WO2012017864A1 - 表示素子、表示装置および表示方法 - Google Patents

表示素子、表示装置および表示方法 Download PDF

Info

Publication number
WO2012017864A1
WO2012017864A1 PCT/JP2011/066977 JP2011066977W WO2012017864A1 WO 2012017864 A1 WO2012017864 A1 WO 2012017864A1 JP 2011066977 W JP2011066977 W JP 2011066977W WO 2012017864 A1 WO2012017864 A1 WO 2012017864A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
display
metal
display element
columnar
Prior art date
Application number
PCT/JP2011/066977
Other languages
English (en)
French (fr)
Inventor
有史 八代
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Publication of WO2012017864A1 publication Critical patent/WO2012017864A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/15Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on an electrochromic effect
    • G02F1/1506Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on an electrochromic effect caused by electrodeposition, e.g. electrolytic deposition of an inorganic material on or close to an electrode
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/15Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on an electrochromic effect
    • G02F1/153Constructional details
    • G02F1/155Electrodes
    • G02F2001/1555Counter electrode
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2202/00Materials and properties
    • G02F2202/04Materials and properties dye
    • G02F2202/046Materials and properties dye fluorescent

Definitions

  • the present invention relates to a display element, a display device, and a display method that are optimal for electronic paper and the like.
  • the interference reflection method has a relatively high white reflectance of about 27%, but has a large viewing angle dependency.
  • the electrophoretic method or the electropowder fluid method has a small white reflectance of about 12%, but has a small viewing angle dependency.
  • the reflective display device using metal deposition has the advantages of being capable of color display without requiring a color filter and having high contrast.
  • Patent Document 1 listed below discloses a reflective display device that enables color display by controlling the particle size and number of deposited metals.
  • FIG. 14 shows the display device disclosed in Patent Document 1.
  • a voltage is applied between the working electrode 113 and the counter electrode 114, whereby silver particles are deposited on the working electrode 113 for display.
  • the display color depends on the particle diameter of the precipitated silver particles, and the display concentration depends on the number of silver particles deposited. Therefore, in order to obtain a display color and display density with high accuracy, it is necessary to apply a precisely controlled voltage.
  • the voltage value and the pulse width of the voltage pulse applied to the working electrode 113 and the counter electrode 114 are precisely controlled by using the potential programmer 131, the potentiostat 130, and the reference electrode 116. .
  • a process of applying a nucleation pulse voltage for forming a predetermined number of silver crystal nuclei on the working electrode 113 before depositing silver particles on the working electrode 113, and growing the crystal nuclei to form Two-stage voltage control of a process of applying a nuclear growth pulse voltage for obtaining silver particles having a diameter is performed.
  • Patent Document 1 discloses an example in which yellow is displayed on the display device 100 by precipitation of silver particles having an average particle size of 10 nm, and an example in which blue is displayed on the display device 100 by precipitation of silver particles having an average particle size of 40 nm. Is disclosed.
  • the display device disclosed in Patent Document 1 requires a two-step silver deposition process, and the display color is controlled by the particle size of the silver particles, so that the color reproduction range of the display color is narrowed. There is.
  • the present invention has been made to solve the above problems, and its object is to provide a display element, a display device, and a display method having a wide displayable color reproduction range without requiring a complicated metal deposition step. There is to do.
  • the display element provides (1) opposing first and second electrodes; (2) an electrolyte sandwiched between the first electrode and the second electrode and containing metal ions; (3) at least one columnar electrode electrically connected to the first electrode; (4) an insulating film covering a portion other than the top of the columnar electrode and the surface of the first electrode; (5) means for applying a voltage between the first electrode and the second electrode; (6) The display is performed by reflecting at least part of the external light when the metal derived from the metal ions is deposited on at least the top surface of the columnar electrode.
  • the surface of the first electrode is covered with an insulating film except for the top of the columnar electrode.
  • the top of the columnar electrode is in contact with the electrolyte locally.
  • the particle size of the deposited metal can be controlled with high accuracy, the variation in the peak wavelength of plasmon resonance radiation determined by the particle size of the deposited metal and the dielectric constant of the electrolyte is reduced, and the color purity of the display element is increased.
  • the display surface of the display element includes the first electrode and the second electrode. Either of the two electrodes may be used.
  • the above effect can be obtained in the same way even in a display device having the following configuration.
  • the display element characterized by performing display by doing.
  • the display method includes: (1) By applying a voltage between at least one local electrode locally exposed on the surface of the insulating film facing the electrode and the electrode, (2) The display is performed by reflecting at least a part of the external light when a metal is deposited on the local electrode from the electrolyte sandwiched between the electrode and the insulating film.
  • the above display method enables high-definition color display without using a color filter, as described above for the display element.
  • the display element and the display method according to the present invention provide at least one external light when a metal is deposited from an electrolyte on at least one columnar electrode or local electrode localized on the surface of the insulating film.
  • the display is performed by reflecting the part.
  • the display element in embodiment of this invention it is a figure which shows the result of having simulated the relationship between the diameter of a columnar electrode, the dielectric constant of an electrolyte, and the light emission peak wavelength at the time of making precipitation metal into silver.
  • It is sectional drawing which shows roughly the structural example of the display element in other embodiment of this invention.
  • -Constitution- 1 and 2 show a display element 100 according to an embodiment of the present invention.
  • the transparent substrates 101 and 102 on which the transparent electrodes 103 (electrode or second electrode) and 104 (first electrode) are formed are opposed so that the transparent electrodes 103 and 104 face each other.
  • the display element 100 has a structure in which an electrolyte 105 containing metal ions is sandwiched between 104.
  • a columnar electrode 106 that can also be referred to as a local electrode is formed on the transparent electrode 104, and the columnar electrode 106 is electrically connected to the transparent electrode 104.
  • the space between the columnar electrodes 106 is filled with an insulating film 107. That is, the insulating film 107 covers a portion other than the top of the columnar electrode 106 and the surface of the transparent electrode 104. Therefore, as shown in FIGS. 3 and 4, the top surface of the columnar electrode 106 is locally exposed on the surface of the insulating film 107 and is in contact with the electrolyte 105.
  • the light absorption layer 108 may be provided on the surface opposite to the display surface of the display element 100.
  • the opposite side surface is a surface located on the outside side from either one of the transparent electrodes 103 and 104. More specifically, when a display surface is formed on the transparent electrode 103 side so that the display is observed by reflected light of external light incident from the substrate 101, the surface on the external field side of the transparent electrode 104 or the surface of the substrate 102 on the external field side. The surface is the opposite surface. Contrary to the above, when the display surface is formed on the transparent electrode 104 side so that the display is observed by the reflected light of the external light incident from the substrate 102, the surface on the external side of the transparent electrode 103 or the external surface of the substrate 101 is used. The surface on the side is the surface on the opposite side.
  • this display element can perform halftone display unlike a display element that observes display from the substrate 102 side.
  • the display element 100 applies a voltage between the transparent electrodes 103 and 104 facing each other so that the metal ions in the electrolyte 105 are applied to the columnar electrode 106 or the transparent electrode 103 according to the direction of the voltage.
  • the derived metal can be deposited.
  • the voltage is generated by an arbitrary pulse generator 306 (means for applying a voltage) described later.
  • FIG. 1 shows a state in which a voltage is applied so that the transparent electrode 103 side is positively biased with respect to the transparent electrode 104 side, and the metal 109 is deposited on the columnar electrode 106.
  • FIG. 2 shows a state in which a voltage is applied so that the transparent electrode 104 side is positively biased with respect to the transparent electrode 103 side, and the metal 110 is deposited on the transparent electrode 103.
  • the partial light is light having a specific wavelength determined by the diameter of the deposited metal 109, the dielectric constant of the electrolyte 105, and the like as a peak wavelength.
  • the transparent electrode 103 is not provided with the columnar electrode 106 that controls the particle size of the metal particles, the particle size of the metal particles deposited on the transparent electrode 103 is random. Since the absorption spectrum of light absorbed by the metal particles depends on the particle size of the metal particles, the metal 110 having a random particle size absorbs light in the entire visible region.
  • the emission of light by plasmon radiation and the absorption by the deposited metal occur at the same time, and therefore the film thickness of the deposited metal (metal 110) on the transparent electrode 103.
  • halftone display is possible. That is, when the metal 110 is thin, a high gradation display is obtained, and when the metal 110 is thick, a low gradation display is obtained.
  • the display element according to the present invention is used. 100 can display a stepless halftone by controlling the film thickness of the metal 110 between the threshold value and 0.
  • the top surface of the columnar electrode 106 and the surface of the insulating film 107 are preferably the same surface in order to control the particle size and shape of the metal 109 deposited on the columnar electrode 106.
  • the variation in the shape of the metal 109 deposited on the top of each columnar electrode 106 is reduced, and as a result, the variation in the spectrum due to plasmon resonance radiation is suppressed. Therefore, the color purity of the displayed color can be increased.
  • the top surface of the columnar electrode 106 slightly protrudes from the surface of the insulating film 107, if the metal 109 is deposited on the top surface of the columnar electrode 106, the shape of the metal 109 tends to be asymmetric, and the center of plasmon resonance There is a possibility that the wavelength is slightly shifted.
  • the particle size and shape of the metal 109 can be controlled when the top surface of the columnar electrode 106 is slightly depressed from the surface of the insulating film 107 to form a concave shape.
  • a glass substrate such as soda glass or non-alkali glass used for liquid crystal, or an organic film such as a polyethylene terephthalate (PET) film can be used depending on the application.
  • PET polyethylene terephthalate
  • a transparent electrode such as indium tin oxide (ITO) or indium zinc oxide (IZO) can be used.
  • ITO indium tin oxide
  • IZO indium zinc oxide
  • the solute of the electrolyte 105 for example, a resin such as polycarbonate, polyethylene oxide or polyacrylate, or a mixture of these resins can be used.
  • the solvent for example, ethyl alcohol, methanol or isopropyl alcohol, or a mixture of these various alcohols can be used.
  • the electrolyte 105 contains metal ions of metals 109 and 110 deposited on the columnar electrode 106 and the transparent electrode 103.
  • metal ions can be used as the metal ion, but silver, gold or copper is preferable in consideration of the size of the columnar electrode and the wavelength band of plasmon radiation including the visible light region.
  • metal ion material for example, in the case of silver, silver halide such as AgI or AgBr, silver nitrate, or the like can be used.
  • silver halide such as AgI or AgBr, silver nitrate, or the like can be used.
  • gold gold sodium thiosulfate or sodium gold chloride can be used.
  • copper copper chloride or copper bromide such as copper halide or copper sulfate can be used.
  • a supporting electrolyte such as a lithium salt, a sodium salt, or a potassium salt may be included.
  • any material having conductivity can be used, but a material having corrosion resistance to the electrolyte 105 is preferable, and gold or platinum is more preferable.
  • the columnar electrodes 106 may be formed in a random arrangement, but are preferably formed in a periodic arrangement. This is because plasmon radiation increases due to resonance of plasmon resonance.
  • the periodic arrangement structure is, for example, a triangular lattice structure as shown in FIG. 3 or a square lattice structure as shown in FIG.
  • the cross-sectional shape of the columnar electrode 106 is circular, but other shapes such as a triangle and a quadrangle may be used. An optimum shape can be selected according to the manufacturing method and the like.
  • the insulating film 107 can be a known insulating film such as an organic insulating film such as an acrylic resin or an epoxy resin, or an inorganic insulating film such as SiO 2 or Si 3 N 4 .
  • the forming method can also be formed by a known method, for example, a coating method in the case of an organic material, and a sputtering method in the case of an inorganic material.
  • the light absorbing layer 108 may be any material that can absorb light, such as black resin.
  • ITO As transparent substrates 101 and 102, ITO was formed as a transparent electrode 103 and 104 with a thickness of 150 nm on a non-alkali glass substrate (1737) manufactured by Corning. A high frequency sputtering method was used to form the ITO film. A sintered body of indium oxide containing 10% tin oxide was used as a target, and an argon gas containing 5% oxygen gas was used as a sputtering gas. An ITO film was formed on the entire surfaces of the transparent substrates 101 and 102, and then patterned by photolithography to form an electrode pattern.
  • an SiO 2 film as the insulating film 107 was first formed with a thickness of 200 nm.
  • the reactive sputtering method was used to form the SiO 2 film, the target was Si, and the sputtering gas was a mixed gas with a mixing ratio of argon gas and oxygen gas of 1: 1.
  • the columnar electrode 106 formed on the SiO 2 film is formed by immersing the transparent substrate 102 in an electroless gold plating solution (trade name: HGS-5400) manufactured by Hitachi Chemical Co., Ltd. heated to 65 ° C. for 15 minutes. The hole was filled with gold to form a columnar electrode 106.
  • an electroless gold plating solution (trade name: HGS-5400) manufactured by Hitachi Chemical Co., Ltd. heated to 65 ° C. for 15 minutes. The hole was filled with gold to form a columnar electrode 106.
  • Ethyl alcohol (90 ml) was used as a solvent, and a mixture (10 mg) of the same amount of polyethylene oxide and polycarbonate was mixed as a solute.
  • the dielectric constant was 5.
  • AgI and NaI were used as components of the electrolyte 105 so that the Ag ion concentration was 1.5 ⁇ 10 18 ions / ml.
  • the dielectric constant is 7.9, and when polycarbonate is used, the dielectric constant is 3.
  • the dielectric constant can be changed from 3 to 7.9, so that the plasmon radiation wavelength can be changed greatly. It is also possible to change the plasmon emission wavelength by changing at least one of the type of metal ions contained in the electrolyte 105 and the cross-sectional area of the columnar electrode 106.
  • the periphery of the glass substrate 101 with ITO and the glass substrate 102 with the columnar electrodes 106 as the transparent electrodes 103 thus prepared was bonded using an ultraviolet curable adhesive (not shown). At this time, an injection hole that was not adhered to a part was provided. After the electrolyte 105 was injected between the glass substrates by vacuum injection, the injection hole was sealed with an adhesive.
  • the injection of the electrolyte 105 is not limited to the vacuum injection method, and a large-sized panel can be injected by a droplet dropping injection method (ODF method).
  • a black resin is applied as a light absorption layer 108 on the surface opposite to the display surface and dried to complete the display element 100.
  • the display element of the present embodiment performs display by applying a voltage between the transparent electrode 103 and the columnar electrode 106 to deposit a metal on the surface of the transparent electrode 103 and / or the columnar electrode 106.
  • the transparent electrode 103 when depositing metal on the transparent electrode 103, a voltage is applied between both electrodes so that the transparent electrode 103 is negatively biased with respect to the columnar electrode 106.
  • the transparent electrode 103 When the transparent electrode 103 is negatively biased, electrons move from the transparent electrode 103 to the metal ions on the surface of the transparent electrode 103 (that is, the metal ions are reduced), and the metal ions in the electrolyte 105 are deposited.
  • the metal moves from the transparent electrode 103 to the columnar metal 106.
  • the amount of metal movement is determined by the voltage value and the application time of the applied voltage.
  • the wavelength of light emitted by plasmon resonance radiation is determined by the diameter and thickness of the metal 109 deposited on the columnar electrode 106 and the dielectric constant of the electrolyte 105.
  • the wavelength of the emitted light hardly depends on the film thickness of the deposited metal, and therefore is determined by the diameter of the deposited metal and the dielectric constant of the electrolyte 105.
  • the diameter of the deposited metal is determined by the diameter of the columnar electrode 106, and the dielectric constant of the electrolyte 105 is determined when the electrolyte is adjusted.
  • the number of deposited metals 109 can be determined by the number of columnar electrodes 106.
  • the film thickness of the deposited metal varies depending on the voltage value and the application time of the applied voltage pulse, but the peak wavelength of light due to plasmon resonance radiation hardly depends on the film thickness of the deposited metal.
  • the peak wavelength of light radiated by plasmon resonance hardly changes depending on the application time. Therefore, the applied voltage and the application time can be determined in consideration only of the film thickness of the metal deposited on the transparent electrode 103, so that driving with a simple pulse voltage waveform is possible.
  • metal particles whose numbers and particle sizes are accurately controlled can be precipitated without going through a complicated precipitation step as in Patent Document 1.
  • FIG. 5 shows a block diagram of a drive circuit for driving the display element 100 of the present embodiment.
  • the drive circuit includes a controller 303, a frame memory 304, a table 305, and an arbitrary pulse generator 306.
  • the clock 301 and the display data 302 are supplied from the outside.
  • the clock 301 is a reference signal for synchronizing data transmission / reception. In order to synchronize with an external device, an external input signal is used, but it may be generated inside the drive circuit.
  • the table 305 stores in advance the polarity, voltage value, and application time of the pulse voltage necessary for changing the luminance of the display element 100 from one gradation to another.
  • the transmitted display data 302 is temporarily stored in the frame memory 304.
  • the frame memory 304 also stores display data currently displayed on the display element 100.
  • the controller 303 reads the transmitted display data 302 and the display data currently displayed on the display element 100 from the frame memory. Then, the controller 303 reads information on the pulse voltage necessary for changing the luminance from the gradation currently displayed on the display element 100 to the gradation to be displayed next from the table 305. Next, based on the information read from the table 305, the controller 303 causes the arbitrary pulse generator 306 to generate a pulse voltage having the polarity, voltage value, and pulse width necessary for changing the luminance. Give instructions.
  • the output of the arbitrary pulse generator 306 is connected to a pair of transparent electrodes 103 and 104 facing the display element 100, and an appropriate pulse voltage is applied to the display element 100 in accordance with an instruction from the controller 303.
  • Such driving enables driving including the halftone of the display element of the present invention.
  • FIG. 6 shows a display device 400 according to an embodiment of the present invention.
  • the display device 400 includes a plurality of display elements 401, 402 and 403.
  • the plurality of display elements 401, 402, and 403 are arranged in the form of vertical stripes arranged side by side in the horizontal direction, and display elements (R elements) 401 that perform red display.
  • One pixel of the display device 400 can be configured by a set of a display element (G element) 402 that performs green display and a display element (B element) 403 that performs blue display.
  • G element display element
  • B element display element
  • a display element (Y element) 404 that displays yellow is added to the R element 401, the G element 402, and the B element 403 to perform display with four primary colors, as shown in FIG.
  • a matrix-like arrangement in which the R element 401, the G element 402, the B element 403, and the Y element 404 are allocated to each of the four regions is also possible.
  • Changing the wavelength due to plasmon resonance radiation can be achieved, for example, by changing the dielectric constant of the solute contained in the electrolyte 105.
  • the dielectric constant of the electrolyte 105 For example, by adjusting the dielectric constant of the electrolyte to be 7.9 for the R element using polycarbonate as the solute, and by adjusting the dielectric constant to 5 using a mixed solute of polyethylene oxide and polycarbonate for the G element,
  • the plasmon resonance radiation wavelength can be adjusted to a target wavelength by adjusting the dielectric constant to 3 using polyethylene oxide as a solute.
  • the dielectric constant of the electrolyte 105 not only the dielectric constant of the electrolyte 105 but also the type of metal ions contained in the electrolyte 105 and the diameter of the columnar electrode 106 may be changed for each of the R element, the G element, and the B element.
  • FIG. 9 shows the result of simulating the relationship between the diameter of the columnar electrode 106 and the peak wavelength of emitted light using the dielectric constant of the electrolyte 105 as a parameter when silver is selected as the metal to be deposited on the columnar electrode 106. It is a figure.
  • the peak wavelength of the emitted light increases as the diameter of the columnar electrode 106 increases, but the change decreases when the diameter of the columnar electrode 106 exceeds 20 nm.
  • the peak wavelength of the emitted light increases.
  • the change in the peak wavelength of the emitted light depends more on the change in the dielectric constant of the electrolyte 105 than the change in the diameter of the columnar electrode 106.
  • the diameter of the columnar electrode 106 is in the range of 2 nm to 100 nm, and the peak wavelength of the emitted light is in the visible light region. That is, the diameter of 2 nm is considered to be the lower limit of the theoretical limit value where the plasmon resonance wavelength falls within the visible light range.
  • the cross-sectional area is about 3.1 ⁇ 10 ⁇ 18 m 2
  • the cross-sectional area is about 7.9 ⁇ 10 ⁇ 15 m 2 . Therefore, 8 ⁇ 10 ⁇ 15 m 2 can be derived from 3 ⁇ 10 ⁇ 18 m 2 as a possible range of the cross-sectional area of the columnar electrode 106.
  • the diameter of the columnar electrode 106 is preferably 200 nm or less, more preferably 100 nm or less.
  • the sectional area when the diameter is 20 nm is about 3.1 ⁇ 10 ⁇ 16 m 2
  • the sectional area when the diameter is 100 nm is about 7.9 ⁇ 10 ⁇ 15 m 2
  • the sectional area when the diameter is 200 nm is about 3.1 ⁇ . 10 ⁇ 14 m 2
  • 3 ⁇ 10 ⁇ 16 m 2 to 3 ⁇ 10 ⁇ 14 m 2 more preferably 3 ⁇ 10 ⁇ 16 m 2 to 8 ⁇ 10 ⁇ 15 m 2 is derived as a preferable range of the cross-sectional area of the columnar electrode 106. be able to.
  • the lower limit value and the upper limit value of the numerical range are included in the numerical range. Further, as a lower limit value and an upper limit value of the range that the cross-sectional area of the columnar electrode 106 can take, a boundary value obtained from visible light, a preferable boundary value, and a range obtained by arbitrarily combining more preferable boundary values are also included in the present invention. It goes without saying that it is within the range.
  • the dielectric constant of the electrolyte 105 is preferably in the range of 3 to 7.9 so that the peak wavelength of the emitted light enters the visible light region.
  • Table 1 shows a list of the results of the shredding when the metal to be deposited is gold or copper.
  • the diameter of the columnar electrode is in the range of 2 nm to 100 nm, and the wavelength of the emitted light is in the visible light range.
  • the wavelength of the emitted light is visible when the diameter of the columnar electrode is 100 nm.
  • the electrolytes 105 (R), 105 (G), and 105 (B) are changed for each of the R element 401, the G element 402, and the B element 403, the R element 401, the G element 402, and the A rib 407 is preferably raised at the boundary of the B element 403. Further, although depending on the viscosity of the electrolyte 105, it is more preferable to form it so as to surround the entire periphery of each of the R element 401, the G element 402, and the B element 403.
  • the rib 407 can be formed using an acrylic or novolac photosensitive resin.
  • a photosensitive resin is applied to the substrate on which the columnar electrodes 106 have been formed, dried, exposed, and developed using a mask having a necessary pattern. Finally, the substrate is cleaned to obtain a substrate on which the ribs 407 are formed.
  • the electrolyte 105 can be filled in the compartments in each rib 407 by an ink jet method.
  • the electrolyte 105 (R) adjusted for the R element 401, the electrolyte 105 (G) adjusted for the G element 402, and the electrolyte 105 (B) adjusted for the B element 403 are dropped from separate ink jet nozzles. As shown in FIG.
  • the amount of electrolyte filled in each rib 407 is controlled by the number of droplets.
  • the ribs 407 are preferably provided with water repellency. This is because mixing of the electrolytes 105 (R), 105 (G), and 105 (B) can be avoided even when the landing points of the droplets deviate.
  • the substrate is exposed to a plasma of a gas containing fluorine such as CF 4 , and a layer containing fluorine is formed on the surface of the rib 407.
  • the transparent substrate 101 on which the transparent electrode 103 is formed is bonded while being aligned. Bonding is performed by bonding the periphery of the substrates 101 and 102 with an adhesive 406.
  • an adhesive 406 a known adhesive such as a thermosetting type or an ultraviolet curable type can be used.
  • the display device 400 of this embodiment may be either an active matrix type or a passive matrix type, but a passive matrix type is preferable in consideration of manufacturing difficulty and cost.
  • a passive matrix type is preferable in consideration of manufacturing difficulty and cost.
  • a phosphor layer 501 is provided between the transparent substrate 102 and the light absorption layer 108 as shown in FIG.
  • the display element 500 described in this embodiment mode light transmitted through the transparent substrate 102 is absorbed by the phosphor layer 501 and excites the phosphor.
  • the excited phosphor returns to the ground state, it emits fluorescence.
  • the luminance is improved because red light emission by plasmon resonance radiation and red light emission from the phosphor are superimposed. . That is, the radiation efficiency is improved.
  • the position where the phosphor layer 501 is formed is not limited to between the transparent substrate 102 and the light absorption layer 108.
  • the phosphor layer 501 is an insulator, it can be formed instead of the insulating film 107.
  • the phosphor known inorganic phosphors and organic phosphors can be used.
  • an inorganic phosphor such as Y 2 O 3 : Eu or Y 2 O 2 S: Eu, or an organic phosphor used for a rhodamine-based or oxazine-based dye laser can be used.
  • an inorganic phosphor such as Zn 2 SiO 4 : Mn or Ca 3 Si 2 O 2 : Tb, or a rhodamine-based organic phosphor can be used.
  • an inorganic phosphor such as Sr 3 MgSi 3 O 8 : Eu or BaMgAlO: Eu, or an oxadiazole-based organic phosphor can be used.
  • These phosphors are preferably used by dispersing the powder in a binder such as an organic resin.
  • a binder such as an organic resin.
  • a layer 501 can be formed.
  • the display element 600 of this embodiment has a configuration in which the columnar electrode 106 and the insulating film 107 provided between the columnar electrodes 106 are removed from the display element 100 described in the first embodiment. is doing.
  • white fine particles 601 are dispersed in addition to metal ions. Note that the dielectric constant of the electrolyte 105 is not particularly limited.
  • the display element 600 of the present embodiment when the metal 602 is deposited on the transparent electrode 103, the external light is absorbed by the deposited metal 602 to display black, and conversely, As shown in FIG. 12, when the metal 603 is deposited on the transparent electrode 104, the external light is reflected by the white fine particles to display white.
  • the display element 600 has the lowest gradation when the film thickness of the metal 602 is controlled to be equal to or higher than the threshold value where the light transmittance is 0, and the highest gradation when the metal 602 is not deposited.
  • the film thickness between the threshold and 0 an achromatic and stepless halftone can be displayed.
  • titania (TiO 2 ) or alumina (Al 2 O 3 ) nanoparticles can be used as the white fine particles.
  • a black and white display device When a display device is configured by arranging the display elements 600 of the present embodiment in a matrix, a black and white display device can be configured. In this case, a white reflection efficiency of about 75% is obtained.
  • the white display element 405 (W element) described in this embodiment is added to the display element including the R element 401, the G element 402, and the B element 403 described in Embodiment 1, so that the R element, G It is also possible to configure one pixel with four elements, an element, a B element, and a W element. In this case, the white reflection efficiency is about 41%.
  • FIG. 13 shows an example of pixel arrangement when the W element 405 is added.
  • the above display element, display device, and display method of the present invention will be supplemented below.
  • the second electrode of the display element according to the present invention is located on the display surface side.
  • the black display can be performed by depositing the metal on the second electrode facing the first electrode to which the columnar electrode is connected, so that the contrast can be improved. Furthermore, gradation display is possible by controlling the thickness of the metal deposited on the second electrode.
  • the columnar electrode may be biased positively and the second electrode negatively biased by means of applying a voltage.
  • the film thickness of the metal deposited on the second electrode can be controlled by controlling at least one of the applied voltage and the application time.
  • the dielectric constant of the electrolyte of the display element according to the present invention is adjusted according to the peak wavelength of the color to be displayed.
  • the peak wavelength of the light by a plasmon resonance radiation greatly depends on the dielectric constant of electrolyte
  • a display color can be adjusted in a wide range.
  • the particle size of the deposited metal is accurately determined by the diameter or cross-sectional area of the columnar electrode, so that the adjustment range of the display color is widened and the color purity of the adjusted display color is increased. An effect can be obtained.
  • the columnar electrode of the display element according to the present invention has a periodic arrangement.
  • the display element which concerns on this invention is light-absorbing in the surface located in the external field side from the surface of the display surface side of the electrode located in the opposite side to a display surface among the said 1st electrode and 2nd electrode. It is characterized by having a layer.
  • the display element which concerns on this invention is on the surface by the side of the display surface of the electrode located among the said 1st electrode and 2nd electrode on the opposite side to a display surface, or the light of the external field side from the said surface.
  • a phosphor layer emitting fluorescence corresponding to the peak wavelength of the color to be displayed is provided between the absorption layer and the surface.
  • the phosphor is excited by light that has not contributed to plasmon resonance radiation by the columnar electrode, and light having a desired peak wavelength is emitted from the phosphor. Since both plasmon resonance radiation light and light emitted from the phosphor contribute to the display, light can be used effectively. Therefore, a display device with high light utilization efficiency is possible.
  • the configuration in which the phosphor layer is provided on the display surface side surface of the electrode located on the side opposite to the display surface includes a configuration in which the insulating film is replaced with a phosphor layer.
  • the metal ion of the display element according to the present invention is a metal ion selected from silver, copper or gold.
  • the columnar electrode of the display element according to the present invention is formed of a metal having corrosion resistance to the electrolyte, for example, gold or platinum.
  • the cross-sectional area of the columnar electrode of the display element according to the present invention is 3 ⁇ 10 ⁇ 18 m 2 to 8 ⁇ 10 ⁇ 15 m 2 .
  • the peak wavelength of light due to plasmon resonance radiation depends on the particle size or cross-sectional area of the deposited metal. Since the particle size or cross-sectional area of the deposited metal is determined by the diameter or cross-sectional area of the columnar electrode, the peak wavelength of light caused by plasmon resonance radiation may be within the visible light range when the cross-sectional area of the columnar electrode is within the above range. it can.
  • the lower limit of 3 ⁇ 10 ⁇ 18 m 2 is considered to be the lower limit of the theoretical limit value where the plasmon resonance wavelength falls within the visible light range.
  • the lower limit value and the upper limit value of the numerical range are included in the numerical range.
  • the cross-sectional area of the columnar electrode of the display element according to the present invention is 3 ⁇ 10 ⁇ 16 m 2 to 8 ⁇ 10 ⁇ 15 m 2 .
  • the display device includes a plurality of display elements each having the same configuration as the above display element.
  • the plurality of display elements include display elements having electrolytes having different dielectric constants.
  • the reflection wavelength of the display element can be changed depending on the difference in the dielectric constant of the electrolyte, so that color display is possible.
  • the plurality of display elements include display elements having columnar electrodes having different cross-sectional areas.
  • the reflection wavelength of the display element can be changed depending on the difference in the cross-sectional area of the columnar electrodes, so that color display is possible.
  • the plurality of display elements include a display element having an electrolyte containing different metal ions.
  • the display device includes a pair of opposed electrodes, an electrolyte containing metal ions and light reflecting particles sandwiched between the pair of opposed electrodes, and the pair of opposed electrodes. And a display element having means for applying a voltage therebetween.
  • the display element does not include an insulating film and a columnar electrode.
  • the electrolyte sandwiched between the pair of opposed electrodes contains light reflecting particles in addition to metal ions.
  • the display element can perform white display.
  • the white color produced by the reflection by the light reflecting particles tends to have a higher luminance than the white color produced by the color mixture using a plurality of display elements that perform color display of different colors.
  • the means for applying the voltage can be shared by a plurality of display elements that perform color display of different colors and the display element that performs white display as one means.
  • black or halftone display is performed by controlling the film thickness of the metal deposited on the entire surface of the electrode.
  • the above display method enables display with high contrast and a wide color reproduction range.
  • the present invention can be applied to a reflective display device.
  • Electrolyte 105 (R) Electrolyte 105 (G) Electrolyte 105 (B) Electrolyte 106 Columnar electrode (local electrode) 107 Insulating film 108 Light absorbing layer 109, 110, 602, 603 Metal 306 Arbitrary pulse generator (means for applying voltage) 400 Display device 401 Display element (R element) 402 Display element (G element) 403 Display element (B element) 404 Display element (Y element) 405 White display element (W element) 406 Adhesive 407 Rib 501 Phosphor layer 601 White fine particles (light reflecting particles)

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Electrochromic Elements, Electrophoresis, Or Variable Reflection Or Absorption Elements (AREA)

Abstract

 簡単なパルス駆動により駆動が可能な、反射効率の高い表示素子、表示装置および表示方法を提供する。そのために、表示素子(100)は、対向する一組の電極(103,104)と、対向する一組の電極に挟持された金属イオンを含む電解質(105)と、対向する一組の電極の一方と電気的に接続された少なくとも一つの柱状電極(106)と、対向する一組の電極間に電圧を印加する手段とを有している。

Description

表示素子、表示装置および表示方法
 本発明は、電子ペーパー等に最適な表示素子、表示装置およびそれらの表示方法に関するものである。
 近年、紙媒体にかわり文字や写真等を表示する電子ペーパーの開発が盛んに行われている。電子ペーパーと呼ばれる表示装置には、干渉反射方式、電気泳動方式または電子粉流体方式等種々の方式がある。例えば、干渉反射方式は白色反射率が約27%と比較的高いが、視角依存性が大きい。また、電気泳動方式または電子粉流体方式は白色反射率が約12%と小さいが、視角依存性が小さい。このように、白色反射率、コントラストまたは視覚依存性等の点において一長一短がある。
 なかでも、金属の析出を利用した反射型表示装置は、カラーフィルターを必要とせずにカラー表示が可能であり、コントラストも高いという利点がある。
 下掲の特許文献1には、析出させる金属の粒径と数を制御することにより、カラー表示を可能とする反射型表示装置が開示されている。
特開2007-086188号(2007年04月05日公開)
 上記特許文献1に開示された表示装置を図14に示す。この表示装置100では、作用電極113と対向電極114間に電圧を印加することにより、作用電極113上に銀粒子を析出させて表示を行っている。表示色は析出した銀粒子の粒子径に依存し、表示濃度は析出した銀粒子の粒子数に依存する。従って、精度のよい表示色および表示濃度を得るためには、精密に制御された電圧を印加する必要がある。
 このため、この表示装置100ではポテンシャルプログラマー131、ポテンシオスタット130および参照電極116を用いることにより、作用電極113および対向電極114に印加する電圧パルスの電圧値およびパルス幅を精密に制御している。
 また、作用電極113上に銀粒子を析出させる前に作用電極113上に所定の数の銀の結晶核を形成するための核形成パルス電圧を印加するプロセスと、結晶核を成長させ所定の粒径の銀粒子を得るための核成長パルス電圧を印加するプロセスの2段階の電圧制御を行っている。
 なお、特許文献1には、平均粒径10nmの銀粒子の析出により、表示装置100に黄色を表示させる例、および平均粒径40nmの銀粒子の析出により、表示装置100に青色を表示させる例が開示されている。
 このように特許文献1に開示された表示装置では、2段階の銀析出工程を必要とし、また銀粒子の粒径で表示色を制御するため、表示色の色再現範囲が狭くなるという問題点がある。
 本発明は、上記の問題点を解決するためになされたもので、その目的は、複雑な金属析出工程を必要とせず、表示可能な色再現範囲の広い表示素子、表示装置および表示方法を提供することにある。
 本発明に係る表示素子は上記の課題を解決するために、
(1)対向する第1の電極および第2の電極と、
(2)前記第1の電極および第2の電極に挟持され、かつ金属イオンを含む電解質と、
(3)前記第1の電極と電気的に接続された少なくとも一つの柱状電極と、
(4)前記柱状電極の頂部以外の部分および前記第1の電極の表面を覆う絶縁膜と、
(5)前記第1の電極および第2の電極間に電圧を印加する手段とを有し、
(6)前記柱状電極の少なくとも頂面に、前記金属イオンに由来する金属が析出する時に、外光の少なくとも一部を反射することによる表示が行われることを特徴とする。
 上記構成により、第1の電極の表面は、柱状電極の頂部を除いて絶縁膜によって覆われている。この結果、第1の電極側では、柱状電極の頂部が、局部的に電解質と接する構成となっている。これにより、電解質から析出させる金属粒の数は柱状電極の数で決定され、析出される金属粒の粒径は柱状電極の直径または断面積により決定される。従って、複雑な析出工程を経ることなく、数と粒径が精度よく制御された金属粒を析出させることができる。
 このため、単純なパルス波形による駆動が可能となり、周辺回路の簡素化および設計時間の短縮が図れるため、狭額縁化およびコストの低減が可能となる。
 また析出する金属の粒径が精度よく制御できるため、析出金属の粒径と電解質の誘電率で決定されるプラズモン共鳴放射のピーク波長のばらつきが小さくなり、表示素子の色純度が高くなる。
 なお、プラズモン共鳴放射による光は、対向する第1の電極および第2の電極のどちらに柱状電極を設けたとしても取り出しが可能であるため、表示素子の表示面は、第1の電極および第2の電極のいずれでも構わない。
 なお、上記の効果は、以下の構成を備えた表示素子においても、同様に得ることができる。
(1)電極と、
(2)上記電極と対向する絶縁膜の表面に局所的に露出した少なくとも1つの局所電極と、
(3)上記電極と上記絶縁膜とに挟持され、かつ金属イオンを含む電解質と、
(4)上記電極と上記局所電極との間に電圧が印加されることによって、前記局所電極の少なくとも頂面に、前記金属イオンに由来する金属が析出する時に、外光の少なくとも一部を反射することによる表示が行われることを特徴とする表示素子。
 また本発明に係る表示方法は、
(1)電極と対向する絶縁膜の表面に局所的に露出した少なくとも1つの局所電極と、前記電極との間に電圧を印加することによって、
(2)前記電極と絶縁膜とに挟持された電解質から、前記局所電極上に金属を析出させたときに、外光の少なくとも一部を反射することによる表示が行われることを特徴とする。
 上記表示方法により、表示素子について既に説明したのと同様に、カラーフィルターを用いることなく、高精彩なカラー表示が可能となる。
 本発明に係る表示素子および表示方法は、以上のように、絶縁膜の表面に局在する少なくとも1つの柱状電極または局所電極上に、電解質から金属を析出させたときに、外光の少なくとも一部を反射することによる表示が行われることを特徴としている。
 それゆえ、柱状電極または局所電極のサイズおよび数によって粒径と数が制御された金属粒を、印加電圧を精密に制御することなく析出させることができるという効果を奏する。
本発明の実施形態における表示素子の構成例を概略的に示し、柱状電極上に金属が析出した状態を示す断面図である。 上記表示素子の柱状電極と対向する透明電極に金属が析出した状態を概略的に示す断面図である。 本発明の実施形態における柱状電極の配列例を概略的に示す平面図である。 本発明の実施形態における柱状電極の他の配列例を概略的に示す平面図である。 本発明の実施形態における表示素子の駆動方法を実施する駆動装置の構成を概略的に示す図である。 本発明の実施形態における表示装置の構成例を概略的に示す断面図である。 本発明の実施形態における表示装置の画素配列例を概略的に示す平面図である。 本発明の実施形態における表示装置の他の画素配列例を概略的に示す平面図である。 本発明の実施形態における表示素子において、析出金属を銀とした場合の、柱状電極の直径および電解質の誘電率と発光ピーク波長との関係をシミュレーションした結果を示す図である。 本発明の他の実施形態における表示素子の構成例を概略的に示す断面図である。 本発明の実施形態における、白色表示素子の構成例を概略的に示し、表示面側の電極に金属が析出している状態を示す断面図である。 上記白色表示素子の表示面側の電極と対向する電極に金属が析出している状態を示す断面図である。 本発明の実施形態における、白色表示画素を含む表示装置の画素配列例を示す平面図である。 従来の表示素子の構成例を概略的に示す図である。
 〔実施の形態1〕
 本発明の実施の一形態について図面に基づいて説明すれば、以下のとおりである。但し、この実施の形態に記載されている構成部品の寸法、材質、形状、その相対配置などは、特に特定的な記載がない限り、この発明の範囲をそれのみに限定する趣旨ではなく、単なる説明例に過ぎない。
 ―構成―
 図1および図2に本発明の実施の形態による表示素子100を示す。透明電極103(電極または第2の電極)および104(第1の電極)を形成した透光性の基板101および102を、透明電極103および104が向かい合うように対向させ、対向した透明電極103および104間に金属イオンを含む電解質105を挟持した構造を表示素子100は有している。
 透明電極104には、局所電極とも言い得る柱状電極106が形成され、柱状電極106は透明電極104に電気的に接続されている。また柱状電極106間は絶縁膜107で埋められている。すなわち、絶縁膜107は、柱状電極106の頂部以外の部分および透明電極104の表面を覆っている。従って、図3および図4にも示すように、絶縁膜107の表面に柱状電極106の頂面が局所的に露出し電解質105と接触する状態となる。表示素子100の表示面とは反対側の面に光吸収層108を設けてもよい。
 上記反対側の面とは、透明電極103および104のいずれか一方より、外界側に位置する面である。より具体的には、基板101から入射した外光の反射光によって表示を観察するように、透明電極103側に表示面ができる場合、透明電極104の外界側の面または基板102の外界側の面が、上記反対側の面となる。また、上記とは逆に、基板102から入射した外光の反射光によって表示を観察するように、透明電極104側に表示面ができる場合、透明電極103の外界側の面または基板101の外界側の面が、上記反対側の面となる。
 なお、以降の説明では、基板101側から表示を観察する表示素子について説明を行う。この表示素子は、後述するように、基板102側から表示を観察する表示素子とは違って、中間調の表示を行うことができる。
 本実施形態の表示素子100は、対向する透明電極103および104間に電圧を印加することにより、電圧の向きに応じて、柱状電極106上または透明電極103上に電解質105中の上記金属イオンに由来する金属を析出させることができる。上記電圧は、後述する任意パルス発生器306(電圧を印加する手段)によって生成される。
 図1は透明電極104側に対して透明電極103側を正にバイアスするよう電圧を印加し、柱状電極106上に金属109が析出した状態を示す。また図2は透明電極103側に対して透明電極104側を正にバイアスするよう電圧を印加し、透明電極103上に金属110が析出した状態を示す。
 柱状電極106上に金属109が析出した状態では、透明基板101側から入射した外光のうち、一部の光のみが、プラズモン共鳴放射により透明基板101を透過して外部へ放射される。上記一部の光とは、析出した金属109の直径および電解質105の誘電率等で決定される特定の波長をピーク波長とする光である。
 他の波長の光は透明基板102を透過し光吸収層108で吸収される。光吸収層108が無い場合には、透明基板102を透過した光が、外部で反射、散乱し再び透明基板102および101を透過し、外部へ放射される場合もあるためコントラストの低下を招く。したがって、光吸収層108を設けることによって、コントラストを向上させることができる。
 一方、図2に示すように、透明電極103上に金属110が析出している場合は、種々の粒径の金属が析出する。従って、外光は析出した金属110により吸収されるため、黒色の表示が実現できる。
 より詳しく説明すると、透明電極103には、金属粒の粒径を制御する役割を果たす柱状電極106が設けられていないので、透明電極103上に析出する金属粒の粒径はランダムになる。金属粒によって吸収される光の吸収スペクトルは、金属粒の粒径に依存するため、上記粒径がランダムな金属110は、可視領域全域の光を吸収する。
 透明電極103上および柱状電極106上に金属が析出している状態では、プラズモン放射による光の放出と析出金属による吸収とが同時に起こるため、透明電極103上の析出金属(金属110)の膜厚を制御することにより中間調の表示が可能となる。すなわち、金属110の膜厚が薄いと高階調の表示となり、金属110の膜厚が厚いと低階調の表示となる。
 このように、金属110の膜厚が光透過率を0とする閾値以上に制御された場合を最低階調とし、金属110が析出しない場合を最高階調とした場合、本発明に係る表示素子100は、金属110の膜厚を上記閾値と0との間で制御することにより、無段階の中間調を表示することができる。
 なお、柱状電極106の頂面と、絶縁膜107の表面とが同一面であることが、柱状電極106上に析出する金属109の粒径および形状を制御するために好ましい。これにより、それぞれの柱状電極106の頂部に析出する金属109の形状のばらつきが低減され、その結果、プラズモン共鳴放射によるスペクトルのばらつきが抑制される。したがって、表示される色の色純度を高めることができる。
 一方、柱状電極106の頂面が絶縁膜107の表面からわずかに隆起している場合、柱状電極106の頂部表面に金属109が析出すると、金属109の形状が非対称になりやすく、プラズモン共鳴の中心波長がわずかにずれる可能性が考えられる。
 また、柱状電極106の頂面が、絶縁膜107の表面からわずかに陥没して凹部状になっている場合にも、金属109の粒径および形状を制御できると考えられる。
 なお、柱状電極106の頂面が半球面状に形成されている場合には、プラズモン共鳴放射が等方的に起きると考えられ、より視野角依存性の少ない表示素子を実現できる可能性も考えられる。
 ―材料―
 透明基板101、102は、例えば液晶に用いられるソーダガラスまたは無アルカリガラス等のガラス基板、あるいはポリエチレンテレフタレート(PET)フィルム等の有機フィルムを用途に応じて使用することができる。
 透明電極103,104は、例えばインジウム錫酸化物(ITO)またはインジウム亜鉛酸化物(IZO)等の透明電極を用いることができる。
 電解質105の溶質としては、例えばポリカーボネート、ポリエチレンオキサイトまたはポリアクリレート等の樹脂、あるいはこれら樹脂の混合物を用いることができる。また溶媒は、例えばエチルアルコール、メタノールまたはイソプロピルアルコール等、あるいはこれら各種アルコールの混合物を使用することができる。さらに電解質105中には、柱状電極106および透明電極103上に析出させる金属109および110の金属イオンを含む。
 金属イオンは種々の金属イオンが使用可能であるが、柱状電極のサイズ、プラズモン放射の波長帯域が可視光域を含むこと等を考慮すると銀、金または銅が好ましい。
 金属イオンの材料としては、例えば銀の場合には、AgIまたはAgBr等のハロゲン化銀または硝酸銀等を使用することができる。金の場合には、金チオ硫酸ナトリウムまたは塩化金ナトリウムを使用することができる。銅の場合には、塩化銅または臭化銅のハロゲン化銅または硫酸銅等を使用することができる。またリチウム塩、ナトリウム塩またはカリウム塩等の支持電解質を含ませてもよい。
 柱状電極106の材料は導電性を有している材料であれば使用可能であるが、電解質105に対して耐腐食性を有している材料が好ましく、金または白金がさらに好ましい。
 柱状電極106はランダムな配列で形成されても構わないが、周期的な配列で形成されることが好ましい。プラズモン共鳴が共振することにより、プラズモン放射が大きくなるからである。周期的な配列構造とは、たとえば図3に示すような三角格子構造、図4に示すような正方格子構造である。本実施形態では柱状電極106の断面形状は円形としているが、三角形、四角形等の他の形状でも構わない。製造方法等に応じて最適な形状を選択することができる。
 絶縁膜107はアクリル系樹脂またはエポキシ系樹脂等の有機絶縁膜、SiOまたはSi等の無機絶縁膜など公知の絶縁膜が使用できる。また形成方法も公知の方法、たとえば有機材料の場合は塗布法等、無機材料の場合はスパッタ法等により形成可能である。
 光吸収層108は黒色樹脂等の光を吸収することができる材料であれば使用可能である。
 ―製法―
 透明基板101および102として、コーニング社の無アルカリガラス基板(1737)に、透明電極103および104として、ITOを150nmの厚さで形成した。ITO膜の形成には高周波スパッタ法を用いた。酸化錫を10%含む酸化インジウムの焼結体をターゲットとして用い、スパッタガスは5%の酸素ガスを含むアルゴンガスを用いた。透明基板101および102の全面にITO膜を形成した後、フォトリソグラフィー法によりパターニングを行い電極パターンを形成した。
 柱状電極106を形成するために、まず絶縁膜107としてのSiO膜を200nmの厚さで形成した。SiO膜の形成には反応性スパッタ法を用い、ターゲットはSi、スパッタガスはアルゴンガスと酸素ガスの混合比が1:1の混合ガスを用いた。
 全面にSiOを形成した後、レジストを塗布し、電子ビーム露光法により柱状電極106を形成する部分のレジストを露光、現像し剥離した。ドライエッチング法により柱状電極106を形成する部分のSiOをエッチングした後、レジストを剥離した。この時、柱状電極106の直径は20nmとし、配列は図3に示した三角格子配列とした。
 次に65℃に加熱した、日立化成工業社製無電解金メッキ液(商品名:HGS-5400)に透明基板102を15分間浸すことにより、SiO膜に形成した柱状電極106を形成するための穴を金で充填し柱状電極106を形成した。
 エチルアルコール(90ml)を溶媒とし、同量のポリエチレンオキサイトとポリカーボネートの混合物(10mg)を溶質として混合した。この時、誘電率は5となった。電解質105の成分としてはAgIとNaIを用いて、Agイオン濃度が1.5×1018個/mlとなるようにした。溶質としてポリエチレンオキサイトを用いると誘電率は7.9、ポリカーボネートを用いると誘電率は3となる。
 このようにポリエチレンオキサイトとポリカーボネートの混合比を変えることにより、誘電率を3から7.9まで変化させることができるため、プラズモン放射波長を大きく変化させることができる。また電解質105に含まれる金属イオンの種類および柱状電極106の断面積の少なくとも一方を変化させることにより、プラズモン放射波長を変化させることも可能である。
 このようにして作成した、透明電極103としてのITO付きガラス基板101と柱状電極106付きガラス基板102との周囲を紫外線硬化型接着剤(図示せず)を用いて貼り合わせた。この時、一部に接着されていない注入孔を設けた。真空注入法により、電解質105をガラス基板間に注入した後、注入孔を接着剤で封止した。電解質105の注入は真空注入法に限られず、大型のパネルでは液滴滴下注入法(ODF法)により注入することも可能である。
 最後に、表示面と反対側の面に光吸収層108として黒樹脂を塗布し、乾燥させることにより、表示素子100が完成する。
 この表示素子100の柱状電極106側に負、柱状電極106に対向するITO側(透明電極103)に正の電圧を印加すると、柱状電極106の頂面に金属109としての銀が析出する。これにより、金属109の直径および電解質105の誘電率が5であることに応じたプラズモン共鳴放射により緑色の光が放射され、表示面から観察された。また逆極性の電圧を印加すると、中間調の表示状態を経て、最終的に表示面側からの放射がなくなり、黒表示が実現できた。
 ―駆動方法―
 本実施形態の表示素子は、透明電極103と柱状電極106との間に電圧を印加し、透明電極103および/または柱状電極106の表面に金属を析出させることにより表示を行う。
 例えば、透明電極103上に金属を析出させる場合は、透明電極103を柱状電極106に対して負バイアスになるように、両電極間に電圧を印加する。透明電極103が負バイアスになると透明電極103表面で透明電極103から金属イオンへ電子が移動し(すなわち、金属イオンが還元され)電解質105中の金属イオンが析出する。
 この時、柱状電極106上に金属が析出していた場合には、逆に析出している金属から柱状電極106へ電子の移動が起こるため(すなわち析出している金属の酸化が起こるため)、柱状電極106上に析出していた金属が電解質105へ溶け出す。すなわち、柱状電極106から透明電極103へ金属の移動が起こる。
 印加電圧の極性を逆にした場合には、透明電極103から柱状金属106へ金属が移動する。金属の移動量は印加する電圧の電圧値および印加時間で決まる。
 柱状電極106上に金属を析出させた場合には、プラズモン共鳴により光を放射する。すなわち表示が行われる。透明電極103上に金属を析出させた場合には、析出した金属が外光を吸収するため黒表示となる。柱状電極106上および透明電極103上に金属を析出させた場合は、透明電極103上に析出させる金属の膜厚を制御することにより、表示面から放射されるプラズモン共鳴による放射光の強度を変えることが可能となる。
 プラズモン共鳴放射により放射される光の波長は、本実施形態の場合には柱状電極106上に析出される金属109の直径、膜厚および電解質105の誘電率で決定される。この中で、放射される光の波長は析出金属の膜厚にはほとんど依存しないため、析出金属の直径および電解質105の誘電率で決まることになる。析出金属の直径は、柱状電極106の直径により決まり、電解質105の誘電率は電解質の調整時に決められる。さらに、金属109の析出数は、柱状電極106の数によって決定できる。
 また、析出金属の膜厚は印加電圧パルスの電圧値および印加時間により変化するが、プラズモン共鳴放射による光のピーク波長は析出金属の膜厚にはほとんど依存しないため、印加電圧パルスの電圧値および印加時間によりプラズモン共鳴放射する光のピーク波長はほとんど変化することが無い。従って、印加電圧および印加時間は透明電極103上に析出させる金属の膜厚のみを考慮して決定することができるため、単純なパルス電圧波形で駆動が可能である。
 このように、特許文献1のような複雑な析出工程を経ることなく、数と粒径が精度よく制御された金属粒を析出させることができる。
 図5に本実施形態の表示素子100を駆動するための駆動回路のブロック図を示す。駆動回路は、コントローラ303、フレームメモリ304、テーブル305および任意パルス発生器306からなる。クロック301および表示データ302は外部から供給される。
 クロック301は、データの送受信時に同期をとるための基準信号である。外部の機器との同期をとるため、外部からの入力信号としているが、駆動回路の内部で発生させても構わない。
 テーブル305には、表示素子100の輝度をある階調から他の階調へ変化させる場合に必要なパルス電圧の極性、電圧値、印加時間をあらかじめ記憶させておく。送信されてきた表示データ302は、一旦フレームメモリ304に蓄えられる。フレームメモリ304には表示素子100が現在表示している表示データも蓄えておく。
 コントローラ303は、送信されてきた表示データ302および表示素子100が現在表示している表示データをフレームメモリから読み出す。そして、コントローラ303は、表示素子100が現在表示している階調から、次に表示する階調へと輝度を変化させるために必要なパルス電圧の情報をテーブル305から読み出す。次に、コントローラ303は、テーブル305から読み出した情報に基づき、任意パルス発生器306に対して輝度を変化させるために必要な極性、電圧値およびパルス幅を有しているパルス電圧を発生させるよう指示を出す。
 任意パルス発生器306の出力は表示素子100の対向する一組の透明電極103および104に接続されており、コントローラ303からの指示に従い、適切なパルス電圧を表示素子100に印加する。
 このような駆動により、本発明の表示素子の中間調も含めた駆動が可能となる。
 ―表示装置―
 図6に本発明の実施の形態による表示装置400を示す。本表示装置400は複数個の表示素子401,402および403を含む。複数個の表示素子401,402および403は、例えば、図7に示すように、横方向に隣り合わせで配列された縦ストライプ状に配置されており、赤色の表示を行う表示素子(R素子)401、緑色の表示を行う表示素子(G素子)402および青色の表示を行う表示素子(B素子)403の一組で表示装置400の一つの画素を構成することができる。
 また、R素子401、G素子402およびB素子403に、黄色の表示を行う表示素子(Y素子)404を加えて4原色による表示を行う場合には、図8に示すように、矩形を縦横に4分割した各領域に、R素子401、G素子402、B素子403およびY素子404を割り振ったマトリクス状の配置も可能である。
 プラズモン共鳴放射による波長を変えるには、たとえば電解質105に含まれる溶質の誘電率を変えることにより達成できる。例えば、R素子では溶質をポリカーボネートとして電解質の誘電率を7.9となるように調整することにより、G素子ではポリエチレンオキサイトとポリカーボネートの混合溶質を用いて誘電率を5に調整することにより、B素子ではポリエチレンオキサイトを溶質として用いて誘電率を3に調整することにより、プラズモン共鳴放射波長を目的の波長に調整することができる。また、電解質105の誘電率だけではなく、電解質105中に含まれる金属イオンの種類、柱状電極106の直径をR素子、G素子およびB素子ごとに変化させてもよい。
 図9は、柱状電極106上に析出させる金属として、銀を選択した場合の、柱状電極106の直径と放射される光のピーク波長の関係を電解質105の誘電率をパラメータとしてシミュレーションした結果を示した図である。
 図から明らかなように、柱状電極106の直径が大きくなると、放射される光のピーク波長が大きくなるが、柱状電極106の直径が20nmを超えると変化は小さくなる。
 また電解質105の誘電率が大きくなると、放射される光のピーク波長は大きくなる。放射される光のピーク波長の変化は、柱状電極106の直径の変化よりも電解質105の誘電率の変化に大きく依存する。
 柱状電極106の直径は2nmから100nmの範囲で、放射される光のピーク波長が可視光の領域に入っている。つまり、直径2nmは、プラズモン共鳴波長が可視光の範囲に入る理論限界値の下限であると考えられる。直径が2nmの場合の断面積は約3.1×10-18、100nmの場合の断面積は約7.9×10-15である。したがって、柱状電極106の断面積が取り得る範囲として、3×10-18から8×10-15を導出することができる。
 しかしながら2nmから20nmの範囲では、柱状電極106の直径の変化に対する放射される光のピーク波長の変化が大きいため、製造時のばらつき等を考慮すると、20nm以上が好ましい。また柱状電極106の直径が大きくなると、可視光の領域の光に対して回折現象がおこるようになる。このため柱状電極106の直径は、好ましくは200nm以下、より好ましくは100nm以下である。
 直径が20nmの場合の断面積は約3.1×10-16、100nmの場合の断面積は約7.9×10-15、200nmの場合の断面積は約3.1×10-14である。したがって、柱状電極106の断面積の好ましい範囲として、3×10-16から3×10-14、より好ましくは3×10-16から8×10-15を導出することができる。
 なお、本願明細書において、数値範囲の下限値および上限値は、その数値範囲に含まれている。また、柱状電極106の断面積が取り得る範囲の下限値および上限値として、可視光が得られる境界値、好ましい境界値、およびより好ましい境界値を任意に組み合わせて得られる範囲も、本発明の範囲内であることはいうまでもない。
 また電解質105の誘電率については、放射される光のピーク波長が可視光の領域に入るためには、3から7.9の範囲が好ましい。
 表1は、析出させる金属を金または銅とした場合のシュレーション結果の一覧を示している。金の場合では、柱状電極の直径が2nmから100nmの範囲で、放射光の波長が可視光域に入っている。銅の場合は、柱状電極の直径が100nmの場合に放射光の波長が可視光となる。
Figure JPOXMLDOC01-appb-T000001
 R素子401、G素子402およびB素子403ごとに電解質105(R)、105(G)および105(B)を変える場合には、電解質が混ざり合わないように、R素子401、G素子402およびB素子403の境界にリブ407を立てることが好ましい。また、電解質105の粘度にもよるが、R素子401、G素子402およびB素子403の各周囲全体を囲むように形成することがより好ましい。
 リブ407はアクリル系またはノボラック系の感光性樹脂を用いて形成可能である。柱状電極106の形成が完了した基板に感光性樹脂を塗布し、乾燥させた後、必要なパターンを有しているマスクを用いて露光し、現像を行う。最後に基板の洗浄を行い、リブ407が形成された基板ができる。
 電解質105はインクジェット法により各リブ407内の区画中に充填することができる。R素子401用に調整された電解質105(R)、G素子402用に調整された電解質105(G)、B素子403用に調整された電解質105(B)をそれぞれ別個のインクジェットノズルから液滴として基板102に向けて射出する。各リブ407内に充填する電解質の量は液滴の数で制御する。
 電解質105(R)、105(G)および105(B)をインクジェット法で充填する場合は、リブ407に撥水性を持たせることが好ましい。液滴の着弾点がずれた場合でも、電解質105(R)、105(G)および105(B)の混合が避けられるからである。リブ407に撥水性をもたせるには、例えばCF等のフッ素を含むガスのプラズマに基板を晒し、リブ407表面にフッ素を含む層を形成することにより可能である。
 電解質105(R)、105(G)および105(B)を充填した後、透明電極103を形成した透明基板101をアライメントしながら貼り合わせる。貼り合わせは、基板101および102の周囲を接着剤406で接着することにより行う。接着剤406は、熱硬化型または紫外線硬化型等公知の接着剤が使用可能である。
 本実施形態の表示装置400は、アクティブマトリクス型またはパッシブマトリクス型のいずれでも構わないが、製造の困難性およびコスト等を考慮するとパッシブマトリクス型が好ましい。一画素を構成する副画素(サブピクセル)である、各素子401、402および403毎に駆動を行い、輝度を制御することにより、フルカラーの画像表示が可能となる。
 〔実施の形態2〕
 本発明の他の実施の形態について図面に基づいて説明すれば、以下のとおりである。なお、説明の便宜上、前記の実施の形態1の図面に示した部材と同一の機能を有している部材については、同一の符号を付し、その説明を省略する。
 実施の形態1に記載の表示素子100では、柱状電極106によるプラズモン共鳴放射により外部へ放射される光以外の光は透明基板102を透過するため表示には寄与しない。そこで、透過する光を有効に活用するため、本実施の形態では、図10に示すように、透明基板102と光吸収層108との間に蛍光体層501を設ける。
 本実施の形態に記載した表示素子500では、透明基板102を透過した光は蛍光体層501で吸収され、蛍光体を励起する。そして励起された蛍光体が基底状態に戻る際に蛍光を発する。たとえば、赤色を表示する表示素子の場合には、赤色の蛍光を発する蛍光体を設けておけば、プラズモン共鳴放射による赤色発光と蛍光体からの赤色発光とが重畳されるため、輝度が向上する。すなわち放射効率が向上する。
 蛍光体層501を形成する位置は透明基板102と光吸収層108との間に限られない。例えば、蛍光体層501が絶縁体である場合には、絶縁膜107に替えて形成することができる。
 蛍光体には、公知の無機蛍光体および有機蛍光体が利用できる。たとえば赤色蛍光体としては、Y:EuまたはYS:Eu等の無機蛍光体、あるいはローダミン系またはオキサジン系等の色素レーザーに用いられる有機蛍光体が使用できる。緑色蛍光体としては、ZnSiO:MnまたはCaSi:Tb等の無機蛍光体、あるいはローダミン系の有機蛍光体等が使用できる。青色蛍光体としては、SrMgSi:EuまたはBaMgAlO:Eu等の無機蛍光体、あるいはオキサジアゾール系の有機蛍光体が使用できる。
 これらの蛍光体は、粉末を有機樹脂等のバインダー中に分散させて使用することが好ましい。例えば、蛍光体粉末とバインダーとしてのポリカーボネート粉末を混合し、ジクロルメタン等の有機溶剤に溶かした塗液を基板上に塗布し、乾燥させることにより、蛍光体粉末がバインダー樹脂中に分散された蛍光体層501を形成することができる。
 〔実施の形態3〕
 本実施の形態の表示素子600は、図11および12に示すように、実施の形態1に示した表示素子100から柱状電極106および柱状電極106間に設けた絶縁膜107を除いた構成を有している。そして電解質105中には、金属イオンに加えて白色の微粒子601(光反射粒子)を分散させる。なお、電解質105の誘電率は特に限定されない。
 本実施の形態の表示素子600では、図11に示すように、透明電極103上に金属602を析出させた場合には、外光は析出した金属602に吸収されて黒表示となり、逆に図12に示すように、透明電極104上に金属603を析出させた場合には、外光は白色微粒子により反射されて白表示となる。
 このように、表示素子600は、金属602の膜厚が光透過率を0とする閾値以上に制御された場合を最低階調とし、金属602が析出しない場合を最高階調として、さらに金属602の膜厚を上記閾値と0との間で制御することにより、無彩色かつ無段階の中間調を表示することができる。
 白色微粒子には、たとえばチタニア(TiO)またはアルミナ(Al)のナノ粒子を用いることができる。
 本実施形態の表示素子600をマトリクス状に配列させて表示装置を構成した場合には白黒表示の表示装置が構成できる。この場合白色の反射効率は約75%が得られる。
 また実施の形態1で説明したR素子401、G素子402およびB素子403を有している表示素子に本実施の形態に示した白色表示素子405(W素子)を加えて、R素子、G素子、B素子およびW素子の4つの素子で1画素を構成することも可能である。この場合には白色の反射効率は約41%となる。W素子405を加えた場合の画素の配列例を図13に示す。
 なお、上記41%という反射効率は、以下のように計算した。すなわち、赤色、緑色、青色を反射する表示素子では、それぞれの反射効率が約30%である。白色を反射する表示素子では、上述のように反射効率が約75%である。このため、赤色、緑色、青色および白色を反射する表示素子の4個の表示素子で一画素とした表示装置の白色反射率は30%×3/4+75%×1/4=41%となる。
 本発明の上記表示素子、表示装置および表示方法について、以下に補足する。
(1)本発明に係る表示素子の前記第2の電極は、表示面側に位置することを特徴とする。
 上記構成によれば、柱状電極が接続された第1の電極に対向する第2の電極上に金属を析出させることにより、黒表示を行うことができるため、コントラストの向上が可能となる。さらに、第2の電極上に析出させる金属の膜厚を制御することにより階調表示が可能となる。
 柱状電極に対向する第2の電極上に金属を析出させるためには、電圧を印加する手段により、柱状電極を正に、第2の電極を負にバイアスすればよい。
 また、第2の電極上に析出させる金属の膜厚の制御は、印加電圧および印加時間の少なくとも一方を制御することにより行うことが可能である。
(2)また本発明に係る表示素子の電解質の誘電率は、表示する色のピーク波長に応じて調整されていることを特徴とする。
 上記の構成によれば、プラズモン共鳴放射による光のピーク波長は電解質の誘電率に大きく依存するため、広い範囲で表示色を調整することができる。また、前述したように、析出する金属の粒径が、柱状電極の直径または断面積によって精度よく決まるため、表示色の調整範囲が広がる上に、調整された表示色の色純度が高まるという相乗効果を得ることができる。
(3)また本発明に係る表示素子の柱状電極は周期配列を有していることを特徴とする。
 上記構成により、各柱状電極の少なくとも頂面に析出した金属により発生する表面プラズモン共鳴を共振させることができるため、表示輝度の向上が可能となる。
(4)また本発明に係る表示素子は、前記第1の電極および第2の電極のうち、表示面と反対側に位置する電極の表示面側の面より外界側に位置する面に光吸収層を有していることを特徴とする。
 上記構成により、表示に寄与しない光が表示素子を透過した後、外部で反射または散乱し、再び表示素子を透過し表示面から放射されることを防ぐことができるため、コントラストの向上が可能となる。
(5)また本発明に係る表示素子は、前記第1の電極および第2の電極のうち表示面と反対側に位置する電極の表示面側の面上に、または当該面より外界側の光吸収層と当該面との間に、表示する色のピーク波長に応じた蛍光を発する蛍光体層を有していることを特徴とする。
 上記構成により、柱状電極によるプラズモン共鳴放射に寄与しなかった光により蛍光体が励起され、蛍光体から所望のピーク波長をもつ光が放射される。プラズモン共鳴放射による光と、蛍光体から放射した光がともに表示に寄与するため、光を有効活用できる。従って、光利用効率の高い表示装置が可能となる。
 なお、表示面と反対側に位置する電極の表示面側の面上に蛍光体層を設ける構成は、前記絶縁膜を蛍光体層に置き換えた構成を含んでいる。
(6)また本発明に係る表示素子の金属イオンは銀、銅または金から選ばれた金属のイオンであることを特徴とする。
 上記構成により、反射される光の波長を可視光域に設定することが可能となる。
(7)また本発明に係る表示素子の柱状電極は前記電解質に対して耐腐食性を有している金属、例えば金または白金で形成されていることを特徴とする。
 上記構成により、柱状電極が腐食することなく、安定な表示が可能となる。
(8)また本発明に係る表示素子の柱状電極の断面積は3×10-18から8×10-15であることを特徴としている。
 プラズモン共鳴放射による光のピーク波長は、析出金属の粒径または断面積に依存する。析出金属の粒径または断面積は、柱状電極の直径または断面積によって決まるため、柱状電極の断面積が上記範囲内において、プラズモン共鳴放射による光のピーク波長を可視光の範囲内とすることができる。
 上記下限値3×10-18は、プラズモン共鳴波長が可視光の範囲に入る理論限界値の下限であると考えられる。なお、本願明細書において、数値範囲の下限値および上限値は、その数値範囲に含まれている。
(9)また本発明に係る表示素子の柱状電極の断面積は3×10-16から8×10-15であることを特徴としている。
 柱状電極の断面積を3×10-16以上にすると、柱状電極の製造ばらつきが放射波長の変動に及ぼす影響を小さくすることができる。また、柱状電極の断面積が8×10-15を上回ると、可視光の領域の光に対して回折現象が起こるようになるため、好ましくない。
(10)また本発明に係る表示装置は、上記の表示素子とそれぞれ同じ構成を有している複数個の表示素子を含むことを特徴とする。
 上記構成により、画質の良い画像表示が可能となる。
(11)また本発明に係る表示装置の前記複数個の表示素子には、互いに異なる誘電率の電解質を有している表示素子が含まれていることを特徴とする。
 上記構成により、電解質の誘電率の違いによって表示素子の反射波長を変えることができるため、カラー表示が可能となる。
(12)また本発明に係る表示装置の前記複数個の表示素子には、互いに異なる断面積の柱状電極を有している表示素子が含まれていることを特徴とする。
 上記構成により、柱状電極の断面積の違いによって表示素子の反射波長を変えることができるため、カラー表示が可能となる。
(13)また本発明に係る表示装置の前記複数個の表示素子には、互いに異なる金属イオンを含む電解質を有している表示素子が含まれていることを特徴とする。
 上記構成により、柱状電極の頂面に析出する金属の違いによって表示素子の反射波長を変えることができるため、カラー表示が可能となる。
(14)また本発明に係る表示装置は、対向する一組の電極と、前記対向する一組の電極に挟持された金属イオンおよび光反射粒子を含んだ電解質と、前記対向する一組の電極間に電圧を印加する手段とを有している表示素子をさらに含んでいることを特徴とする。
 上記表示素子は、前記の絶縁膜を備えた表示素子とは異なり、絶縁膜および柱状電極を備えていない。かつ、対向する一組の電極に挟持された電解質には、金属イオンに加えて光反射粒子が含まれている。
 これにより、表示面側の電極に金属を析出していない光透過状態では、電解質に入射した光が、光反射粒子によって反射されるため、上記表示素子は白色表示を行うことができる。
 しかも、異なる色のカラー表示を行う複数の表示素子を用いた混色によって作り出す白色よりも、上記光反射粒子による反射によって作り出す白色の方が輝度が高い傾向を持っている。
 したがって、異なる色のカラー表示を行う複数の表示素子を備えた表示装置に、白色表示を行う上記表示素子を加えることによって、白色表示を行う上記表示素子を備えていない表示装置より白色輝度を高めることができる。
 なお、電圧を印加する手段を介して、表示面側の電極に析出させる金属の厚みを制御することによって、白色と黒色との間の中間調を表示させることもできる。電圧を印加する手段は、1つの手段として、異なる色のカラー表示を行う複数の表示素子と、白色表示を行う上記表示素子とで共用することができる。
(15)また、本発明の表示方法においては、前記電極の全面に析出させる金属の膜厚を制御することにより、黒色または中間調の表示を行うことを特徴とする。
 上記表示方法により、コントラストが高く、色再現範囲の広い表示が可能となる。
 本発明は上述した各実施形態に限定されるものではなく、請求項に示した範囲で種々の変更が可能であり、異なる実施形態にそれぞれ開示された技術的手段を適宜組み合わせて得られる実施形態についても本発明の技術的範囲に含まれる。
 本発明は、反射型表示装置に適用することができる。
 100、500、600  表示素子
 101、102  透明基板
 103  透明電極(第2の電極)
 104  透明電極(第1の電極)
 105  電解質
   105(R)  電解質
   105(G)  電解質
   105(B)  電解質
 106  柱状電極(局所電極)
 107  絶縁膜
 108  光吸収層
 109、110、602、603  金属
 306  任意パルス発生器(電圧を印加する手段)
 400  表示装置
 401  表示素子(R素子)
 402  表示素子(G素子)
 403  表示素子(B素子)
 404  表示素子(Y素子)
 405  白色表示素子(W素子)
 406  接着剤
 407  リブ
 501  蛍光体層
 601  白色微粒子(光反射粒子)

Claims (19)

  1.  対向する第1の電極および第2の電極と、
     前記第1の電極および第2の電極に挟持され、かつ金属イオンを含む電解質と、
     前記第1の電極と電気的に接続された少なくとも一つの柱状電極と、
     前記柱状電極の頂部以外の部分および前記第1の電極の表面を覆う絶縁膜と、
     前記第1の電極および第2の電極間に電圧を印加する手段とを有し、
     前記柱状電極の少なくとも頂面に、前記金属イオンに由来する金属が析出する時に、外光の少なくとも一部を反射することによる表示が行われることを特徴とする表示素子。
  2.  前記第2の電極が、表示面側に位置することを特徴とする請求項1に記載の表示素子。
  3.  前記電解質の誘電率は、表示する色のピーク波長に応じて調整されていることを特徴とする請求項1または2に記載の表示素子。
  4.  前記柱状電極は周期配列を有していることを特徴とする請求項1から3のいずれか一項に記載の表示素子。
  5.  前記第1の電極および第2の電極のうち、表示面と反対側に位置する電極の表示面側の面より外界側に位置する面に光吸収層を有していることを特徴とする請求項1から4のいずれか一項に記載の表示素子。
  6.  前記第1の電極および第2の電極のうち、表示面と反対側に位置する電極の表示面側の面上に、または当該面より外界側の光吸収層と当該面との間に、表示する色のピーク波長に応じた蛍光を発する蛍光体層を有していることを特徴とする請求項1から5のいずれか一項に記載の表示素子。
  7.  前記金属イオンは銀、銅または金から選ばれた金属のイオンであることを特徴とする請求項1から6のいずれか一項に記載の表示素子。
  8.  前記柱状電極は前記電解質に対して耐腐食性を有している金属で形成されていることを特徴とする請求項1から7のいずれか一項に記載の表示素子。
  9. 前記柱状電極は金または白金で形成されていることを特徴とする請求項1から8のいずれか一項に記載の表示素子。
  10.  前記柱状電極の断面積は3×10-18から8×10-15であることを特徴とする請求項1から9のいずれか一項に記載の表示素子。
  11.  前記柱状電極の断面積は3×10-16から8×10-15であることを特徴とする請求項1から9のいずれか一項に記載の表示素子。
  12.  電極と、
     上記電極と対向する絶縁膜の表面に局所的に露出した少なくとも1つの局所電極と、
     上記電極と上記絶縁膜とに挟持され、かつ金属イオンを含む電解質と、
     上記電極と上記局所電極との間に電圧が印加されることによって、前記局所電極の少なくとも頂面に、前記金属イオンに由来する金属が析出する時に、外光の少なくとも一部を反射することによる表示が行われることを特徴とする表示素子。
  13.  請求項1から12のいずれか一項に記載した表示素子とそれぞれ同じ構成を有している複数個の表示素子が含まれていることを特徴とする表示装置。
  14.  前記複数個の表示素子には、互いに異なる誘電率の電解質を有している表示素子が含まれていることを特徴とする請求項13に記載の表示装置。
  15.  前記複数個の表示素子には、互いに異なる断面積の柱状電極を有している表示素子が含まれていることを特徴とする請求項13または14に記載の表示装置。
  16.  前記複数個の表示素子には、互いに異なる金属イオンを含む電解質を有している表示素子が含まれていることを特徴とする請求項13から15のいずれか一項に記載の表示装置。
  17.  対向する一組の電極と、前記対向する一組の電極に挟持された金属イオンおよび光反射粒子を含んだ電解質と、前記対向する一組の電極間に電圧を印加する手段とを有している表示素子をさらに含んでいることを特徴とする請求項13から16のいずれか一項に記載の表示装置。
  18.  電極と対向する絶縁膜の表面に局所的に露出した少なくとも1つの局所電極と、前記電極との間に電圧を印加することによって、
     前記電極と絶縁膜とに挟持された電解質から、前記局所電極上に金属を析出させたときに、
     外光の少なくとも一部を反射することによる表示が行われること
    を特徴とする表示方法。
  19.  前記電極の全面に析出させる金属の膜厚を制御することにより、黒色または中間調の表示を行うことを特徴とする請求項18に記載の表示方法。
PCT/JP2011/066977 2010-08-02 2011-07-26 表示素子、表示装置および表示方法 WO2012017864A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-173580 2010-08-02
JP2010173580 2010-08-02

Publications (1)

Publication Number Publication Date
WO2012017864A1 true WO2012017864A1 (ja) 2012-02-09

Family

ID=45559367

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/066977 WO2012017864A1 (ja) 2010-08-02 2011-07-26 表示素子、表示装置および表示方法

Country Status (1)

Country Link
WO (1) WO2012017864A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103472648A (zh) * 2013-08-30 2013-12-25 京东方科技集团股份有限公司 一种电致变色器件及其制作方法和显示装置
WO2017130949A1 (ja) * 2016-01-27 2017-08-03 シャープ株式会社 波長変換基板、液晶素子、液晶モジュールおよび液晶表示装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002079868A1 (fr) * 2001-03-30 2002-10-10 Sony Corporation Unite d'affichage et procede d'actionnement correspondant
JP2006064800A (ja) * 2004-08-25 2006-03-09 Fujitsu Ltd エレクトロクロミック表示装置
JP2007086188A (ja) * 2005-09-20 2007-04-05 Fuji Xerox Co Ltd 表示方法および表示装置
JP2007316257A (ja) * 2006-05-24 2007-12-06 Casio Comput Co Ltd エレクトロクロミック表示デバイス

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002079868A1 (fr) * 2001-03-30 2002-10-10 Sony Corporation Unite d'affichage et procede d'actionnement correspondant
JP2006064800A (ja) * 2004-08-25 2006-03-09 Fujitsu Ltd エレクトロクロミック表示装置
JP2007086188A (ja) * 2005-09-20 2007-04-05 Fuji Xerox Co Ltd 表示方法および表示装置
JP2007316257A (ja) * 2006-05-24 2007-12-06 Casio Comput Co Ltd エレクトロクロミック表示デバイス

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103472648A (zh) * 2013-08-30 2013-12-25 京东方科技集团股份有限公司 一种电致变色器件及其制作方法和显示装置
CN103472648B (zh) * 2013-08-30 2016-06-15 京东方科技集团股份有限公司 一种电致变色器件及其制作方法和显示装置
WO2017130949A1 (ja) * 2016-01-27 2017-08-03 シャープ株式会社 波長変換基板、液晶素子、液晶モジュールおよび液晶表示装置
CN108700775A (zh) * 2016-01-27 2018-10-23 夏普株式会社 波长转换基板、液晶元件、液晶模块及液晶显示装置

Similar Documents

Publication Publication Date Title
US9893318B2 (en) Organic light-emitting diode, array substrate and preparation method thereof, and display device
US7580181B2 (en) Display
TWI435154B (zh) Display device and manufacturing method thereof
KR102302401B1 (ko) 광루미네선스 장치, 이의 제조 방법 및 이를 포함하는 표시 장치
US20040150613A1 (en) Photoluminescent electrophoretic display
US11215859B2 (en) Display apparatus and method of manufacturing the same
US9377651B2 (en) Cholesteric liquid display and method for preparing the same
JP4755885B2 (ja) 電気泳動表示素子、電気泳動表示装置、着色泳動微粒子、絶縁性液体及び電気泳動表示素子の駆動方法
JP2004286836A (ja) 電気泳動表示装置および製造方法
JP2005537519A (ja) 電気光学ディスプレイ
CN112397547A (zh) 显示装置
EP3392705B1 (en) Electro-optical apparatus and display apparatus comprising such an electro-optical apparatus
CN111679466B (zh) 视角可切换的显示面板、显示装置及视角切换方法
JP2007322998A (ja) 表示媒体、表示素子、及び表示方法
WO2012017864A1 (ja) 表示素子、表示装置および表示方法
US20100079049A1 (en) Plasma display device
JP5221338B2 (ja) 電界駆動反射型表示装置
CN114764205A (zh) 显示面板及其制备方法、电子设备
WO2012128105A1 (ja) 表示素子、表示装置、および表示方法
EP1850652A2 (en) Filter for display apparatus, method of manufacturing the same and plasma display apparatus
JP2010210866A (ja) 表示パネル、表示パネルの製造方法
JP2639965B2 (ja) プラズマディスプレイ
JP2003068218A (ja) プラズマディスプレイパネル
JP2011145710A (ja) 電気泳動表示素子、電気泳動表示装置、着色泳動微粒子、絶縁性液体及び電気泳動表示素子の駆動方法
KR100744741B1 (ko) 플라즈마 디스플레이 패널

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11814492

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11814492

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP