum carbide oxide-containing nanoparticle ink was obtained by dispersing the molybdenum carbide oxide-containing nanoparticles thus obtained in a concentration of 0.5% by weight with respect to 2-propanol.
  • the measurement sample was prepared by dispersing the black powder of molybdenum carbide oxide nanoparticles protected with n-hexadecylamine, which is an intermediate obtained in Preparation Example 2, in air at a concentration of 0.4% by mass in cyclohexanone.
  • An ink was made. The ink was spin coated on a glass substrate with ITO in air to form a thin film. The thin film was dried in air at 200 ° C. for 30 minutes. The thickness of the thin film after drying was 10 nm.
  • the film thickness is determined by forming a layer formed of the material to be measured as a single layer on a cleaned ITO-attached glass substrate and forming a step with a cutter knife, and then measuring the height of the step with a probe microscope (S The measurement was performed in tapping mode using Nanopics 1000 manufactured by I. Nano Technology Co., Ltd.
  • the n-hexadecylamine-protected nanoparticles which are intermediates obtained in Production Example 2, are nanoparticles of molybdenum carbide oxide, and the surface layer It is inferred that the portion is a molybdenum carbide oxide having a valence of +6, and the inside has a shell structure that is a molybdenum carbide oxide having a valence of +4 from the surface layer.
  • Example 1 Preparation of Organic Diode
  • the organic diode element is formed by depositing an anode on a glass substrate, a layer containing transition metal compound-containing nanoparticles synthesized in Preparation Example 1 as a hole injecting and transporting layer, an organic semiconductor layer, and a cathode in this order.
  • the ITO-attached glass substrate was subjected to ultrasonic cleaning in the order of water, acetone and 2-propanol. Subsequently, the ITO was patterned by an etching method.
  • Example 2 Preparation of Organic Diode Example 1 is the same as Example 1 except that the transition metal compound-containing nanoparticle-containing ink prepared in Preparation Example 2 is used instead of the transition metal compound-containing nanoparticle-containing ink prepared in Preparation Example 1 Then, the organic diode of Example 2 was manufactured.
  • Comparative Example 1 Preparation of Organic Diode An organic diode of Example 2 was produced in the same manner as Example 1 except that the hole injecting and transporting layer containing the transition metal compound-containing nanoparticle was not formed in Example 1.
  • the atmosphere was changed from the vacuum to the atmosphere, and 0.8 g of molybdenum hexacarbonyl (manufactured by Kanto Chemical Co., Ltd.) was added.
  • the mixture was brought to an argon gas atmosphere and heated to 280 ° C. with stirring, and the temperature was maintained for 1 hour. Thereafter, the mixture is cooled to room temperature (24 ° C.), and after changing from an argon gas atmosphere to the atmosphere, 20 g of methanol is added, and then the precipitate is separated from the reaction solution by centrifugation, as shown below. Purification by reprecipitation was performed according to the procedure.
  • the precipitate was mixed with 3 g of chloroform to form a dispersion, and 6 g of methanol was dropped to this dispersion to obtain a purified precipitate.
  • the reprecipitated solution thus obtained is centrifuged, and the precipitate is separated from the reaction solution and then dried to obtain black tri-n-octyl phosphine oxide protected molybdenum carbide oxide nanoparticles.
  • the purified product was obtained.
  • Production Example 4 In the same manner as in Production Example 3, except that sodium 2-mercaptoethanesulfonate was used instead of sodium 3-mercapto-1-propanesulfonate in the production of the molybdenum carbide oxide-containing nanoparticles of Production Example 3. A sodium 2-mercaptoethane sulfonate protected molybdenum oxide-containing nanoparticle ink was prepared.
  • Production Example 6 The same procedure as in Production Example 3 was repeated, except that 6-amino-1-hexanol was used instead of sodium 3-mercapto-1-propanesulfonate in the production of the molybdenum carbide-containing oxide-containing nanoparticles of Production Example 3. A 6-amino-1-hexanol protected molybdenum oxide-containing nanoparticle ink was prepared.
  • the atmosphere was changed from the vacuum to the atmosphere, and 0.8 g of molybdenum hexacarbonyl (manufactured by Kanto Chemical Co., Ltd.) was added.
  • the mixture was brought to an argon gas atmosphere and heated to 180 ° C. with stirring, and the temperature was maintained for 2 hours.
  • the mixture is then cooled to room temperature (24.degree. C.) and black 12-amino-1-dodecanol protected molybdenum oxide nanoparticles are incorporated into 2-methyl-2,4-pentanediol.
  • a dispersed molybdenum oxide-containing nanoparticle ink was obtained.
  • Example 3 In the procedure described below, a laminate of a transparent anode on a glass substrate, a layer containing molybdenum carbide oxide-containing nanoparticles as a hole injecting and transporting layer, and a layer containing a hole transporting compound, a hole transporting layer
  • the light emitting layer, the hole blocking layer, the electron injection layer, and the cathode were formed in this order and stacked, and finally sealed, to fabricate an organic EL element. Except for the transparent anode and the hole injecting and transporting layer, work was performed in a nitrogen-substituted glove box having a water concentration of 0.1 ppm or less and an oxygen concentration of 0.1 ppm or less.
  • an ITO thin film (thickness: 150 nm) was used as a transparent anode.
  • the ITO-attached glass substrate manufactured by Sanyo Vacuum Industry Co., Ltd.
  • the patterned ITO substrate was subjected to ultrasonic cleaning in the order of a neutral detergent and ultrapure water, and subjected to UV ozone treatment.
  • the HOMO of ITO after UV ozone treatment was 5.0 eV.
  • the molybdenum carbide oxide-containing nanoparticles obtained in the above-mentioned Production Example 3 were dissolved in water at a concentration of 0.4% by mass to prepare an ink for a hole injecting and transporting layer.
  • the above-described ink for a hole injecting and transporting layer was applied by spin coating on the cleaned anode to form a hole injecting and transporting layer containing nanoparticles.
  • the hole injecting and transporting layer ink After the application of the hole injecting and transporting layer ink, it was dried at 200 ° C. for 30 minutes in the air using a hot plate to evaporate the solvent. The thickness of the hole injecting and transporting layer after drying was 10 nm.
  • a polyvinylcarbazole (PVK) thin film (thickness: 10 nm) manufactured by Aldrich was applied and formed as a hole transporting layer.
  • the weight average molecular weight of PVK is 1.1 million.
  • a solution of PVK dissolved in a solvent dichloroethane at a concentration of 0.5% by mass was filtered with a 0.2 ⁇ m filter and applied by spin coating to form a film. After application of the PVK solution, it was dried at 150 ° C. for 30 minutes using a hot plate to evaporate the solvent.
  • tris [2- (p-tolyl) pyridine] iridium (III) (Ir (mppy) 3 ) is contained as a light emitting dopant as a light emitting layer on the deposited hole transport layer
  • a mixed thin film containing 4'-bis (2,2-carbazol-9-yl) biphenyl (CBP) as a host was coated and formed.
  • a solution obtained by dissolving CBP at 1% by mass and Ir (mppy) 3 at a concentration of 0.05% by mass in toluene as a solvent was applied by spin coating to form a film. After application of the ink, it was dried at 100 ° C. for 30 minutes using a hot plate to evaporate the solvent. Next, a bis (2-methyl-8-quinolilato) (p-phenylphenolate) aluminum complex (BAlq) thin film was vapor deposited on the light emitting layer as a hole blocking layer. The BAlq thin film was formed to have a thickness of 15 nm by resistance heating in vacuum (pressure: 1 ⁇ 10 ⁇ 4 Pa).
  • Alq3 thin film was vapor deposited on the hole blocking layer as an electron transporting layer.
  • the Alq3 thin film was formed to have a thickness of 15 nm by resistance heating in vacuum (pressure: 1 ⁇ 10 ⁇ 4 Pa).
  • LiF (thickness: 0.5 nm) as an electron injection layer and Al (thickness: 100 nm) as a cathode were sequentially formed on the manufactured electron transport layer.
  • the film was formed by resistance heating evaporation in vacuum (pressure: 1 ⁇ 10 ⁇ 4 Pa).
  • sealing was performed using a non-alkali glass and a UV curable epoxy adhesive in a glove box, to fabricate an organic EL element of Example 3.
  • Example 4 In the production of the organic EL device of Example 3, the hole injection / transport layer was prepared except that the nanoparticles of Production Example 4 were used to form the hole injection / transport layer instead of using the nanoparticles of Production Example 3. The organic EL element of Example 4 was produced in the same manner as Example 3.
  • Example 5 In the production of the organic EL device of Example 3, the hole injection transport layer is carried out except that the nanoparticles of Production Example 5 are used to form the hole injection transport layer instead of using the nanoparticles of Production Example 3.
  • the organic EL element of Example 5 was produced in the same manner as Example 3.
  • Example 6 In the production of the organic EL device of Example 3, the hole injection transport layer is carried out except that the nanoparticles of Production Example 6 are used to form the hole injection transport layer instead of using the nanoparticles of Production Example 3.
  • the organic EL element of Example 6 was produced in the same manner as Example 3.
  • Example 7 In the manufacture of the organic EL device of Example 3, the hole injection and transport layer was carried out except that the nanoparticles of Production Example 7 were used to form the hole injection and transport layer instead of using the nanoparticles of Production Example 3.
  • the organic EL element of Example 7 was produced in the same manner as Example 3.
  • the organic EL devices fabricated in the above Examples 3 to 7 and Comparative Examples 2 to 3 were driven at 10 mA / cm 2 , and the emission luminance and the spectrum were measured by a spectroradiometer SR-2 manufactured by Topcon Corporation.
  • the organic EL elements produced in the above-described Examples and Comparative Examples all emitted green light from Ir (mppy) 3 .
  • the measurement results are shown in Table 2.
  • the current efficiency was calculated from the drive current and the luminance.
  • the life characteristics of the organic EL element were evaluated by observing how the luminance gradually decreased with time by constant current driving. Here, the time (hour) until the retention ratio deteriorates to 50% of the initial luminance of 1,000 cd / m 2 is defined as the life (LT 50).
  • the dispersibility of the ink is poor, the hole injecting and transporting layer tends to aggregate, and the device tends to short. Also in this dispersibility, it is understood that the molybdenum carbide oxide of the present invention is superior.
  • Example 3 in which the protective agent in the nanoparticles was changed was compared with the devices of Example 4, Example 5, Example 6, and Example 7, similar characteristics were obtained.
  • Example 8 The n-octyltrichlorosilane (OTS) treatment was performed on Si / SiO 2 , and Au was manufactured by a 30 nm vacuum evaporation method as a source-drain electrode. The channel length was 50 ⁇ m and the channel width was 1 mm. Subsequently, using the molybdenum carbon oxide-containing nanoparticle ink prepared in Production Example 2 by an inkjet method, a hole injecting and transporting layer containing a molybdenum carbon oxide was formed. After thin film formation, it was dried at 200 ° C. for 30 minutes in the atmosphere using a hot plate to evaporate the solvent.
  • OTS n-octyltrichlorosilane
  • the molybdenum nanoparticles prepared in Preparation Example 2 using a hydrophilic solvent could be formed only on the source and drain electrodes without wetting and spreading to the OTS-treated channel portion.
  • An organic thin film transistor was formed.
  • Comparative example 4 An organic thin film transistor of Comparative Example 4 was produced in the same manner as in Example 8 except that a hole injecting and transporting layer containing molybdenum carbide oxide nanoparticles was not formed in Example 8.
  • Example 8 As a result of comparing organic TFT characteristics of the organic thin film transistors (TFTs) obtained in Example 8 and Comparative Example 4, a hole injecting and transporting layer using the molybdenum carbide oxide-containing nanoparticles prepared in Production Example 2 was formed. In Example 8 in which the increase in the On current and the improvement in the FET mobility were confirmed.
  • transition metal compound-containing nanoparticle 5 supported carrier 10 transition metal and / or transition metal complex 20 transition metal carbide 30 protective agent 40 transition metal carbon oxide 50 substrate 61, 62, 63 electrode 70 hole injection transport layer 80 organic layer 90a Hole transport layer 90 b Hole injection layer 100 Light emitting layer 110 Organic semiconductor layer 120 Insulating layer

Abstract

Provided is a novel nanoparticle containing a metal compound, which can be dispersed in a solvent stably. A nanoparticle containing a transition metal compound, which is characterized by being composed of at least one transition metal compound selected from the group consisting of a transition metal oxycarbide, a transition metal oxynitride and a transition metal oxysulfide and a protective agent having a hydrophilic-group-containing organic group and linked to the transition metal compound through a linking group, and is also characterized by being dispersible in a hydrophilic solvent.

Description

遷移金属化合物含有ナノ粒子及びその製造方法、遷移金属化合物含有ナノ粒子分散インク及びその製造方法、並びに正孔注入輸送層を有するデバイス及びその製造方法Transition metal compound-containing nanoparticle and method of manufacturing the same, transition metal compound-containing nanoparticle dispersed ink and method of manufacturing the same, and device having a hole injecting and transporting layer and method of manufacturing the same
 本発明は、遷移金属化合物含有ナノ粒子及びその製造方法、遷移金属化合物含有ナノ粒子分散インク及びその製造方法、並びに、有機エレクトロルミネッセンス素子などの有機デバイス及び量子ドット発光素子を含む正孔注入輸送層を有するデバイス及びその製造方法に関するものである。 The present invention relates to a transition metal compound-containing nanoparticle and a method for producing the same, a transition metal compound-containing nanoparticle dispersed ink and a method for producing the same, and an organic device such as an organic electroluminescent device and a hole injection transport layer including a quantum dot light emitting device And a method of manufacturing the same.
 有機物を用いたデバイスは、有機エレクトロルミネッセンス素子(以下、有機EL素子という。)、有機トランジスタ、有機太陽電池、有機半導体等、広範な基本素子及び用途への展開が期待されている。また、その他に正孔注入輸送層を有するデバイスには、量子ドット発光素子、酸化物系化合物太陽電池等がある。 A device using an organic substance is expected to be developed into a wide range of basic elements and applications, such as organic electroluminescent elements (hereinafter referred to as organic EL elements), organic transistors, organic solar cells, organic semiconductors, and the like. In addition, as devices having a hole injecting and transporting layer, there are a quantum dot light emitting element, an oxide compound solar cell and the like.
 有機EL素子の素子構造は、陰極/有機層/陽極から構成される。この有機層は、初期の有機EL素子においては発光層/正孔注入層とからなる2層構造であったが、現在では、高い発光効率と長駆動寿命を得るために、電子注入層/電子輸送層/発光層/正孔輸送層/正孔注入層とからなる5層構造など、様々な多層構造が提案されている。
これら電子注入層、電子輸送層、正孔輸送層、正孔注入層などの発光層以外の層には、電荷を発光層へ注入・輸送しやすくする効果、あるいはブロックすることにより電子電流と正孔電流のバランスを保持する効果や、光エネルギー励起子の拡散を抑制するなどの効果があるといわれている。
The element structure of the organic EL element is composed of a cathode / organic layer / anode. This organic layer had a two-layer structure consisting of the light emitting layer / the hole injection layer in the initial organic EL element, but at present, the electron injection layer / electron is to obtain high luminous efficiency and long drive life. Various multilayer structures have been proposed, such as a five-layer structure consisting of transport layer / light emitting layer / hole transport layer / hole injection layer.
The layers other than the light emitting layer such as the electron injection layer, the electron transport layer, the hole transport layer, and the hole injection layer have an effect of facilitating injection and transport of charges to the light emitting layer, or blocking by electron current and positive current It is said to have the effect of maintaining the balance of the hole current and the effect of suppressing the diffusion of light energy excitons.
 電荷輸送能力および電荷注入能力の向上を目的として、酸化性化合物を、正孔輸送性材料に混合して電気伝導度を高くすることが試みられている。
 特許文献1~4においては、酸化性化合物すなわち電子受容性化合物として、化合物半導体である金属酸化物が用いられている。注入特性や電荷移動特性が良い正孔注入層を得ることを目的として、例えば、五酸化バナジウムや三酸化モリブデンなどの金属酸化物を用いて蒸着法で薄膜を形成したり、或いはモリブデン酸化物とアミン系の低分子化合物との共蒸着により混合膜を形成している。
 特許文献5においては、五酸化バナジウムの塗膜形成の試みとして、酸化性化合物すなわち電子受容性化合物として、オキソバナジウム(V)トリ-i-プロポキシドオキシドを溶解させた溶液を用い、それと正孔輸送性高分子との混合塗膜の形成後に水蒸気中で加水分解させてバナジウム酸化物として、電荷移動錯体を形成させる作製方法が挙げられている。
 特許文献6においては、三酸化モリブデンの塗膜形成の試みとして、三酸化モリブデンを物理的に粉砕して作製した微粒子を溶液に分散させてスラリーを作製し、それを塗工して正孔注入層を形成して長寿命な有機EL素子を作製することが記載されている。
In order to improve charge transportability and charge injection capability, it has been attempted to mix an oxidizing compound with a hole transportable material to increase the electrical conductivity.
In Patent Documents 1 to 4, metal oxides which are compound semiconductors are used as oxidizing compounds, that is, electron accepting compounds. For the purpose of obtaining a hole injection layer having good injection characteristics and charge transfer characteristics, for example, a thin film is formed by a vapor deposition method using a metal oxide such as vanadium pentoxide or molybdenum trioxide, or with a molybdenum oxide The mixed film is formed by co-evaporation with an amine low molecular weight compound.
In Patent Document 5, as an attempt to form a coating film of vanadium pentoxide, a solution in which oxovanadium (V) tri-i-propoxide oxide is dissolved is used as an oxidizing compound, that is, an electron accepting compound, There is mentioned a preparation method of forming a charge transfer complex as a vanadium oxide by hydrolysis in water vapor after formation of a mixed coating film with a transportable polymer.
In Patent Document 6, as an attempt to form a coating film of molybdenum trioxide, fine particles prepared by physically pulverizing molybdenum trioxide are dispersed in a solution to prepare a slurry, which is then coated to inject holes. It is described that a layer is formed to produce a long-lived organic EL element.
 一方、有機トランジスタは、π共役系の有機高分子や有機低分子からなる有機半導体材料をチャネル領域に使用した薄膜トランジスタである。一般的な有機トランジスタは、基板、ゲート電極、ゲート絶縁層、ソース・ドレイン電極及び有機半導体層の構成からなる。有機トランジスタにおいては、ゲート電極に印加する電圧(ゲート電圧)を変化させることで、ゲート絶縁膜と有機半導体膜の界面の電荷量を制御し、ソース電極及びドレイン電極間の電流値を変化させてスイッチングを行なう。
 有機半導体層とソース電極またはドレイン電極との電荷注入障壁を低減することにより、有機トランジスタのオン電流値を向上させ、かつ素子特性を安定化させる試みとして、有機半導体中に電荷移動錯体を導入することによって、電極近傍の有機半導体層中のキャリア密度を増加させることが知られている(例えば、特許文献7)。
On the other hand, the organic transistor is a thin film transistor using an organic semiconductor material made of a π conjugated organic polymer or an organic low molecule in a channel region. A common organic transistor comprises a substrate, a gate electrode, a gate insulating layer, a source / drain electrode, and an organic semiconductor layer. In the organic transistor, the charge amount at the interface between the gate insulating film and the organic semiconductor film is controlled by changing the voltage (gate voltage) applied to the gate electrode, and the current value between the source electrode and the drain electrode is changed. Perform switching.
Charge transfer complex is introduced into organic semiconductor as an attempt to improve the on current value of the organic transistor and stabilize the device characteristics by reducing the charge injection barrier between the organic semiconductor layer and the source or drain electrode. Thus, it is known to increase the carrier density in the organic semiconductor layer in the vicinity of the electrode (for example, Patent Document 7).
 このように、デバイスにおいては、正孔注入輸送材料に酸化性材料を適用することにより、電荷注入障壁を低減させる試みが行われてきている。しかしながら、特許文献1~7で開示されたような酸化性材料を正孔注入輸送性材料に用いても、長寿命素子の実現は困難であるか、さらに寿命を向上させる必要があった。無機化合物のモリブデン酸化物においては比較的高い特性が得られているものの、溶剤に不溶であり溶液塗布法を用いることができないという課題があった。特許文献6には平均粒径20nmの酸化モリブデン微粒子を溶剤に分散させたスラリーを用いて、スクリーン印刷法により電荷注入層を作製した旨の記述があるが、特許文献6のようにMoO粉末を粉砕する方法だと、例えば、10nm程度の正孔注入層を形成する要求に対して10nm以下のスケールで粒径のそろった微粒子を作製することは、実際には非常に困難である。また、粉砕されて作製される酸化モリブデン微粒子は、凝集させることなく溶液中に安定的に分散させることがさらに困難である。微粒子の溶液化が不安定であると、塗布膜作製の際に凹凸の大きな平滑性が悪い膜しか形成できず、デバイスの短絡の原因となる。
 成膜性や薄膜の安定性は素子の寿命特性と大きく関係する。一般的に有機EL素子の寿命とは、一定電流駆動などで連続駆動させたときの輝度半減時間とし、輝度半減時間が長い素子ほど長駆動寿命であるという。
Thus, in devices, attempts have been made to reduce the charge injection barrier by applying an oxidizable material to the hole injection transport material. However, even if an oxidizing material as disclosed in Patent Documents 1 to 7 is used as a hole injecting and transporting material, it is difficult to realize a long life element or it is necessary to further improve the life. Although relatively high characteristics are obtained in the molybdenum oxide of the inorganic compound, there is a problem that it is insoluble in the solvent and the solution coating method can not be used. Patent Document 6 describes that a charge injection layer is produced by screen printing using a slurry in which molybdenum oxide fine particles having an average particle diameter of 20 nm are dispersed in a solvent, but as in Patent Document 6, MoO 3 powder is used. If it is a method of pulverizing, it is actually very difficult to produce fine particles with a uniform particle size on a scale of 10 nm or less, for example, in response to the requirement of forming a hole injection layer of about 10 nm. In addition, it is more difficult to stably disperse the molybdenum oxide fine particles produced by being crushed in a solution without aggregation. When the solution of the fine particles is unstable, only a film having a large unevenness with large unevenness can be formed at the time of producing a coating film, which causes a short circuit of the device.
The film forming property and the stability of the thin film are greatly related to the life characteristics of the device. Generally, the lifetime of the organic EL element is the luminance half time when continuously driven by constant current driving or the like, and the longer the luminance half time, the longer the driving lifetime.
 このような課題に対し、本発明者らは、少なくとも遷移金属酸化物を含む遷移金属化合物及び遷移金属と保護剤とを含むか、又は、少なくとも遷移金属酸化物を含む遷移金属化合物と保護剤とを含む遷移金属含有ナノ粒子を、正孔注入輸送層に用いることにより、溶液塗布法により正孔注入輸送層を形成可能でありながら、長寿命を達成可能なデバイスを見出した(特許文献8)。 To address such problems, the present inventors have at least a transition metal compound containing at least a transition metal oxide and a transition metal compound containing a transition metal and a protecting agent, or at least a transition metal oxide and a protecting agent By using a transition metal-containing nanoparticle containing the above for the hole injecting and transporting layer, a device capable of achieving long life while finding the hole injecting and transporting layer by the solution coating method has been found (Patent Document 8) .
 一方、従来、粒径が100nm以下の金属含有ナノ粒子は、その特徴を活かして、例えば、研磨材、各種機能性フィラー、導電ペーストの添加剤、触媒など、様々な分野で利用されている。中でも、金属酸化物含有ナノ粒子は、例えば蛍光体、触媒、研磨材、透明伝導性膜などに利用されている。 On the other hand, conventionally, metal-containing nanoparticles having a particle diameter of 100 nm or less have been utilized in various fields such as, for example, abrasives, various functional fillers, additives of conductive paste, catalysts, etc., taking advantage of the characteristics. Among them, metal oxide-containing nanoparticles are used, for example, in phosphors, catalysts, abrasives, transparent conductive films, and the like.
特開2006-155978号公報Unexamined-Japanese-Patent No. 2006-155978 特開2007-287586号公報JP 2007-287586 A 特許第3748110号公報Patent No. 3748110 gazette 特開平9-63771号公報JP-A-9-63771 SID 07 DIGEST p.1840-1843 (2007)SID 07 DIGEST p. 1840-1843 (2007) 特開2008-041894号公報JP, 2008-041894, A 特開2002-204012号公報Japanese Patent Application Laid-Open No. 2002-204012 特開2009-290204号公報JP, 2009-290204, A
 溶媒を用いて基材に塗布する溶液塗布法は、真空蒸着法に比べて大掛かりな蒸着装置が不要で、作製プロセス工程の簡便化が期待でき、材料の利用効率も高く、コストが安価で、基材の大面積化が可能というメリットがあることから、なるべく多くの機能層を溶液塗布法で形成することが望まれている。デバイスにおいて、正孔注入輸送層を溶液塗布法で形成した後、当該正孔注入輸送層の上部に、疎水性溶媒を用いて有機層を溶液塗布法で形成することが望まれる場合が多い。しかしながら、上層の有機層を塗布する際に、下層の正孔注入輸送層が再溶解する場合がある。再溶解の程度によっては、正孔注入輸送層の膜厚が不均一となり、正孔注入輸送層表面における面内の特性のばらつきやデバイスの短絡が発生する恐れがある。従って、有機層を隣接して溶液塗布法で形成しても安定な正孔注入輸送層を、良好な成膜性で溶液塗布法で形成可能であり、素子の寿命特性を向上できる材料が求められている。 The solution coating method of applying a solvent to a substrate does not require a large-scale deposition apparatus as compared with the vacuum deposition method, can simplify the fabrication process steps, has high material utilization efficiency, and is inexpensive. It is desirable to form as many functional layers as possible by a solution coating method because there is an advantage that the area of the substrate can be increased. In a device, after forming a hole injecting and transporting layer by a solution coating method, it is often desirable to form an organic layer by a solution coating method on the hole injecting and transporting layer using a hydrophobic solvent. However, when the upper organic layer is applied, the lower hole injecting and transporting layer may be redissolved. Depending on the degree of re-dissolution, the film thickness of the hole injecting and transporting layer may be nonuniform, which may cause variations in in-plane characteristics on the surface of the hole injecting and transporting layer and a short circuit of the device. Therefore, it is possible to form a stable hole injecting and transporting layer with a good film forming property by the solution coating method even if the organic layers are formed adjacent to each other by the solution coating method, and a material capable of improving the life characteristics of the device is required It is done.
 また、様々な分野で応用が期待されることから、溶媒中に安定して分散可能な、新規な金属化合物含有ナノ粒子が求められている。 In addition, since application in various fields is expected, novel metal compound-containing nanoparticles that can be stably dispersed in a solvent are required.
 本発明は上記問題点に鑑みてなされたものであり、その第一の目的は、溶媒中に安定して分散可能な、新規な金属化合物含有ナノ粒子を提供することである。
 本発明の第二の目的は、疎水性溶媒を用いた溶液塗布法で有機層を隣接して形成しても安定な正孔注入輸送層を、溶液塗布法で形成可能な材料である遷移金属化合物含有ナノ粒子を提供することである。
 本発明の第三の目的は、上記遷移金属化合物含有ナノ粒子の製造方法を提供することである。
 本発明の第四の目的は、新規な遷移金属化合物含有ナノ粒子が溶媒中に安定して分散している、遷移金属化合物含有ナノ粒子分散インクを提供することである。
 本発明の第五の目的は、上記遷移金属化合物含有ナノ粒子分散インクの製造方法を提供することである。
 本発明の第六の目的は、溶液塗布法により正孔注入輸送層を形成可能で製造プロセスが容易でありながら、長寿命を達成可能なデバイスを提供することである。
 本発明の第七の目的は、上記デバイスの製造方法を提供することである。
The present invention has been made in view of the above problems, and a first object thereof is to provide a novel metal compound-containing nanoparticle which can be stably dispersed in a solvent.
The second object of the present invention is a transition metal which is a material capable of forming a hole injecting and transporting layer which is stable even if an organic layer is formed adjacently by a solution coating method using a hydrophobic solvent. It is providing a compound containing nanoparticle.
The third object of the present invention is to provide a method for producing the transition metal compound-containing nanoparticles.
A fourth object of the present invention is to provide a transition metal compound-containing nanoparticle dispersed ink in which novel transition metal compound-containing nanoparticles are stably dispersed in a solvent.
The fifth object of the present invention is to provide a method for producing the transition metal compound-containing nanoparticle dispersed ink.
A sixth object of the present invention is to provide a device capable of achieving a long lifetime while being able to form a hole injecting and transporting layer by a solution coating method and having an easy manufacturing process.
A seventh object of the present invention is to provide a method of manufacturing the above device.
 本発明に係る遷移金属化合物含有ナノ粒子は、遷移金属炭化酸化物、遷移金属窒化酸化物及び遷移金属硫化酸化物よりなる群から選択される1種以上の遷移金属化合物に、親水性基を含む有機基を有する保護剤が連結基により連結してなり、親水性溶媒に分散可能であることを特徴とする。 The transition metal compound-containing nanoparticle according to the present invention contains a hydrophilic group in at least one transition metal compound selected from the group consisting of transition metal carbon oxides, transition metal nitride oxides, and transition metal sulfide oxides. A protective agent having an organic group is linked by a linking group, and is characterized by being dispersible in a hydrophilic solvent.
 本発明に係る遷移金属化合物含有ナノ粒子(以下、単に「ナノ粒子」ということがある。)は、無機化合物のモリブデン酸化物等を用いる場合と異なり、ナノ粒子表面において、親水性基を含む有機基を有する保護剤が連結基により連結されているため、親水性溶媒に分散性を有し、分散安定性も高い。また、遷移金属炭化酸化物、遷移金属窒化酸化物及び遷移金属硫化酸化物よりなる群から選択される1種以上という、特定の遷移金属化合物を含みながら溶媒中に安定して分散可能であることから、新規なナノ粒子として、様々な分野で応用が期待される。 The transition metal compound-containing nanoparticles according to the present invention (hereinafter sometimes simply referred to as "nanoparticles") are different from the case where molybdenum oxide or the like of the inorganic compound is used, and an organic containing a hydrophilic group on the nanoparticle surface Since the protective agent having a group is linked by a linking group, it has dispersibility in a hydrophilic solvent and also has high dispersion stability. In addition, it can be stably dispersed in a solvent while containing a specific transition metal compound such as one or more selected from the group consisting of transition metal carbon oxides, transition metal nitride oxides, and transition metal sulfide oxides. Therefore, as a novel nanoparticle, application is expected in various fields.
 本発明に係るナノ粒子は、上記特定の遷移金属化合物が、親水性基を含む有機基を有する保護剤により保護された特定の遷移金属化合物含有ナノ粒子であるため、溶液塗布法により正孔注入輸送層を形成でき製造プロセスが容易でありながら、電荷移動錯体を形成可能で正孔注入特性を向上し、且つ、疎水性溶媒を用いた溶液塗布法で有機層を隣接して形成しても、安定性の高い膜となるため、正孔注入輸送層の形成材料に特に適している。 In the nanoparticles according to the present invention, since the specific transition metal compound is a specific transition metal compound-containing nanoparticle protected by a protective agent having an organic group containing a hydrophilic group, holes are injected by a solution coating method. While the transport layer can be formed and the manufacturing process is easy, the charge transfer complex can be formed to improve the hole injection property, and the organic layer can be formed adjacently by the solution coating method using a hydrophobic solvent. Because it is a highly stable film, it is particularly suitable as a material for forming a hole injecting and transporting layer.
 本発明に係るナノ粒子は、親水性溶媒を用いた溶液塗布法によって薄膜形成が可能であることから、製造プロセス上のメリットが大きい。撥液性バンクを持つ基板に正孔注入輸送層から発光層までを順次塗布プロセスのみで形成できる。それ故、無機化合物のモリブデン酸化物の場合のように正孔注入層を高精細なマスク蒸着等で蒸着した後に、正孔輸送層や発光層を溶液塗布法で形成し、さらに第二電極を蒸着するようなプロセスと比較して、単純であり、低コストでデバイスを作製できる利点がある。 Since the nanoparticles according to the present invention can be formed into a thin film by a solution coating method using a hydrophilic solvent, they have great merits in the manufacturing process. From the hole injecting and transporting layer to the light emitting layer can be formed sequentially on the substrate having the liquid repellent bank only by the coating process. Therefore, as in the case of the molybdenum oxide of the inorganic compound, after the hole injection layer is deposited by highly precise mask deposition or the like, the hole transport layer and the light emitting layer are formed by solution coating, and the second electrode is further formed. There is the advantage that it is simpler and can produce devices at lower cost compared to processes such as evaporation.
 また、本発明に係るナノ粒子は、ナノ粒子に含まれる上記特定の遷移金属化合物の反応性が高く、電荷移動錯体を形成しやすいと考えられる。そのため、本発明に係るナノ粒子は、正孔注入輸送層用途に適しており、本発明に係るナノ粒子を含有する正孔注入輸送層を備えたデバイスは、低電圧駆動、高電力効率、長寿命なデバイスを実現することが可能である。
 さらに、ナノ粒子の保護剤の種類を選択することにより、電荷輸送性、あるいは密着性などの機能性をデバイスに付与するなど、多機能化することが容易である。
In addition, it is considered that the nanoparticles according to the present invention have high reactivity of the specific transition metal compound contained in the nanoparticles and easily form a charge transfer complex. Therefore, the nanoparticles according to the present invention are suitable for hole injection transport layer applications, and the devices provided with the hole injection transport layer containing nanoparticles according to the present invention are low voltage drive, high power efficiency, long. It is possible to realize a lifetime device.
Furthermore, by selecting the type of protective agent for nanoparticles, it is easy to make the device multifunctional, such as imparting functionality such as charge transportability or adhesion.
 また、本発明に係るナノ粒子は、ナノ粒子に含まれる上記特定の遷移金属化合物の反応性が高く、また微小サイズに由来した高い比表面積を有し、単位重量当たりの反応活性部位を多く有することにより、ナノ粒子を適宜担体表面に担持させて用いる触媒用途にも適している。 In addition, the nanoparticle according to the present invention has high reactivity of the above-mentioned specific transition metal compound contained in the nanoparticle, has high specific surface area derived from fine size, and has many reactive sites per unit weight. Thus, the catalyst is also suitable for catalytic applications in which the nanoparticles are appropriately supported on the support surface.
 本発明の遷移金属化合物含有ナノ粒子においては、前記遷移金属化合物の遷移金属が、モリブデン、タングステン、バナジウム及びレニウムよりなる群から選択される1種以上の金属であることが、デバイスにおいて駆動電圧の低下や素子寿命を向上させる点から好ましい。 In the transition metal compound-containing nanoparticle of the present invention, in the device, the transition metal of the transition metal compound is at least one metal selected from the group consisting of molybdenum, tungsten, vanadium and rhenium. It is preferable from the point of lowering the efficiency and improving the device life.
 本発明の遷移金属化合物含有ナノ粒子においては、前記親水性基が、水酸基、カルボニル基、カルボキシル基、アミノ基、チオール基、シラノール基、スルホ基、スルホン酸塩及びアンモニウム基よりなる群から選択される1種以上であることが、親水性溶媒中での分散安定性の点から好ましい。 In the transition metal compound-containing nanoparticle of the present invention, the hydrophilic group is selected from the group consisting of a hydroxyl group, a carbonyl group, a carboxyl group, an amino group, a thiol group, a silanol group, a sulfo group, a sulfonate and an ammonium group. It is preferable from the viewpoint of dispersion stability in a hydrophilic solvent that it is one or more.
 本発明の遷移金属化合物含有ナノ粒子においては、前記連結基が、下記一般式(1a)~(1o)で示される官能基よりなる群から選択される1種以上であることが、膜の安定性の点から好ましい。 In the transition metal compound-containing nanoparticle of the present invention, the stability of the membrane is that the linking group is at least one selected from the group consisting of functional groups represented by the following general formulas (1a) to (1o) It is preferable from the point of sex.
Figure JPOXMLDOC01-appb-C000002
 (式中、Z、Z及びZは、各々独立にハロゲン原子又はアルコキシ基を表し、Rは水素原子又はメチル基を表わす。)
Figure JPOXMLDOC01-appb-C000002
(In the formula, Z 1 , Z 2 and Z 3 each independently represent a halogen atom or an alkoxy group, and R represents a hydrogen atom or a methyl group.)
 本発明の遷移金属化合物含有ナノ粒子においては、前記保護剤が、下記一般式[I]で表されることが、親水性基及び連結基の各々の機能を有し、かつナノ粒子同士の凝集を防ぐのに充分な距離を確保できる点から好ましい。
一般式[I]
X-Y-Z
(一般式[I]において、Xは親水性基、Yは炭素数が1~30の直鎖、分岐、又は環状の飽和又は不飽和脂肪族炭化水素基及び/又は炭素数6~40の芳香族炭化水素基を表し、Zは連結基を表す。)
In the transition metal compound-containing nanoparticle of the present invention, the protective agent is represented by the following general formula [I], having the functions of a hydrophilic group and a linking group, and aggregation of the nanoparticles. Is preferable in that a sufficient distance can be secured to prevent the
General formula [I]
X-Y-Z
(In the general formula [I], X is a hydrophilic group, Y is a linear, branched or cyclic saturated or unsaturated aliphatic hydrocarbon group having 1 to 30 carbon atoms and / or an aromatic having 6 to 40 carbon atoms Group hydrocarbon group, Z represents a linking group)
 本発明の遷移金属化合物含有ナノ粒子においては、前記親水性溶媒は、水への溶解度(20℃)が50g/L以上であることが好ましい。この場合には、遷移金属化合物含有ナノ粒子と隣接層形成に用いられる疎水性溶媒及び隣接層材料との非相溶性を確保でき、塗布工程によって積層する際の隣接層への再溶解量を低下させることができる。 In the transition metal compound-containing nanoparticle of the present invention, the hydrophilic solvent preferably has a water solubility (20 ° C.) of 50 g / L or more. In this case, the incompatibility between the transition metal compound-containing nanoparticle and the hydrophobic solvent used in the formation of the adjacent layer and the material of the adjacent layer can be ensured, and the amount of re-dissolution in the adjacent layer during lamination is reduced by the coating step. It can be done.
 本発明に係る第一の遷移金属化合物含有ナノ粒子の製造方法は、(A)遷移金属及び/又は遷移金属錯体を炭化し、遷移金属炭化物とする工程、
 (B)(A)工程で得られた遷移金属炭化物を、連結基を含む有機基を有する保護剤により保護する工程、及び、
 (C)(B)工程で得られた有機基を有する遷移金属炭化物を酸化し、有機基を有する遷移金属炭化酸化物とする工程を含み、
 前記保護剤が連結基及び親水性基を含む有機基を有する保護剤であるか、或いは、前記保護剤が連結基及び疎水性基を含む有機基を有する保護剤であって、更に、当該疎水性基を含む有機基を有する保護剤を、親水性基を含む有機基を有する保護剤に交換する工程を含むことを特徴とする。
The method for producing a first transition metal compound-containing nanoparticle according to the present invention comprises the steps of: (A) carbonizing a transition metal and / or transition metal complex to form transition metal carbide;
(B) protecting the transition metal carbide obtained in the step (A) with a protective agent having an organic group containing a linking group, and
(C) oxidizing the transition metal carbide having an organic group obtained in the step (B) to obtain a transition metal carbide oxide having an organic group,
The protective agent is a protective agent having an organic group containing a linking group and a hydrophilic group, or the protective agent has an organic group containing a linking group and a hydrophobic group, and the hydrophobic It is characterized by including the process of replacing the protecting agent which has an organic group containing a nature group with the protecting agent which has an organic group containing a hydrophilic group.
 本発明に係る第二の遷移金属化合物含有ナノ粒子の製造方法は、(a)遷移金属及び/又は遷移金属錯体を、連結基を含む有機基を有する保護剤により保護する工程、
 (b)(a)工程で得られた有機基を有する遷移金属又は遷移金属錯体を炭化し、有機基を有する遷移金属炭化物とする工程、及び、
 (c)(b)工程で得られた有機基を有する遷移金属炭化物を酸化し、有機基を有する遷移金属炭化酸化物とする工程を含み、
 前記保護剤が連結基及び親水性基を含む有機基を有する保護剤であるか、或いは、前記保護剤が連結基及び疎水性基を含む有機基を有する保護剤であって、更に、当該疎水性基を含む有機基を有する保護剤を、親水性基を含む有機基を有する保護剤に交換する工程を含むことを特徴とする。
The method for producing a second transition metal compound-containing nanoparticle according to the present invention comprises the steps of (a) protecting the transition metal and / or transition metal complex with a protective agent having an organic group containing a linking group,
(B) carbonizing the transition metal or transition metal complex having an organic group obtained in the step (a) to obtain a transition metal carbide having an organic group;
(C) oxidizing the transition metal carbide having an organic group obtained in step (b) to obtain a transition metal carbide oxide having an organic group,
The protective agent is a protective agent having an organic group containing a linking group and a hydrophilic group, or the protective agent has an organic group containing a linking group and a hydrophobic group, and the hydrophobic It is characterized by including the process of replacing the protecting agent which has an organic group containing a nature group with the protecting agent which has an organic group containing a hydrophilic group.
 本発明に係る第三の遷移金属化合物含有ナノ粒子の製造方法は、(α)遷移金属及び/又は遷移金属錯体を炭化し、遷移金属炭化物とする工程、
 (β)(α)工程で得られた遷移金属炭化物を酸化し、遷移金属炭化酸化物とする工程、及び、
 (γ)(β)工程で得られた遷移金属炭化酸化物を、連結基を含む有機基を有する保護剤により保護し、有機基を有する遷移金属炭化酸化物とする工程を含み、
 前記保護剤が連結基及び親水性基を含む有機基を有する保護剤であるか、或いは、前記保護剤が連結基及び疎水性基を含む有機基を有する保護剤であって、更に、当該疎水性基を含む有機基を有する保護剤を、親水性基を含む有機基を有する保護剤に交換する工程を含むことを特徴とする。
In the method for producing a third transition metal compound-containing nanoparticle according to the present invention, a step of carbonizing (α) transition metal and / or transition metal complex to form transition metal carbide,
(Β) A step of oxidizing the transition metal carbide obtained in the step (α) into a transition metal carbide oxide,
(Γ) A step of protecting the transition metal carbon oxide obtained in the step (β) with a protective agent having an organic group containing a linking group to obtain a transition metal carbon oxide having an organic group
The protective agent is a protective agent having an organic group containing a linking group and a hydrophilic group, or the protective agent has an organic group containing a linking group and a hydrophobic group, and the hydrophobic It is characterized by including the process of replacing the protecting agent which has an organic group containing a nature group with the protecting agent which has an organic group containing a hydrophilic group.
 本発明に係るナノ粒子の製造方法によれば、溶剤に分散性を有し、溶液塗布法によって薄膜形成や、担体表面に担持が可能なナノ粒子が得られる。 According to the method of producing nanoparticles of the present invention, nanoparticles having dispersibility in a solvent and capable of being formed into a thin film or supported on the surface of a carrier can be obtained by a solution coating method.
 本発明に係る第一乃至第三の遷移金属化合物含有ナノ粒子の製造方法においては、前記保護剤により保護する工程を、溶媒中で行うことが、保護工程を安定して行うことができる点から好ましい。 In the method of producing the first to third transition metal compound-containing nanoparticles according to the present invention, performing the step of protecting with the protective agent in a solvent can stably perform the protecting step. preferable.
 本発明に係る第一乃至第三の遷移金属化合物含有ナノ粒子の製造方法においては、前記遷移金属炭化物とする工程を、150~400℃で行うことが、粒径の均一化及び未反応遷移金属錯体の生成を抑制する点から好ましい。 In the method of producing the first to third transition metal compound-containing nanoparticles according to the present invention, the step of forming the transition metal carbide may be carried out at 150 to 400 ° C. to make the particle diameter uniform and to make the unreacted transition metal It is preferable from the point of suppressing the formation of a complex.
 本発明に係る第一乃至第三の遷移金属化合物含有ナノ粒子の製造方法においては、前記遷移金属炭化物とする工程を、アルゴンガス雰囲気下で行うことが、反応溶液中での分散安定性を維持する点から好ましい。 In the method of producing the first to third transition metal compound-containing nanoparticles according to the present invention, performing the step of forming the transition metal carbide in an argon gas atmosphere maintains the dispersion stability in the reaction solution. It is preferable from the point of
 本発明に係る第一の遷移金属化合物含有ナノ粒子分散インクは、前記遷移金属化合物含有ナノ粒子及び親水性溶媒を含有することを特徴とする。 The first transition metal compound-containing nanoparticle-dispersed ink according to the present invention is characterized by containing the transition metal compound-containing nanoparticle and a hydrophilic solvent.
 本発明に係る第二の遷移金属化合物含有ナノ粒子分散インクは、遷移金属窒化物及び遷移金属硫化物よりなる群から選択される1種以上の化合物(U)、連結基及び親水性基を含む有機基を有する保護剤並びに親水性溶媒を含有し、上記本発明の遷移金属化合物含有ナノ粒子を調製するため及び/又は上記本発明の遷移金属化合物含有ナノ粒子を含有する膜を形成するために用いられることを特徴とする。当該ナノ粒子分散インクは、上記遷移金属化合物含有ナノ粒子を含有する膜を溶液塗布法により形成するのに好適に用いられる。 The second transition metal compound-containing nanoparticle-dispersed ink according to the present invention contains at least one compound (U) selected from the group consisting of transition metal nitrides and transition metal sulfides, a linking group and a hydrophilic group. In order to prepare a transition metal compound-containing nanoparticle of the present invention and / or to form a film containing the transition metal compound-containing nanoparticle of the present invention, containing a protecting agent having an organic group and a hydrophilic solvent It is characterized by being used. The said nanoparticle dispersion | distribution ink is used suitably for forming the film | membrane containing the said transition metal compound containing nanoparticle by the solution apply | coating method.
 本発明に係る遷移金属化合物含有ナノ粒子分散インクの製造方法は、炭素、窒素又は硫黄のいずれかの原子を含む遷移金属錯体、連結基及び親水性基を含む有機基を有する保護剤、及び沸点が160~260℃の親水性溶媒を含有する溶液を、150~250℃で加熱する工程を有し、上記本発明の遷移金属化合物含有ナノ粒子を調製するために用いられることを特徴とする。 The method for producing a transition metal compound-containing nanoparticle-dispersed ink according to the present invention comprises: a transition metal complex containing an atom of carbon, nitrogen or sulfur, a protective agent having an organic group containing a linking group and a hydrophilic group, and a boiling point And heating the solution containing a hydrophilic solvent at 160 to 260 ° C. at 150 to 250 ° C., which is used to prepare the transition metal compound-containing nanoparticles of the present invention.
 本発明に係るデバイスは、基板上に対向する2つ以上の電極と、そのうちの2つの電極間に配置された正孔注入輸送層を有するデバイスであって、
 前記正孔注入輸送層が、少なくとも前記本発明に係る遷移金属化合物含有ナノ粒子を含有することを特徴とする。
The device according to the present invention is a device having two or more electrodes facing each other on a substrate, and a hole injecting and transporting layer disposed between two electrodes of the two or more electrodes.
It is characterized in that the hole injecting and transporting layer contains at least the transition metal compound-containing nanoparticle according to the present invention.
 本発明のデバイスは、前記正孔注入輸送層に隣接して、疎水性溶媒に溶解及び/又は分散可能な電荷輸送性化合物を含む電荷輸送層を含有する態様に適している。 The device of the present invention is suitable for an embodiment including a charge transport layer containing a charge transport compound which can be dissolved and / or dispersed in a hydrophobic solvent adjacent to the hole injecting and transporting layer.
 本発明のデバイスは、前記正孔注入輸送層において、前記遷移金属化合物含有ナノ粒子が2種以上含まれても良い。この場合には、仕事関数(HOMO)の異なるナノ粒子を用い2種のナノ粒子を経由して階段状に正孔が移動できるようにすることで隣接層間のエネルギー障壁を更に低下できたり、正孔注入性に特化したナノ粒子と正孔輸送性に特化した粒子を別々に作製し混合させることで単一粒子の機能以上の正孔注入輸送性を得ることができるというメリットがある。 In the device of the present invention, the hole injecting and transporting layer may contain two or more types of the transition metal compound-containing nanoparticles. In this case, energy barriers between adjacent layers can be further reduced by enabling holes to move stepwise via two types of nanoparticles using nanoparticles with different work functions (HOMO), or By separately preparing and mixing the nanoparticles specialized for the hole injection property and the particles specialized for the hole transport property, there is an advantage that the hole injection transport property more than the function of a single particle can be obtained.
 本発明のデバイスは、少なくとも発光層を含む有機層を含有する有機EL素子として好適に用いられる。 The device of the present invention is suitably used as an organic EL element containing an organic layer containing at least a light emitting layer.
 また、本発明のデバイスは、基板上にゲート電極、絶縁層、ソース電極及びドレイン電極、有機半導体層を有する有機トランジスタであって、前記ソース電極及びドレイン電極表面の少なくとも一部に前記遷移金属化合物含有ナノ粒子を有する有機トランジスタとしても好適に用いられる。 The device according to the present invention is an organic transistor having a gate electrode, an insulating layer, a source electrode and a drain electrode, and an organic semiconductor layer on a substrate, wherein the transition metal compound is formed on at least a part of the surface of the source electrode and the drain electrode. It is suitably used also as an organic transistor which has a containing nanoparticle.
 本発明に係る第一のデバイスの製造方法は、基板上に対向する2つ以上の電極と、そのうちの2つの電極間に配置された正孔注入輸送層を有するデバイスの製造方法であって、
 前記第一の遷移金属化合物含有ナノ粒子分散インクを用いて、当該電極上のいずれかの層上に正孔注入輸送層を形成する工程、を含むことを特徴とする。
A first method of manufacturing a device according to the present invention is a method of manufacturing a device having two or more electrodes facing each other on a substrate, and a hole injecting and transporting layer disposed between two electrodes of the two or more electrodes.
Forming a hole injecting and transporting layer on any of the layers on the electrode using the first transition metal compound-containing nanoparticle dispersed ink.
 本発明に係る第二のデバイスの製造方法は、基板上に対向する2つ以上の電極と、そのうちの2つの電極間に配置された正孔注入輸送層を有するデバイスの製造方法であって、
 前記第二の遷移金属化合物含有ナノ粒子分散インクを用いて、当該電極上のいずれかの層上に正孔注入輸送層を形成する工程、及び、
 前記化合物(U)を酸化する工程、を含むことを特徴とする。
A second method of producing a device according to the present invention is a method of producing a device having two or more electrodes facing each other on a substrate, and a hole injecting and transporting layer disposed between two electrodes of the two or more electrodes.
Forming a hole injecting and transporting layer on any layer on the electrode using the second transition metal compound-containing nanoparticle-dispersed ink;
Oxidizing the compound (U).
 本発明に係る第一及び第二のデバイスの製造方法によれば、溶液塗布法により正孔注入輸送層を形成可能で製造プロセスが容易でありながら、長寿命を達成可能なデバイスを提供することが可能である。 According to the first and second device manufacturing methods of the present invention, it is possible to provide a device capable of achieving long life while being able to form a hole injection transport layer by a solution coating method and having an easy manufacturing process. Is possible.
 本発明に係る第二のデバイスの製造方法においては、前記化合物(U)を酸化する工程は、正孔注入輸送層を形成する工程の後に行っても良い。 In the second method for producing a device according to the present invention, the step of oxidizing the compound (U) may be performed after the step of forming the hole injecting and transporting layer.
 本発明に係る第二のデバイスの製造方法においては、前記遷移金属化合物含有ナノ粒子分散インクを調製する工程の後、且つ、前記正孔注入輸送層を形成する工程の前に、前記化合物(U)を酸化する工程を行っても良い。 In the second method for producing a device according to the present invention, after the step of preparing the transition metal compound-containing nanoparticle-dispersed ink, and before the step of forming the hole injecting and transporting layer, the compound (U ) May be performed.
 本発明に係る第二のデバイスの製造方法においては、前記化合物(U)を酸化する工程において、加熱手段、光照射手段及び活性酸素を作用させる手段のいずれかを用いることが好ましい。 In the second method for producing a device according to the present invention, it is preferable to use one of a heating means, a light irradiation means and a means for causing active oxygen in the step of oxidizing the compound (U).
 本発明に係る第一及び第二のデバイスの製造方法は、前記正孔注入輸送層上に隣接して、疎水性溶媒に溶解及び/又は分散可能な電荷輸送性化合物及び疎水性溶媒を含む疎水性溶液を塗工することにより、電荷輸送層を形成する工程を含む態様に適している。 In the method of manufacturing the first and second devices according to the present invention, a hydrophobic compound containing a hydrophobic solvent and a charge transport compound which can be dissolved and / or dispersed in a hydrophobic solvent is provided adjacent to the hole injecting and transporting layer. It is suitable for an embodiment including the step of forming a charge transport layer by applying a solution of a polarity.
 本発明に係る第一及び第二のデバイスの製造方法は、デバイスが、少なくとも発光層を含む有機層を含有する有機EL素子である態様や、基板上にゲート電極、絶縁層、ソース電極及びドレイン電極、有機半導体層を有する有機トランジスタであって、前記ソース電極及びドレイン電極表面の少なくとも一部に前記遷移金属化合物含有ナノ粒子を有する態様に適している。 In the first and second methods for producing a device according to the present invention, the device is an organic EL element containing an organic layer containing at least a light emitting layer, a gate electrode, an insulating layer, a source electrode and a drain on a substrate It is suitable for the aspect which is an organic transistor which has an electrode and an organic-semiconductor layer, Comprising: The transition metal compound containing nanoparticle is provided in at least one part of the said source electrode and drain electrode surface.
 本発明は、親水性溶媒中に安定して分散可能な、新規な遷移金属化合物含有ナノ粒子、及び、当該ナノ粒子を用いた新規な遷移金属化合物含有ナノ粒子分散インクを提供することができる。
 本発明の遷移金属化合物含有ナノ粒子は、溶剤に分散性を有し、溶液塗布法によって薄膜形成又は担体表面への担持が可能である。本発明に係る遷移金属化合物含有ナノ粒子によれば、製造プロセスが容易でありながら、長寿命を達成可能なデバイスの正孔注入輸送層を形成することが可能である。
 本発明の遷移金属化合物含有ナノ粒子の製造方法は、このような遷移金属化合物含有ナノ粒子を容易に製造することができる。
 本発明のデバイスは、製造プロセスが容易でありながら、長寿命を達成可能である。
 本発明に係るデバイスの製造方法によれば、製造プロセスが容易でありながら、長寿命を達成可能なデバイスを提供することが可能である。
The present invention can provide a novel transition metal compound-containing nanoparticle that can be stably dispersed in a hydrophilic solvent, and a novel transition metal compound-containing nanoparticle dispersed ink using the nanoparticle.
The transition metal compound-containing nanoparticles of the present invention have dispersibility in a solvent, and can be formed into a thin film or supported on the surface of a carrier by a solution coating method. According to the transition metal compound-containing nanoparticle according to the present invention, it is possible to form a hole injecting and transporting layer of a device capable of achieving long life while facilitating the manufacturing process.
The method for producing transition metal compound-containing nanoparticles of the present invention can easily produce such transition metal compound-containing nanoparticles.
The device of the present invention can achieve a long life while the manufacturing process is easy.
According to the device manufacturing method of the present invention, it is possible to provide a device capable of achieving a long life while the manufacturing process is easy.
本発明に係る遷移金属化合物含有ナノ粒子の用途の一例を示した模式図である。It is the schematic diagram which showed an example of the use of the transition metal compound containing nanoparticle which concerns on this invention. 本発明に係る第一乃至第三の遷移金属化合物含有ナノ粒子の製造方法の工程の順序を示した模式図である。It is the schematic diagram which showed the order of the process of the manufacturing method of the 1st thru | or 3rd transition metal compound containing nanoparticle which concerns on this invention. 本発明に係るデバイスの基本的な層構成を示す断面概念図である。It is a cross-sectional conceptual diagram which shows the basic layer structure of the device based on this invention. 本発明に係るデバイスの一実施形態である有機EL素子の層構成の一例を示す断面模式図である。It is a cross-sectional schematic diagram which shows an example of the laminated constitution of the organic EL element which is one Embodiment of the device which concerns on this invention. 本発明に係るデバイスの一実施形態である有機EL素子の層構成の他の一例を示す断面模式図である。It is a cross-sectional schematic diagram which shows another example of the laminated constitution of the organic EL element which is one Embodiment of the device which concerns on this invention. 本発明に係るデバイスの一実施形態である有機EL素子の層構成の他の一例を示す断面模式図である。It is a cross-sectional schematic diagram which shows another example of the laminated constitution of the organic EL element which is one Embodiment of the device which concerns on this invention. 本発明に係るデバイスの別の実施形態である有機トランジスタの層構成の一例を示す断面模式図である。It is a cross-sectional schematic diagram which shows an example of the laminated constitution of the organic transistor which is another embodiment of the device based on this invention. 本発明に係るデバイスの別の実施形態である有機トランジスタの層構成の他の一例を示す断面模式図である。It is a cross-sectional schematic diagram which shows another example of the laminated constitution of the organic transistor which is another embodiment of the device based on this invention. 実施例1,2及び比較例1で得られた有機ダイオードについての電流密度の評価結果を示す図である。It is a figure which shows the evaluation result of the current density about the organic diode obtained by Example 1, 2 and the comparative example 1. FIG.
 以下、本発明に係る遷移金属化合物含有ナノ粒子及びその製造方法、遷移金属化合物含有ナノ粒子分散インク並びにデバイス及びその製造方法について説明する。 Hereinafter, the transition metal compound-containing nanoparticle according to the present invention and the method for producing the same, the transition metal compound-containing nanoparticle dispersed ink, the device and the method for producing the same will be described.
[遷移金属化合物含有ナノ粒子]
 本発明に係る遷移金属化合物含有ナノ粒子は、遷移金属炭化酸化物、遷移金属窒化酸化物及び遷移金属硫化酸化物よりなる群から選択される1種以上の遷移金属化合物に、親水性基を含む有機基を有する保護剤が連結基により連結してなり、親水性溶媒に分散可能であることを特徴とする。
[Transition metal compound-containing nanoparticles]
The transition metal compound-containing nanoparticle according to the present invention contains a hydrophilic group in at least one transition metal compound selected from the group consisting of transition metal carbon oxides, transition metal nitride oxides, and transition metal sulfide oxides. A protective agent having an organic group is linked by a linking group, and is characterized by being dispersible in a hydrophilic solvent.
 本発明に係る遷移金属化合物含有ナノ粒子は、単に遷移金属化合物が粉砕されて形成された粒子と異なり、ナノ粒子表面において、親水性基を含む有機基を有する保護剤が連結基により連結されている。当該保護剤は親水性基と連結基を含むため、保護剤が連結基によって上記特定の遷移金属化合物に連結されると、保護剤に含まれる親水性基は上記特定の遷移金属化合物の表面を覆った有機基上に配置されるため、ナノ粒子表面が親水性になって、親水性溶媒に分散性を有するようになり、また、分散安定性が高いものとなる。ここで、ナノ粒子が親水性溶媒に分散可能か否かは、例えば、水への溶解度(20℃)が50g/L以上である親水性溶媒1mLにナノ粒子1mgを添加し、室温(20℃)にて1時間超音波を照射した後、20℃にて1時間静置後に沈殿物の乾燥重量が0.1mg未満となれば、分散可能であり、沈殿物の乾燥重量が0.1mg以上となれば分散不可能と判断される。 The transition metal compound-containing nanoparticle according to the present invention differs from particles formed simply by crushing the transition metal compound, in which the protective agent having an organic group containing a hydrophilic group is linked by a linking group on the nanoparticle surface There is. Since the protective agent includes a hydrophilic group and a linking group, when the protective agent is linked to the specific transition metal compound by the linking group, the hydrophilic group contained in the protective agent is the surface of the specific transition metal compound. Being disposed on the covered organic group, the surface of the nanoparticles becomes hydrophilic to have dispersibility in a hydrophilic solvent, and also has high dispersion stability. Here, whether nanoparticles can be dispersed in a hydrophilic solvent or not can be determined, for example, by adding 1 mg of nanoparticles to 1 mL of a hydrophilic solvent having a water solubility (20 ° C.) of 50 g / L or more, and room temperature (20 ° C. After 1 hour of ultrasonic wave irradiation, and if the dry weight of the precipitate becomes less than 0.1 mg after standing for 1 hour at 20 ° C., it is dispersible and the dry weight of the precipitate is 0.1 mg or more If it becomes, it will be judged that distribution is impossible.
 親水性溶媒とは、ある割合で水と相溶する溶媒である。親水性溶媒としては、水、又は、水への溶解度(20℃)が50g/L以上であることを目安として、特に限定されることなく用いることができる。親水性溶媒は、任意の割合で水と混合可能な溶媒であることが好ましい。分散させる親水性溶媒としては、例えば、水、グリセリン、1-プロパノール、2-プロパノール、1-ブタノール、エチレングリコール、プロピレングリコール、メチルジグリコール、イソプロピルグリコール、ブチルグリコール、イソブチルグリコール、メチルプロピレンジグリコール、プロピルプロピレングリコール、ブチルプロピレングリコール、ジエチレングリコールモノブチルエーテルアセテート、ジエチレングリコールモノブチルエーテル、プロピレングリコールモノメチルエーテル、プロピレングリコールモノメチルエーテルアセテート、ジエチレングリコールジメチルエーテル、ジエチレングリコールエチルメチルエーテル、ジエチレングリコールジエチルエーテル、エチレングリコールモノエチルエーテル、エチレングリコールモノブチルエーテル、シクロヘキサノン、ジアセトンアルコール等を挙げることができる。 The hydrophilic solvent is a solvent that is compatible with water at a certain rate. As a hydrophilic solvent, it can be used without particular limitation, as a standard that the solubility (20 ° C.) in water or water is 50 g / L or more. The hydrophilic solvent is preferably a solvent that can be mixed with water in any proportion. The hydrophilic solvent to be dispersed includes, for example, water, glycerin, 1-propanol, 2-propanol, 1-butanol, ethylene glycol, propylene glycol, methyl diglycol, isopropyl glycol, butyl glycol, isobutyl glycol, methyl propylene diglycol, Propyl propylene glycol, butyl propylene glycol, diethylene glycol monobutyl ether acetate, diethylene glycol monobutyl ether, propylene glycol monomethyl ether, propylene glycol monomethyl ether acetate, diethylene glycol dimethyl ether, diethylene glycol ethyl methyl ether, diethylene glycol diethyl ether, ethylene glycol monoethyl ether, ethylene glycol Glycol monomethyl ether, cyclohexanone, mention may be made of diacetone alcohol.
 更に、本発明に係る遷移金属化合物含有ナノ粒子は、遷移金属炭化酸化物、遷移金属窒化酸化物及び遷移金属硫化酸化物よりなる群から選択される1種以上という、特定の遷移金属化合物を含みながら親水性溶媒中に安定して分散可能であることから、新規なナノ粒子として、様々な分野で応用が期待される。なおここで、ナノ粒子とは、直径がnm(ナノメートル)オーダー、すなわち1μm未満の粒子をいう。 Furthermore, the transition metal compound-containing nanoparticle according to the present invention contains a specific transition metal compound of one or more selected from the group consisting of transition metal carbon oxides, transition metal nitride oxides, and transition metal sulfide oxides. However, since they can be stably dispersed in a hydrophilic solvent, they are expected to be applied as novel nanoparticles in various fields. Here, the nanoparticles mean particles having a diameter of nm (nanometer) order, that is, less than 1 μm.
 本発明に係るナノ粒子は、単一構造であっても複合構造であっても良く、コア・シェル構造、合金、島構造等であっても良い。ナノ粒子に含まれる遷移金属化合物としては、遷移金属炭化酸化物、遷移金属窒化酸化物及び遷移金属硫化酸化物よりなる群から選択される1種以上である。これらの他、ホウ化物、セレン化物、ハロゲン化物及び錯体等が含まれていても良い。 The nanoparticles according to the present invention may have a single structure or a composite structure, and may have a core-shell structure, an alloy, an island structure or the like. The transition metal compound contained in the nanoparticles is at least one selected from the group consisting of transition metal carbide oxides, transition metal nitride oxides, and transition metal sulfide oxides. Other than these, borides, selenides, halides, complexes and the like may be contained.
 ナノ粒子に遷移金属炭化酸化物、遷移金属窒化酸化物又は遷移金属硫化酸化物が含まれることにより、イオン化ポテンシャルの値が最適になったり、不安定な酸化数+0の金属からの酸化による変化をあらかじめ抑制しておくことにより、デバイスにおける駆動電圧の低下や素子寿命を向上させることが可能になる。
 中でも、ナノ粒子中に酸化数の異なる酸化物である遷移金属化合物が共存して含まれることが好ましい。酸化数の異なる遷移金属化合物が共存して含まれることにより、酸化数のバランスによって正孔輸送や正孔注入性が適度に制御されることにより、駆動電圧の低下や素子寿命を向上させることが可能になる。なお、ナノ粒子内には処理条件によって様々な価数の遷移金属原子や化合物、例えば酸化物やホウ化物など、が混在していても良い。
 また、遷移金属炭化酸化物、遷移金属窒化酸化物及び遷移金属硫化酸化物においては、遷移金属炭化物、遷移金属窒化物及び遷移金属硫化物のそれぞれにおいて、少なくとも一部が酸化されていれば良い。好ましくは、遷移金属炭化物、遷移金属窒化物及び遷移金属硫化物のそれぞれにおいて、表層1nm程度が酸化されていることが好ましい。
By including transition metal carbon oxides, transition metal nitride oxides or transition metal sulfide oxides in the nanoparticles, the value of ionization potential becomes optimum, or changes due to oxidation from unstable oxidation number +0 metal By suppressing in advance, it is possible to reduce the drive voltage in the device and improve the device life.
Among them, it is preferable that the transition metal compound which is an oxide having a different oxidation number be contained in the nanoparticles. By coexistence and inclusion of transition metal compounds having different oxidation numbers, hole transport and hole injection properties are appropriately controlled by the balance of the oxidation numbers, thereby reducing the driving voltage and improving the device life. It will be possible. In the nanoparticles, transition metal atoms and compounds of various valences such as oxides and borides may be mixed according to the processing conditions.
In the transition metal carbide oxide, transition metal nitride oxide, and transition metal sulfide oxide, at least a part of each of the transition metal carbide, transition metal nitride, and transition metal sulfide may be oxidized. Preferably, in each of the transition metal carbide, the transition metal nitride and the transition metal sulfide, the surface layer of about 1 nm is preferably oxidized.
 また、ナノ粒子に遷移金属炭化酸化物、遷移金属窒化酸化物又は遷移金属硫化酸化物という特定の金属化合物が含まれることにより、後述するような、様々な用途に用いることができる。 In addition, since the nanoparticles contain a specific metal compound such as transition metal carbide oxide, transition metal nitride oxide or transition metal sulfide oxide, they can be used for various applications as described later.
 本発明のナノ粒子に含まれる、上記遷移金属化合物の遷移金属としては、3~11族の金属元素は遷移金属元素から、用いられる用途により適宜選択されれば良い。具体的には例えば、デバイス中での正孔注入輸送層用途としては、その上記金属化合物の電荷注入輸送性から、モリブデン、タングステン、バナジウム、レニウム等が挙げられる。また、触媒用途としては、モリブデン、バナジウム、チタン、鉄、コバルト、ニッケル、タングステン、パラジウム、白金、金等が挙げられる。また、配線用途としては、金、銀、銅、インジウム、モリブデン等が上げられる。また、表面増強ラマン散乱(SERS)等を利用したセンサー用途としては、銀、金等が挙げられる。また、磁気記録媒体用途としては、鉄、コバルト、ニッケル、パラジウム、白金等が挙げられる。強誘電体用途としては、チタン、ジルコニウム等が挙げられる。 As the transition metal of the above transition metal compound contained in the nanoparticles of the present invention, the metal elements of Groups 3 to 11 may be appropriately selected from the transition metal elements according to the application to be used. Specifically, for example, molybdenum, tungsten, vanadium, rhenium and the like can be mentioned as the hole injecting and transporting layer application in the device from the charge injecting and transporting property of the above-mentioned metal compound. Moreover, as a catalyst use, molybdenum, vanadium, titanium, iron, cobalt, nickel, tungsten, palladium, platinum, gold and the like can be mentioned. Moreover, gold | metal | money, silver, copper, an indium, molybdenum etc. are raised as a wiring use. Moreover, silver, gold, etc. are mentioned as a sensor use which used surface-enhanced-Raman-scattering (SERS) etc. Moreover, iron, cobalt, nickel, palladium, platinum etc. are mentioned as a magnetic recording medium use. Examples of ferroelectric applications include titanium and zirconium.
 中でも、遷移金属化合物の遷移金属としては、モリブデン、タングステン、バナジウム及びレニウムよりなる群から選択される1種以上の金属であることが、反応性が高いことから、電荷移動錯体を形成し易く、デバイスにおける駆動電圧の低下や素子寿命を向上させる点から好ましい。
 なお、タングステン、バナジウム、レニウムの各元素は、モリブデンと同様に酸化すること及び正孔注入輸送特性が得られることが、真空蒸着法を用いた酸化物膜形成法おいて知られている。例えば、タングステンについては、“ADVANCED MATERIALS” 2008, 20 p.3839-3843、バナジウムについては、”J. PHYS. D:APPL. PHYS.“ 41(2008) 062003(4pp)、レニウムについては、“APPLIED PHYSICS LETTERS” 91 011113 (2007)にそれぞれ記載されている。
Among them, as a transition metal of the transition metal compound, at least one metal selected from the group consisting of molybdenum, tungsten, vanadium and rhenium has high reactivity, so it is easy to form a charge transfer complex, It is preferable from the point of reducing the drive voltage in the device and improving the device life.
Each element of tungsten, vanadium and rhenium is known to be oxidized in the same manner as molybdenum and to obtain hole injecting and transporting characteristics, in an oxide film forming method using a vacuum evaporation method. For example, for tungsten, “ADVANCED MATERIALS” 2008, 20 p. 3893-3843, vanadium is described in "J. PHYS. D: APPL. PHYS." 41 (2008) 06 2003 (4 pp), and rhenium is described in "APPLIED PHYSICS LETTERS" 91 011113 (2007).
 本発明のナノ粒子に含まれる、遷移金属炭化酸化物、遷移金属窒化酸化物及び遷移金属硫化酸化物は、遷移金属化合物中に合計90モル%以上含まれることが好ましい。さらに、これら三種の遷移金属化合物のうち、単一の遷移金属化合物が90モル%以上含まれることがデバイスにおいて駆動電圧の低下や素子寿命を向上させる点から好ましく、単一の遷移金属化合物が95モル%以上含まれることがより好ましい。 The transition metal carbide oxide, transition metal nitride oxide and transition metal sulfide oxide contained in the nanoparticles of the present invention are preferably contained in a total of 90 mol% or more in the transition metal compound. Furthermore, among these three transition metal compounds, it is preferable that 90 mol% or more of a single transition metal compound is contained, from the viewpoint of lowering the drive voltage and improving the device life in the device. It is more preferable to contain mol% or more.
 (保護剤)
 本発明において、ナノ粒子を保護している保護剤は、連結基と、親水性基を含む有機基を有する。
 保護剤が連結基によりナノ粒子に連結し、親水性基を含む有機基によりナノ粒子表面を覆って保護することにより、ナノ粒子表面を溶媒に分散可能な親水性にし、親水性溶媒に対するナノ粒子の分散安定性を高める。
 保護剤は、低分子化合物であっても良いし、高分子化合物であっても良い。
(Protective agent)
In the present invention, the protective agent that protects the nanoparticles has a linking group and an organic group containing a hydrophilic group.
The protective agent is linked to the nanoparticle by the linking group, and the surface of the nanoparticle is covered and protected by the organic group containing the hydrophilic group, thereby making the nanoparticle surface hydrophilic which is dispersible in the solvent, the nanoparticle to the hydrophilic solvent Increase the dispersion stability of
The protective agent may be a low molecular weight compound or a high molecular weight compound.
 連結基としては、遷移金属及び/又は遷移金属化合物と連結する作用を有すれば、特に限定されない。連結には、吸着や配位も含まれるが、イオン結合、共有結合等の化学結合であることが好ましい。保護剤中の連結基の数は分子内に1つ以上であればいくつであっても良い。しかしながら、より均一なナノ粒子を得たい場合には、連結基と後述する親水性基は別の置換基を採用し、連結基は保護剤の1分子内に1つであることが好ましい。 The linking group is not particularly limited as long as it has a function of linking with a transition metal and / or a transition metal compound. The linkage includes adsorption and coordination, but is preferably a chemical bond such as an ionic bond or a covalent bond. The number of linking groups in the protective agent may be one or more in the molecule. However, when it is desired to obtain more uniform nanoparticles, it is preferable that the linking group and the hydrophilic group described later adopt different substituents, and that there is one linking group in one molecule of the protective agent.
 保護剤に含まれる連結基としては、ナノ粒子上で遷移金属及び/又は遷移金属化合物と連結する作用の点から、以下の一般式(1a)~(1o)で示される官能基より選択される1種以上であることが好ましい。 The linking group contained in the protective agent is selected from functional groups represented by the following general formulas (1a) to (1o) from the viewpoint of the action of linking with a transition metal and / or a transition metal compound on nanoparticles. It is preferable that it is 1 or more types.
Figure JPOXMLDOC01-appb-C000003
 (式中、Z、Z及びZは、各々独立にハロゲン原子又はアルコキシ基を表し、Rは水素原子又はメチル基を表わす。)
Figure JPOXMLDOC01-appb-C000003
(In the formula, Z 1 , Z 2 and Z 3 each independently represent a halogen atom or an alkoxy group, and R represents a hydrogen atom or a methyl group.)
 一方、保護剤に含まれる親水性基としては、ナノ粒子表面を有機基で覆いながら、ナノ粒子表面を親水性にする作用を有する置換基を用いる。親水性基としては、水酸基、カルボニル基、カルボキシル基、アミノ基、チオール基、シラノール基、スルホ基、スルホン酸塩及びアンモニウム基等を挙げることができる。中でも親水性基としては、水酸基、カルボニル基、アミノ基、チオール基、スルホ基、スルホン酸塩及びアンモニウム基よりなる群から選択される1種以上であることが、遷移金属化合物と連結する力が比較的弱い点から好ましく、更に、水酸基、カルボニル基、チオール基、スルホ基及びスルホン酸塩よりなる群から選択される1種以上であることが好ましい。 On the other hand, as the hydrophilic group contained in the protective agent, a substituent having an effect of making the nanoparticle surface hydrophilic is used while covering the nanoparticle surface with an organic group. Examples of the hydrophilic group include a hydroxyl group, a carbonyl group, a carboxyl group, an amino group, a thiol group, a silanol group, a sulfo group, a sulfonate, and an ammonium group. Among these, as the hydrophilic group, at least one member selected from the group consisting of a hydroxyl group, a carbonyl group, an amino group, a thiol group, a sulfo group, a sulfonate and an ammonium group has an ability to connect to a transition metal compound It is preferable from the relatively weak point, and is further preferably one or more selected from the group consisting of a hydroxyl group, a carbonyl group, a thiol group, a sulfo group and a sulfonate.
 保護剤において、連結基と親水性基は、同種の置換基であっても良いが、1分子中に、少なくとも、連結基の機能を果たす置換基と、親水性基の機能を果たす置換基とが1個ずつ含まれる。ただし連結基と親水性基が同一の場合には保護剤が連結基を複数有することになり、連結基を介してナノ粒子同士が結合し凝集することが懸念されるため、安定した分散性を維持する点からは、保護剤において、連結基と親水性基はそれぞれ異なる方が好ましい。特に、ナノ粒子と結合しにくい1個以上の親水性基と、ナノ粒子に結合しやすい1個の連結基とが、保護剤に含まれることが更に好ましい。 In the protective agent, the linking group and the hydrophilic group may be substituents of the same type, but at least a substituent performing the function of the linking group and a substituent performing the function of the hydrophilic group in one molecule Is included one by one. However, when the linking group and the hydrophilic group are the same, the protecting agent has a plurality of linking groups, and there is a concern that the nanoparticles may be bound and aggregated via the linking group, so that the stable dispersibility can be obtained. From the viewpoint of maintaining, in the protective agent, it is preferable that the linking group and the hydrophilic group be different. In particular, it is more preferable that the protective agent contains one or more hydrophilic groups that are difficult to bind to nanoparticles and one linking group that is easy to bind to nanoparticles.
 保護剤に含まれる有機基としては、炭素を含む基であればよく、炭素数が1以上、好ましくは炭素数が1~30、より好ましくは2~25、より更に好ましくは4~25の直鎖、分岐、又は環状の飽和又は不飽和脂肪族炭化水素基、並びに/或いは、炭素数6~40、より好ましくは12~34より更に好ましくは12~26の芳香族炭化水素基及び/又は複素環基等が挙げられる。なお、ここでの炭素数は、脂肪族炭化水素基、芳香族炭化水素基、及び複素環基の置換基の炭素数は含まれない。
 中でも、有機基としては、連結基に直接結合する部分に環状構造などの嵩高い構造をもたないものが、連結基を介して保護剤が表面を保護する際に欠陥なく密に保護できる点から、好ましく、また直鎖構造にて炭素数が2以上存在することが、ナノ粒子コアの遷移金属化合物間の距離を十分に保つことができナノ粒子同士の凝集を防ぐことができる点から、好ましい。
 一方で、保護剤が、有機基として芳香族炭化水素及び/又は複素環とを含む場合には、電荷輸送性を有したり、隣接する芳香族炭化水素及び/又は複素環を有する電荷輸送性化合物との密着性向上等により、膜の分散安定性が向上することができる。
The organic group contained in the protective agent may be any group containing carbon, and has 1 or more carbon atoms, preferably 1 to 30 carbon atoms, more preferably 2 to 25 carbon atoms, still more preferably 4 to 25 carbon atoms. Chain, branched or cyclic saturated or unsaturated aliphatic hydrocarbon group, and / or aromatic hydrocarbon group having 6 to 40 carbon atoms, more preferably 12 to 34 carbon atoms, and / or 12 to 26 carbon atoms and / or hetero atoms A ring group etc. are mentioned. In addition, carbon number of an aliphatic hydrocarbon group, an aromatic hydrocarbon group, and the substituent of a heterocyclic group is not included here as carbon number.
Among them, organic groups having no bulky structure such as a cyclic structure at the part directly bonded to the linking group can be densely protected without defects when the protective agent protects the surface via the linking group. From the viewpoint that the presence of two or more carbon atoms in a linear structure is preferable because the distance between the transition metal compounds of the nanoparticle core can be sufficiently maintained and the aggregation of the nanoparticles can be prevented. preferable.
On the other hand, in the case where the protective agent contains an aromatic hydrocarbon and / or a heterocyclic ring as an organic group, it has charge transportability, and has an adjacent aromatic hydrocarbon and / or a heterocyclic ring. The dispersion stability of the film can be improved by the improvement of the adhesion to the compound.
 直鎖又は分岐の飽和又は不飽和脂肪族炭化水素基としては、メチレン基、エチレン基、プロピレン基、イソプロピレン基、ブチレン基、イソブチレン基、sec-ブチレン基、tert-ブチレン基、各種ペンチレン基、各種ヘキシレン基、各種ペンチレン基、各種ヘキシレン基、各種ヘプチレン基、各種オクチレン基、各種ノニレン基、各種デシレン基等が挙げられる。 As a linear or branched saturated or unsaturated aliphatic hydrocarbon group, a methylene group, an ethylene group, a propylene group, an isopropylene group, a butylene group, an isobutylene group, a sec-butylene group, a tert-butylene group, various pentylene groups, Various hexylene groups, various pentylene groups, various hexylene groups, various heptylene groups, various octylene groups, various nonylene groups, various decylene groups and the like can be mentioned.
 芳香族炭化水素及び/又は複素環としては、具体的には例えば、ベンゼン、トリフェニルアミン、フルオレン、ビフェニル、ピレン、アントラセン、カルバゾール、フェニルピリジン、トリチオフェン、フェニルオキサジアゾール、フェニルトリアゾール、ベンゾイミダゾール、フェニルトリアジン、ベンゾジアチアジン、フェニルキノキサリン、フェニレンビニレン及びフェニルシロール並びにこれらの構造の組み合わせ等が挙げられる。 Specific examples of the aromatic hydrocarbon and / or heterocycle include, for example, benzene, triphenylamine, fluorene, biphenyl, pyrene, anthracene, carbazole, phenylpyridine, trithiophene, phenyloxadiazole, phenyltriazole, benzimidazole And phenyl triazine, benzodiathiazine, phenyl quinoxaline, phenylene vinylene and phenyl silole, and combinations of these structures.
 ナノ粒子がデバイスに用いられる場合には、保護剤は、電荷輸送性基を有することも好ましい。この場合、電荷輸送性化合物との相溶性や電荷輸送性の向上により、長駆動寿命化に寄与することができる。電荷輸送性基とは、その化学構造基が電子或いは正孔のドリフト移動度を有する性質を示す基であり、又別の定義としてはTime-Of-Flight法などの電荷輸送性能を検知できる既知の方法により電荷輸送に起因する検出電流が得られる基として定義できる。電荷輸送性基がそれ自身単独で存在し得ない場合は、当該電荷輸送性基に水素原子を付加した化合物が電荷輸送性化合物であればよい。電荷輸送性基としては、例えば、後述するような、正孔輸送性化合物(アリールアミン誘導体、カルバゾール誘導体、チオフェン誘導体、フルオレン誘導体、ジスチリルベンゼン誘導体等)において、水素原子を除いた残基が挙げられる。 When nanoparticles are used in the device, the protective agent preferably also has a charge transporting group. In this case, the compatibility with the charge transportable compound and the improvement of the charge transportability can contribute to the long drive life. The charge transporting group is a group which exhibits the property that the chemical structure group has drift mobility of electrons or holes, and as another definition, it is known that it can detect charge transporting performance such as time-of-flight method. It can be defined as a group from which a detection current resulting from charge transport can be obtained by the method of In the case where the charge transporting group can not exist alone, a compound obtained by adding a hydrogen atom to the charge transporting group may be a charge transporting compound. Examples of the charge transporting group include residues other than hydrogen atoms in hole transporting compounds (arylamine derivatives, carbazole derivatives, thiophene derivatives, fluorene derivatives, distyrylbenzene derivatives, etc.) as described later. Be
 前記保護剤が、下記一般式[I]で表されることが親水性基及び連結基の各々の機能を有し、かつナノ粒子同士の凝集を防ぐのに充分な距離を確保できる点から好ましい。
一般式[I]
X-Y-Z
(一般式[I]において、Xは親水性基、Yは炭素数が1~30の直鎖、分岐、又は環状の飽和又は不飽和脂肪族炭化水素基及び/又は炭素数6~40の芳香族炭化水素基を表し、Zは連結基を表す。)
The protective agent is preferably represented by the following general formula [I] from the viewpoint of having each function of a hydrophilic group and a linking group and securing a sufficient distance to prevent aggregation of nanoparticles. .
General formula [I]
X-Y-Z
(In the general formula [I], X is a hydrophilic group, Y is a linear, branched or cyclic saturated or unsaturated aliphatic hydrocarbon group having 1 to 30 carbon atoms and / or an aromatic having 6 to 40 carbon atoms Group hydrocarbon group, Z represents a linking group)
 保護剤が、低分子化合物である場合の具体例としては、これらに限定されるものではないが、チオグリコール酸、チオグリコール、マロン酸、マレイン酸、コハク酸、グルタル酸、グリコール酸、グリシン、4-ヒドロキシチオフェノール、4-メルカプトフェニル酢酸、ビフェニル-4,4’-ジカルボン酸、ベンジジン、4-(4-アミノフェニル)ベンゾニトリル、4,4’-ジホルミルトリフェニルアミン、トリス(4-ホルミルフェニル)アミン、N,N,N’,N’-テトラキス(4-アミノフェニル)ベンジジン等が挙げられる。
 また、保護剤が、分子量1000以下のような低分子化合物である場合には、ナノ粒子表面を覆っている保護剤の厚みが薄いため、遷移金属含有化合物表面が隣接層化合物と接近し相互作用しやすく、遷移金属含有化合物が正孔注入性の向上に寄与しやすいというメリットが期待でき、好ましい。保護剤の分子量の下限としては、特に限定されないが、50以上であることを目安とすることができる。
Specific examples of the protective agent which is a low molecular weight compound include, but are not limited to, thioglycolic acid, thioglycol, malonic acid, maleic acid, succinic acid, glutaric acid, glycolic acid, glycine, 4-hydroxythiophenol, 4-mercaptophenylacetic acid, biphenyl-4,4'-dicarboxylic acid, benzidine, 4- (4-aminophenyl) benzonitrile, 4,4'-diformyltriphenylamine, tris (4- Examples include formylphenyl) amine, N, N, N ', N'-tetrakis (4-aminophenyl) benzidine and the like.
When the protective agent is a low molecular weight compound having a molecular weight of 1000 or less, the thickness of the protective agent covering the nanoparticle surface is small, so the transition metal-containing compound surface approaches and interacts with the adjacent layer compound. It is preferable because it can be expected that the transition metal-containing compound can easily contribute to the improvement of the hole injection property. The lower limit of the molecular weight of the protective agent is not particularly limited, but may be 50 or more as a standard.
 保護剤が、高分子化合物である場合、連結基及び親水性基として機能する官能基を1分子中に2個以上含む高分子化合物を適宜選択して用いることができる。高分子化合物としては、繰り返し単位を有する重合体が好適に用いられ、重量平均分子量としては、例えば1000より大きく、50000以下程度が挙げられる。ここでの重量平均分子量は、GPC(ゲルパーミエーションクロマトグラフィー)によるポリスチレン換算値をいう。保護剤として用いられる高分子化合物の具体例としては、これらに限定されるものではないが、ポリビニルピロリドン、ポリグリコライド、ポリ(2-アクリルアミド-2-メチル-1-プロパンスルホン酸)、ポリ(アクリルアミド-アクリル酸)共重合物等が挙げられる。 When the protective agent is a polymer compound, a polymer compound containing two or more functional groups functioning as a linking group and a hydrophilic group in one molecule can be appropriately selected and used. As the polymer compound, a polymer having a repeating unit is suitably used, and the weight average molecular weight is, for example, more than 1000 and about 50000 or less. The weight average molecular weight here means the polystyrene conversion value by GPC (gel permeation chromatography). Specific examples of the polymer compound used as the protective agent include, but are not limited to, polyvinyl pyrrolidone, polyglycolide, poly (2-acrylamido-2-methyl-1-propanesulfonic acid), poly ( Acrylamide-acrylic acid) copolymer and the like.
 保護剤は、ナノ粒子を親水性溶媒に分散可能とする点から、上記親水性溶媒への溶解度(20℃)が10g/L以上であることが好ましく、更に50g/L以上であることが好ましい。
 また、保護剤は、オクタノール-水分配係数logPが、-10~2である化合物を選択して用いることが好ましい。オクタノール-水分配係数logPが上記範囲である保護剤を用いると、保護剤が適切な親水性を有し、ナノ粒子を親水性溶媒に分散することが可能になる。中でも、隣接する有機層との密着性が重要な場合には、オクタノール-水分配係数logPが、-5~2である化合物が好ましい。
 なおここで、オクタノール-水分配係数logPは、疎水性/親水性のバランスを表すパラメータである。logPは、n-オクタノールと水への2つの溶媒系における物質の分配係数で、ある化合物のn-オクタノール中の濃度Coと水中の濃度Cwに対して常用対数logP=log(Co/Cw)で定義される。近年logPを計算により求める方法が提案されており、有用な方法として、ChemAxon社のソフトウェア「Marvin Caluculation Plugin」を挙げることが出来る。本発明でいうところのlogPとは、このソフトウェア「Marvin Caluculation Plugin」を用いて計算された値である。
The protective agent preferably has a solubility (20 ° C.) in the hydrophilic solvent of 10 g / L or more, more preferably 50 g / L or more, in order to make the nanoparticles dispersible in the hydrophilic solvent. .
Further, as the protective agent, it is preferable to select and use a compound having an octanol-water partition coefficient logP of −10 to 2. Using a protective agent having an octanol-water partition coefficient logP in the above range enables the protective agent to have appropriate hydrophilicity and to disperse the nanoparticles in a hydrophilic solvent. Among them, a compound having an octanol-water partition coefficient logP of −5 to 2 is preferable when adhesion to an adjacent organic layer is important.
Here, the octanol-water partition coefficient logP is a parameter representing the balance of hydrophobicity / hydrophilicity. log P is the partition coefficient of a substance in two solvent systems of n-octanol and water, where the log is log P = log (Co / Cw) with respect to the concentration Co in n-octanol of a compound and the concentration Cw in water It is defined. In recent years, a method of calculating logP by calculation has been proposed, and as a useful method, the software "Marvin Calibration Plugin" of ChemAxon can be mentioned. In the present invention, logP is a value calculated using this software "Marvin Calibration Plugin".
 本発明のナノ粒子において、遷移金属化合物と、保護剤との含有比率は、用途により適宜選択され、特に限定されないが、遷移金属化合物100質量部に対して、保護剤が10~40質量部であることが好ましい。 In the nanoparticles of the present invention, the content ratio of the transition metal compound to the protective agent is appropriately selected depending on the application and is not particularly limited, but 10 to 40 parts by mass of the protective agent with respect to 100 parts by mass of the transition metal compound. Is preferred.
 本発明のナノ粒子の平均粒径は、特に限定されるものではなく、例えば、0.5nm~999nmとすることができ、用途により適宜選択されればよい。平均粒径は、0.5nm~50nmであることが好ましく、中でも0.5nm~20nmであることが好ましい。20nm以下の薄膜を形成する場合には、さらに、15nm以下であることが好ましく、特に1nm~10nmの範囲内であることが好ましい。粒径が小さすぎるものは、製造が困難であるからである。一方、粒径が大きすぎると、単位質量当たりの表面積(比表面積)が小さくなり、所望の効果が得られない可能性があり、さらに薄膜の表面粗さが大きくなりショートが多発するおそれがあるからである。
 ここで平均粒径は、動的光散乱法により測定される個数平均粒径であるが、正孔注入輸送層に分散された状態においては、平均粒径は、透過型電子顕微鏡(TEM)を用いて得られた画像から、ナノ粒子が20個以上存在していることが確認される領域を選択し、この領域中の全てのナノ粒子について粒径を測定し、平均値を求めることにより得られる値とする。
The average particle diameter of the nanoparticles of the present invention is not particularly limited, and may be, for example, 0.5 nm to 999 nm, and may be appropriately selected depending on the application. The average particle size is preferably 0.5 nm to 50 nm, and more preferably 0.5 nm to 20 nm. When a thin film of 20 nm or less is formed, the thickness is more preferably 15 nm or less, and particularly preferably in the range of 1 nm to 10 nm. If the particle size is too small, production is difficult. On the other hand, if the particle size is too large, the surface area (specific surface area) per unit mass may be small, the desired effect may not be obtained, and the surface roughness of the thin film may be further increased to cause frequent shorts. It is from.
Here, the average particle size is a number average particle size measured by a dynamic light scattering method, but in the state of being dispersed in the hole injecting and transporting layer, the average particle size is a transmission electron microscope (TEM) Obtained by selecting the region where it is confirmed that 20 or more nanoparticles are present from the image obtained by using, measuring the particle size of all the nanoparticles in this region, and calculating the average value. Value.
 (遷移金属化合物含有ナノ粒子の用途)
 本発明に係るナノ粒子は、親水性溶媒において分散安定性が非常に高く、遷移金属炭化酸化物、遷移金属窒化酸化物及び遷移金属硫化酸化物よりなる群から選択される1種以上という特定の遷移金属化合物を含む新規なナノ粒子である。
 従って、親水性溶媒中で均一に高い分散安定性で分散させたインクの態様で、好適に用いることができる。
(Use of transition metal compound-containing nanoparticles)
The nanoparticles according to the present invention have very high dispersion stability in a hydrophilic solvent, and one or more selected from the group consisting of transition metal carbon oxides, transition metal nitride oxides, and transition metal sulfide oxides. It is a novel nanoparticle containing a transition metal compound.
Therefore, it can be suitably used in the form of an ink dispersed uniformly with high dispersion stability in a hydrophilic solvent.
 更に、溶媒中で分散安定性が非常に高いものとなるため、経時安定性及び均一性の高いnmオーダーの薄膜を形成することができる。当該薄膜は親水性であるため、当該薄膜上に、疎水性溶媒を用いた溶液塗布法で有機層を隣接して形成しても、当該薄膜は再溶解することなく安定な膜である。また、逆に、疎水性溶媒を用いた溶液塗布法で形成された有機層上に、隣接して、本発明のナノ粒子を含有する層を親水性溶媒を用いた溶液塗布法で形成しても、有機層は再溶解することなく、互いに安定性の高い薄膜を形成することができる。すなわち、疎水性有機薄膜と、本発明に係るナノ粒子を含有する親水性塗膜とが隣接して積層されてなる、薄膜積層体とすることができる。 Furthermore, since the dispersion stability is very high in the solvent, it is possible to form a thin film of nm order high in stability and uniformity over time. Since the thin film is hydrophilic, even if an organic layer is formed adjacent to the thin film by a solution coating method using a hydrophobic solvent, the thin film is a stable film without re-dissolution. Conversely, on the other hand, on the organic layer formed by the solution coating method using a hydrophobic solvent, a layer containing the nanoparticles of the present invention is formed by a solution coating method using a hydrophilic solvent. Also, the organic layers can form thin films with high stability without re-dissolution. That is, it is possible to obtain a thin film laminate in which the hydrophobic organic thin film and the hydrophilic coating film containing the nanoparticles according to the present invention are adjacently laminated.
 また、疎水性溶媒を用いた溶液塗布法で形成された有機層上に、隣接して、疎水性の高いナノ粒子を疎水性溶媒中に分散して塗布した場合には、有機層表層部分が再溶解することにより、ナノ粒子が有機層表層部分に埋め込まれるような態様となる。ところが、本願の親水性溶媒に分散可能なナノ粒子を用いると、図1のように、疎水性の有機層のような担持担体5上に、本発明に係るナノ粒子が、ナノ粒子表面を露出させた状態で担持する態様とすることができる。ナノ粒子を担持する担体は、疎水性の有機層に特に限られず用いることができ、本発明に係るナノ粒子は、担体表面に担持させてナノ粒子表面を機能として用いる用途にも好適に用いることができる。 Further, when the highly hydrophobic nanoparticles are dispersed in a hydrophobic solvent and applied adjacent to the organic layer formed by the solution coating method using a hydrophobic solvent, the surface portion of the organic layer is By re-dissolving, the nanoparticles are embedded in the surface portion of the organic layer. However, when nanoparticles that can be dispersed in the hydrophilic solvent of the present invention are used, as shown in FIG. 1, the nanoparticles according to the present invention expose the surface of the nanoparticles on the carrier 5 such as a hydrophobic organic layer. It can be made into the aspect supported in the state which it was made to make. The carrier supporting the nanoparticles can be used without being particularly limited to the hydrophobic organic layer, and the nanoparticles according to the present invention are suitably used on a carrier surface by using the nanoparticle surface as a function. Can.
 以上のことから、本発明に係るナノ粒子は、様々な用途に利用可能である。例えば、デバイス材料、特にデバイスにおける正孔注入輸送材料、触媒、潤滑油に用いられる摩擦改質剤、摩耗防止剤、酸化防止剤等の添加剤等が挙げられる。 From the above, the nanoparticles according to the present invention can be used for various applications. Examples thereof include hole injection transport materials for devices, in particular devices, catalysts, additives such as friction modifiers used in lubricating oils, anti-wear agents, and antioxidants.
 本発明に係るナノ粒子は、1つの態様として、デバイス材料として適している。
 本発明に係るナノ粒子は、上記特定の遷移金属化合物が、親水性基を含む有機基を有する保護剤により保護された特定の遷移金属化合物含有ナノ粒子であるため、溶液塗布法により正孔注入輸送層を形成でき製造プロセスが容易でありながら、電荷移動錯体を形成可能で正孔注入特性を向上し、且つ、疎水性溶媒を用いた溶液塗布法で有機層を隣接して形成しても安定性の高い膜となるため、正孔注入輸送層の形成材料に特に適している。親水性溶媒において分散安定性が非常に高いものとなるため、均一性の高いnmオーダーの薄膜を形成することができる。当該薄膜は、経時安定性及び均一性が高いためデバイスに用いてもショートし難い。
The nanoparticles according to the present invention are suitable as a device material in one aspect.
In the nanoparticles according to the present invention, since the specific transition metal compound is a specific transition metal compound-containing nanoparticle protected by a protective agent having an organic group containing a hydrophilic group, holes are injected by a solution coating method. While the transport layer can be formed and the manufacturing process is easy, the charge transfer complex can be formed to improve the hole injection property, and the organic layer can be formed adjacently by the solution coating method using a hydrophobic solvent. It is particularly suitable as a material for forming a hole injecting and transporting layer because it provides a highly stable film. Since the dispersion stability is very high in a hydrophilic solvent, a highly uniform thin film of nm order can be formed. Since the thin film has high temporal stability and uniformity, it is difficult to short-circuit even when used in a device.
 本発明に係るナノ粒子は、親水性溶媒を用いた溶液塗布法によって薄膜形成が可能であることから、製造プロセス上のメリットが大きい。例えば有機EL素子において、撥液性バンクを持つ基板に正孔注入輸送層から発光層までを順次塗布プロセスのみで形成できる。それ故、無機化合物のモリブデン酸化物の場合のように正孔注入層を高精細なマスク蒸着等で蒸着した後に、正孔輸送層や発光層を溶液塗布法で形成し、さらに第二電極を蒸着するようなプロセスと比較して、単純であり、低コストでデバイスを作製できる利点がある。 Since the nanoparticles according to the present invention can be formed into a thin film by a solution coating method using a hydrophilic solvent, they have great merits in the manufacturing process. For example, in the organic EL element, the hole injecting and transporting layer to the light emitting layer can be sequentially formed only on the coating process on the substrate having the liquid repellent bank. Therefore, as in the case of the molybdenum oxide of the inorganic compound, after the hole injection layer is deposited by highly precise mask deposition or the like, the hole transport layer and the light emitting layer are formed by solution coating, and the second electrode is further formed. There is the advantage that it is simpler and can produce devices at lower cost compared to processes such as evaporation.
 また、本発明に係るナノ粒子は、ナノ粒子に含まれる上記特定の遷移金属化合物の反応性が高く、電荷移動錯体を形成しやすいと考えられる。そのため、本発明に係るナノ粒子を含有する正孔注入輸送層を備えたデバイスは、低電圧駆動、高電力効率、長寿命なデバイスを実現することが可能である。
 さらに、ナノ粒子の保護剤の種類を選択することにより、電荷輸送性、あるいは密着性などの機能性をデバイスに付与するなど、多機能化することが容易である。
 デバイスの態様については、後に詳述する。
In addition, it is considered that the nanoparticles according to the present invention have high reactivity of the specific transition metal compound contained in the nanoparticles and easily form a charge transfer complex. Therefore, the device provided with the hole injecting and transporting layer containing the nanoparticle according to the present invention can realize a low voltage drive, high power efficiency, and a long life device.
Furthermore, by selecting the type of protective agent for nanoparticles, it is easy to make the device multifunctional, such as imparting functionality such as charge transportability or adhesion.
Aspects of the device will be described in detail later.
 また、本発明に係るナノ粒子は、触媒として用いることもできる。燃料電池の電極反応を担う触媒として用いる場合、ナノ粒子中の遷移金属化合物が、遷移金属炭化酸化物、中でもモリブデン炭化酸化物であることが好ましい。
 本発明に係るナノ粒子は、触媒として用いる場合、ナノ粒子を担持する担体としては、触媒の担う反応により適宜選択されれば良く、例えば、カーボンナノチューブ、カーボンナノホーン、カーボンナノフィラメント、グラフェン、グラファイト等の導電性を有する炭素材等を挙げることができる。
The nanoparticles according to the present invention can also be used as a catalyst. When used as a catalyst responsible for the electrode reaction of a fuel cell, it is preferable that the transition metal compound in the nanoparticles is a transition metal carbide oxide, particularly molybdenum carbide oxide.
When the nanoparticle according to the present invention is used as a catalyst, the carrier supporting the nanoparticles may be appropriately selected according to the reaction of the catalyst. For example, carbon nanotubes, carbon nanohorns, carbon nanofilaments, graphene, graphite, etc. And carbon materials having the conductivity of
 (遷移金属化合物含有ナノ粒子の製造方法)
 本発明に係る第一の遷移金属化合物含有ナノ粒子の製造方法は、(A)遷移金属及び/又は遷移金属錯体を炭化し、遷移金属炭化物とする工程、
 (B)(A)工程で得られた遷移金属炭化物を、連結基を含む有機基を有する保護剤により保護する工程、及び、
 (C)(B)工程で得られた有機基を有する遷移金属炭化物を酸化し、有機基を有する遷移金属炭化酸化物とする工程を含み、
 前記保護剤が連結基及び親水性基を含む有機基を有する保護剤であるか、或いは、前記保護剤が連結基及び疎水性基を含む有機基を有する保護剤であって、更に、当該疎水性基を含む有機基を有する保護剤を、親水性基を含む有機基を有する保護剤に交換する工程を含むことを特徴とする。
(Method of producing transition metal compound-containing nanoparticles)
The method for producing a first transition metal compound-containing nanoparticle according to the present invention comprises the steps of: (A) carbonizing a transition metal and / or transition metal complex to form transition metal carbide;
(B) protecting the transition metal carbide obtained in the step (A) with a protective agent having an organic group containing a linking group, and
(C) oxidizing the transition metal carbide having an organic group obtained in the step (B) to obtain a transition metal carbide oxide having an organic group,
The protective agent is a protective agent having an organic group containing a linking group and a hydrophilic group, or the protective agent has an organic group containing a linking group and a hydrophobic group, and the hydrophobic It is characterized by including the process of replacing the protecting agent which has an organic group containing a nature group with the protecting agent which has an organic group containing a hydrophilic group.
 本発明に係る第二の遷移金属化合物含有ナノ粒子の製造方法は、(a)遷移金属及び/又は遷移金属錯体を、連結基を含む有機基を有する保護剤により保護する工程、
 (b)(a)工程で得られた有機基を有する遷移金属又は遷移金属錯体を炭化し、有機基を有する遷移金属炭化物とする工程、及び、
 (c)(b)工程で得られた有機基を有する遷移金属炭化物を酸化し、有機基を有する遷移金属炭化酸化物とする工程を含み、
 前記保護剤が連結基及び親水性基を含む有機基を有する保護剤であるか、或いは、前記保護剤が連結基及び疎水性基を含む有機基を有する保護剤であって、更に、当該疎水性基を含む有機基を有する保護剤を、親水性基を含む有機基を有する保護剤に交換する工程を含むことを特徴とする。
The method for producing a second transition metal compound-containing nanoparticle according to the present invention comprises the steps of (a) protecting the transition metal and / or transition metal complex with a protective agent having an organic group containing a linking group,
(B) carbonizing the transition metal or transition metal complex having an organic group obtained in the step (a) to obtain a transition metal carbide having an organic group;
(C) oxidizing the transition metal carbide having an organic group obtained in step (b) to obtain a transition metal carbide oxide having an organic group,
The protective agent is a protective agent having an organic group containing a linking group and a hydrophilic group, or the protective agent has an organic group containing a linking group and a hydrophobic group, and the hydrophobic It is characterized by including the process of replacing the protecting agent which has an organic group containing a nature group with the protecting agent which has an organic group containing a hydrophilic group.
 本発明に係る第三の遷移金属化合物含有ナノ粒子の製造方法は、(α)遷移金属及び/又は遷移金属錯体を炭化し、遷移金属炭化物とする工程、
 (β)(α)工程で得られた遷移金属炭化物を酸化し、遷移金属炭化酸化物とする工程、及び、
 (γ)(β)工程で得られた遷移金属炭化酸化物を、連結基を含む有機基を有する保護剤により保護し、有機基を有する遷移金属炭化酸化物とする工程を含み、
 前記保護剤が連結基及び親水性基を含む有機基を有する保護剤であるか、或いは、前記保護剤が連結基及び疎水性基を含む有機基を有する保護剤であって、更に、当該疎水性基を含む有機基を有する保護剤を、親水性基を含む有機基を有する保護剤に交換する工程を含むことを特徴とする。
In the method for producing a third transition metal compound-containing nanoparticle according to the present invention, a step of carbonizing (α) transition metal and / or transition metal complex to form transition metal carbide,
(Β) A step of oxidizing the transition metal carbide obtained in the step (α) into a transition metal carbide oxide,
(Γ) A step of protecting the transition metal carbon oxide obtained in the step (β) with a protective agent having an organic group containing a linking group to obtain a transition metal carbon oxide having an organic group
The protective agent is a protective agent having an organic group containing a linking group and a hydrophilic group, or the protective agent has an organic group containing a linking group and a hydrophobic group, and the hydrophobic It is characterized by including the process of replacing the protecting agent which has an organic group containing a nature group with the protecting agent which has an organic group containing a hydrophilic group.
 図2は、本発明に係る第一乃至第三の遷移金属化合物含有ナノ粒子の製造方法の工程の順序を示した模式図である。
 図2の(i)は、本発明に係る第一の遷移金属化合物含有ナノ粒子の製造方法の一例を示しており、遷移金属及び/又は遷移金属錯体10を炭化し、遷移金属炭化物20とし、次いで、遷移金属炭化物の表面に、連結基を含む有機基を有する保護剤30の連結基を連結させることにより保護し、次いで、遷移金属炭化物を酸化し、遷移金属炭化酸化物40として、遷移金属化合物含有ナノ粒子1を得る。ここで、前記保護剤は連結基及び親水性基を含む有機基を有する保護剤であるか、或いは、前記保護剤が連結基及び疎水性基を含む有機基を有する保護剤である場合には、更に、当該疎水性基を含む有機基を有する保護剤を、親水性基を含む有機基を有する保護剤に交換する工程を含む(図示せず)ことにより、遷移金属化合物含有ナノ粒子1を得る。前記保護剤が連結基及び疎水性基を含む有機基を有する保護剤である場合の、当該疎水性基を含む有機基を有する保護剤を、親水性基を含む有機基を有する保護剤に交換する工程は、(C)酸化工程の前でも後でも良いが、酸化工程によりナノ粒子の表面状態が変化し分散性が低下することが懸念されるため、(C)酸化工程と同時又は(C)酸化工程の後の方が好ましい。
FIG. 2 is a schematic view showing the order of the steps of the method for producing the first to third transition metal compound-containing nanoparticles according to the present invention.
FIG. 2 (i) shows an example of the method for producing the first transition metal compound-containing nanoparticle according to the present invention, wherein the transition metal and / or transition metal complex 10 is carbonized to form transition metal carbide 20, Next, the transition metal carbide is protected by linking the linking group of the protective agent 30 having an organic group containing a linking group to the surface of the transition metal carbide, and then the transition metal carbide is oxidized to form a transition metal carbide oxide 40. Compound-containing nanoparticles 1 are obtained. Here, the protective agent is a protective agent having an organic group containing a linking group and a hydrophilic group, or when the protective agent is a protective agent having an organic group containing a linking group and a hydrophobic group And further, replacing the protective agent having an organic group containing the hydrophobic group with a protective agent having an organic group containing a hydrophilic group (not shown), thereby forming the transition metal compound-containing nanoparticle 1 obtain. When the protective agent is a protective agent having an organic group containing a linking group and a hydrophobic group, the protective agent having an organic group containing the hydrophobic group is replaced with a protective agent having an organic group containing a hydrophilic group The step of (C) may be performed before or after the oxidation step, but there is a concern that the surface state of the nanoparticles may change and the dispersibility may be reduced by the oxidation step, either simultaneously with (C) oxidation step or (C) A) after the oxidation step is preferred.
 図2の(ii)は、本発明に係る第二の遷移金属化合物含有ナノ粒子の製造方法の一例を示しており、遷移金属及び/又は遷移金属錯体10の表面に、連結基を含む有機基を有する保護剤30の連結基を連結させることにより保護し、次いで、遷移金属及び/又は遷移金属錯体10を炭化し、保護された(親水性基を含む有機基を有する)遷移金属炭化物20とし、次いで、遷移金属炭化物を酸化し、遷移金属炭化酸化物40として、遷移金属化合物含有ナノ粒子1を得る。ここで、前記保護剤は連結基及び親水性基を含む有機基を有する保護剤であるか、或いは、前記保護剤が連結基及び疎水性基を含む有機基を有する保護剤である場合には、更に、当該疎水性基を含む有機基を有する保護剤を、親水性基を含む有機基を有する保護剤に交換する工程を含む(図示せず)ことにより、遷移金属化合物含有ナノ粒子1を得る。前記保護剤が連結基及び疎水性基を含む有機基を有する保護剤である場合の、当該疎水性基を含む有機基を有する保護剤を、親水性基を含む有機基を有する保護剤に交換する工程は、(b)炭化工程及び/又は(c)酸化工程の前でも後でも良いが、(b)炭化工程及び/又は(c)酸化工程によりナノ粒子の表面状態が変化し分散性が低下することが懸念されるため、(c)酸化工程と同時又は(c)酸化工程の後の方が好ましい。 (Ii) of FIG. 2 shows an example of the method for producing the second transition metal compound-containing nanoparticle according to the present invention, and an organic group containing a linking group on the surface of the transition metal and / or the transition metal complex 10 Protected by linking the linking group of the protective agent 30 and then carbonizing the transition metal and / or transition metal complex 10 to form a protected transition metal carbide 20 (having an organic group containing a hydrophilic group) Then, the transition metal carbide is oxidized to obtain transition metal compound-containing nanoparticles 1 as a transition metal carbide oxide 40. Here, the protective agent is a protective agent having an organic group containing a linking group and a hydrophilic group, or when the protective agent is a protective agent having an organic group containing a linking group and a hydrophobic group And further, replacing the protective agent having an organic group containing the hydrophobic group with a protective agent having an organic group containing a hydrophilic group (not shown), thereby forming the transition metal compound-containing nanoparticle 1 obtain. When the protective agent is a protective agent having an organic group containing a linking group and a hydrophobic group, the protective agent having an organic group containing the hydrophobic group is replaced with a protective agent having an organic group containing a hydrophilic group The step of (b) may be before or after the carbonization step and / or (c) the oxidation step, but the surface state of the nanoparticles is changed by the (b) carbonization step and / or (c) oxidation step, and the dispersibility is It is preferable that the reaction be performed simultaneously with the (c) oxidation step or after the (c) oxidation step, because there is a concern that the amount will decrease.
 図2の(iii)は、本発明に係る第三の遷移金属化合物含有ナノ粒子の製造方法の一例を示しており、遷移金属及び/又は遷移金属錯体10を炭化し、遷移金属炭化物20とし、次いで、遷移金属炭化物を酸化し、遷移金属炭化酸化物40とする。次いで、遷移金属炭化酸化物40の表面に、連結基を含む有機基を有する保護剤30の連結基を連結させることにより保護し、遷移金属化合物含有ナノ粒子1を得る。ここで、前記保護剤は連結基及び親水性基を含む有機基を有する保護剤であるか、或いは、前記保護剤が連結基及び疎水性基を含む有機基を有する保護剤である場合には、更に、当該疎水性基を含む有機基を有する保護剤を、親水性基を含む有機基を有する保護剤に交換する工程を含む(図示せず)ことにより、遷移金属化合物含有ナノ粒子1を得る。 (Iii) in FIG. 2 shows an example of the method for producing the third transition metal compound-containing nanoparticle according to the present invention, wherein the transition metal and / or transition metal complex 10 is carbonized to form transition metal carbide 20, Then, the transition metal carbide is oxidized to form transition metal carbide oxide 40. Next, the surface of the transition metal carbide oxide 40 is protected by linking the linking group of the protective agent 30 having the organic group containing the linking group, and the transition metal compound-containing nanoparticle 1 is obtained. Here, the protective agent is a protective agent having an organic group containing a linking group and a hydrophilic group, or when the protective agent is a protective agent having an organic group containing a linking group and a hydrophobic group And further, replacing the protective agent having an organic group containing the hydrophobic group with a protective agent having an organic group containing a hydrophilic group (not shown), thereby forming the transition metal compound-containing nanoparticle 1 obtain.
 本発明に係る第一の遷移金属化合物含有ナノ粒子の製造方法の、(A)工程において、遷移金属としては、上記ナノ粒子で挙げたものを用いることができるのでここでの説明は省略する。
 遷移金属を炭化する場合、ヘキサカルボニル又はアセチルアセトナート等の炭素原子を含む配位子を加えて、加熱等を行うことにより遷移金属炭化物が得られる。
In the step (A) of the method for producing the first transition metal compound-containing nanoparticle according to the present invention, as the transition metal, those exemplified for the above-mentioned nanoparticles can be used, and therefore the description thereof is omitted here.
When carbonizing a transition metal, a transition metal carbide can be obtained by adding a ligand containing a carbon atom such as hexacarbonyl or acetylacetonate and heating.
 遷移金属錯体としては、配位子に炭素原子を含む遷移金属錯体であれば良く、溶媒中でできるだけ低温で分解される遷移金属錯体が好ましい。例えば、モリブデンヘキサカルボニル、タングステンヘキサカルボニル、鉄ペンタカルボニル、コバルトカルボニル、シクロペンタジエニルコバルトジカルボニルおよびペンタカルボニルクロロレニウム等の遷移金属のカルボニル錯体、バナジウムアセチルアセトナート、チタンジイソプロポキシドビス(アセチルアセトナート)、鉄アセチルアセトナート、ニッケルアセチルアセトナート、パラジウムアセチルアセトナート、白金アセチルアセトナート、銀アセチルアセトナート、銅アセチルアセトナート、インジウムアセチルアセトナート等の遷移金属のアセチルアセトナート錯体、テトラキス(ジメチルアミド)チタン、テトラキス(ジエチルアミド)チタン、テトラキス(エチルメチルアミド)チタン、ビス(ジエチルアミド)ビス(ジメチルアミド)チタン、ビス(シクロペンタジエニル)バナジウム、フェロセン、ビス(シクロペンタジエニル)コバルト、ビス(シクロペンタジエニル)ニッケル、白金オクタエチルポルフィリン、トリメチル(メチルシクロペンタジエニル)白金、トリクロロ(ピリジン)金、銀フタロシアニン等が挙げられる。 The transition metal complex may be a transition metal complex containing a carbon atom as a ligand, and is preferably a transition metal complex which is decomposed at a temperature as low as possible in a solvent. For example, carbonyl complexes of transition metals such as molybdenum hexacarbonyl, tungsten hexacarbonyl, iron pentacarbonyl, cobalt carbonyl, cyclopentadienyl cobalt dicarbonyl and pentacarbonyl chlororhenium, vanadium acetylacetonate, titanium diisopropoxide bis (acetyl) (Acetonato), iron acetylacetonate, nickel acetylacetonate, palladium acetylacetonate, platinum acetylacetonate, silver acetylacetonate, copper acetylacetonate, acetylacetonate complexes of transition metals such as indium acetylacetonate, tetrakis ( Dimethylamido) titanium, tetrakis (diethylamido) titanium, tetrakis (ethyl methylamido) titanium, bis (diethylamido) bis Dimethylamide) titanium, bis (cyclopentadienyl) vanadium, ferrocene, bis (cyclopentadienyl) cobalt, bis (cyclopentadienyl) nickel, platinum octaethyl porphyrin, trimethyl (methyl cyclopentadienyl) platinum, trichloro (Pyridine) gold, silver phthalocyanine and the like.
 遷移金属及び/又は遷移金属錯体を炭化する方法としては、加熱等の方法を用いることができ、例えば、加熱する場合は150~400℃で加熱することにより遷移金属及び/又は遷移金属錯体を炭化することができる。粒径の均一化、及び、粒径を小さくする点からは、更に200~350℃、より更に250~350℃で加熱することが好ましい。
 炭化工程の加熱は、溶媒中で行うことがナノ粒子全体に対して均一に炭化できる点から好ましい。また、遷移金属炭化物とする工程は、反応溶液中での分散安定性を維持する点からアルゴンガス雰囲気下で行うことが好ましい。
As a method of carbonizing the transition metal and / or transition metal complex, a method such as heating can be used, for example, when heating, the transition metal and / or transition metal complex can be carbonized by heating at 150 to 400 ° C. can do. In order to make the particle size uniform and to reduce the particle size, it is preferable to further heat at 200 to 350 ° C., and more preferably 250 to 350 ° C.
The heating in the carbonization step is preferred to be carried out in a solvent from the viewpoint of being able to uniformly carbonize the entire nanoparticles. The transition metal carbide step is preferably performed under an argon gas atmosphere from the viewpoint of maintaining the dispersion stability in the reaction solution.
 (B)工程において、保護剤としては、上記ナノ粒子で挙げたものを用いることができるのでここでの説明は省略する。 In the step (B), as the protective agent, those mentioned above for the nanoparticles can be used, and therefore the description thereof is omitted here.
 (B)工程の、連結基を含む有機基を有する保護剤の連結基を、遷移金属炭化物等の表面に連結させる保護工程は、溶媒中で行うことが好ましい。具体的には、保護剤を分散させた溶媒中にて加熱、攪拌して行うことが好ましい。このとき、溶媒としては、沸点が加熱温度+10℃以上である溶媒を選択して用いるようにする。沸点が200℃以上の溶媒の存在下で行うことが、保護剤による保護を高温環境下で均一に、且つ、安定して行うことができる点から好ましい。 In the step (B), the protection step of connecting the linking group of the protective agent having an organic group containing a linking group to the surface of transition metal carbide or the like is preferably performed in a solvent. Specifically, it is preferable to carry out heating and stirring in a solvent in which the protective agent is dispersed. At this time, as the solvent, a solvent having a boiling point of heating temperature + 10 ° C. or more is selected and used. It is preferable to carry out in the presence of a solvent having a boiling point of 200 ° C. or more from the viewpoint that protection with a protective agent can be carried out uniformly and stably in a high temperature environment.
 (C)工程において、酸化する方法としては、例えば、加熱手段、光照射手段、活性酸素を作用させる手段等が挙げられ、これらを適宜、併用しても良い。
 加熱手段としては、ホットプレートやオーブンが挙げられる。加熱温度としては、50~250℃が好ましい。
 光照射手段としては、紫外線照射装置が挙げられる。
 活性酸素を作用させる手段としては、紫外線によって活性酸素を発生させて作用させる方法や、酸化チタンなどの光触媒に紫外線を照射することによって活性酸素を発生させて作用させる方法が挙げられる。
 上記手段においては、加熱温度、光照射量及び活性酸素量により、ナノ粒子同士の相互作用やナノ粒子の正孔輸送性化合物に対する相互作用に違いが生じるため、適宜調節することが好ましい。
 また、酸化する際に、遷移金属炭化物を効率的に酸化するために酸素存在下で行うことが好ましい。
In the step (C), as a method of oxidation, for example, heating means, light irradiation means, means for causing active oxygen to act, etc. may be mentioned, and these may be used in combination as appropriate.
The heating means may, for example, be a hot plate or an oven. The heating temperature is preferably 50 to 250.degree.
An ultraviolet irradiation apparatus is mentioned as a light irradiation means.
Examples of means for causing active oxygen to act include a method of causing active oxygen to act by ultraviolet light, and a method of causing active oxygen to act by irradiating ultraviolet light to a photocatalyst such as titanium oxide.
In the above means, the interaction between the nanoparticles and the interaction of the nanoparticles with the hole transportable compound are different depending on the heating temperature, the light irradiation amount and the active oxygen amount, so it is preferable to adjust appropriately.
Moreover, when oxidizing, in order to oxidize transition metal carbide efficiently, it is preferable to carry out in oxygen presence.
 前記保護工程における保護剤が、連結基及び疎水性基を含む有機基を有する保護剤である場合の、当該疎水性基を含む有機基を有する保護剤を、親水性基を含む有機基を有する保護剤に交換する工程は、疎水性基を含む有機基を有する保護剤で保護されたナノ粒子が分散でき、且つ、親水性基を含む有機基を有する保護剤が溶解可能な溶媒中で行うことができる。例えばクロロホルムのような溶媒中で、4時間~72時間程度、常温(20℃)~60℃程度の温度にて撹拌を行うことにより、保護剤を交換することができる。また疎水性保護剤の連結基に対して親水性保護剤の連結基の方が連結する機能が強い場合には、交換に要する時間を更に短縮することができる。また交換する工程で加熱する温度については高沸点溶媒を用いることで高温化することができ、高温化することで保護剤の交換に要する時間を更に短縮することができるが、高温化するとナノ粒子表面から脱離する保護剤が増えることによってナノ粒子同士の凝集が生じるため、保護剤を交換する際の温度については保護剤が交換することが可能な温度領域において極力低温で行うのが好ましい。 When the protecting agent in the protecting step is a protecting agent having an organic group containing a linking group and a hydrophobic group, the protecting agent having an organic group containing the hydrophobic group has an organic group containing a hydrophilic group The step of exchanging for the protective agent is performed in a solvent in which nanoparticles protected with the protective agent having an organic group containing a hydrophobic group can be dispersed, and the protective agent having an organic group containing a hydrophilic group can be dissolved be able to. For example, the protective agent can be exchanged by stirring in a solvent such as chloroform at a temperature of normal temperature (20 ° C.) to about 60 ° C. for about 4 hours to 72 hours. When the function of linking the linking group of the hydrophilic protecting agent to the linking group of the hydrophobic protecting agent is strong, the time required for replacement can be further shortened. The temperature to be heated in the replacement step can be increased by using a high boiling point solvent, and by increasing the temperature, the time required to replace the protective agent can be further shortened. Since aggregation of the nanoparticles is caused by the increase of the protective agent desorbed from the surface, it is preferable to carry out the temperature at the time of replacing the protective agent as low as possible in the temperature range where the protective agent can be exchanged.
 第二及び第三のナノ粒子の製造方法においても、炭化する方法、酸化する方法及び保護剤により保護する方法は、上記第一のナノ粒子の製造方法の各方法を用いることができる。 Also in the second and third methods of producing nanoparticles, methods of carbonizing, methods of oxidizing, and methods of protecting with a protective agent can use the respective methods of producing the first nanoparticles described above.
 さらに、本発明のナノ粒子の製造方法においては、上記各工程の2以上の工程を同時に行っても良い。
 例えば、第一のナノ粒子の製造方法において、遷移金属及び/又は遷移金属錯体を炭化する工程(A)と、保護剤により保護する工程(B)を同時に行っても良い。
Furthermore, in the method of producing nanoparticles of the present invention, two or more steps of each of the above steps may be performed simultaneously.
For example, in the first method for producing nanoparticles, the step (A) of carbonizing the transition metal and / or transition metal complex and the step (B) of protecting with a protective agent may be performed simultaneously.
 また、上記ナノ粒子の製造方法は遷移金属化合物として、遷移金属炭化酸化物を含む場合のナノ粒子の製造方法であるが、遷移金属化合物として、遷移金属窒化酸化物又は遷移金属硫化酸化物を含む場合には、上記遷移金属に加える炭化原料を窒化原料若しくは硫化原料とするか、又は遷移金属錯体を窒素原子若しくは硫黄原子を含むものに代えて、上述した方法と同様に行うことができる。 In addition, although the method of producing nanoparticles is a method of producing nanoparticles in the case of containing transition metal carbide oxide as a transition metal compound, it contains transition metal nitride oxide or transition metal sulfide oxide as a transition metal compound. In such a case, the carbonization raw material added to the transition metal may be a nitriding raw material or a sulfide raw material, or the transition metal complex may be replaced with one containing a nitrogen atom or a sulfur atom, and the same method as described above can be performed.
 遷移金属を硫化する際に加える硫化原料としては、例えば、硫黄、ドデカンチオール、ベンゼンチオール及びビストリメチルシリル硫黄が挙げられる。 As a sulfurization raw material added when sulfurizing a transition metal, for example, sulfur, dodecanethiol, benzenethiol and bistrimethylsilyl sulfur can be mentioned.
 窒素原子を含む遷移金属錯体としては、例えば、タングステンペンタカルボニル-N-ペンチリソニトリル及びトリアミンモリブデントリカルボニルが挙げられる。 As a transition metal complex containing a nitrogen atom, for example, tungsten pentacarbonyl-N-pentylithonitrile and triamine molybdenum tricarbonyl can be mentioned.
[遷移金属化合物含有ナノ粒子分散インク]
 本発明に係る第一の遷移金属化合物含有ナノ粒子分散インクは、前記遷移金属化合物含有ナノ粒子及び親水性溶媒を含有することを特徴とする。
[Transition metal compound-containing nanoparticle dispersed ink]
The first transition metal compound-containing nanoparticle-dispersed ink according to the present invention is characterized by containing the transition metal compound-containing nanoparticle and a hydrophilic solvent.
 本発明に係る第二の遷移金属化合物含有ナノ粒子分散インクは、遷移金属炭化物、遷移金属窒化物及び遷移金属硫化物よりなる群から選択される1種以上の化合物(U)、連結基及び親水性基を含む有機基を有する保護剤並びに親水性溶媒を含有することを特徴とする。当該インクは、本発明の遷移金属化合物含有ナノ粒子を調製するため及び/又は本発明の遷移金属化合物含有ナノ粒子を含有する膜を形成するために用いられる。 The second transition metal compound-containing nanoparticle-dispersed ink according to the present invention comprises at least one compound (U) selected from the group consisting of transition metal carbides, transition metal nitrides and transition metal sulfides, a linking group and hydrophilicity. It is characterized in that it contains a protecting agent having an organic group containing a sexual group as well as a hydrophilic solvent. The ink is used to prepare the transition metal compound-containing nanoparticles of the present invention and / or to form a film containing the transition metal compound-containing nanoparticles of the present invention.
 本発明に係る第一及び第二の遷移金属化合物含有ナノ粒子分散インクによれば、製造プロセスが容易でありながら、上述の用途に用いることができ、例えば、長寿命を達成可能なデバイスを提供することが可能である。 The first and second transition metal compound-containing nanoparticle-dispersed inks according to the present invention can be used for the above-mentioned applications while facilitating the manufacturing process, and provide, for example, a device capable of achieving long life. It is possible.
 第一の遷移金属化合物含有ナノ粒子分散インクに含まれる遷移金属化合物含有ナノ粒子及び第二の遷移金属化合物含有ナノ粒子分散インクに含まれる保護剤は、上記ナノ粒子で挙げたものと同様であるので、ここでの説明は省略する。 The transition metal compound-containing nanoparticles contained in the first transition metal compound-containing nanoparticle-dispersed ink and the protective agent contained in the second transition metal compound-containing nanoparticle-dispersed ink are the same as those listed in the above-mentioned nanoparticles. Therefore, the explanation here is omitted.
 (化合物(U))
 第二の遷移金属化合物含有ナノ粒子分散インクに含まれる遷移金属炭化物、遷移金属窒化物及び遷移金属硫化物よりなる群から選択される1種以上の化合物(U)は、上記ナノ粒子で説明した遷移金属炭化酸化物、遷移金属窒化酸化物及び遷移金属硫化酸化物の前駆体であり、これらを酸化することにより、対応する酸化物が得られる。なお、化合物(U)のそれぞれにおいて、遷移金属及び/又は遷移金属錯体の少なくとも一部が炭化、窒化又は硫化されていれば良い。
 遷移金属炭化物を得る方法は、従来公知の方法を用いることができ、例えば、上記第一のナノ粒子の製造方法で述べた遷移金属の炭化方法を用いることができる。
 また、遷移金属窒化物及び遷移金属硫化物を得る場合は、例えば、上記第一のナノ粒子の製造方法で述べたように、上記遷移金属に加える炭化原料を窒化原料若しくは硫化原料とするか、又は遷移金属錯体を窒素原子若しくは硫黄原子を含むものに代えて上記遷移金属の炭化方法を行えば良い。
(Compound (U))
One or more compounds (U) selected from the group consisting of transition metal carbides, transition metal nitrides and transition metal sulfides contained in the second transition metal compound-containing nanoparticle dispersed ink are described in the above nanoparticles. Transition metal carbide oxides, transition metal nitride oxides and precursors of transition metal sulfide oxides, and their oxidation yields the corresponding oxides. In each of the compounds (U), at least a part of the transition metal and / or the transition metal complex may be carbonized, nitrided or sulfided.
As a method of obtaining transition metal carbide, a conventionally known method can be used, and for example, the carbonization method of the transition metal described in the first method of producing nanoparticles can be used.
In the case of obtaining transition metal nitrides and transition metal sulfides, for example, as described in the first method for producing nanoparticles, whether the carbonization raw material added to the transition metal is a nitriding raw material or a sulfided raw material, Alternatively, the transition metal complex may be replaced by one containing a nitrogen atom or a sulfur atom to carbonize the transition metal.
 (親水性溶媒)
 第一及び第二の遷移金属化合物含有ナノ粒子分散インクに含まれる親水性溶媒としては、第一の遷移金属化合物含有ナノ粒子分散インクにおいては、遷移金属化合物含有ナノ粒子と、第二の遷移金属化合物含有ナノ粒子分散インクにおいては、化合物(U)と、必要に応じて保護剤や後述する正孔輸送性化合物等のその他成分とが良好に溶解乃至分散すれば特に限定されない。
 このような親水性溶媒としては、ナノ粒子の説明の箇所で述べたような親水性溶媒を適宜用いることができる。
(Hydrophilic solvent)
As the hydrophilic solvent contained in the first and second transition metal compound-containing nanoparticle dispersion inks, in the first transition metal compound-containing nanoparticle dispersion ink, a transition metal compound-containing nanoparticle and a second transition metal The compound-containing nanoparticle-dispersed ink is not particularly limited as long as the compound (U) and, if necessary, other components such as a protective agent and a hole-transporting compound described later dissolve and disperse well.
As such a hydrophilic solvent, a hydrophilic solvent as described in the explanation of the nanoparticles can be used appropriately.
 遷移金属化合物含有ナノ粒子分散インクの好適な用途としては、後述するデバイスに用いられる、正孔注入輸送層を形成するための、正孔注入輸送層用インクが挙げられる。
 遷移金属化合物含有ナノ粒子分散インクが、正孔注入輸送層用インクとして用いられる場合、上記必須成分以外に正孔注入輸送層の駆動電圧の低下や素子寿命をさらに向上させる点から、後述する正孔輸送性化合物の中から、親水性溶媒に溶解する化合物を適宜選択し、含んでいても良い。
As a suitable application of the transition metal compound-containing nanoparticle dispersion ink, an ink for a hole injecting and transporting layer for forming a hole injecting and transporting layer, which is used in a device described later, can be mentioned.
When the transition metal compound-containing nanoparticle dispersed ink is used as an ink for a hole injecting and transporting layer, a positive electrode to be described later from the viewpoint of further improving the driving voltage of the hole injecting and transporting layer and the device life other than the above essential components. Among the hole transporting compounds, a compound which is soluble in a hydrophilic solvent may be appropriately selected and contained.
 本発明の遷移金属化合物含有ナノ粒子分散インクにおいて、上記正孔輸送性化合物が用いられる場合には、正孔輸送性化合物の含有量は、前記遷移金属含有ナノ粒子100質量部に対して、10~10000質量部であることが、正孔注入輸送性を高くし、且つ、膜の安定性が高く長寿命を達成する点から好ましい。
 正孔注入輸送層において、前記正孔輸送性化合物の含有量が少なすぎると、正孔輸送性化合物を混合した相乗効果が得られ難い。一方、前記正孔輸送性化合物の含有量が多すぎると、遷移金属含有ナノ粒子を用いる効果が得られ難くなる。
In the transition metal compound-containing nanoparticle-dispersed ink of the present invention, when the above-mentioned hole transportable compound is used, the content of the hole transportable compound is 10 with respect to 100 parts by mass of the transition metal-containing nanoparticle. It is preferable that the content is about 10000 parts by mass because the hole injecting and transporting property is enhanced and the stability of the film is high to achieve a long life.
In the hole injecting and transporting layer, when the content of the hole transporting compound is too small, it is difficult to obtain the synergistic effect of mixing the hole transporting compound. On the other hand, when the content of the hole transportable compound is too large, it is difficult to obtain the effect of using the transition metal-containing nanoparticle.
 本発明の遷移金属化合物含有ナノ粒子分散インクは、本発明の効果を損なわない限り、バインダー樹脂や硬化性樹脂や塗布性改良剤などの添加剤を含んでいても良い。
 バインダー樹脂としては、ポリカーボネート、ポリスチレン、ポリアリレート及びポリエステル等が挙げられる。また、熱又は光等により硬化するバインダー樹脂を含有していてもよい。熱又は光等により硬化する材料としては、上記正孔輸送性化合物において分子内に硬化性の官能基が導入されたもの、あるいは、硬化性樹脂等を使用することができる。具体的に、硬化性の官能基としては、アクリロイル基やメタクリロイル基などのアクリル系の官能基、ビニレン基、エポキシ基及びイソシアネート基等を挙げることができる。
 硬化性樹脂としては、熱硬化性樹脂であっても光硬化性樹脂であってもよく、例えばエポキシ樹脂、フェノール樹脂、メラミン樹脂、ポリエステル樹脂、ポリウレタン樹脂、シリコン樹脂及びシランカップリング剤等を挙げることができる。
The transition metal compound-containing nanoparticle-dispersed ink of the present invention may contain an additive such as a binder resin, a curable resin, or a coatability improver, as long as the effects of the present invention are not impaired.
The binder resin may, for example, be polycarbonate, polystyrene, polyarylate or polyester. Moreover, you may contain the binder resin hardened | cured by a heat | fever, light, etc. As a material to be cured by heat, light or the like, a material in which a curable functional group is introduced into the molecule in the hole transporting compound, or a curable resin can be used. Specifically, examples of the curable functional group include acrylic functional groups such as acryloyl group and methacryloyl group, vinylene group, epoxy group and isocyanate group.
The curable resin may be a thermosetting resin or a photocurable resin, and examples thereof include epoxy resin, phenol resin, melamine resin, polyester resin, polyurethane resin, silicone resin and silane coupling agent. be able to.
 (遷移金属化合物含有ナノ粒子分散インクの製造方法)
 遷移金属化合物含有ナノ粒子分散インクは、通常、親水性溶媒に、第一の遷移金属化合物含有ナノ粒子分散インクにおいてはナノ粒子、第二の遷移金属化合物含有ナノ粒子分散インクにおいては、遷移金属炭化物、遷移金属窒化物及び遷移金属硫化物よりなる群から選択される1種以上の化合物(U)、連結基及び親水性基を含む有機基を有する保護剤、といった必須成分の他、正孔輸送性化合物等の任意成分を一般的な調製法に従って、混合し分散処理することにより調製される。混合分散には、ペイントシェーカー又はビーズミル等を用いることができる。
(Method of producing transition metal compound-containing nanoparticle dispersed ink)
The transition metal compound-containing nanoparticle dispersion ink generally contains, in a hydrophilic solvent, nanoparticles in the first transition metal compound-containing nanoparticle dispersion ink, and in the second transition metal compound-containing nanoparticle dispersion ink, the transition metal carbide. And hole transport, in addition to essential components such as at least one compound (U) selected from the group consisting of transition metal nitrides and transition metal sulfides, a protective agent having an organic group including a linking group and a hydrophilic group It is prepared by mixing and dispersing optional components such as sex compounds according to a general preparation method. For mixing and dispersing, a paint shaker or a bead mill can be used.
 本発明に係る第一の遷移金属化合物含有ナノ粒子分散インクの第二の製造方法としては、遷移金属化合物含有ナノ粒子を濾過して取り出したり、精製することなく、ワンポットで遷移金属化合物含有ナノ粒子分散インクを製造する方法である。このような遷移金属化合物含有ナノ粒子分散インクの第二の製造方法は、炭素、窒素又は硫黄のいずれかの原子を含む遷移金属錯体、連結基及び親水性基を含む有機基を有する保護剤、及び沸点が160~260℃の親水性溶媒を含有する溶液を、150~250℃で加熱することを特徴とする。 As a second method of producing the first transition metal compound-containing nanoparticle-dispersed ink according to the present invention, the transition metal compound-containing nanoparticles are filtered out, or purified in one pot without transition metal compound-containing nanoparticles. It is a method of manufacturing a dispersed ink. A second method for producing such a transition metal compound-containing nanoparticle-dispersed ink comprises a transition metal complex containing any atom of carbon, nitrogen or sulfur, a protecting agent having an organic group containing a linking group and a hydrophilic group, And a solution containing a hydrophilic solvent having a boiling point of 160 to 260.degree. C. is heated at 150 to 250.degree.
 炭素、窒素又は硫黄のいずれかの原子を含む遷移金属錯体としては、配位子として、炭素、窒素又は硫黄のいずれかの原子を含む遷移金属錯体を用いればよく、上述の遷移金属化合物含有ナノ粒子の製造方法において説明したものと同様のものを用いることができる。
 また、連結基及び親水性基を含む有機基を有する保護剤は、上記ナノ粒子で挙げたものと同様であるので、ここでの説明は省略する。
As a transition metal complex containing any atom of carbon, nitrogen or sulfur, a transition metal complex containing an atom of carbon, nitrogen or sulfur as a ligand may be used, and the above-mentioned transition metal compound-containing nano The same ones as described in the particle production method can be used.
Moreover, since the protective agent which has an organic group containing a coupling group and a hydrophilic group is the same as that of what was mentioned by the above-mentioned nanoparticle, explanation here is omitted.
 沸点が160~260℃の親水性溶媒であれば、塗布及び乾燥を行うことが比較的容易なため、インクの溶媒としてそのまま使用することができる。沸点が160~260℃の親水性溶媒としては、例えば、エチレングリコール、プロピレングリコール、メチルジグリコール、ブチルグリコール、イソブチルグリコール、メチルプロピレンジグリコール、ブチルプロピレングリコール、ジエチレングリコールモノブチルエーテルアセテート、ジエチレングリコールモノブチルエーテル、ジエチレングリコールジメチルエーテル、ジエチレングリコールエチルメチルエーテル、ジエチレングリコールジエチルエーテル、エチレングリコールモノブチルエーテル、ジアセトンアルコール等が挙げられる。 A hydrophilic solvent having a boiling point of 160 to 260 ° C. can be used as a solvent for the ink as it is relatively easy to perform coating and drying. Examples of the hydrophilic solvent having a boiling point of 160 to 260 ° C. include ethylene glycol, propylene glycol, methyl diglycol, butyl glycol, isobutyl glycol, methyl propylene diglycol, butyl propylene glycol, diethylene glycol monobutyl ether acetate, diethylene glycol monobutyl ether, diethylene glycol Dimethyl ether, diethylene glycol ethyl methyl ether, diethylene glycol diethyl ether, ethylene glycol monobutyl ether, diacetone alcohol and the like can be mentioned.
 遷移金属錯体、連結基及び親水性基を含む有機基を有する保護剤、及び沸点が160~260℃の親水性溶媒を含有する溶液を、150~250℃で加熱することにより、炭化する工程と、保護剤により保護する工程とが行われる。炭化する工程と、保護剤により保護する工程は、反応溶液中での分散安定性を維持する点からアルゴンガス雰囲気下で行うことが好ましい。そして加熱温度は、上記温度範囲であって、且つ、親水性溶媒の沸点に比べて少なくとも10℃低い温度で加熱することが好ましい。アルゴンガス雰囲気下で、炭化する工程と、保護剤により保護する工程を行った後、大気雰囲気に変更し、酸化工程を行うことが好ましい。 Carbonizing the solution containing a transition metal complex, a protecting agent having an organic group containing a linking group and a hydrophilic group, and a hydrophilic solvent having a boiling point of 160 to 260 ° C. by heating at 150 to 250 ° C. And protecting with a protective agent. The step of carbonizing and the step of protecting with a protective agent are preferably performed under an argon gas atmosphere in order to maintain the dispersion stability in the reaction solution. The heating temperature is preferably in the above temperature range and at least 10 ° C. lower than the boiling point of the hydrophilic solvent. After carrying out the step of carbonizing and the step of protecting with a protective agent in an argon gas atmosphere, it is preferable to change the atmosphere to the atmosphere and carry out the oxidation step.
 (デバイス)
 本発明に係るデバイスは、基板上に対向する2つ以上の電極と、そのうちの2つの電極間に配置された正孔注入輸送層を有するデバイスであって、
 前記正孔注入輸送層が、少なくとも上記本発明に係る遷移金属化合物含有ナノ粒子を含有することを特徴とする。
(device)
The device according to the present invention is a device having two or more electrodes facing each other on a substrate, and a hole injecting and transporting layer disposed between two electrodes of the two or more electrodes.
The hole injection transport layer contains at least the transition metal compound-containing nanoparticle according to the present invention.
 本発明のデバイスは、前記正孔注入輸送層が、上記本発明に係るナノ粒子を含有することにより、含まれる遷移金属化合物の特性により正孔注入特性が向上し、且つ、経時安定性及び均一性の高い膜となるため、素子の長寿命化を達成可能である。 In the device of the present invention, when the hole injecting and transporting layer contains the nanoparticles according to the present invention, hole injecting characteristics are improved by the characteristics of the transition metal compound contained, and stability over time and uniformity are achieved. Since the film has high conductivity, it is possible to achieve long life of the device.
 このように、本発明のデバイスに用いられるナノ粒子が寿命を向上できるのは、ナノ粒子に含まれる遷移金属炭化酸化物、遷移金属窒化酸化物及び遷移金属硫化酸化物等の遷移金属化合物の反応性が高く、ナノ粒子同士、又は正孔輸送性化合物が含まれる場合には当該正孔輸送性化合物との間で、電荷移動錯体を形成し易いためと推測される。
 なお、電荷移動錯体を形成していることは、例えば、H NMR測定により、ナノ粒子を電荷輸送性化合物の溶液へ混合した場合、電荷輸送性化合物の6~10ppm付近に観測される芳香環に由来するプロトンシグナルの形状やケミカルシフト値が、ナノ粒子を混合する前と比較して変化する現象が観測されることによって示唆される。
Thus, the lifetime of the nanoparticles used in the device of the present invention can be improved by the reaction of transition metal carbon oxides, transition metal nitride oxides and transition metal compounds such as transition metal sulfide oxides contained in the nanoparticles. It is presumed that the charge transfer complex is easily formed between nanoparticles or when a hole transporting compound is contained, because the nature is high.
The formation of the charge transfer complex is, for example, an aromatic ring observed in the vicinity of 6 to 10 ppm of the charge transport compound when the nanoparticles are mixed into a solution of the charge transport compound by 1 H NMR measurement. It is suggested that the phenomenon that the shape and chemical shift value of the proton signal derived from are changed compared with before mixing the nanoparticles is observed.
 また、上記本発明に係るナノ粒子は溶媒中で分散安定性が非常に高いものであるため、経時安定性及び均一性の高いnmオーダーの薄膜を形成することができる。当該薄膜は親水性であるため、当該薄膜上に、隣接して疎水性溶媒を用いた溶液塗布法で有機層を形成しても、当該薄膜は再溶解することなく安定性が高い膜である。また、逆に、疎水性溶媒を用いた溶液塗布法で形成された有機層上に、隣接して、本発明のナノ粒子を分散させた親水性溶媒を用いた溶液塗布法で、形成しても、有機層は再溶解することなく、互いに安定性の高い薄膜を形成することができる。そのため、正孔注入輸送層表面における面内の特性のばらつきやデバイスの短絡が発生する恐れがなく、電荷の受け渡しが均一且つ十分に行われ、上記本発明に係るナノ粒子を含有する正孔注入輸送層を備えた本発明のデバイスは、低電圧駆動、高電力効率で、特に寿命が向上したデバイスを実現できると推測される。
 本発明のデバイスにおいては、ナノ粒子の保護剤の種類を選択することにより、電荷輸送性、あるいは密着性などの機能性を付与するなど、多機能化することも容易である。
In addition, since the nanoparticles according to the present invention have very high dispersion stability in a solvent, it is possible to form a nanometer-order thin film having high temporal stability and high uniformity. Since the thin film is hydrophilic, even if an organic layer is formed adjacent to the thin film by a solution coating method using a hydrophobic solvent, the thin film is a film having high stability without being redissolved. . Also, conversely, on the organic layer formed by the solution coating method using a hydrophobic solvent, adjacent to the organic layer formed by the solution coating method using a hydrophilic solvent in which the nanoparticles of the present invention are dispersed. Also, the organic layers can form thin films with high stability without re-dissolution. Therefore, there is no risk of occurrence of in-plane characteristic variation on the surface of the hole injecting and transporting layer and short circuiting of the device, charge transfer is uniformly and sufficiently performed, and hole injection containing the nanoparticles according to the present invention It is surmised that the device of the present invention provided with a transport layer can realize a device with low voltage drive, high power efficiency, and particularly improved life.
In the device of the present invention, by selecting the type of the protective agent for nanoparticles, it is easy to achieve multifunctionality such as imparting functionality such as charge transportability or adhesion.
 このように、本発明のデバイスは、無機化合物の遷移金属酸化物を用いる場合と異なり、ナノ粒子が溶媒中で分散安定性が非常に高いものとなるため、溶液塗布法によって正孔注入輸送層を形成することが可能なことから、製造プロセスが容易である。
 本発明のデバイスは、溶液塗布法によって正孔注入輸送層を形成することができるので、撥液性バンクを持つ基板に正孔注入輸送層から発光層までを順次塗布プロセスのみで形成できる。そのため、無機化合物の遷移金属酸化物の場合のように正孔注入層を高精細なマスク蒸着等で蒸着した後に、正孔輸送層や発光層を溶液塗布法で形成し、さらに第二電極を蒸着するようなプロセスと比較して、単純であり、低コストでデバイスを作製できる利点がある。
As described above, the device of the present invention is different from the case of using the transition metal oxide of the inorganic compound, and since the nanoparticles have very high dispersion stability in the solvent, the hole injection transport layer is formed by the solution coating method. Manufacturing process is easy because it is possible to form
In the device of the present invention, since the hole injecting and transporting layer can be formed by a solution coating method, the hole injecting and transporting layer to the light emitting layer can be formed sequentially on the substrate having a liquid repellent bank only by the application process. Therefore, as in the case of the transition metal oxide of the inorganic compound, after the hole injection layer is deposited by high-definition mask deposition or the like, the hole transport layer and the light emitting layer are formed by solution coating, and the second electrode is further formed. There is the advantage that it is simpler and can produce devices at lower cost compared to processes such as evaporation.
 以下、本発明に係るデバイスの層構成について説明する。
 本発明に係るデバイスは、基板上に対向する2つ以上の電極と、そのうちの2つの電極間に配置された正孔注入輸送層を有するデバイスである。
 本発明に係るデバイスには、有機EL素子、有機トランジスタ、色素増感太陽電池、有機薄膜太陽電池、有機半導体を包含する有機デバイスのほか、正孔注入輸送層を有する量子ドット発光素子、酸化物系化合物太陽電池等も含まれる。
 図3は本発明に係る有機デバイスの基本的な層構成を示す断面模式図である。本発明のデバイスの基本的な層構成は、基板50上に対向する2つの電極(61及び62)と、その2つの電極(61及び62)間に配置され少なくとも正孔注入輸送層70を含む有機層80を有する。
 基板50は、デバイスを構成する各層を形成するための支持体であり、必ずしも電極61の表面に設けられる必要はなく、デバイスの最も外側の面に設けられていればよい。
Hereinafter, the layer configuration of the device according to the present invention will be described.
The device according to the present invention is a device having two or more electrodes facing each other on a substrate, and a hole injecting and transporting layer disposed between the two electrodes.
The device according to the present invention includes an organic EL element, an organic transistor, a dye-sensitized solar cell, an organic thin film solar cell, an organic device including an organic semiconductor, a quantum dot light emitting element having a hole injecting and transporting layer, an oxide Also included are compound solar cells and the like.
FIG. 3 is a schematic cross-sectional view showing the basic layer configuration of the organic device according to the present invention. The basic layer configuration of the device of the present invention comprises two opposing electrodes (61 and 62) on a substrate 50 and at least a hole injecting and transporting layer 70 disposed between the two electrodes (61 and 62). It has an organic layer 80.
The substrate 50 is a support for forming the layers constituting the device, and is not necessarily provided on the surface of the electrode 61, and may be provided on the outermost surface of the device.
 正孔注入輸送層70は、少なくとも上記ナノ粒子を含有し、電極61から有機層80への正孔の注入及び/又は輸送を担う層である。
 有機層80は、正孔注入輸送されることにより、デバイスの種類によって様々な機能を発揮する層であり、単層からなる場合と多層からなる場合がある。有機層が多層からなる場合は、有機層は、正孔注入輸送層の他にさらに、デバイスの機能の中心となる層(以下、機能層と称呼する。)や、当該機能層の補助的な層(以下、補助層と称呼する。)を含んでいる。例えば、有機EL素子の場合、正孔注入輸送層の表面にさらに積層される正孔輸送層が補助層に該当し、当該正孔輸送層の表面に積層される発光層が機能層に該当する。
 電極62は、対向する電極61との間に正孔注入輸送層70を含む有機層80が存在する場所に設けられる。また、必要に応じて、図示しない第三の電極を有していてもよい。これらの電極間に電場を印加することにより、デバイスの機能を発現させることができる。
The hole injecting and transporting layer 70 is a layer containing at least the above-mentioned nanoparticles and responsible for the injection and / or transport of holes from the electrode 61 to the organic layer 80.
The organic layer 80 is a layer that exerts various functions depending on the type of device by being subjected to hole injection transport, and may be composed of a single layer or multiple layers. When the organic layer is composed of multiple layers, in addition to the hole injecting and transporting layer, the organic layer is a layer serving as the center of the function of the device (hereinafter referred to as a functional layer) or an auxiliary of the functional layer. The layer (hereinafter referred to as an auxiliary layer) is included. For example, in the case of an organic EL element, the hole transport layer further stacked on the surface of the hole injection transport layer corresponds to the auxiliary layer, and the light emitting layer stacked on the surface of the hole transport layer corresponds to the functional layer .
The electrode 62 is provided where the organic layer 80 including the hole injecting and transporting layer 70 is present between the electrode 62 and the opposing electrode 61. Moreover, you may have the 3rd electrode which is not shown in figure as needed. By applying an electric field between these electrodes, the function of the device can be expressed.
 図4は、本発明に係るデバイスの一実施形態である有機EL素子の層構成の一例を示す断面模式図である。本発明の有機EL素子は、電極61の表面に正孔注入輸送層70が積層され、当該正孔注入輸送層70の表面に補助層として正孔輸送層90a、機能層として発光層100が積層された形態を有する。このように、本発明に特徴的な正孔注入輸送層を正孔注入層の位置で用いる場合には、導電率の向上に加え、当該正孔注入輸送層は電荷移動錯体を形成して溶液塗布法に用いた溶剤に不溶になるので、上層の正孔輸送層を積層する際にも溶液塗布法を適用することが可能である。さらに、電極との密着性向上も期待できる。
 図5は、本発明に係るデバイスの一実施形態である有機EL素子の層構成の別の一例を示す断面模式図である。本発明の有機EL素子は、電極61の表面に補助層として正孔注入層90bが形成され、当該正孔注入層90bの表面に正孔注入輸送層70、機能層として発光層100が積層された形態を有する。このように、本発明に特徴的な正孔注入輸送層を正孔輸送層の位置で用いる場合には、導電率の向上に加え、当該正孔注入輸送層は電荷移動錯体を形成して溶液塗布法に用いた溶剤に不溶になるので、上層の発光層を積層する際にも溶液塗布法を適用することが可能である。
 図6は、本発明に係るデバイスの一実施形態である有機EL素子の層構成の別の一例を示す断面模式図である。本発明の有機EL素子は、電極61の表面に正孔注入輸送層70、機能層として発光層100が順次積層された形態を有する。このように、本発明に特徴的な正孔注入輸送層を1層で用いる場合には、工程数が削減されるというプロセス上のメリットがある。
 なお、上記図4~図6においては、正孔注入輸送層70、正孔輸送層90a、正孔注入層90bのそれぞれが、単層ではなく複数層から構成されているものであっても良い。
FIG. 4 is a schematic cross-sectional view showing an example of the layer configuration of the organic EL element which is an embodiment of the device according to the present invention. In the organic EL device of the present invention, the hole injecting and transporting layer 70 is laminated on the surface of the electrode 61, the hole transporting layer 90a as an auxiliary layer and the light emitting layer 100 as a functional layer are laminated on the surface of the hole injecting and transporting layer 70 It has a form that has been Thus, in the case where the hole injecting and transporting layer characteristic of the present invention is used at the position of the hole injecting layer, the hole injecting and transporting layer forms a charge transfer complex in addition to the improvement of the conductivity. Since it becomes insoluble in the solvent used in the coating method, it is possible to apply the solution coating method even when laminating the upper hole transport layer. Furthermore, improvement in adhesion with the electrode can also be expected.
FIG. 5 is a schematic cross-sectional view showing another example of the layer configuration of the organic EL element which is an embodiment of the device according to the present invention. In the organic EL device of the present invention, the hole injection layer 90b is formed on the surface of the electrode 61 as an auxiliary layer, the hole injection transport layer 70 is laminated on the surface of the hole injection layer 90b, and the light emitting layer 100 is stacked as a functional layer. Form. Thus, when the hole injecting and transporting layer characteristic of the present invention is used at the position of the hole transporting layer, in addition to the improvement of the conductivity, the hole injecting and transporting layer concerned forms a charge transfer complex to be a solution. Since it becomes insoluble in the solvent used for the coating method, it is possible to apply the solution coating method also when laminating the light emitting layer of the upper layer.
FIG. 6 is a schematic cross-sectional view showing another example of the layer configuration of the organic EL element which is an embodiment of the device according to the present invention. The organic EL element of the present invention has a form in which the hole injecting and transporting layer 70 and the light emitting layer 100 as a functional layer are sequentially laminated on the surface of the electrode 61. As described above, when the hole injecting and transporting layer characteristic of the present invention is used in one layer, there is a process advantage that the number of processes is reduced.
In FIGS. 4 to 6, each of the hole injecting and transporting layer 70, the hole transporting layer 90a, and the hole injecting layer 90b may be composed of a plurality of layers instead of a single layer. .
 上記図4~図6においては、電極61は陽極、電極62は陰極として機能する。上記有機EL素子は、陽極と陰極の間に電場を印加されると、正孔が陽極から正孔注入輸送層70及び正孔輸送層90aを経て発光層100に注入され、且つ、電子が陰極から発光層に注入されることにより、発光層100の内部で注入された正孔と電子が再結合し、素子の外部に発光する機能を有する。
 素子の外部に光を放射するため、発光層の少なくとも一方の面に存在する全ての層は、可視波長域のうち少なくとも一部の波長の光に対する透過性を有することを必要とする。また、図示しないが、発光層と電極62(陰極)の間には、必要に応じて電子輸送層及び/又は電子注入層が設けられていてもよい。
In FIGS. 4 to 6, the electrode 61 functions as an anode and the electrode 62 functions as a cathode. In the organic EL device, when an electric field is applied between the anode and the cathode, holes are injected from the anode through the hole injecting and transporting layer 70 and the hole transporting layer 90a to the light emitting layer 100, and electrons are cathode By injecting the light emitting layer 100 into the light emitting layer, the holes and electrons injected inside the light emitting layer 100 are recombined to emit light to the outside of the device.
In order to emit light to the outside of the device, all layers present on at least one surface of the light emitting layer need to be transparent to light of at least a part of the visible wavelength range. Although not shown, an electron transport layer and / or an electron injection layer may be provided between the light emitting layer and the electrode 62 (cathode) as required.
 図7は、本発明に係るデバイスの別の実施形態である有機トランジスタの層構成の一例を示す断面模式図である。この有機トランジスタは、基板50上に、電極63(ゲート電極)と、対向する電極61(ソース電極)及び電極62(ドレイン電極)と、電極63、電極61、及び電極62間に配置された前記有機層としての有機半導体層110と、電極63と電極61の間、及び電極63と電極61の間に介在する絶縁層120を有し、電極61と電極62の表面に、正孔注入輸送層70が形成されている。
 上記、有機トランジスタは、ゲート電極における電荷の蓄積を制御することにより、ソース電極-ドレイン電極間の電流を制御する機能を有する。
FIG. 7 is a schematic cross-sectional view showing an example of the layer configuration of an organic transistor which is another embodiment of the device according to the present invention. The organic transistor is disposed on the substrate 50 between the electrode 63 (gate electrode), the opposing electrode 61 (source electrode) and the electrode 62 (drain electrode), and the electrode 63, the electrode 61, and the electrode 62. An organic semiconductor layer 110 as an organic layer, and an insulating layer 120 interposed between the electrode 63 and the electrode 61 and between the electrode 63 and the electrode 61, and on the surface of the electrode 61 and the electrode 62, a hole injecting and transporting layer 70 are formed.
The organic transistor has a function of controlling the current between the source electrode and the drain electrode by controlling the charge accumulation in the gate electrode.
 図8は、本発明に係るデバイスの実施形態である有機トランジスタの別の層構成の一例を示す断面模式図である。この有機トランジスタは、基板50上に、電極63(ゲート電極)と、対向する電極61(ソース電極)及び電極62(ドレイン電極)と、電極63、電極61、及び電極62間に配置された前記有機層として本発明の正孔注入輸送層70を形成して有機半導体層110とし、電極63と電極61の間、及び電極63と電極62の間に介在する絶縁層120を有している。この例においては、正孔注入輸送層70が有機半導体層110となっている。 FIG. 8 is a schematic cross-sectional view showing an example of another layer configuration of the organic transistor which is an embodiment of the device according to the present invention. The organic transistor is disposed on the substrate 50 between the electrode 63 (gate electrode), the opposing electrode 61 (source electrode) and the electrode 62 (drain electrode), and the electrode 63, the electrode 61, and the electrode 62. The hole injecting and transporting layer 70 of the present invention is formed as an organic layer to form an organic semiconductor layer 110, and an insulating layer 120 interposed between the electrode 63 and the electrode 61 and between the electrode 63 and the electrode 62 is provided. In this example, the hole injecting and transporting layer 70 is the organic semiconductor layer 110.
 本発明のデバイスは、正孔注入輸送層が上記本発明に係るナノ粒子を含有し、親水性溶媒に分散可能で、形成された正孔注入輸送層は親水性となるため、当該薄膜上に、疎水性溶媒を用いた溶液塗布法で有機層を隣接して形成しても、当該薄膜は再溶解することなく安定な膜となる。従って、本発明のデバイスは、前記正孔注入輸送層に隣接して、疎水性溶媒に溶解及び/又は分散可能な電荷輸送性化合物を含む電荷輸送層を含有する態様に適している。 In the device of the present invention, the hole injecting and transporting layer contains the nanoparticles according to the present invention, can be dispersed in a hydrophilic solvent, and the formed hole injecting and transporting layer becomes hydrophilic. Even if organic layers are formed adjacent to each other by a solution coating method using a hydrophobic solvent, the thin film becomes a stable film without re-dissolution. Therefore, the device of the present invention is suitable for an embodiment including a charge transport layer containing a charge transport compound which can be dissolved and / or dispersed in a hydrophobic solvent adjacent to the hole injection transport layer.
 尚、本発明のデバイスの層構成は、上記例示に限定されるものではなく、本発明の特許請求の範囲に記載された技術的思想と実質的に同一な構成を有し、同様な作用効果を奏するものは、いかなるものであっても本発明の技術的範囲に包含される。
 以下、本発明に係るデバイスの各層について詳細に説明する。
The layer configuration of the device of the present invention is not limited to the above-described example, and has substantially the same configuration as the technical idea described in the claims of the present invention, and the same function and effect. Anything that plays is included in the technical scope of the present invention.
Hereinafter, each layer of the device according to the present invention will be described in detail.
 (正孔注入輸送層)
 本発明のデバイスは、少なくとも正孔注入輸送層を含む。本発明のデバイスが有機デバイスであって、有機層が多層の場合には、有機層は、正孔注入輸送層の他にさらに、デバイスの機能の中心となる層や、当該機能層を補助する役割を担う補助層を含んでいるが、それらの機能層や補助層は、後述するデバイスの具体例において、詳細に述べる。
(Hole injection and transport layer)
The device of the present invention comprises at least a hole injecting and transporting layer. When the device of the present invention is an organic device and the organic layer is a multilayer, the organic layer further assists the layer serving as the center of the device function and the functional layer in addition to the hole injecting and transporting layer. Although including auxiliary layers that play a role, those functional layers and auxiliary layers will be described in detail in the device examples described later.
 本発明のデバイスにおける正孔注入輸送層は、少なくとも上記本発明に係るナノ粒子を含有するものであり、上記遷移金属化合物含有ナノ粒子分散インクを用いて形成されることが好ましい。本発明のデバイスにおける正孔注入輸送層は、下層表面を完全に被覆してしまう連続層のみならず、点在する島状や網状等に形成されている不連続層である態様も含まれる。 The hole injecting and transporting layer in the device of the present invention contains at least the nanoparticles according to the present invention, and is preferably formed using the transition metal compound-containing nanoparticle dispersed ink. The hole injecting and transporting layer in the device of the present invention includes not only a continuous layer which completely covers the lower layer surface but also an aspect in which it is a discontinuous layer formed in the form of scattered islands or nets.
 本発明のデバイスにおける正孔注入輸送層は、ナノ粒子のみからなるものであっても良いが、さらに他の成分を含有していても良い。中でも、正孔輸送性化合物を含有することが、駆動電圧の低下や素子寿命をさらに向上させる点から、好ましい。 The hole injecting and transporting layer in the device of the present invention may be composed only of nanoparticles, but may further contain other components. Among them, it is preferable to contain a hole transportable compound from the viewpoint of further reducing the driving voltage and improving the device life.
 正孔輸送性化合物を含有する場合に、本発明のデバイスにおける正孔注入輸送層は、ナノ粒子と正孔輸送性化合物を含有する混合層1層からなるものであっても良いし、当該混合層を含む複数層からなるものであっても良い。また、前記正孔注入輸送層は、ナノ粒子を含有する層と、正孔輸送性化合物を含有する層とが少なくとも積層された複数層からなるものであっても良い。また、前記正孔注入輸送層は、ナノ粒子を含有する層と、ナノ粒子及び正孔輸送性化合物を少なくとも含有する層とが少なくとも積層された層からなるものであっても良い。 When the hole transporting compound is contained, the hole injecting and transporting layer in the device of the present invention may be composed of one mixed layer containing nanoparticles and the hole transporting compound, or the mixture It may consist of a plurality of layers including a layer. The hole injecting and transporting layer may be composed of a plurality of layers in which a layer containing nanoparticles and a layer containing a hole transporting compound are at least laminated. The hole injecting and transporting layer may be a layer in which a layer containing nanoparticles, and a layer containing at least nanoparticles and a hole transporting compound are laminated.
 本発明の正孔注入輸送層は、2種以上の遷移金属化合物含有ナノ粒子を含有していても良い。例えば、含まれる遷移金属及び/または遷移金属化合物がそれぞれ異なる2種以上の遷移金属化合物含有ナノ粒子を含有していても良い。この場合、仕事関数(HOMO)の異なるナノ粒子を用い2種のナノ粒子を経由して階段状に正孔が移動できるようにすることで隣接層間のエネルギー障壁を更に低下させられることや、正孔注入性に特化したナノ粒子と正孔輸送性に特化したナノ粒子を含有させることで単一粒子の機能以上の正孔注入輸送性を得ることができるというメリットがある。また、含まれる保護剤がそれぞれ異なる2種以上の遷移金属化合物含有ナノ粒子を含有していても良い。この場合、保護剤の種類を複数選択できることで正孔注入輸送層を多機能化することができ、例えば高撥液性の保護剤で保護されたナノ粒子と高正孔輸送性の保護剤で保護されたナノ粒子を含有させることで高撥液性と高正孔輸送性の2つの機能を有する正孔注入輸送層を形成できるというメリットがある。更に、含まれる遷移金属及び/または遷移金属化合物、並びに、保護剤がそれぞれ異なる2種以上の遷移金属化合物含有ナノ粒子を含有していても良い。 The hole injecting and transporting layer of the present invention may contain two or more transition metal compound-containing nanoparticles. For example, the included transition metal and / or transition metal compound may contain two or more different transition metal compound-containing nanoparticles. In this case, the energy barrier between the adjacent layers can be further reduced by enabling holes to move stepwise via two types of nanoparticles using nanoparticles with different work functions (HOMO), or By including the nanoparticle specialized for the hole injection property and the nanoparticle specialized for the hole transport property, there is an advantage that the hole injection transport property more than the function of a single particle can be obtained. Moreover, you may contain the 2 or more types of transition metal compound containing nanoparticle in which the contained protective agent each differs. In this case, it is possible to make the hole injecting and transporting layer multifunctional by being able to select a plurality of types of protecting agents, for example, nanoparticles protected with a highly liquid repellent protecting agent and a high hole transporting protecting agent By including protected nanoparticles, there is an advantage that a hole injecting and transporting layer having two functions of high liquid repellency and high hole transporting property can be formed. Furthermore, the contained transition metal and / or transition metal compound, and the protective agent may each contain two or more kinds of transition metal compound-containing nanoparticles.
 正孔輸送性化合物は、正孔輸送性を有する化合物であれば、適宜用いることができる。ここで、正孔輸送性とは、公知の光電流法により、正孔輸送による過電流が観測されることを意味する。
 正孔輸送性化合物としては、低分子化合物の他、高分子化合物も好適に用いられる。正孔輸送性高分子化合物は、正孔輸送性を有し、且つ、ゲル浸透クロマトグラフィー(GPC)のポリスチレン換算値による重量平均分子量が2000以上の高分子化合物をいう。
The hole transporting compound can be appropriately used as long as it is a compound having a hole transporting property. Here, the hole transportability means that an overcurrent due to hole transport is observed by a known photocurrent method.
In addition to low molecular weight compounds, high molecular weight compounds are also suitably used as the hole transportable compound. The hole transporting high molecular weight compound refers to a high molecular weight compound having a hole transporting property and having a weight average molecular weight of 2,000 or more according to the polystyrene conversion value of gel permeation chromatography (GPC).
 正孔輸送性化合物としては、特に限定されることなく、例えば、アリールアミン誘導体、アントラセン誘導体、カルバゾール誘導体、チオフェン誘導体、フルオレン誘導体、ジスチリルベンゼン誘導体及びスピロ化合物等を挙げることができる。
 アリールアミン誘導体としては、例えば、N,N’-ビス-(3-メチルフェニル)-N,N’-ビス-(フェニル)-ベンジジン(TPD)、ビス(N-(1-ナフチル-N-フェニル)ベンジジン)(α-NPD)、4,4’,4”-トリス(3-メチルフェニルフェニルアミノ)トリフェニルアミン(MTDATA)及び4,4’,4”-トリス(N-(2-ナフチル)-N-フェニルアミノ)トリフェニルアミン(2-TNATA)等が挙げられる。
 カルバゾール誘導体としては、例えば、4,4-N,N’-ジカルバゾール-ビフェニル(CBP)等が挙げられる。
 フルオレン誘導体としては、例えば、N,N’-ビス(3-メチルフェニル)-N,N’-ビス(フェニル)-9,9-ジメチルフルオレン(DMFL-TPD)等が挙げられる。
 ジスチリルベンゼン誘導体としては、例えば、4-(ジ-p-トリルアミノ)-4’-[(ジ-p-トリルアミノ)スチリル]スチルベン(DPAVB)等が挙げられる。
 スピロ化合物としては、例えば、2,7-ビス(N-ナフタレン-1-イル-N-フェニルアミノ)-9,9-スピロビフルオレン(Spiro-NPB)及び2,2’,7,7’-テトラキス(N,N-ジフェニルアミノ)-9,9’-スピロビフルオレン(Spiro-TAD)等が挙げられる。
The hole transporting compound is not particularly limited, and examples thereof include arylamine derivatives, anthracene derivatives, carbazole derivatives, thiophene derivatives, fluorene derivatives, distyrylbenzene derivatives and spiro compounds.
Examples of arylamine derivatives include N, N′-bis- (3-methylphenyl) -N, N′-bis- (phenyl) -benzidine (TPD), bis (N- (1-naphthyl-N-phenyl) ) Benzidine) (α-NPD), 4,4 ′, 4 ′ ′-tris (3-methylphenylphenylamino) triphenylamine (MTDATA) and 4,4 ′, 4 ′ ′-tris (N- (2-naphthyl) And -N-phenylamino) triphenylamine (2-TNATA) and the like.
Examples of carbazole derivatives include 4,4-N, N′-dicarbazole-biphenyl (CBP) and the like.
Examples of fluorene derivatives include N, N′-bis (3-methylphenyl) -N, N′-bis (phenyl) -9,9-dimethylfluorene (DMFL-TPD).
Examples of distyrylbenzene derivatives include 4- (di-p-tolylamino) -4 ′-[(di-p-tolylamino) styryl] stilbene (DPAVB) and the like.
As a spiro compound, for example, 2,7-bis (N-naphthalen-1-yl-N-phenylamino) -9,9-spirobifluorene (Spiro-NPB) and 2,2 ′, 7,7′- And tetrakis (N, N-diphenylamino) -9,9'-spirobifluorene (Spiro-TAD).
 また、正孔輸送性高分子化合物としては、例えば、アリールアミン誘導体、アントラセン誘導体、カルバゾール誘導体、チオフェン誘導体、フルオレン誘導体、ジスチリルベンゼン誘導体又はスピロ化合物等を繰り返し単位に含む重合体を挙げることができる。
 アリールアミン誘導体を繰り返し単位に含む重合体の具体例としては、非共役系の高分子として、コポリ[3,3’-ヒドロキシ-テトラフェニルベンジジン/ジエチレングリコール]カーボネート(PC-TPD-DEG)、下記構造で表されるPTPDES及びEt-PTPDEK等、共役系の高分子としてポリ[N,N’-ビス(4-ブチルフェニル)-N,N’-ビス(フェニル)-ベンジジン]を挙げることができる。
Moreover, as a hole transportable polymer compound, the polymer which contains an arylamine derivative, an anthracene derivative, a carbazole derivative, a thiophene derivative, a fluorene derivative, a distyryl benzene derivative, a spiro compound etc. in a repeating unit can be mentioned, for example .
As a specific example of a polymer containing an arylamine derivative in a repeating unit, copoly [3,3'-hydroxy-tetraphenylbenzidine / diethylene glycol] carbonate (PC-TPD-DEG) as a non-conjugated polymer, the following structure Poly [N, N′-bis (4-butylphenyl) -N, N′-bis (phenyl) -benzidine] can be mentioned as conjugated polymers such as PTPDES and Et-PTPDEK represented by
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000004
 アントラセン誘導体類を繰り返し単位に含む重合体の具体例としては、ポリ[(9,9-ジオクチルフルオレニル-2,7-ジイル)-co-(9,10-アントラセン)]等を挙げることができる。
 カルバゾール類を繰り返し単位に含む重合体の具体例としては、ポリビニルカルバゾール(PVK)等を挙げることができる。
 チオフェン誘導体類を繰り返し単位に含む重合体の具体例としては、ポリ[(9,9-ジオクチルフルオレニル-2,7-ジイル)-co-(ビチオフェン)]等を挙げることができる。
As a specific example of the polymer containing anthracene derivative in the repeating unit, poly [(9,9-dioctylfluorenyl-2,7-diyl) -co- (9,10-anthracene)] etc. may be mentioned. it can.
As a specific example of the polymer which contains carbazole in a repeating unit, polyvinyl carbazole (PVK) etc. can be mentioned.
Specific examples of the polymer containing a thiophene derivative in the repeating unit include poly [(9,9-dioctylfluorenyl-2,7-diyl) -co- (bithiophene)] and the like.
 フルオレン誘導体を繰り返し単位に含む重合体の具体例としては、下記式(1)で示されるポリ[(9,9-ジオクチルフルオレニル-2,7-ジイル)-co-(4,4’-(N-(4-sec-ブチルフェニル))ジフェニルアミン)](TFB)、下記式(2)で示されるポリ[(9,9-ジオクチルフルオレニル-2,7-ジイル)-alt-co-(N,N’-ビス{4-ブチルフェニル}-ベンジジンN,N’-{1,4-ジフェニレン})]、下記式(3)で示されるポリ[(9,9-ジオクチルフルオレニル-2,7-ジイル)](PFO)等を挙げることができる。
 スピロ化合物を繰り返し単位に含む重合体の具体例としては、ポリ[(9,9-ジオクチルフルオレニル-2,7-ジイル)-alt-co-(9,9’-スピロ-ビフルオレン-2,7-ジイル)]等を挙げることができる。
 これらの正孔輸送性高分子化合物は単独で用いてもよく2種以上を併用してもよい。
Specific examples of the polymer containing a fluorene derivative in the repeating unit include poly [(9,9-dioctylfluorenyl-2,7-diyl) -co- (4,4'-) represented by the following formula (1) (N- (4-sec-butylphenyl)) diphenylamine)] (TFB), poly [(9,9-dioctylfluorenyl-2,7-diyl) -alt-co- represented by the following formula (2) (N, N′-bis {4-butylphenyl} -benzidine N, N ′-{1,4-diphenylene})], poly [(9,9-dioctylfluorenyl- represented by the following formula (3) 2,7-diyl)] (PFO) etc. can be mentioned.
Specific examples of the polymer containing the spiro compound in the repeating unit include poly [(9,9-dioctylfluorenyl-2,7-diyl) -alt-co- (9,9′-spiro-bifluorene-2, 7-diyl)] and the like.
These hole transportable polymer compounds may be used alone or in combination of two or more.
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000007
 上記正孔注入輸送層の平均膜厚は、目的や隣接する層により適宜決定することができるが、通常0.1~1000nm、好ましくは1~500nmである。
なお、島状などの不連続層を有する場合の膜厚は、全体を平均化した膜厚にて定義され、例えば不連続層を含む膜全体をエリプソメーターにて測定することで平均膜厚の値を得ることができる。
 また、上記正孔注入輸送層の仕事関数は5.0~6.0eVが好ましく、5.0~5.8eVであることが、正孔注入効率の点からより好ましい。
The average film thickness of the hole injecting and transporting layer can be appropriately determined depending on the purpose and the adjacent layer, but it is usually 0.1 to 1000 nm, preferably 1 to 500 nm.
In addition, the film thickness in the case of having a discontinuous layer such as an island is defined as a film thickness obtained by averaging the whole, and for example, the average film thickness can be obtained by measuring the entire film including the discontinuous layer with an ellipsometer. You can get a value.
The work function of the hole injecting and transporting layer is preferably 5.0 to 6.0 eV, more preferably 5.0 to 5.8 eV, from the viewpoint of hole injection efficiency.
 本発明の正孔注入輸送層は、溶液塗布法で形成することが可能である。本発明の正孔注入輸送層は、溶液塗布法により形成されることが、製造プロセスが容易な上、ショートが発生しにくいため歩留まりが高く、電荷移動錯体を形成して長寿命を達成する点から好ましい。この場合、本発明の正孔注入輸送層は、少なくともナノ粒子が良好に分散する溶剤中で分散させた溶液(遷移金属化合物含有ナノ粒子分散インク)を用いて、溶液塗布法により形成する。また、正孔輸送性化合物が含まれる正孔注入輸送層を形成する場合、ナノ粒子と、正孔輸送性化合物とを、双方が良好に溶解乃至分散する親水性溶媒中で混合した溶液を用いて、溶液塗布法により形成しても良い。この場合、ナノ粒子と正孔輸送性化合物の双方が良好に溶解乃至分散する親水性溶媒中で混合すると、溶液中でナノ粒子と正孔輸送性化合物が相互作用し、電荷移動錯体を形成しやすくなるため、正孔輸送性及び膜の経時安定性に優れた正孔注入輸送層を形成できる。
 また、前記正孔注入輸送層として、ナノ粒子を含有する層上に正孔輸送性化合物を含有する層を溶液塗布法により積層した層としても良い。また、前記正孔注入輸送層は、ナノ粒子を含有する層上に、ナノ粒子及び正孔輸送性化合物を少なくとも含有する層を溶液塗布法により積層した層としても良い。
 溶液塗布法については、下記、デバイスの製造方法の項目において説明する。
The hole injecting and transporting layer of the present invention can be formed by a solution coating method. The hole injecting and transporting layer of the present invention is easy to manufacture by being applied by a solution coating method and has a high yield because short circuits are unlikely to occur, and a charge transfer complex is formed to achieve long life. It is preferable from In this case, the hole injecting and transporting layer of the present invention is formed by a solution coating method using a solution (transition metal compound-containing nanoparticle dispersed ink) dispersed in a solvent in which at least the nanoparticles are well dispersed. When forming a hole injecting and transporting layer containing a hole transporting compound, a solution in which nanoparticles and a hole transporting compound are mixed in a hydrophilic solvent in which both are well dissolved or dispersed is used. It may be formed by a solution coating method. In this case, when mixed in a hydrophilic solvent in which both the nanoparticles and the hole transporting compound dissolve or disperse well, the nanoparticles and the hole transporting compound interact with each other in the solution to form a charge transfer complex. Since this becomes easy, it is possible to form a hole injecting and transporting layer excellent in the hole transporting property and the temporal stability of the film.
In addition, as the hole injecting and transporting layer, a layer containing a hole transporting compound may be stacked on a layer containing nanoparticles by a solution coating method. Further, the hole injecting and transporting layer may be a layer in which a layer containing at least nanoparticles and a hole transporting compound is laminated by a solution coating method on a layer containing nanoparticles.
The solution coating method will be described below in the section of the device manufacturing method.
 (基板)
 基板は、本発明のデバイスの支持体になるものであり、例えば、フレキシブルな材質であっても、硬質な材質であってもよい。具体的に用いることができる材料としては、例えば、ガラス、石英、ポリエチレン、ポリプロピレン、ポリエチレンテレフタレート、ポリメタクリレート、ポリメチルメタクリレート、ポリメチルアクリレート、ポリエステル及びポリカーボネート等を挙げることができる。
 これらのうち、合成樹脂製の基板を使用する場合には、ガスバリア性を有することが望ましい。基板の厚さは特に限定されないが、通常、0.5~2.0mm程度である。
(substrate)
The substrate is to be a support of the device of the present invention, and may be, for example, a flexible material or a rigid material. Specific examples of materials that can be used include glass, quartz, polyethylene, polypropylene, polyethylene terephthalate, polymethacrylate, polymethylmethacrylate, polymethylacrylate, polyester and polycarbonate.
Among these, when using a synthetic resin substrate, it is desirable to have gas barrier properties. The thickness of the substrate is not particularly limited, but is usually about 0.5 to 2.0 mm.
 (電極)
 本発明のデバイスは、基板上に対向する2つ以上の電極を有する。
 本発明のデバイスにおいて、電極は、金属又は金属酸化物で形成されることが好ましく、公知の材料を適宜採用することができる。通常、アルミニウム、金、銀、ニッケル、パラジウム及び白金等の金属並びにインジウム及び/又はスズの酸化物などの金属酸化物により形成することができる。
(electrode)
The device of the present invention has two or more opposing electrodes on a substrate.
In the device of the present invention, the electrode is preferably formed of a metal or a metal oxide, and known materials can be appropriately adopted. Generally, it can be formed of a metal such as aluminum, gold, silver, nickel, palladium and platinum and a metal oxide such as an oxide of indium and / or tin.
 電極は、通常、基板上にスパッタリング法、真空蒸着法などの方法により形成されることが多いが、塗布法やディップ法等の湿式法により形成することもできる。電極の厚さは、各々の電極に要求される透明性等により異なる。透明性が必要な場合には、電極の可視光波長領域の光透過率が、通常、60%以上、好ましくは80%以上となることが望ましく、この場合の厚さは、通常10~1000nm、好ましくは20~500nm程度である。
 本発明においては、電極上に、電荷注入材料との密着安定性を向上させるために、さらに金属層を有していても良い。金属層は金属が含まれる層をいい、上述のような通常電極に用いられる金属や金属酸化物から形成される。
The electrode is usually formed on a substrate by a sputtering method, a vacuum evaporation method or the like in many cases, but can also be formed by a wet method such as a coating method or a dip method. The thickness of the electrodes varies depending on the transparency required for each electrode. When transparency is required, it is desirable that the light transmittance of the electrode in the visible light wavelength region is usually 60% or more, preferably 80% or more, and in this case, the thickness is usually 10 to 1000 nm, Preferably, it is about 20 to 500 nm.
In the present invention, a metal layer may be further provided on the electrode in order to improve the adhesion stability with the charge injection material. The metal layer is a layer containing a metal, and is formed of the metal or metal oxide generally used for the electrode as described above.
 (その他)
 本発明のデバイスは、必要に応じて、電子注入電極と有機層の間に、従来公知の電子注入層及び/又は電子輸送層を有していてもよい。
(Others)
The device of the present invention may optionally have a conventionally known electron injection layer and / or electron transport layer between the electron injection electrode and the organic layer.
 (有機EL素子)
 本発明のデバイスの一実施形態として、少なくとも本発明の正孔注入輸送層及び発光層を含む有機層を含有する、有機EL素子が挙げられる。
 以下、有機EL素子を構成する各層について、図3~5を用いて順に説明する。
(Organic EL element)
One embodiment of the device of the present invention includes an organic EL element containing an organic layer containing at least the hole injecting and transporting layer of the present invention and the light emitting layer.
Hereinafter, each layer constituting the organic EL element will be described in order with reference to FIGS.
 (基板)
 基板50は、有機EL素子の支持体になるものであり、例えばフレキシブルな材質であっても、硬質な材質であってもよい。具体的には、例えば、上記デバイスの基板の説明において挙げたものを用いることができる。
 発光層100で発光した光が基板50側を透過して取り出される場合においては、少なくともその基板50が透明な材質である必要がある。
(substrate)
The substrate 50 is a support of the organic EL element, and may be, for example, a flexible material or a hard material. Specifically, for example, those mentioned in the description of the substrate of the device can be used.
In the case where light emitted from the light emitting layer 100 is transmitted through the substrate 50 side and taken out, at least the substrate 50 needs to be a transparent material.
 (陽極、陰極)
 電極61および電極62は、発光層100で発光した光の取り出し方向により、どちらの電極に透明性が要求されるか否かが異なり、基板50側から光を取り出す場合には電極61を透明な材料で形成する必要があり、また電極62側から光を取り出す場合には電極62を透明な材料で形成する必要がある。
 基板50の発光層側に設けられている電極61は、発光層に正孔を注入する陽極として作用し、基板50の発光層側に設けられている電極62は、発光層100に電子を注入する陰極として作用する。
 本発明において、陽極及び陰極は、上記デバイスの電極の説明において列挙した金属又は金属酸化物で形成されることが好ましい。
(Anode, cathode)
Depending on the extraction direction of light emitted from the light emitting layer 100, the electrodes 61 and 62 differ in which electrode is required to be transparent or not. In the case of extracting light from the substrate 50 side, the electrode 61 is transparent. It needs to be formed of a material, and when light is taken out from the electrode 62 side, the electrode 62 needs to be formed of a transparent material.
The electrode 61 provided on the light emitting layer side of the substrate 50 acts as an anode for injecting holes into the light emitting layer, and the electrode 62 provided on the light emitting layer side of the substrate 50 injects electrons into the light emitting layer 100. Act as a cathode.
In the present invention, the anode and the cathode are preferably formed of the metals or metal oxides listed in the description of the electrodes of the device.
 (正孔注入輸送層、正孔輸送層及び正孔注入層)
 正孔注入輸送層70、正孔輸送層90a及び正孔注入層90bは、図4~6に示すように、発光層100と電極61(陽極)の間に適宜形成される。図4のように、本発明に係る正孔注入輸送層70の上に正孔輸送層90aを積層し、その上に発光層100を積層してもよいし、図5のように、正孔注入層90bの上に本発明に係る正孔注入輸送層70を積層し、その上に発光層100を積層してもよいし、図6のように、電極61の上に、本発明に係る正孔注入輸送層70を積層しその上に発光層100を積層してもよい。
(Hole injection and transport layer, hole transport layer and hole injection layer)
The hole injecting and transporting layer 70, the hole transporting layer 90a, and the hole injecting layer 90b are appropriately formed between the light emitting layer 100 and the electrode 61 (anode), as shown in FIGS. As shown in FIG. 4, the hole transport layer 90a may be stacked on the hole injecting and transporting layer 70 according to the present invention, and the light emitting layer 100 may be stacked thereon, as shown in FIG. The hole injecting and transporting layer 70 according to the present invention may be laminated on the injection layer 90b, and the light emitting layer 100 may be laminated thereon, or the electrode 61 according to the present invention as illustrated in FIG. The hole injecting and transporting layer 70 may be stacked, and the light emitting layer 100 may be stacked thereon.
 図4のように、本発明に係る正孔注入輸送層70の上に正孔輸送層90aを積層する場合に、正孔輸送層90aに用いられる正孔輸送材料は特に限定されない。本発明に係る正孔注入輸送層において説明した正孔輸送性化合物を用いることが好ましい。中でも、隣接する本発明に係る正孔注入輸送層70に用いられている正孔輸送性化合物と同じ化合物を用いることが、正孔注入輸送層と正孔輸送層の界面の密着安定性を向上させ、長駆動寿命化に寄与する点から好ましい。
 正孔輸送層90aは、正孔輸送材料を用いて、後述の発光層と同様方法で形成することができる。正孔輸送層90aの膜厚は、通常0.1~1μm、好ましくは1~500nmである。
When laminating | stacking the positive hole transport layer 90a on the positive hole injection transport layer 70 which concerns on this invention like FIG. 4, the positive hole transport material used for the positive hole transport layer 90a is not specifically limited. It is preferable to use the hole transporting compound described in the hole injecting and transporting layer according to the present invention. Above all, the adhesion stability of the interface between the hole injecting and transporting layer and the hole transporting layer is improved by using the same compound as the hole transporting compound used in the hole injecting and transporting layer 70 according to the present invention adjacent thereto. It is preferable from the point of contributing to long drive life.
The hole transport layer 90a can be formed using a hole transport material by the same method as the light emitting layer described later. The thickness of the hole transport layer 90a is usually 0.1 to 1 μm, preferably 1 to 500 nm.
 図5のように、正孔注入層90bの上に本発明に係る正孔注入輸送層70を積層する場合に、正孔注入層90bに用いられる正孔注入材料は特に限定されず、従来公知の化合物を用いることができる。例えば、フェニルアミン系、スターバースト型アミン系、フタロシアニン系、酸化バナジウム、酸化モリブデン、酸化ルテニウム、酸化アルミニウム等の酸化物、アモルファスカーボン、ポリアニリン、ポリチオフェン誘導体等が挙げられる。
 正孔注入層90bは、正孔注入材料を用いて、後述の発光層100と同様方法で形成することができる。正孔注入層90bの膜厚は、通常1nm~1μm、好ましくは2nm~500nm、さらに好ましくは5nm~200nmである。
When the hole injecting and transporting layer 70 according to the present invention is stacked on the hole injecting layer 90b as shown in FIG. 5, the hole injecting material used for the hole injecting layer 90b is not particularly limited, and The following compounds can be used. For example, oxides such as phenylamine type, star burst type amine type, phthalocyanine type, vanadium oxide, molybdenum oxide, ruthenium oxide, aluminum oxide, amorphous carbon, polyaniline, polythiophene derivatives and the like can be mentioned.
The hole injection layer 90 b can be formed using a hole injection material by the same method as the light emitting layer 100 described later. The thickness of the hole injection layer 90b is usually 1 nm to 1 μm, preferably 2 nm to 500 nm, and more preferably 5 nm to 200 nm.
 さらに、正孔注入特性を考慮すると、電極61側から有機層である発光層100に向かって各層の仕事関数(HOMO)の値が階段状に大きくなるような正孔注入材料及び正孔輸送材料を選択して、各界面での正孔注入のエネルギー障壁をできるだけ小さくし、電極61と発光層100の間の大きな正孔注入のエネルギー障壁を補完することが好ましい。 Furthermore, in consideration of the hole injection characteristics, a hole injection material and a hole transport material in which the work function (HOMO) value of each layer increases stepwise from the electrode 61 side toward the light emitting layer 100 which is an organic layer. Preferably, the energy barrier for hole injection at each interface is as small as possible, and the energy barrier for the large hole injection between the electrode 61 and the light emitting layer 100 is complemented.
 具体的には例えば、電極61にITO(UVオゾン洗浄直後の仕事関数5.0eV)を用い、発光層100にAlq3(HOMO5.7eV)を用いた場合、正孔注入輸送層70を構成する材料としてTFB(仕事関数5.4eV)と、仕事関数5.0~5.4eV未満のナノ粒子を選択してこの順に積層し、電極61側から発光層100に向かって各層の仕事関数の値が順に大きくなるような層構成をとるように配置することが好ましい。なお、上記仕事関数又はHOMOの値は、光電子分光装置AC-1(理研計器(株)製)を使用した光電子分光法の測定値より引用した。
 このような層構成の場合、電極61(UVオゾン洗浄直後の仕事関数5.0eV)と発光層100(例えばHOMO5.7eV)の間の正孔注入の大きなエネルギー障壁を、HOMOの値が階段状になるように補完可能で、正孔注入効率に非常に優れた正孔注入輸送層が得られる。
Specifically, for example, when ITO (a work function of 5.0 eV immediately after UV ozone cleaning) is used for the electrode 61 and Alq3 (HOMO 5.7 eV) is used for the light emitting layer 100, the material constituting the hole injecting and transporting layer 70 Select TFB (work function 5.4 eV) and nanoparticles with a work function of 5.0 to less than 5.4 eV as this and stack them in this order, and the value of the work function of each layer from the electrode 61 side toward the light emitting layer 100 is It is preferable to arrange so that it may take layer structure which becomes large in order. The value of the work function or the HOMO is quoted from the measured value of photoelectron spectroscopy using a photoelectron spectrometer AC-1 (manufactured by Riken Keiki Co., Ltd.).
In the case of such a layer configuration, the large energy barrier of hole injection between the electrode 61 (work function 5.0 eV immediately after UV ozone cleaning) and the light emitting layer 100 (eg HOMO 5.7 eV), the value of HOMO is stepped Thus, it is possible to obtain a hole injecting and transporting layer which can be complemented so that the hole injection efficiency is very excellent.
 (発光層)
 発光層100は、図4~6に示すように、電極61が形成された基板50と電極62との間に、発光材料により形成される。
 本発明の発光層に用いられる材料としては、通常、発光材料として用いられている材料であれば特に限定されず、蛍光材料及びりん光材料のいずれも用いることができる。具体的には、色素系発光材料、金属錯体系発光材料等の材料を挙げることができ、低分子化合物または高分子化合物のいずれも用いることができる。
(Emitting layer)
The light emitting layer 100 is formed of a light emitting material between the substrate 50 on which the electrode 61 is formed and the electrode 62, as shown in FIGS.
The material used for the light emitting layer of the present invention is not particularly limited as long as it is a material generally used as a light emitting material, and any of fluorescent materials and phosphorescent materials can be used. Specifically, materials such as dye-based light emitting materials and metal complex-based light emitting materials can be mentioned, and any of low molecular weight compounds and high molecular weight compounds can be used.
 色素系発光材料としては、例えば、アリールアミン誘導体、アントラセン誘導体、(フェニルアントラセン誘導体、)、オキサジアゾール誘導体、オキサゾール誘導体、オリゴチオフェン誘導体、カルバゾール誘導体、シクロペンタジエン誘導体、シロール誘導体、ジスチリルベンゼン誘導体、ジスチリルピラジン誘導体、ジスチリルアリーレン誘導体、シロール誘導体、スチルベン誘導体、スピロ化合物、チオフェン環化合物、テトラフェニルブタジエン誘導体、トリアゾール誘導体、トリフェニルアミン誘導体、トリフマニルアミン誘導体、ピラゾロキノリン誘導体、ヒドラゾン誘導体、ピラゾリンダイマー、ピリジン環化合物、フルオレン誘導体、フェナントロリン類、ペリノン誘導体、ペリレン誘導体等を挙げることができる。またこれらの2量体や3量体やオリゴマー、2種類以上の誘導体の化合物も用いることができる。
 これらの材料は単独で用いてもよく2種以上を併用してもよい。
Examples of dye-based light emitting materials include arylamine derivatives, anthracene derivatives, (phenylanthracene derivatives), oxadiazole derivatives, oxazole derivatives, oligothiophene derivatives, carbazole derivatives, cyclopentadiene derivatives, silole derivatives, distyrylbenzene derivatives, Distyrylpyrazine derivative, distyrylarylene derivative, silole derivative, stilbene derivative, spiro compound, thiophene ring compound, tetraphenylbutadiene derivative, triazole derivative, triphenylamine derivative, trifnylamine derivative, pyrazoloquinoline derivative, hydrazone derivative, pyra Zorine dimers, pyridine ring compounds, fluorene derivatives, phenanthrolines, perinone derivatives, perylene derivatives and the like can be mentioned. In addition, compounds of these dimers, trimers, oligomers, and derivatives of two or more types can also be used.
These materials may be used alone or in combination of two or more.
 金属錯体系発光材料としては、例えば、アルミキノリノール錯体、ベンゾキノリノールベリリウム錯体、ベンゾオキサゾール亜鉛錯体、ベンゾチアゾール亜鉛錯体、アゾメチル亜鉛錯体、ポルフィリン亜鉛錯体、ユーロピウム錯体等、あるいは中心金属にAl、Zn、Be等または、Tb、Eu、Dy等の希土類金属を有し、配位子にオキサジアゾール、チアジアゾール、フェニルピリジン、フェニルベンゾイミダール、キノリン構造等を有する金属錯体を挙げることができる。
 これらの材料は単独で用いてもよく2種以上を併用してもよい。
Examples of metal complex light emitting materials include aluminum quinolinol complex, benzoquinolinol beryllium complex, benzoxazole zinc complex, benzothiazole zinc complex, azomethyl zinc complex, porphyrin zinc complex, europium complex, etc., or Al, Zn, Be at the central metal, etc. And metal complexes having a rare earth metal such as Tb, Eu, Dy, etc., and having, as a ligand, oxadiazole, thiadiazole, phenylpyridine, phenylbenzimidal, quinoline structure and the like.
These materials may be used alone or in combination of two or more.
 高分子系発光材料としては、分子内に上記低分子系材料を分子内に直鎖あるいは側鎖あるいは官能基として導入されたもの、重合体およびデンドリマー等を使用することができる。
 例えば、ポリパラフェニレンビニレン誘導体、ポリチオフェン誘導体、ポリパラフェニレン誘導体、ポリシラン誘導体、ポリアセチレン誘導体、ポリビニルカルバゾール、ポリフルオレノン誘導体、ポリフルオレン誘導体及びポリキノキサリン誘導体並びにそれらの共重合体等を挙げることができる。
As the high molecular weight light emitting material, materials in which the low molecular weight material is introduced into the molecule as a straight chain, a side chain or a functional group, a polymer, a dendrimer or the like can be used.
For example, polyparaphenylene vinylene derivatives, polythiophene derivatives, polyparaphenylene derivatives, polysilane derivatives, polyacetylene derivatives, polyvinylcarbazole, polyfluorenone derivatives, polyfluorene derivatives and polyquinoxaline derivatives, copolymers thereof and the like can be mentioned.
 上記発光層中には、発光効率の向上や発光波長を変化させる等の目的でドーピング材料を添加してもよい。高分子系材料の場合は、これらを分子構造の中に発光基として含んでいても良い。このようなドーピング材料としては、例えば、ペリレン誘導体、クマリン誘導体、ルブレン誘導体、キナクドリン誘導体、スクアリウム誘導体、ポルフィリン誘導体、スチリル系色素、テトラセン誘導体、ピラゾリン誘導体、デカシクレン、フェノキサゾン、キノキサリン誘導体、カルバゾール誘導体及びフルオレン誘導体を挙げることができる。またこれらにスピロ基を導入した化合物も用いることができる。
 これらの材料は単独で用いてもよく2種以上を併用してもよい。
A doping material may be added to the light emitting layer for the purpose of improving the light emission efficiency or changing the light emission wavelength. In the case of a polymeric material, these may be included as a light emitting group in the molecular structure. As such doping materials, for example, perylene derivatives, coumarin derivatives, rubrene derivatives, quinacdrine derivatives, squalium derivatives, porphyrin derivatives, styryl dyes, tetracene derivatives, pyrazoline derivatives, decacyclene, phenoxazone, quinoxaline derivatives, carbazole derivatives and fluorene derivatives Can be mentioned. Moreover, the compound which introduce | transduced spiro group into these can also be used.
These materials may be used alone or in combination of two or more.
 本発明においては、発光層の材料としては蛍光発光する低分子化合物または高分子化合物や、燐光発光する低分子化合物または高分子化合物のいずれをも用いることができる。本発明において、発光層を設ける下地層が本発明の上記正孔注入輸送層である場合、当該正孔注入輸送層は電荷移動錯体を形成して溶液塗布法に用いたキシレン等の疎水性溶媒に不溶になるため、発光層の材料としては、キシレン等の疎水性溶媒に溶解しやすく溶液塗布法により層を形成する高分子型材料を用いることが可能である。この場合、蛍光発光する高分子化合物または蛍光発光する低分子化合物を含む高分子化合物や、燐光発光する高分子化合物または燐光発光する低分子化合物を含む高分子化合物を好適に用いることができる。 In the present invention, as a material of the light emitting layer, any of a low molecular weight compound or a high molecular weight compound which emits fluorescence, and a low molecular weight compound or a high molecular weight compound which emits phosphorescence can be used. In the present invention, when the base layer on which the light emitting layer is provided is the above-described hole injecting and transporting layer of the present invention, the hole injecting and transporting layer forms a charge transfer complex, and a hydrophobic solvent such as xylene used in the solution coating method As a material of the light emitting layer, it is possible to use a polymer type material which is easily dissolved in a hydrophobic solvent such as xylene and forms a layer by a solution coating method. In this case, a polymer compound that emits fluorescence or a polymer compound that contains a low molecular compound that emits fluorescence, or a polymer compound that emits phosphorescence or a low molecular compound that emits phosphorescence can be suitably used.
 発光層は、発光材料を用いて、溶液塗布法または蒸着法または転写法により形成することができる。溶液塗布法は、後述のデバイスの製造方法の項目において説明するのと同様の方法を用いることができる。蒸着法は、例えば、真空蒸着法の場合には、発光層の材料を真空容器内に設置されたルツボに入れ、真空容器内を適当な真空ポンプで10-4Pa程度にまで排気した後、ルツボを加熱して、発光層の材料を蒸発させ、ルツボと向き合って置かれた基板50、電極61、正孔注入輸送層70、及び正孔輸送層90aの積層体の上に発光層100を形成させる。転写法は、例えば、予めフィルム上に溶液塗布法又は蒸着法で形成した発光層を、電極上に設けた正孔注入輸送層70に貼り合わせ、加熱により発光層100を正孔注入輸送層70上に転写することにより形成される。また、フィルム、発光層100、正孔注入輸送層70の順に積層された積層体の正孔注入輸送層側を、電極上に転写してもよい。
 発光層の膜厚は、通常、1~500nm、好ましくは20~1000nm程度である。本発明は、正孔注入輸送層を溶液塗布法で形成することが好適であるため、発光層も溶液塗布法で形成する場合はプロセスコストを下げることができるという利点がある。
The light emitting layer can be formed by a solution application method, a vapor deposition method, or a transfer method using a light emitting material. As the solution application method, the same method as described in the item of the method of manufacturing a device described later can be used. The evaporation method is, for example, in the case of a vacuum evaporation method, the material of the light emitting layer is put in a crucible installed in a vacuum vessel, and the inside of the vacuum vessel is evacuated to about 10 -4 Pa by a suitable vacuum pump. The crucible is heated to evaporate the material of the light emitting layer, and the light emitting layer 100 is placed on the laminate of the substrate 50 placed facing the crucible, the electrode 61, the hole injecting and transporting layer 70, and the hole transporting layer 90a. Let it form. The transfer method is, for example, bonding a light emitting layer previously formed on a film by a solution coating method or a vapor deposition method to a hole injecting and transporting layer 70 provided on an electrode, and heating the light emitting layer 100 by a hole injecting and transporting layer 70. It is formed by transcribing onto. In addition, the hole injecting and transporting layer side of the laminate in which the film, the light emitting layer 100, and the hole injecting and transporting layer 70 are laminated in this order may be transferred onto the electrode.
The thickness of the light emitting layer is usually about 1 to 500 nm, preferably about 20 to 1000 nm. The present invention is advantageous in that the hole injecting and transporting layer is preferably formed by a solution coating method, so that the process cost can be reduced when the light emitting layer is also formed by a solution coating method.
 (有機トランジスタ)
 本発明に係るデバイスの別の実施形態として、有機トランジスタが挙げられる。以下、有機トランジスタを構成する各層について、図7及び図8を用いて説明する。
 図7に示されるような本発明の有機トランジスタは、電極61(ソース電極)と電極62(ドレイン電極)の表面に正孔注入輸送層70が形成されているため、それぞれの電極と有機半導体層との間の正孔注入輸送能力が高くなり、且つ、本発明の正孔注入輸送層の膜安定性が高いため、長駆動寿命化に寄与する。
 本発明の有機トランジスタは、図8に示されるような、本発明の正孔注入輸送層70が有機半導体層110として機能するものであっても良い。
 また、本発明の有機トランジスタは、図7に示されるように電極61(ソース電極)と電極62(ドレイン電極)の表面に正孔注入輸送層70を形成し、有機半導体層110として電極表面に形成した正孔注入輸送層とは材料が異なる本発明の正孔注入輸送層70を形成してもよい。
(Organic transistor)
Another embodiment of the device according to the invention is an organic transistor. Hereinafter, each layer which comprises an organic transistor is demonstrated using FIG.7 and FIG.8.
In the organic transistor of the present invention as shown in FIG. 7, since the hole injection transport layer 70 is formed on the surfaces of the electrode 61 (source electrode) and the electrode 62 (drain electrode), each electrode and the organic semiconductor layer The hole injecting and transporting ability between them is high, and the film stability of the hole injecting and transporting layer of the present invention is high, which contributes to the long drive life.
In the organic transistor of the present invention, the hole injecting and transporting layer 70 of the present invention as shown in FIG. 8 may function as the organic semiconductor layer 110.
Further, in the organic transistor of the present invention, as shown in FIG. 7, a hole injecting and transporting layer 70 is formed on the surfaces of the electrode 61 (source electrode) and the electrode 62 (drain electrode). You may form the positive hole injection transport layer 70 of this invention in which material differs in the formed positive hole injection transport layer.
 図7に示されるような有機トランジスタを形成する場合に、有機半導体層を形成する材料としては、ドナー性(p型)の、低分子あるいは高分子の有機半導体材料が使用できる。
 上記有機半導体材料としては、ポルフィリン誘導体、アリールアミン誘導体、ポリアセン誘導体、ペリレン誘導体、ルブレン誘導体、コロネン誘導体、ペリレンテトラカルボン酸ジイミド誘導体、ペリレンテトラカルボン酸二無水化物誘導体、ポリチオフェン誘導体、ポリパラフェニレン誘導体、ポリパラフェニレンビニレン誘導体、ポリピロール誘導体、ポリアニリン誘導体、ポリフルオレン誘導体、ポリチオフェンビニレン誘導体、ポリチオフェン-複素環芳香族共重合体とその誘導体、α-6-チオフェン、α-4-チオフェン、ナフタレンのオリゴアセン誘導体、α-5-チオフェンのオリゴチオフェン誘導体、ピロメリト酸二無水物誘導体及びピロメリト酸ジイミド誘導体を用いることができる。
 ポルフィリン誘導体としては、例えば、フタロシアニンや銅フタロシアニンなどの金属フタロシアニンを挙げることができる。
 アリールアミン誘導体としては、例えば、m-TDATAを用いることができる。
 ポリアセン誘導体としては、例えば、ナフタレン、アントラセン、ナフタセン、ペンタセンを挙げることができる。
 また、これらポルフィリン誘導体やトリフェニルアミン誘導体などにルイス酸や四フッ化テトラシアノキノジメタン(F-TCNQ)、バナジウムやモリブデンなど無機の酸化物などを混合し、導電性を高くした層を用いることもできる。
When an organic transistor as shown in FIG. 7 is formed, a low molecular weight or high molecular weight organic semiconductor material of donor nature (p type) can be used as a material for forming the organic semiconductor layer.
Examples of the organic semiconductor materials include porphyrin derivatives, arylamine derivatives, polyacene derivatives, perylene derivatives, rubrene derivatives, coronene derivatives, perylenetetracarboxylic acid diimide derivatives, perylenetetracarboxylic acid dianhydride derivatives, polythiophene derivatives, polyparaphenylene derivatives, Polyparaphenylene vinylene derivative, polypyrrole derivative, polyaniline derivative, polyfluorene derivative, polythiophene vinylene derivative, polythiophene-heterocyclic aromatic copolymer and its derivative, α-6-thiophene, α-4-thiophene, oligoacene derivative of naphthalene, Oligothiophene derivatives, pyromellitic dianhydride derivatives and pyromellitic diimide derivatives of α-5-thiophene can be used.
As a porphyrin derivative, metal phthalocyanines, such as a phthalocyanine and copper phthalocyanine, can be mentioned, for example.
As the arylamine derivative, for example, m-TDATA can be used.
Examples of polyacene derivatives include naphthalene, anthracene, naphthacene and pentacene.
In addition, a layer in which the conductivity is enhanced by mixing a Lewis acid, tetracyanoquinodimethane tetrafluoride (F 4 -TCNQ), an inorganic oxide such as vanadium or molybdenum with such a porphyrin derivative or triphenylamine derivative, etc. It can also be used.
 図7に示されるような、本発明の正孔注入輸送層を含む有機トランジスタを形成する場合であっても、前記有機半導体層110を構成する化合物としては、本発明の正孔注入輸送層に用いられる正孔輸送性化合物、中でも正孔輸送性高分子化合物を用いることが、本発明の正孔注入輸送層70と有機半導体層110の界面の密着安定性を向上させ、長駆動寿命化に寄与する点から好ましい。 Even when the organic transistor including the hole injecting and transporting layer of the present invention as shown in FIG. 7 is formed, as the compound constituting the organic semiconductor layer 110, it can be used in the hole injecting and transporting layer of the present invention The use of a hole transportable compound, in particular a hole transportable polymer compound, improves the adhesion stability of the interface between the hole injecting and transporting layer 70 and the organic semiconductor layer 110 of the present invention, and extends the driving life. It is preferable from the point of contribution.
 有機半導体層のキャリア移動度は10-6cm/Vs以上であることが、特に有機トランジスタに対しては10-3cm/Vs以上であることが、トランジスタ特性の点から好ましい。
 また、有機半導体層は、上記有機EL素子の発光層と同様に、溶液塗布法またはドライプロセスにより形成することが可能である。
The carrier mobility of the organic semiconductor layer is preferably 10 -6 cm / Vs or more, particularly 10 -3 cm / Vs or more for an organic transistor, from the viewpoint of transistor characteristics.
Further, the organic semiconductor layer can be formed by a solution coating method or a dry process, similarly to the light emitting layer of the organic EL element.
 基板、ゲート電極、ソース電極、ドレイン電極と、絶縁層については、特に限定されず、例えば以下のような材料を用いて形成することができる。
 基板50は、本発明のデバイスの支持体になるものであり、例えばフレキシブルな材質であっても、硬質な材質であってもよい。具体的には、上記有機EL素子の基板と同様のもの用いることができる。
 ゲート電極、ソース電極、ドレイン電極としては、導電性材料であれば特に限定されないが、本発明に係る前記遷移金属化合物含有ナノ粒子を用いて正孔注入輸送層70を形成する点からは、金属又は金属酸化物であることが好ましい。具体的には、上述の有機EL素子における電極と同様の金属又は金属酸化物を用いることができるが、特に、白金、金、銀、銅、アルミニウム、インジウム、ITO及び炭素が好ましい。
The substrate, the gate electrode, the source electrode, the drain electrode, and the insulating layer are not particularly limited, and can be formed using, for example, the following materials.
The substrate 50 is a support of the device of the present invention, and may be, for example, a flexible material or a rigid material. Specifically, the same substrate as the substrate of the organic EL element can be used.
The gate electrode, the source electrode, and the drain electrode are not particularly limited as long as they are conductive materials, but from the viewpoint of forming the hole injecting and transporting layer 70 using the transition metal compound-containing nanoparticle according to the present invention Or it is preferable that it is a metal oxide. Specifically, the same metal or metal oxide as the electrode in the above-mentioned organic EL element can be used, but platinum, gold, silver, copper, aluminum, indium, ITO and carbon are particularly preferable.
 ゲート電極を絶縁する絶縁層には種々の絶縁材料を用いることができ、無機酸化物でも有機化合物でも用いることが出来るが、特に、比誘電率の高い無機酸化物が好ましい。無機酸化物としては、酸化ケイ素、酸化アルミニウム、酸化タンタル、酸化チタン、酸化スズ、酸化バナジウム、チタン酸バリウムストロンチウム、ジルコニウム酸チタン酸バリウム、ジルコニウム酸チタン酸鉛、チタン酸鉛ランタン、チタン酸ストロンチウム、チタン酸バリウム、フッ化バリウムマグネシウム、チタン酸ビスマス、チタン酸ストロンチウムビスマス、タンタル酸ストロンチウムビスマス、タンタル酸ニオブ酸ビスマス及びトリオキサイドイットリウムなどが挙げられる。それらのうち好ましいのは、酸化ケイ素、酸化アルミニウム、酸化タンタル及び酸化チタンである。窒化ケイ素、窒化アルミニウムなどの無機窒化物も好適に用いることができる。 Although various insulating materials can be used for the insulating layer which insulates the gate electrode, and either an inorganic oxide or an organic compound can be used, an inorganic oxide having a high dielectric constant is particularly preferable. As an inorganic oxide, silicon oxide, aluminum oxide, tantalum oxide, titanium oxide, tin oxide, vanadium oxide, barium strontium titanate, barium zirconate titanate, lead zirconate titanate, lead lanthanum titanate, strontium titanate, Examples thereof include barium titanate, barium magnesium fluoride, bismuth titanate, strontium bismuth titanate, strontium bismuth tantalate, bismuth tantalate niobate and yttrium trioxide. Among them, preferred are silicon oxide, aluminum oxide, tantalum oxide and titanium oxide. Inorganic nitrides such as silicon nitride and aluminum nitride can also be suitably used.
 有機化合物としては、ポリイミド、ポリアミド、ポリエステル、ポリアクリレート、光ラジカル重合系、光カチオン重合系の光硬化性樹脂、あるいはアクリロニトリル成分を含有する共重合体、ポリビニルフェノール、ポリビニルアルコール、ノボラック樹脂及びシアノエチルプルラン、ポリマー体、エラストマー体を含むホスファゼン化合物、等を用いることができる。 As the organic compound, polyimide, polyamide, polyester, polyacrylate, radical photopolymerization system, photocurable resin of cationic photopolymerization system, copolymer containing an acrylonitrile component, polyvinyl phenol, polyvinyl alcohol, novolac resin and cyanoethyl pullulan , Polymer bodies, phosphazene compounds including elastomer bodies, and the like can be used.
 なお、色素増感太陽電池、有機薄膜太陽電池、有機半導体等のその他の有機デバイス、正孔注入輸送層を有する量子ドット発光素子、酸化物系化合物太陽電池等についても、正孔注入輸送層を上記本発明に係る正孔注入輸送層とすれば、その他の構成は特に限定されず、適宜公知の構成と同じであって良い。 The hole injection transport layer is also used for dye-sensitized solar cells, organic thin film solar cells, other organic devices such as organic semiconductors, quantum dot light emitting devices having a hole injection transport layer, oxide compound solar cells, etc. If it is set as the hole injection transport layer which concerns on the said invention, the other structure will not be specifically limited, It may be suitably the same as a well-known structure.
 (デバイスの製造方法)
 本発明に係る第一のデバイスの製造方法は、基板上に対向する2つ以上の電極と、そのうちの2つの電極間に配置された正孔注入輸送層を有するデバイスの製造方法であって、
 前記第一の遷移金属化合物含有ナノ粒子分散インクを用いて、当該電極上のいずれかの層上に正孔注入輸送層を形成する工程、を含むことを特徴とする。
(Method of manufacturing device)
A first method of manufacturing a device according to the present invention is a method of manufacturing a device having two or more electrodes facing each other on a substrate, and a hole injecting and transporting layer disposed between two electrodes of the two or more electrodes.
Forming a hole injecting and transporting layer on any of the layers on the electrode using the first transition metal compound-containing nanoparticle dispersed ink.
 本発明に係る第二のデバイスの製造方法は、基板上に対向する2つ以上の電極と、そのうちの2つの電極間に配置された正孔注入輸送層を有するデバイスの製造方法であって、
 前記第二の遷移金属化合物含有ナノ粒子分散インクを用いて、当該電極上のいずれかの層上に正孔注入輸送層を形成する工程、及び、
 前記化合物(U)を酸化する工程、を含むことを特徴とする。
A second method of producing a device according to the present invention is a method of producing a device having two or more electrodes facing each other on a substrate, and a hole injecting and transporting layer disposed between two electrodes of the two or more electrodes.
Forming a hole injecting and transporting layer on any layer on the electrode using the second transition metal compound-containing nanoparticle-dispersed ink;
Oxidizing the compound (U).
 本発明に係るデバイスの製造方法においては、ナノ粒子を含有する正孔注入輸送層は、上述のように第一又は第二の遷移金属化合物含有ナノ粒子分散インクを用いて、溶液塗布法により形成される。溶液塗布法を用いることにより、正孔注入輸送層の形成の際に蒸着装置が不要で、マスク蒸着等を用いることなく、塗り分けも可能であり、生産性が高く、また、電極と正孔注入輸送層の界面及び正孔注入輸送層と有機層界面の密着安定性が高いデバイスを形成できる。 In the method of manufacturing a device according to the present invention, the hole injecting and transporting layer containing nanoparticles is formed by the solution coating method using the first or second transition metal compound-containing nanoparticle dispersed ink as described above. Be done. By using the solution coating method, a deposition apparatus is not required at the time of formation of the hole injecting and transporting layer, and coating can be separately performed without using mask deposition and the like, productivity is high, and electrodes and holes are formed. It is possible to form a device with high adhesion stability between the interface of the injection and transport layer and the interface between the hole injection and transport layer and the organic layer.
 ここで溶液塗布法とは、第一又は第二の遷移金属化合物含有ナノ粒子分散インクを下地となる電極又は層上に塗布し、乾燥して正孔注入輸送層を形成する方法である。 Here, the solution coating method is a method in which the first or second transition metal compound-containing nanoparticle dispersed ink is coated on an electrode or layer serving as a base and dried to form a hole injecting and transporting layer.
 溶液塗布法として、例えば、浸漬法、スプレーコート法、スピンコート法、ブレードコート法、デイップコート法、キャスト法、ロールコート法、バーコート法、ダイコート法及びインクジェット法等の液体滴下法などが挙げられる。
薄膜かつ/又は平滑な正孔注入輸送層を得る必要がある場合には、スピンコート法が好適に用いられる。また、正孔注入輸送層のパターンを得る必要がある場合には、基板上に位置選択的に正孔注入輸送層を堆積可能な、インクジェット法等の液体滴下法が好適に用いられる。また、大面積にて正孔注入輸送層を形成する必要がある場合には、浸漬法及びデイップコート法が好適に用いられる。
As a solution coating method, for example, a liquid dropping method such as immersion method, spray coating method, spin coating method, blade coating method, dip coating method, casting method, roll coating method, bar coating method, die coating method and ink jet method etc. may be mentioned. Be
When it is necessary to obtain a thin film and / or a smooth hole injection transport layer, spin coating is preferably used. In addition, when it is necessary to obtain a pattern of the hole injecting and transporting layer, a liquid dropping method such as an ink jet method capable of depositing the hole injecting and transporting layer regioselectively on the substrate is preferably used. When it is necessary to form the hole injecting and transporting layer in a large area, the immersion method and the dip coating method are suitably used.
 本発明に係る第二のデバイスの製造方法においては、遷移金属化合物含有ナノ粒子分散インクに含まれる遷移金属炭化物、遷移金属窒化物及び遷移金属硫化物よりなる群から選択される1種以上の化合物(U)を酸化する工程を有することにより、溶剤溶解性のない遷移金属酸化物を含有する層を、蒸着法を用いることなく溶液塗布法を用いて形成することが可能である。また、正孔注入輸送層中の当該化合物(U)を対応する遷移金属炭化物、遷移金属窒化物又は遷移金属硫化物とすることにより、隣接する有機層と正孔注入輸送層とを互いに溶液塗布法で形成しながら安定した膜を形成可能な上、適宜正孔注入輸送性を変化させることも可能である。また、酸化する工程を有することにより、膜強度を向上させることも可能である。 In the second method for producing a device according to the present invention, at least one compound selected from the group consisting of transition metal carbides, transition metal nitrides and transition metal sulfides contained in transition metal compound-containing nanoparticle dispersed ink By having the step of oxidizing (U), it is possible to form a layer containing a transition metal oxide having no solvent solubility using a solution coating method without using a vapor deposition method. In addition, by making the compound (U) in the hole injecting and transporting layer into the corresponding transition metal carbide, transition metal nitride, or transition metal sulfide, the adjacent organic layer and the hole injecting and transporting layer are solution-coated with each other. In addition to being able to form a stable film while forming by a method, it is also possible to appropriately change the hole injection transportability. Moreover, it is also possible to improve film strength by having the process of oxidizing.
 本発明に係る第二のデバイスの製造方法において、前記化合物(U)を酸化する工程は、正孔注入輸送層を形成する工程の前に行ってもよいし、正孔注入輸送層を形成する工程の後に行ってもよい。化合物(U)を酸化する工程において、酸化する方法としては、酸素存在下で、例えば、加熱手段、光照射手段、活性酸素を作用させる手段等が挙げられ、これらを適宜、併用しても良く、上述のナノ粒子の製造方法で述べた方法と同様であって良い。 In the second method for producing a device according to the present invention, the step of oxidizing the compound (U) may be performed before the step of forming a hole injecting and transporting layer, or a hole injecting and transporting layer is formed. It may be performed after the process. In the step of oxidizing the compound (U), examples of the oxidation method include heating means, light irradiation means, means for causing active oxygen, and the like in the presence of oxygen, and these may be used in combination as appropriate. The method may be the same as the method described in the above-described method of producing nanoparticles.
 すなわち、本発明に係る第二のデバイスの製造方法の一態様としては、第二の遷移金属化合物含有ナノ粒子分散インクを用いて、電極上のいずれかの層上に、遷移金属炭化物、遷移金属窒化物及び遷移金属硫化物よりなる群から選択される1種以上の化合物(U)と保護剤とを含む正孔注入輸送層を形成する工程と、当該正孔注入輸送層中の当該化合物(U)を、それぞれ、遷移金属炭化酸化物、遷移金属窒化酸化物又は遷移金属硫化酸化物に酸化する工程を有する製造方法が挙げられる。このようにすると、ナノ粒子を含有する正孔注入輸送層を形成することができる。 That is, as one embodiment of the method of manufacturing the second device according to the present invention, transition metal carbide, transition metal on any layer on the electrode, using the second transition metal compound-containing nanoparticle dispersed ink Forming a hole injecting and transporting layer containing at least one compound (U) selected from the group consisting of nitrides and transition metal sulfides and a protective agent, and the compound in the hole injecting and transporting layer The production method may include the step of oxidizing U) to transition metal carbon oxides, transition metal nitride oxides or transition metal sulfide oxides, respectively. In this way, a hole injecting and transporting layer containing nanoparticles can be formed.
 本発明に係る第二のデバイスの製造方法の別の一態様としては、正孔注入輸送層を形成する工程前に、第二の遷移金属化合物含有ナノ粒子分散インクに含まれる遷移金属炭化物、遷移金属窒化物及び遷移金属硫化物よりなる群から選択される1種以上の化合物(U)を酸化する工程を行い、当該化合物(U)をナノ粒子とする工程を有する。当該酸化された遷移金属化合物含有ナノ粒子分散インクを用いて、ナノ粒子を含有する正孔注入輸送層を形成する。当該層を形成後、さらに、酸化する工程を行っても良い。 As another aspect of the method of manufacturing the second device according to the present invention, the transition metal carbide and transition contained in the second transition metal compound-containing nanoparticle dispersed ink before the step of forming the hole injecting and transporting layer A step of oxidizing one or more types of compounds (U) selected from the group consisting of metal nitrides and transition metal sulfides is performed to make the compounds (U) into nanoparticles. The oxidized transition metal compound-containing nanoparticle dispersed ink is used to form a hole injection transport layer containing nanoparticles. After the formation of the layer, an oxidation step may be further performed.
 デバイスの製造方法における、その他の工程については、従来公知の工程を適宜用いることができる。 For the other steps in the device manufacturing method, conventionally known steps can be appropriately used.
 以下、実施例を挙げて、本発明をさらに具体的に説明する。これらの記載により本発明を制限するものではない。また、層又は膜の厚みは平均膜厚で表わされている。 Hereinafter, the present invention will be more specifically described by way of examples. These descriptions do not limit the present invention. Also, the thickness of the layer or film is represented by the average film thickness.
 (製造例1)
 次の手順で、ポリビニルピロリドンで保護されたモリブデン炭化酸化物含有ナノ粒子インクを合成した。
 50ml三ッ口フラスコ中に、モリブデンヘキサカルボニル 0.8g(関東化学株式会社製)、ポリビニルピロリドン 0.1g(平均分子量:10,000、SIGMA-ALDRICH社製)、エチレングリコール 12.8g(関東化学株式会社製)を量り取った。この混合液をアルゴンガス雰囲気とし、撹拌しながら180℃まで加熱し、その温度を2時間維持した。その後、この混合液を室温(24℃)まで冷却し、アルゴンガス雰囲気から大気雰囲気へ変更して、ポリビニルピロリドンで保護されたモリブデン炭化酸化物含有ナノ粒子が溶媒中に分散された、モリブデン炭化酸化物含有ナノ粒子インクを得た。
(Production Example 1)
In the following procedure, polyvinyl pyrrolidone protected molybdenum oxide-containing nanoparticle ink was synthesized.
In a 50-ml three-necked flask, 0.8 g of molybdenum hexacarbonyl (manufactured by Kanto Chemical Co., Ltd.), 0.1 g of polyvinylpyrrolidone (average molecular weight: 10,000, manufactured by SIGMA-ALDRICH), 12.8 g of ethylene glycol (Kanto Chemical Manufactured by Co., Ltd.). The mixture was brought to an argon gas atmosphere and heated to 180 ° C. with stirring, and the temperature was maintained for 2 hours. Thereafter, the mixed solution is cooled to room temperature (24 ° C.), and the atmosphere is changed from an argon gas atmosphere to an air atmosphere to disperse polyvinyl pyrrolidone protected molybdenum carbide oxide-containing nanoparticles in a solvent; A substance-containing nanoparticle ink is obtained.
 (製造例2)
 次の手順で、チオグリコール酸で保護されたモリブデン炭化酸化物含有ナノ粒子インクを作製した。
 50ml三ッ口フラスコ中に、n-ヘキサデシルアミン 0.8g(関東化学株式会社製)、n-オクチルエーテル 12.8g(東京化成工業株式会社製)を量り取り、撹拌しながら減圧し、低揮発成分除去のために室温(24℃)にて3.5時間放置した。真空下から大気雰囲気へ変更し、モリブデンヘキサカルボニル 0.8g(関東化学株式会社製)を添加した。この混合液をアルゴンガス雰囲気とし、撹拌しながら280℃まで加熱し、その温度を1時間維持した。その後、この混合液を室温(24℃)まで冷却し、アルゴンガス雰囲気から大気雰囲気へ変更した後、エタノール 20gを添加し、次いで、遠心分離によって沈殿物を反応液から分離した後、下記に示す手順で再沈殿による精製を行った。すなわち、沈殿物をクロロホルム3gと混合して分散液とし、この分散液にエタノール6gを滴下することにより精製された沈殿物を得た。このようにして得られた再沈殿液を遠心分離し、沈殿物を反応液から分離した後、乾燥することにより、黒色のn-ヘキサデシルアミンで保護されたモリブデン炭化酸化物ナノ粒子の精製物を得た。
 次に、50mlナスフラスコ中に、合成したn-ヘキサデシルアミン保護モリブデン炭化酸化物ナノ粒子 0.1g、チオグリコール酸 0.8g(東京化成工業株式会社製)、クロロホルム 20gを量り取り、大気雰囲気にて撹拌しながら50℃まで加熱し、その温度を2日間維持した。その後、この混合液を室温(24℃)まで冷却した後、遠心分離によって沈殿物を反応液から分離し、下記に示す手順で再沈殿による精製を行った。すなわち、沈殿物を2-プロパノール 5gと混合して分散液とし、この分散液にヘキサン 12gを滴下することにより精製された沈殿物を得た。次に再沈殿液を遠心分離し、沈殿物を反応液から分離した後、乾燥することにより、チオグリコール酸で保護されたモリブデン炭化酸化物ナノ粒子を得た。このようにして得られたモリブデン炭化酸化物含有ナノ粒子を2-プロパノールに対して0.5重量%の濃度で分散させることで、モリブデン炭化酸化物含有ナノ粒子インクを得た。
(Production Example 2)
The following procedure produced a thioglycollic acid protected molybdenum oxide-containing nanoparticle ink.
In a 50-ml three-necked flask, measure 0.8 g of n-hexadecylamine (manufactured by Kanto Chemical Co., Ltd.) and 12.8 g of n-octyl ether (manufactured by Tokyo Chemical Industry Co., Ltd.). It was left at room temperature (24 ° C.) for 3.5 hours to remove volatile components. The atmosphere was changed from the vacuum to the atmosphere, and 0.8 g of molybdenum hexacarbonyl (manufactured by Kanto Chemical Co., Ltd.) was added. The mixture was brought to an argon gas atmosphere and heated to 280 ° C. with stirring, and the temperature was maintained for 1 hour. Thereafter, the mixture is cooled to room temperature (24 ° C.), and after changing from an argon gas atmosphere to the atmosphere, 20 g of ethanol is added, and then the precipitate is separated from the reaction solution by centrifugation, as shown below Purification by reprecipitation was performed according to the procedure. That is, the precipitate was mixed with 3 g of chloroform to form a dispersion, and 6 g of ethanol was dropped to this dispersion to obtain a purified precipitate. The reprecipitated solution thus obtained is centrifuged, and the precipitate is separated from the reaction solution, and then dried to obtain a purified product of black n-hexadecylamine-protected molybdenum carbide oxide nanoparticles I got
Next, 0.1 g of the synthesized n-hexadecylamine-protected molybdenum carbide oxide nanoparticles, 0.8 g of thioglycollic acid (manufactured by Tokyo Kasei Kogyo Co., Ltd.) and 20 g of chloroform are weighed in a 50 ml eggplant flask, The mixture was heated to 50.degree. C. with stirring at and maintained at that temperature for 2 days. Thereafter, the mixture was cooled to room temperature (24 ° C.), and the precipitate was separated from the reaction solution by centrifugation, and purification by reprecipitation was performed according to the following procedure. That is, the precipitate was mixed with 5 g of 2-propanol to make a dispersion, and 12 g of hexane was dropped to this dispersion to obtain a purified precipitate. Next, the reprecipitated solution was centrifuged, and the precipitate was separated from the reaction solution, and then dried to obtain thioglycolic acid-protected molybdenum carbide oxide nanoparticles. A molybdenum carbide oxide-containing nanoparticle ink was obtained by dispersing the molybdenum carbide oxide-containing nanoparticles thus obtained in a concentration of 0.5% by weight with respect to 2-propanol.
 (試験:結晶構造の測定)
 製造例2で得られた中間体であるn-ヘキサデシルアミンで保護されたモリブデン炭化酸化物ナノ粒子について、粉末X線回折法にて結晶構造を同定した。測定装置には(株)リガク製のRINT-1500を用い、測定用試料は測定対象の黒色の粉末をガラス上にのせて作製した。X線源としてはCuKα線を用い、管電圧50kV、管電流250mAの条件で実施した。2θ/θスキャン法でスキャン速度が毎分2°、ステップ角が0.05°の条件で測定した。
 製造例2で得られた中間体であるn-ヘキサデシルアミンで保護されたモリブデン炭化酸化物ナノ粒子の黒色の粉末は、2θ=37.8、43.7、63.4、75.7、79.9°に鋭いピークが観察された。データベースJCPDS card No.15-0457の値から、作製した黒色の粉末はMoCを主体とする粒子であることが確認された。
(Test: Measurement of crystal structure)
The crystalline structure of n-hexadecylamine-protected molybdenum carbide oxide nanoparticles as an intermediate obtained in Production Example 2 was identified by powder X-ray diffraction. As a measurement apparatus, RINT-1500 manufactured by Rigaku Corporation was used, and a measurement sample was prepared by placing a black powder to be measured on glass. As the X-ray source, CuKα radiation was used under the conditions of a tube voltage of 50 kV and a tube current of 250 mA. The scanning speed was measured by the 2θ / θ scanning method under the conditions of 2 ° per minute and a step angle of 0.05 °.
The black powder of the n-hexadecylamine-protected molybdenum carbide oxide nanoparticles, which is an intermediate obtained in Preparation Example 2, is 2θ = 37.8, 43.7, 63.4, 75.7, A sharp peak was observed at 79.9 °. Database JCPDS card No. From the value of 15-0457, it was confirmed that the produced black powder is a particle mainly composed of Mo 2 C.
 (試験:価数の測定)
 製造例2で得られた中間体であるn-ヘキサデシルアミンで保護されたモリブデン炭化酸化物ナノ粒子について、X線光電子分光(XPS)法にて価数を測定した。測定にはKratos社製ESCA-3400型を用いた。測定に用いたX線源としては、MgKα線を用いた。モノクロメーターは使用せず、加速電圧10kV、フィラメント電流20mAの条件で測定した。
(Test: measurement of charge number)
The valence of n-hexadecylamine-protected molybdenum carbide oxide nanoparticles as an intermediate obtained in Production Example 2 was measured by X-ray photoelectron spectroscopy (XPS). Kratos ESCA-3400 type was used for the measurement. MgK alpha ray was used as an X-ray source used for the measurement. The monochromator was not used, and it measured on the conditions of acceleration voltage 10kV and filament current 20mA.
 測定試料は、製造例2で得られた中間体であるn-ヘキサデシルアミンで保護されたモリブデン炭化酸化物ナノ粒子の黒色粉末を大気中でシクロヘキサノンに0.4質量%の濃度で分散させてインクを作製した。当該インクを、大気中でITOつきガラス基板の上にスピンナーで塗布して、薄膜を形成した。その薄膜を大気中にて200℃で30分間乾燥した。乾燥後の薄膜の厚みは10nmであった。なお膜厚は、洗浄済みのITOつきガラス基板上に、測定しようとする材料で形成した層を単層として形成し、カッターナイフで段差を作製してから、段差の高さをプローブ顕微鏡(エスアイアイ・ナノテクノロジー(株)製のNanopics1000)を用い、タッピングモードで測定した。 The measurement sample was prepared by dispersing the black powder of molybdenum carbide oxide nanoparticles protected with n-hexadecylamine, which is an intermediate obtained in Preparation Example 2, in air at a concentration of 0.4% by mass in cyclohexanone. An ink was made. The ink was spin coated on a glass substrate with ITO in air to form a thin film. The thin film was dried in air at 200 ° C. for 30 minutes. The thickness of the thin film after drying was 10 nm. The film thickness is determined by forming a layer formed of the material to be measured as a single layer on a cleaned ITO-attached glass substrate and forming a step with a cutter knife, and then measuring the height of the step with a probe microscope (S The measurement was performed in tapping mode using Nanopics 1000 manufactured by I. Nano Technology Co., Ltd.
 その乾燥後の薄膜について、XPS法により測定を行ったところ、MoOの3d 5/2に帰属されるスペクトルがピーク位置232.5eVに観測された。さらにMoの酸化数が+6であるMoOだけでなく、231.2eV近傍に酸化数が+5のMoと推定されるピークがショルダーとして観測された。
 この薄膜について、アルゴンガスでスパッタ処理を行い、表面から約5nmを除去したところ、Moの酸化数が+4であるMoOに帰属するピークが観測され、酸化数が0のピークは観測されなかった。そして、下地のITOガラス基板が見えるまでスパッタを繰り返したが、Moの酸化数が0のピークは観測されなかった。このXPSの結果は、黒色粉末の粒子の内部にあった酸化数が+4のMoがスパッタによって表出したことを示している。この結果から、製造例2で得られた中間体であるn-ヘキサデシルアミンで保護されたナノ粒子の内部には酸化数が+4のMoが存在することを明らかにされた。
 結晶構造の測定結果とこのXPSの測定結果から、製造例2で得られた中間体であるn-ヘキサデシルアミンで保護されたナノ粒子は、モリブデン炭化酸化物のナノ粒子であり、且つ、表層部分が+6の価数を有するモリブデン炭化酸化物であり、その表層よりも内部は+4の価数を有するモリブデン炭化酸化物であるシェル構造をとっているものと推測される。
When the thin film after the drying was measured by the XPS method, the spectrum attributed to 3d 5/2 of MoO 3 was observed at the peak position 232.5 eV. Furthermore, not only MoO 3 in which the oxidation number of Mo is +6 but also a peak estimated to be Mo in which the oxidation number is +5 is observed as a shoulder in the vicinity of 231.2 eV.
The thin film was sputtered with argon gas to remove about 5 nm from the surface, and a peak attributed to MoO 2 having a Mo oxidation number of +4 was observed, and a peak with an oxidation number of 0 was not observed. . Then, sputtering was repeated until the underlying ITO glass substrate was visible, but a peak with a Mo oxidation number of 0 was not observed. The results of this XPS show that Mo having an oxidation number of +4 that was inside the black powder particles was exposed by sputtering. From this result, it was revealed that Mo having an oxidation number of +4 is present inside the n-hexadecylamine-protected nanoparticle which is the intermediate obtained in Preparation Example 2.
From the measurement results of the crystal structure and the measurement results of this XPS, the n-hexadecylamine-protected nanoparticles, which are intermediates obtained in Production Example 2, are nanoparticles of molybdenum carbide oxide, and the surface layer It is inferred that the portion is a molybdenum carbide oxide having a valence of +6, and the inside has a shell structure that is a molybdenum carbide oxide having a valence of +4 from the surface layer.
 (実施例1:有機ダイオードの作製)
 ガラス基板の上に陽極、正孔注入輸送層として製造例1で合成された遷移金属化合物含有ナノ粒子を含有する層、有機半導体層、陰極の順番に成膜して積層し、有機ダイオード素子を作製した。
 まず、ITO付きガラス基板を、水、アセトン、2-プロパノールの順番に超音波洗浄した。続いて、ITOをエッチング法によってパターンニングした。
 ITOパターンニング後、UVオゾン処理後を行い、洗浄された陽極の上にスピンコート法により、製造例1で調製された遷移金属化合物含有ナノ粒子含有インクを用いて、遷移金属化合物含有ナノ粒子を含有する正孔注入輸送層を形成した。薄膜形成後、溶媒を蒸発させかつ遷移金属化合物を十分酸化させるためにホットプレートを用いて大気中200℃で30分乾燥させた。
 次に、作製した正孔注入輸送層の上に、有機半導体層として共役系の高分子材料であるポリ(9,9-ジオクチルフルオレン-ビチオフェン共重合体)(F8T2)薄膜(厚み:140nm)を形成した。
 次に、作製した有機半導体層の上に、陰極としてAl(厚み:50nm)を成膜した。真空中(圧力:5×10-4Pa)で、抵抗加熱蒸着法により成膜した。
Example 1 Preparation of Organic Diode
The organic diode element is formed by depositing an anode on a glass substrate, a layer containing transition metal compound-containing nanoparticles synthesized in Preparation Example 1 as a hole injecting and transporting layer, an organic semiconductor layer, and a cathode in this order. Made.
First, the ITO-attached glass substrate was subjected to ultrasonic cleaning in the order of water, acetone and 2-propanol. Subsequently, the ITO was patterned by an etching method.
After ITO patterning, UV ozone treatment is performed, and the transition metal compound-containing nanoparticle-containing ink prepared in Production Example 1 is applied to the cleaned anode by spin coating, using the transition metal compound-containing nanoparticle-containing ink. A hole injecting and transporting layer was formed. After thin film formation, it was dried at 200 ° C. for 30 minutes in the air using a hot plate to evaporate the solvent and oxidize the transition metal compound sufficiently.
Next, a poly (9,9-dioctylfluorene-bithiophene copolymer) (F8T2) thin film (thickness: 140 nm), which is a conjugated polymer material, is formed as an organic semiconductor layer on the manufactured hole injecting and transporting layer. It formed.
Next, Al (thickness: 50 nm) was formed as a cathode on the produced organic semiconductor layer. The film was formed by resistance heating vapor deposition in vacuum (pressure: 5 × 10 -4 Pa).
 (実施例2:有機ダイオードの作製)
 実施例1において、製造例1で調製された遷移金属化合物含有ナノ粒子含有インクの代わりに、製造例2で調製された遷移金属化合物含有ナノ粒子含有インクを用いた以外は、実施例1と同様にして、実施例2の有機ダイオードを作製した。
Example 2 Preparation of Organic Diode
Example 1 is the same as Example 1 except that the transition metal compound-containing nanoparticle-containing ink prepared in Preparation Example 2 is used instead of the transition metal compound-containing nanoparticle-containing ink prepared in Preparation Example 1 Then, the organic diode of Example 2 was manufactured.
 (比較例1:有機ダイオードの作製)
 実施例1において、遷移金属化合物含有ナノ粒子を含有する正孔注入輸送層を形成しなかった以外は、実施例1と同様にして、実施例2の有機ダイオードを作製した。
Comparative Example 1: Preparation of Organic Diode
An organic diode of Example 2 was produced in the same manner as Example 1 except that the hole injecting and transporting layer containing the transition metal compound-containing nanoparticle was not formed in Example 1.
 (評価:正孔注入特性)
 実施例1,2及び比較例1で得られた有機ダイオードについて、10Vの電圧を印加した際の電流密度にて、正孔注入特性を評価した。電流密度の評価結果を図9に示す。
 陰極側はマイナスバイアスとし、陽極側はプラスバイアスとした。
(Evaluation: Hole injection characteristics)
The hole injection characteristics of the organic diodes obtained in Examples 1 and 2 and Comparative Example 1 were evaluated by the current density when a voltage of 10 V was applied. The evaluation results of the current density are shown in FIG.
The negative side was negative bias, and the positive side was positive bias.
(製造例3)
 次の手順で、3-メルカプト-1-プロパンスルホン酸ナトリウムで保護されたモリブデン炭化酸化物含有ナノ粒子インクを作製した。
(1)トリ-n-オクチルホスフィンオキシドで保護されたモリブデン炭化酸化物ナノ粒子の合成
 50ml三ッ口フラスコ中に、トリ-n-オクチルホスフィンオキシド 1.3g(東京化成工業株式会社製)、n-オクチルエーテル 12.8g(東京化成工業株式会社製)を量り取り、撹拌しながら減圧し、低揮発成分除去のために室温(24℃)にて1.5時間放置した。真空下から大気雰囲気へ変更し、モリブデンヘキサカルボニル 0.8g(関東化学株式会社製)を添加した。この混合液をアルゴンガス雰囲気とし、撹拌しながら280℃まで加熱し、その温度を1時間維持した。その後、この混合液を室温(24℃)まで冷却し、アルゴンガス雰囲気から大気雰囲気へ変更した後、メタノール 20gを添加し、次いで、遠心分離によって沈殿物を反応液から分離した後、下記に示す手順で再沈殿による精製を行った。すなわち、沈殿物をクロロホルム3gと混合して分散液とし、この分散液にメタノール6gを滴下することにより精製された沈殿物を得た。このようにして得られた再沈殿液を遠心分離し、沈殿物を反応液から分離した後、乾燥することにより、黒色のトリ-n-オクチルホスフィンオキシドで保護されたモリブデン炭化酸化物ナノ粒子の精製物を得た。
(Production Example 3)
The following procedure was used to prepare a molybdenum hydroxide-containing nanoparticle ink protected with sodium 3-mercapto-1-propanesulfonate.
(1) Synthesis of molybdenum carbide oxide nanoparticles protected with tri-n-octyl phosphine oxide 1.3 g of tri-n-octyl phosphine oxide (manufactured by Tokyo Chemical Industry Co., Ltd.) in a 50 ml three-necked flask, n 12.8 g of octyl ether (manufactured by Tokyo Chemical Industry Co., Ltd.) was weighed out, the pressure was reduced while stirring, and the mixture was left at room temperature (24 ° C.) for 1.5 hours to remove low volatile components. The atmosphere was changed from the vacuum to the atmosphere, and 0.8 g of molybdenum hexacarbonyl (manufactured by Kanto Chemical Co., Ltd.) was added. The mixture was brought to an argon gas atmosphere and heated to 280 ° C. with stirring, and the temperature was maintained for 1 hour. Thereafter, the mixture is cooled to room temperature (24 ° C.), and after changing from an argon gas atmosphere to the atmosphere, 20 g of methanol is added, and then the precipitate is separated from the reaction solution by centrifugation, as shown below. Purification by reprecipitation was performed according to the procedure. That is, the precipitate was mixed with 3 g of chloroform to form a dispersion, and 6 g of methanol was dropped to this dispersion to obtain a purified precipitate. The reprecipitated solution thus obtained is centrifuged, and the precipitate is separated from the reaction solution and then dried to obtain black tri-n-octyl phosphine oxide protected molybdenum carbide oxide nanoparticles. The purified product was obtained.
(2)3-メルカプト-1-プロパンスルホン酸ナトリウムで保護されたモリブデン炭化酸化物含有ナノ粒子インクの調製
 次に、50mlスクリュー管中に、合成したトリ-n-オクチルホスフィンオキシド保護モリブデン炭化酸化物ナノ粒子 0.1g、クロロホルム 20gを量り取り、溶液を調製した。当該溶液に、3-メルカプト-1-プロパンスルホン酸ナトリウム 0.2g及び水 20gの溶液を、攪拌を行いながら滴下した。この状態を1日間維持した。その後、下記に示す手順で精製を行った。すなわち、調製液にクロロホルム 20gを加えて攪拌し、静置後に相分離したクロロホルムの相を取り除くことで、調整液中のトリ-n-オクチルホスフィンオキシドを取り除いた。この工程を三回繰り返すことにより精製された3-メルカプト-1-プロパンスルホン酸ナトリウムの水溶液を得た。次にこの水溶液をエバポレーターで水を除去した後、乾燥することにより、3-メルカプト-1-プロパンスルホン酸ナトリウムで保護されたモリブデン炭化酸化物含有ナノ粒子を得た。このようにして得られたモリブデン炭化酸化物含有ナノ粒子を水に対して0.5重量%の濃度で分散させることで、モリブデン炭化酸化物含有ナノ粒子インクを得た。
(2) Preparation of Molybdenum Carbide Oxide-Containing Nanoparticle Ink Protected by Sodium 3-Mercapto-1-propane Sulfonate Next, the tri-n-octyl phosphine oxide protected molybdenum carbide oxide synthesized in a 50 ml screw tube 0.1 g of nanoparticles and 20 g of chloroform were weighed to prepare a solution. A solution of 0.2 g of sodium 3-mercapto-1-propanesulfonate and 20 g of water was added dropwise to the solution while stirring. This state was maintained for one day. Then, purification was performed according to the following procedure. That is, 20 g of chloroform was added to the preparation liquid and stirred, and after standing, the phase of chloroform separated was removed to remove tri-n-octyl phosphine oxide in the preparation liquid. This process was repeated three times to obtain an aqueous solution of purified sodium 3-mercapto-1-propanesulfonate. Next, the aqueous solution was removed of water using an evaporator and then dried to obtain molybdenum hydroxide-containing nanoparticles protected with sodium 3-mercapto-1-propanesulfonate. A molybdenum carbide oxide-containing nanoparticle ink was obtained by dispersing the molybdenum carbide oxide-containing nanoparticles thus obtained in water at a concentration of 0.5% by weight.
(製造例4)
 製造例3のモリブデン炭化酸化物含有ナノ粒子の製造において、3-メルカプト-1-プロパンスルホン酸ナトリウムを用いる代わりに、2-メルカプトエタンスルホン酸ナトリウムを用いた以外は、製造例3と同様にして2-メルカプトエタンスルホン酸ナトリウムで保護されたモリブデン炭化酸化物含有ナノ粒子インクを作製した。
(Production Example 4)
In the same manner as in Production Example 3, except that sodium 2-mercaptoethanesulfonate was used instead of sodium 3-mercapto-1-propanesulfonate in the production of the molybdenum carbide oxide-containing nanoparticles of Production Example 3. A sodium 2-mercaptoethane sulfonate protected molybdenum oxide-containing nanoparticle ink was prepared.
(製造例5)
 製造例3のモリブデン炭化酸化物含有ナノ粒子の製造において、3-メルカプト-1-プロパンスルホン酸ナトリウムを用いる代わりに、2-アミノエタンスルホン酸を用いた以外は、製造例3と同様にして2-アミノエタンスルホン酸で保護されたモリブデン炭化酸化物含有ナノ粒子インクを作製した。
(Production Example 5)
In the preparation of the molybdenum carbide-containing oxide-containing nanoparticles of Preparation Example 3, the same procedure as in Preparation Example 3 was repeated except that 2-aminoethanesulfonic acid was used instead of sodium 3-mercapto-1-propanesulfonate. An aminoethanesulfonic acid protected molybdenum oxide-containing nanoparticle ink was prepared.
(製造例6)
 製造例3のモリブデン炭化酸化物含有ナノ粒子の製造において、3-メルカプト-1-プロパンスルホン酸ナトリウムを用いる代わりに、6-アミノ-1-ヘキサノールを用いた以外は、製造例3と同様にして、6-アミノ-1-ヘキサノールで保護されたモリブデン炭化酸化物含有ナノ粒子インクを作製した。
(Production Example 6)
The same procedure as in Production Example 3 was repeated, except that 6-amino-1-hexanol was used instead of sodium 3-mercapto-1-propanesulfonate in the production of the molybdenum carbide-containing oxide-containing nanoparticles of Production Example 3. A 6-amino-1-hexanol protected molybdenum oxide-containing nanoparticle ink was prepared.
(製造例7)
 次の手順で、12-アミノ-1-ドデカノ-ルで保護されたモリブデン炭化酸化物含有ナノ粒子インクを作製した。
 50ml三ッ口フラスコ中に、12-アミノ-1-ドデカノ-ル 0.1g(東京化成工業株式会社製)、2-メチル-2,4-ペンタンジオール12.8g(東京化成工業株式会社製)を量り取り、撹拌しながら減圧し、低揮発成分除去のために室温(24℃)にて1.5時間放置した。真空下から大気雰囲気へ変更し、モリブデンヘキサカルボニル 0.8g(関東化学株式会社製)を添加した。この混合液をアルゴンガス雰囲気とし、撹拌しながら180℃まで加熱し、その温度を2時間維持した。その後、この混合液を室温(24℃)まで冷却し、黒色の12-アミノ-1-ドデカノ-ルで保護されたモリブデン炭化酸化物ナノ粒子が、2-メチル-2,4-ペンタンジオール中に分散されたモリブデン炭化酸化物含有ナノ粒子インクを得た。
(Production Example 7)
In the following procedure, a 12-amino-1-dodecanol-protected molybdenum oxide-containing nanoparticle ink was prepared.
0.1 g of 12-amino-1-dodecanol (manufactured by Tokyo Chemical Industry Co., Ltd.) and 12.8 g of 2-methyl-2,4-pentanediol (manufactured by Tokyo Chemical Industry Co., Ltd.) in a 50 ml three-necked flask The reaction mixture was weighed, depressurized with stirring, and left at room temperature (24.degree. C.) for 1.5 hours to remove low volatile components. The atmosphere was changed from the vacuum to the atmosphere, and 0.8 g of molybdenum hexacarbonyl (manufactured by Kanto Chemical Co., Ltd.) was added. The mixture was brought to an argon gas atmosphere and heated to 180 ° C. with stirring, and the temperature was maintained for 2 hours. The mixture is then cooled to room temperature (24.degree. C.) and black 12-amino-1-dodecanol protected molybdenum oxide nanoparticles are incorporated into 2-methyl-2,4-pentanediol. A dispersed molybdenum oxide-containing nanoparticle ink was obtained.
(比較製造例1)
 50mL三ッ口フラスコ中に、保護剤としてのn-ヘキサデシルアミン 0.8g(関東化学(株)製)、ジオクチルエーテル 12.8g(東京化成工業(株)製)を量り取り、攪拌しながら減圧し、低揮発成分除去のために室温(24℃)にて1時間放置した。真空下から大気雰囲気へ変更し、モリブデンヘキサカルボニル 0.8g(関東化学(株)製)を添加した。この混合液をアルゴンガス雰囲気とし、攪拌しながら280℃まで加熱し、その温度を1時間維持した。その後、この混合液を室温(24℃)まで冷却し、アルゴンガス雰囲気から大気雰囲気へ変更した後、エタノールを20g滴下した。次いで、遠心分離によって沈殿物を反応液から分離した後、下記に示す手順で再沈殿による精製を行った。
 すなわち、沈殿物をクロロホルム3gと混合して分散液とし、この分散液にエタノール6gを滴下することにより精製された沈殿物を得た。
 このようにして得られた再沈殿液を遠心分離し、沈殿物を反応液から分離した後、乾燥することにより、比較製造例1の黒色の粉末を得た。
(Comparative Production Example 1)
In a 50 mL three-necked flask, 0.8 g of n-hexadecylamine (manufactured by Kanto Chemical Co., Ltd.) and 12.8 g of dioctyl ether (manufactured by Tokyo Chemical Industry Co., Ltd.) are weighed out as a protecting agent and stirred The pressure was reduced, and left at room temperature (24 ° C.) for 1 hour to remove low volatile components. The atmosphere was changed from the vacuum to the atmosphere, and 0.8 g of molybdenum hexacarbonyl (manufactured by Kanto Chemical Co., Ltd.) was added. The mixture was brought to an argon gas atmosphere and heated to 280 ° C. with stirring, and the temperature was maintained for 1 hour. Thereafter, the mixed solution was cooled to room temperature (24 ° C.), and after changing from an argon gas atmosphere to an air atmosphere, 20 g of ethanol was dropped. Next, the precipitate was separated from the reaction solution by centrifugation, and purification by reprecipitation was performed according to the following procedure.
That is, the precipitate was mixed with 3 g of chloroform to form a dispersion, and 6 g of ethanol was dropped to this dispersion to obtain a purified precipitate.
The reprecipitated solution thus obtained was centrifuged, and the precipitate was separated from the reaction solution and then dried to obtain a black powder of Comparative Production Example 1.
 (比較製造例2)(MoOスラリーの作製)
 ペイントシェーカーに、MoO粉末0.3gをトルエン溶剤30gと直径3mmのジルコニアビーズを混ぜて、物理的に粉砕しながら溶剤中に分散させて、MoOのトルエン分散液を得た。つぎにその分散液を直径0.3mmのジルコニアビーズで48時間分散させて、上澄みの分散液を0.2μmのフィルターでろ過してMoOスラリーを作製した。
(Comparative Production Example 2) (Preparation of MoO 3 Slurry)
In a paint shaker, 0.3 g of MoO 3 powder was mixed with 30 g of a toluene solvent and zirconia beads having a diameter of 3 mm, and dispersed in the solvent while being physically crushed to obtain a toluene dispersion of MoO 3 . Then, the dispersion was dispersed with zirconia beads of 0.3 mm in diameter for 48 hours, and the supernatant dispersion was filtered through a 0.2 μm filter to prepare a MoO 3 slurry.
(ナノ粒子の溶媒分散性評価)
 製造例3~7及び比較製造例1で得られたナノ粒子について、溶媒分散性を評価した。溶媒への分散は、溶媒1mLにナノ粒子1mgを添加し、超音波照射装置(SHARP社製、UT-106)を用いて室温(20℃)にて1時間超音波(周波数37kHz)を照射した後、20℃にて1時間静置後に沈殿物の乾燥重量が0.1mg未満となれば、分散可能であり、沈殿物の乾燥重量が0.1mg以上となれば分散不可能と判断した。得られた結果を表1に示す。
(Evaluation of solvent dispersibility of nanoparticles)
The solvent dispersibility of the nanoparticles obtained in Production Examples 3 to 7 and Comparative Production Example 1 was evaluated. For dispersion in a solvent, 1 mg of nanoparticles was added to 1 mL of solvent, and ultrasonic waves (frequency 37 kHz) were applied for 1 hour at room temperature (20 ° C.) using an ultrasonic wave irradiator (manufactured by SHARP, UT-106) After that, when the dry weight of the precipitate was less than 0.1 mg after standing at 20 ° C. for 1 hour, it was possible to disperse, and when the dry weight of the precipitate was 0.1 mg or more, it was judged to be undispersible. The obtained results are shown in Table 1.
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000008
(実施例3)
 以下に示す手順で、ガラス基板の上に透明陽極、正孔注入輸送層としてモリブデン炭化酸化物含有ナノ粒子を含有する層と正孔輸送性化合物を含有する層との積層体、正孔輸送層、発光層、正孔阻止層、電子注入層、陰極の順番に成膜して積層し、最後に封止して有機EL素子を作製した。透明陽極と正孔注入輸送層以外は、水分濃度0.1ppm以下、酸素濃度0.1ppm以下の窒素置換グローブボックス内で作業を行った。
(Example 3)
In the procedure described below, a laminate of a transparent anode on a glass substrate, a layer containing molybdenum carbide oxide-containing nanoparticles as a hole injecting and transporting layer, and a layer containing a hole transporting compound, a hole transporting layer The light emitting layer, the hole blocking layer, the electron injection layer, and the cathode were formed in this order and stacked, and finally sealed, to fabricate an organic EL element. Except for the transparent anode and the hole injecting and transporting layer, work was performed in a nitrogen-substituted glove box having a water concentration of 0.1 ppm or less and an oxygen concentration of 0.1 ppm or less.
 まず、透明陽極としてITOの薄膜(厚み:150nm)を用いた。ITOつきガラス基板(三容真空工業(株)製)をストライプ状にパターン形成した。パターン形成されたITO基板を、中性洗剤、超純水の順番に超音波洗浄し、UVオゾン処理を施した。UVオゾン処理後のITOのHOMOは5.0eVであった。
 次に、上記の製造例3で得られたモリブデン炭化酸化物含有ナノ粒子を、水中に0.4質量%の濃度で溶解させ、正孔注入輸送層用インクを調製した。
 続いて、上記正孔注入輸送層用インクを、洗浄された陽極の上にスピンコート法により塗布して、ナノ粒子を含有する正孔注入輸送層を形成した。正孔注入輸送層用インクの塗布後、溶剤を蒸発させるためにホットプレートを用いて大気中200℃で30分乾燥させた。乾燥後の正孔注入輸送層の厚みは10nmであった。
 次に、作製した正孔注入輸送層の上に、正孔輸送層としてAldrich社製ポリビニルカルバゾール(PVK)薄膜(厚み:10nm)を塗布形成した。PVKの重量平均分子量は110万である。溶剤であるジクロロエタンにPVKを0.5質量%の濃度で溶解させた溶液を、0.2μmのフィルターで濾過し、スピンコート法により塗布して成膜した。PVK溶液の塗布後、溶剤を蒸発させるためにホットプレートを用いて150℃で30分乾燥させた。
 次に、成膜した正孔輸送層の上に、発光層としてトリス[2-(p-トリル)ピリジン)]イリジウム(III)(Ir(mppy))を発光性ドーパントとして含有し、4,4’-ビス(2、2-カルバゾル-9-イル)ビフェニル(CBP)をホストとして含有した混合薄膜を塗布形成した。溶剤であるトルエンにCBPを1質量%、Ir(mppy)を0.05質量%の濃度で溶解させた溶液を、スピンコート法により塗布して成膜した。インクの塗布後、溶剤を蒸発させるためにホットプレートを用いて100℃で30分乾燥させた。
 次に、上記発光層の上に、正孔ブロック層としてビス(2-メチル-8-キノリラト)(p-フェニルフェノラート)アルミニウム錯体(BAlq)薄膜を蒸着形成した。BAlq薄膜は、真空中(圧力:1×10-4Pa)で抵抗加熱法により膜厚が15nmになるように形成した。
 次に、上記正孔ブロック層の上に、電子輸送層としてトリス(8-キノリノラト)アルミニウム錯体(Alq3)薄膜を蒸着形成した。Alq3薄膜は、真空中(圧力:1×10-4Pa)で抵抗加熱法により膜厚が15nmになるように形成した。
 次に、作製した電子輸送層の上に、電子注入層としてLiF(厚み:0.5nm)、陰極としてAl(厚み:100nm)を順次成膜した。真空中(圧力:1×10-4Pa)で、抵抗加熱蒸着法により成膜した。
 最後に陰極形成後、グローブボックス内にて無アルカリガラスとUV硬化型エポキシ接着剤を用いて封止し、実施例3の有機EL素子を作製した。
First, an ITO thin film (thickness: 150 nm) was used as a transparent anode. The ITO-attached glass substrate (manufactured by Sanyo Vacuum Industry Co., Ltd.) was patterned in stripes. The patterned ITO substrate was subjected to ultrasonic cleaning in the order of a neutral detergent and ultrapure water, and subjected to UV ozone treatment. The HOMO of ITO after UV ozone treatment was 5.0 eV.
Next, the molybdenum carbide oxide-containing nanoparticles obtained in the above-mentioned Production Example 3 were dissolved in water at a concentration of 0.4% by mass to prepare an ink for a hole injecting and transporting layer.
Subsequently, the above-described ink for a hole injecting and transporting layer was applied by spin coating on the cleaned anode to form a hole injecting and transporting layer containing nanoparticles. After the application of the hole injecting and transporting layer ink, it was dried at 200 ° C. for 30 minutes in the air using a hot plate to evaporate the solvent. The thickness of the hole injecting and transporting layer after drying was 10 nm.
Next, on the produced hole injecting and transporting layer, a polyvinylcarbazole (PVK) thin film (thickness: 10 nm) manufactured by Aldrich was applied and formed as a hole transporting layer. The weight average molecular weight of PVK is 1.1 million. A solution of PVK dissolved in a solvent dichloroethane at a concentration of 0.5% by mass was filtered with a 0.2 μm filter and applied by spin coating to form a film. After application of the PVK solution, it was dried at 150 ° C. for 30 minutes using a hot plate to evaporate the solvent.
Next, tris [2- (p-tolyl) pyridine] iridium (III) (Ir (mppy) 3 ) is contained as a light emitting dopant as a light emitting layer on the deposited hole transport layer, A mixed thin film containing 4'-bis (2,2-carbazol-9-yl) biphenyl (CBP) as a host was coated and formed. A solution obtained by dissolving CBP at 1% by mass and Ir (mppy) 3 at a concentration of 0.05% by mass in toluene as a solvent was applied by spin coating to form a film. After application of the ink, it was dried at 100 ° C. for 30 minutes using a hot plate to evaporate the solvent.
Next, a bis (2-methyl-8-quinolilato) (p-phenylphenolate) aluminum complex (BAlq) thin film was vapor deposited on the light emitting layer as a hole blocking layer. The BAlq thin film was formed to have a thickness of 15 nm by resistance heating in vacuum (pressure: 1 × 10 −4 Pa).
Next, a tris (8-quinolinolato) aluminum complex (Alq3) thin film was vapor deposited on the hole blocking layer as an electron transporting layer. The Alq3 thin film was formed to have a thickness of 15 nm by resistance heating in vacuum (pressure: 1 × 10 −4 Pa).
Next, LiF (thickness: 0.5 nm) as an electron injection layer and Al (thickness: 100 nm) as a cathode were sequentially formed on the manufactured electron transport layer. The film was formed by resistance heating evaporation in vacuum (pressure: 1 × 10 −4 Pa).
Finally, after forming a cathode, sealing was performed using a non-alkali glass and a UV curable epoxy adhesive in a glove box, to fabricate an organic EL element of Example 3.
(実施例4)
 実施例3の有機EL素子の製造において、正孔注入輸送層について、製造例3のナノ粒子を用いる代わりに、製造例4のナノ粒子を用いて正孔注入輸送層を形成した以外は、実施例3と同様にして、実施例4の有機EL素子を作製した。
(Example 4)
In the production of the organic EL device of Example 3, the hole injection / transport layer was prepared except that the nanoparticles of Production Example 4 were used to form the hole injection / transport layer instead of using the nanoparticles of Production Example 3. The organic EL element of Example 4 was produced in the same manner as Example 3.
(実施例5)
 実施例3の有機EL素子の製造において、正孔注入輸送層について、製造例3のナノ粒子を用いる代わりに、製造例5のナノ粒子を用いて正孔注入輸送層を形成した以外は、実施例3と同様にして、実施例5の有機EL素子を作製した。
(Example 5)
In the production of the organic EL device of Example 3, the hole injection transport layer is carried out except that the nanoparticles of Production Example 5 are used to form the hole injection transport layer instead of using the nanoparticles of Production Example 3. The organic EL element of Example 5 was produced in the same manner as Example 3.
(実施例6)
 実施例3の有機EL素子の製造において、正孔注入輸送層について、製造例3のナノ粒子を用いる代わりに、製造例6のナノ粒子を用いて正孔注入輸送層を形成した以外は、実施例3と同様にして、実施例6の有機EL素子を作製した。
(Example 6)
In the production of the organic EL device of Example 3, the hole injection transport layer is carried out except that the nanoparticles of Production Example 6 are used to form the hole injection transport layer instead of using the nanoparticles of Production Example 3. The organic EL element of Example 6 was produced in the same manner as Example 3.
(実施例7)
 実施例3の有機EL素子の製造において、正孔注入輸送層について、製造例3のナノ粒子を用いる代わりに、製造例7のナノ粒子を用いて正孔注入輸送層を形成した以外は、実施例3と同様にして、実施例7の有機EL素子を作製した。
(Example 7)
In the manufacture of the organic EL device of Example 3, the hole injection and transport layer was carried out except that the nanoparticles of Production Example 7 were used to form the hole injection and transport layer instead of using the nanoparticles of Production Example 3. The organic EL element of Example 7 was produced in the same manner as Example 3.
(比較例2)
 実施例3の有機EL素子の製造において、正孔注入輸送層について、製造例3のナノ粒子を用いる代わりに、比較製造例1のナノ粒子を用いて正孔注入輸送層を形成した以外は、実施例3と同様にして、比較例2の有機EL素子を作製した。
(Comparative example 2)
In the production of the organic EL device of Example 3, the hole injecting and transporting layer was formed by using the nanoparticles of Comparative Production Example 1 instead of using the nanoparticles of Production Example 3; In the same manner as in Example 3, an organic EL element of Comparative Example 2 was produced.
(比較例3)
 実施例3の有機EL素子の製造において、正孔注入輸送層について、製造例3のナノ粒子を用いる代わりに、比較製造例2で作製したスラリーを用いて正孔注入輸送層を塗布形成した以外は、実施例3と同様にして、比較例3の有機EL素子を作製した。比較製造例2のスラリーの固形分は不明であるが、スピンコート法により塗布して成膜し、スラリーを塗布した後に膜厚を測定したところ約10nm程度であった。溶液の塗布後、溶剤を蒸発させるためにホットプレートを用いて100℃で10分乾燥させたが少し白濁した。作製した素子は、Ir(mppy)由来の緑色に発光したが、ショートが多かった。
(Comparative example 3)
In the production of the organic EL device of Example 3, the hole injecting and transporting layer was coated and formed using the slurry produced in Comparative Production Example 2 instead of using the nanoparticles of Production Example 3 In the same manner as in Example 3, an organic EL device of Comparative Example 3 was produced. Although the solid content of the slurry of Comparative Production Example 2 is unknown, it was applied by spin coating to form a film, and after applying the slurry, the film thickness was measured to be about 10 nm. After applying the solution, it was dried at 100 ° C. for 10 minutes using a hot plate to evaporate the solvent, but it became slightly cloudy. The fabricated device emitted green light from Ir (mppy) 3 but had many shorts.
 上記実施例3~7及び比較例2~3において作製した有機EL素子を、10mA/cmで駆動させて、発光輝度とスペクトルを(株)トプコン製の分光放射計SR-2を測定した。上記実施例及び比較例において作製した有機EL素子は、いずれもIr(mppy)由来の緑色に発光した。測定結果を表2に示す。なお、電流効率は駆動電流と輝度から算出して求めた。
 有機EL素子の寿命特性は、定電流駆動で輝度が経時的に徐々に低下する様子を観察して評価した。ここでは初期輝度1,000cd/mに対して保持率が50%の輝度に劣化するまでの時間(時)を寿命(LT50)とした。
The organic EL devices fabricated in the above Examples 3 to 7 and Comparative Examples 2 to 3 were driven at 10 mA / cm 2 , and the emission luminance and the spectrum were measured by a spectroradiometer SR-2 manufactured by Topcon Corporation. The organic EL elements produced in the above-described Examples and Comparative Examples all emitted green light from Ir (mppy) 3 . The measurement results are shown in Table 2. The current efficiency was calculated from the drive current and the luminance.
The life characteristics of the organic EL element were evaluated by observing how the luminance gradually decreased with time by constant current driving. Here, the time (hour) until the retention ratio deteriorates to 50% of the initial luminance of 1,000 cd / m 2 is defined as the life (LT 50).
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000009
(結果のまとめ)
 実施例3の有機EL素子と比較例2の有機EL素子とを比較すると、比較例2の有機EL素子よりも、実施例3の有機EL素子の寿命が長く、駆動安定性に優れていることがわかる。保護剤を製造例3の3-メルカプト-1-プロパンスルホン酸ナトリウムに変えて水分散性にすることで、ジクロロエタンに不溶になり、正孔輸送層を形成する際に、再溶解によってナノ粒子が正孔輸送層に流れ出すのが抑制されるか、再溶解によってITOの被服率が低下するのが抑制されたためと推測される。再溶解を抑制するには親水性の保護剤を用いたほうが良いことがわかる。
 実施例3の有機EL素子と比較例3の有機EL素子とを比較すると、比較例3の有機EL素子よりも、実施例3の有機EL素子の寿命が長く、駆動安定性に優れていることがわかる。この結果より、MoOスラリーにより形成した膜よりもモリブデン炭化酸化物のイオン化ポテンシャルが適切であるか、単純な酸化物よりも炭素原子が入ることにより有機物との親和性・密着性が向上したことが、長寿命化に寄与しているのではないかと推測される。
 さらにMoOスラリーを用いた比較例3の有機EL素子では、インクの分散性が悪く、正孔注入輸送層が凝集しがちであり、素子はショートしがちであった。この分散性においても、本願発明のモリブデン炭化酸化物の方が優れていることがわかる。
 ナノ粒子における保護剤を変更した実施例3の素子と実施例4、実施例5、実施例6及び実施例7の素子とを比較すると、同程度の特性が得られた。
(Summary of results)
Comparing the organic EL element of Example 3 with the organic EL element of Comparative Example 2, the life of the organic EL element of Example 3 is longer than that of the organic EL element of Comparative Example 2, and the driving stability is excellent. I understand. When the protective agent is changed to sodium 3-mercapto-1-propanesulfonate of Production Example 3 to make it water dispersible, it becomes insoluble in dichloroethane, and when the hole transport layer is formed, the nanoparticles are redissolved. It is surmised that it was suppressed from flowing out to the hole transport layer, or that the decrease in coverage of ITO due to re-dissolution was suppressed. It is understood that it is better to use a hydrophilic protective agent to suppress re-dissolution.
Comparing the organic EL element of Example 3 with the organic EL element of Comparative Example 3, the life of the organic EL element of Example 3 is longer than that of the organic EL element of Comparative Example 3, and the driving stability is excellent. I understand. From this result, it is found that the ionization potential of the molybdenum carbide oxide is more appropriate than the film formed by the MoO 3 slurry, or that the affinity and adhesion to the organic substance are improved by the carbon atom entering rather than the simple oxide Is thought to contribute to the longevity.
Furthermore, in the organic EL device of Comparative Example 3 using the MoO 3 slurry, the dispersibility of the ink is poor, the hole injecting and transporting layer tends to aggregate, and the device tends to short. Also in this dispersibility, it is understood that the molybdenum carbide oxide of the present invention is superior.
When the device of Example 3 in which the protective agent in the nanoparticles was changed was compared with the devices of Example 4, Example 5, Example 6, and Example 7, similar characteristics were obtained.
(実施例8)
 Si/SiO2上にn-オクチルトリクロロシラン(OTS)処理を行い、ソース-ドレイン電極としてAuを30 nm真空蒸着法で作製した。チャネル長は50μm、チャネル幅は1mmとした。続いて、インクジェット法で、製造例2で調製されたモリブデン炭化酸化物含有ナノ粒子インクを用いて、モリブデン炭化酸化物を含有する正孔注入輸送層を形成した。薄膜形成後、溶媒を蒸発させるためにホットプレートを用いて大気中200℃で30分乾燥させた。親水性溶媒を用いた製造例2で調製されたモリブデンナノ粒子は、OTS処理を施したチャネル部にはぬれ広がることなく、ソース、ドレイン電極の上のみに形成できた。次に、作製した正孔注入輸送層の上に、有機半導体層として共役系の高分子材料であるポリ(9,9-ジオクチルフルオレン-ビチオフェン共重合体)(F8T2)薄膜(厚み:50nm)を形成し、有機薄膜トランジスタを形成した。
(Example 8)
The n-octyltrichlorosilane (OTS) treatment was performed on Si / SiO 2 , and Au was manufactured by a 30 nm vacuum evaporation method as a source-drain electrode. The channel length was 50 μm and the channel width was 1 mm. Subsequently, using the molybdenum carbon oxide-containing nanoparticle ink prepared in Production Example 2 by an inkjet method, a hole injecting and transporting layer containing a molybdenum carbon oxide was formed. After thin film formation, it was dried at 200 ° C. for 30 minutes in the atmosphere using a hot plate to evaporate the solvent. The molybdenum nanoparticles prepared in Preparation Example 2 using a hydrophilic solvent could be formed only on the source and drain electrodes without wetting and spreading to the OTS-treated channel portion. Next, a poly (9,9-dioctylfluorene-bithiophene copolymer) (F8T2) thin film (thickness: 50 nm), which is a conjugated polymer material, is formed as an organic semiconductor layer on the manufactured hole injecting and transporting layer. An organic thin film transistor was formed.
(比較例4)
 実施例8において、モリブデン炭化酸化物ナノ粒子を含有する正孔注入輸送層を形成しなかった以外は、実施例8と同様にして、比較例4の有機薄膜トランジスタを作製した。
(Comparative example 4)
An organic thin film transistor of Comparative Example 4 was produced in the same manner as in Example 8 except that a hole injecting and transporting layer containing molybdenum carbide oxide nanoparticles was not formed in Example 8.
 実施例8、比較例4で得られた有機薄膜トランジスタ(TFT)の、有機TFT特性を比較した結果、製造例2で調製されたモリブデン炭化酸化物含有ナノ粒子を用いた正孔注入輸送層を形成した実施例8で、On電流の増加およびFET移動度の向上を確認できた。 As a result of comparing organic TFT characteristics of the organic thin film transistors (TFTs) obtained in Example 8 and Comparative Example 4, a hole injecting and transporting layer using the molybdenum carbide oxide-containing nanoparticles prepared in Production Example 2 was formed. In Example 8 in which the increase in the On current and the improvement in the FET mobility were confirmed.
1 遷移金属化合物含有ナノ粒子
5 担持担体
10 遷移金属及び/又は遷移金属錯体
20 遷移金属炭化物
30 保護剤
40 遷移金属炭化酸化物
50 基板
61、62、63 電極
70 正孔注入輸送層
80 有機層
90a 正孔輸送層
90b 正孔注入層
100 発光層
110 有機半導体層
120 絶縁層
Reference Signs List 1 transition metal compound-containing nanoparticle 5 supported carrier 10 transition metal and / or transition metal complex 20 transition metal carbide 30 protective agent 40 transition metal carbon oxide 50 substrate 61, 62, 63 electrode 70 hole injection transport layer 80 organic layer 90a Hole transport layer 90 b Hole injection layer 100 Light emitting layer 110 Organic semiconductor layer 120 Insulating layer

Claims (30)

  1.  遷移金属炭化酸化物、遷移金属窒化酸化物及び遷移金属硫化酸化物よりなる群から選択される1種以上の遷移金属化合物に、親水性基を含む有機基を有する保護剤が連結基により連結してなり、親水性溶媒に分散可能であることを特徴とする、遷移金属化合物含有ナノ粒子。 A protective agent having an organic group containing a hydrophilic group is linked by a linking group to one or more transition metal compounds selected from the group consisting of transition metal carbon oxides, transition metal nitride oxides and transition metal sulfide oxides Transition metal compound-containing nanoparticles, characterized in that they are dispersible in a hydrophilic solvent.
  2.  前記遷移金属化合物の遷移金属が、モリブデン、タングステン、バナジウム及びレニウムよりなる群から選択される1種以上の金属であることを特徴とする、請求項1に記載の遷移金属化合物含有ナノ粒子。 The transition metal compound-containing nanoparticle according to claim 1, wherein the transition metal of the transition metal compound is at least one metal selected from the group consisting of molybdenum, tungsten, vanadium and rhenium.
  3.  前記親水性基が、水酸基、カルボニル基、カルボキシル基、アミノ基、チオール基、シラノール基、スルホ基、スルホン酸塩及びアンモニウム基よりなる群から選択される1種以上であることを特徴とする、請求項1又は2に記載の遷移金属化合物含有ナノ粒子。 The hydrophilic group is one or more selected from the group consisting of a hydroxyl group, a carbonyl group, a carboxyl group, an amino group, a thiol group, a silanol group, a sulfo group, a sulfonate and an ammonium group. The transition metal compound-containing nanoparticle according to claim 1 or 2.
  4.  前記連結基が、下記一般式(1a)~(1o)で示される官能基よりなる群から選択される1種以上であることを特徴とする、請求項1乃至3のいずれか一項に記載の遷移金属化合物含有ナノ粒子。
    Figure JPOXMLDOC01-appb-C000001
     (式中、Z、Z及びZは、各々独立にハロゲン原子又はアルコキシ基を表し、Rは水素原子又はメチル基を表わす。)
    The said connection group is 1 or more types selected from the group which consists of a functional group shown by the following general formula (1a)-(1o), It is characterized by the above-mentioned, in any one of the Claims 1 thru | or 3 characterized by the above-mentioned. Transition metal compounds containing nanoparticles.
    Figure JPOXMLDOC01-appb-C000001
    (In the formula, Z 1 , Z 2 and Z 3 each independently represent a halogen atom or an alkoxy group, and R represents a hydrogen atom or a methyl group.)
  5.  前記保護剤が、下記一般式[I]で表されることを特徴とする、請求項1乃至4のいずれか一項に記載の遷移金属化合物含有ナノ粒子。
    一般式[I]
    X-Y-Z
    (一般式[I]において、Xは親水性基、Yは炭素数が1~30の直鎖、分岐、又は環状の飽和又は不飽和脂肪族炭化水素基及び/又は炭素数6~40の芳香族炭化水素基を表し、Zは連結基を表す。)
    The transition metal compound-containing nanoparticle according to any one of claims 1 to 4, wherein the protective agent is represented by the following general formula [I].
    General formula [I]
    X-Y-Z
    (In the general formula [I], X is a hydrophilic group, Y is a linear, branched or cyclic saturated or unsaturated aliphatic hydrocarbon group having 1 to 30 carbon atoms and / or an aromatic having 6 to 40 carbon atoms Group hydrocarbon group, Z represents a linking group)
  6.  前記親水性溶媒は、水への溶解度(20℃)が50g/L以上であることを特徴とする、請求項1乃至5のいずれか一項に記載の遷移金属化合物含有ナノ粒子。 The transition metal compound-containing nanoparticle according to any one of claims 1 to 5, wherein the hydrophilic solvent has a water solubility (20 ° C) of 50 g / L or more.
  7.  正孔注入輸送層用である、請求項1乃至6のいずれか一項に記載の遷移金属化合物含有ナノ粒子。 The transition metal compound-containing nanoparticle according to any one of claims 1 to 6, which is for a hole injecting and transporting layer.
  8.  触媒用である、請求項1乃至6のいずれか一項に記載の遷移金属化合物含有ナノ粒子。 The transition metal compound-containing nanoparticle according to any one of claims 1 to 6, which is for a catalyst.
  9.  (A)遷移金属及び/又は遷移金属錯体を炭化し、遷移金属炭化物とする工程、
     (B)(A)工程で得られた遷移金属炭化物を、連結基を含む有機基を有する保護剤により保護する工程、及び、
     (C)(B)工程で得られた有機基を有する遷移金属炭化物を酸化し、有機基を有する遷移金属炭化酸化物とする工程を含み、
     前記保護剤が連結基及び親水性基を含む有機基を有する保護剤であるか、或いは、前記保護剤が連結基及び疎水性基を含む有機基を有する保護剤であって、更に、当該疎水性基を含む有機基を有する保護剤を、親水性基を含む有機基を有する保護剤に交換する工程を含むことを特徴とする、遷移金属化合物含有ナノ粒子の製造方法。
    (A) carbonizing the transition metal and / or the transition metal complex into a transition metal carbide,
    (B) protecting the transition metal carbide obtained in the step (A) with a protective agent having an organic group containing a linking group, and
    (C) oxidizing the transition metal carbide having an organic group obtained in the step (B) to obtain a transition metal carbide oxide having an organic group,
    The protective agent is a protective agent having an organic group containing a linking group and a hydrophilic group, or the protective agent has an organic group containing a linking group and a hydrophobic group, and the hydrophobic A process for producing transition metal compound-containing nanoparticles, comprising the step of replacing a protecting agent having an organic group containing a property group with a protecting agent having an organic group containing a hydrophilic group.
  10.  (a)遷移金属及び/又は遷移金属錯体を、連結基を含む有機基を有する保護剤により保護する工程、
     (b)(a)工程で得られた有機基を有する遷移金属又は遷移金属錯体を炭化し、有機基を有する遷移金属炭化物とする工程、及び、
     (c)(b)工程で得られた有機基を有する遷移金属炭化物を酸化し、有機基を有する遷移金属炭化酸化物とする工程を含み、
     前記保護剤が連結基及び親水性基を含む有機基を有する保護剤であるか、或いは、前記保護剤が連結基及び疎水性基を含む有機基を有する保護剤であって、更に、当該疎水性基を含む有機基を有する保護剤を、親水性基を含む有機基を有する保護剤に交換する工程を含むことを特徴とする、遷移金属化合物含有ナノ粒子の製造方法。
    (A) protecting the transition metal and / or transition metal complex with a protecting agent having an organic group containing a linking group,
    (B) carbonizing the transition metal or transition metal complex having an organic group obtained in the step (a) to obtain a transition metal carbide having an organic group;
    (C) oxidizing the transition metal carbide having an organic group obtained in step (b) to obtain a transition metal carbide oxide having an organic group,
    The protective agent is a protective agent having an organic group containing a linking group and a hydrophilic group, or the protective agent has an organic group containing a linking group and a hydrophobic group, and the hydrophobic A process for producing transition metal compound-containing nanoparticles, comprising the step of replacing a protecting agent having an organic group containing a property group with a protecting agent having an organic group containing a hydrophilic group.
  11.  (α)遷移金属及び/又は遷移金属錯体を炭化し、遷移金属炭化物とする工程、
     (β)(α)工程で得られた遷移金属炭化物を酸化し、遷移金属炭化酸化物とする工程、及び、
     (γ)(β)工程で得られた遷移金属炭化酸化物を、連結基を含む有機基を有する保護剤により保護し、有機基を有する遷移金属炭化酸化物とする工程を含み、
     前記保護剤が連結基及び親水性基を含む有機基を有する保護剤であるか、或いは、前記保護剤が連結基及び疎水性基を含む有機基を有する保護剤であって、更に、当該疎水性基を含む有機基を有する保護剤を、親水性基を含む有機基を有する保護剤に交換する工程を含むことを特徴とする、遷移金属化合物含有ナノ粒子の製造方法。
    (Α) carbonizing a transition metal and / or a transition metal complex into a transition metal carbide,
    (Β) A step of oxidizing the transition metal carbide obtained in the step (α) into a transition metal carbide oxide,
    (Γ) A step of protecting the transition metal carbon oxide obtained in the step (β) with a protective agent having an organic group containing a linking group to obtain a transition metal carbon oxide having an organic group
    The protective agent is a protective agent having an organic group containing a linking group and a hydrophilic group, or the protective agent has an organic group containing a linking group and a hydrophobic group, and the hydrophobic A process for producing transition metal compound-containing nanoparticles, comprising the step of replacing a protecting agent having an organic group containing a property group with a protecting agent having an organic group containing a hydrophilic group.
  12.  前記保護剤により保護する工程を、溶媒中で行うことを特徴とする、請求項9乃至11のいずれか一項に記載の遷移金属化合物含有ナノ粒子の製造方法。 The method for producing a transition metal compound-containing nanoparticle according to any one of claims 9 to 11, wherein the step of protecting with the protective agent is performed in a solvent.
  13.  前記遷移金属炭化物とする工程を、150~400℃で行うことを特徴とする、請求項9乃至12のいずれか一項に記載の遷移金属化合物含有ナノ粒子の製造方法。 The method for producing transition metal compound-containing nanoparticles according to any one of claims 9 to 12, wherein the step of forming the transition metal carbide is performed at 150 to 400 属 C.
  14.  前記遷移金属炭化物とする工程を、アルゴンガス雰囲気下で行うことを特徴とする、請求項9乃至13のいずれか一項に記載の遷移金属化合物含有ナノ粒子の製造方法。 The method for producing transition metal compound-containing nanoparticles according to any one of claims 9 to 13, wherein the step of forming the transition metal carbide is performed under an argon gas atmosphere.
  15.  前記請求項1乃至8のいずれか一項に記載の遷移金属化合物含有ナノ粒子及び親水性溶媒を含有することを特徴とする、遷移金属化合物含有ナノ粒子分散インク。 A transition metal compound-containing nanoparticle-dispersed ink comprising the transition metal compound-containing nanoparticle according to any one of claims 1 to 8 and a hydrophilic solvent.
  16.  遷移金属炭化物、遷移金属窒化物及び遷移金属硫化物よりなる群から選択される1種以上の化合物(U)、連結基及び親水性基を含む有機基を有する保護剤並びに親水性溶媒を含有し、請求項1に記載の遷移金属化合物含有ナノ粒子を調製するため及び/又は請求項1に記載の遷移金属化合物含有ナノ粒子を含有する膜を形成するために用いられることを特徴とする、遷移金属化合物含有ナノ粒子分散インク。 Containing at least one compound (U) selected from the group consisting of transition metal carbides, transition metal nitrides and transition metal sulfides, a protective agent having an organic group containing a linking group and a hydrophilic group, and a hydrophilic solvent A transition, characterized in that it is used to prepare a transition metal compound-containing nanoparticle according to claim 1, and / or for forming a film containing the transition metal compound-containing nanoparticle according to claim 1. Metal compound-containing nanoparticle dispersed ink.
  17.  炭素、窒素又は硫黄のいずれかの原子を含む遷移金属錯体、連結基及び親水性基を含む有機基を有する保護剤、及び沸点が160~260℃の親水性溶媒を含有する溶液を、150~250℃で加熱する工程を有し、請求項1に記載の遷移金属化合物含有ナノ粒子を調製するために用いられることを特徴とする、遷移金属化合物含有ナノ粒子分散インクの製造方法。 A solution containing a transition metal complex containing an atom of carbon, nitrogen or sulfur, a protecting agent having an organic group containing a linking group and a hydrophilic group, and a hydrophilic solvent having a boiling point of 160 to 260 ° C. A method for producing a transition metal compound-containing nanoparticle-dispersed ink, comprising the step of heating at 250 ° C., which is used to prepare the transition metal compound-containing nanoparticle according to claim 1.
  18.  基板上に対向する2つ以上の電極と、そのうちの2つの電極間に配置された正孔注入輸送層を有するデバイスであって、
     前記正孔注入輸送層が、少なくとも前記請求項1乃至6のいずれか一項に記載の遷移金属化合物含有ナノ粒子を含有することを特徴とする、デバイス。
    What is claimed is: 1. A device comprising: two or more opposing electrodes on a substrate; and a hole injecting and transporting layer disposed between two of the electrodes,
    A device, wherein the hole injecting and transporting layer contains at least the transition metal compound-containing nanoparticle according to any one of claims 1 to 6.
  19.  前記正孔注入輸送層に隣接して、疎水性溶媒に溶解及び/又は分散可能な電荷輸送性化合物を含む電荷輸送層を含有することを特徴とする、請求項18に記載のデバイス。 19. A device according to claim 18, characterized in that it comprises a charge transport layer comprising a charge transport compound which is soluble and / or dispersible in a hydrophobic solvent, adjacent to the hole injecting and transporting layer.
  20.  前記正孔注入輸送層において、前記遷移金属化合物含有ナノ粒子が2種以上含まれることを特徴とする、請求項18又は19に記載のデバイス。 The device according to claim 18, wherein the hole injection transport layer contains two or more of the transition metal compound-containing nanoparticles.
  21.  前記デバイスが、少なくとも発光層を含む有機層を含有する有機EL素子であることを特徴とする、請求項18乃至20のいずれか一項に記載のデバイス。 The device according to any one of claims 18 to 20, wherein the device is an organic EL element containing an organic layer including at least a light emitting layer.
  22.  前記デバイスが、基板上にゲート電極、絶縁層、ソース電極及びドレイン電極、有機半導体層を有する有機トランジスタであって、前記ソース電極及びドレイン電極表面の少なくとも一部に前記遷移金属化合物含有ナノ粒子を有する有機トランジスタであることを特徴とする、請求項18乃至20のいずれか一項に記載のデバイス。 The device is an organic transistor having a gate electrode, an insulating layer, a source electrode and a drain electrode, and an organic semiconductor layer on a substrate, wherein at least a part of the surface of the source electrode and the drain electrode contains the transition metal compound-containing nanoparticle 21. A device according to any of claims 18 to 20, characterized in that it is an organic transistor comprising.
  23.  基板上に対向する2つ以上の電極と、そのうちの2つの電極間に配置された正孔注入輸送層を有するデバイスの製造方法であって、
     前記請求項15に記載の遷移金属化合物含有ナノ粒子分散インクを用いて、当該電極上のいずれかの層上に正孔注入輸送層を形成する工程、を含むことを特徴とする、デバイスの製造方法。
    A method of manufacturing a device, comprising: two or more electrodes facing each other on a substrate; and a hole injecting and transporting layer disposed between two electrodes of the two or more electrodes,
    Forming a hole injecting and transporting layer on any of the layers on the electrode using the transition metal compound-containing nanoparticle-dispersed ink according to claim 15; producing a device Method.
  24.  基板上に対向する2つ以上の電極と、そのうちの2つの電極間に配置された正孔注入輸送層を有するデバイスの製造方法であって、
     前記請求項16に記載の遷移金属化合物含有ナノ粒子分散インクを用いて、当該電極上のいずれかの層上に正孔注入輸送層を形成する工程、及び、
     前記化合物(U)を酸化する工程、を含むことを特徴とする、デバイスの製造方法。
    A method of manufacturing a device, comprising: two or more electrodes facing each other on a substrate; and a hole injecting and transporting layer disposed between two electrodes of the two or more electrodes,
    Forming a hole injecting and transporting layer on any of the layers on the electrode using the transition metal compound-containing nanoparticle-dispersed ink according to claim 16;
    Oxidizing the compound (U).
  25.  前記正孔注入輸送層を形成する工程の後に、前記化合物(U)を酸化する工程を行うことを特徴とする、請求項24に記載のデバイスの製造方法。 The device manufacturing method according to claim 24, wherein the step of oxidizing the compound (U) is performed after the step of forming the hole injecting and transporting layer.
  26.  前記正孔注入輸送層を形成する工程の前に、前記化合物(U)を酸化する工程を行うことを特徴とする、請求項24に記載のデバイスの製造方法。 The device manufacturing method according to claim 24, wherein the step of oxidizing the compound (U) is performed before the step of forming the hole injecting and transporting layer.
  27.  前記化合物(U)を酸化する工程において、加熱手段、光照射手段又は活性酸素を作用させる手段を用いて、前記化合物(U)を酸化することを特徴とする、請求項24乃至26のいずれか一項に記載のデバイスの製造方法。 27. The method according to any one of claims 24 to 26, wherein the compound (U) is oxidized in the step of oxidizing the compound (U) using heating means, light irradiation means or means for causing active oxygen to act. The manufacturing method of the device as described in one paragraph.
  28.  前記正孔注入輸送層上に隣接して、疎水性溶媒に溶解及び/又は分散可能な電荷輸送性化合物及び疎水性溶媒を含む疎水性溶液を塗工することにより、電荷輸送層を形成する工程を含むことを特徴とする、請求項23乃至27のいずれか一項に記載のデバイスの製造方法。 Forming a charge transport layer by applying a hydrophobic solution containing a hydrophobic solvent and a charge transport compound which can be dissolved and / or dispersed in a hydrophobic solvent adjacent to the hole injecting and transporting layer; 28. A method of manufacturing a device according to any one of claims 23 to 27, characterized in that it comprises
  29.  前記デバイスが、少なくとも発光層を含む有機層を含有する有機EL素子であることを特徴とする、請求項23乃至28のいずれか一項に記載のデバイスの製造方法。 The device manufacturing method according to any one of claims 23 to 28, wherein the device is an organic EL element containing an organic layer including at least a light emitting layer.
  30.  前記デバイスが、基板上にゲート電極、絶縁層、ソース電極及びドレイン電極、有機半導体層を有する有機トランジスタであって、前記ソース電極及びドレイン電極表面の少なくとも一部に前記遷移金属化合物含有ナノ粒子を有することを特徴とする、請求項23乃至28のいずれか一項に記載のデバイスの製造方法。 The device is an organic transistor having a gate electrode, an insulating layer, a source electrode and a drain electrode, and an organic semiconductor layer on a substrate, wherein at least a part of the surface of the source electrode and the drain electrode contains the transition metal compound-containing nanoparticle 29. A method of manufacturing a device according to any one of claims 23 to 28, characterized in that it comprises.
PCT/JP2011/067871 2010-08-06 2011-08-04 Nanoparticle containing transition metal compound and process for production thereof, ink having nanoparticles each containing transition metal compound dispersed therein and process for production thereof, and device equipped with hole-injection/transport layer and process for production thereof WO2012018082A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012527769A JP5783179B2 (en) 2010-08-06 2011-08-04 Transition metal compound-containing nanoparticles and method for producing the same, transition metal compound-containing nanoparticle dispersed ink and method for producing the same, device having a hole injection transport layer, and method for producing the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010177016 2010-08-06
JP2010-177016 2010-08-06

Publications (1)

Publication Number Publication Date
WO2012018082A1 true WO2012018082A1 (en) 2012-02-09

Family

ID=45559578

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/067871 WO2012018082A1 (en) 2010-08-06 2011-08-04 Nanoparticle containing transition metal compound and process for production thereof, ink having nanoparticles each containing transition metal compound dispersed therein and process for production thereof, and device equipped with hole-injection/transport layer and process for production thereof

Country Status (3)

Country Link
JP (1) JP5783179B2 (en)
TW (1) TW201219303A (en)
WO (1) WO2012018082A1 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012079773A (en) * 2010-09-30 2012-04-19 Dainippon Printing Co Ltd Nanoparticle of molybdenum compound and production method therefor, nanoparticle of molybdenum compound dispersion ink, device and manufacturing method therefor
JP2013171968A (en) * 2012-02-21 2013-09-02 Konica Minolta Inc Organic electroluminescent element, lighting system, display device, and method for manufacturing organic electroluminescent element
JP2016096123A (en) * 2014-11-17 2016-05-26 大日本印刷株式会社 Organic electroluminescent element, method of manufacturing the same, and organic electroluminescent lighting system
WO2018051860A1 (en) * 2016-09-16 2018-03-22 東レ株式会社 Method for manufacturing field effect transistor and method for manufacturing wireless communication device
JP2020508362A (en) * 2017-02-17 2020-03-19 ナージン テクノロジー コーポレーション リミテッドNajing Technology Corporation Limited Ink composition, photoelectric device, and method for producing functional layer of photoelectric device
WO2020158566A1 (en) 2019-01-31 2020-08-06 大日本印刷株式会社 Deposition mask group, method for manufacturing electronic device, and electronic device
JP2020150251A (en) * 2019-03-11 2020-09-17 キヤノン株式会社 Quantum dot, photoelectric conversion element having the same, light-receiving element, photoelectric conversion device, mobile object, method for manufacturing quantum dot, and method for manufacturing photoelectric conversion element
US11793014B2 (en) 2020-06-03 2023-10-17 Dai Nippon Printing Co., Ltd. Electronic device, manufacturing method for electronic device, and deposition mask group
US11917905B2 (en) 2020-01-31 2024-02-27 Samsung Display Co., Ltd. Light-emitting device including hole transport region containing group 11 metal chalcogenide compound

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004335180A (en) * 2003-05-01 2004-11-25 Seiko Epson Corp Electro-optical device, base plate for electro-optical device, and manufacturing method of electro-optical device
WO2009133907A1 (en) * 2008-04-28 2009-11-05 大日本印刷株式会社 Device having hole injection transport layer, method for production thereof, and ink for formation of hole injection transport layer
WO2011052645A1 (en) * 2009-10-27 2011-05-05 大日本印刷株式会社 Nanoparticle containing transition metal compound, method for producing same, ink for hole injection/transport layer, device having hole injection/transport layer, and method for producing same

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102017216B (en) * 2008-04-28 2013-03-27 大日本印刷株式会社 Device having hole injection/transport layer, method for manufacturing the same, and ink for forming hole injection/transport layer

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004335180A (en) * 2003-05-01 2004-11-25 Seiko Epson Corp Electro-optical device, base plate for electro-optical device, and manufacturing method of electro-optical device
WO2009133907A1 (en) * 2008-04-28 2009-11-05 大日本印刷株式会社 Device having hole injection transport layer, method for production thereof, and ink for formation of hole injection transport layer
WO2011052645A1 (en) * 2009-10-27 2011-05-05 大日本印刷株式会社 Nanoparticle containing transition metal compound, method for producing same, ink for hole injection/transport layer, device having hole injection/transport layer, and method for producing same

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012079773A (en) * 2010-09-30 2012-04-19 Dainippon Printing Co Ltd Nanoparticle of molybdenum compound and production method therefor, nanoparticle of molybdenum compound dispersion ink, device and manufacturing method therefor
JP2013171968A (en) * 2012-02-21 2013-09-02 Konica Minolta Inc Organic electroluminescent element, lighting system, display device, and method for manufacturing organic electroluminescent element
JP2016096123A (en) * 2014-11-17 2016-05-26 大日本印刷株式会社 Organic electroluminescent element, method of manufacturing the same, and organic electroluminescent lighting system
WO2018051860A1 (en) * 2016-09-16 2018-03-22 東レ株式会社 Method for manufacturing field effect transistor and method for manufacturing wireless communication device
JP6358402B1 (en) * 2016-09-16 2018-07-18 東レ株式会社 Method for manufacturing field effect transistor and method for manufacturing wireless communication device
CN109716491A (en) * 2016-09-16 2019-05-03 东丽株式会社 The manufacturing method of field effect transistor and the manufacturing method of wireless telecom equipment
CN109716491B (en) * 2016-09-16 2023-06-09 东丽株式会社 Method for manufacturing field effect transistor and method for manufacturing wireless communication device
US11094899B2 (en) 2016-09-16 2021-08-17 Toray Industries, Inc. Method for manufacturing field effect transistor and method for manufacturing wireless communication device
US11453795B2 (en) 2017-02-17 2022-09-27 Najing Technology Corporation Limited Ink formulation, optoelectronic devices, and preparation methods of functional layer of optoelectronic devices
JP2020508362A (en) * 2017-02-17 2020-03-19 ナージン テクノロジー コーポレーション リミテッドNajing Technology Corporation Limited Ink composition, photoelectric device, and method for producing functional layer of photoelectric device
US11566316B2 (en) 2019-01-31 2023-01-31 Dai Nippon Printing Co., Ltd. Deposition mask group, manufacturing method of electronic device, and electronic device
EP4016658A1 (en) 2019-01-31 2022-06-22 Dai Nippon Printing Co., Ltd. Deposition mask group, manufacturing method of electronic device, and electronic device
US11649539B2 (en) 2019-01-31 2023-05-16 Dai Nippon Printing Co., Ltd. Deposition mask group, manufacturing method of electronic device, and electronic device
WO2020158566A1 (en) 2019-01-31 2020-08-06 大日本印刷株式会社 Deposition mask group, method for manufacturing electronic device, and electronic device
US11939659B2 (en) 2019-01-31 2024-03-26 Dai Nippon Printing Co., Ltd. Deposition mask group, manufacturing method of electronic device, and electronic device
JP2020150251A (en) * 2019-03-11 2020-09-17 キヤノン株式会社 Quantum dot, photoelectric conversion element having the same, light-receiving element, photoelectric conversion device, mobile object, method for manufacturing quantum dot, and method for manufacturing photoelectric conversion element
US11917905B2 (en) 2020-01-31 2024-02-27 Samsung Display Co., Ltd. Light-emitting device including hole transport region containing group 11 metal chalcogenide compound
US11793014B2 (en) 2020-06-03 2023-10-17 Dai Nippon Printing Co., Ltd. Electronic device, manufacturing method for electronic device, and deposition mask group

Also Published As

Publication number Publication date
JPWO2012018082A1 (en) 2013-10-03
JP5783179B2 (en) 2015-09-24
TW201219303A (en) 2012-05-16

Similar Documents

Publication Publication Date Title
KR101407880B1 (en) Nanoparticle containing transition metal compound, method for producing same, ink for hole injection/transport layer, device having hole injection/transport layer, and method for producing same
JP4868086B2 (en) Hole injection transport layer forming ink
KR101525375B1 (en) Material for forming hole injection/transport layer and method for manufacturing the same
KR101599575B1 (en) Device having hole injection/transport layer, method for producing same, and ink for forming hole injection/transport layer
JP5783179B2 (en) Transition metal compound-containing nanoparticles and method for producing the same, transition metal compound-containing nanoparticle dispersed ink and method for producing the same, device having a hole injection transport layer, and method for producing the same
JP5699323B2 (en) Molybdenum compound nanoparticles and manufacturing method thereof, molybdenum compound nano-particle dispersed ink, device and manufacturing method thereof
JP2011176324A (en) Device having hole injection transport layer, method of manufacturing the same, and ink for forming hole injection transport layer
JP2017098172A (en) Method for manufacturing ink for charge transport layer formation, and method for manufacturing device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11814707

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012527769

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11814707

Country of ref document: EP

Kind code of ref document: A1