WO2012017751A1 - Organic light emitting element, organic light emitting device, and color conversion method - Google Patents

Organic light emitting element, organic light emitting device, and color conversion method Download PDF

Info

Publication number
WO2012017751A1
WO2012017751A1 PCT/JP2011/064392 JP2011064392W WO2012017751A1 WO 2012017751 A1 WO2012017751 A1 WO 2012017751A1 JP 2011064392 W JP2011064392 W JP 2011064392W WO 2012017751 A1 WO2012017751 A1 WO 2012017751A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
organic
light emitting
layer
conversion layer
Prior art date
Application number
PCT/JP2011/064392
Other languages
French (fr)
Japanese (ja)
Inventor
大江 昌人
近藤 克己
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Publication of WO2012017751A1 publication Critical patent/WO2012017751A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/10Apparatus or processes specially adapted to the manufacture of electroluminescent light sources
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/12Light sources with substantially two-dimensional radiating surfaces
    • H05B33/22Light sources with substantially two-dimensional radiating surfaces characterised by the chemical or physical composition or the arrangement of auxiliary dielectric or reflective layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/1201Manufacture or treatment
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/30Devices specially adapted for multicolour light emission
    • H10K59/38Devices specially adapted for multicolour light emission comprising colour filters or colour changing media [CCM]
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/126Shielding, e.g. light-blocking means over the TFTs
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/875Arrangements for extracting light from the devices
    • H10K59/876Arrangements for extracting light from the devices comprising a resonant cavity structure, e.g. Bragg reflector pair

Definitions

  • the present invention relates to an organic light emitting device, an organic light emitting device, and a color conversion method.
  • an electroluminescence (EL) element is self-luminous and has high visibility and is a completely solid element. Therefore, the EL element has excellent impact resistance and is easy to handle. Therefore, the EL element is attracting attention as a light emitting element in various display devices.
  • the EL element includes an inorganic EL element using an inorganic compound as a light emitting material and an organic EL element using an organic compound as a light emitting material. Among these, organic EL elements have been actively researched for practical use since the applied voltage can be significantly reduced.
  • the conventional method requires a mask having a size equal to or larger than the substrate size, it is necessary to manufacture and process a mask corresponding to a large substrate. Since this mask requires a very thin metal (general film thickness: 50 nm to 100 nm), it is difficult to increase the size of the mask.
  • the mask is bent at the central portion, which causes color mixture of the light emitting layer as described above.
  • a portion where the organic layer is not formed is formed, which may lead to defects due to leakage of the upper and lower electrodes.
  • an increase in the size of the mask leads to an increase in display cost.
  • the cost problem is regarded as the biggest problem in the organic EL display.
  • a light conversion method is disclosed in which a fluorescent material that absorbs light in the light emitting region of the organic light emitting layer and emits fluorescence in the visible light region is used as a filter without coating the organic light emitting layer for each color (for example, Patent Documents). 1 and 2).
  • An example of this light conversion type organic light emitting device is shown in FIG.
  • An organic light emitting device 200 illustrated in FIG. 12 includes an organic EL 210, a green pixel, a red pixel, and a blue pixel between a substrate 230 and a transparent substrate 240.
  • the organic EL 210 sandwiches a light emitting layer 211 that emits blue to blue green light with a pair of electrodes 212 and 213.
  • the green pixel has a fluorescence conversion layer 220G that absorbs blue to blue-green light emitted from the organic EL 210 and emits green light.
  • the red pixel has a fluorescence conversion layer 220R that absorbs blue to blue-green light emitted from the organic EL 210 and emits red light.
  • the blue pixel may be provided with a blue color filter (not shown) for the purpose of improving color purity as necessary.
  • Such a light conversion method is superior to the above-described separate coating method in that it is not necessary to pattern the organic light emitting layer and can be easily manufactured, and in terms of cost. For this reason, display devices that perform full color conversion using a light conversion method are promising and research and development are underway.
  • an organic EL 210 that emits light in a blue region is used as a light source.
  • a material that emits light in a blue region in particular, a blue phosphorescent material, is inferior in terms of light emission efficiency (luminance) and life compared to a red light emitting material and a green light emitting material, and is under development. Therefore, in the conventional structure in which blue light is emitted from the organic EL and the light is color-converted by the fluorescence conversion layer, it is not possible to obtain an organic light-emitting element with high emission efficiency and long life.
  • One embodiment of the present invention provides a high-efficiency (high luminance) organic light-emitting element, an organic light-emitting device, and a color conversion method.
  • the present inventors arrange an organic light emitting element suitable for the purpose by arranging a layer having a function of converting the wavelength of light emitted from the organic EL light emitting part between the organic EL light emitting part and the fluorescence conversion layer. I found that I could do it.
  • An organic light emitting device includes an organic EL light emitting unit including at least one organic layer including a light emitting layer and a pair of electrodes sandwiching the organic layer, and extracts light from the organic EL light emitting unit.
  • a fluorescence conversion layer that is disposed on the surface side and converts fluorescence of incident light, and is disposed between the organic EL light emitting unit and the fluorescence conversion layer, and converts the wavelength of light emitted from the organic EL light emitting unit.
  • a wavelength conversion layer that emits light toward the fluorescence conversion layer.
  • the electrode is a reflective electrode, and the optical film thickness between the reflective interfaces defined by the pair of reflective electrodes is light emitted from the organic EL light emitting unit. May be set so as to enhance the intensity of light of a specific wavelength.
  • the wavelength conversion layer may convert the wavelength of light emitted from the organic EL light-emitting unit into one half.
  • the wavelength conversion layer may be configured by stacking a plurality of layers in which polarization directions are alternately reversed.
  • the wavelength conversion layer may be configured by alternately stacking semiconductor layers and dielectric layers.
  • each of the plurality of layers constituting the wavelength conversion layer may be made of a unipolarized dielectric material.
  • the dielectric material may be made of a material selected from the group consisting of a ferroelectric material, a glass material, and a polymer material.
  • the organic EL light emitting unit may emit light in a red region.
  • the organic EL light emitting unit may emit light in a green region.
  • the organic light emitting device further includes a light reflective layer on a light extraction surface side of the light converted by the wavelength conversion layer, and a surface from which the light from the light reflective layer and the organic EL light emitting unit is extracted.
  • the optical film thickness of the reflective interface defined by the reflective electrode on the side may be set so as to enhance the intensity of light of a specific wavelength among the light converted in wavelength in the wavelength conversion layer.
  • the wavelength conversion layer converts light emitted from the organic EL light-emitting portion into light in an ultraviolet region to a blue region
  • the fluorescence conversion layer converts the light in the wavelength conversion layer.
  • the emitted light may be converted into light in the green region or light in the red region.
  • the fluorescence conversion layer can perform at least two types of color conversion, one of which is color conversion that converts light converted by the wavelength conversion layer into light in a green region. And the other one is color conversion for converting light converted by the wavelength conversion layer into light in the red region, and the organic light emitting element may be a multicolor light emitting element.
  • a color filter may be further provided on the side of emitting the light converted by the fluorescence conversion layer.
  • the organic light emitting device may be configured to be provided with a drive unit that drives the organic EL light emitting unit of the organic light emitting device in the organic light emitting device.
  • the color conversion method according to one aspect of the present invention emits light from an organic EL light emitting unit including at least one organic layer including a light emitting layer, and a pair of electrodes sandwiching the organic layer, By converting the wavelength of the light emitted from the organic EL light emitting unit by the wavelength conversion layer disposed between the fluorescence conversion layer that converts the incident light to fluorescence, and emitting the converted light to the fluorescence conversion layer side, The light converted by the wavelength conversion layer is converted to fluorescence by the fluorescence conversion layer to generate visible light.
  • the wavelength conversion layer may convert the wavelength of light emitted from the organic EL light emitting unit into one half.
  • the wavelength conversion layer may be a stacked body including a plurality of layers in which polarization directions are alternately reversed.
  • the wavelength conversion layer may be a stacked body in which semiconductor layers and dielectric layers are alternately stacked.
  • a high-efficiency (high luminance) organic light-emitting element an organic light-emitting device, and a color conversion method can be provided.
  • FIG. 1 is a schematic cross-sectional view illustrating an example of the organic light-emitting device according to the first embodiment of the present invention
  • FIG. 2 is a top view of the organic light-emitting device shown in FIG.
  • An organic light emitting device 20 shown in FIG. 1 includes a substrate 1, an organic EL light emitting unit (light source) 10, a sealing substrate 9, a fluorescence conversion layer 8R, a green fluorescence conversion layer 8G, a blue fluorescence conversion layer 8B, and a wavelength conversion.
  • Layer 18 is a schematic cross-sectional view illustrating an example of the organic light-emitting device according to the first embodiment of the present invention
  • FIG. 2 is a top view of the organic light-emitting device shown in FIG.
  • An organic light emitting device 20 shown in FIG. 1 includes a substrate 1, an organic EL light emitting unit (light source) 10, a sealing substrate 9, a fluorescence conversion layer 8R, a green fluorescence conversion layer 8G, a blue fluorescence
  • the substrate 1 has a TFT (Thin Film Transistor) circuit 2.
  • the organic EL light emitting unit (light source) 10 is provided on the substrate 1 via the interlayer insulating film 3 and the planarizing film 4.
  • the fluorescence conversion layer 8R, the green fluorescence conversion layer 8G, and the blue fluorescence conversion layer 8B are partitioned by the black matrix 7 and arranged in parallel on one surface of the sealing substrate 9.
  • the wavelength conversion layer 18 is disposed between the organic EL light emitting unit 10 and each of the fluorescence conversion layers 8R, 8G, and 8B.
  • the substrate 1 and the sealing substrate 9 are arranged such that the organic EL light emitting unit 10 and the fluorescence conversion layers 8R, 8G, and 8B face each other with the sealing material 6 and the wavelength conversion layer 18 interposed therebetween.
  • the organic EL light emitting unit 10 and the wavelength conversion layer 18 are covered with the inorganic sealing film 5.
  • an organic EL layer (organic layer) 17 is sandwiched between the first electrode 12 and the second electrode 16.
  • a reflective electrode 11 is formed on the lower surface of the first electrode 12.
  • the organic EL layer (organic layer) 17 is a stack of a hole transport layer 13, a light emitting layer 14, and an electron transport layer 15.
  • the reflective electrode 11 and the first electrode 12 are connected to one of the TFT circuits 2 by a wiring 2 b provided through the interlayer insulating film 3 and the planarizing film 4.
  • the second electrode 16 is connected to one of the TFT circuits 2 by a wiring 2 a provided through the interlayer insulating film 3, the planarizing film 4 and the edge cover 19.
  • the wavelength conversion layer 18 converts the wavelength of the light emitted from the organic EL light emitting unit 10 and emits it to the fluorescence conversion layers 8R, 8G, and 8B side.
  • the light emitted from the wavelength conversion layer 18 and incident on the fluorescence conversion layers 8R, 8G, and 8B is converted into red, green, and blue light by the fluorescence conversion layers 8R, 8G, and 8B, respectively. Injected to the sealing substrate 9 side. Therefore, in the organic light emitting device 20 of the present embodiment, the wavelength of the light emitted from the organic EL light emitting unit 10 that is a light source is converted by the wavelength conversion layer 18. This wavelength-converted light enters each of the fluorescence conversion layers 8R, 8G, and 8B.
  • the incident light is converted into fluorescence in each of the fluorescence conversion layers 8R, 8G, and 8B, and emitted to the sealing substrate 9 side (observer side) as light of three colors of red, green, and blue. Yes.
  • the detail of the structure of each part which comprises the organic light emitting element 20 shown in FIG. 1 is mentioned later.
  • the organic light emitting device 20 of the present embodiment shows an example in which the red fluorescence conversion layer 8R, the green fluorescence conversion layer 8G, and the blue fluorescence conversion layer 8B are juxtaposed one by one in FIG. .
  • the fluorescence conversion layers 8R, 8G, and 8B surrounded by a broken line extend in a stripe shape along the y-axis, and each fluorescence conversion layer 8R, 8G along the x-axis. , 8B are sequentially arranged in a two-dimensional stripe arrangement.
  • FIG. 1 The example shown in FIG.
  • each RGB pixel (each fluorescence conversion layer 8R, 8G, 8B) is arranged in stripes, but the present invention is not limited to this, and the arrangement of each RGB pixel is a mosaic.
  • a conventionally known RGB pixel array such as an array or a delta array may be used.
  • a TFT circuit 2 and various wirings (not shown) are formed on the substrate 1.
  • An interlayer insulating film 3 and a planarizing film 4 are sequentially stacked so as to cover the upper surface of the substrate 1 and the TFT circuit 2.
  • the substrate for example, an inorganic material substrate made of glass, quartz or the like, a plastic substrate made of polyethylene terephthalate, polycarbazole, polyimide or the like, an insulating substrate such as a ceramic substrate made of alumina or the like, aluminum (Al), iron (Fe ), Etc., a substrate on which an insulating material such as silicon oxide (SiO 2 ) is coated on the surface, or a method of anodizing the surface of a metal substrate made of Al or the like Although the board
  • this invention is not limited to these.
  • a plastic substrate or a metal substrate since it becomes possible to form a bending part and a bending part without stress, it is preferable to use a plastic substrate or a metal substrate. It is more preferable to use a substrate in which a plastic substrate is coated with an inorganic material and a substrate in which a metal substrate is coated with an inorganic insulating material.
  • a leak short circuit caused by the protrusion of the metal substrate that may occur when the metal substrate is used as the substrate of the organic EL light emitting unit 10.
  • the TFT circuit 2 In order to form the TFT circuit 2 on the base material 1, it is preferable to use a substrate that does not melt at a temperature of 500 ° C. or less and does not cause distortion.
  • a metal substrate When a metal substrate is used as the substrate 1, it is preferable to use a metal substrate formed of an iron-nickel alloy having a linear expansion coefficient of 1 ⁇ 10 ⁇ 5 / ° C. or less. Since a general metal substrate has a thermal expansion coefficient different from that of glass, it is difficult to form the TFT circuit 2 on the metal substrate with an available production apparatus. However, using a metal substrate formed of an iron-nickel alloy having a linear expansion coefficient of 1 ⁇ 10 ⁇ 5 / ° C.
  • the TFT circuit 2 is conventionally formed on the metal substrate. It can be formed at low cost using the production apparatus. Moreover, when using a plastic substrate as the base material 1, the heat-resistant temperature is very low. Therefore, it is possible to transfer and form the TFT circuit 2 on the plastic substrate by forming the TFT circuit 2 on the glass substrate and then transferring the TFT substrate 2 to the plastic substrate.
  • the TFT circuit 2 is formed on the substrate 1 in advance before the organic EL light emitting unit 10 is formed, and functions as a switching device and a driving device.
  • a conventionally known TFT circuit 2 can be used.
  • a metal-insulator-metal (MIM) diode can be used instead of the TFT for switching and driving.
  • the TFT circuit 2 can be formed using a known material, structure, and formation method.
  • amorphous silicon amorphous silicon
  • polycrystalline silicon polysilicon
  • microcrystalline silicon inorganic semiconductor materials such as cadmium selenide, zinc oxide, indium oxide-oxide
  • oxide semiconductor materials such as gallium-zinc oxide
  • organic semiconductor materials such as polythiophene derivatives, thiophene oligomers, poly (p-ferylene vinylene) derivatives, naphthacene, and pentacene.
  • examples of the structure of the TFT circuit 2 include a stagger type, an inverted stagger type, a top gate type, and a coplanar type.
  • a method for forming the active layer constituting the TFT circuit 2 for example, there are the following methods.
  • a method in which impurities are ion-doped into amorphous silicon formed by a plasma enhanced chemical vapor deposition (PECVD) method.
  • PECVD plasma enhanced chemical vapor deposition
  • Amorphous silicon was formed by a low pressure chemical vapor deposition (LPCVD) method using silane (SiH 4 ) gas, and the amorphous silicon was crystallized by a solid phase growth method to obtain polysilicon. Thereafter, ion doping is performed by ion implantation.
  • PECVD plasma enhanced chemical vapor deposition
  • the gate insulating film of the TFT circuit 2 used in this embodiment can be formed using a known material. Examples thereof include SiO 2 formed by PECVD, LPCVD, etc., or SiO 2 obtained by thermally oxidizing a polysilicon film. Further, the signal electrode line, the scanning electrode line, the common electrode line, the first drive electrode, and the second drive electrode of the TFT circuit 2 used in the present embodiment can be formed using a known material, for example, tantalum. (Ta), aluminum (Al), copper (Cu), and the like.
  • the interlayer insulating film 3 can be formed using a known material, for example, silicon oxide (SiO 2 ), silicon nitride (SiN or Si 2 N 4 ), tantalum oxide (TaO or Ta 2 O). 5 )) or an organic material such as an acrylic resin or a resist material.
  • a known material for example, silicon oxide (SiO 2 ), silicon nitride (SiN or Si 2 N 4 ), tantalum oxide (TaO or Ta 2 O). 5 )
  • an organic material such as an acrylic resin or a resist material.
  • Examples of the method for forming the interlayer insulating film 3 include a dry process such as a chemical vapor deposition (CVD) method and a vacuum deposition method, and a wet process such as a spin coating method. Moreover, it can also pattern by the photolithographic method etc. as needed.
  • the interlayer insulating film 3 (light-shielding insulating film) having light-shielding properties is used. Is preferred. In the present embodiment, the interlayer insulating film 3 and the light-shielding insulating film can be used in combination.
  • Examples of the light-shielding insulating film include those obtained by dispersing pigments or dyes such as phthalocyanine and quinaclone in polymer resins such as polyimide, color resists, black matrix materials, inorganic insulating materials such as Ni x Zn y Fe 2 O 4, and the like. It is done.
  • the flattening film 4 is provided to prevent a defect or the like of the organic EL light emitting unit 10 from being generated due to unevenness of the surface of the TFT circuit 2.
  • Examples of the defect of the organic EL light emitting unit 10 include a pixel electrode defect, an organic EL layer defect, a counter electrode disconnection, a pixel electrode and counter electrode short circuit, and a breakdown voltage decrease.
  • the planarization film 4 can be omitted.
  • the planarization film 4 can be formed using a known material, and examples thereof include inorganic materials such as silicon oxide, silicon nitride, and tantalum oxide, and organic materials such as polyimide, acrylic resin, and resist material.
  • planarizing film 4 examples include a dry process such as a CVD method and a vacuum deposition method, and a wet process such as a spin coating method, but the present invention is not limited to these materials and the forming method. Further, the planarizing film 4 may have a single layer structure or a multilayer structure.
  • an organic EL light emitting unit 10 that is a light source (light emitting source) is formed.
  • the organic EL light emitting unit 10 includes a first electrode 12, a second electrode 16, and an organic EL layer (organic layer) 17.
  • the first electrode 12 is an anode.
  • the second electrode 16 is a cathode disposed so as to face the first electrode 12.
  • the organic EL layer (organic layer) 17 is composed of at least one layer including the light emitting layer 14 sandwiched between the first electrode 12 and the second electrode 16.
  • the first electrode 12 and the second electrode 16 function as a pair as an anode or a cathode of the organic EL light emitting unit 10.
  • the second electrode 16 is a cathode.
  • the second electrode 16 is an anode.
  • FIG. 1 and the following description a case where the first electrode 12 is an anode and the second electrode 16 is a cathode will be described as an example.
  • the hole injection layer and the hole transport layer are arranged on the second electrode side 16 in a laminated structure of an organic EL layer (organic layer) 17 described later.
  • the electron injection layer and the electron transport layer may be on the first electrode 12 side.
  • an electrode material for forming the first electrode 12 and the second electrode 16 a known electrode material can be used.
  • a material for forming the first electrode 12 that is an anode from the viewpoint of efficiently injecting holes into the organic EL layer 17, gold (Au), platinum (Pt), a work function of 4.5 eV or more, Metals such as nickel (Ni) and oxides (ITO) made of indium (In) and tin (Sn), oxides made of tin (Sn) (SnO 2 ), oxides made of indium (In) and zinc (Zn) (IZO) etc. are mentioned.
  • lithium (Li), calcium (with a work function of 4.5 eV or less) from the viewpoint of more efficiently injecting electrons into the organic EL layer 17
  • metals such as Ca), cerium (Ce), barium (Ba), and aluminum (Al), or alloys such as Mg: Ag alloy and Li: Al alloy containing these metals.
  • the first electrode 12 and the second electrode 16 can be formed by a known method such as an EB (electron beam) vapor deposition method, a sputtering method, an ion plating method, or a resistance heating vapor deposition method using the above materials.
  • the present invention is not limited to these forming methods.
  • the formed electrode can be patterned by a photolithographic fee method or a laser peeling method, or a patterned electrode can be directly formed by combining with a shadow mask.
  • the film thickness of the first electrode 12 and the second electrode 16 is preferably 50 nm or more. When the film thicknesses of the first electrode 12 and the second electrode 16 are less than 50 nm, the wiring resistance increases, so that the drive voltage may increase.
  • the organic light emitting device 20 of the present embodiment light emitted from the light emitting layer 14 of the organic EL light emitting unit 10 that is a light source is emitted from the wavelength conversion layer 18 and the fluorescence conversion layers 8R, 8G, and 8B side. Therefore, it is preferable to use a translucent electrode as the second electrode 16.
  • a translucent electrode As the material of the semitransparent electrode, a metal semitransparent electrode alone or a combination of a metal semitransparent electrode and a transparent electrode material can be used, and silver is preferable from the viewpoint of reflectance and transmittance.
  • the film thickness of the semitransparent electrode is preferably 5 nm to 30 nm.
  • the film thickness of the semi-transparent electrode is less than 5 nm, when using the microcavity effect described later, there is a possibility that light cannot be sufficiently reflected and the interference effect cannot be obtained sufficiently. Moreover, when the film thickness of a semi-transparent electrode exceeds 30 nm, since the light transmittance falls rapidly, there exists a possibility that a brightness
  • the extraction efficiency of light emission from the light emitting layer 14 is used as the first electrode 12 located on the side opposite to the side from which light emission from the light emitting layer 14 of the organic EL light emitting unit 10 that is a light source is extracted.
  • a highly reflective electrode that reflects light.
  • electrode materials used in this case include reflective metal electrodes such as aluminum, silver, gold, aluminum-lithium alloys, aluminum-neodymium alloys, and aluminum-silicon alloys, transparent electrodes, and reflective metal electrodes (reflective electrodes). The electrode etc. which combined these are mentioned.
  • FIG. 1 shows an example in which the first electrode 12 that is a transparent electrode is formed on the planarizing film 4 via the reflective electrode 11.
  • the first electrode 12 positioned on the substrate 1 side (the side opposite to the side from which the light emission from the light emitting layer 14 is extracted) is connected to each pixel (each fluorescence conversion layer 8R, 8G, A plurality of parallel arrangements are provided corresponding to 8B).
  • An edge cover 19 made of an insulating material is formed so as to cover each edge portion (end portion) of the adjacent first electrode 12. The edge cover 19 is provided for the purpose of preventing leakage between the first electrode 12 and the second electrode 16.
  • the edge cover 19 can be formed using an insulating material by a known method such as an EB (Electron Beam) vapor deposition method, a sputtering method, an ion plating method, a resistance heating vapor deposition method, or the like. Although patterning can be performed by a lithography method, the present embodiment is not limited to these forming methods. Moreover, a conventionally well-known material can be used as an insulating material layer which comprises the edge cover 19, and it does not specifically limit in this embodiment.
  • the insulating material layer constituting the edge cover 19 needs to transmit light, and examples thereof include SiO, SiON, SiN, SiOC, SiC, HfSiON, ZrO, HfO, and LaO.
  • the film thickness of the edge cover 19 is preferably 100 nm to 2000 nm. By setting the film thickness of the edge cover 19 to 100 nm or more, sufficient insulation is maintained, and leakage occurs between the first electrode 12 and the second electrode 16 to prevent an increase in power consumption and non-light emission. be able to. Further, by setting the film thickness of the edge cover 19 to 2000 nm or less, it is possible to prevent the productivity of the film forming process from being lowered and the disconnection of the second electrode 16 in the edge cover 19 from occurring. Further, the reflective electrode 11 and the first electrode 12 are connected to one of the TFT circuits 2 by a wiring 2 b provided through the interlayer insulating film 3 and the planarizing film 4.
  • the second electrode 16 is connected to one of the TFT circuits 2 by a wiring 2 a provided through the interlayer insulating film 3, the planarizing film 4 and the edge cover 19.
  • Wiring 2a, 2b should just be comprised from the electroconductive material, and is not specifically limited.
  • the wirings 2a and 2b are made of, for example, a material such as Cr, Mo, Ti, Ta, Al, Al alloy, Cu, and Cu alloy.
  • the wirings 2a and 2b are formed by a conventionally known method such as a sputtering or CVD method and a mask process.
  • the organic EL layer (organic layer) 17 may have a single layer structure of the light emitting layer 14 or a multilayer structure such as a stacked structure of the hole transport layer 13, the light emitting layer 14, and the electron transport layer 15 as shown in FIG. good.
  • Specific examples of the organic EL layer (organic layer) 17 include the following configurations, but the present embodiment is not limited thereto.
  • the hole injection layer and the hole transport layer 13 are arranged on the first electrode 12 side that is an anode.
  • the electron injection layer and the electron transport layer 15 are disposed on the second electrode 16 side that is a cathode.
  • the light-emitting layer 14 may be composed only of an organic light-emitting material, or may be composed of a combination of a light-emitting dopant (organic light-emitting material) and a host material, and optionally includes a hole transport material, an electron transport material, Additives (donor, acceptor, etc.) may be included.
  • the light emitting layer 14 may have a configuration in which these materials are dispersed in a polymer material (binding resin) or an inorganic material. From the viewpoint of luminous efficiency and lifetime, a material in which an organic light emitting material that is a light emitting dopant is dispersed in a host material is preferable.
  • the light emitting layer 14 recombines the holes injected from the first electrode 12 and the electrons injected from the second electrode 16, so that light in the green region or light in the red region (green region to red region; wavelength 500 nm). (Up to 780 nm) light is emitted (emitted).
  • the organic light emitting material used for the light emitting layer 14 a conventionally known light emitting material for organic EL can be used, and a material that emits light in a green region to a red region (wavelength: 500 nm to 780 nm) can be used.
  • a low molecular weight organic light emitting material or a high molecular weight organic light emitting material can be used.
  • a fluorescent material or a phosphorescent material can be used. From the viewpoint of reducing power consumption, it is preferable to use a phosphorescent material having high light emission efficiency.
  • the green low molecular luminescent material is an organic luminescent material, it is possible to use a green low molecular luminescent material legacy known organic EL, for example, coumarin derivatives, quinacridone, tris (8-quinolinato) aluminum (Alq 3), Bis (benzoquinolinolato) beryllium (BeBq 2 ), 10- (2-benzothiazoyl) -1,1,7,7-tetramethyl-2,3,6,7-tetrahydro-1H, 5H, 11H—
  • a fluorescent material such as benzo [1] pyrano [678-ij] quinolizine-11-one (C545T) or a phosphorescent material such as tris (2-phenylpyridine) iridium (Ir (ppy) 3 ) can be used.
  • red low molecular light emitting material which is an organic light emitting material
  • conventionally known red low molecular light emitting materials for organic EL can be used.
  • rubrene phenanthroline europium (Eu (TTA) 3 (phen)
  • Fluorescent materials such as-(disyl-anomethylene) -2-t-butyl-6 (1,1,7,7-tetramethyljurididyl-9-enyl) -4H-pyran (DCJTB), bis (2,4 Phosphorescent materials such as -diphenyl-quinoline) iridium (III) acetyl lanate (Ir (ppy) 2 (acac)), tris (1-phenylisoquinoline) iridium (III) (Ir (Pic) 3 ) can be used .
  • polymer light-emitting material that is an organic light-emitting material
  • conventionally known polymer light-emitting materials that emit light in the green region to red region for organic EL can be used, for example, poly (p-vinylphenylene vinylene) derivatives. (PPV), polyfluorene derivative (PDAF), poly (p-vinylphenylene) derivative (PPP), carbazole derivative (PVK), or the like can be used.
  • PV poly (p-vinylphenylene vinylene) derivatives.
  • PDAF polyfluorene derivative
  • PPP poly (p-vinylphenylene) derivative
  • PVK carbazole derivative
  • organic light emitting material which is a light emitting dopant and a host material
  • a conventionally known organic EL host material can be used as the host material.
  • host materials include the above-described low-molecular organic light-emitting materials, the above-described high-molecular organic light-emitting materials, 4,4′-bis (carbazole) biphenyl, 9,9-di (4-dicarbazole-benzyl) fluorene ( Carbazole such as CPF), 3,6-bis (triphenylsilyl) carbazole (mCP), poly (N-octyl-2,7-carbazole-O-9,9-dioctyl-2,7-fluorene) (PCF) Derivatives, aniline derivatives such as 4- (diphenylphosphoyl) -N, N-diphenylaniline (HM-A1), 1,3-bis (9-phenyl-9H-
  • the hole injection layer and the hole transport layer 13 are used for the purpose of more efficiently injecting holes from the first electrode 12 serving as an anode and transporting (injecting) them to the light emitting layer 14.
  • the electron injection layer and the electron transport layer 15 are formed between the second electrode 16 and the light emitting layer 14 for the purpose of more efficiently injecting electrons from the second electrode 16 serving as a cathode and transporting (injecting) them to the light emitting layer 14.
  • Each of these hole injection layer, hole transport layer 13, electron injection layer, and electron transport layer 15 can use a conventionally known material, and may be composed of only the materials exemplified below.
  • An additive donor, acceptor, etc.
  • Examples of the material constituting the hole transport layer 13 include oxides such as vanadium oxide (V 2 O 5 ) and molybdenum oxide (MoO 2 ), inorganic p-type semiconductor materials, porphyrin compounds, N, N′-bis ( Aromatics such as 3-methylphenyl) -N, N′-bis (phenyl) -benzidine (TPD), N, N′-di (naphthalen-1-yl) -N, N′-diphenyl-benzidine (NPD)
  • Low molecular weight materials such as tertiary amine compounds, hydrazone compounds, quinacridone compounds, styrylamine compounds, polyaniline (PANI), polyaniline-camphor sulfonic acid (polyaniline-camphorsulfonic acid; PANI-CSA), 3,4-polyethylenedioxy Thiophene / polystyrene sulfonate (PEDOT / PSS), poly (triphenylamine) derivative (Poly
  • the highest occupied molecular orbital (HOMO) is more preferable than the material used for the hole transport layer 13 in that holes are more efficiently injected and transported from the first electrode 12 serving as the anode. It is preferable to use a material having a low energy level. As the hole transport layer 13, it is preferable to use a material having a higher hole mobility than the material used for the hole injection layer.
  • the material for forming the hole injection layer include phthalocyanine derivatives such as copper phthalocyanine, 4,4 ′, 4 ′′ -tris (3-methylphenylphenylamino) triphenylamine, and 4,4 ′, 4 ′′ -tris.
  • acceptor a conventionally well-known material can be used as an acceptor material for organic EL.
  • Acceptor materials include Au, Pt, W, Ir, POCl 3 , AsF 6 , Cl, Br, I, vanadium oxide (V 2 O 5 ), molybdenum oxide (MoO 2 ), and other inorganic materials, TCNQ (7, 7 , 8,8, -tetracyanoquinodimethane), TCNQF4 (tetrafluorotetracyanoquinodimethane), TCNE (tetracyanoethylene), HCNB (hexacyanobutadiene), DDQ (dicyclodicyanobenzoquinone), etc.
  • Examples thereof include compounds, compounds having a nitro group such as TNF (trinitrofluorenone) and DNF (dinitrofluorenone), and organic materials such as fluoranyl, chloranil and bromanyl.
  • compounds having a cyano group such as TCNQ, TCNQF4, TCNE, HCNB, and DDQ are more preferable because they can increase the carrier concentration effectively.
  • the electron blocking layer the same materials as those described above as the hole transport layer 13 and the hole injection layer can be used.
  • Examples of the material constituting the electron transport layer 15 include an inorganic material that is an n-type semiconductor, an oxadiazole derivative, a triazole derivative, a thiopyrazine dioxide derivative, a benzoquinone derivative, a naphthoquinone derivative, an anthraquinone derivative, a diphenoquinone derivative, a fluorenone derivative, Low molecular materials such as benzodifuran derivatives; polymer materials such as poly (oxadiazole) (Poly-OXZ) and polystyrene derivatives (PSS).
  • the material constituting the electron injection layer examples include fluorides such as lithium fluoride (LiF) and barium fluoride (BaF 2 ), and oxides such as lithium oxide (Li 2 O).
  • fluorides such as lithium fluoride (LiF) and barium fluoride (BaF 2 ), and oxides such as lithium oxide (Li 2 O).
  • the energy level of the lowest unoccupied molecular orbital (LUMO) is higher than that of the material used for the electron transport layer 15 in that electrons are injected and transported more efficiently from the second electrode 16 serving as the cathode. It is preferable to use a material having a high value.
  • the material used for the electron transport layer 15 it is preferable to use a material having higher electron mobility than the material used for the electron injection layer.
  • the electron injection layer and the electron transport layer 15 are preferably doped with a donor.
  • a donor a conventionally well-known material can be used as a donor material for organic EL.
  • Donor materials include inorganic materials such as alkali metals, alkaline earth metals, rare earth elements, Al, Ag, Cu, and In, anilines, phenylenediamines, N, N, N ′, N′-tetraphenylbenzidine, N , N′-bis- (3-methylphenyl) -N, N′-bis- (phenyl) -benzidine, N, N′-di (naphthalen-1-yl) -N, N′-diphenyl-benzidine, etc.
  • Benzidines triphenylamine, 4,4 ′, 4 ′′ -tris (N, N-diphenyl-amino) -triphenylamine, 4,4 ′, 4 ′′ -tris (N-3-methylphenyl-N Triphenylamines such as -phenyl-amino) -triphenylamine, 4,4 ', 4 "-tris (N- (1-naphthyl) -N-phenyl-amino) -triphenylamine, N, N' -Di- (4-methyl-fur Nyl) -N, N'-diphenyl-1,4-phenylenediamine and other aromatic tertiary amine compounds such as phenanthrene, pyrene, perylene, anthracene, tetracene, pentacene, etc.
  • organic materials such as compounds (however, the condensed polycyclic compound may have a substituent), TTFs (tetrathiafulvalene), dibenzofuran, phenothiazine, and carbazole.
  • TTFs tetrathiafulvalene
  • dibenzofuran phenothiazine
  • carbazole a compound having an aromatic tertiary amine as a skeleton, a condensed polycyclic compound, and an alkali metal are more preferable because the carrier concentration can be increased more effectively.
  • the hole blocking layer the same materials as those described above as the electron transport layer 15 and the electron injection layer can be used.
  • the above materials are used as solvents.
  • a coating liquid for forming an organic EL layer dissolved and dispersed in a coating method such as spin coating method, dipping method, doctor blade method, discharge coating method, spray coating method, ink jet method, letterpress printing method, intaglio printing method .
  • a method of forming by a known wet process such as a screen printing method, a printing method such as a micro gravure coating method, or the above-described materials by resistance heating vapor deposition, electron beam (EB: Electron Beam) vapor deposition, molecular beam epitaxy ( MBE: Molecular Beam Epitaxy, sputtering, organic vapor deposition (OVPD: Organic V) Method for forming por Phase Deposition) method or the like of the known dry process, or may be a method of
  • the film thickness of each layer constituting the organic EL layer 17 is usually about 1 nm to 1000 nm, and more preferably 10 nm to 200 nm. If the film thickness of each layer constituting the organic EL layer 17 is less than 10 nm, it may not be possible to obtain originally required physical properties (charge (electron, hole) injection characteristics, transport characteristics, confinement characteristics); There is a risk of pixel defects due to foreign matter such as dust. Moreover, when the film thickness of each layer constituting the organic EL layer 17 exceeds 200 nm, the driving voltage increases, which may lead to an increase in power consumption.
  • the first electrode 12 and the second electrode 16 in the organic EL light emitting unit 10 are reflective electrodes having light reflectivity.
  • the optical film thickness L between the reflective interfaces defined by the pair of reflective electrodes 12 and 16 is set so as to enhance the intensity of light of a specific wavelength among the light emitted from the light emitting layer 14.
  • “light of a specific wavelength” means light in the green region to red region (wavelength 500 nm to 780 nm).
  • the optical film thickness L By setting the optical film thickness L in this way, a microcavity effect (multiple reflection interference effect) appears between the first electrode 12 (reflecting electrode) and the second electrode 16 (semi-transparent electrode) which are reflective electrodes. Further, the light extraction efficiency can be improved. More specifically, by setting the optical film thickness L of the organic EL light emitting unit 10 as described above, the light emitted from the light emitting layer 14 is repeatedly reflected between the first electrode 12 and the second electrode 16 facing each other. At this time, light in the green region to red region is intensified by multiple interference and is emitted from the second electrode 16 to the wavelength conversion layer 18 side.
  • the intensity of light in the green region to red region incident on the wavelength conversion layer 18 is increased, and the wavelength is converted by the wavelength conversion layer 18 and emitted to the fluorescence conversion layers 8R, 8G, and 8B side.
  • the wavelength conversion efficiency in the wavelength conversion layer 18 can be increased.
  • the light intensity when assuming that one photon (photon) is present in a microcavity of 1 ⁇ m is about 3000 W / cm 2 . This value is sufficient to produce a nonlinear effect even with one photon.
  • the wavelength conversion efficiency in the wavelength conversion layer 18 can be increased in this way, the amount of red, green, and blue light that is fluorescently converted in each phosphor conversion layer 8R, 8G, and 8B increases, and organic light emission occurs.
  • the light extraction efficiency of the element 20 can be improved, and the organic light-emitting element 20 with good light emission efficiency can be obtained.
  • a wavelength conversion layer 18 is formed on the organic EL light emitting unit 10.
  • the wavelength conversion layer 18 is a layer having a function of converting the wavelength of light emitted from the organic EL light emitting unit 10 and emitting it to the fluorescence conversion layers 8R, 8G, and 8B.
  • Examples of the wavelength conversion layer 18 include a layer that can convert the wavelength of light emitted from the organic EL light emitting unit 10 to be short.
  • the wavelength conversion layer 18 uses a second-order nonlinear optical effect such as second-harmonic generation (SHG) to change the wavelength of light incident into the wavelength conversion layer 18 to 2.
  • SHG second-harmonic generation
  • the wavelength conversion layer 18 that is SHG By using the wavelength conversion layer 18 that is SHG, the wavelength of the light in the red region to the green region emitted from the organic EL light emitting unit 10 is converted to half and converted into the light in the ultraviolet region to the blue region.
  • the light in the ultraviolet region to the blue region can be emitted to the fluorescence conversion layers 8R, 8G, and 8B.
  • the wavelength conversion layer 18 that is SHG converts the light to a wavelength having a wavelength of 300 nm that is a half wavelength, and the light having a wavelength of 300 nm is converted into each fluorescence conversion layer 8R. , 8G, and 8B.
  • SHG can be considered that two photons having an angular frequency ⁇ are converted into one photon having an angular frequency 2 ⁇ in terms of quantum mechanics.
  • an energy conservation law expressed by the following formula (1) is established between related photons.
  • the momentum conservation law expressed by the following equation (2) holds, and this is the phase matching condition.
  • Such quasi-phase matching has a structure in which the sign of the nonlinear optical coefficient is inverted with a period ⁇ along the propagation axis of the nonlinear optical crystal, and the wave vector of the nonlinear polarization and the light wave to be generated This is a method of achieving phase matching by compensating for the difference from the wave vector with the wave vector ⁇ (
  • QPM Quasi-Phase Matching
  • FIG. 3A and 3B are diagrams illustrating wavelength conversion by quasi phase matching (QPM), and FIG. 3A is a diagram illustrating a relationship between polarization reversal and propagation distance.
  • QPM quasi phase matching
  • FIG. 3A a two-dot chain line indicates a case where there is no polarization inversion in a medium through which light passes.
  • a solid line indicates a case where there is a polarization inversion in a medium through which light passes.
  • FIG. 3B is a diagram schematically illustrating the QPM device. In FIG. 3B, the arrows indicate the movement of polarization.
  • phase matching is not achieved, there is a difference in phase velocity between the fundamental wave light and the generated wavelength converted light.
  • wavelength converted light that is generated one after another as the fundamental wave propagates in the crystal. Occurs with a slight phase shift.
  • the generated wavelength-converted lights are gradually increased in intensity as they are added, but when the phase difference between the wavelength-converted lights generated at two points separated by a certain distance Lc becomes ⁇ , they cancel each other and conversely the intensity. Attenuates.
  • the intensity of the wavelength-converted light is periodically increased and decreased as indicated by a two-dot chain line in FIG. 3A.
  • a periodically poled structure is formed by periodically inverting the crystal polarization for each distance Lc called a coherent length.
  • the period of polarization inversion ⁇ is twice as long as the coherent length Lc with a pair of positive and negative polarization regions as a pair.
  • the corresponding wavelength and conversion method can be customized by adjusting the polarization inversion period ⁇ .
  • the polarization inversion period ⁇ can be expressed by the following equation (3). As shown in the following formula (3), the polarization inversion period is determined by the incident fundamental wave wavelength.
  • n ⁇ is the refractive index with respect to the fundamental wavelength
  • n 2 ⁇ is the refractive index with respect to the second harmonic.
  • the QPM device can select the orientation that forms the domain-inverted structure, and can use highly nonlinear constants that cannot be realized with conventional birefringence phase matching. Is possible. Thus, by using the QPM technology, highly efficient wavelength conversion corresponding to various wavelengths can be realized.
  • the wavelength conversion layer 18 is not particularly limited as long as it is a layer that generates SHG, and a multi-layer structure using quasi phase matching (QPM) considering the phase matching described above can also be used.
  • the wavelength conversion layer 18 is preferably formed by laminating a plurality of layers in which the polarization directions are alternately reversed, and has a polarization reversal period ⁇ (that is, coherent).
  • that is, coherent
  • a structure in which a plurality of layers are laminated so as to periodically invert the polarization of the crystal is preferable (for each length Lc).
  • the wavelength conversion layer 18 which is the second harmonic generation (SHG) using QPM
  • a layer formed by laminating a plurality of layers in which polarization directions are alternately reversed can be cited.
  • a laminated body 18A (FIG. 4) in which each layer is made of a single-polarized dielectric material, and a plurality of layers 18a and 18b whose polarization directions are alternately reversed are laminated.
  • a laminated body 18B (FIG. 5) configured by alternately laminating semiconductor layers 18c and dielectric layers 18d.
  • the dielectric material constituting the wavelength conversion layer 18 which is a laminated body (wavelength conversion layer) 18 A in which a plurality of layers 18 a and 18 b each made of a single-polarized dielectric material are laminated
  • a ferroelectric material is used. Examples include body materials, glass materials, and polymer materials.
  • the ferroelectric material constituting the wavelength conversion layer 18 include those conventionally known as ferroelectric materials, such as LiNbO 3 (LN), LiTaO 3 (LT), and KTiOPO 4 (KTP) having a congruent composition.
  • ⁇ -BaB 2 O 4 BBO
  • KNbO 3 KN
  • KH 2 PO 4 KDP
  • LiB 3 O 5 LBO
  • CsLiB 6 O 12 CLBO
  • Ta 2 O 5 Nb 2 O 3
  • AgGaS 2 ZnGeP 2 (ZGP)
  • Examples of the glass material constituting the wavelength conversion layer 18 include SiO 2 , GeO 2 SiO 2 , quartz glass, and silicate fiber.
  • Examples of the polymer material constituting the wavelength conversion layer 18 include 4- (N-methyl-N- (4′-nitrophenyl) aminomethyl) styrene, 4- (N-methyl-N- (4′-cyanophenyl).
  • the wavelength conversion layer 18 is a stacked body (wavelength conversion layer) 18B configured by alternately stacking the semiconductor layers 18c and the dielectric layers 18d, the semiconductor layer 18c having a large second-order nonlinear optical constant, Dielectric layers 18d having a small nonlinear optical constant are periodically and alternately stacked, thereby generating second harmonic generation (SHG) using QPM.
  • the material constituting the semiconductor layer 18c of the wavelength conversion layer 18B include ZnO, ZnS, GaN, and CuCl.
  • As a material for forming the dielectric layer 18d of the wavelength conversion layer 18B TiO 2, SiO 2, HfO 2 , and the like.
  • the thicknesses of the plurality of layers constituting the wavelength conversion layer 18 are calculated from the above formula (3) and the like according to the material of the wavelength conversion layer 18 and the wavelength of light emitted from the organic EL light emitting unit 10. Further, it may be adjusted as appropriate. Further, the thickness of the entire wavelength conversion layer 18 is not particularly limited and can be appropriately changed. For example, the thickness can be set to about 1 ⁇ m to 100 ⁇ m.
  • the formation method of the wavelength conversion layer 18 is not specifically limited, A conventionally well-known method can be used as a formation method of the wavelength conversion layer of the 2nd harmonic generation (SHG) using QPM, for example, ion It can be formed by a method such as a beam sputtering method or a plasma deposition method.
  • the organic light emitting device 20 of the present embodiment has a second harmonic generation (SHG) wavelength having a QPM structure between the light extraction side of the organic EL light emitting unit 10 and each of the fluorescence conversion layers 8R, 8G, and 8B.
  • the conversion layer 18 is disposed.
  • the wavelength of the green region to red region light emitted from the organic EL light emitting unit 10 is converted into a half wavelength in the wavelength conversion layer 18 to obtain ultraviolet region to blue region light.
  • the fluorescence conversion layers 8R, 8G, and 8B can be emitted.
  • An inorganic sealing film 5 made of SiO, SiON, SiN or the like is formed so as to cover the upper surface of the wavelength conversion layer 18 and the side surfaces of the organic EL light emitting unit 10 and the wavelength conversion layer 18.
  • the inorganic sealing film 5 can be formed by depositing an inorganic film such as SiO, SiON, SiN or the like by plasma CVD, ion plating, ion beam, sputtering, or the like.
  • the inorganic sealing film 5 takes out the light wavelength-converted in the wavelength conversion layer 18, it needs to be light transmissive.
  • the sealing substrate 9 is arranged so that the respective fluorescence conversion layers 8R, 8G, and 8B and the organic EL light emitting unit 10 face each other with the wavelength conversion layer 18 interposed therebetween.
  • a red fluorescence conversion layer 8R, a green fluorescence conversion layer 8G, and a blue fluorescence conversion layer 8B that are partitioned and arranged in parallel by the black matrix 7 are formed.
  • a sealing material 6 is sealed between the inorganic sealing film 5 and the sealing substrate 9.
  • the red fluorescence conversion layer 8R, the green fluorescence conversion layer 8G, and the blue fluorescence conversion layer 8B that are disposed to face the organic EL light emitting unit 10 are each surrounded by the black matrix 7 and sealed. It is enclosed in a sealing region surrounded by the material 6.
  • the sealing substrate 9 As the sealing substrate 9, the same thing as the board
  • the sealing substrate 9 is a light-transmitting material. Need to use.
  • a conventionally known sealing material can be used for the sealing material 6, and a conventionally known sealing method can also be used as a method for forming the sealing material 6. Specifically, for example, when an inert gas such as nitrogen gas or argon gas is used as the sealing material 6, a method of sealing the inert gas such as nitrogen gas or argon gas with a sealing substrate 9 such as glass. Is mentioned.
  • a moisture absorbent such as barium oxide in the enclosed inert gas because deterioration of the organic EL due to moisture can be effectively reduced.
  • resin curable resin
  • a curable resin (a photocurable resin or a thermosetting resin) is applied on each of the fluorescence conversion layers 8R, 8G, and 8B of the substrate 9 by using a spin coating method or a laminating method.
  • the sealing material 6 can be formed.
  • oxygen and moisture can be prevented from entering the organic EL light emitting unit 10 from the outside, and the life of the organic EL light emitting unit 10 can be improved.
  • the sealing material 6 needs to have a light transmittance.
  • light in the red region to green region emitted from the organic EL light emitting unit 10 that is a light source is wavelength-converted by the wavelength conversion layer 18 and light in the ultraviolet region to blue region (wavelength 250 nm to 400 nm).
  • the light in the ultraviolet region to the blue region is incident on the fluorescence conversion layers 8R, 8G, and 8B.
  • the red fluorescence conversion layer 8R absorbs the light in the ultraviolet region to the blue region converted in wavelength by the wavelength conversion layer 18, converts the light into the light in the red region, and emits the light in the red region to the sealing substrate 9 side.
  • the green fluorescence conversion layer 8G absorbs the light in the ultraviolet region to the blue region that has been wavelength-converted in the wavelength conversion layer 18, converts it to light in the green region, and emits light in the green region to the sealing substrate 9 side.
  • the blue fluorescence conversion layer 8 ⁇ / b> B absorbs the ultraviolet light that has been wavelength-converted by the wavelength conversion layer 18, converts the light into the blue light, and emits the blue light to the sealing substrate 9 side.
  • the light emitted from the organic EL light emission part 10 is converted into the wavelength conversion layer 18 and each fluorescence conversion layer 8R, Full color conversion can be achieved by converting light of red, green, and blue from the sealing substrate 9 side after conversion at 8G and 8B.
  • the blue fluorescence conversion layer 8B can be omitted.
  • a functional layer configured by dispersing transparent particles in a binder resin may be provided.
  • a blue color filter may be provided.
  • the red fluorescence conversion layer 8R absorbs and excites light in the ultraviolet region to blue region that has been wavelength-converted by the wavelength conversion layer 18, and emits fluorescence in the red region (converts light having a wavelength different from that of the light source).
  • a phosphor material that can be used As a phosphor material for converting light in the ultraviolet region to blue region into light in the red region, conventionally known phosphor materials can be used, and both organic phosphor materials and inorganic phosphor materials are used. be able to.
  • cyanine dyes such as 4-dicyanomethylene-2-methyl-6- (p-dimethylaminostyryl) -4H-pyran, 1-ethyl-2- [4- (p-dimethylamino) Pyridine dyes such as phenyl) -1,3-butadienyl] -pyridinium-perchlorate, and rhodamine dyes such as rhodamine B, rhodamine 6G, rhodamine 3B, rhodamine 101, rhodamine 110, basic violet 11, sulforhodamine 101, etc.
  • the green fluorescence conversion layer 8G absorbs and excites the ultraviolet to blue light converted in wavelength by the wavelength conversion layer 18 and emits green fluorescence (converts light having a wavelength different from that of the light source).
  • a phosphor material that can be used As a phosphor material for converting light in the ultraviolet region to blue region into light in the green region, conventionally known phosphor materials can be used, and both organic phosphor materials and inorganic phosphor materials are used. be able to.
  • 2,3,5,6-1H, 4H-tetrahydro-8-trifluoromethylquinolidine (9,9a, 1-gh) coumarin (coumarin 153), 3- (2′-benzothiazolyl) ) -7-diethylaminocoumarin (coumarin 6), 3- (2′-benzimidazolyl) -7-N, N-diethylaminocoumarin (coumarin 7) and other coumarin dyes, basic yellow 51, solvent yellow 11, solvent yellow 116, etc.
  • Organic green phosphor materials such as naphthalimide dyes, (BaMg) Al 16 O 27 : Eu 2+ , Mn 2+ , Sr 4 Al 14 O 25 : Eu 2+ , (SrBa) Al 12 Si 2 O 8 : Eu 2+ , (BaMg) 2 SiO 4 : Eu 2+ , Y 2 SiO 5 : Ce 3+ , Tb 3+ , Sr 2 P 2 O 7- Sr 2 B 2 O 5 : Eu 2+ , (BaCaMg) 5 (PO 4 ) 3 Cl: Eu 2+ , Sr 2 Si 3 O 8 -2SrCl 2 : Eu 2+ , Zr 2 SiO 4 , MgAl 11 O 19 : Ce Examples thereof include inorganic green phosphor materials such as 3+ , Tb 3+ , Ba 2 SiO 4 : Eu 2+ , Sr 2 SiO 4 : Eu 2+ , and (BaSr) SiO 4 : Eu 2
  • the blue fluorescence conversion layer 8B can absorb and excite light in the ultraviolet region wavelength-converted by the wavelength conversion layer 18 to emit blue region fluorescence (convert to light having a wavelength different from that of the light source).
  • a phosphor material is included.
  • a phosphor material that converts light in the ultraviolet region into light in the blue region a conventionally known phosphor material can be used, and either an organic phosphor material or an inorganic phosphor material can be used. .
  • stilbene dyes such as 1,4-bis (2-methylstyryl) benzene, trans-4,4′-diphenylstilbenzene, and coumarin dyes such as 7-hydroxy-4-methylcoumarin.
  • Organic blue phosphor materials such as Sr 2 P 2 O 7 : Sn 4+ , Sr 4 Al 14 O 25 : Eu 2+ , BaMgAl 10 O 17 : Eu 2+ , SrGa 2 S 4 : Ce 3+ , CaGa 2 S 4 : Ce 3+ , (Ba, Sr) (Mg, Mn) Al 10 O 17 : Eu 2+ , (Sr, Ca, Ba 2 , Mg) 10 (PO 4 ) 6 Cl 2 : Eu 2+ , BaAl 2 SiO 8 : Eu 2+ , Sr 2 P 2 O 7: Eu 2+, Sr 5 (PO 4) 3 Cl: Eu 2+, (Sr, Ca, Ba) 5 (PO 4) 3 Cl: Eu 2+ BaMg 2 Al 16 O 27: Eu 2+, (Ba, Ca) 5 (PO 4) 3 Cl: Eu 2+, Ba 3 MgSi 2 O 8: Eu 2+, Sr 3 MgSi 2 O 8: inorganic blue Eu 2
  • an inorganic phosphor material is used because stability such as deterioration due to excitation light and light emission is improved. It is preferable to do.
  • the inorganic red phosphor may be subjected to a surface modification treatment as necessary. Examples of the surface modification treatment include chemical treatment using a silane coupling agent, physical treatment using addition of submicron-order fine particles, and combinations thereof. Further, when an inorganic phosphor material is used, it is preferable to use an inorganic phosphor material having an average particle diameter (d50) of 1 ⁇ m to 50 ⁇ m.
  • the average particle size (d50) is less than 1 ⁇ m, the luminous efficiency of the phosphor material may be rapidly reduced. Further, if the average particle diameter (d50) exceeds 50 ⁇ m, it becomes difficult to form a flat film, and depletion occurs between each of the fluorescence conversion layers 8R, 8G, and 8B and the organic EL light emitting unit 10. (Depletion (refractive index: 1.0) between the organic EL light emitting part (refractive index: about 1.7) and each fluorescence conversion layer (refractive index: about 2.3)). Thereby, the light from the organic EL light emitting unit 10 may not efficiently reach the fluorescence conversion layers 8R, 8G, and 8B, and the light emission efficiency of each of the fluorescence conversion layers 8R, 8G, and 8B may decrease.
  • the red fluorescence conversion layer 8R, the green fluorescence conversion layer 8G, and the blue fluorescence conversion layer 8B may be composed of only the above-described phosphor material, and optionally contain additives such as polymer, silica, and metal particles. Also good.
  • the red fluorescence conversion layer 8R, the green fluorescence conversion layer 8G, and the blue fluorescence conversion layer 8B may have a configuration in which a phosphor material is dispersed in an inorganic material such as a binder resin or silica. Among these, those in which a phosphor material is dispersed in a binder resin are preferable. A conventionally well-known thing can be used as binder resin, It does not specifically limit.
  • a photosensitive resin as the binder resin because patterning can be performed by a photolithography method.
  • the photosensitive resin one of photosensitive resins having a reactive vinyl group (photocurable resist material) such as acrylic acid resin, methacrylic acid resin, polyvinyl cinnamate resin, and hard rubber resin.
  • the seeds can be used alone or in admixture of two or more.
  • the red fluorescence conversion layer 8R, the green fluorescence conversion layer 8G, and the blue fluorescence conversion layer 8B can be formed by a conventionally known method.
  • the above-described phosphor material and a resin material such as a binder resin are dissolved and dispersed in a solvent.
  • spin coating method, dipping method, doctor blade method, discharge coating method, spray coating method and other coating methods ink jet method, letterpress printing method, intaglio printing method, screen printing method
  • it can be formed by a wet process such as a printing method such as a micro gravure coating method.
  • dry processes such as resistance heating vapor deposition, electron beam (EB) vapor deposition, molecular beam epitaxy (MBE), sputtering, organic vapor deposition (OVPD) using the above-mentioned phosphor, or It can also be formed by a laser transfer method or the like.
  • EB electron beam
  • MBE molecular beam epitaxy
  • OVPD organic vapor deposition
  • the fluorescence conversion layers 8R, 8G, 8B The content of the phosphor material is not particularly limited and can be changed as appropriate.
  • the content of the phosphor material in each fluorescence conversion layer 8R, 8G, 8B is preferably 1% by mass to 50% by mass with respect to the total amount of each fluorescence conversion layer 8R, 8G, 8B. More preferably, the content is 30% by mass.
  • the film thickness of the red fluorescence conversion layer 8R, the green fluorescence conversion layer 8G, and the blue fluorescence conversion layer 8B can usually be about 100 nm to 100 ⁇ m, and preferably 1 ⁇ m to 100 ⁇ m. If the thickness of each of the fluorescence conversion layers 8R, 8G, and 8B is less than 100 nm, the light in the ultraviolet region to the blue region that has been wavelength-converted by the wavelength conversion layer 18 cannot be sufficiently absorbed, resulting in a decrease in luminous efficiency. In other words, the color purity may be deteriorated by the blue transmitted light mixed with the converted fluorescence.
  • each of the fluorescence conversion layers 8R, 8G, and 8B exceeds 100 ⁇ m, the light in the ultraviolet region to the blue region that has been wavelength-converted by the wavelength conversion layer 18 is already sufficiently absorbed, leading to an increase in efficiency. In other words, there is a possibility that the production cost will be increased because the material is merely consumed. Further, in order to increase the absorption of light emitted from the wavelength conversion layer 18 and reduce the transmitted light in the blue region to the extent that the color purity is not adversely affected, the films of the respective fluorescence conversion layers 8R, 8G, and 8B The thickness is preferably 1 ⁇ m or more.
  • each fluorescence conversion layer 8R, 8G, 8B opposite to the sealing substrate 9 is flattened by a flattening film or the like (not shown). Accordingly, when the organic EL light emitting unit 10 and the respective fluorescence conversion layers 8R, 8G, and 8B are brought into close contact with each other with the sealing material 6 interposed therebetween, the organic EL light emitting unit 10 and the respective fluorescence conversion layers 8R, 8G, It can prevent depletion between 8B. And the adhesiveness of the board
  • the planarizing film the same one as the planarizing film 4 described above can be used.
  • a black matrix 7 is formed between each fluorescence conversion layer adjacent to each fluorescence conversion layer 8R, 8G, 8B.
  • the black matrix 7 conventionally known materials and forming methods can be used, and are not particularly limited. Among them, the light that is incident on and scattered by the fluorescence conversion layers 8R, 8G, and 8B is further reflected by the fluorescence conversion layers 8R, 8G, and 8B, such as a metal having light reflectivity. Preferably it is.
  • the blue fluorescence conversion layer 8B can be omitted.
  • a functional layer may be provided at the position of the blue fluorescence conversion layer 8B for the purpose of improving the viewing angle characteristics and extraction efficiency of light in the blue region.
  • This functional layer is configured by dispersing transparent particles in a binder resin.
  • the thickness of the functional layer is usually 10 ⁇ m to 100 ⁇ m, preferably 20 ⁇ m to 50 ⁇ m.
  • the binder resin used in the functional layer conventionally known resins can be used, and are not particularly limited, but those having optical transparency are preferable.
  • the transparent particles are not particularly limited as long as they can scatter and transmit light in the blue region wavelength-converted by the wavelength conversion layer 18.
  • polystyrene having an average particle size of 25 ⁇ m and a standard deviation of particle size distribution of 1 ⁇ m. Particles or the like can be used.
  • the content of the transparent particles in the functional layer can be appropriately changed and is not particularly limited.
  • the functional layer can be formed by a conventionally known method, and is not particularly limited.
  • a spin coating method For example, using a coating solution in which a binder resin and transparent particles are dissolved and dispersed in a solvent, a spin coating method, By a known wet process such as a dipping method, a doctor blade method, a coating method such as a discharge coating method, a spray coating method, an inkjet method, a relief printing method, an intaglio printing method, a screen printing method, a printing method such as a micro gravure coating method, etc. Can be formed.
  • the organic light emitting device 20 of the present embodiment has the following configuration.
  • the wavelength conversion layer 18 is provided between the organic EL light emitting unit 10 and the fluorescence conversion layers 8R, 8G, and 8B. Is arranged.
  • the organic light emitting element 20 uses an organic EL light emitting unit 10 that emits light in a green region to a red region as a light source.
  • the organic light emitting element 20 converts the light emitted from the organic EL light emitting unit 10 into a wavelength in the wavelength conversion layer 18 to obtain light in the ultraviolet region to the blue region, and converts the light in the ultraviolet region to the blue region into the fluorescence conversion layers 8R, 8G, Full-colorization is realized by emitting to 8B and converting the fluorescence into red, green, and blue light in each of the fluorescence conversion layers 8R, 8G, and 8B.
  • a blue light emitting material with insufficient brightness and life is used as the light source.
  • the organic light emitting device 20 of the present embodiment the brightness and life superior to the blue light emitting material as the light source.
  • the organic EL light emitting unit 10 that emits light in the green region to the red region having the above can be used, and the luminance and lifetime can be improved.
  • the organic light emitting element 20 of this embodiment is provided with a polarizing plate on the light extraction side (on the sealing substrate 9).
  • a polarizing plate a combination of a conventionally known linearly polarizing plate and a ⁇ / 4 plate can be used.
  • a polarizing plate it is possible to prevent external light reflection from the first electrode 12 and the second electrode 16 and external light reflection on the surface of the substrate 1 or the sealing substrate 9, and organic light emission.
  • the contrast of the element 20 can be improved.
  • the wavelength conversion layer 18 is disposed on the organic EL light emitting unit 10, and the organic EL light emitting unit 10 and each of the fluorescence conversion layers 8R, 8G, and 8B are included in the wavelength conversion layer 18.
  • this embodiment is not limited to this. If the wavelength conversion layer 18 is disposed between the light extraction side (second electrode 16 side) of the organic light emitting element 20 and each of the fluorescence conversion layers 8R, 8G, and 8B, the organic material of the above-described embodiment is used. The same effects as the light emitting element 20 can be obtained.
  • FIG. 6 is a schematic cross-sectional view showing an example of an organic light-emitting element that can achieve the same effects as the organic light-emitting element 20 of the present embodiment described above.
  • An organic light emitting element 20B shown in FIG. 6 includes a substrate 1, an organic EL light emitting unit (light source) 10, a sealing substrate 9, a fluorescence conversion layer 8R, a green fluorescence conversion layer 8G, a blue fluorescence conversion layer 8B, and a wavelength conversion. It is schematically composed of the layer 18.
  • the substrate 1 includes a TFT (Thin Film Transistor) circuit 2.
  • the organic EL light emitting unit (light source) 10 is provided on the substrate 1 via the interlayer insulating film 3 and the planarizing film 4.
  • the fluorescence conversion layer 8 ⁇ / b> R, the green fluorescence conversion layer 8 ⁇ / b> G, and the blue fluorescence conversion layer 8 ⁇ / b> B are partitioned by the black matrix 7 and arranged in parallel on one surface of the sealing substrate 9.
  • the wavelength conversion layer 18 is disposed between the organic EL light emitting unit 10 and each of the fluorescence conversion layers 8R, 8G, and 8B.
  • the substrate 1 and the sealing substrate 9 are arranged so that the organic EL light emitting unit 10 and the fluorescence conversion layers 8R, 8G, and 8B face each other with the sealing material 6 and the wavelength conversion layer 18 interposed therebetween.
  • the organic EL light emitting unit 10 is covered with the inorganic sealing film 5, and the wavelength conversion layer 18 is formed on the inorganic sealing film 5.
  • an organic EL layer (organic layer) 17 is sandwiched between the first electrode 12 and the second electrode 16.
  • the organic EL layer (organic layer) 17 is a stack of a hole transport layer 13, a light emitting layer 14, and an electron transport layer 15.
  • a reflective electrode 11 is formed on the lower surface of the first electrode 12.
  • the reflective electrode 11 and the first electrode 12 are connected to one of the TFT circuits 2 by a wiring 2 b provided through the interlayer insulating film 3 and the planarizing film 4.
  • the second electrode 16 is connected to one of the TFT circuits 2 by a wiring 2 a provided through the interlayer insulating film 3, the planarizing film 4 and the edge cover 19.
  • the inorganic sealing film 5 is formed so as to cover the upper surface and the side surface of the organic EL light emitting unit 10, and the wavelength conversion layer 18 is formed on the inorganic sealing film 5. Even in this case, the same effects as those of the organic light emitting device 20 of the present embodiment described above can be obtained. Further, in the organic light emitting device 20B shown in FIG. 6, even if the wavelength conversion layer 18 and each of the fluorescence conversion layers 8R, 8G, and 8B are in contact with each other, the same effects as those of the organic light emitting device 20 of the present embodiment described above can be obtained. Can do. The same applies to the embodiments described later.
  • FIG. 7 is a schematic cross-sectional view illustrating an example of an organic light-emitting device according to the second embodiment of the present invention.
  • 7 includes a substrate 1, an organic EL light emitting unit (light source) 10, a sealing substrate 9, a fluorescence conversion layer 8R, a green fluorescence conversion layer 8G, a blue fluorescence conversion layer 8B, and a wavelength conversion.
  • the layer 18 and the light reflective layer 31 are roughly configured.
  • the substrate 1 includes a TFT (Thin Film Transistor) circuit 2.
  • the organic EL light emitting unit (light source) 10 is provided on the substrate 1 with the interlayer insulating film 3 and the planarizing film 4 interposed therebetween.
  • the fluorescence conversion layer 8R, the green fluorescence conversion layer 8G, and the blue fluorescence conversion layer 8B are partitioned by the black matrix 7 and arranged in parallel on one surface of the sealing substrate 9.
  • the wavelength conversion layer 18 is disposed between the organic EL light emitting unit 10 and each of the fluorescence conversion layers 8R, 8G, and 8B.
  • the light reflective layer 31 is disposed on the light extraction side of the wavelength conversion layer 18. In the substrate 1 and the sealing substrate 9, the organic EL light emitting unit 10 and each of the fluorescence conversion layers 8R, 8G, and 8B are opposed to each other with the sealing material 6, the light reflective layer 31, and the wavelength conversion layer 18 therebetween. Is arranged.
  • the organic EL light emitting unit 10 and the wavelength conversion layer 18 are covered with the inorganic sealing film 5.
  • a hole transport layer 13, and an organic EL layer (organic layer) 17 in which a light emitting layer 14 and an electron transport layer 15 are stacked are sandwiched between a first electrode 12 and a second electrode 16.
  • a reflective electrode 11 is formed on the lower surface of the first electrode 12.
  • the reflective electrode 11 and the first electrode 12 are connected to one of the TFT circuits 2 by a wiring 2 b provided through the interlayer insulating film 3 and the planarizing film 4.
  • the second electrode 16 is connected to one of the TFT circuits 2 by a wiring 2 a provided through the interlayer insulating film 3, the planarizing film 4 and the edge cover 19.
  • the same components as those of the organic light emitting devices 20 and 20B of the first embodiment are denoted by the same reference numerals, and the description thereof is omitted.
  • the organic light emitting device 30 of the present embodiment is on the light extraction side (each fluorescence conversion layer 8R, 8G, 8B side) of the wavelength conversion layer 18.
  • the light reflective layer 31 is disposed.
  • the light reflective layer 31 has light reflectivity and is formed of a material such as Ag, Al, Cr, Mo, Au, ITO, or an alloy thereof.
  • the film thickness of the light reflective layer 31 can be changed as appropriate, for example, about 10 nm to 1 ⁇ m, and is formed by a method such as vapor deposition or sputtering.
  • the second electrode 16 in the organic EL light emitting unit 10 is a reflective electrode having light reflectivity, and the light reflective layer 31 is provided on the light extraction side of the wavelength conversion layer 18.
  • the optical film thickness L 2 between the reflective interfaces defined by the reflective electrode 16 and the light reflective layer 31 is set so as to enhance the intensity of light of a specific wavelength among the light converted in wavelength in the wavelength conversion layer 18.
  • “light of a specific wavelength” means light in the ultraviolet region to blue region (wavelength 250 nm to 400 nm) obtained by wavelength conversion of light in the green region to red region (wavelength 500 nm to 780 nm).
  • microcavity effects (multiple reflection interference effect) is expressed between the second electrode 16 is a reflective electrode (translucent electrode) and the light reflective layer 31 Furthermore, the light extraction efficiency can be improved. More specifically, by setting as the optical film thickness L 2 of the wavelength conversion layer 18 of the wavelength-converted light at a wavelength conversion layer 18, second electrode 16 face each other, between light reflective layer 31 Reflects repeatedly. At this time, the light in the ultraviolet region to the blue region is strengthened by the multiple interference and is emitted from the light reflective layer 31 to the respective fluorescence conversion layers 8R, 8G, and 8B.
  • the intensity of light in the ultraviolet region to the blue region incident on the fluorescence conversion layers 8R, 8G, and 8B is increased, and the fluorescence conversion is performed in the fluorescence conversion layers 8R, 8G, and 8B, and from the sealing substrate 9 side.
  • the amount of red, green, and blue light emitted increases.
  • the light extraction efficiency of the organic light emitting device 30 can be further improved, and the organic light emitting device 30 with good light emission efficiency can be obtained.
  • FIG. 8 is a schematic cross-sectional view showing an example of an organic light-emitting device according to the third embodiment of the present invention.
  • 8 includes a substrate 1, an organic EL light emitting unit (light source) 10, a sealing substrate 9, a red color filter 41R, a green color filter 41G, a blue color filter 41B, and a fluorescence conversion layer 8R.
  • the green fluorescence conversion layer 8G, the blue fluorescence conversion layer 8B, and the wavelength conversion layer 18 are schematically configured.
  • the substrate 1 includes a TFT (Thin Film Transistor) circuit 2.
  • the organic EL light emitting unit (light source) 10 is provided on the substrate 1 with the interlayer insulating film 3 and the planarizing film 4 interposed therebetween.
  • the red color filter 41 ⁇ / b> R, the green color filter 41 ⁇ / b> G, and the blue color filter 41 ⁇ / b> B are color filters that are partitioned by the black matrix 7 and arranged in parallel on one surface of the sealing substrate 9.
  • the fluorescence conversion layer 8R, the green fluorescence conversion layer 8G, and the blue fluorescence conversion layer 8B are partitioned into the black matrix 7 by matching colors on the color filters 41R, 41G, and 41B formed on one surface of the sealing substrate 9. Are arranged in parallel.
  • the wavelength conversion layer 18 is disposed between the organic EL light emitting unit 10 and each of the fluorescence conversion layers 8R, 8G, and 8B.
  • the substrate 1 and the sealing substrate 9 are disposed so that the organic EL light emitting unit 10 and the fluorescence conversion layers 8R, 8G, and 8B face each other with the sealing material 6 and the wavelength conversion layer 18 interposed therebetween.
  • the organic EL light emitting unit 10 and the wavelength conversion layer 18 are covered with the inorganic sealing film 5.
  • an organic EL layer (organic layer) 17 is sandwiched between the first electrode 12 and the second electrode 16.
  • the organic EL layer (organic layer) 17 is a stack of a hole transport layer 13, a light emitting layer 14, and an electron transport layer 15.
  • a reflective electrode 11 is formed on the lower surface of the first electrode 12.
  • the reflective electrode 11 and the first electrode 12 are connected to one of the TFT circuits 2 by a wiring 2 b provided through the interlayer insulating film 3 and the planarizing film 4.
  • the second electrode 16 is connected to one of the TFT circuits 2 by a wiring 2 a provided through the interlayer insulating film 3, the planarizing film 4 and the edge cover 19.
  • the same components as those of the organic light emitting devices 20 and 20B of the first embodiment are denoted by the same reference numerals, and description thereof is omitted.
  • the organic light emitting device 40 of the present embodiment includes a red fluorescence conversion layer 8R, a green fluorescence conversion layer 8G, a blue fluorescence conversion layer 8B, and a sealing substrate 9.
  • Color filters 41R, 41G, and 41B are interposed therebetween.
  • the color filters 41R, 41G, and 41B are formed on the light extraction side (sealing substrate 9 side) corresponding to the color of light emitted from the fluorescence conversion layers 8R, 8G, and 8B.
  • a red color filter 41R is provided on the fluorescence emission side of the red fluorescence conversion layer 8R.
  • a green color filter 41G is provided on the fluorescence emission side of the green fluorescence conversion layer 8G.
  • a blue color filter 41B is provided on the fluorescence emission side of the blue fluorescence conversion layer 8B.
  • the color filters 41R, 41G, and 41B are not particularly limited, and conventionally known color filters can be used.
  • the color filters 41R, 41G, and 41B can be formed by a conventionally known method, and the film thickness can be adjusted as appropriate.
  • the color filters 41R, 41G, 41B between the sealing substrate 9 on the light extraction side (observer side) and the fluorescence conversion layers 8R, 8G, 8B, the light is emitted from the organic light emitting element 40.
  • the color purity of red, green, and blue can be increased, and the color reproduction range of the organic light emitting element 40 can be expanded.
  • the red color filter 41R formed on the red fluorescence conversion layer 8R and the green color filter 41G formed on the green fluorescence conversion layer 8G absorb the blue component and the ultraviolet component of external light. Therefore, it is possible to reduce or prevent light emission of the fluorescence conversion layers 8R and 8G due to external light, and it is possible to reduce or prevent a decrease in contrast.
  • FIG. 8 shows an example in which the blue color filter 41B is provided on the blue fluorescence conversion layer 8B as a pixel emitting blue
  • the present embodiment is not limited to this.
  • the blue fluorescence conversion layer 8B can be omitted.
  • the functional layer described in the first embodiment may be provided.
  • FIG. 9 is a schematic cross-sectional view showing an example of an organic light-emitting device according to the fourth embodiment of the present invention.
  • the organic light emitting device 50 shown in FIG. 9 includes an organic EL light emitting unit (light source) 10, a wavelength conversion layer 18, a light reflective layer 31, a sealing material 6, a fluorescence conversion layer 51, and a sealing substrate 9. It is roughly composed.
  • the organic EL light emitting unit (light source) 10 is provided on the substrate 1.
  • the wavelength conversion layer 18 is provided on the organic EL light emitting unit 10.
  • the light reflective layer 31 is provided on the wavelength conversion layer 18.
  • the sealing material 6 is provided on the light reflective layer 31.
  • the fluorescence conversion layer 51 is provided on the sealing material 6.
  • the sealing substrate 9 is provided on the fluorescence conversion layer 51.
  • the organic EL light emitting unit 10 is configured by an organic EL layer (organic layer) 17 sandwiched between a first electrode 12 and a second electrode 16.
  • the same components as those of the organic light emitting devices 20, 20B, 30, 40 of the first to third embodiments are denoted by the same reference numerals, and the description thereof is omitted.
  • the organic light emitting device 50 shown in FIG. 9 differs from the first to third embodiments in that a single fluorescence conversion layer 51 is disposed instead of the three fluorescence conversion layers 8R, 8G, and 8B. Is different in that it is.
  • the fluorescence conversion layer 51 may be any of the fluorescence conversion layers 8R, 8G, and 8B described in the first embodiment, and can be appropriately changed according to the wavelength region (color) of light that is desired to be emitted from the sealing substrate 9. .
  • the light in the green region to the red region emitted from the organic EL light emitting unit 10 that is a light source is wavelength-converted by the wavelength conversion layer 18 to obtain an ultraviolet region to a blue region.
  • the red fluorescence conversion layer 8R is disposed as the fluorescence conversion layer 51
  • red light is emitted to the sealing substrate 9 side.
  • the green fluorescence conversion layer 8G is arranged as the fluorescence conversion layer 51
  • green light is emitted to the sealing substrate 9 side.
  • the blue fluorescence conversion layer 8B is arranged as the fluorescence conversion layer 51, blue light is emitted to the sealing substrate 9 side.
  • the organic light emitting device 50 includes the light reflecting layer 31 disposed on the light extraction side of the wavelength conversion layer 18, so that the wavelength conversion layer 18 converts the wavelength as described above in the second embodiment. Since the emitted light is amplified by the microcavity effect, it can also function as an organic laser element.
  • FIG. 10 is a schematic configuration diagram illustrating an example of an organic laser 60 using the organic light emitting device 50 of the present embodiment as an organic laser device.
  • An organic laser 60 shown in FIG. 10 is roughly composed of a pencil-type main body 66, a condenser lens 65, a light emitting circuit 63, an organic light emitting element 50, a booster circuit 62, a battery 61, and a lighting switch 64. Yes.
  • the condenser lens 65 is disposed inside the distal end portion of the main body 66.
  • the light emitting circuit 63 is arranged in the central portion inside the main body 66.
  • the organic light emitting element 50 is an organic laser element disposed between the light emitting circuit 63 and the condenser lens 66.
  • the booster circuit 62 is sequentially arranged in the rear part of the light emitting circuit 63 along the longitudinal direction of the main body 66.
  • the lighting switch 64 is disposed on the outer periphery of the main body 66 so as to be electrically connected to the light emitting circuit 63.
  • the organic light emitting element (organic laser element) 50, the light emitting circuit 63, the booster circuit 62, and the battery 61 are electrically connected by wiring. By operating the lighting switch 64, the voltage from the battery 61 is boosted by the booster circuit 62, and the first electrode 12 and the second electrode 16 of the organic light emitting element (organic laser element) 50 are energized via the light emitting circuit 63.
  • the organic EL light emitting unit 10 can emit light, and laser light can be emitted from the organic light emitting element (organic laser element) 50.
  • the light emitted from the organic light emitting element (organic laser element) 50 is condensed by the condenser lens 65 and emitted to the outside of the main body 66.
  • the organic light emitting device 50 of the present embodiment can be applied to an organic laser, a laser pointer, etc. by using it as an organic laser device as in the example shown in FIG.
  • the organic light emitting element which is 1 aspect of this invention is not limited to said embodiment.
  • a diffusion plate may be disposed on the light extraction side of the color filter.
  • a method for driving the organic EL light-emitting portion is not particularly limited, and an active driving method or a passive driving method may be used.
  • the organic EL light emitting unit is preferably driven by an active driving method.
  • the organic light-emitting element which is one embodiment of the present invention has a structure in which light is extracted from the reverse method of the substrate on which the active element is formed, thereby ignoring the TFT circuit, the wiring, and the like so as to have a high aperture ratio. Is possible.
  • An organic light-emitting device which is one embodiment of the present invention includes the above-described organic light-emitting element which is one embodiment of the present invention and a drive unit which drives the organic EL light-emitting portion of the organic light-emitting element which is one embodiment of the present invention.
  • FIG. 11 shows an example of a wiring structure of an organic light-emitting device including the organic light-emitting element 20 of the first embodiment and a drive unit, and a drive circuit connection configuration.
  • scanning lines 101 and signal lines 102 are wired in a matrix in a plan view with respect to the substrate 1 of the organic light emitting element 20.
  • Each scanning line 101 is connected to a scanning circuit 103 provided on one side edge of the substrate 1.
  • Each signal line 102 is connected to a video signal driving circuit 104 provided at the other side edge of the substrate 1.
  • a driving element such as a thin film transistor is incorporated in each of the intersections between the scanning line 101 and the signal line 102, and a pixel electrode is connected to each driving element.
  • These pixel electrodes correspond to the reflective electrodes 11 of the organic light emitting element 20 having the structure shown in FIG. 1, and these reflective electrodes 11 correspond to the first electrodes 12.
  • the scanning circuit 103 and the video signal driving circuit 104 are electrically connected to the controller 105 via control lines 106, 107, and 108. The operation of the controller 105 is controlled by the central processing unit 109.
  • a power supply circuit 112 is connected to the scanning circuit 103 and the video signal driving circuit 104 via power supply wirings 110 and 111 separately.
  • a drive unit that drives the organic EL light emitting unit 10 of the organic light emitting element 20 includes a scanning line 101, a signal line 102, a scanning circuit 103, and a video signal driving circuit 104.
  • a TFT circuit 2 of the organic light emitting element 20 shown in FIG. 1 is incorporated in each region partitioned by the scanning line 101 and the signal line 102.
  • the light emitting unit 10 can emit light, and visible region light can be emitted from the corresponding pixel, so that a desired color or image can be displayed.
  • the organic light emitting device of the present embodiment the case where the organic light emitting element 20 of the first embodiment is provided is illustrated, but the present embodiment is not limited thereto, and any organic light emitting element according to the present invention described above may be used. Either can be suitably provided.
  • the organic light-emitting device which is one embodiment of the present invention is a high-efficiency (high luminance) organic light-emitting device by including the above-described organic light-emitting element which is one embodiment of the present invention.
  • an organic EL light-emitting unit in which at least one organic layer including a light-emitting layer is sandwiched between a pair of electrodes, and a fluorescence conversion layer that converts incident light into fluorescence.
  • a wavelength conversion layer that converts the wavelength of the light emitted from the organic EL light emitting unit and emits the light to the fluorescence conversion layer side, and converts the wavelength of the light emitted from the organic EL light emitting unit to the wavelength conversion The light is converted by the layer, and the converted light is fluorescently converted by the fluorescence conversion layer to generate visible light.
  • the organic EL light emitting part, the fluorescence conversion layer, and the wavelength conversion layer in the color conversion method of the present embodiment As the organic EL light emitting part, the fluorescence conversion layer, and the wavelength conversion layer in the color conversion method of the present embodiment, the organic EL light emitting part, the fluorescence conversion layer, and the wavelength conversion layer mentioned in the organic light emitting element of the above embodiment are used. The same thing is mentioned.
  • the organic EL light emitting section is preferably provided with materials for the green region to the red region. Therefore, the organic EL light emitting part preferably emits light in the green region to red region.
  • the wavelength conversion layer converts the wavelength of light incident in the wavelength conversion layer into a half by using a second-order nonlinear optical effect such as second harmonic generation (SHG). Things.
  • the SHG wavelength conversion layer is placed between the organic EL light emitting part and the fluorescence conversion layer, and the light emitted from the organic EL light emitting part is incident on the wavelength conversion layer and emitted from the organic EL light emitting part to green.
  • the wavelength of the light in the region is converted to half and converted into light in the ultraviolet region to blue region.
  • Light in the visible region can be generated by making the light in the ultraviolet region to blue region incident on the fluorescence conversion layer and performing fluorescence conversion in the fluorescence conversion layer.
  • the wavelength conversion layer is preferably the same as the organic light emitting device 20 of the first embodiment. As shown in FIGS. 3A and 3B, it is preferable that a plurality of layers in which the polarization directions are alternately reversed are stacked. It is preferable that a plurality of layers are laminated so as to periodically invert the polarization of the crystal so as to have a polarization inversion period ⁇ (that is, for each coherent length Lc).
  • Examples of the wavelength conversion layer that is second harmonic generation (SHG) using QPM include a layer formed by laminating a plurality of layers in which polarization directions are alternately reversed. Specifically, as the wavelength conversion layer that is second harmonic generation (SHG) using QPM, each layer shown in FIG.
  • a laminated body 18A in which a plurality of inverted layers 18a and 18b are laminated is preferable.
  • a stacked body 18B configured by alternately stacking semiconductor layers 18c and dielectric layers 18d shown in FIG. 5 is preferable. Can be mentioned.
  • the wavelength conversion layer 18, the wavelength conversion layer (laminated body) 18 ⁇ / b> A, the material constituting the wavelength conversion layer (laminated body) 18 ⁇ / b> B, the film thickness of each layer, and the like are as follows. The same materials as those mentioned above can be mentioned.
  • a wavelength conversion layer is disposed between the organic EL light emitting unit and the fluorescence conversion layer, the wavelength of the light emitted from the organic EL light emitting unit is converted in the wavelength conversion layer, and the converted light is converted into light.
  • the light emitted from the organic EL light emitting unit is color-converted, and visible light can be emitted from the fluorescence conversion layer.
  • organic EL light emission is achieved by arranging a second harmonic generation (SHG) wavelength conversion layer having a QPM structure between the organic EL light emitting unit and the fluorescence conversion layer.
  • SHG second harmonic generation
  • the wavelength of the green to red light emitted from the light is converted to half in the wavelength conversion layer to make the light in the ultraviolet to blue region, and this converted light is incident on the fluorescence conversion layer and converted to fluorescence. By doing so, visible light can be generated.
  • an organic EL light emitting unit that emits light in a green region to a red region having luminance and lifetime superior to those of a blue light emitting material can be used as a light source. Since visible light can be generated by color-converting light from the part, visible light with excellent luminance and lifetime can be generated using the organic EL light-emitting part as a light source.
  • Example 1 An organic light emitting device 20 having the configuration shown in FIG. 1 was produced by the following procedure.
  • a reflective electrode was formed on a 0.7 mm thick glass substrate by a sputtering method so as to have a film thickness of 100 nm.
  • An indium-tin oxide (ITO) film was formed on the reflective electrode by sputtering so as to have a film thickness of 20 nm.
  • a reflective electrode (anode) was formed as the first electrode.
  • the first electrode was patterned into 90 stripes having a width of 2 mm by a conventional photolithography method.
  • SiO 2 was deposited to 200 nm on the first electrode by a sputtering method, and patterned to cover the edge portion of the first electrode by a conventional photolithography method to form an edge cover.
  • a short side of 10 ⁇ m from the end of the first electrode is covered with SiO 2 .
  • the dried substrate was fixed to a substrate holder in an inline type resistance heating vapor deposition apparatus, and the pressure was reduced to a vacuum of 1 ⁇ 10 ⁇ 4 Pa or less.
  • Each organic layer was formed.
  • 1,1-bis-di-4-tolylamino-phenyl-cyclohexane (TAPC) was used to form a hole injection layer having a thickness of 100 nm by resistance heating vapor deposition.
  • TAPC 1,1-bis-di-4-tolylamino-phenyl-cyclohexane
  • NPD N, N′-di-1-naphthyl-N, N′-diphenyl-1,1′-biphenyl-1,1′-biphenyl-4,4′-diamine
  • a hole transport layer having a film thickness of 40 nm was formed on the hole injection layer by resistance heating vapor deposition.
  • a red organic light emitting layer (thickness: 30 nm) was formed on the hole transport layer.
  • This red organic light-emitting layer comprises 1,4-bis-triphenylsilyl-benzene (UGH-2) (host material) and tris (1-phenylisoquinoline) iridium (III) Ir (pic) 3 ) (red phosphorescent dopant) ) At a deposition rate of 1.5 ⁇ / sec and 0.2 ⁇ / sec.
  • a hole blocking layer (thickness: 10 nm) was formed on the blue organic light emitting layer using 2,9-dimethyl-4,7-diphenyl-1,10-phenanthroline (BCP), and then tris.
  • An electron transport layer (thickness: 30 nm) was formed using (8-hydroxyquinoline) aluminum (Alq 3 ).
  • an electron injection layer (thickness: 0.5 nm) was formed on the electron transport layer using lithium fluoride (LiF).
  • a translucent electrode was formed as the second electrode.
  • the substrate formed up to the electron injection layer as described above was fixed to a metal vapor deposition chamber.
  • a shadow mask for forming the second electrode (a mask having an opening so that the second electrode can be formed in a stripe shape having a width of 2 mm in a direction opposite to the stripe of the first electrode produced above) and the electron injection layer
  • the formed substrate is aligned, and magnesium and silver are co-deposited on the surface of the electron injection layer by a vacuum deposition method at a deposition rate of 0.1 ⁇ / sec and 0.9 ⁇ / sec, respectively, to form magnesium silver in a desired pattern. Formation (thickness: 1 nm).
  • the second electrode was formed.
  • the produced organic EL light emitting part exhibits a microcavity effect between the reflective electrode (first electrode) and the semi-transmissive electrode (second electrode), and can increase the light intensity incident on the wavelength conversion layer. It was.
  • the transmittance of the semitransparent electrode was adjusted to 10%
  • the emission peak due to the microcavity effect (interference effect) was adjusted to 680 nm
  • the half-value width was adjusted to 10 nm.
  • wavelength conversion is performed by forming a BBO ( ⁇ -BaB 2 O 4 ) thin film on the second electrode of the organic EL light emitting part by laser pulse vapor deposition, and laminating 10 layers so as to alternately invert polarization.
  • a layer was formed.
  • Each layer formed a laminated film having a thickness of 1.7 ⁇ m and a period of 3.4 ⁇ m.
  • an inorganic sealing film made of 1 ⁇ m SiO 2 was patterned by plasma CVD from the edge of the display portion to a sealing area of 2 mm in the vertical and horizontal directions using a shadow mask.
  • an organic EL light emitting unit substrate was produced.
  • a red fluorescence conversion layer a green fluorescence conversion layer, and a blue fluorescence conversion layer were formed on a glass substrate having a thickness of 0.7 mm.
  • the red fluorescence conversion layer was formed by first adding 15 g of ethanol and 0.22 g of ⁇ -glycidoxypropyltriethoxysilane to 0.16 g of Aerosil (trade name, manufactured by Nippon Aerosil Co., Ltd.) having an average particle diameter of 5 nm at an open system room temperature For 1 hour. Next, the mixture after stirring and 20 g of red phosphor K 5 Eu 2.5 (WO 4 ) 6.25 were transferred to a mortar, thoroughly mixed, heated in an oven at 70 ° C.
  • the green fluorescence conversion layer is formed by first adding 15 g of ethanol and 0.22 g of ⁇ -glycidoxypropyltriethoxysilane to 0.16 g of aerosil (trade name, manufactured by Nippon Aerosil Co., Ltd.) having an average particle diameter of 5 nm at an open room temperature. For 1 hour. Next, the mixture after stirring and the green phosphor Ba 2 SiO 4 : Eu 2+ 20 g were transferred to a mortar, mixed well, heated in an oven at 70 ° C. for 2 hours, and further heated in an oven at 120 ° C. for 2 hours. The surface modified Ba 2 SiO 4 : Eu 2+ was obtained.
  • the blue fluorescent conversion layer is formed by first adding 15 g of ethanol and 0.22 g of ⁇ -glycidoxypropyltriethoxysilane to 0.16 g of aerosil (trade name, manufactured by Nippon Aerosil Co., Ltd.) having an average particle size of 5 nm at an open room temperature. For 1 hour. Next, the mixture after stirring and the blue phosphor BaMgAl 10 O 17 : Eu 2+ 20 g were transferred to a mortar, mixed well, heated in an oven at 70 ° C. for 2 hours, and further heated in an oven at 120 ° C. for 2 hours. The surface modified BaMgAl 10 O 17 : Eu 2+ was obtained.
  • the organic EL light emitting unit substrate and the fluorescence conversion layer substrate produced as described above were aligned using an alignment marker formed outside the display unit.
  • a thermosetting resin was applied to the fluorescence conversion layer substrate in advance, and both substrates were brought into close contact with each other through the thermosetting resin, and cured by heating at 90 ° C. for 2 hours.
  • the bonding process of both the substrates was performed in a dry air environment (water content: ⁇ 80 ° C.) for the purpose of preventing the organic EL light emitting portion from being deteriorated by water.
  • an organic light emitting device was manufactured by connecting terminals formed in the periphery to an external power source.
  • a desired good image could be obtained by applying a desired current to the desired stripe-shaped electrode from an external power source to the produced organic light emitting device. From this result, according to the organic light-emitting element which is one embodiment of the present invention, it is possible to obtain the desired good by using the existing red phosphorescent light emitting material without using the blue light emitting material such as the blue phosphorescent material under development. It was confirmed that a simple pixel can be obtained.
  • Example 2 An organic light emitting device 20 having the configuration shown in FIG. 1 was produced.
  • the organic light emitting device of Example 2 is different from Example 1 in that the wavelength conversion layer 18B shown in FIG. 5 is used as the wavelength conversion layer.
  • the wavelength conversion layer is formed by using an Ar ion beam sputtering method on the second electrode of the organic EL light emitting portion, a ZnO layer 50 nm as an SHG active semiconductor layer and a TiO 2 layer 25 nm as an SHG inactive dielectric layer. By alternately forming a total of 10 layers.
  • a desired good image could be obtained by applying a desired current to the desired stripe electrode from an external power source to the produced organic light emitting device.
  • a desired good pixel can be obtained by using an existing green phosphorescent light emitting material without using a blue light emitting material such as a developing blue phosphorescent material. It was confirmed that it can be obtained.
  • Example 3 An organic light emitting device 30 having the configuration shown in FIG. 7 was produced.
  • the organic light emitting device of Example 3 is different from Example 1 in that 1,3,5-tris [4- (diphenylamino) phenyl] benzene (TDAPB) is emitted as the host material of the light emitting layer of the organic EL light emitting part.
  • TDAPB 1,3,5-tris [4- (diphenylamino) phenyl] benzene
  • fac-tris (2-phenylpyridine) iridium (III) [Ir (ppy) 3 ] that emits green phosphorescence was used, the microcavity effect was that the emission peak was adjusted to 580 nm, and A light reflective layer (thickness 0.05 ⁇ m, transmittance 5%) is formed on the emission side surface of the wavelength conversion layer by vapor deposition, and is paired with the second electrode (semi-transmissive cathode) of the organic EL light emitting unit. This is a point provided with a microcavity effect of light (wavelength 290 nm) converted by the wavelength conversion layer.
  • a desired good image could be obtained by applying a desired current to the desired stripe electrode from an external power source to the produced organic light emitting device. From this result, according to the organic light-emitting element which is one embodiment of the present invention, it is possible to obtain the desired good by using the existing red phosphorescent light emitting material without using the blue light emitting material such as the blue phosphorescent material under development. It was confirmed that a simple pixel can be obtained. Further, due to the microcavity effect of the wavelength-converted light, the fluorescence conversion layer was irradiated with strong light, so that the luminance increased by 5% compared to Example 1.
  • Example 4 An organic light emitting device 50 having the configuration shown in FIG. 9 was produced.
  • the organic light emitting device of Example 4 is different from Example 1 in that the three-color fluorescence conversion layer is not used and only the green fluorescence conversion layer is provided. Further, the organic light emitting device of Example 4 is different from Example 1 in the same manner as in Example 3.
  • the light reflective layer (thickness 0.1 ⁇ m, transmittance 1%) is also provided on the emission side of the wavelength conversion layer. And having a microcavity effect of light (wavelength 340 nm) converted by the wavelength conversion layer as a pair with the second electrode (semi-transmissive cathode) of the organic EL light emitting unit.
  • green light having a large directivity having a wavelength of 540 nm and a half width of 3 nm was obtained.
  • green directivity can be obtained by using an existing phosphorescent light-emitting material without using a blue light-emitting material such as a blue phosphorescent material under development. High light was able to be obtained.
  • a simple organic laser pointer as shown in FIG. 10 could be obtained using the organic light emitting device prepared in Example 4.
  • High-efficiency (high brightness) organic light-emitting elements organic light-emitting elements, organic light-emitting devices, and color conversion methods can be provided.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

Disclosed is an organic light emitting element which comprises: an organic EL light emitting unit that contains at least one organic layer including a light emitting layer and a pair of electrodes that sandwich the organic layer; a fluorescence conversion layer that is arranged on the light extraction side of the organic EL light emitting unit and performs fluorescence conversion of the incident light; and a wavelength conversion layer that is arranged between the organic EL light emitting unit and the fluorescence conversion layer, converts the wavelength of the light emitted from the organic EL light emitting unit and then discharges the resulting light toward the fluorescence conversion layer side.

Description

有機発光素子、有機発光装置、および色変換方法Organic light emitting device, organic light emitting device, and color conversion method
 本発明は、有機発光素子、有機発光装置、および色変換方法に関する。
 本願は、2010年8月4日に、日本に出願された特願2010-175521号に基づき優先権を主張し、その内容をここに援用する。
The present invention relates to an organic light emitting device, an organic light emitting device, and a color conversion method.
This application claims priority on August 4, 2010 based on Japanese Patent Application No. 2010-175521 filed in Japan, the contents of which are incorporated herein by reference.
 一般に、エレクトロルミネッセンス(EL:Electro Luminescence)素子は、自己発光性であるため視認性が高く、かつ完全固体素子である。そのため、EL素子は、耐衝撃性に優れるとともに、取扱いが容易である。よって、EL素子は、各種表示装置における発光素子としての利用が注目されている。EL素子には、発光材料に無機化合物を用いた無機EL素子と、発光材料に有機化合物を用いた有機EL素子とがある。このうち、有機EL素子は、印加電圧を大幅に低くしうるため、その実用化研究が積極的になされている。 In general, an electroluminescence (EL) element is self-luminous and has high visibility and is a completely solid element. Therefore, the EL element has excellent impact resistance and is easy to handle. Therefore, the EL element is attracting attention as a light emitting element in various display devices. The EL element includes an inorganic EL element using an inorganic compound as a light emitting material and an organic EL element using an organic compound as a light emitting material. Among these, organic EL elements have been actively researched for practical use since the applied voltage can be significantly reduced.
 従来、有機EL素子を多色発光素子とするには、赤色、緑色、青色を発光する画素を1つの単位として並置する。これにより、白色を代表とする様々な色を作り出すことでフルカラー化を行っている(例えば、非特許文献1参照)。この実現化には、一般的にシャドーマスクを用いたマスク蒸着法により有機発光層を塗り分けることで、赤色、緑色、青色の画素を形成する方法を取る。しかし、この方法では、マスクの加工精度、マスクのアライメント精度、マスクの大型化が大きな課題となっている。特に、テレビに代表される大型ディスプレイの分野では、基板を取り出すマザーガラスのサイズが第6世代(G6)からG8、G10へと増大し、基板サイズの大型化が進んでいる。従来の方法では基板サイズと同等以上の大きさのマスクを必要とするため、大型基板に対応したマスクの作製、加工が必要となる。このマスクは、非常に薄い金属(一般的な膜厚:50nm~100nm)が必要とされるため、大型化することが困難である。 Conventionally, in order to make an organic EL element a multicolor light emitting element, pixels emitting red, green and blue are juxtaposed as one unit. Thereby, full colorization is performed by creating various colors typified by white (for example, see Non-Patent Document 1). In order to realize this, a method of forming red, green, and blue pixels by separately coating the organic light emitting layer by a mask vapor deposition method using a shadow mask is adopted. However, in this method, mask processing accuracy, mask alignment accuracy, and mask enlargement are major issues. In particular, in the field of large displays typified by television, the size of the mother glass for taking out the substrate has increased from the sixth generation (G6) to G8 and G10, and the substrate size has been increasing. Since the conventional method requires a mask having a size equal to or larger than the substrate size, it is necessary to manufacture and process a mask corresponding to a large substrate. Since this mask requires a very thin metal (general film thickness: 50 nm to 100 nm), it is difficult to increase the size of the mask.
 マスクの加工精度及びアライメント精度の低下は、発光層の混じりによる混色の原因となる。これら精度の低下を防止する為には、通常画素間に設ける絶縁層の幅を広く取る必要がある。しかし、画素の面積が決まっている場合、非発光部の面積が少なくなり画素の開口率が低下してしまい、輝度の低下、消費電力の上昇、寿命の低下に繋がる。また、従来の製造方法では、蒸着ソースである有機材料が基板より下側に配置されており、蒸着ソースの構成粒子を下から上方向に飛散させて蒸着することで有機層を成膜している。そのため、基板及びマスクの大型化に伴い、中央部でのマスクの撓みが起こり、前述した説明と同様、発光層の混色の原因となる。また、極端な場合には、有機層が形成されない部分が出来てしまい、上下の電極のリークによる欠陥に繋がる虞がある。さらに、従来の方法では、マスクは、特定の回数使用すると、劣化して使用不可能となるため、マスクの大型化は、ディスプレイのコストアップに繋がる。特にコストの問題は、有機ELディスプレイでの最大の問題とされている。 低下 Lowering of mask processing accuracy and alignment accuracy causes color mixing due to mixing of the light emitting layers. In order to prevent such a decrease in accuracy, it is necessary to increase the width of the insulating layer normally provided between the pixels. However, when the area of the pixel is determined, the area of the non-light emitting portion is reduced and the aperture ratio of the pixel is lowered, leading to a decrease in luminance, an increase in power consumption, and a decrease in lifetime. Further, in the conventional manufacturing method, the organic material that is the vapor deposition source is disposed below the substrate, and the organic layer is formed by depositing and vaporizing constituent particles of the vapor deposition source from the bottom upward. Yes. For this reason, as the substrate and the mask are increased in size, the mask is bent at the central portion, which causes color mixture of the light emitting layer as described above. In extreme cases, a portion where the organic layer is not formed is formed, which may lead to defects due to leakage of the upper and lower electrodes. Furthermore, in the conventional method, when the mask is used a specific number of times, the mask deteriorates and becomes unusable. Therefore, an increase in the size of the mask leads to an increase in display cost. In particular, the cost problem is regarded as the biggest problem in the organic EL display.
 有機発光層を色毎に塗り分けず、有機発光層の発光域の光を吸収し、可視光域の蛍光を発光する蛍光材料をフィルタに用いる光変換方式が開示されている(例えば、特許文献1および2参照)。この光変換方式の有機発光素子の一例を図12に示す。
 図12に示す有機発光素子200は、基板230と透明基板240との間に、有機EL210、緑色画素、赤色画素、青色画素を備える。有機EL210は、青色~青緑色で発光する発光層211を一対の電極212、213で狭持する。緑色画素は、有機EL210からの青色~青緑色の発光を吸収し緑色を発光する蛍光変換層220Gを有する。赤色画素は、有機EL210からの青色~青緑色の発光を吸収し赤色に発光する蛍光変換層220Rを有する。青色画素には、必要に応じて色純度を向上させる目的で青色カラーフィルター(図示略)を配してもよい。緑色画素、赤色画素、青色画素とを組み合わせることで、透明基板240側に、赤色、緑色、青色の光を射出してフルカラーを発光させることができる。
このような光変換方式は、前述した塗り分け方式に比べて、有機発光層のパターン化を行う必要がなく簡単に製造できる点や、コスト面で優れている。そのため、光変換方式によりフルカラー化を行う表示装置は有望であり、研究開発が進められている。
A light conversion method is disclosed in which a fluorescent material that absorbs light in the light emitting region of the organic light emitting layer and emits fluorescence in the visible light region is used as a filter without coating the organic light emitting layer for each color (for example, Patent Documents). 1 and 2). An example of this light conversion type organic light emitting device is shown in FIG.
An organic light emitting device 200 illustrated in FIG. 12 includes an organic EL 210, a green pixel, a red pixel, and a blue pixel between a substrate 230 and a transparent substrate 240. The organic EL 210 sandwiches a light emitting layer 211 that emits blue to blue green light with a pair of electrodes 212 and 213. The green pixel has a fluorescence conversion layer 220G that absorbs blue to blue-green light emitted from the organic EL 210 and emits green light. The red pixel has a fluorescence conversion layer 220R that absorbs blue to blue-green light emitted from the organic EL 210 and emits red light. The blue pixel may be provided with a blue color filter (not shown) for the purpose of improving color purity as necessary. By combining the green pixel, the red pixel, and the blue pixel, red, green, and blue light can be emitted to the transparent substrate 240 side to emit full color.
Such a light conversion method is superior to the above-described separate coating method in that it is not necessary to pattern the organic light emitting layer and can be easily manufactured, and in terms of cost. For this reason, display devices that perform full color conversion using a light conversion method are promising and research and development are underway.
特開平3-152897号公報Japanese Patent Laid-Open No. 3-152897 特開平5-258860号公報JP-A-5-258860
 しかしながら、図12に示す有機発光素子200のような光変換方式では、光源として青色領域の光を発光する有機EL210を用いている。青色領域の光を発光する材料、特に青色燐光材料は、赤色発光材料や緑色発光材料と比較して発光効率(輝度)と寿命の点で劣っており、開発途上にある。そのため、青色光を有機ELから発光させ、その光を蛍光変換層にて色変換する従来構造では、高発光効率で長寿命の有機発光素子を得ることができない。蛍光体変換層に含まれる蛍光材料を励起させて赤色や緑色の蛍光に変換するためには、蛍光材料の励起光としては変換される蛍光よりも短波長の青色~青緑色領域の光が必要であるが、高効率(高輝度)かつ高寿命の青色燐光材料がないのが現状である。
 本発明の一態様は、高効率(高輝度)の有機発光素子、有機発光装置および色変換方法を提供する。
However, in a light conversion method such as the organic light emitting device 200 shown in FIG. 12, an organic EL 210 that emits light in a blue region is used as a light source. A material that emits light in a blue region, in particular, a blue phosphorescent material, is inferior in terms of light emission efficiency (luminance) and life compared to a red light emitting material and a green light emitting material, and is under development. Therefore, in the conventional structure in which blue light is emitted from the organic EL and the light is color-converted by the fluorescence conversion layer, it is not possible to obtain an organic light-emitting element with high emission efficiency and long life. In order to excite the fluorescent material contained in the phosphor conversion layer and convert it into red or green fluorescence, the excitation light of the fluorescent material requires light in the blue to blue-green region with a shorter wavelength than the converted fluorescence. However, there is no blue phosphorescent material with high efficiency (high brightness) and long life.
One embodiment of the present invention provides a high-efficiency (high luminance) organic light-emitting element, an organic light-emitting device, and a color conversion method.
 本発明者らは、有機EL発光部と蛍光変換層との間に、有機EL発光部より発光された光の波長を変換する機能を有する層を配することにより、有機発光素子が目的に適合しうることを見出した。 The present inventors arrange an organic light emitting element suitable for the purpose by arranging a layer having a function of converting the wavelength of light emitted from the organic EL light emitting part between the organic EL light emitting part and the fluorescence conversion layer. I found that I could do it.
 本発明の一態様による有機発光素子は、発光層を含む少なくとも一層の有機層と、前記有機層を狭持する一対の電極とを含む有機EL発光部と、この有機EL発光部の光を取り出す面側に配され、入射された光を蛍光変換する蛍光変換層と、前記有機EL発光部と前記蛍光変換層との間に配され、前記有機EL発光部より発光された光の波長を変換して前記蛍光変換層側へと射出する波長変換層とを有する。
 本発明の一態様による有機発光素子において、前記電極が反射性電極であって、この一対の反射性電極によって定められる反射性界面間の光学膜厚が、前記有機EL発光部より放出された光のうち特定波長の光の強度を増強するように設定されてもよい。
 本発明の一態様による有機発光素子において、前記波長変換層は、前記有機EL発光部より発光された光の波長を2分の1に変換してもよい。
 本発明の一態様による有機発光素子において、前記波長変換層は、分極方向が交互に反転している複数層が積層されて構成されてもよい。
An organic light emitting device according to an aspect of the present invention includes an organic EL light emitting unit including at least one organic layer including a light emitting layer and a pair of electrodes sandwiching the organic layer, and extracts light from the organic EL light emitting unit. A fluorescence conversion layer that is disposed on the surface side and converts fluorescence of incident light, and is disposed between the organic EL light emitting unit and the fluorescence conversion layer, and converts the wavelength of light emitted from the organic EL light emitting unit. And a wavelength conversion layer that emits light toward the fluorescence conversion layer.
In the organic light emitting device according to one aspect of the present invention, the electrode is a reflective electrode, and the optical film thickness between the reflective interfaces defined by the pair of reflective electrodes is light emitted from the organic EL light emitting unit. May be set so as to enhance the intensity of light of a specific wavelength.
In the organic light-emitting device according to one aspect of the present invention, the wavelength conversion layer may convert the wavelength of light emitted from the organic EL light-emitting unit into one half.
In the organic light emitting device according to the aspect of the present invention, the wavelength conversion layer may be configured by stacking a plurality of layers in which polarization directions are alternately reversed.
 本発明の一態様による有機発光素子において、前記波長変換層は、半導体層と誘電体層とが交互に積層されて構成されてもよい。
 本発明の一態様による有機発光素子において、前記波長変換層を構成する複数層の各層が、単一分極化された誘電体材料より構成されてもよい。
 本発明の一態様による有機発光素子において、前記誘電体材料が、強誘電体材料、ガラス材料、及びポリマー材料からなる群より選択された材料よりなってもよい。
 本発明の一態様による有機発光素子において、前記有機EL発光部が、赤色領域の光を発光してもよい。
 本発明の一態様による有機発光素子において、前記有機EL発光部が、緑色領域の光を発光してもよい。
In the organic light emitting device according to the aspect of the present invention, the wavelength conversion layer may be configured by alternately stacking semiconductor layers and dielectric layers.
In the organic light emitting device according to an aspect of the present invention, each of the plurality of layers constituting the wavelength conversion layer may be made of a unipolarized dielectric material.
In the organic light emitting device according to an aspect of the present invention, the dielectric material may be made of a material selected from the group consisting of a ferroelectric material, a glass material, and a polymer material.
In the organic light emitting device according to one aspect of the present invention, the organic EL light emitting unit may emit light in a red region.
In the organic light emitting device according to one aspect of the present invention, the organic EL light emitting unit may emit light in a green region.
 本発明の一態様による有機発光素子において、前記波長変換層で変換された光の取り出し面側に光反射性層をさらに有し、この光反射性層と前記有機EL発光部の光を取り出す面側の反射性電極によって定められる反射性界面の光学膜厚が、前記波長変換層において波長変換した光のうち特定波長の光の強度を増強するように設定されてもよい。
 本発明の一態様による有機発光素子において、前記波長変換層は、前記有機EL発光部より発光された光を紫外領域~青色領域の光に変換し、前記蛍光変換層が前記波長変換層で変換された光を緑色領域の光または赤色領域の光に変換してもよい。
 本発明の一態様による有機発光素子において、前記蛍光変換層が少なくとも二種の色変換が可能であり、その一つが前記波長変換層で変換された光を緑色領域の光に変換する色変換であり、かつ他の一つが前記波長変換層で変換された光を赤色領域の光に変換する色変換であり、有機発光素子は多色発光素子であってもよい。
 本発明の一態様による有機発光素子において、前記蛍光変換層で変換した光を出射する側に、さらにカラーフィルターを有してもよい。
The organic light emitting device according to one aspect of the present invention further includes a light reflective layer on a light extraction surface side of the light converted by the wavelength conversion layer, and a surface from which the light from the light reflective layer and the organic EL light emitting unit is extracted. The optical film thickness of the reflective interface defined by the reflective electrode on the side may be set so as to enhance the intensity of light of a specific wavelength among the light converted in wavelength in the wavelength conversion layer.
In the organic light-emitting device according to an aspect of the present invention, the wavelength conversion layer converts light emitted from the organic EL light-emitting portion into light in an ultraviolet region to a blue region, and the fluorescence conversion layer converts the light in the wavelength conversion layer. The emitted light may be converted into light in the green region or light in the red region.
In the organic light-emitting device according to one aspect of the present invention, the fluorescence conversion layer can perform at least two types of color conversion, one of which is color conversion that converts light converted by the wavelength conversion layer into light in a green region. And the other one is color conversion for converting light converted by the wavelength conversion layer into light in the red region, and the organic light emitting element may be a multicolor light emitting element.
In the organic light emitting device according to one embodiment of the present invention, a color filter may be further provided on the side of emitting the light converted by the fluorescence conversion layer.
 本発明の一態様による有機発光素子は、有機発光装置において、前記有機発光素子の前記有機EL発光部を駆動させる駆動ユニットと共に備えられるよう構成されてもよい。
 本発明の一態様による色変換方法は、発光層を含む少なくとも一層の有機層と、前記有機層を狭持する一対の電極とを含む有機EL発光部から光を発し、前記有機EL発光部と入射された光を蛍光変換する蛍光変換層との間に配置された波長変換層により、前記有機EL発光部より発光された光の波長を変換して前記蛍光変換層側へと射出し、前記波長変換層により変換された光を前記蛍光変換層により蛍光変換して、可視光を発生する。
 本発明の一態様による色変換方法において、前記波長変換層は、前記有機EL発光部より発光された光の波長を2分の1に変換してもよい。
 本発明の一態様による色変換方法において、前記波長変換層は、分極方向が交互に反転している複数層が積層されて構成されてなる積層体であってもよい。
 本発明の一態様による色変換方法において、前記波長変換層は、半導体層と誘電体層とが交互に積層されて構成されてなる積層体であってもよい。
The organic light emitting device according to an aspect of the present invention may be configured to be provided with a drive unit that drives the organic EL light emitting unit of the organic light emitting device in the organic light emitting device.
The color conversion method according to one aspect of the present invention emits light from an organic EL light emitting unit including at least one organic layer including a light emitting layer, and a pair of electrodes sandwiching the organic layer, By converting the wavelength of the light emitted from the organic EL light emitting unit by the wavelength conversion layer disposed between the fluorescence conversion layer that converts the incident light to fluorescence, and emitting the converted light to the fluorescence conversion layer side, The light converted by the wavelength conversion layer is converted to fluorescence by the fluorescence conversion layer to generate visible light.
In the color conversion method according to an aspect of the present invention, the wavelength conversion layer may convert the wavelength of light emitted from the organic EL light emitting unit into one half.
In the color conversion method according to an aspect of the present invention, the wavelength conversion layer may be a stacked body including a plurality of layers in which polarization directions are alternately reversed.
In the color conversion method according to the aspect of the present invention, the wavelength conversion layer may be a stacked body in which semiconductor layers and dielectric layers are alternately stacked.
 本発明の一態様によれば、高効率(高輝度)の有機発光素子、有機発光装置および色変換方法を提供することができる。 According to one embodiment of the present invention, a high-efficiency (high luminance) organic light-emitting element, an organic light-emitting device, and a color conversion method can be provided.
本発明の第1実施形態に係る有機発光素子の一例を示す概略断面図である。It is a schematic sectional drawing which shows an example of the organic light emitting element which concerns on 1st Embodiment of this invention. 図1に示す有機発光素子の上面図である。It is a top view of the organic light emitting element shown in FIG. 擬似位相整合(QPM)による波長変換について説明する図であり、分極反転と伝播距離の関係について説明する図である。It is a figure explaining wavelength conversion by quasi phase matching (QPM), and is a figure explaining the relation between polarization reversal and propagation distance. 擬似位相整合(QPM)による波長変換について説明する図であり、QPMデバイスを模式的に説明する図である。It is a figure explaining wavelength conversion by quasi phase matching (QPM), and is a figure explaining a QPM device typically. 本発明の一態様に係る有機発光素子の波長変換層の一例を示す模式図である。It is a schematic diagram which shows an example of the wavelength conversion layer of the organic light emitting element which concerns on 1 aspect of this invention. 本発明の一態様に係る有機発光素子の波長変換層の他の例を示す模式図である。It is a schematic diagram which shows the other example of the wavelength conversion layer of the organic light emitting element which concerns on 1 aspect of this invention. 本発明の第1実施形態に係る有機発光素子の他の例を示す概略断面図である。It is a schematic sectional drawing which shows the other example of the organic light emitting element which concerns on 1st Embodiment of this invention. 本発明の第2実施形態に係る有機発光素子の一例を示す概略断面図である。It is a schematic sectional drawing which shows an example of the organic light emitting element which concerns on 2nd Embodiment of this invention. 本発明の第3実施形態に係る有機発光素子の一例を示す概略断面図である。It is a schematic sectional drawing which shows an example of the organic light emitting element which concerns on 3rd Embodiment of this invention. 本発明の第4実施形態に係る有機発光素子の一例を示す概略断面図である。It is a schematic sectional drawing which shows an example of the organic light emitting element which concerns on 4th Embodiment of this invention. 本発明の第4実施形態に係る有機発光素子の他の例を示す概略構成図である。It is a schematic block diagram which shows the other example of the organic light emitting element which concerns on 4th Embodiment of this invention. 本発明の一態様に係る有機発光素子と駆動ユニットを備える有機発光装置の配線構造と駆動回路の接続構成の一例を示す図である。It is a figure which shows an example of the connection structure of the wiring structure of an organic light-emitting device provided with the organic light-emitting element which concerns on 1 aspect of this invention, and a drive unit, and a drive circuit. 従来の色変換方式の有機発光素子の一例を示す概略断面図である。It is a schematic sectional drawing which shows an example of the conventional organic light emitting element of a color conversion system.
 以下、本発明の実施形態を、図面に基づいて説明する。なお、図1~図10の各図においては、各部材を図面上で認識可能な程度の大きさとするため、各部材毎に縮尺を異ならせて示している。
[第1実施形態]
 図1は本発明の第1実施形態に係る有機発光素子の一例を示す概略断面図であり、図2は図1に示す有機発光素子の上面図である。
 図1に示す有機発光素子20は、基板1と、有機EL発光部(光源)10と、封止基板9と、蛍光変換層8R、緑色蛍光変換層8G、青色蛍光変換層8Bと、波長変換層18とを有する。基板1は、TFT(薄膜トランジスタ)回路2を備有する。有機EL発光部(光源)10は、基板1上に層間絶縁膜3及び平坦化膜4を介して設けられている。蛍光変換層8R、緑色蛍光変換層8G、青色蛍光変換層8Bは、封止基板9の一方の面上にブラックマトリックス7に仕切られて並列配置されている。波長変換層18は、有機EL発光部10と各蛍光変換層8R、8G、8Bとの間に配されている。
 基板1と封止基板9とは、有機EL発光部10と各蛍光変換層8R、8G、8Bとが封止材6及び波長変換層18を介して対向するように配置されている。有機EL発光部10及び波長変換層18は、無機封止膜5に覆われている。有機EL発光部10は、有機EL層(有機層)17が、第1電極12と第2電極16により狭持されている。第1電極12の下面には反射電極11が形成されている。有機EL層(有機層)17は、正孔輸送層13と、発光層14と電子輸送層15との積層である。反射電極11及び第1電極12は、層間絶縁膜3及び平坦化膜4を貫通して設けられた配線2bにより、TFT回路2の1つに接続されている。第2電極16は、層間絶縁膜3、平坦化膜4及びエッジカバー19を貫通して設けられた配線2aによりTFT回路2の1つに接続されている。
Hereinafter, embodiments of the present invention will be described with reference to the drawings. In each of FIGS. 1 to 10, each member is shown with a different scale so that each member has a size that can be recognized on the drawing.
[First Embodiment]
FIG. 1 is a schematic cross-sectional view illustrating an example of the organic light-emitting device according to the first embodiment of the present invention, and FIG. 2 is a top view of the organic light-emitting device shown in FIG.
An organic light emitting device 20 shown in FIG. 1 includes a substrate 1, an organic EL light emitting unit (light source) 10, a sealing substrate 9, a fluorescence conversion layer 8R, a green fluorescence conversion layer 8G, a blue fluorescence conversion layer 8B, and a wavelength conversion. Layer 18. The substrate 1 has a TFT (Thin Film Transistor) circuit 2. The organic EL light emitting unit (light source) 10 is provided on the substrate 1 via the interlayer insulating film 3 and the planarizing film 4. The fluorescence conversion layer 8R, the green fluorescence conversion layer 8G, and the blue fluorescence conversion layer 8B are partitioned by the black matrix 7 and arranged in parallel on one surface of the sealing substrate 9. The wavelength conversion layer 18 is disposed between the organic EL light emitting unit 10 and each of the fluorescence conversion layers 8R, 8G, and 8B.
The substrate 1 and the sealing substrate 9 are arranged such that the organic EL light emitting unit 10 and the fluorescence conversion layers 8R, 8G, and 8B face each other with the sealing material 6 and the wavelength conversion layer 18 interposed therebetween. The organic EL light emitting unit 10 and the wavelength conversion layer 18 are covered with the inorganic sealing film 5. In the organic EL light emitting unit 10, an organic EL layer (organic layer) 17 is sandwiched between the first electrode 12 and the second electrode 16. A reflective electrode 11 is formed on the lower surface of the first electrode 12. The organic EL layer (organic layer) 17 is a stack of a hole transport layer 13, a light emitting layer 14, and an electron transport layer 15. The reflective electrode 11 and the first electrode 12 are connected to one of the TFT circuits 2 by a wiring 2 b provided through the interlayer insulating film 3 and the planarizing film 4. The second electrode 16 is connected to one of the TFT circuits 2 by a wiring 2 a provided through the interlayer insulating film 3, the planarizing film 4 and the edge cover 19.
 波長変換層18は、有機EL発光部10より発光された光の波長を変換して、各蛍光変換層8R、8G、8B側へと射出する。また、波長変換層18より射出されて各蛍光変換層8R、8G、8Bに入射された光は、各蛍光変換層8R、8G、8Bでそれぞれ赤色、緑色、青色の光へと蛍光変換されて、封止基板9側へと射出される。従って、本実施形態の有機発光素子20は、光源である有機EL発光部10から発光された光が、波長変換層18で波長変換される。この波長変換された光が各蛍光変換層8R、8G、8Bへと入射する。入射した光は、各蛍光変換層8R、8G、8Bにおいて蛍光変換されて、赤色、緑色、青色の三色の光として封止基板9側(観察者側)へと射出されるようになっている。なお、図1に示す有機発光素子20を構成する各部の構造の詳細は後述する。 The wavelength conversion layer 18 converts the wavelength of the light emitted from the organic EL light emitting unit 10 and emits it to the fluorescence conversion layers 8R, 8G, and 8B side. The light emitted from the wavelength conversion layer 18 and incident on the fluorescence conversion layers 8R, 8G, and 8B is converted into red, green, and blue light by the fluorescence conversion layers 8R, 8G, and 8B, respectively. Injected to the sealing substrate 9 side. Therefore, in the organic light emitting device 20 of the present embodiment, the wavelength of the light emitted from the organic EL light emitting unit 10 that is a light source is converted by the wavelength conversion layer 18. This wavelength-converted light enters each of the fluorescence conversion layers 8R, 8G, and 8B. The incident light is converted into fluorescence in each of the fluorescence conversion layers 8R, 8G, and 8B, and emitted to the sealing substrate 9 side (observer side) as light of three colors of red, green, and blue. Yes. In addition, the detail of the structure of each part which comprises the organic light emitting element 20 shown in FIG. 1 is mentioned later.
 本実施形態の有機発光素子20は、図1においては図面を見やすくするために、赤色蛍光変換層8R、緑色蛍光変換層8G、青色蛍光変換層8Bが1つずつ並置された例を示している。しかしながら、図2に示す上面図の如く、破線で囲まれた各蛍光変換層8R、8G、8Bは、y軸に沿ってストライプ状に延長され、x軸に沿って各蛍光変換層8R、8G、8Bが順に配置された、2次元的なストライプ配列とされている。なお、図2に示す例では各RGB画素(各蛍光変換層8R、8G、8B)がストライプ配列された例を示しているが、本発明はこれに限定されず、各RGB画素の配列はモザイク配列、デルタ配列など、従来公知のRGB画素配列とすることもできる。 The organic light emitting device 20 of the present embodiment shows an example in which the red fluorescence conversion layer 8R, the green fluorescence conversion layer 8G, and the blue fluorescence conversion layer 8B are juxtaposed one by one in FIG. . However, as shown in the top view of FIG. 2, the fluorescence conversion layers 8R, 8G, and 8B surrounded by a broken line extend in a stripe shape along the y-axis, and each fluorescence conversion layer 8R, 8G along the x-axis. , 8B are sequentially arranged in a two-dimensional stripe arrangement. The example shown in FIG. 2 shows an example in which each RGB pixel (each fluorescence conversion layer 8R, 8G, 8B) is arranged in stripes, but the present invention is not limited to this, and the arrangement of each RGB pixel is a mosaic. A conventionally known RGB pixel array such as an array or a delta array may be used.
 基板1上には、TFT回路2及び各種配線(図示略)が形成されている。基板1の上面およびTFT回路2を覆うように、層間絶縁膜3と平坦化膜4とが順次積層形成されている。
 基板1としては、例えば、ガラス、石英等からなる無機材料基板、ポリエチレンテレフタレート、ポリカルバゾール、ポリイミド等からなるプラスティック基板、アルミナ等からなるセラミックス基板等の絶縁性基板、アルミニウム(Al)、鉄(Fe)等からなる金属基板、前記基板上に酸化シリコン(SiO)などの有機絶縁材料等からなる絶縁物を表面にコーティングした基板、又は、Al等からなる金属基板の表面を陽極酸化等の方法で絶縁化処理を施した基板等が挙げられるが、本発明はこれらに限定されるものではない。これらの中でも、ストレス無く湾曲部、折り曲げ部を形成することが可能となる為、プラスティック基板、若しくは、金属基板を用いることが好ましい。また、プラスティック基板に無機材料をコートした基板、金属基板に無機絶縁材料をコートした基板を用いることが更に好ましい。これにより、プラスティック基板を有機EL発光部10の基板として用いた場合生じることのある、水分の透過による有機EL発光部10の劣化を解消することが可能となる。また、金属基板を有機EL発光部10の基板として用いた場合に生じることのある金属基板の突起によるリーク(ショート)を解消することが可能となる。
A TFT circuit 2 and various wirings (not shown) are formed on the substrate 1. An interlayer insulating film 3 and a planarizing film 4 are sequentially stacked so as to cover the upper surface of the substrate 1 and the TFT circuit 2.
As the substrate 1, for example, an inorganic material substrate made of glass, quartz or the like, a plastic substrate made of polyethylene terephthalate, polycarbazole, polyimide or the like, an insulating substrate such as a ceramic substrate made of alumina or the like, aluminum (Al), iron (Fe ), Etc., a substrate on which an insulating material such as silicon oxide (SiO 2 ) is coated on the surface, or a method of anodizing the surface of a metal substrate made of Al or the like Although the board | substrate etc. which performed the insulation process are mentioned by this, this invention is not limited to these. Among these, since it becomes possible to form a bending part and a bending part without stress, it is preferable to use a plastic substrate or a metal substrate. It is more preferable to use a substrate in which a plastic substrate is coated with an inorganic material and a substrate in which a metal substrate is coated with an inorganic insulating material. As a result, it is possible to eliminate the deterioration of the organic EL light emitting unit 10 due to the permeation of moisture, which may occur when a plastic substrate is used as the substrate of the organic EL light emitting unit 10. In addition, it is possible to eliminate a leak (short circuit) caused by the protrusion of the metal substrate that may occur when the metal substrate is used as the substrate of the organic EL light emitting unit 10.
 基材1は、その上にTFT回路2を形成するため、500℃以下の温度で融解せず、歪みも生じない基板を用いることが好ましい。基板1として金属基板を用いる場合、線膨張係数が1×10-5/℃以下の鉄-ニッケル系合金より形成された金属基板を用いることが好ましい。一般的な金属基板は、ガラスと熱膨張率が異なるため、利用可能な生産装置で金属基板上にTFT回路2を形成することが困難である。しかし、線膨張係数が1×10-5/℃以下の鉄-ニッケル系合金より形成された金属基板を用いて、線膨張係数をガラスに合わせ込むことで、金属基板上にTFT回路2を従来の生産装置を用いて安価に形成することが可能となる。また、基材1としてプラスティック基板を用いる場合には、耐熱温度が非常に低い。そのため、ガラス基板上にTFT回路2を形成した後、プラスティック基板にTFT基板2を転写することで、プラスティック基板上にTFT回路2を転写形成することが可能である。 In order to form the TFT circuit 2 on the base material 1, it is preferable to use a substrate that does not melt at a temperature of 500 ° C. or less and does not cause distortion. When a metal substrate is used as the substrate 1, it is preferable to use a metal substrate formed of an iron-nickel alloy having a linear expansion coefficient of 1 × 10 −5 / ° C. or less. Since a general metal substrate has a thermal expansion coefficient different from that of glass, it is difficult to form the TFT circuit 2 on the metal substrate with an available production apparatus. However, using a metal substrate formed of an iron-nickel alloy having a linear expansion coefficient of 1 × 10 −5 / ° C. or less, and matching the linear expansion coefficient with glass, the TFT circuit 2 is conventionally formed on the metal substrate. It can be formed at low cost using the production apparatus. Moreover, when using a plastic substrate as the base material 1, the heat-resistant temperature is very low. Therefore, it is possible to transfer and form the TFT circuit 2 on the plastic substrate by forming the TFT circuit 2 on the glass substrate and then transferring the TFT substrate 2 to the plastic substrate.
 TFT回路2は、有機EL発光部10を形成する前に、予め基板1上に形成され、スイッチング用及び駆動用として機能する。TFT回路2としては、従来公知のTFT回路2を用いることができる。また、本実施形態においては、スイッチング用及び駆動用としてTFTの代わりに金属-絶縁体-金属(MIM)ダイオードを用いることもできる。
 TFT回路2は、公知の材料、構造及び形成方法を用いて形成することができる。TFT回路2の活性層の材料としては、例えば、非晶質シリコン(アモルファスシリコン)、多結晶シリコン(ポリシリコン)、微結晶シリコン、セレン化カドミウム等の無機半導体材料、酸化亜鉛、酸化インジウム-酸化ガリウム-酸化亜鉛等の酸化物半導体材料又は、ポリチオフェン誘導体、チオフエンオリゴマー、ポリ(p-フェリレンビニレン)誘導体、ナフタセン、ペンタセン等の有機半導体材料が挙げられる。また、TFT回路2の構造としては、例えば、スタガ型、逆スタガ型、トップゲート型、コプレーナ型が挙げられる。
The TFT circuit 2 is formed on the substrate 1 in advance before the organic EL light emitting unit 10 is formed, and functions as a switching device and a driving device. As the TFT circuit 2, a conventionally known TFT circuit 2 can be used. In this embodiment, a metal-insulator-metal (MIM) diode can be used instead of the TFT for switching and driving.
The TFT circuit 2 can be formed using a known material, structure, and formation method. As the material of the active layer of the TFT circuit 2, for example, amorphous silicon (amorphous silicon), polycrystalline silicon (polysilicon), microcrystalline silicon, inorganic semiconductor materials such as cadmium selenide, zinc oxide, indium oxide-oxide Examples thereof include oxide semiconductor materials such as gallium-zinc oxide, and organic semiconductor materials such as polythiophene derivatives, thiophene oligomers, poly (p-ferylene vinylene) derivatives, naphthacene, and pentacene. Examples of the structure of the TFT circuit 2 include a stagger type, an inverted stagger type, a top gate type, and a coplanar type.
 TFT回路2を構成する活性層の形成方法としては、例えば、以下の方法がある。(1)プラズマ誘起化学気相成長(PECVD:Plasma Enhanced Chemical Vapor Deposition)法により成膜したアモルファスシリコンに不純物をイオンドーピングする方法。(2)シラン(SiH)ガスを用いた減圧化学気相成長(LPCVD:Low Pressure Chemical Vapor Deposition)法によりアモルファスシリコンを形成し、固相成長法によりアモルファスシリコンを結晶化してポリシリコンを得た後、イオン打ち込み法によりイオンドーピングする方法。(3)Siガスを用いたLPCVD法又はSiHガスを用いたPECVD法によりアモルファスシリコンを形成し、エキシマレーザー等のレーザーによりアニールし、アモルファスシリコンを結晶化してポリシリコンを得た後、イオンドーピングを行う方法(低温プロセス)。(4)LPCVD法又はPECVD法によりポリシリコン層を形成し、1000℃以上で熱酸化することによりゲート絶縁膜を形成し、その上に、nポリシリコンのゲート電極を形成し、その後、イオンドーピングを行う方法(高温プロセス)。(5)有機半導体材料をインクジェット法等により形成する方法。(6)有機半導体材料の単結晶膜を得る方法。 As a method for forming the active layer constituting the TFT circuit 2, for example, there are the following methods. (1) A method in which impurities are ion-doped into amorphous silicon formed by a plasma enhanced chemical vapor deposition (PECVD) method. (2) Amorphous silicon was formed by a low pressure chemical vapor deposition (LPCVD) method using silane (SiH 4 ) gas, and the amorphous silicon was crystallized by a solid phase growth method to obtain polysilicon. Thereafter, ion doping is performed by ion implantation. (3) After amorphous silicon is formed by LPCVD method using Si 2 H 6 gas or PECVD method using SiH 4 gas, annealed by laser such as excimer laser, and amorphous silicon is crystallized to obtain polysilicon , A method of performing ion doping (low temperature process). (4) A polysilicon layer is formed by LPCVD method or PECVD method, and a gate insulating film is formed by thermal oxidation at 1000 ° C. or higher, and an n + polysilicon gate electrode is formed thereon, and then an ion Doping method (high temperature process). (5) A method of forming an organic semiconductor material by an inkjet method or the like. (6) A method for obtaining a single crystal film of an organic semiconductor material.
 本実施形態で用いられるTFT回路2のゲート絶縁膜は、公知の材料を用いて形成することができる。例えば、PECVD法、LPCVD法等により形成されたSiO又はポリシリコン膜を熱酸化して得られるSiO等が挙げられる。また、本実施形態で用いられるTFT回路2の信号電極線、走査電極線、共通電極線、第1駆動電極及び第2駆動電極は、公知の材料を用いて形成することができ、例えば、タンタル(Ta)、アルミニウム(Al)、銅(Cu)等が挙げられる。 The gate insulating film of the TFT circuit 2 used in this embodiment can be formed using a known material. Examples thereof include SiO 2 formed by PECVD, LPCVD, etc., or SiO 2 obtained by thermally oxidizing a polysilicon film. Further, the signal electrode line, the scanning electrode line, the common electrode line, the first drive electrode, and the second drive electrode of the TFT circuit 2 used in the present embodiment can be formed using a known material, for example, tantalum. (Ta), aluminum (Al), copper (Cu), and the like.
 層間絶縁膜3は、公知の材料を用いて形成することができ、例えば、酸化シリコン(SiO)、窒化シリコン(SiN、又は、Si)、酸化タンタル(TaO、又は、Ta)等の無機材料、又は、アクリル樹脂、レジスト材料等の有機材料等が挙げられる。
 層間絶縁膜3の形成方法としては、化学気相成長(CVD)法、真空蒸着法等のドライプロセス、スピンコート法等のウエットプロセスが挙げられる。また、必要に応じてフォトリソグラフィー法等によりパターニングすることもできる。
 本実施形態の有機発光素子20においては、後述の如く、有機EL発光部10からの発光を、基板1とは逆側(波長変換層18および各蛍光変換層8R、8G、8B側)から取り出す。そのため、外光が基板1上に形成されたTFT回路2に入射して、TFT特性に変化が生じることを防ぐ目的で、遮光性を兼ね備えた層間絶縁膜3(遮光性絶縁膜)を用いることが好ましい。また、本実施形態においては、上記の層間絶縁膜3と遮光性絶縁膜とを組み合わせて用いることもできる。遮光性絶縁膜としては、フタロシアニン、キナクロドン等の顔料又は染料をポリイミド等の高分子樹脂に分散したもの、カラーレジスト、ブラックマトリクス材料、NiZnFe等の無機絶縁材料等が挙げられる。
The interlayer insulating film 3 can be formed using a known material, for example, silicon oxide (SiO 2 ), silicon nitride (SiN or Si 2 N 4 ), tantalum oxide (TaO or Ta 2 O). 5 )) or an organic material such as an acrylic resin or a resist material.
Examples of the method for forming the interlayer insulating film 3 include a dry process such as a chemical vapor deposition (CVD) method and a vacuum deposition method, and a wet process such as a spin coating method. Moreover, it can also pattern by the photolithographic method etc. as needed.
In the organic light emitting device 20 of the present embodiment, as described later, light emitted from the organic EL light emitting unit 10 is extracted from the side opposite to the substrate 1 (the wavelength conversion layer 18 and the fluorescence conversion layers 8R, 8G, and 8B side). . Therefore, in order to prevent external light from entering the TFT circuit 2 formed on the substrate 1 and changing the TFT characteristics, the interlayer insulating film 3 (light-shielding insulating film) having light-shielding properties is used. Is preferred. In the present embodiment, the interlayer insulating film 3 and the light-shielding insulating film can be used in combination. Examples of the light-shielding insulating film include those obtained by dispersing pigments or dyes such as phthalocyanine and quinaclone in polymer resins such as polyimide, color resists, black matrix materials, inorganic insulating materials such as Ni x Zn y Fe 2 O 4, and the like. It is done.
 平坦化膜4は、TFT回路2の表面の凸凹により有機EL発光部10の欠陥等が発生することを防止するために設けられるものである。有機EL発光部10の欠陥としては、例えば、画素電極の欠損、有機EL層の欠損、対向電極の断線、画素電極と対向電極の短絡、耐圧の低下等がある。なお、平坦化膜4は省略することも可能である。
 平坦化膜4は、公知の材料を用いて形成することができ、例えば、酸化シリコン、窒化シリコン、酸化タンタル等の無機材料、ポリイミド、アクリル樹脂、レジスト材料等の有機材料等が挙げられる。平坦化膜4の形成方法としては、CVD法、真空蒸着法等のドライプロセス、スピンコート法等のウエットプロセスが挙げられるが、本発明はこれらの材料及び形成方法に限定されるものではない。また、平坦化膜4は、単層構造でも多層構造でもよい。
The flattening film 4 is provided to prevent a defect or the like of the organic EL light emitting unit 10 from being generated due to unevenness of the surface of the TFT circuit 2. Examples of the defect of the organic EL light emitting unit 10 include a pixel electrode defect, an organic EL layer defect, a counter electrode disconnection, a pixel electrode and counter electrode short circuit, and a breakdown voltage decrease. Note that the planarization film 4 can be omitted.
The planarization film 4 can be formed using a known material, and examples thereof include inorganic materials such as silicon oxide, silicon nitride, and tantalum oxide, and organic materials such as polyimide, acrylic resin, and resist material. Examples of the method for forming the planarizing film 4 include a dry process such as a CVD method and a vacuum deposition method, and a wet process such as a spin coating method, but the present invention is not limited to these materials and the forming method. Further, the planarizing film 4 may have a single layer structure or a multilayer structure.
 平坦化膜4上には、光源(発光源)である有機EL発光部10が形成されている。有機EL発光部10は、第1電極12と、第2電極16と、有機EL層(有機層)17とを有する。第1電極12は、陽極である。第2電極16は、第1電極12に対向配置された陰極である。有機EL層(有機層)17は、第1電極12と第2電極16との間に狭持された発光層14を含む少なくとも一層からなる。第1電極12及び第2電極16は、有機EL発光部10の陽極又は陰極として対で機能する。つまり、第1電極12を陽極とした場合には、第2電極16は陰極となる。また、第1電極12を陰極とした場合には、第2電極16は陽極となる。図1及び以下の説明においては、第1電極12が陽極、第2電極16が陰極である場合を例に説明する。なお、第1電極12が陰極、第2電極16が陽極の場合には、後述する有機EL層(有機層)17の積層構成において、正孔注入層および正孔輸送層を第2電極側16とし、電子注入層および電子輸送層を第1電極12側とすればよい。 On the planarizing film 4, an organic EL light emitting unit 10 that is a light source (light emitting source) is formed. The organic EL light emitting unit 10 includes a first electrode 12, a second electrode 16, and an organic EL layer (organic layer) 17. The first electrode 12 is an anode. The second electrode 16 is a cathode disposed so as to face the first electrode 12. The organic EL layer (organic layer) 17 is composed of at least one layer including the light emitting layer 14 sandwiched between the first electrode 12 and the second electrode 16. The first electrode 12 and the second electrode 16 function as a pair as an anode or a cathode of the organic EL light emitting unit 10. That is, when the first electrode 12 is an anode, the second electrode 16 is a cathode. When the first electrode 12 is a cathode, the second electrode 16 is an anode. In FIG. 1 and the following description, a case where the first electrode 12 is an anode and the second electrode 16 is a cathode will be described as an example. When the first electrode 12 is a cathode and the second electrode 16 is an anode, the hole injection layer and the hole transport layer are arranged on the second electrode side 16 in a laminated structure of an organic EL layer (organic layer) 17 described later. The electron injection layer and the electron transport layer may be on the first electrode 12 side.
 第1電極12及び第2電極16を形成する電極材料としては公知の電極材料を用いることができる。陽極である第1電極12を形成する材料としては、有機EL層17への正孔の注入をより効率よく行う観点から、仕事関数が4.5eV以上の金(Au)、白金(Pt)、ニッケル(Ni)等の金属、及び、インジウム(In)と錫(Sn)からなる酸化物(ITO)、錫(Sn)の酸化物(SnO)インジウム(In)と亜鉛(Zn)からなる酸化物(IZO)等が挙げられる。また、陰極である第2電極16を形成する電極材料としては、有機EL層17への電子の注入を、より効率よく行う観点から、仕事関数が4.5eV以下のリチウム(Li)、カルシウム(Ca)、セリウム(Ce)、バリウム(Ba)、アルミニウム(Al)等の金属、又は、これらの金属を含有するMg:Ag合金、Li:Al合金等の合金が挙げられる。 As an electrode material for forming the first electrode 12 and the second electrode 16, a known electrode material can be used. As a material for forming the first electrode 12 that is an anode, from the viewpoint of efficiently injecting holes into the organic EL layer 17, gold (Au), platinum (Pt), a work function of 4.5 eV or more, Metals such as nickel (Ni) and oxides (ITO) made of indium (In) and tin (Sn), oxides made of tin (Sn) (SnO 2 ), oxides made of indium (In) and zinc (Zn) (IZO) etc. are mentioned. In addition, as an electrode material for forming the second electrode 16 serving as a cathode, lithium (Li), calcium (with a work function of 4.5 eV or less) from the viewpoint of more efficiently injecting electrons into the organic EL layer 17 ( Examples thereof include metals such as Ca), cerium (Ce), barium (Ba), and aluminum (Al), or alloys such as Mg: Ag alloy and Li: Al alloy containing these metals.
 第1電極12及び第2電極16は、上記の材料を用いてEB(電子ビーム)蒸着法、スパッタリング法、イオンプレーティング法、抵抗加熱蒸着法等の公知の方法により形成することができるが、本発明はこれらの形成方法に限定されるものではない。また、必要に応じて、フォトリソグラフフィー法、レーザー剥離法により、形成した電極をパターン化することもでき、シャドーマスクと組み合わせることで直接パターン化した電極を形成することもできる。
 第1電極12及び第2電極16の膜厚は、50nm以上が好ましい。第1電極12及び第2電極16の膜厚が50nm未満の場合には、配線抵抗が高くなることから、駆動電圧の上昇が生じるおそれがある。
The first electrode 12 and the second electrode 16 can be formed by a known method such as an EB (electron beam) vapor deposition method, a sputtering method, an ion plating method, or a resistance heating vapor deposition method using the above materials. The present invention is not limited to these forming methods. If necessary, the formed electrode can be patterned by a photolithographic fee method or a laser peeling method, or a patterned electrode can be directly formed by combining with a shadow mask.
The film thickness of the first electrode 12 and the second electrode 16 is preferably 50 nm or more. When the film thicknesses of the first electrode 12 and the second electrode 16 are less than 50 nm, the wiring resistance increases, so that the drive voltage may increase.
 本実施形態の有機発光素子20においては、光源である有機EL発光部10の発光層14からの発光を、波長変換層18および各蛍光変換層8R、8G、8B側である第2電極16側から取り出すため、第2電極16として半透明電極を用いることが好ましい。半透明電極の材料としては、金属の半透明電極単体、もしくは、金属の半透明電極と透明電極材料の組み合わせを用いることが可能であるが、反射率および透過率の観点から、銀が好ましい。半透明電極の膜厚は、5nm~30nmが好ましい。半透明電極の膜厚が5nm未満の場合には、後述のマイクロキャビティ効果を用いる場合に、光の反射が十分行えず、干渉の効果を十分得るとこができない可能性がある。また、半透明電極の膜厚が30nmを超える場合には、光の透過率が急激に低下することから輝度、効率が低下するおそれがある。
 なお、後述するように、マイクロキャビティ効果を得るためには、第1電極12及び第2電極16は、反射性電極とする必要がある。
In the organic light emitting device 20 of the present embodiment, light emitted from the light emitting layer 14 of the organic EL light emitting unit 10 that is a light source is emitted from the wavelength conversion layer 18 and the fluorescence conversion layers 8R, 8G, and 8B side. Therefore, it is preferable to use a translucent electrode as the second electrode 16. As the material of the semitransparent electrode, a metal semitransparent electrode alone or a combination of a metal semitransparent electrode and a transparent electrode material can be used, and silver is preferable from the viewpoint of reflectance and transmittance. The film thickness of the semitransparent electrode is preferably 5 nm to 30 nm. When the film thickness of the semi-transparent electrode is less than 5 nm, when using the microcavity effect described later, there is a possibility that light cannot be sufficiently reflected and the interference effect cannot be obtained sufficiently. Moreover, when the film thickness of a semi-transparent electrode exceeds 30 nm, since the light transmittance falls rapidly, there exists a possibility that a brightness | luminance and efficiency may fall.
As will be described later, in order to obtain the microcavity effect, the first electrode 12 and the second electrode 16 need to be reflective electrodes.
 本実施形態の有機発光素子20において、光源である有機EL発光部10の発光層14からの発光を取り出す側とは反対側に位置する第1電極12として、発光層14からの発光の取り出し効率を上げるために、光を反射する反射率の高い電極(反射電極)を用いることが好ましい。この際に用いる電極材料としては、例えば、アルミニウム、銀、金、アルミニウム-リチウム合金、アルミニウム-ネオジウム合金、アルミニウム-シリコン合金等の反射性金属電極、透明電極と前記反射性金属電極(反射電極)を組み合わせた電極等が挙げられる。なお、図1においては、平坦化膜4上に、反射電極11を介して透明電極である第1電極12を形成した例を示している。 In the organic light emitting device 20 of this embodiment, the extraction efficiency of light emission from the light emitting layer 14 is used as the first electrode 12 located on the side opposite to the side from which light emission from the light emitting layer 14 of the organic EL light emitting unit 10 that is a light source is extracted. In order to increase the brightness, it is preferable to use a highly reflective electrode (reflecting electrode) that reflects light. Examples of electrode materials used in this case include reflective metal electrodes such as aluminum, silver, gold, aluminum-lithium alloys, aluminum-neodymium alloys, and aluminum-silicon alloys, transparent electrodes, and reflective metal electrodes (reflective electrodes). The electrode etc. which combined these are mentioned. FIG. 1 shows an example in which the first electrode 12 that is a transparent electrode is formed on the planarizing film 4 via the reflective electrode 11.
 また、本実施形態の有機発光素子20において、基板1側(発光層14からの発光を取り出す側とは反対側)に位置する第1電極12が、各画素(各蛍光変換層8R、8G、8B)に対応して複数並列配置されている。また、隣接する第1電極12の各エッジ部(端部)を覆うように、絶縁材料からなるエッジカバー19が形成されている。このエッジカバー19は、第1電極12と第2電極16間でリークが起こることを防止する目的で設けられている。エッジカバー19は、絶縁材料を用いてEB(Electron Beam)蒸着法、スパッタリング法、イオンプレーティング法、抵抗加熱蒸着法等の公知の方法により形成することができ、公知のドライ及びウエット法のフォトリソグラフィー法によりパターン化をすることができるが、本実施形態はこれらの形成方法に限定されるものではない。また、エッジカバー19を構成する絶縁材料層としては、従来公知の材料を使用することができ、本実施形態では特に限定されない。エッジカバー19を構成する絶縁材料層は、光を透過する必要があり、例えば、SiO、SiON、SiN、SiOC、SiC、HfSiON、ZrO、HfO、LaO等が挙げられる。 Further, in the organic light emitting device 20 of the present embodiment, the first electrode 12 positioned on the substrate 1 side (the side opposite to the side from which the light emission from the light emitting layer 14 is extracted) is connected to each pixel (each fluorescence conversion layer 8R, 8G, A plurality of parallel arrangements are provided corresponding to 8B). An edge cover 19 made of an insulating material is formed so as to cover each edge portion (end portion) of the adjacent first electrode 12. The edge cover 19 is provided for the purpose of preventing leakage between the first electrode 12 and the second electrode 16. The edge cover 19 can be formed using an insulating material by a known method such as an EB (Electron Beam) vapor deposition method, a sputtering method, an ion plating method, a resistance heating vapor deposition method, or the like. Although patterning can be performed by a lithography method, the present embodiment is not limited to these forming methods. Moreover, a conventionally well-known material can be used as an insulating material layer which comprises the edge cover 19, and it does not specifically limit in this embodiment. The insulating material layer constituting the edge cover 19 needs to transmit light, and examples thereof include SiO, SiON, SiN, SiOC, SiC, HfSiON, ZrO, HfO, and LaO.
 エッジカバー19の膜厚としては、100nm~2000nmが好ましい。エッジカバー19の膜厚を100nm以上とすることにより、十分な絶縁性を保ち、第1電極12と第2電極16との間でリークが起こり、消費電力の上昇や非発光が起こることを防ぐことができる。また、エッジカバー19の膜厚を2000nm以下とすることにより、成膜プロセスの生産性の低下や、エッジカバー19における第2電極16の断線が起こることを防ぐことができる。
 また、反射電極11及び第1電極12は、層間絶縁膜3及び平坦化膜4を貫通して設けられた配線2bにより、TFT回路2の1つに接続されている。第2電極16は、層間絶縁膜3、平坦化膜4及びエッジカバー19を貫通して設けられた配線2aによりTFT回路2の1つに接続されている。配線2a、2bは、導電性の材料より構成されていればよく、特に限定されない。配線2a、2bは、例えば、Cr、Mo、Ti、Ta、Al、Al合金、Cu、Cu合金等の材料より構成されている。配線2a、2bは、スパッタリングまたはCVD法、及びマスク工程等の従来公知の方法により形成される。
The film thickness of the edge cover 19 is preferably 100 nm to 2000 nm. By setting the film thickness of the edge cover 19 to 100 nm or more, sufficient insulation is maintained, and leakage occurs between the first electrode 12 and the second electrode 16 to prevent an increase in power consumption and non-light emission. be able to. Further, by setting the film thickness of the edge cover 19 to 2000 nm or less, it is possible to prevent the productivity of the film forming process from being lowered and the disconnection of the second electrode 16 in the edge cover 19 from occurring.
Further, the reflective electrode 11 and the first electrode 12 are connected to one of the TFT circuits 2 by a wiring 2 b provided through the interlayer insulating film 3 and the planarizing film 4. The second electrode 16 is connected to one of the TFT circuits 2 by a wiring 2 a provided through the interlayer insulating film 3, the planarizing film 4 and the edge cover 19. Wiring 2a, 2b should just be comprised from the electroconductive material, and is not specifically limited. The wirings 2a and 2b are made of, for example, a material such as Cr, Mo, Ti, Ta, Al, Al alloy, Cu, and Cu alloy. The wirings 2a and 2b are formed by a conventionally known method such as a sputtering or CVD method and a mask process.
 有機EL層(有機層)17は、発光層14の単層構造でも良いし、図1に示すような正孔輸送層13と発光層14と電子輸送層15との積層構造の如く多層構造でも良い。有機EL層(有機層)17として、具体的には下記の構成が挙げられるが、本実施形態はこれらにより限定されるものではない。なお、下記の構成において、正孔注入層及び正孔輸送層13は、陽極である第1電極12側に配される。また、電子注入層及び電子輸送層15は、陰極である第2電極16側に配される。
(1)発光層14
(2)正孔輸送層13/発光層14
(3)発光層14/電子輸送層15
(4)正孔輸送層13/発光層14/電子輸送層15
(5)正孔注入層/正孔輸送層13/発光層14/電子輸送層15
(6)正孔注入層/正孔輸送層13/発光層14/電子輸送層15/電子注入層
(7)正孔注入層/正孔輸送層13/発光層14/正孔防止層/電子輸送層15
(8)正孔注入層/正孔輸送層13/発光層14/正孔防止層/電子輸送層15/電子注入層
(9)正孔注入層/正孔輸送層13/電子防止層/発光層14/正孔防止層/電子輸送層15/電子注入層
 ここで、発光層14、正孔注入層、正孔輸送層13、正孔防止層、電子防止層、電子輸送層15及び電子注入層の各層は、単層構造でも多層構造でもよい。
The organic EL layer (organic layer) 17 may have a single layer structure of the light emitting layer 14 or a multilayer structure such as a stacked structure of the hole transport layer 13, the light emitting layer 14, and the electron transport layer 15 as shown in FIG. good. Specific examples of the organic EL layer (organic layer) 17 include the following configurations, but the present embodiment is not limited thereto. In the following configuration, the hole injection layer and the hole transport layer 13 are arranged on the first electrode 12 side that is an anode. The electron injection layer and the electron transport layer 15 are disposed on the second electrode 16 side that is a cathode.
(1) Light emitting layer 14
(2) Hole transport layer 13 / light emitting layer 14
(3) Light emitting layer 14 / electron transport layer 15
(4) Hole transport layer 13 / light emitting layer 14 / electron transport layer 15
(5) Hole injection layer / hole transport layer 13 / light emitting layer 14 / electron transport layer 15
(6) Hole injection layer / hole transport layer 13 / light emitting layer 14 / electron transport layer 15 / electron injection layer (7) Hole injection layer / hole transport layer 13 / light emitting layer 14 / hole preventing layer / electron Transport layer 15
(8) Hole injection layer / hole transport layer 13 / light emitting layer 14 / hole prevention layer / electron transport layer 15 / electron injection layer (9) Hole injection layer / hole transport layer 13 / electron prevention layer / light emission Layer 14 / Hole prevention layer / Electron transport layer 15 / Electron injection layer Here, the light emitting layer 14, hole injection layer, hole transport layer 13, hole prevention layer, electron prevention layer, electron transport layer 15 and electron injection Each of the layers may have a single layer structure or a multilayer structure.
 発光層14は、有機発光材料のみから構成されていてもよく、発光性のドーパント(有機発光材料)とホスト材料の組み合わせから構成されていてもよく、任意に正孔輸送材料、電子輸送材料、添加剤(ドナー、アクセプター等)等を含んでいてもよい。また、発光層14は、これらの材料が高分子材料(結着用樹脂)又は無機材料中に分散された構成であってもよい。
 発光効率および寿命の観点からは、ホスト材料中に発光性のドーパントである有機発光材料が分散されたものが好ましい。発光層14は、第1電極12から注入された正孔と第2電極16から注入された電子とを再結合させて、緑色領域の光または赤色領域の光(緑色領域~赤色領域;波長500nm~780nm)の光を放出(発光)する。
The light-emitting layer 14 may be composed only of an organic light-emitting material, or may be composed of a combination of a light-emitting dopant (organic light-emitting material) and a host material, and optionally includes a hole transport material, an electron transport material, Additives (donor, acceptor, etc.) may be included. The light emitting layer 14 may have a configuration in which these materials are dispersed in a polymer material (binding resin) or an inorganic material.
From the viewpoint of luminous efficiency and lifetime, a material in which an organic light emitting material that is a light emitting dopant is dispersed in a host material is preferable. The light emitting layer 14 recombines the holes injected from the first electrode 12 and the electrons injected from the second electrode 16, so that light in the green region or light in the red region (green region to red region; wavelength 500 nm). (Up to 780 nm) light is emitted (emitted).
 発光層14に用いられる有機発光材料としては、従来公知の有機EL用の発光材料を用いることができ、緑色領域~赤色領域(波長500nm~780nm)の光を発光する材料を用いることができる。有機発光材料としては、低分子有機発光材料、高分子有機発光材料のどちらも用いることができる。また、有機発光材料は、蛍光材料、燐光材料のどちらも用いることができ、低消費電力化の観点で、発光効率の高い燐光材料を用いることが好ましい。 As the organic light emitting material used for the light emitting layer 14, a conventionally known light emitting material for organic EL can be used, and a material that emits light in a green region to a red region (wavelength: 500 nm to 780 nm) can be used. As the organic light emitting material, either a low molecular weight organic light emitting material or a high molecular weight organic light emitting material can be used. As the organic light emitting material, either a fluorescent material or a phosphorescent material can be used. From the viewpoint of reducing power consumption, it is preferable to use a phosphorescent material having high light emission efficiency.
 有機発光材料である緑色低分子発光材料としては、従来公知の有機EL用の緑色低分子発光材料を用いることができ、例えば、クマリン誘導体、キナクリドン、トリス(8―キノリナト)アルミニウム(Alq)、ビス(ベンゾキノリノラト)ベリリウム(BeBq)、10-(2-ベンゾチアゾイル)-1,1,7,7-テトラメチル-2,3,6,7-テトラヒドロ-1H,5H,11H-ベンゾ[1]ピラノ[678-ij]キノリジン-11-ワン(C545T)等の蛍光材料、トリス(2-フェニルピリジン)イリジウム(Ir(ppy))等の燐光材料を用いることができる。 The green low molecular luminescent material is an organic luminescent material, it is possible to use a green low molecular luminescent material legacy known organic EL, for example, coumarin derivatives, quinacridone, tris (8-quinolinato) aluminum (Alq 3), Bis (benzoquinolinolato) beryllium (BeBq 2 ), 10- (2-benzothiazoyl) -1,1,7,7-tetramethyl-2,3,6,7-tetrahydro-1H, 5H, 11H— A fluorescent material such as benzo [1] pyrano [678-ij] quinolizine-11-one (C545T) or a phosphorescent material such as tris (2-phenylpyridine) iridium (Ir (ppy) 3 ) can be used.
 有機発光材料である赤色低分子発光材料としては、従来公知の有機EL用の赤色低分子発光材料を用いることができ、例えば、ルブレン、フェナントロリン系ユウロピウム(Eu(TTA)(phen))、4-(ジシル-アノメチレン)-2-t-ブチル-6(1,1,7,7-テトラメチルジュリジヂル-9-エニル)-4H-ピラン(DCJTB)等の蛍光材料、ビス(2,4-ジフェニル-キノリン)イリジウム(III)アセチルラネート(Ir(ppy)(acac))、トリス(1-フェニルイソキノリン)イリジウム(III)(Ir(Pic))等の燐光材料を用いることができる。 As the red low molecular light emitting material which is an organic light emitting material, conventionally known red low molecular light emitting materials for organic EL can be used. For example, rubrene, phenanthroline europium (Eu (TTA) 3 (phen)), Fluorescent materials such as-(disyl-anomethylene) -2-t-butyl-6 (1,1,7,7-tetramethyljurididyl-9-enyl) -4H-pyran (DCJTB), bis (2,4 Phosphorescent materials such as -diphenyl-quinoline) iridium (III) acetyl lanate (Ir (ppy) 2 (acac)), tris (1-phenylisoquinoline) iridium (III) (Ir (Pic) 3 ) can be used .
 有機発光材料である高分子発光材料としては、従来公知の有機EL用の緑色領域~赤色領域の光を発光する高分子発光材料を用いることができ、例えば、ポリ(p-ビニルフェニレンビニレン)誘導体(PPV)、ポリフルオレン誘導体(PDAF)、ポリ(p-ビニルフェニレン)誘導体(PPP)、カルバゾール誘導体(PVK)等を用いることができる。これらの高分子発光材料は、側鎖への置換基導入などにより発光波長が変わるが、緑色領域~赤色領域の光を発光するものであれば用いることができる。 As the polymer light-emitting material that is an organic light-emitting material, conventionally known polymer light-emitting materials that emit light in the green region to red region for organic EL can be used, for example, poly (p-vinylphenylene vinylene) derivatives. (PPV), polyfluorene derivative (PDAF), poly (p-vinylphenylene) derivative (PPP), carbazole derivative (PVK), or the like can be used. These light emitting materials can be used as long as they emit light in a green region to a red region, although the emission wavelength is changed by introducing a substituent into a side chain.
 また、発光層14として、発光性のドーパントである有機発光材料とホスト材料を組み合わせて用いる場合、ホスト材料としては、従来公知の有機EL用のホスト材料を用いることができる。このようなホスト材料としては、上述した低分子有機発光材料、上述した高分子有機発光材料、4,4’-ビス(カルバゾール)ビフェニル、9,9-ジ(4-ジカルバゾール-ベンジル)フルオレン(CPF)、3,6-ビス(トリフェニルシリル)カルバゾール(mCP)、ポリ(N-オクチル-2,7-カルバゾール-O-9,9-ジオクチル-2,7-フルオレン)(PCF)等のカルバゾール誘導体、4-(ジフェニルフォスフォイル)-N,N-ジフェニルアニリン(HM-A1)等のアニリン誘導体、1,3-ビス(9-フェニル-9H-フルオレン-9-イル)ベンゼン(mDPFB)、1,4-ビス(9-フェニル-9H-フルオレン-9-イル)ベンゼン(pDPFB)等のフルオレン誘導体、1,3,5-トリス[4-(ジフェニルアミノ)フェニル]ベンゼン(TDAPB)、1,4-ビストリフェニルシリルベンゼン(UGH-2)等が挙げられる。 Further, when the organic light emitting material which is a light emitting dopant and a host material are used in combination as the light emitting layer 14, a conventionally known organic EL host material can be used as the host material. Examples of such host materials include the above-described low-molecular organic light-emitting materials, the above-described high-molecular organic light-emitting materials, 4,4′-bis (carbazole) biphenyl, 9,9-di (4-dicarbazole-benzyl) fluorene ( Carbazole such as CPF), 3,6-bis (triphenylsilyl) carbazole (mCP), poly (N-octyl-2,7-carbazole-O-9,9-dioctyl-2,7-fluorene) (PCF) Derivatives, aniline derivatives such as 4- (diphenylphosphoyl) -N, N-diphenylaniline (HM-A1), 1,3-bis (9-phenyl-9H-fluoren-9-yl) benzene (mDPFB), 1 , 4-Bis (9-phenyl-9H-fluoren-9-yl) benzene (pDPFB) and the like, 1,3,5-tris [4- (Diphenylamino) phenyl] benzene (TDAPB), 1,4-bistriphenylsilylbenzene (UGH-2) and the like.
 正孔注入層及び正孔輸送層13は、陽極である第1電極12からの正孔の注入と発光層14への輸送(注入)をより効率よく行う目的で、第1電極12と発光層14との間に設けられる。電子注入層及び電子輸送層15は、陰極である第2電極16からの電子の注入と発光層14への輸送(注入)をより効率よく行う目的で、第2電極16と発光層14との間に設けられる。
 これらの正孔注入層、正孔輸送層13、電子注入層、及び電子輸送層15は、それぞれ、従来公知の材料を用いることができ、以下に例示する材料のみから構成されていてもよく、任意に添加剤(ドナー、アクセプター等)等を含んでいてもよく、これらの材料が高分子材料(結着用樹脂)又は無機材料中に分散された構成であってもよい。
The hole injection layer and the hole transport layer 13 are used for the purpose of more efficiently injecting holes from the first electrode 12 serving as an anode and transporting (injecting) them to the light emitting layer 14. 14. The electron injection layer and the electron transport layer 15 are formed between the second electrode 16 and the light emitting layer 14 for the purpose of more efficiently injecting electrons from the second electrode 16 serving as a cathode and transporting (injecting) them to the light emitting layer 14. Between.
Each of these hole injection layer, hole transport layer 13, electron injection layer, and electron transport layer 15 can use a conventionally known material, and may be composed of only the materials exemplified below. An additive (donor, acceptor, etc.) may optionally be included, and a structure in which these materials are dispersed in a polymer material (binding resin) or an inorganic material may be employed.
 正孔輸送層13を構成する材料としては、例えば、酸化バナジウム(V)、酸化モリブデン(MoO)等の酸化物、無機p型半導体材料、ポルフィリン化合物、N,N’-ビス(3-メチルフェニル)-N,N’-ビス(フェニル)-ベンジジン(TPD)、N,N’-ジ(ナフタレン-1-イル)-N,N’-ジフェニル-ベンジジン(NPD)等の芳香族第三級アミン化合物、ヒドラゾン化合物、キナクリドン化合物、スチリルアミン化合物等の低分子材料、ポリアニリン(PANI)、ポリアニリン-樟脳スルホン酸(ポリアニリン-カンファースルホン酸;PANI-CSA)、3,4-ポリエチレンジオキシチオフェン/ポリスチレンサルフォネイト(PEDOT/PSS)、ポリ(トリフェニルアミン)誘導体(Poly-TPD)、ポリビニルカルバゾール(PVCz)、ポリ(p-フェニレンビニレン)(PPV)、ポリ(p-ナフタレンビニレン)(PNV)等の高分子材料等が挙げられる。 Examples of the material constituting the hole transport layer 13 include oxides such as vanadium oxide (V 2 O 5 ) and molybdenum oxide (MoO 2 ), inorganic p-type semiconductor materials, porphyrin compounds, N, N′-bis ( Aromatics such as 3-methylphenyl) -N, N′-bis (phenyl) -benzidine (TPD), N, N′-di (naphthalen-1-yl) -N, N′-diphenyl-benzidine (NPD) Low molecular weight materials such as tertiary amine compounds, hydrazone compounds, quinacridone compounds, styrylamine compounds, polyaniline (PANI), polyaniline-camphor sulfonic acid (polyaniline-camphorsulfonic acid; PANI-CSA), 3,4-polyethylenedioxy Thiophene / polystyrene sulfonate (PEDOT / PSS), poly (triphenylamine) derivative (Poly -TPD), polyvinylcarbazole (PVCz), poly (p-phenylene vinylene) (PPV), poly (p-naphthalene vinylene) (PNV), and other polymer materials.
 陽極である第1電極12からの正孔の注入および輸送をより効率よく行う点で、正孔注入層として用いる材料としては、正孔輸送層13に使用する材料より最高被占分子軌道(HOMO)のエネルギー準位が低い材料を用いることが好ましい。正孔輸送層13としては、正孔注入層に使用する材料より正孔の移動度が、高い材料を用いることが好ましい。
 正孔注入層を形成する材料としては、例えば、銅フタロシアニン等のフタロシアニン誘導体、4,4’,4”-トリス(3-メチルフェニルフェニルアミノ)トリフェニルアミン、4,4’,4”-トリス(1-ナフチルフェニルアミノ)トリフェニルアミン、4,4’,4”-トリス(2-ナフチルフェニルアミノ)トリフェニルアミン、4,4’,4”-トリス[ビフェニル-2-イル(フェニル)アミノ]トリフェニルアミン、4,4’,4”-トリス[ビフェニル-3-イル(フェニル)アミノ]トリフェニルアミン、4,4’,4”-トリス[ビフェニル-4-イル(3-メチルフェニル)アミノ]トリフェニルアミン、4,4’,4”-トリス[9,9-ジメチル-2-フルオレニル(フェニル)アミノ]トリフェニルアミン等のアミン化合物、酸化バナジウム(V)、酸化モリブデン(MoO)等の酸化物等が挙げられる。ただし、これらに限定されるものではない。
As a material used for the hole injection layer, the highest occupied molecular orbital (HOMO) is more preferable than the material used for the hole transport layer 13 in that holes are more efficiently injected and transported from the first electrode 12 serving as the anode. It is preferable to use a material having a low energy level. As the hole transport layer 13, it is preferable to use a material having a higher hole mobility than the material used for the hole injection layer.
Examples of the material for forming the hole injection layer include phthalocyanine derivatives such as copper phthalocyanine, 4,4 ′, 4 ″ -tris (3-methylphenylphenylamino) triphenylamine, and 4,4 ′, 4 ″ -tris. (1-naphthylphenylamino) triphenylamine, 4,4 ′, 4 ″ -tris (2-naphthylphenylamino) triphenylamine, 4,4 ′, 4 ″ -tris [biphenyl-2-yl (phenyl) amino ] Triphenylamine, 4,4 ', 4 "-tris [biphenyl-3-yl (phenyl) amino] triphenylamine, 4,4', 4" -tris [biphenyl-4-yl (3-methylphenyl) Amination of amino] triphenylamine, 4,4 ′, 4 ″ -tris [9,9-dimethyl-2-fluorenyl (phenyl) amino] triphenylamine, etc. Examples thereof include oxides such as a compound, vanadium oxide (V 2 O 5 ), and molybdenum oxide (MoO 2 ), but are not limited thereto.
 また、より正孔の注入および輸送性を向上させるため、前記正孔注入層及び正孔輸送層13にアクセプターをドープすることが好ましい。アクセプターとしては、有機EL用のアクセプター材料として従来公知の材料を用いることができる。
 アクセプター材料としては、Au、Pt、W、Ir、POCl、AsF、Cl、Br、I、酸化バナジウム(V)、酸化モリブデン(MoO)等の無機材料、TCNQ(7,7,8,8,-テトラシアノキノジメタン)、TCNQF4(テトラフルオロテトラシアノキノジメタン)、TCNE(テトラシアノエチレン)、HCNB(ヘキサシアノブタジエン)、DDQ(ジシクロジシアノベンゾキノン)等のシアノ基を有する化合物、TNF(トリニトロフルオレノン)、DNF(ジニトロフルオレノン)等のニトロ基を有する化合物、フルオラニル、クロラニル、ブロマニル等の有機材料が挙げられる。これらの中でも、TCNQ、TCNQF4、TCNE、HCNB、DDQ等のシアノ基を有する化合物が、キャリア濃度を効果的に増加させることが可能であるためより好ましい。
 電子防止層としては、正孔輸送層13及び正孔注入層として前述したものと同じものを使用することができる。
In order to improve the hole injection and transport properties, it is preferable to dope the hole injection layer and the hole transport layer 13 with an acceptor. As an acceptor, a conventionally well-known material can be used as an acceptor material for organic EL.
Acceptor materials include Au, Pt, W, Ir, POCl 3 , AsF 6 , Cl, Br, I, vanadium oxide (V 2 O 5 ), molybdenum oxide (MoO 2 ), and other inorganic materials, TCNQ (7, 7 , 8,8, -tetracyanoquinodimethane), TCNQF4 (tetrafluorotetracyanoquinodimethane), TCNE (tetracyanoethylene), HCNB (hexacyanobutadiene), DDQ (dicyclodicyanobenzoquinone), etc. Examples thereof include compounds, compounds having a nitro group such as TNF (trinitrofluorenone) and DNF (dinitrofluorenone), and organic materials such as fluoranyl, chloranil and bromanyl. Among these, compounds having a cyano group such as TCNQ, TCNQF4, TCNE, HCNB, and DDQ are more preferable because they can increase the carrier concentration effectively.
As the electron blocking layer, the same materials as those described above as the hole transport layer 13 and the hole injection layer can be used.
 電子輸送層15を構成する材料としては、例えば、n型半導体である無機材料、オキサジアゾール誘導体、トリアゾール誘導体、チオピラジンジオキシド誘導体、ベンゾキノン誘導体、ナフトキノン誘導体、アントラキノン誘導体、ジフェノキノン誘導体、フルオレノン誘導体、ベンゾジフラン誘導体等の低分子材料;ポリ(オキサジアゾール)(Poly-OXZ)、ポリスチレン誘導体(PSS)等の高分子材料が挙げられる。
 電子注入層を構成する材料としては、特に、フッ化リチウム(LiF)、フッ化バリウム(BaF)等のフッ化物、酸化リチウム(LiO)等の酸化物等が挙げられる。
 陰極である第2電極16から電子の注入および輸送をより効率よく行う点で、電子注入層として用いる材料としては、電子輸送層15に使用する材料より最低空分子軌道(LUMO)のエネルギー準位が高い材料を用いることが好ましい。電子輸送層15として用いる材料としては、電子注入層に使用する材料より電子の移動度が高い材料を用いることが好ましい。
Examples of the material constituting the electron transport layer 15 include an inorganic material that is an n-type semiconductor, an oxadiazole derivative, a triazole derivative, a thiopyrazine dioxide derivative, a benzoquinone derivative, a naphthoquinone derivative, an anthraquinone derivative, a diphenoquinone derivative, a fluorenone derivative, Low molecular materials such as benzodifuran derivatives; polymer materials such as poly (oxadiazole) (Poly-OXZ) and polystyrene derivatives (PSS).
Examples of the material constituting the electron injection layer include fluorides such as lithium fluoride (LiF) and barium fluoride (BaF 2 ), and oxides such as lithium oxide (Li 2 O).
As a material used for the electron injection layer, the energy level of the lowest unoccupied molecular orbital (LUMO) is higher than that of the material used for the electron transport layer 15 in that electrons are injected and transported more efficiently from the second electrode 16 serving as the cathode. It is preferable to use a material having a high value. As the material used for the electron transport layer 15, it is preferable to use a material having higher electron mobility than the material used for the electron injection layer.
 また、より電子の注入および輸送性を向上させるため、前記電子注入層及び電子輸送層15にドナーをドープすることが好ましい。ドナーとしては、有機EL用のドナー材料として従来公知の材料を用いることができる。
 ドナー材料としては、アルカリ金属、アルカリ土類金属、希土類元素、Al、Ag、Cu、In等の無機材料、アニリン類、フェニレンジアミン類、N,N,N’,N’-テトラフェニルベンジジン、N,N’-ビス-(3-メチルフェニル)-N,N’-ビス-(フェニル)-ベンジジン、N,N’-ジ(ナフタレン-1-イル)-N,N’-ジフェニル-ベンジジン等のベンジジン類、トリフェニルアミン、4,4’,4''-トリス(N,N-ジフェニル-アミノ)-トリフェニルアミン、4,4’,4''-トリス(N-3-メチルフェニル-N-フェニル-アミノ)-トリフェニルアミン、4,4’ ,4''-トリス(N-(1-ナフチル)-N-フェニル-アミノ)-トリフェニルアミン等のトリフェニルアミン類、N,N’-ジ-(4-メチル-フェニル)-N,N’-ジフェニル-1,4-フェニレンジアミン等のトリフェニルジアミン類の芳香族3級アミンを骨格にもつ化合物、フェナントレン、ピレン、ペリレン、アントラセン、テトラセン、ペンタセン等の縮合多環化合物(ただし、縮合多環化合物は置換基を有してもよい)、TTF(テトラチアフルバレン)類、ジベンゾフラン、フェノチアジン、カルバゾール等の有機材料がある。これらの中でも、芳香族3級アミンを骨格にもつ化合物、縮合多環化合物、アルカリ金属がよりキャリア濃度を効果的に増加させることが可能であるためより好ましい。
 正孔防止層としては、電子輸送層15及び電子注入層として前述したものと同じものを使用することができる。
In order to further improve the electron injection and transport properties, the electron injection layer and the electron transport layer 15 are preferably doped with a donor. As a donor, a conventionally well-known material can be used as a donor material for organic EL.
Donor materials include inorganic materials such as alkali metals, alkaline earth metals, rare earth elements, Al, Ag, Cu, and In, anilines, phenylenediamines, N, N, N ′, N′-tetraphenylbenzidine, N , N′-bis- (3-methylphenyl) -N, N′-bis- (phenyl) -benzidine, N, N′-di (naphthalen-1-yl) -N, N′-diphenyl-benzidine, etc. Benzidines, triphenylamine, 4,4 ′, 4 ″ -tris (N, N-diphenyl-amino) -triphenylamine, 4,4 ′, 4 ″ -tris (N-3-methylphenyl-N Triphenylamines such as -phenyl-amino) -triphenylamine, 4,4 ', 4 "-tris (N- (1-naphthyl) -N-phenyl-amino) -triphenylamine, N, N' -Di- (4-methyl-fur Nyl) -N, N'-diphenyl-1,4-phenylenediamine and other aromatic tertiary amine compounds such as phenanthrene, pyrene, perylene, anthracene, tetracene, pentacene, etc. There are organic materials such as compounds (however, the condensed polycyclic compound may have a substituent), TTFs (tetrathiafulvalene), dibenzofuran, phenothiazine, and carbazole. Among these, a compound having an aromatic tertiary amine as a skeleton, a condensed polycyclic compound, and an alkali metal are more preferable because the carrier concentration can be increased more effectively.
As the hole blocking layer, the same materials as those described above as the electron transport layer 15 and the electron injection layer can be used.
 有機EL層17を構成する発光層14、正孔輸送層13、電子輸送層15、正孔注入層電子注入層、正孔防止層、電子防止層等の形成方法としては、上記の材料を溶剤に溶解、分散させた有機EL層形成用塗液を用いて、スピンコーティング法、ディッピング法、ドクターブレード法、吐出コート法、スプレーコート法等の塗布法、インクジェット法、凸版印刷法、凹版印刷法、スクリーン印刷法、マイクログラビアコート法等の印刷法等による公知のウエットプロセスにより形成する方法、又は、上記の材料を抵抗加熱蒸着法、電子線(EB:Electron Beam)蒸着法、分子線エピタキシー(MBE:Molecular Beam Epitaxy)法、スパッタリング法、有機気相蒸着(OVPD:Organic Vapor Phase Deposition)法等の公知のドライプロセスにより形成する方法、或いは、レーザー転写法等により形成する方法を挙げることができる。なお、ウエットプロセスにより有機EL層17を形成する場合には、有機EL層形成用塗液は、レベリング剤、粘度調整剤等の塗液の物性を調整するための添加剤を含んでいてもよい。 As a method for forming the light emitting layer 14, the hole transport layer 13, the electron transport layer 15, the hole injection layer, the electron injection layer, the hole prevention layer, the electron prevention layer and the like constituting the organic EL layer 17, the above materials are used as solvents. Using a coating liquid for forming an organic EL layer dissolved and dispersed in a coating method such as spin coating method, dipping method, doctor blade method, discharge coating method, spray coating method, ink jet method, letterpress printing method, intaglio printing method , A method of forming by a known wet process such as a screen printing method, a printing method such as a micro gravure coating method, or the above-described materials by resistance heating vapor deposition, electron beam (EB: Electron Beam) vapor deposition, molecular beam epitaxy ( MBE: Molecular Beam Epitaxy, sputtering, organic vapor deposition (OVPD: Organic V) Method for forming por Phase Deposition) method or the like of the known dry process, or may be a method of forming by a laser transfer method or the like. When the organic EL layer 17 is formed by a wet process, the organic EL layer forming coating solution may contain additives for adjusting the physical properties of the coating solution, such as a leveling agent and a viscosity modifier. .
 有機EL層17を構成する各層の膜厚は、通常1nm~1000nm程度であり、10nm~200nmがより好ましい。有機EL層17を構成する各層の膜厚が10nm未満であると、本来必要とされる物性(電荷(電子、正孔)の注入特性、輸送特性、閉じ込め特性)が得られない可能性や、ゴミ等の異物による画素欠陥が生じる虞がある。また、有機EL層17を構成する各層の膜厚が200nmを超えると駆動電圧の上昇が生じ、消費電力の上昇に繋がる虞がある。 The film thickness of each layer constituting the organic EL layer 17 is usually about 1 nm to 1000 nm, and more preferably 10 nm to 200 nm. If the film thickness of each layer constituting the organic EL layer 17 is less than 10 nm, it may not be possible to obtain originally required physical properties (charge (electron, hole) injection characteristics, transport characteristics, confinement characteristics); There is a risk of pixel defects due to foreign matter such as dust. Moreover, when the film thickness of each layer constituting the organic EL layer 17 exceeds 200 nm, the driving voltage increases, which may lead to an increase in power consumption.
 本実施形態の有機発光素子20において、有機EL発光部10における第1電極12と第2電極16とが光反射性を有する反射性電極である。この一対の反射性電極12、16によって定められる反射性界面間の光学膜厚Lが、発光層14より放出された光のうち特定波長の光の強度を増強するように設定されていることが好ましい。ここで、「特定波長の光」とは緑色領域~赤色領域の光(波長500nm~780nm)を意味する。具体的には、増強したい波長をλとすると、反射性界面間の光学膜厚L=(λ/2)×2m(但し、mは整数である。)を満たすように、光学膜厚Lを設定すればよい。 In the organic light emitting device 20 of the present embodiment, the first electrode 12 and the second electrode 16 in the organic EL light emitting unit 10 are reflective electrodes having light reflectivity. The optical film thickness L between the reflective interfaces defined by the pair of reflective electrodes 12 and 16 is set so as to enhance the intensity of light of a specific wavelength among the light emitted from the light emitting layer 14. preferable. Here, “light of a specific wavelength” means light in the green region to red region (wavelength 500 nm to 780 nm). Specifically, when the wavelength to be enhanced is λ, the optical film thickness L is set so as to satisfy the optical film thickness L between reflective interfaces L = (λ / 2) × 2 m (where m is an integer). You only have to set it.
 このように光学膜厚Lを設定することにより、反射性電極である第1電極12(反射電極)と第2電極16(半透明電極)間でマイクロキャビティ効果(多重反射干渉効果)が発現し、さらに光の取り出し効率を向上させることができる。詳述すると、有機EL発光部10の光学膜厚Lを前述の如く設定することにより、発光層14から発せられた光が、対向する第1電極12、第2電極16間を繰り返し反射する。この際、多重干渉によって緑色領域~赤色領域の光が強められて、第2電極16から波長変換層18側へと出射される。その結果、波長変換層18に入射される緑色領域~赤色領域の光の強度が増大し、波長変換層18で波長が変換されて各蛍光変換層8R、8G、8B側へと射出される光の光量が増加して、波長変換層18における波長変換効率を高めることができる。例えば、ひとつのフォトン(光子)が1μmのマイクロキャビティに存在すると想定した際の光強度は計算すると約3000W/cmである。この値は1フォトンでも非線型効果を生じさせる十分な強度である。このように波長変換層18における波長変換効率を高めることができるため、各蛍光体変換層8R、8G、8Bにてそれぞれ蛍光変換される赤色、緑色、青色の光の光量が増加し、有機発光素子20の光の取り出し効率を向上させることができ、良好な発光効率の有機発光素子20とすることができる。 By setting the optical film thickness L in this way, a microcavity effect (multiple reflection interference effect) appears between the first electrode 12 (reflecting electrode) and the second electrode 16 (semi-transparent electrode) which are reflective electrodes. Further, the light extraction efficiency can be improved. More specifically, by setting the optical film thickness L of the organic EL light emitting unit 10 as described above, the light emitted from the light emitting layer 14 is repeatedly reflected between the first electrode 12 and the second electrode 16 facing each other. At this time, light in the green region to red region is intensified by multiple interference and is emitted from the second electrode 16 to the wavelength conversion layer 18 side. As a result, the intensity of light in the green region to red region incident on the wavelength conversion layer 18 is increased, and the wavelength is converted by the wavelength conversion layer 18 and emitted to the fluorescence conversion layers 8R, 8G, and 8B side. As a result, the wavelength conversion efficiency in the wavelength conversion layer 18 can be increased. For example, the light intensity when assuming that one photon (photon) is present in a microcavity of 1 μm is about 3000 W / cm 2 . This value is sufficient to produce a nonlinear effect even with one photon. Since the wavelength conversion efficiency in the wavelength conversion layer 18 can be increased in this way, the amount of red, green, and blue light that is fluorescently converted in each phosphor conversion layer 8R, 8G, and 8B increases, and organic light emission occurs. The light extraction efficiency of the element 20 can be improved, and the organic light-emitting element 20 with good light emission efficiency can be obtained.
 有機EL発光部10上には、波長変換層18が形成されている。
 波長変換層18は、有機EL発光部10より発光された光の波長を変換して各蛍光変換層8R、8G、8B側へと射出する機能を有する層である。波長変換層18としては、有機EL発光部10から発光された光の波長を短く変換することができる層が挙げられる。具体的には、波長変換層18として、第2次高調波発生(SHG:Second-Harmonic Generation)など2次非線型光学効果を用いて、波長変換層18内に入射された光の波長を2分の1に変換するものが挙げられる。SHGである波長変換層18を用いることにより、有機EL発光部10より発光する赤色領域~緑色領域の光の波長を2分の1に変換して、紫外領域~青色領域の光に変換する。その紫外領域~青色領域の光を各蛍光変換層8R、8G、8B側へと射出することができる。例えば、有機EL発光部10から波長600nmの光が発光すると、SHGである波長変換層18により2分の1の波長である波長300nmの光に変換され、波長300nmの光が各蛍光変換層8R、8G、8B側へと射出される。
A wavelength conversion layer 18 is formed on the organic EL light emitting unit 10.
The wavelength conversion layer 18 is a layer having a function of converting the wavelength of light emitted from the organic EL light emitting unit 10 and emitting it to the fluorescence conversion layers 8R, 8G, and 8B. Examples of the wavelength conversion layer 18 include a layer that can convert the wavelength of light emitted from the organic EL light emitting unit 10 to be short. Specifically, the wavelength conversion layer 18 uses a second-order nonlinear optical effect such as second-harmonic generation (SHG) to change the wavelength of light incident into the wavelength conversion layer 18 to 2. One that converts to a fraction is mentioned. By using the wavelength conversion layer 18 that is SHG, the wavelength of the light in the red region to the green region emitted from the organic EL light emitting unit 10 is converted to half and converted into the light in the ultraviolet region to the blue region. The light in the ultraviolet region to the blue region can be emitted to the fluorescence conversion layers 8R, 8G, and 8B. For example, when light having a wavelength of 600 nm is emitted from the organic EL light emitting unit 10, the wavelength conversion layer 18 that is SHG converts the light to a wavelength having a wavelength of 300 nm that is a half wavelength, and the light having a wavelength of 300 nm is converted into each fluorescence conversion layer 8R. , 8G, and 8B.
 SHGは量子力学的に考えて、角周波数ωの光子2つが角周波数2ωの光子1つに変換されると見なすことができる。このとき、関係する光子間には下記式(1)で表されるエネルギー保存則が成り立つ。また、同時に下記式(2)で表される運動量保存則が成り立ち、これが位相整合条件となる。 SHG can be considered that two photons having an angular frequency ω are converted into one photon having an angular frequency 2ω in terms of quantum mechanics. At this time, an energy conservation law expressed by the following formula (1) is established between related photons. At the same time, the momentum conservation law expressed by the following equation (2) holds, and this is the phase matching condition.
Figure JPOXMLDOC01-appb-M000001
(ただし、k:基本波の波数ベクトル、k:第二次高調波の波数ベクトル。)
Figure JPOXMLDOC01-appb-M000001
(Where k 1 is the wave vector of the fundamental wave, k 2 is the wave vector of the second harmonic)
 SHGなどの光波の波長変換を高効率に実現するためには、相互作用する異波長光波間の位相整合をとることが重要である。媒質に周期性を持たせることにより、擬似的に位相整合させることができる。このような擬似位相整合(QPM:Quasi-Phase Matching)は非線形光学結晶の伝搬軸に沿って非線形光学係数の符号を周期Λで反転した構造を設け、非線形分極の波動ベクトルと発生しようとする光波の波動ベクトルとの差を周期構造の波数ベクトルκ(|κ|=K=2π/Λ)で補償することで位相整合をとる方法である。擬似位相整合による波長変換については、Robert W. Boid,“Nonlinear Optics” (Academic Press, New York),p.84-88、特開2003-307758号公報、特開2001-337355号公報などにおいて開示されている。 In order to realize wavelength conversion of light waves such as SHG with high efficiency, it is important to achieve phase matching between interacting different wavelength light waves. By providing the medium with periodicity, it is possible to perform pseudo phase matching. Such quasi-phase matching (QPM: Quasi-Phase Matching) has a structure in which the sign of the nonlinear optical coefficient is inverted with a period Λ along the propagation axis of the nonlinear optical crystal, and the wave vector of the nonlinear polarization and the light wave to be generated This is a method of achieving phase matching by compensating for the difference from the wave vector with the wave vector κ (| κ | = K = 2π / Λ) of the periodic structure. For wavelength conversion by quasi phase matching, Robert W. Body, “Nonlinear Optics” (Academic Press, New York), p. 84-88, JP 2003-307758 A, JP 2001-337355 A, and the like.
 図3Aおよび3Bは擬似位相整合(QPM)による波長変換について説明する図であり、図3Aは分極反転と伝播距離の関係について説明する図である。図3Aにおいて、二点鎖線は、光が通過する媒質に分極反転がない場合を示す。実線は、光が通過する媒質に分極反転がある場合を示す。図3BはQPMデバイスを模式的に説明する図である。図3Bにおいて、矢印は分極の動きを示す。
 一般的に位相整合がとれていない場合には、基本波光と発生した波長変換光との間で位相速度に差があるために、基本波が結晶内を伝播するにつれて次々と発生する波長変換光は、少しずつ位相がずれて発生する。発生した波長変換光は、各々が加算されて徐々に強度が増すが、ある距離Lc離れた2点で発生した波長変換光の位相差がπになると、互いに打ち消し合うようになり逆に強度が減衰する。その結果、波長変換光の強度は図3Aの二点鎖線で示すように周期的に強弱を繰り返すようになる。QPMデバイス内には、図3A及び図3Bに示したように、コヒーレント長と呼ばれる距離Lcごとに、結晶の分極を周期的に反転させた周期分極反転構造が形成されている。擬似位相整合の原理から分るように、分極反転の周期Λは、分極の正負の領域を一対としてコヒーレント長Lcの2倍の長さになる。
  また、QPMデバイスの特徴の一つとして、分極反転周期Λを調整することで、対応波長や変換方法(高調波発生、光パラメトリック発振等)をカスタマイズすることができる。例えば第二次高調波発生用デバイスでは、その分極反転周期Λは下記式(3)のように表せる。下記式(3)に示すように分極反転周期は、入射する基本波波長によって決まる。
3A and 3B are diagrams illustrating wavelength conversion by quasi phase matching (QPM), and FIG. 3A is a diagram illustrating a relationship between polarization reversal and propagation distance. In FIG. 3A, a two-dot chain line indicates a case where there is no polarization inversion in a medium through which light passes. A solid line indicates a case where there is a polarization inversion in a medium through which light passes. FIG. 3B is a diagram schematically illustrating the QPM device. In FIG. 3B, the arrows indicate the movement of polarization.
In general, when phase matching is not achieved, there is a difference in phase velocity between the fundamental wave light and the generated wavelength converted light. Therefore, wavelength converted light that is generated one after another as the fundamental wave propagates in the crystal. Occurs with a slight phase shift. The generated wavelength-converted lights are gradually increased in intensity as they are added, but when the phase difference between the wavelength-converted lights generated at two points separated by a certain distance Lc becomes π, they cancel each other and conversely the intensity. Attenuates. As a result, the intensity of the wavelength-converted light is periodically increased and decreased as indicated by a two-dot chain line in FIG. 3A. In the QPM device, as shown in FIGS. 3A and 3B, a periodically poled structure is formed by periodically inverting the crystal polarization for each distance Lc called a coherent length. As can be seen from the principle of quasi-phase matching, the period of polarization inversion Λ is twice as long as the coherent length Lc with a pair of positive and negative polarization regions as a pair.
Further, as one of the features of the QPM device, the corresponding wavelength and conversion method (harmonic generation, optical parametric oscillation, etc.) can be customized by adjusting the polarization inversion period Λ. For example, in the second harmonic generation device, the polarization inversion period Λ can be expressed by the following equation (3). As shown in the following formula (3), the polarization inversion period is determined by the incident fundamental wave wavelength.
Figure JPOXMLDOC01-appb-M000002
(ただし、λ:基本波波長、nω:基本波波長に対する屈折率、n2ω:第二次高調波に対する屈折率。)
Figure JPOXMLDOC01-appb-M000002
(Where λ is the fundamental wavelength, n ω is the refractive index with respect to the fundamental wavelength, and n 2ω is the refractive index with respect to the second harmonic.)
 QPMデバイスは分極反転構造を形成する方位を選ぶことで、従来の複屈折位相整合では実現できなかった方位の高い非線形定数を利用でき、結晶本来の非線形特性を十分に活用した効率の良い波長変換が可能になる。このように、QPM技術を用いることにより、様々な波長に対応した高効率の波長変換が実現できる。 The QPM device can select the orientation that forms the domain-inverted structure, and can use highly nonlinear constants that cannot be realized with conventional birefringence phase matching. Is possible. Thus, by using the QPM technology, highly efficient wavelength conversion corresponding to various wavelengths can be realized.
 波長変換層18は、SHGを発生する層であれば特に限定されず、上記した位相整合を考慮した擬似位相整合(QPM)を利用した多層構造のものも使用できる。
 波長変換層18としては、図3A及び図3Bに示すように、分極方向が交互に反転した複数層が積層されて構成されてなるものが好ましく、分極反転周期Λとなるように(即ち、コヒーレント長Lcごとに)、結晶の分極を周期的に反転するように複数層が積層されてなるものが好ましい。
 QPMを利用した第2次高調波発生(SHG)である波長変換層18としては、分極方向が交互に反転した複数層が積層されて構成されてなるものが挙げられる。具体的には、
(1)各層が単一分極化された誘電体材料より構成され、分極方向が交互に反転した複数層18a、18bが積層された積層体18A(図4)、
(2)半導体層18cと誘電体層18dが交互に積層されて構成された積層体18B(図5)、が挙げられる。
The wavelength conversion layer 18 is not particularly limited as long as it is a layer that generates SHG, and a multi-layer structure using quasi phase matching (QPM) considering the phase matching described above can also be used.
As shown in FIGS. 3A and 3B, the wavelength conversion layer 18 is preferably formed by laminating a plurality of layers in which the polarization directions are alternately reversed, and has a polarization reversal period Λ (that is, coherent). A structure in which a plurality of layers are laminated so as to periodically invert the polarization of the crystal is preferable (for each length Lc).
As the wavelength conversion layer 18 which is the second harmonic generation (SHG) using QPM, a layer formed by laminating a plurality of layers in which polarization directions are alternately reversed can be cited. In particular,
(1) A laminated body 18A (FIG. 4) in which each layer is made of a single-polarized dielectric material, and a plurality of layers 18a and 18b whose polarization directions are alternately reversed are laminated.
(2) A laminated body 18B (FIG. 5) configured by alternately laminating semiconductor layers 18c and dielectric layers 18d.
 波長変換層18である、各層が単一分極化された誘電体材料より構成された複数層18a、18bが積層された積層体(波長変換層)18Aを構成する誘電体材料としては、強誘電体材料、ガラス材料、ポリマー材料が挙げられる。
 波長変換層18を構成する強誘電体材料としては、強誘電体材料として従来公知のものが挙げられ、例えば、コングレント組成のLiNbO(LN)、LiTaO(LT)、KTiOPO(KTP)、β-BaB(BBO)、KNbO(KN)、KHPO(KDP)、LiB(LBO)、CsLiB12(CLBO)、Ta、Nb、AgGaS、ZnGeP(ZGP)、GaAs、GaN、MgO:LiNbO及びZnO:LiNbO等が挙げられる。
As the dielectric material constituting the wavelength conversion layer 18, which is a laminated body (wavelength conversion layer) 18 A in which a plurality of layers 18 a and 18 b each made of a single-polarized dielectric material are laminated, a ferroelectric material is used. Examples include body materials, glass materials, and polymer materials.
Examples of the ferroelectric material constituting the wavelength conversion layer 18 include those conventionally known as ferroelectric materials, such as LiNbO 3 (LN), LiTaO 3 (LT), and KTiOPO 4 (KTP) having a congruent composition. , Β-BaB 2 O 4 (BBO), KNbO 3 (KN), KH 2 PO 4 (KDP), LiB 3 O 5 (LBO), CsLiB 6 O 12 (CLBO), Ta 2 O 5 , Nb 2 O 3 , AgGaS 2 , ZnGeP 2 (ZGP), GaAs, GaN, MgO: LiNbO 3, ZnO: LiNbO 3 and the like.
 波長変換層18を構成するガラス材料としては、SiO、GeOSiO、石英ガラス又は珪酸塩ファイバ等が挙げられる。
 波長変換層18を構成するポリマー材料としては、例えば、4-(N-メチル-N-(4’-ニトロフェニル)アミノメチル)スチレン、4-(N-メチル-N-(4’-シアノフェニル)アミノメチル)スチレン、4-(N-(4’-ニトロフェニル)アミノメチル)スチレン、4-(N-(4’-シアノフェニル)アミノメチル)スチレン、尿素、ジ(p-ニトロフェニル)尿素、4-エトキシ-4’-メトキシカルコン、p-ニトロアニリン、N-メチル-2-メチル-4-ニトロアニリン、N,N-ジメチルアミノ-2-アセチルアミノ-4-ニトロアニリンなどが挙げられる。また、これらを高分子の側鎖に導入した構造や分散させたポリマー物質でもよい。ただし、紫外領域~青色領域の吸収を考慮すると、前述した強誘電体材料やガラス材料などの無機材料の方が好ましい。
Examples of the glass material constituting the wavelength conversion layer 18 include SiO 2 , GeO 2 SiO 2 , quartz glass, and silicate fiber.
Examples of the polymer material constituting the wavelength conversion layer 18 include 4- (N-methyl-N- (4′-nitrophenyl) aminomethyl) styrene, 4- (N-methyl-N- (4′-cyanophenyl). ) Aminomethyl) styrene, 4- (N- (4′-nitrophenyl) aminomethyl) styrene, 4- (N- (4′-cyanophenyl) aminomethyl) styrene, urea, di (p-nitrophenyl) urea 4-ethoxy-4′-methoxychalcone, p-nitroaniline, N-methyl-2-methyl-4-nitroaniline, N, N-dimethylamino-2-acetylamino-4-nitroaniline and the like. Moreover, the structure which introduce | transduced these to the polymeric side chain, and the dispersed polymer substance may be sufficient. However, in consideration of absorption in the ultraviolet region to the blue region, the above-described inorganic materials such as the ferroelectric material and the glass material are preferable.
 波長変換層18が半導体層18cと誘電体層18dが交互に積層されて構成された積層体(波長変換層)18Bである場合、二次の非線形光学定数の大きい半導体層18cと、二次の非線形光学定数の小さい誘電体層18dが、周期的に交互に積層されることにより、QPMを利用した第2次高調波発生(SHG)となる。波長変換層18Bの半導体層18cを構成する材料としては、ZnO、ZnS、GaN、CuCl等が挙げられる。波長変換層18Bの誘電体層18dを構成する材料としては、TiO、SiO、HfO等が挙げられる。 When the wavelength conversion layer 18 is a stacked body (wavelength conversion layer) 18B configured by alternately stacking the semiconductor layers 18c and the dielectric layers 18d, the semiconductor layer 18c having a large second-order nonlinear optical constant, Dielectric layers 18d having a small nonlinear optical constant are periodically and alternately stacked, thereby generating second harmonic generation (SHG) using QPM. Examples of the material constituting the semiconductor layer 18c of the wavelength conversion layer 18B include ZnO, ZnS, GaN, and CuCl. As a material for forming the dielectric layer 18d of the wavelength conversion layer 18B, TiO 2, SiO 2, HfO 2 , and the like.
 波長変換層18を構成する複数層の各層の厚さは、波長変換層18の材質、有機EL発光部10から発光される光の波長に応じて、上記式(3)等より算出される厚さに適宜調整すればよい。
 また、波長変換層18全体の厚さは特に限定されず、適宜変更可能であるが、例えば、1μm~100μm程度とすることができる。なお、波長変換層18の形成方法は特に限定されず、QPMを利用した第2次高調波発生(SHG)の波長変換層の形成方法として従来公知の方法を使用することができ、例えば、イオンビームスパッタリング法、プラズマ蒸着法等の方法により形成することができる。
The thicknesses of the plurality of layers constituting the wavelength conversion layer 18 are calculated from the above formula (3) and the like according to the material of the wavelength conversion layer 18 and the wavelength of light emitted from the organic EL light emitting unit 10. Further, it may be adjusted as appropriate.
Further, the thickness of the entire wavelength conversion layer 18 is not particularly limited and can be appropriately changed. For example, the thickness can be set to about 1 μm to 100 μm. In addition, the formation method of the wavelength conversion layer 18 is not specifically limited, A conventionally well-known method can be used as a formation method of the wavelength conversion layer of the 2nd harmonic generation (SHG) using QPM, for example, ion It can be formed by a method such as a beam sputtering method or a plasma deposition method.
 本実施形態の有機発光素子20は、有機EL発光部10の光取り出し側と、各蛍光変換層8R、8G、8Bとの間に、QPM構造を有する第2次高調波発生(SHG)の波長変換層18を配する。これにより、有機EL発光部10から発光された緑色領域~赤色領域の光の波長を波長変換層18において2分の1に変換して、紫外領域~青色領域の光とし、この変換光を各蛍光変換層8R、8G、8B側へと射出することができる。 The organic light emitting device 20 of the present embodiment has a second harmonic generation (SHG) wavelength having a QPM structure between the light extraction side of the organic EL light emitting unit 10 and each of the fluorescence conversion layers 8R, 8G, and 8B. The conversion layer 18 is disposed. As a result, the wavelength of the green region to red region light emitted from the organic EL light emitting unit 10 is converted into a half wavelength in the wavelength conversion layer 18 to obtain ultraviolet region to blue region light. The fluorescence conversion layers 8R, 8G, and 8B can be emitted.
 波長変換層18の上面と、有機EL発光部10及び波長変換層18の側面を覆うように、SiO、SiON、SiN等からなる無機封止膜5が形成されている。無機封止膜5は、プラズマCVD法、イオンプレーティング法、イオンビーム法、スパッタ法等により、SiO、SiON、SiN等の無機膜を成膜することにより形成することができる。なお、無機封止膜5は、波長変換層18にて波長変換された光を取り出すため、光透過性である必要がある。
 さらに、無機封止膜5上には、封止基板9が、各蛍光変換層8R、8G、8Bと有機EL発光部10とが波長変換層18を介して対向するように配置されている。封止基板9は、一方の面上にブラックマトリックス7に仕切られて並列配置された赤色蛍光変換層8R、緑色蛍光変換層8G、青色蛍光変換層8Bが形成されている。無機封止膜5と封止基板9との間には、封止材6が封入されている。すなわち、有機EL発光部10に対向配置された赤色蛍光変換層8R、緑色蛍光変換層8G、青色蛍光変換層8Bは、夫々、周囲をブラックマトリックス7に囲まれて区画されて、かつ、封止材6に囲まれた封止領域に封入されている。
An inorganic sealing film 5 made of SiO, SiON, SiN or the like is formed so as to cover the upper surface of the wavelength conversion layer 18 and the side surfaces of the organic EL light emitting unit 10 and the wavelength conversion layer 18. The inorganic sealing film 5 can be formed by depositing an inorganic film such as SiO, SiON, SiN or the like by plasma CVD, ion plating, ion beam, sputtering, or the like. In addition, since the inorganic sealing film 5 takes out the light wavelength-converted in the wavelength conversion layer 18, it needs to be light transmissive.
Further, on the inorganic sealing film 5, the sealing substrate 9 is arranged so that the respective fluorescence conversion layers 8R, 8G, and 8B and the organic EL light emitting unit 10 face each other with the wavelength conversion layer 18 interposed therebetween. On the one surface of the sealing substrate 9, a red fluorescence conversion layer 8R, a green fluorescence conversion layer 8G, and a blue fluorescence conversion layer 8B that are partitioned and arranged in parallel by the black matrix 7 are formed. A sealing material 6 is sealed between the inorganic sealing film 5 and the sealing substrate 9. That is, the red fluorescence conversion layer 8R, the green fluorescence conversion layer 8G, and the blue fluorescence conversion layer 8B that are disposed to face the organic EL light emitting unit 10 are each surrounded by the black matrix 7 and sealed. It is enclosed in a sealing region surrounded by the material 6.
 封止基板9としては、前述した基板1と同様のものを使用することができる。本実施形態の有機発光素子20においては、封止基板9側より発光を取り出す(観察者は封止基板9の外側より発光による表示を観察する)ため、封止基板9は光透過性の材料を使用する必要がある。
 封止材6は、従来公知の封止材料を用いることができ、封止材6の形成方法も従来公知の封止方法を用いることができる。
 具体的には、例えば、封止材6として窒素ガス、アルゴンガス等の不活性ガスを用いる場合は、窒素ガス、アルゴンガス等の不活性ガスをガラス等の封止基板9で封止する方法が挙げられる。この場合、更に、封入した不活性ガス中に酸化バリウム等の吸湿剤等を混入することにより、水分による有機ELの劣化を効果的に低減できるため好ましい。
 また、封止材6としては、樹脂(硬化性樹脂)を用いることもできる。この場合は、有機EL素子10、波長変換層18及び無機封止膜5が形成された基材1の無機封止膜5上、または、蛍光変換層8R、8G、8Bが形成された封止基板9の各蛍光変換層8R、8G、8B上に、硬化性樹脂(光硬化性樹脂、熱硬化性樹脂)をスピンコート法、ラミネート法を用いて塗布する。そして、基板1と封止基板9とを樹脂層を介して貼り合わせて、光硬化または熱硬化する。これにより封止材6を形成することができる。封止材6を設けることにより、外部から有機EL発光部10内への酸素や水分の混入を防止することができ、有機EL発光部10の寿命を向上させることができる。なお、封止材6は、光透過性を有する必要がある。
As the sealing substrate 9, the same thing as the board | substrate 1 mentioned above can be used. In the organic light emitting device 20 of the present embodiment, since the emitted light is extracted from the sealing substrate 9 side (the observer observes the display by the light emission from the outside of the sealing substrate 9), the sealing substrate 9 is a light-transmitting material. Need to use.
A conventionally known sealing material can be used for the sealing material 6, and a conventionally known sealing method can also be used as a method for forming the sealing material 6.
Specifically, for example, when an inert gas such as nitrogen gas or argon gas is used as the sealing material 6, a method of sealing the inert gas such as nitrogen gas or argon gas with a sealing substrate 9 such as glass. Is mentioned. In this case, it is further preferable to mix a moisture absorbent such as barium oxide in the enclosed inert gas because deterioration of the organic EL due to moisture can be effectively reduced.
Moreover, as the sealing material 6, resin (curable resin) can also be used. In this case, on the inorganic sealing film 5 of the substrate 1 on which the organic EL element 10, the wavelength conversion layer 18 and the inorganic sealing film 5 are formed, or on which the fluorescent conversion layers 8R, 8G, and 8B are formed. A curable resin (a photocurable resin or a thermosetting resin) is applied on each of the fluorescence conversion layers 8R, 8G, and 8B of the substrate 9 by using a spin coating method or a laminating method. And the board | substrate 1 and the sealing substrate 9 are bonded together through a resin layer, and photocuring or thermosetting is carried out. Thereby, the sealing material 6 can be formed. By providing the sealing material 6, oxygen and moisture can be prevented from entering the organic EL light emitting unit 10 from the outside, and the life of the organic EL light emitting unit 10 can be improved. In addition, the sealing material 6 needs to have a light transmittance.
 有機発光素子20において、光源である有機EL発光部10から発光された赤色領域~緑色領域の光は、波長変換層18にて波長変換されて紫外領域~青色領域(波長250nm~400nm)の光へと変換され、この紫外領域~青色領域の光が各蛍光変換層8R、8G、8Bへと入射される。
 赤色蛍光変換層8Rは、波長変換層18において波長変換された紫外領域~青色領域の光を吸収して、赤色領域の光に変換して封止基材9側に赤色領域の光を射出する。
 緑色蛍光変換層8Gは、波長変換層18において波長変換された紫外領域~青色領域の光を吸収して、緑色領域の光に変換して封止基材9側に緑色領域の光を放出する。
 青色蛍光変換層8Bは、波長変換層18において波長変換された紫外領域の光を吸収して、青色領域の光に変換して封止基材9側に青色領域の光を放出する。
 このように赤色蛍光変換層8R、緑色蛍光変換層8G、青色蛍光変換層8Bを設ける構成とすることにより、有機EL発光部10から放出された光を波長変換層18及び各蛍光変換層8R、8G、8Bにて変換して、赤色、緑色、青色の三色の光を封止基板9側から射出することにより、フルカラー化することができる。
 なお、波長変換層18において波長変換された光が青色領域の光の場合、青色蛍光変換層8Bは省略することも可能である。青色領域の光の視野角特性、取り出し効率を高める目的で、バインダー樹脂中に透明粒子が分散されて構成される機能層を設けてもよい。色純度を高める目的で、青色カラーフィルタを設けることもできる。
In the organic light emitting device 20, light in the red region to green region emitted from the organic EL light emitting unit 10 that is a light source is wavelength-converted by the wavelength conversion layer 18 and light in the ultraviolet region to blue region (wavelength 250 nm to 400 nm). The light in the ultraviolet region to the blue region is incident on the fluorescence conversion layers 8R, 8G, and 8B.
The red fluorescence conversion layer 8R absorbs the light in the ultraviolet region to the blue region converted in wavelength by the wavelength conversion layer 18, converts the light into the light in the red region, and emits the light in the red region to the sealing substrate 9 side. .
The green fluorescence conversion layer 8G absorbs the light in the ultraviolet region to the blue region that has been wavelength-converted in the wavelength conversion layer 18, converts it to light in the green region, and emits light in the green region to the sealing substrate 9 side. .
The blue fluorescence conversion layer 8 </ b> B absorbs the ultraviolet light that has been wavelength-converted by the wavelength conversion layer 18, converts the light into the blue light, and emits the blue light to the sealing substrate 9 side.
Thus, by setting it as the structure which provides the red fluorescence conversion layer 8R, the green fluorescence conversion layer 8G, and the blue fluorescence conversion layer 8B, the light emitted from the organic EL light emission part 10 is converted into the wavelength conversion layer 18 and each fluorescence conversion layer 8R, Full color conversion can be achieved by converting light of red, green, and blue from the sealing substrate 9 side after conversion at 8G and 8B.
In addition, when the light wavelength-converted in the wavelength conversion layer 18 is light in a blue region, the blue fluorescence conversion layer 8B can be omitted. For the purpose of improving the viewing angle characteristics and extraction efficiency of light in the blue region, a functional layer configured by dispersing transparent particles in a binder resin may be provided. For the purpose of increasing color purity, a blue color filter may be provided.
 赤色蛍光変換層8Rは、波長変換層18にて波長変換された紫外領域~青色領域の光を吸収して励起し、赤色領域の蛍光を発光する(光源とは波長の異なる光に変換する)ことのできる蛍光体材料を含んでなる。紫外領域~青色領域の光を赤色領域の光に変換する蛍光体材料としては、従来公知の蛍光体材料を使用することができ、有機系蛍光体材料、無機系蛍光体材料のいずれも使用することができる。具体的には、例えば、4-ジシアノメチレン-2-メチル-6-(p-ジメチルアミノスチルリル)-4H-ピラン等のシアニン系色素、1-エチル-2-[4-(p-ジメチルアミノフェニル)-1,3-ブタジエニル]-ピリジニウム-パークロレート等のピリジン系色素、及びローダミンB、ローダミン6G、ローダミン3B、ローダミン101、ローダミン110、ベーシックバイオレット11、スルホローダミン101等のローダミン系色素等の有機系赤色蛍光体材料、YS:Eu3+、YAlO:Eu3+、Ca(SiO:Eu3+、LiY(SiO:Eu3+、YVO:Eu3+、CaS:Eu3+、Gd:Eu3+、GdS:Eu3+、Y(P,V)O:Eu3+、MgGeO5.5F:Mn4+、MgGeO:Mn4+、KEu2.5(WO6.25、NaEu2.5(WO6.25、KEu2.5(MoO6.25、NaEu2.5(MoO6.25等の無機系赤色蛍光体材料が挙げられる。 The red fluorescence conversion layer 8R absorbs and excites light in the ultraviolet region to blue region that has been wavelength-converted by the wavelength conversion layer 18, and emits fluorescence in the red region (converts light having a wavelength different from that of the light source). A phosphor material that can be used. As a phosphor material for converting light in the ultraviolet region to blue region into light in the red region, conventionally known phosphor materials can be used, and both organic phosphor materials and inorganic phosphor materials are used. be able to. Specifically, for example, cyanine dyes such as 4-dicyanomethylene-2-methyl-6- (p-dimethylaminostyryl) -4H-pyran, 1-ethyl-2- [4- (p-dimethylamino) Pyridine dyes such as phenyl) -1,3-butadienyl] -pyridinium-perchlorate, and rhodamine dyes such as rhodamine B, rhodamine 6G, rhodamine 3B, rhodamine 101, rhodamine 110, basic violet 11, sulforhodamine 101, etc. Organic red phosphor material, Y 2 O 2 S: Eu 3+ , YAlO 3 : Eu 3+ , Ca 2 Y 2 (SiO 4 ) 6 : Eu 3+ , LiY 9 (SiO 4 ) 6 O 2 : Eu 3+ , YVO 4 : Eu 3+, CaS: Eu 3+ , Gd 2 O 3: Eu 3+, Gd 2 O 2 S: Eu 3+, (P, V) O 4: Eu 3+, Mg 4 GeO 5.5 F: Mn 4+, Mg 4 GeO 6: Mn 4+, K 5 Eu 2.5 (WO 4) 6.25, Na 5 Eu 2.5 Examples thereof include inorganic red phosphor materials such as (WO 4 ) 6.25 , K 5 Eu 2.5 (MoO 4 ) 6.25 , and Na 5 Eu 2.5 (MoO 4 ) 6.25 .
 緑色蛍光変換層8Gは、波長変換層18にて波長変換された紫外領域~青色領域の光を吸収して励起し、緑色領域の蛍光を発光する(光源とは波長の異なる光に変換する)ことのできる蛍光体材料を含んでなる。紫外領域~青色領域の光を緑色領域の光に変換する蛍光体材料としては、従来公知の蛍光体材料を使用することができ、有機系蛍光体材料、無機系蛍光体材料のいずれも使用することができる。具体的には、例えば、2,3,5,6-1H、4H-テトラヒドロ-8-トリフロメチルキノリジン(9,9a、1-gh)クマリン(クマリン153)、3-(2’-ベンゾチアゾリル)―7-ジエチルアミノクマリン(クマリン6)、3-(2’-ベンゾイミダゾリル)―7-N,N-ジエチルアミノクマリン(クマリン7)等のクマリン系色素、ベーシックイエロー51、ソルベントイエロー11、ソルベントイエロー116等のナフタルイミド系色素などの有機系緑色蛍光体材料、(BaMg)Al1627:Eu2+、Mn2+、SrAl1425:Eu2+、(SrBa)Al12Si:Eu2+、(BaMg)SiO:Eu2+、YSiO:Ce3+、Tb3+、Sr-Sr:Eu2+、(BaCaMg)(POCl:Eu2+、SrSi-2SrCl:Eu2+、ZrSiO、MgAl1119:Ce3+、Tb3+、BaSiO:Eu2+、SrSiO:Eu2+、(BaSr)SiO:Eu2+等の無機系緑色蛍光体材料が挙げられる。 The green fluorescence conversion layer 8G absorbs and excites the ultraviolet to blue light converted in wavelength by the wavelength conversion layer 18 and emits green fluorescence (converts light having a wavelength different from that of the light source). A phosphor material that can be used. As a phosphor material for converting light in the ultraviolet region to blue region into light in the green region, conventionally known phosphor materials can be used, and both organic phosphor materials and inorganic phosphor materials are used. be able to. Specifically, for example, 2,3,5,6-1H, 4H-tetrahydro-8-trifluoromethylquinolidine (9,9a, 1-gh) coumarin (coumarin 153), 3- (2′-benzothiazolyl) ) -7-diethylaminocoumarin (coumarin 6), 3- (2′-benzimidazolyl) -7-N, N-diethylaminocoumarin (coumarin 7) and other coumarin dyes, basic yellow 51, solvent yellow 11, solvent yellow 116, etc. Organic green phosphor materials such as naphthalimide dyes, (BaMg) Al 16 O 27 : Eu 2+ , Mn 2+ , Sr 4 Al 14 O 25 : Eu 2+ , (SrBa) Al 12 Si 2 O 8 : Eu 2+ , (BaMg) 2 SiO 4 : Eu 2+ , Y 2 SiO 5 : Ce 3+ , Tb 3+ , Sr 2 P 2 O 7- Sr 2 B 2 O 5 : Eu 2+ , (BaCaMg) 5 (PO 4 ) 3 Cl: Eu 2+ , Sr 2 Si 3 O 8 -2SrCl 2 : Eu 2+ , Zr 2 SiO 4 , MgAl 11 O 19 : Ce Examples thereof include inorganic green phosphor materials such as 3+ , Tb 3+ , Ba 2 SiO 4 : Eu 2+ , Sr 2 SiO 4 : Eu 2+ , and (BaSr) SiO 4 : Eu 2+ .
 青色蛍光変換層8Bは、波長変換層18にて波長変換された紫外領域の光を吸収して励起し、青色領域の蛍光を発光する(光源とは波長の異なる光に変換する)ことのできる蛍光体材料を含んでなる。紫外領域の光を青色領域の光に変換する蛍光体材料としては、従来公知の蛍光体材料を使用することができ、有機系蛍光体材料、無機系蛍光体材料のいずれも使用することができる。具体的には、例えば、1,4-ビス(2-メチルスチリル)ベンゼン、トランス-4,4’-ジフェニルスチルベンゼン等のスチルベンゼン系色素、7-ヒドロキシ-4-メチルクマリン等のクマリン系色素などの有機系青色蛍光体材料、Sr:Sn4+、SrAl1425:Eu2+、BaMgAl1017:Eu2+、SrGa:Ce3+、CaGa:Ce3+、(Ba、Sr)(Mg、Mn)Al1017:Eu2+、(Sr、Ca、Ba、Mg)10(POCl:Eu2+、BaAlSiO:Eu2+、Sr:Eu2+、Sr(POCl:Eu2+、(Sr,Ca,Ba)(POCl:Eu2+、BaMgAl1627:Eu2+、(Ba,Ca)(POCl:Eu2+、BaMgSi:Eu2+、SrMgSi:Eu2+等の無機系青色蛍光体材料が挙げられる。 The blue fluorescence conversion layer 8B can absorb and excite light in the ultraviolet region wavelength-converted by the wavelength conversion layer 18 to emit blue region fluorescence (convert to light having a wavelength different from that of the light source). A phosphor material is included. As a phosphor material that converts light in the ultraviolet region into light in the blue region, a conventionally known phosphor material can be used, and either an organic phosphor material or an inorganic phosphor material can be used. . Specifically, for example, stilbene dyes such as 1,4-bis (2-methylstyryl) benzene, trans-4,4′-diphenylstilbenzene, and coumarin dyes such as 7-hydroxy-4-methylcoumarin. Organic blue phosphor materials such as Sr 2 P 2 O 7 : Sn 4+ , Sr 4 Al 14 O 25 : Eu 2+ , BaMgAl 10 O 17 : Eu 2+ , SrGa 2 S 4 : Ce 3+ , CaGa 2 S 4 : Ce 3+ , (Ba, Sr) (Mg, Mn) Al 10 O 17 : Eu 2+ , (Sr, Ca, Ba 2 , Mg) 10 (PO 4 ) 6 Cl 2 : Eu 2+ , BaAl 2 SiO 8 : Eu 2+ , Sr 2 P 2 O 7: Eu 2+, Sr 5 (PO 4) 3 Cl: Eu 2+, (Sr, Ca, Ba) 5 (PO 4) 3 Cl: Eu 2+ BaMg 2 Al 16 O 27: Eu 2+, (Ba, Ca) 5 (PO 4) 3 Cl: Eu 2+, Ba 3 MgSi 2 O 8: Eu 2+, Sr 3 MgSi 2 O 8: inorganic blue Eu 2+, etc. Examples include phosphor materials.
 上記した赤色蛍光変換層8R、緑色蛍光変換層8G、青色蛍光変換層8Bが含む蛍光体材料の中でも、励起光及び発光による劣化等の安定性が良好となるため、無機系蛍光体材料を使用することが好ましい。また、上記無機赤色蛍光体は、必要に応じて表面改質処理を施してもよい。表面改質処理の方法としては、シランカップリング剤等の化学的処理によるものや、サブミクロンオーダーの微粒子等の添加による物理的処理によるもの、更にそれらの併用によるもの等が挙げられる。
 更に、無機系蛍光体材料を用いる場合には、平均粒径(d50)が1μm~50μmの無機系蛍光体材料を用いることが好ましい。平均粒径(d50)が1μm未満であると、蛍光体材料の発光効率が急激に低下する場合がある。また、平均粒径(d50)が50μmを超えると、平坦な膜を形成することが困難となり、各蛍光変換層8R、8G、8Bと、有機EL発光部10との間に空乏が出来てしまう(有機EL発光部(屈折率:約1.7)と各蛍光変換層(屈折率:約2.3)との間の空乏(屈折率:1.0))。これにより、有機EL発光部10からの光が効率よく蛍光変換層8R、8G、8Bに届かず、各蛍光変換層8R、8G、8Bの発光効率の低下が起こる場合がある。
Among the phosphor materials included in the red fluorescence conversion layer 8R, the green fluorescence conversion layer 8G, and the blue fluorescence conversion layer 8B described above, an inorganic phosphor material is used because stability such as deterioration due to excitation light and light emission is improved. It is preferable to do. The inorganic red phosphor may be subjected to a surface modification treatment as necessary. Examples of the surface modification treatment include chemical treatment using a silane coupling agent, physical treatment using addition of submicron-order fine particles, and combinations thereof.
Further, when an inorganic phosphor material is used, it is preferable to use an inorganic phosphor material having an average particle diameter (d50) of 1 μm to 50 μm. If the average particle size (d50) is less than 1 μm, the luminous efficiency of the phosphor material may be rapidly reduced. Further, if the average particle diameter (d50) exceeds 50 μm, it becomes difficult to form a flat film, and depletion occurs between each of the fluorescence conversion layers 8R, 8G, and 8B and the organic EL light emitting unit 10. (Depletion (refractive index: 1.0) between the organic EL light emitting part (refractive index: about 1.7) and each fluorescence conversion layer (refractive index: about 2.3)). Thereby, the light from the organic EL light emitting unit 10 may not efficiently reach the fluorescence conversion layers 8R, 8G, and 8B, and the light emission efficiency of each of the fluorescence conversion layers 8R, 8G, and 8B may decrease.
 赤色蛍光変換層8R、緑色蛍光変換層8G、青色蛍光変換層8Bは、前述した蛍光体材料のみから構成されていてもよく、任意にポリマー、シリカ、金属粒子などの添加剤等を含んでいてもよい。また、赤色蛍光変換層8R、緑色蛍光変換層8G、青色蛍光変換層8Bは、蛍光体材料がバインダー樹脂やシリカなどの無機材料中に分散された構成であってもよい。これらの中でもバインダー樹脂中に蛍光体材料が分散されたものが好ましい。
 バインダー樹脂としては、従来公知のものを使用することができ、特に限定されるものではない。バインダー樹脂として、感光性樹脂を用いることで、フォトリソグラフィー法により、パターン化が可能となるため好ましい。ここで、感光性樹脂としては、アクリル酸系樹脂、メタクリル酸系樹脂、ポリ桂皮酸ビニル系樹脂、硬ゴム系樹脂等の反応性ビニル基を有する感光性樹脂(光硬化型レジスト材料)の1種を単独使用又は2種以上を混合して使用することが可能である。
The red fluorescence conversion layer 8R, the green fluorescence conversion layer 8G, and the blue fluorescence conversion layer 8B may be composed of only the above-described phosphor material, and optionally contain additives such as polymer, silica, and metal particles. Also good. The red fluorescence conversion layer 8R, the green fluorescence conversion layer 8G, and the blue fluorescence conversion layer 8B may have a configuration in which a phosphor material is dispersed in an inorganic material such as a binder resin or silica. Among these, those in which a phosphor material is dispersed in a binder resin are preferable.
A conventionally well-known thing can be used as binder resin, It does not specifically limit. It is preferable to use a photosensitive resin as the binder resin because patterning can be performed by a photolithography method. Here, as the photosensitive resin, one of photosensitive resins having a reactive vinyl group (photocurable resist material) such as acrylic acid resin, methacrylic acid resin, polyvinyl cinnamate resin, and hard rubber resin. The seeds can be used alone or in admixture of two or more.
 赤色蛍光変換層8R、緑色蛍光変換層8G、青色蛍光変換層8Bは、従来公知の方法により形成することができ、例えば、前記した蛍光体材料とバインダー樹脂等の樹脂材料を溶剤に溶解、分散させた蛍光変換層形成用塗液を用いて、スピンコーティング法、ディッピング法、ドクターブレード法、吐出コート法、スプレーコート法等の塗布法、インクジェット法、凸版印刷法、凹版印刷法、スクリーン印刷法、マイクログラビアコート法等の印刷法等によるウエットプロセスで形成することができる。また、前記した蛍光体を用いた抵抗加熱蒸着法、電子線(EB)蒸着法、分子線エピタキシー(MBE)法、スパッタリング法、有機気相蒸着(OVPD)法等の公知のドライプロセス、又は、レーザー転写法等により形成することもできる。 The red fluorescence conversion layer 8R, the green fluorescence conversion layer 8G, and the blue fluorescence conversion layer 8B can be formed by a conventionally known method. For example, the above-described phosphor material and a resin material such as a binder resin are dissolved and dispersed in a solvent. Using the applied fluorescent conversion layer forming coating solution, spin coating method, dipping method, doctor blade method, discharge coating method, spray coating method and other coating methods, ink jet method, letterpress printing method, intaglio printing method, screen printing method Further, it can be formed by a wet process such as a printing method such as a micro gravure coating method. Also, known dry processes such as resistance heating vapor deposition, electron beam (EB) vapor deposition, molecular beam epitaxy (MBE), sputtering, organic vapor deposition (OVPD) using the above-mentioned phosphor, or It can also be formed by a laser transfer method or the like.
 赤色蛍光変換層8R、緑色蛍光変換層8G、青色蛍光変換層8Bとして、バインダー樹脂や無機材料中に蛍光体材料が分散されたものを使用する場合、各蛍光変換層8R、8G、8B中における蛍光体材料の含有量は、特に限定されず、適宜変更可能である。各蛍光変換層8R、8G、8B中における蛍光体材料の含有量は、各蛍光変換層8R、8G、8Bの総量に対して1質量%~50質量%とすることが好ましく、5質量%~30質量%とすることがより好ましい。 In the case where a phosphor material dispersed in a binder resin or an inorganic material is used as the red fluorescence conversion layer 8R, the green fluorescence conversion layer 8G, and the blue fluorescence conversion layer 8B, the fluorescence conversion layers 8R, 8G, 8B The content of the phosphor material is not particularly limited and can be changed as appropriate. The content of the phosphor material in each fluorescence conversion layer 8R, 8G, 8B is preferably 1% by mass to 50% by mass with respect to the total amount of each fluorescence conversion layer 8R, 8G, 8B. More preferably, the content is 30% by mass.
 赤色蛍光変換層8R、緑色蛍光変換層8G、青色蛍光変換層8Bの膜厚は、通常100nm~100μm程度とすることができ、1μm~100μmとすることが好ましい。各蛍光変換層8R、8G、8Bの膜厚が100nm未満であると、波長変換層18にて波長変換された紫外領域~青色領域の光を十分吸収することができずに発光効率が低下したり、変換された蛍光に青色の透過光が混じったりすることにより色純度が悪化する可能性がある。また、各蛍光変換層8R、8G、8Bの膜厚が100μmを超えると、波長変換層18にて波長変換された紫外領域~青色領域の光を既に十分吸収することから効率の上昇には繋がらず、材料を消費するだけに留まり、生産コストのアップに繋がる可能性がある。更に、波長変換層18から射出された光の吸収を高め、且つ、色純度に悪影響を及ぼさない程度に青色領域の透過光を低減する為には、各蛍光変換層8R、8G、8Bの膜厚を1μm以上とすることが好ましい。 The film thickness of the red fluorescence conversion layer 8R, the green fluorescence conversion layer 8G, and the blue fluorescence conversion layer 8B can usually be about 100 nm to 100 μm, and preferably 1 μm to 100 μm. If the thickness of each of the fluorescence conversion layers 8R, 8G, and 8B is less than 100 nm, the light in the ultraviolet region to the blue region that has been wavelength-converted by the wavelength conversion layer 18 cannot be sufficiently absorbed, resulting in a decrease in luminous efficiency. In other words, the color purity may be deteriorated by the blue transmitted light mixed with the converted fluorescence. Further, if the thickness of each of the fluorescence conversion layers 8R, 8G, and 8B exceeds 100 μm, the light in the ultraviolet region to the blue region that has been wavelength-converted by the wavelength conversion layer 18 is already sufficiently absorbed, leading to an increase in efficiency. In other words, there is a possibility that the production cost will be increased because the material is merely consumed. Further, in order to increase the absorption of light emitted from the wavelength conversion layer 18 and reduce the transmitted light in the blue region to the extent that the color purity is not adversely affected, the films of the respective fluorescence conversion layers 8R, 8G, and 8B The thickness is preferably 1 μm or more.
 また、各蛍光変換層8R、8G、8Bの封止基板9とは反対側の面は、平坦化膜等(図示略)により平坦化されていることが好ましい。これにより、有機EL発光部10と各蛍光変換層8R、8G、8Bを封止材6を間に挟んで対向させて密着させる際に、有機EL発光部10と各蛍光変換層8R、8G、8Bとの間に空乏が出来ることを防止できる。かつ、有機EL発光部10が形成された基板1と各蛍光体層8R、8G、8Bが形成された封止基板9との密着性を上げることができる。なお、平坦化膜としては前記した平坦化膜4と同様のものを挙げることができる。 Further, it is preferable that the surface of each fluorescence conversion layer 8R, 8G, 8B opposite to the sealing substrate 9 is flattened by a flattening film or the like (not shown). Accordingly, when the organic EL light emitting unit 10 and the respective fluorescence conversion layers 8R, 8G, and 8B are brought into close contact with each other with the sealing material 6 interposed therebetween, the organic EL light emitting unit 10 and the respective fluorescence conversion layers 8R, 8G, It can prevent depletion between 8B. And the adhesiveness of the board | substrate 1 in which the organic electroluminescent light emission part 10 was formed, and the sealing substrate 9 in which each fluorescent substance layer 8R, 8G, 8B was formed can be raised. As the planarizing film, the same one as the planarizing film 4 described above can be used.
 各蛍光変換層8R、8G、8Bの隣接する各蛍光変換層間には、ブラックマトリックス7が形成されているが好ましい。ブラックマトリックス7としては、従来公知の材料及び形成方法を用いることができ、特に限定されるものではない。中でも、各蛍光変換層8R、8G、8Bに入射して散乱した光を、さらに各蛍光変換層8R、8G、8Bに反射するようなもの、例えば、光反射性を有する金属等により形成されていることが好ましい。 It is preferable that a black matrix 7 is formed between each fluorescence conversion layer adjacent to each fluorescence conversion layer 8R, 8G, 8B. As the black matrix 7, conventionally known materials and forming methods can be used, and are not particularly limited. Among them, the light that is incident on and scattered by the fluorescence conversion layers 8R, 8G, and 8B is further reflected by the fluorescence conversion layers 8R, 8G, and 8B, such as a metal having light reflectivity. Preferably it is.
 なお、波長変換層18において波長変換された光が青色領域の光の場合、青色蛍光変換層8Bは省略することも可能である。青色蛍光変換層8Bの位置に、青色領域の光の視野角特性や取り出し効率を高める目的で機能層を設けることもできる。この機能層は、バインダー樹脂に透明粒子が分散されて構成される。機能層を設ける場合、機能層の膜厚は通常10μm~100μmとされ、20μm~50μmとすることが好ましい。
 機能層に使用されるバインダー樹脂としては、従来公知のものを使用することができ、特に限定されるものではないが、光透過性を有するものが好ましい。透明粒子としては、波長変換層18で波長変換された青色領域の光を散乱、透過させることができるものであれば特に限定されず、例えば、平均粒径25μm、粒度分布の標準偏差1μmのポリスチレン粒子等を使用することができる。また、機能層中の透明粒子の含有量は、適宜変更可能であり、特に限定されない。機能層は、従来公知の方法で形成することができ、特に限定されるものではないが、例えば、バインダー樹脂と透明粒子とを溶剤に溶解、分散させた塗液を用いて、スピンコーティング法、ディッピング法、ドクターブレード法、吐出コート法、スプレーコート法等の塗布法、インクジェット法、凸版印刷法、凹版印刷法、スクリーン印刷法、マイクログラビアコート法等の印刷法等による公知のウエットプロセス等により形成することができる。
In addition, when the light wavelength-converted in the wavelength conversion layer 18 is light in a blue region, the blue fluorescence conversion layer 8B can be omitted. A functional layer may be provided at the position of the blue fluorescence conversion layer 8B for the purpose of improving the viewing angle characteristics and extraction efficiency of light in the blue region. This functional layer is configured by dispersing transparent particles in a binder resin. When the functional layer is provided, the thickness of the functional layer is usually 10 μm to 100 μm, preferably 20 μm to 50 μm.
As the binder resin used in the functional layer, conventionally known resins can be used, and are not particularly limited, but those having optical transparency are preferable. The transparent particles are not particularly limited as long as they can scatter and transmit light in the blue region wavelength-converted by the wavelength conversion layer 18. For example, polystyrene having an average particle size of 25 μm and a standard deviation of particle size distribution of 1 μm. Particles or the like can be used. Further, the content of the transparent particles in the functional layer can be appropriately changed and is not particularly limited. The functional layer can be formed by a conventionally known method, and is not particularly limited. For example, using a coating solution in which a binder resin and transparent particles are dissolved and dispersed in a solvent, a spin coating method, By a known wet process such as a dipping method, a doctor blade method, a coating method such as a discharge coating method, a spray coating method, an inkjet method, a relief printing method, an intaglio printing method, a screen printing method, a printing method such as a micro gravure coating method, etc. Can be formed.
 本実施形態の有機発光素子20は、以下の構成を有している。有機EL発光部10からの発光を色変換する蛍光変換層8R、8G、8Bを有する有機発光素子20において、有機EL発光部10と蛍光変換層8R、8G、8Bとの間に波長変換層18が配されている。有機発光素子20は、緑色領域~赤色領域の光を発光する有機EL発光部10を光源として使用している。有機発光素子20は、有機EL発光部10からの発光を波長変換層18において波長変換して紫外領域~青色領域の光とし、この紫外領域~青色領域の光を各蛍光変換層8R、8G、8Bへと射出して、各蛍光変換層8R、8G、8Bにて赤色、緑色、青色の光に蛍光変換することにより、フルカラー化を実現している。従来技術の有機発光素子では、光源として輝度や寿命が十分ではない青色発光材料を用いていたが、本実施形態の有機発光素子20によれば、光源として青色発光材料よりも優れた輝度や寿命を有する緑色領域~赤色領域の光を発光する有機EL発光部10を使用することができ、輝度や寿命を向上させることができる。 The organic light emitting device 20 of the present embodiment has the following configuration. In the organic light emitting device 20 having the fluorescence conversion layers 8R, 8G, and 8B for color-converting the light emitted from the organic EL light emitting unit 10, the wavelength conversion layer 18 is provided between the organic EL light emitting unit 10 and the fluorescence conversion layers 8R, 8G, and 8B. Is arranged. The organic light emitting element 20 uses an organic EL light emitting unit 10 that emits light in a green region to a red region as a light source. The organic light emitting element 20 converts the light emitted from the organic EL light emitting unit 10 into a wavelength in the wavelength conversion layer 18 to obtain light in the ultraviolet region to the blue region, and converts the light in the ultraviolet region to the blue region into the fluorescence conversion layers 8R, 8G, Full-colorization is realized by emitting to 8B and converting the fluorescence into red, green, and blue light in each of the fluorescence conversion layers 8R, 8G, and 8B. In the organic light emitting device of the prior art, a blue light emitting material with insufficient brightness and life is used as the light source. However, according to the organic light emitting device 20 of the present embodiment, the brightness and life superior to the blue light emitting material as the light source. The organic EL light emitting unit 10 that emits light in the green region to the red region having the above can be used, and the luminance and lifetime can be improved.
 なお、本実施形態の有機発光素子20は、光取り出し側(封止基板9の上)に偏光板を設けることが好ましい。偏光板としては、従来公知の直線偏光板とλ/4板とを組み合わせたものを用いることが可能である。ここで、偏光板を設けることによって、第1電極12及び第2電極16からの外光反射、基板1もしくは封止基板9の表面での外光反射を防止することが可能であり、有機発光素子20のコントラストを向上させることができる。 In addition, it is preferable that the organic light emitting element 20 of this embodiment is provided with a polarizing plate on the light extraction side (on the sealing substrate 9). As the polarizing plate, a combination of a conventionally known linearly polarizing plate and a λ / 4 plate can be used. Here, by providing a polarizing plate, it is possible to prevent external light reflection from the first electrode 12 and the second electrode 16 and external light reflection on the surface of the substrate 1 or the sealing substrate 9, and organic light emission. The contrast of the element 20 can be improved.
 また、図1に示す有機発光素子20においては、有機EL発光部10上に波長変換層18が配置され、有機EL発光部10と各蛍光変換層8R、8G、8Bとが、波長変換層18、無機封止膜5及び封止材6を間に介して対向する例を示したが、本実施形態はこれに限定されない。有機発光素子20の光の取り出し側(第2電極16側)と、各蛍光変換層8R、8G、8Bとの間に、波長変換層18が配されていれば、上記した本実施形態の有機発光素子20と同様の効果を奏することができる。 Further, in the organic light emitting element 20 shown in FIG. 1, the wavelength conversion layer 18 is disposed on the organic EL light emitting unit 10, and the organic EL light emitting unit 10 and each of the fluorescence conversion layers 8R, 8G, and 8B are included in the wavelength conversion layer 18. Although the example which opposes via the inorganic sealing film 5 and the sealing material 6 was shown, this embodiment is not limited to this. If the wavelength conversion layer 18 is disposed between the light extraction side (second electrode 16 side) of the organic light emitting element 20 and each of the fluorescence conversion layers 8R, 8G, and 8B, the organic material of the above-described embodiment is used. The same effects as the light emitting element 20 can be obtained.
 図6は、上記した本実施形態の有機発光素子20と同様の効果を奏することができる有機発光素子の一例を示す概略断面図である。図6に示す有機発光素子20Bは、基板1と、有機EL発光部(光源)10と、封止基板9と、蛍光変換層8R、緑色蛍光変換層8G、青色蛍光変換層8Bと、波長変換層18とで概略構成されている。基板1は、TFT(薄膜トランジスタ)回路2を備えている。有機EL発光部(光源)10は、基板1上に層間絶縁膜3及び平坦化膜4を介して設けられている。蛍光変換層8R、緑色蛍光変換層8G、青色蛍光変換層8Bは、封止基板9の一方の面上にブラックマトリックス7に仕切られて並列配置されている。波長変換層18は、有機EL発光部10と各蛍光変換層8R、8G、8Bとの間に配されている。基板1と封止基板9とは、有機EL発光部10と各蛍光変換層8R、8G、8Bとが封止材6及び波長変換層18を間に介して対向するように配置されている。有機EL発光部10は無機封止膜5に覆われており、無機封止膜5上に波長変換層18が形成されている。有機EL発光部10は、有機EL層(有機層)17が、第1電極12と第2電極16により狭持されている。有機EL層(有機層)17は、正孔輸送層13と、発光層14と電子輸送層15との積層である。第1電極12の下面には反射電極11が形成されている。反射電極11及び第1電極12は、層間絶縁膜3及び平坦化膜4を貫通して設けられた配線2bにより、TFT回路2の1つに接続されている。第2電極16は、層間絶縁膜3、平坦化膜4及びエッジカバー19を貫通して設けられた配線2aによりTFT回路2の1つに接続されている。 FIG. 6 is a schematic cross-sectional view showing an example of an organic light-emitting element that can achieve the same effects as the organic light-emitting element 20 of the present embodiment described above. An organic light emitting element 20B shown in FIG. 6 includes a substrate 1, an organic EL light emitting unit (light source) 10, a sealing substrate 9, a fluorescence conversion layer 8R, a green fluorescence conversion layer 8G, a blue fluorescence conversion layer 8B, and a wavelength conversion. It is schematically composed of the layer 18. The substrate 1 includes a TFT (Thin Film Transistor) circuit 2. The organic EL light emitting unit (light source) 10 is provided on the substrate 1 via the interlayer insulating film 3 and the planarizing film 4. The fluorescence conversion layer 8 </ b> R, the green fluorescence conversion layer 8 </ b> G, and the blue fluorescence conversion layer 8 </ b> B are partitioned by the black matrix 7 and arranged in parallel on one surface of the sealing substrate 9. The wavelength conversion layer 18 is disposed between the organic EL light emitting unit 10 and each of the fluorescence conversion layers 8R, 8G, and 8B. The substrate 1 and the sealing substrate 9 are arranged so that the organic EL light emitting unit 10 and the fluorescence conversion layers 8R, 8G, and 8B face each other with the sealing material 6 and the wavelength conversion layer 18 interposed therebetween. The organic EL light emitting unit 10 is covered with the inorganic sealing film 5, and the wavelength conversion layer 18 is formed on the inorganic sealing film 5. In the organic EL light emitting unit 10, an organic EL layer (organic layer) 17 is sandwiched between the first electrode 12 and the second electrode 16. The organic EL layer (organic layer) 17 is a stack of a hole transport layer 13, a light emitting layer 14, and an electron transport layer 15. A reflective electrode 11 is formed on the lower surface of the first electrode 12. The reflective electrode 11 and the first electrode 12 are connected to one of the TFT circuits 2 by a wiring 2 b provided through the interlayer insulating film 3 and the planarizing film 4. The second electrode 16 is connected to one of the TFT circuits 2 by a wiring 2 a provided through the interlayer insulating film 3, the planarizing film 4 and the edge cover 19.
 図6に示す有機発光素子20Bのように、有機EL発光部10の上面及び側面を覆うように無機封止膜5が形成され、無機封止膜5上に波長変換層18が形成されている場合にも、上記した本実施形態の有機発光素子20と同様の効果を奏することができる。また、図6に示す有機発光素子20Bにおいて、波長変換層18と各蛍光変換層8R、8G、8Bとが接していても、上記した本実施形態の有機発光素子20と同様の効果を奏することができる。後述する実施形態においても、同様である。 As in the organic light emitting element 20 </ b> B shown in FIG. 6, the inorganic sealing film 5 is formed so as to cover the upper surface and the side surface of the organic EL light emitting unit 10, and the wavelength conversion layer 18 is formed on the inorganic sealing film 5. Even in this case, the same effects as those of the organic light emitting device 20 of the present embodiment described above can be obtained. Further, in the organic light emitting device 20B shown in FIG. 6, even if the wavelength conversion layer 18 and each of the fluorescence conversion layers 8R, 8G, and 8B are in contact with each other, the same effects as those of the organic light emitting device 20 of the present embodiment described above can be obtained. Can do. The same applies to the embodiments described later.
[第2実施形態]
 図7は、本発明の第2実施形態に係る有機発光素子の一例を示す概略断面図である。
 図7に示す有機発光素子30は、基板1と、有機EL発光部(光源)10と、封止基板9と、蛍光変換層8R、緑色蛍光変換層8G、青色蛍光変換層8Bと、波長変換層18と、光反射性層31とで概略構成されている。基板1は、TFT(薄膜トランジスタ)回路2を備えている。有機EL発光部(光源)10は、基板1上に層間絶縁膜3及び平坦化膜4を間に介して設けられている。蛍光変換層8R、緑色蛍光変換層8G、青色蛍光変換層8Bは、封止基板9の一方の面上にブラックマトリックス7に仕切られて並列配置されている。波長変換層18は、有機EL発光部10と各蛍光変換層8R、8G、8Bとの間に配されている。光反射性層31は、波長変換層18の光の取り出し側に配されている。基板1と封止基板9とは、有機EL発光部10と各蛍光変換層8R、8G、8Bとが封止材6、光反射性層31及び波長変換層18を間に介して対向するように配置されている。有機EL発光部10及び波長変換層18は、無機封止膜5に覆われている。有機EL発光部10は、正孔輸送層13と、発光層14と電子輸送層15とが積層された有機EL層(有機層)17が、第1電極12と第2電極16により狭持されている。第1電極12の下面には反射電極11が形成されている。反射電極11及び第1電極12は、層間絶縁膜3及び平坦化膜4を貫通して設けられた配線2bにより、TFT回路2の1つに接続されている。第2電極16は、層間絶縁膜3、平坦化膜4及びエッジカバー19を貫通して設けられた配線2aによりTFT回路2の1つに接続されている。
 図7に示す有機発光素子30において、上記第1実施形態の有機発光素子20、20Bと同様の構成要素には同様の符号を付し、説明を省略する。
[Second Embodiment]
FIG. 7 is a schematic cross-sectional view illustrating an example of an organic light-emitting device according to the second embodiment of the present invention.
7 includes a substrate 1, an organic EL light emitting unit (light source) 10, a sealing substrate 9, a fluorescence conversion layer 8R, a green fluorescence conversion layer 8G, a blue fluorescence conversion layer 8B, and a wavelength conversion. The layer 18 and the light reflective layer 31 are roughly configured. The substrate 1 includes a TFT (Thin Film Transistor) circuit 2. The organic EL light emitting unit (light source) 10 is provided on the substrate 1 with the interlayer insulating film 3 and the planarizing film 4 interposed therebetween. The fluorescence conversion layer 8R, the green fluorescence conversion layer 8G, and the blue fluorescence conversion layer 8B are partitioned by the black matrix 7 and arranged in parallel on one surface of the sealing substrate 9. The wavelength conversion layer 18 is disposed between the organic EL light emitting unit 10 and each of the fluorescence conversion layers 8R, 8G, and 8B. The light reflective layer 31 is disposed on the light extraction side of the wavelength conversion layer 18. In the substrate 1 and the sealing substrate 9, the organic EL light emitting unit 10 and each of the fluorescence conversion layers 8R, 8G, and 8B are opposed to each other with the sealing material 6, the light reflective layer 31, and the wavelength conversion layer 18 therebetween. Is arranged. The organic EL light emitting unit 10 and the wavelength conversion layer 18 are covered with the inorganic sealing film 5. In the organic EL light emitting unit 10, a hole transport layer 13, and an organic EL layer (organic layer) 17 in which a light emitting layer 14 and an electron transport layer 15 are stacked are sandwiched between a first electrode 12 and a second electrode 16. ing. A reflective electrode 11 is formed on the lower surface of the first electrode 12. The reflective electrode 11 and the first electrode 12 are connected to one of the TFT circuits 2 by a wiring 2 b provided through the interlayer insulating film 3 and the planarizing film 4. The second electrode 16 is connected to one of the TFT circuits 2 by a wiring 2 a provided through the interlayer insulating film 3, the planarizing film 4 and the edge cover 19.
In the organic light emitting device 30 shown in FIG. 7, the same components as those of the organic light emitting devices 20 and 20B of the first embodiment are denoted by the same reference numerals, and the description thereof is omitted.
 本実施形態の有機発光素子30は、上記第1実施形態の有機発光素子20の構成に加えて、波長変換層18の光取り出し側(各蛍光変換層8R、8G、8B側)の面上に、光反射性層31が配されている。光反射性層31は、光反射性を有し、Ag、Al、Cr、Mo、Au、ITOあるいはそれらの合金等の材料より形成されている。光反射性層31の膜厚は適宜変更可能であり、例えば、10nm~1μm程度とされ、蒸着やスパッタリング等の方法により形成される。 In addition to the configuration of the organic light emitting device 20 of the first embodiment, the organic light emitting device 30 of the present embodiment is on the light extraction side (each fluorescence conversion layer 8R, 8G, 8B side) of the wavelength conversion layer 18. The light reflective layer 31 is disposed. The light reflective layer 31 has light reflectivity and is formed of a material such as Ag, Al, Cr, Mo, Au, ITO, or an alloy thereof. The film thickness of the light reflective layer 31 can be changed as appropriate, for example, about 10 nm to 1 μm, and is formed by a method such as vapor deposition or sputtering.
 本実施形態の蛍光表示装置30においては、有機EL発光部10における第2電極16を光反射性を有する反射性電極とし、波長変換層18の光取り出し側に光反射性層31を設ける。この反射性電極16と光反射性層31によって定められる反射性界面間の光学膜厚Lが、波長変換層18において波長変換された光のうち特定波長の光の強度を増強するように設定されていることが好ましい。ここで、「特定波長の光」とは緑色領域~赤色領域の光(波長500nm~780nm)が波長変換された紫外領域~青色領域の光(波長250nm~400nm)を意味する。具体的には、増強したい波長をλとすると、反射性界面間の光学膜厚L=(λ/2)×2m(但し、mは整数である。)を満たすように、光学膜厚Lを設定すればよい。 In the fluorescent display device 30 of the present embodiment, the second electrode 16 in the organic EL light emitting unit 10 is a reflective electrode having light reflectivity, and the light reflective layer 31 is provided on the light extraction side of the wavelength conversion layer 18. The optical film thickness L 2 between the reflective interfaces defined by the reflective electrode 16 and the light reflective layer 31 is set so as to enhance the intensity of light of a specific wavelength among the light converted in wavelength in the wavelength conversion layer 18. It is preferable that Here, “light of a specific wavelength” means light in the ultraviolet region to blue region (wavelength 250 nm to 400 nm) obtained by wavelength conversion of light in the green region to red region (wavelength 500 nm to 780 nm). Specifically, when the wavelength to be enhanced is λ, the optical film satisfies the optical film thickness L 2 = (λ / 2) × 2m 2 (where m 2 is an integer) between the reflective interfaces. the thickness L 2 may be set.
 このように光学膜厚Lを設定することにより、反射性電極である第2電極16(半透明電極)と光反射性層31との間でマイクロキャビティ効果(多重反射干渉効果)が発現し、さらに光の取り出し効率を向上させることができる。詳述すると、波長変換層18の光学膜厚Lを前記の如く設定することにより、波長変換層18にて波長変換された光が、対向する第2電極16、光反射性層31間を繰り返し反射する。この際、多重干渉によって紫外領域~青色領域の光が強められて、光反射性層31から各蛍光変換層8R、8G、8B側へと出射される。その結果、各蛍光変換層8R、8G、8Bに入射される紫外領域~青色領域の光の強度が増大し、各蛍光変換層8R、8G、8Bにて蛍光変換されて封止基板9側から射出される赤色、緑色、青色の光の光量が増加する。有機発光素子30の光の取り出し効率をより向上させることができ、良好な発光効率の有機発光素子30とすることができる。 By thus setting the optical film thickness L 2, microcavity effects (multiple reflection interference effect) is expressed between the second electrode 16 is a reflective electrode (translucent electrode) and the light reflective layer 31 Furthermore, the light extraction efficiency can be improved. More specifically, by setting as the optical film thickness L 2 of the wavelength conversion layer 18 of the wavelength-converted light at a wavelength conversion layer 18, second electrode 16 face each other, between light reflective layer 31 Reflects repeatedly. At this time, the light in the ultraviolet region to the blue region is strengthened by the multiple interference and is emitted from the light reflective layer 31 to the respective fluorescence conversion layers 8R, 8G, and 8B. As a result, the intensity of light in the ultraviolet region to the blue region incident on the fluorescence conversion layers 8R, 8G, and 8B is increased, and the fluorescence conversion is performed in the fluorescence conversion layers 8R, 8G, and 8B, and from the sealing substrate 9 side. The amount of red, green, and blue light emitted increases. The light extraction efficiency of the organic light emitting device 30 can be further improved, and the organic light emitting device 30 with good light emission efficiency can be obtained.
[第3実施形態]
 図8は、本発明の第3実施形態に係る有機発光素子の一例を示す概略断面図である。
 図8に示す有機発光素子40は、基板1と、有機EL発光部(光源)10と、封止基板9と、赤色カラーフィルタ41R、緑色カラーフィルタ41G、青色カラーフィルタ41Bと、蛍光変換層8R、緑色蛍光変換層8G、青色蛍光変換層8Bと、波長変換層18とで概略構成されている。基板1は、TFT(薄膜トランジスタ)回路2を備えている。有機EL発光部(光源)10は、基板1上に層間絶縁膜3及び平坦化膜4を間に介して設けられている。赤色カラーフィルタ41R、緑色カラーフィルタ41G、青色カラーフィルタ41Bは、封止基板9の一方の面上にブラックマトリックス7に仕切られて並列配置されたカラーフィルタである。蛍光変換層8R、緑色蛍光変換層8G、青色蛍光変換層8Bは、封止基板9の一方の面上形成された各カラーフィルタ41R、41G、41B上に色を合わせてブラックマトリックス7に仕切られて並列配置されている。波長変換層18は、有機EL発光部10と各蛍光変換層8R、8G、8Bとの間に配されている。基板1と封止基板9とは、有機EL発光部10と各蛍光変換層8R、8G、8Bとが封止材6及び波長変換層18を間に介して対向するように配置されている。有機EL発光部10及び波長変換層18は、無機封止膜5に覆われている。有機EL発光部10は、有機EL層(有機層)17が、第1電極12と第2電極16により狭持されている。有機EL層(有機層)17は、正孔輸送層13と、発光層14と電子輸送層15との積層である。第1電極12の下面には反射電極11が形成されている。反射電極11及び第1電極12は、層間絶縁膜3及び平坦化膜4を貫通して設けられた配線2bにより、TFT回路2の1つに接続されている。第2電極16は、層間絶縁膜3、平坦化膜4及びエッジカバー19を貫通して設けられた配線2aによりTFT回路2の1つに接続されている。
 図8に示す有機発光素子40において、上記第1実施形態の有機発光素子20、20Bと同様の構成要素には同様の符号を付し、説明を省略する。
[Third Embodiment]
FIG. 8 is a schematic cross-sectional view showing an example of an organic light-emitting device according to the third embodiment of the present invention.
8 includes a substrate 1, an organic EL light emitting unit (light source) 10, a sealing substrate 9, a red color filter 41R, a green color filter 41G, a blue color filter 41B, and a fluorescence conversion layer 8R. The green fluorescence conversion layer 8G, the blue fluorescence conversion layer 8B, and the wavelength conversion layer 18 are schematically configured. The substrate 1 includes a TFT (Thin Film Transistor) circuit 2. The organic EL light emitting unit (light source) 10 is provided on the substrate 1 with the interlayer insulating film 3 and the planarizing film 4 interposed therebetween. The red color filter 41 </ b> R, the green color filter 41 </ b> G, and the blue color filter 41 </ b> B are color filters that are partitioned by the black matrix 7 and arranged in parallel on one surface of the sealing substrate 9. The fluorescence conversion layer 8R, the green fluorescence conversion layer 8G, and the blue fluorescence conversion layer 8B are partitioned into the black matrix 7 by matching colors on the color filters 41R, 41G, and 41B formed on one surface of the sealing substrate 9. Are arranged in parallel. The wavelength conversion layer 18 is disposed between the organic EL light emitting unit 10 and each of the fluorescence conversion layers 8R, 8G, and 8B. The substrate 1 and the sealing substrate 9 are disposed so that the organic EL light emitting unit 10 and the fluorescence conversion layers 8R, 8G, and 8B face each other with the sealing material 6 and the wavelength conversion layer 18 interposed therebetween. The organic EL light emitting unit 10 and the wavelength conversion layer 18 are covered with the inorganic sealing film 5. In the organic EL light emitting unit 10, an organic EL layer (organic layer) 17 is sandwiched between the first electrode 12 and the second electrode 16. The organic EL layer (organic layer) 17 is a stack of a hole transport layer 13, a light emitting layer 14, and an electron transport layer 15. A reflective electrode 11 is formed on the lower surface of the first electrode 12. The reflective electrode 11 and the first electrode 12 are connected to one of the TFT circuits 2 by a wiring 2 b provided through the interlayer insulating film 3 and the planarizing film 4. The second electrode 16 is connected to one of the TFT circuits 2 by a wiring 2 a provided through the interlayer insulating film 3, the planarizing film 4 and the edge cover 19.
In the organic light emitting device 40 shown in FIG. 8, the same components as those of the organic light emitting devices 20 and 20B of the first embodiment are denoted by the same reference numerals, and description thereof is omitted.
 本実施形態の有機発光素子40は、第1実施形態の有機発光素子20Bの構成に加えて、赤色蛍光変換層8R、緑色蛍光変換層8G、青色蛍光変換層8Bと、封止基板9との間に、カラーフィルター41R、41G、41Bが夫々介在されている。カラーフィルター41R、41G、41Bは、各蛍光変換層8R、8G、8Bより射出される光の色に対応して光取り出し側(封止基板9側)に形成されている。赤色蛍光変換層8Rの蛍光の射出側には赤色カラーフィルター41Rが設けられている。緑色蛍光変換層8Gの蛍光の射出側には緑色カラーフィルター41Gが設けられている。青色蛍光変換層8Bの蛍光の射出側には青色カラーフィルター41Bが設けられている。 In addition to the configuration of the organic light emitting device 20B of the first embodiment, the organic light emitting device 40 of the present embodiment includes a red fluorescence conversion layer 8R, a green fluorescence conversion layer 8G, a blue fluorescence conversion layer 8B, and a sealing substrate 9. Color filters 41R, 41G, and 41B are interposed therebetween. The color filters 41R, 41G, and 41B are formed on the light extraction side (sealing substrate 9 side) corresponding to the color of light emitted from the fluorescence conversion layers 8R, 8G, and 8B. A red color filter 41R is provided on the fluorescence emission side of the red fluorescence conversion layer 8R. A green color filter 41G is provided on the fluorescence emission side of the green fluorescence conversion layer 8G. A blue color filter 41B is provided on the fluorescence emission side of the blue fluorescence conversion layer 8B.
 カラーフィルター41R、41G、41Bとしては、特に限定されず、従来公知のカラーフィルターを用いることが可能である。また、カラーフィルター41R、41G、41Bの形成方法も従来公知の方法を用いることができ、その膜厚も適宜調整可能である。
 このように、光取り出し側(観察者側)の封止基板9と、蛍光変換層8R、8G、8Bとの間にカラーフィルター41R、41G、41Bを設けることによって、有機発光素子40から出射される赤色、緑色、青色の色純度を高めることが可能となり、有機発光素子40の色再現範囲を拡大することができる。また、赤色蛍光変換層8R上に形成された赤色カラーフィルター41R、緑色蛍光変換層8G上に形成された緑色カラーフィルター41Gが、外光の青色成分及び紫外成分を吸収する。よって、外光による各蛍光変換層8R、8Gの発光を低減・防止することが可能となり、コントラストの低下を低減または防止することが出来る。
The color filters 41R, 41G, and 41B are not particularly limited, and conventionally known color filters can be used. In addition, the color filters 41R, 41G, and 41B can be formed by a conventionally known method, and the film thickness can be adjusted as appropriate.
Thus, by providing the color filters 41R, 41G, 41B between the sealing substrate 9 on the light extraction side (observer side) and the fluorescence conversion layers 8R, 8G, 8B, the light is emitted from the organic light emitting element 40. The color purity of red, green, and blue can be increased, and the color reproduction range of the organic light emitting element 40 can be expanded. Further, the red color filter 41R formed on the red fluorescence conversion layer 8R and the green color filter 41G formed on the green fluorescence conversion layer 8G absorb the blue component and the ultraviolet component of external light. Therefore, it is possible to reduce or prevent light emission of the fluorescence conversion layers 8R and 8G due to external light, and it is possible to reduce or prevent a decrease in contrast.
 なお、図8においては、青色を射出する画素として青色蛍光変換層8B上に青色カラーフィルタ41Bを設ける例を示したが、本実施形態はこれに限定されない。波長変換層18において波長変換された光が青色領域の光である場合、青色蛍光変換層8Bを省略することもできる。青色蛍光変換層8Bの替わりに第1実施形態で前記した機能層を設ける構成とすることもできる。 Although FIG. 8 shows an example in which the blue color filter 41B is provided on the blue fluorescence conversion layer 8B as a pixel emitting blue, the present embodiment is not limited to this. When the light subjected to wavelength conversion in the wavelength conversion layer 18 is light in the blue region, the blue fluorescence conversion layer 8B can be omitted. Instead of the blue fluorescence conversion layer 8B, the functional layer described in the first embodiment may be provided.
[第4実施形態]
 図9は、本発明の第4実施形態に係る有機発光素子の一例を示す概略断面図である。
 図9に示す有機発光素子50は、有機EL発光部(光源)10と、波長変換層18と、光反射性層31と、封止材6と、蛍光変換層51と、封止基板9とで概略構成されている。有機EL発光部(光源)10は、基板1上に設けられている。波長変換層18は、有機EL発光部10上に設けられている。光反射性層31は、波長変換層18上に設けられている。封止材6は、光反射性層31上に設けられている。蛍光変換層51は、封止材6上に設けられている。封止基板9は、蛍光変換層51上に設けられている。有機EL発光部10は、有機EL層(有機層)17が第1電極12と第2電極16とにより狭持されて構成されている。
 図9に示す有機発光素子50において、上記第1~第3実施形態の有機発光素子20、20B、30、40と同様の構成要素には同様の符号を付し、説明を省略する。
 図9に示す有機発光素子50は、上記第1~第3実施形態とは、蛍光変換層8R、8G、8Bの三種の蛍光変換層を配する替わりに、1種の蛍光変換層51を配されている点で異なっている。蛍光変換層51は、第1実施形態において上記した蛍光変換層8R、8G、8Bのいずれでもよく、封止基板9より射出させたい光の波長領域(色)に応じて適宜変更することができる。
[Fourth Embodiment]
FIG. 9 is a schematic cross-sectional view showing an example of an organic light-emitting device according to the fourth embodiment of the present invention.
The organic light emitting device 50 shown in FIG. 9 includes an organic EL light emitting unit (light source) 10, a wavelength conversion layer 18, a light reflective layer 31, a sealing material 6, a fluorescence conversion layer 51, and a sealing substrate 9. It is roughly composed. The organic EL light emitting unit (light source) 10 is provided on the substrate 1. The wavelength conversion layer 18 is provided on the organic EL light emitting unit 10. The light reflective layer 31 is provided on the wavelength conversion layer 18. The sealing material 6 is provided on the light reflective layer 31. The fluorescence conversion layer 51 is provided on the sealing material 6. The sealing substrate 9 is provided on the fluorescence conversion layer 51. The organic EL light emitting unit 10 is configured by an organic EL layer (organic layer) 17 sandwiched between a first electrode 12 and a second electrode 16.
In the organic light emitting device 50 shown in FIG. 9, the same components as those of the organic light emitting devices 20, 20B, 30, 40 of the first to third embodiments are denoted by the same reference numerals, and the description thereof is omitted.
The organic light emitting device 50 shown in FIG. 9 differs from the first to third embodiments in that a single fluorescence conversion layer 51 is disposed instead of the three fluorescence conversion layers 8R, 8G, and 8B. Is different in that it is. The fluorescence conversion layer 51 may be any of the fluorescence conversion layers 8R, 8G, and 8B described in the first embodiment, and can be appropriately changed according to the wavelength region (color) of light that is desired to be emitted from the sealing substrate 9. .
 本実施形態の有機発光素子50は、光源である有機EL発光部10から発光された緑色領域~赤色領域の光を、波長変換層18にて波長変換して紫外領域~青色領域とする。この紫外領域~青色領域の光を蛍光変換層51において蛍光変換することにより、蛍光変換層51として赤色蛍光変換層8Rを配した場合は赤色の光を封止基板9側へと射出する。蛍光変換層51として緑色蛍光変換層8Gを配した場合は緑色の光を封止基板9側へと射出する。蛍光変換層51として青色蛍光変換層8Bを配した場合は青色の光を、封止基板9側へと射出する。
 本実施形態の有機発光素子50は、波長変換層18の光の取り出し側に光反射性層31が配されてなることにより、第2実施形態において上記したように、波長変換層18において波長変換される光がマイクロキャビティ効果により増幅されるため、有機レーザ素子としても機能することができる。
In the organic light emitting device 50 of the present embodiment, the light in the green region to the red region emitted from the organic EL light emitting unit 10 that is a light source is wavelength-converted by the wavelength conversion layer 18 to obtain an ultraviolet region to a blue region. By converting fluorescence in the ultraviolet region to blue region in the fluorescence conversion layer 51, when the red fluorescence conversion layer 8R is disposed as the fluorescence conversion layer 51, red light is emitted to the sealing substrate 9 side. When the green fluorescence conversion layer 8G is arranged as the fluorescence conversion layer 51, green light is emitted to the sealing substrate 9 side. When the blue fluorescence conversion layer 8B is arranged as the fluorescence conversion layer 51, blue light is emitted to the sealing substrate 9 side.
The organic light emitting device 50 according to the present embodiment includes the light reflecting layer 31 disposed on the light extraction side of the wavelength conversion layer 18, so that the wavelength conversion layer 18 converts the wavelength as described above in the second embodiment. Since the emitted light is amplified by the microcavity effect, it can also function as an organic laser element.
 図10は、本実施形態の有機発光素子50を有機レーザ素子として使用した有機レーザ60の一例を示す概略構成図である。
 図10に示す有機レーザ60は、ペンシル型の本体66と、コンデンサーレンズ65と、発光回路63と、有機発光素子50と、昇圧回路62と、バッテリー61と、点灯スイッチ64とで概略構成されている。コンデンサーレンズ65は、本体66の先端部内部に配されている。発光回路63は、本体66の内部中央部に配されている。有機発光素子50は、発光回路63とコンデンサーレンズ66との間に配された有機レーザ素子である。昇圧回路62は、本体66の長手方向に沿って、発光回路63の後方部に順に配されている。点灯スイッチ64は、本体66の外周部に発光回路63と電気的に接続されて配されている。有機発光素子(有機レーザ素子)50と発光回路63と昇圧回路62とバッテリー61とは配線により電気的に接続されている。点灯スイッチ64を作動させることにより、バッテリー61からの電圧を昇圧回路62で昇圧し、発光回路63を介して有機発光素子(有機レーザ素子)50の第1電極12及び第2電極16へと通電させて、有機EL発光部10を発光させて有機発光素子(有機レーザ素子)50よりレーザ光を射出させることができる。有機発光素子(有機レーザ素子)50から射出された光は、コンデンサーレンズ65にて集光され、本体66の外部へと射出される。本実施形態の有機発光素子50は、図10に示す例の如く有機レーザ素子として使用することにより、有機レーザ、レーザポインター等に適用することができる。
FIG. 10 is a schematic configuration diagram illustrating an example of an organic laser 60 using the organic light emitting device 50 of the present embodiment as an organic laser device.
An organic laser 60 shown in FIG. 10 is roughly composed of a pencil-type main body 66, a condenser lens 65, a light emitting circuit 63, an organic light emitting element 50, a booster circuit 62, a battery 61, and a lighting switch 64. Yes. The condenser lens 65 is disposed inside the distal end portion of the main body 66. The light emitting circuit 63 is arranged in the central portion inside the main body 66. The organic light emitting element 50 is an organic laser element disposed between the light emitting circuit 63 and the condenser lens 66. The booster circuit 62 is sequentially arranged in the rear part of the light emitting circuit 63 along the longitudinal direction of the main body 66. The lighting switch 64 is disposed on the outer periphery of the main body 66 so as to be electrically connected to the light emitting circuit 63. The organic light emitting element (organic laser element) 50, the light emitting circuit 63, the booster circuit 62, and the battery 61 are electrically connected by wiring. By operating the lighting switch 64, the voltage from the battery 61 is boosted by the booster circuit 62, and the first electrode 12 and the second electrode 16 of the organic light emitting element (organic laser element) 50 are energized via the light emitting circuit 63. Thus, the organic EL light emitting unit 10 can emit light, and laser light can be emitted from the organic light emitting element (organic laser element) 50. The light emitted from the organic light emitting element (organic laser element) 50 is condensed by the condenser lens 65 and emitted to the outside of the main body 66. The organic light emitting device 50 of the present embodiment can be applied to an organic laser, a laser pointer, etc. by using it as an organic laser device as in the example shown in FIG.
 以上、本発明の一態様である有機発光素子について説明したが、本発明は上記の実施形態に限定されるものではない。例えば、有機発光素子がカラーフィルターを備える場合は、該カラーフィルターの光の取り出し側に拡散板を配置してもよい。また、本発明の一態様である有機発光素子において、有機EL発光部を駆動させる方式は特に限定されず、アクティブ駆動方式でもパッシブ駆動方式でも良い。有機EL発光部はアクティブ駆動方式で駆動させる方が好ましい。アクティブ駆動方式を採用することにより、パッシブ駆動方式に比べて有機EL発光部の発光時間を長くすることができ、所望の輝度を得る駆動電圧を低減し、低消費電力化が可能となるため好ましい。また、本発明の一態様である有機発光素子は、アクティブ素子が形成された基板の逆方法から光を取り出す構成とすることにより、TFT回路、配線等を無視して、高開口率にすることが可能となる。 As mentioned above, although the organic light emitting element which is 1 aspect of this invention was demonstrated, this invention is not limited to said embodiment. For example, when the organic light emitting device includes a color filter, a diffusion plate may be disposed on the light extraction side of the color filter. In the organic light-emitting element which is one embodiment of the present invention, a method for driving the organic EL light-emitting portion is not particularly limited, and an active driving method or a passive driving method may be used. The organic EL light emitting unit is preferably driven by an active driving method. By adopting the active drive method, it is preferable because the light emission time of the organic EL light emitting unit can be extended compared to the passive drive method, the drive voltage for obtaining a desired luminance can be reduced, and the power consumption can be reduced. . In addition, the organic light-emitting element which is one embodiment of the present invention has a structure in which light is extracted from the reverse method of the substrate on which the active element is formed, thereby ignoring the TFT circuit, the wiring, and the like so as to have a high aperture ratio. Is possible.
 次に、本発明の一態様である有機発光装置について説明する。
 本発明の一態様である有機発光装置は、上記した本発明の一態様である有機発光素子と、本発明の一態様である有機発光素子の有機EL発光部を駆動させる駆動ユニットを備えてなる。
 本発明の一態様に係る有機発光装置として、図11に、第1実施形態の有機発光素子20と駆動ユニットを備える有機発光装置の配線構造と駆動回路の接続構成の一例を示す。本実施形態の有機発光装置は、有機発光素子20の基板1に対し平面視マトリクス状に走査線101と信号線102とが配線されている。各走査線101は基板1の一側縁部に設けられる走査回路103に接続されている。各信号線102は基板1の他側縁部に設けられる映像信号駆動回路104に接続されている。より具体的には走査線101と信号線102との交差部分のそれぞれに薄膜トランジスタなどの駆動素子が組み込まれ、駆動素子毎に画素電極が接続されている。これらの画素電極が図1に示す構造の有機発光素子20の反射電極11に対応し、これらの反射電極11が第1電極12に対応されている。
Next, an organic light-emitting device which is one embodiment of the present invention is described.
An organic light-emitting device which is one embodiment of the present invention includes the above-described organic light-emitting element which is one embodiment of the present invention and a drive unit which drives the organic EL light-emitting portion of the organic light-emitting element which is one embodiment of the present invention. .
As an organic light-emitting device according to an aspect of the present invention, FIG. 11 shows an example of a wiring structure of an organic light-emitting device including the organic light-emitting element 20 of the first embodiment and a drive unit, and a drive circuit connection configuration. In the organic light emitting device of this embodiment, scanning lines 101 and signal lines 102 are wired in a matrix in a plan view with respect to the substrate 1 of the organic light emitting element 20. Each scanning line 101 is connected to a scanning circuit 103 provided on one side edge of the substrate 1. Each signal line 102 is connected to a video signal driving circuit 104 provided at the other side edge of the substrate 1. More specifically, a driving element such as a thin film transistor is incorporated in each of the intersections between the scanning line 101 and the signal line 102, and a pixel electrode is connected to each driving element. These pixel electrodes correspond to the reflective electrodes 11 of the organic light emitting element 20 having the structure shown in FIG. 1, and these reflective electrodes 11 correspond to the first electrodes 12.
 走査回路103と映像信号駆動回路104は制御線106、107、108を介してコントローラ105に電気的に接続されている。コントローラ105は中央演算装置109により作動制御されている。また、走査回路103と映像信号駆動回路104には、別途電源配線110、111を介して電源回路112が接続されている。
 有機発光素子20の有機EL発光部10を駆動させる駆動ユニットは、走査線101、信号線102、走査回路103、映像信号駆動回路104より構成されている。走査線101および信号線102により区画された各領域内に、図1に示す有機発光素子20のTFT回路2が組み込まれている。
 このような構成の駆動ユニットにより、所望の画素の第1電極12、第2電極16間に挟まれた有機EL層(有機層)17に電圧を印加することにより、当該画素に該当する有機EL発光部10を発光させて、対応する画素から可視領域光を射出させることができ、所望の色や画像を表示することができる。
The scanning circuit 103 and the video signal driving circuit 104 are electrically connected to the controller 105 via control lines 106, 107, and 108. The operation of the controller 105 is controlled by the central processing unit 109. In addition, a power supply circuit 112 is connected to the scanning circuit 103 and the video signal driving circuit 104 via power supply wirings 110 and 111 separately.
A drive unit that drives the organic EL light emitting unit 10 of the organic light emitting element 20 includes a scanning line 101, a signal line 102, a scanning circuit 103, and a video signal driving circuit 104. A TFT circuit 2 of the organic light emitting element 20 shown in FIG. 1 is incorporated in each region partitioned by the scanning line 101 and the signal line 102.
By applying a voltage to the organic EL layer (organic layer) 17 sandwiched between the first electrode 12 and the second electrode 16 of the desired pixel by the drive unit having such a configuration, the organic EL corresponding to the pixel is obtained. The light emitting unit 10 can emit light, and visible region light can be emitted from the corresponding pixel, so that a desired color or image can be displayed.
 本実施形態の有機発光装置においては、上記第1実施形態の有機発光素子20を備える場合について例示したが、本実施形態はこれに限定されず、上記した本発明に係る有機発光素子であればいずれも好適に備えることができる。
 本発明の一態様である有機発光装置は、上記した本発明の一態様である有機発光素子を備えることにより、高効率(高輝度)の有機発光装置となる。
In the organic light emitting device of the present embodiment, the case where the organic light emitting element 20 of the first embodiment is provided is illustrated, but the present embodiment is not limited thereto, and any organic light emitting element according to the present invention described above may be used. Either can be suitably provided.
The organic light-emitting device which is one embodiment of the present invention is a high-efficiency (high luminance) organic light-emitting device by including the above-described organic light-emitting element which is one embodiment of the present invention.
 次に、本実施形態の色変換方法について説明する。
 本実施形態の色変換方法は、発光層を含む少なくとも一層の有機層を一対の電極間に狭持させてなる有機EL発光部と、入射された光を蛍光変換する蛍光変換層との間に、前記有機EL発光部より発光された光の波長を変換して前記蛍光変換層側へと射出する波長変換層を配し、前記有機EL発光部より発光された光の波長を、前記波長変換層により変換し、この変換光を前記蛍光変換層により蛍光変換して、可視光を発生する。
 本実施形態の色変換方法における有機EL発光部、蛍光変換層、波長変換層としては、上記実施形態の有機発光素子で挙げた有機EL発光部、蛍光変換層、波長変換層として挙げたものと同様のものが挙げられる。
Next, the color conversion method of this embodiment will be described.
In the color conversion method of the present embodiment, an organic EL light-emitting unit in which at least one organic layer including a light-emitting layer is sandwiched between a pair of electrodes, and a fluorescence conversion layer that converts incident light into fluorescence. A wavelength conversion layer that converts the wavelength of the light emitted from the organic EL light emitting unit and emits the light to the fluorescence conversion layer side, and converts the wavelength of the light emitted from the organic EL light emitting unit to the wavelength conversion The light is converted by the layer, and the converted light is fluorescently converted by the fluorescence conversion layer to generate visible light.
As the organic EL light emitting part, the fluorescence conversion layer, and the wavelength conversion layer in the color conversion method of the present embodiment, the organic EL light emitting part, the fluorescence conversion layer, and the wavelength conversion layer mentioned in the organic light emitting element of the above embodiment are used. The same thing is mentioned.
 緑色領域~赤色領域の材料は、高効率(高輝度)、高寿命の発光材料が開発されていることから、有機EL発光部は、緑色領域~赤色領域の材料を備えてなることが好ましい。従って、有機EL発光部は緑色領域~赤色領域の光を発光することが好ましい。
 波長変換層としては、有機EL発光部から発光された光の波長を短く変換することができる層が挙げられる。具体的には、波長変換層としては、第2次高調波発生(SHG)など2次非線型光学効果を用いて、波長変換層内に入射された光の波長を2分の1に変換するものが挙げられる。SHGである波長変換層を、有機EL発光部と蛍光変換層との間に配し、有機EL発光部からの発光を波長変換層に入射して、有機EL発光部より発光する赤色領域~緑色領域の光の波長を2分の1に変換して紫外領域~青色領域の光に変換する。その紫外領域~青色領域の光を蛍光変換層に入射させて蛍光変換層にて蛍光変換することにより、可視領域の光を発生させることができる。
Since the materials for the green region to the red region have been developed as light emitting materials with high efficiency (high luminance) and a long lifetime, the organic EL light emitting section is preferably provided with materials for the green region to the red region. Therefore, the organic EL light emitting part preferably emits light in the green region to red region.
As a wavelength conversion layer, the layer which can convert the wavelength of the light light-emission from the organic electroluminescent light emission part short is mentioned. Specifically, the wavelength conversion layer converts the wavelength of light incident in the wavelength conversion layer into a half by using a second-order nonlinear optical effect such as second harmonic generation (SHG). Things. The SHG wavelength conversion layer is placed between the organic EL light emitting part and the fluorescence conversion layer, and the light emitted from the organic EL light emitting part is incident on the wavelength conversion layer and emitted from the organic EL light emitting part to green. The wavelength of the light in the region is converted to half and converted into light in the ultraviolet region to blue region. Light in the visible region can be generated by making the light in the ultraviolet region to blue region incident on the fluorescence conversion layer and performing fluorescence conversion in the fluorescence conversion layer.
 波長変換層は、上記第1実施形態の有機発光素子20と同様のものが好ましい。図3A及び図3Bに示すように、分極方向が交互に反転した複数層が積層されて構成されてなるものが好ましい。分極反転周期Λとなるように(即ち、コヒーレント長Lcごとに)、結晶の分極を周期的に反転するように複数層が積層されてなるものが好ましい。
 QPMを利用した第2次高調波発生(SHG)である波長変換層としては、分極方向が交互に反転した複数層が積層されて構成されてなるものが挙げられる。具体的には、QPMを利用した第2次高調波発生(SHG)である波長変換層としては、図4に示す各層が単一分極化された誘電体材料より構成され、分極方向が交互に反転した複数層18a、18bが積層された積層体18Aが好ましいものとして挙げられる。また、QPMを利用した第2次高調波発生(SHG)である波長変換層として、図5に示す半導体層18cと誘電体層18dが交互に積層されて構成された積層体18Bが好ましいものとして挙げられる。
The wavelength conversion layer is preferably the same as the organic light emitting device 20 of the first embodiment. As shown in FIGS. 3A and 3B, it is preferable that a plurality of layers in which the polarization directions are alternately reversed are stacked. It is preferable that a plurality of layers are laminated so as to periodically invert the polarization of the crystal so as to have a polarization inversion period Λ (that is, for each coherent length Lc).
Examples of the wavelength conversion layer that is second harmonic generation (SHG) using QPM include a layer formed by laminating a plurality of layers in which polarization directions are alternately reversed. Specifically, as the wavelength conversion layer that is second harmonic generation (SHG) using QPM, each layer shown in FIG. 4 is composed of a single-polarized dielectric material, and the polarization directions are alternately changed. A laminated body 18A in which a plurality of inverted layers 18a and 18b are laminated is preferable. Further, as a wavelength conversion layer that is second-order harmonic generation (SHG) using QPM, a stacked body 18B configured by alternately stacking semiconductor layers 18c and dielectric layers 18d shown in FIG. 5 is preferable. Can be mentioned.
 波長変換層18、波長変換層(積層体)18A、波長変換層(積層体)18Bを構成する材料、各層の膜厚等は、上述の第1実施形態の有機発光素子10の波長変換層18で挙げたものと同様の材料が挙げられる。 The wavelength conversion layer 18, the wavelength conversion layer (laminated body) 18 </ b> A, the material constituting the wavelength conversion layer (laminated body) 18 </ b> B, the film thickness of each layer, and the like are as follows. The same materials as those mentioned above can be mentioned.
 本実施形態の色変換方法は、有機EL発光部と蛍光変換層との間に、波長変換層を配し、有機EL発光部から発光した光を波長変換層において波長変換し、この変換光を蛍光変換層に入射して蛍光変換することにより、有機EL発光部から発光された光を色変換して蛍光変換層より可視光を発光することができる。また、本実施形態の色変換方法において、有機EL発光部と蛍光変換層との間に、QPM構造を有する第2次高調波発生(SHG)の波長変換層を配することにより、有機EL発光部から発光された緑色領域~赤色領域の光の波長を波長変換層において2分の1に変換して紫外領域~青色領域の光とし、この変換光を蛍光変換層へと入射して蛍光変換することにより、可視光を発生させることができる。
 本実施形態の色変換方法によれば、光源として青色発光材料よりも優れた輝度や寿命を有する緑色領域~赤色領域の光を発光する有機EL発光部を使用することができ、この有機EL発光部からの光を色変換して可視光を発生させることができるため、有機EL発光部を光源として輝度や寿命に優れた可視光を発生させることができる。
In the color conversion method of the present embodiment, a wavelength conversion layer is disposed between the organic EL light emitting unit and the fluorescence conversion layer, the wavelength of the light emitted from the organic EL light emitting unit is converted in the wavelength conversion layer, and the converted light is converted into light. By entering the fluorescence conversion layer and performing fluorescence conversion, the light emitted from the organic EL light emitting unit is color-converted, and visible light can be emitted from the fluorescence conversion layer. Further, in the color conversion method of the present embodiment, organic EL light emission is achieved by arranging a second harmonic generation (SHG) wavelength conversion layer having a QPM structure between the organic EL light emitting unit and the fluorescence conversion layer. The wavelength of the green to red light emitted from the light is converted to half in the wavelength conversion layer to make the light in the ultraviolet to blue region, and this converted light is incident on the fluorescence conversion layer and converted to fluorescence. By doing so, visible light can be generated.
According to the color conversion method of the present embodiment, an organic EL light emitting unit that emits light in a green region to a red region having luminance and lifetime superior to those of a blue light emitting material can be used as a light source. Since visible light can be generated by color-converting light from the part, visible light with excellent luminance and lifetime can be generated using the organic EL light-emitting part as a light source.
 以下、本発明の実施例をさらに詳述するが、本発明は以下の実施例に制限されるものではない。 Hereinafter, examples of the present invention will be described in more detail, but the present invention is not limited to the following examples.
(実施例1)
 図1に示す構成の有機発光素子20を以下の手順で作製した。
 0.7mmの厚みのガラス基板上に、銀を膜厚100nmとなるようスパッタ法により反射電極を成膜した。反射電極の上にインジウム-スズ酸化物(ITO)を、膜厚20nmとなるようスパッタ法により成膜した。第1電極として反射電極(陽極)を形成した。次いで、従来のフォトリソグラフィー法により、第1電極を2mm幅の90本のストライプにパターニングした。
 次に、第1電極上にSiOをスパッタ法により200nm積層し、従来のフォトリソグラフィー法により、第1電極のエッジ部を覆うようにパターン化してエッジカバーを形成した。ここでは、第1電極の端から10μm分だけ短辺をSiOで覆う構造とした。
続いて、これを水洗後、純水超音波洗浄10分、アセトン超音波洗浄10分、イソプロピルアルコール蒸気洗浄5分を行い、100℃にて1時間乾燥させた。
Example 1
An organic light emitting device 20 having the configuration shown in FIG. 1 was produced by the following procedure.
A reflective electrode was formed on a 0.7 mm thick glass substrate by a sputtering method so as to have a film thickness of 100 nm. An indium-tin oxide (ITO) film was formed on the reflective electrode by sputtering so as to have a film thickness of 20 nm. A reflective electrode (anode) was formed as the first electrode. Next, the first electrode was patterned into 90 stripes having a width of 2 mm by a conventional photolithography method.
Next, SiO 2 was deposited to 200 nm on the first electrode by a sputtering method, and patterned to cover the edge portion of the first electrode by a conventional photolithography method to form an edge cover. Here, a short side of 10 μm from the end of the first electrode is covered with SiO 2 .
Subsequently, this was washed with water, then subjected to pure water ultrasonic cleaning for 10 minutes, acetone ultrasonic cleaning for 10 minutes, and isopropyl alcohol vapor cleaning for 5 minutes, and dried at 100 ° C. for 1 hour.
 次に、この乾燥後の基板をインライン型抵抗加熱蒸着装置内の基板ホルダーに固定し、1×10-4Pa以下の真空まで減圧した。各有機層の成膜を行った。
 まず、正孔注入材料として、1,1-ビス-ジ-4-トリルアミノ-フェニル-シクロヘキサン(TAPC)を用い抵抗加熱蒸着法により膜厚100nmの正孔注入層を形成した。次に正孔輸送材料として、N,N’-ジ-1-ナフチル-N,N’-ジフェニル-1,1’-ビフェニル-1,1’-ビフェニル-4,4’-ジアミン(NPD)を用い抵抗加熱蒸着法により、正孔注入層上に膜厚40nmの正孔輸送層を形成した。
 次いで、正孔輸送層の上に赤色有機発光層(厚さ:30nm)を形成した。この赤色有機発光層は、1,4-ビス-トリフェニルシリル-ベンゼン(UGH-2)(ホスト材料)とトリス(1-フェニルイソキノリン)イリジウム(III)Ir(pic))(赤色燐光発光ドーパント)をそれぞれの蒸着速度を1.5Å/sec、0.2Å/ secとし、共蒸着することで作製した。
 続いて、青色有機発光層の上に2,9-ジメチル-4,7-ジフェニル-1,10-フェナントロリン(BCP)を用いて正孔防止層(厚さ:10nm)を形成した上に、トリス(8-ヒドロキシキノリン)アルミニウム(Alq)を用いて電子輸送層(厚さ:30nm)を形成した。
 次いで、電子輸送層の上にフッ化リチウム(LiF)を用いて電子注入層(厚さ:0.5nm)を形成した。
Next, the dried substrate was fixed to a substrate holder in an inline type resistance heating vapor deposition apparatus, and the pressure was reduced to a vacuum of 1 × 10 −4 Pa or less. Each organic layer was formed.
First, as a hole injection material, 1,1-bis-di-4-tolylamino-phenyl-cyclohexane (TAPC) was used to form a hole injection layer having a thickness of 100 nm by resistance heating vapor deposition. Next, N, N′-di-1-naphthyl-N, N′-diphenyl-1,1′-biphenyl-1,1′-biphenyl-4,4′-diamine (NPD) is used as a hole transport material. A hole transport layer having a film thickness of 40 nm was formed on the hole injection layer by resistance heating vapor deposition.
Next, a red organic light emitting layer (thickness: 30 nm) was formed on the hole transport layer. This red organic light-emitting layer comprises 1,4-bis-triphenylsilyl-benzene (UGH-2) (host material) and tris (1-phenylisoquinoline) iridium (III) Ir (pic) 3 ) (red phosphorescent dopant) ) At a deposition rate of 1.5 を / sec and 0.2 Å / sec.
Subsequently, a hole blocking layer (thickness: 10 nm) was formed on the blue organic light emitting layer using 2,9-dimethyl-4,7-diphenyl-1,10-phenanthroline (BCP), and then tris. An electron transport layer (thickness: 30 nm) was formed using (8-hydroxyquinoline) aluminum (Alq 3 ).
Next, an electron injection layer (thickness: 0.5 nm) was formed on the electron transport layer using lithium fluoride (LiF).
 この後、第2電極として半透明電極を形成した。まず、上述のように電子注入層まで形成した基板を金属蒸着用チャンバーに固定した。第2電極形成用のシャドーマスク(前記で作製した第1電極のストライプと対抗する向きに2mm幅のストライプ状に第2電極を形成できるように開口部が空いているマスク)と電子注入層まで形成した基板をアライメントし、電子注入層の表面に真空蒸着法によりマグネシウムと銀をそれぞれ0.1Å/sec、0.9Å/secの割合の蒸着速度で共蒸着してマグネシウム銀を所望のパターンで形成(厚さ:1nm)した。更にその上に、干渉効果を強調する目的、及び、第2電極での配線抵抗による電圧降下を防止する目的で銀を1Å/secの蒸着速度で所望のパターンで形成(厚さ:19nm)することにより、第2電極を形成した。ここで、作製した有機EL発光部は、反射電極(第1電極)と半透過電極(第2電極)間でマイクロキャビティ効果が発現し、波長変換層に入射する光強度を高めることが可能となっていた。ここで、半透明電極の透過率を10%、マイクロキャビティ効果(干渉効果)による発光ピークを680nm、半値幅を10nmに調整した。 Thereafter, a translucent electrode was formed as the second electrode. First, the substrate formed up to the electron injection layer as described above was fixed to a metal vapor deposition chamber. A shadow mask for forming the second electrode (a mask having an opening so that the second electrode can be formed in a stripe shape having a width of 2 mm in a direction opposite to the stripe of the first electrode produced above) and the electron injection layer The formed substrate is aligned, and magnesium and silver are co-deposited on the surface of the electron injection layer by a vacuum deposition method at a deposition rate of 0.1 Å / sec and 0.9 Å / sec, respectively, to form magnesium silver in a desired pattern. Formation (thickness: 1 nm). Furthermore, silver is formed in a desired pattern (thickness: 19 nm) at a deposition rate of 1 cm / sec for the purpose of emphasizing the interference effect and preventing voltage drop due to wiring resistance at the second electrode. Thus, the second electrode was formed. Here, the produced organic EL light emitting part exhibits a microcavity effect between the reflective electrode (first electrode) and the semi-transmissive electrode (second electrode), and can increase the light intensity incident on the wavelength conversion layer. It was. Here, the transmittance of the semitransparent electrode was adjusted to 10%, the emission peak due to the microcavity effect (interference effect) was adjusted to 680 nm, and the half-value width was adjusted to 10 nm.
 次に、有機EL発光部の第2電極上に、レーザーパルス蒸着法により、BBO(β-BaB)薄膜を形成し、分極を交互に反転させるように10層積層することにより波長変換層を形成した。各層は1.7μmで周期が3.4μmの積層膜を形成した。
 次いで、プラズマCVD法により、1μmのSiOからなる無機封止膜をシャドーマスクを用いて表示部の端から上下左右2mmの封止エリアまでパターニング形成した。以上により、有機EL発光部基板を作製した。
Next, wavelength conversion is performed by forming a BBO (β-BaB 2 O 4 ) thin film on the second electrode of the organic EL light emitting part by laser pulse vapor deposition, and laminating 10 layers so as to alternately invert polarization. A layer was formed. Each layer formed a laminated film having a thickness of 1.7 μm and a period of 3.4 μm.
Next, an inorganic sealing film made of 1 μm SiO 2 was patterned by plasma CVD from the edge of the display portion to a sealing area of 2 mm in the vertical and horizontal directions using a shadow mask. Thus, an organic EL light emitting unit substrate was produced.
 続いて、厚さ0.7mmのガラス基板上に、赤色蛍光変換層、緑色蛍光変換層、青色蛍光変換層を形成した。
 赤色蛍光変換層の形成は、まず、平均粒径5nmのエアロジル(日本エアロジル社製商品名)0.16gにエタノール15gおよびγ-グリシドキシプロピルトリエトキシシラン0.22gを加えて開放系室温下にて1時間攪拌した。次に、攪拌後の混合物と赤色蛍光体KEu2.5(WO6.2520gとを乳鉢に移し、よくすり混ぜた後、70℃のオーブンで2時間加熱後、さらに120℃のオーブンで2時間加熱し、表面改質したKEu2.5(WO6.25を得た。次に、表面改質を施したKEu2.5(WO6.2510gに、水/ジメチルスルホキシド=1/1の混合溶液(300g)で溶解されたポリビニルアルコール30gを加え、分散機により攪拌することにより、赤色蛍光変換層形成用塗液を作製した。作製した赤色蛍光変換層形成用塗液を、スクリーン印刷法により、前記ガラス基板上に3mm幅で所望の位置に塗布した。引き続き真空オーブン(200℃、10mmHgの条件)で4時間加熱乾燥することにより、ガラス基板上に厚さ70μmの赤色蛍光変換層を形成した。
Subsequently, a red fluorescence conversion layer, a green fluorescence conversion layer, and a blue fluorescence conversion layer were formed on a glass substrate having a thickness of 0.7 mm.
The red fluorescence conversion layer was formed by first adding 15 g of ethanol and 0.22 g of γ-glycidoxypropyltriethoxysilane to 0.16 g of Aerosil (trade name, manufactured by Nippon Aerosil Co., Ltd.) having an average particle diameter of 5 nm at an open system room temperature For 1 hour. Next, the mixture after stirring and 20 g of red phosphor K 5 Eu 2.5 (WO 4 ) 6.25 were transferred to a mortar, thoroughly mixed, heated in an oven at 70 ° C. for 2 hours, and further heated to 120 ° C. Heated in an oven for 2 hours to obtain surface-modified K 5 Eu 2.5 (WO 4 ) 6.25 . Next, 30 g of polyvinyl alcohol dissolved in a mixed solution (300 g) of water / dimethyl sulfoxide = 1/1 was added to 10 g of K 5 Eu 2.5 (WO 4 ) 6.25 subjected to surface modification, and dispersed. By stirring with a machine, a red fluorescent conversion layer-forming coating solution was prepared. The prepared red fluorescent conversion layer forming coating solution was applied to a desired position with a width of 3 mm on the glass substrate by a screen printing method. Subsequently, a red fluorescence conversion layer having a thickness of 70 μm was formed on the glass substrate by heating and drying in a vacuum oven (conditions of 200 ° C. and 10 mmHg) for 4 hours.
 緑色蛍光変換層の形成は、まず、平均粒径5nmのエアロジル(日本エアロジル社製商品名)0.16gにエタノール15gおよびγ-グリシドキシプロピルトリエトキシシラン0.22gを加えて開放系室温下にて1時間攪拌した。次に、攪拌後の混合物と緑色蛍光体BaSiO:Eu2+20gとを乳鉢に移し、よくすり混ぜた後、70℃のオーブンで2時間加熱後、さらに120℃のオーブンで2時間加熱し、表面改質したBaSiO:Eu2+を得た。次に、表面改質を施したBaSiO:Eu2+10gに、水/ジメチルスルホキシド=1/1の混合溶液(300g)で溶解されたポリビニルアルコール30gを加え、分散機により攪拌することにより、緑色蛍光変換層形成用塗液を作製した。作製した緑色蛍光変換層形成用塗液を、スクリーン印刷法により、前記ガラス基板上に3mm幅で所望の位置に塗布した。引き続き真空オーブン(200℃、10mmHgの条件)で4時間加熱乾燥することにより、ガラス基板上に厚さ70μmの緑色蛍光変換層を形成した。 The green fluorescence conversion layer is formed by first adding 15 g of ethanol and 0.22 g of γ-glycidoxypropyltriethoxysilane to 0.16 g of aerosil (trade name, manufactured by Nippon Aerosil Co., Ltd.) having an average particle diameter of 5 nm at an open room temperature. For 1 hour. Next, the mixture after stirring and the green phosphor Ba 2 SiO 4 : Eu 2+ 20 g were transferred to a mortar, mixed well, heated in an oven at 70 ° C. for 2 hours, and further heated in an oven at 120 ° C. for 2 hours. The surface modified Ba 2 SiO 4 : Eu 2+ was obtained. Next, 30 g of polyvinyl alcohol dissolved in a mixed solution (300 g) of water / dimethyl sulfoxide = 1/1 is added to 10 g of Ba 2 SiO 4 : Eu 2+ subjected to surface modification, and the mixture is stirred by a disperser. A coating liquid for forming a green fluorescence conversion layer was prepared. The prepared green fluorescent conversion layer forming coating solution was applied to a desired position with a width of 3 mm on the glass substrate by a screen printing method. Subsequently, a green fluorescent conversion layer having a thickness of 70 μm was formed on the glass substrate by heating and drying in a vacuum oven (200 ° C., 10 mmHg conditions) for 4 hours.
 青色蛍光変換層の形成は、まず、平均粒径5nmのエアロジル(日本エアロジル社製商品名)0.16gにエタノール15gおよびγ-グリシドキシプロピルトリエトキシシラン0.22gを加えて開放系室温下にて1時間攪拌した。次に、攪拌後の混合物と青色蛍光体BaMgAl1017:Eu2+20gとを乳鉢に移し、よくすり混ぜた後、70℃のオーブンで2時間加熱後、さらに120℃のオーブンで2時間加熱し、表面改質したBaMgAl1017:Eu2+を得た。次に、表面改質を施したBaMgAl1017:Eu2+10gに、水/ジメチルスルホキシド=1/1の混合溶液(300g)で溶解されたポリビニルアルコール30gを加え、分散機により攪拌することにより、青色蛍光変換層形成用塗液を作製した。作製した青色蛍光変換層形成用塗液を、スクリーン印刷法により、前記ガラス基板上に3mm幅で所望の位置に塗布した。引き続き真空オーブン(200℃、10mmHgの条件)で4時間加熱乾燥することにより、ガラス基板上に厚さ70μmの青色蛍光変換層を形成した。 The blue fluorescent conversion layer is formed by first adding 15 g of ethanol and 0.22 g of γ-glycidoxypropyltriethoxysilane to 0.16 g of aerosil (trade name, manufactured by Nippon Aerosil Co., Ltd.) having an average particle size of 5 nm at an open room temperature. For 1 hour. Next, the mixture after stirring and the blue phosphor BaMgAl 10 O 17 : Eu 2+ 20 g were transferred to a mortar, mixed well, heated in an oven at 70 ° C. for 2 hours, and further heated in an oven at 120 ° C. for 2 hours. The surface modified BaMgAl 10 O 17 : Eu 2+ was obtained. Next, 30 g of polyvinyl alcohol dissolved in a mixed solution of water / dimethyl sulfoxide = 1/1 (300 g) was added to 10 g of the surface-modified BaMgAl 10 O 17 : Eu 2+ and stirred by a disperser. A blue fluorescent conversion layer forming coating solution was prepared. The produced blue fluorescent conversion layer forming coating solution was applied to a desired position with a width of 3 mm on the glass substrate by a screen printing method. Subsequently, a blue fluorescent conversion layer having a thickness of 70 μm was formed on the glass substrate by heating and drying in a vacuum oven (200 ° C., 10 mmHg) for 4 hours.
 次に、上述のように作製した有機EL発光部基板と蛍光変換層基板とを、表示部の外に形成されている位置合わせマーカーにより位置合わせを行った。尚、この際、事前に蛍光変換層基板には、熱硬化樹脂が塗布されており、熱硬化樹脂を介して両基板を密着し、90℃、2時間加熱することで硬化を行った。また、この両基板の貼り合わせ工程は、有機EL発光部の水分による劣化を防止する目的でドライエアー環境下(水分量:-80℃)で行った。
 最後に、周辺に形成している端子を外部電源に接続することで有機発光素子を作製した。
Next, the organic EL light emitting unit substrate and the fluorescence conversion layer substrate produced as described above were aligned using an alignment marker formed outside the display unit. At this time, a thermosetting resin was applied to the fluorescence conversion layer substrate in advance, and both substrates were brought into close contact with each other through the thermosetting resin, and cured by heating at 90 ° C. for 2 hours. In addition, the bonding process of both the substrates was performed in a dry air environment (water content: −80 ° C.) for the purpose of preventing the organic EL light emitting portion from being deteriorated by water.
Finally, an organic light emitting device was manufactured by connecting terminals formed in the periphery to an external power source.
 作製した有機発光素子に、外部電源により所望の電流を所望のストライプ状電極に印加することで所望の良好な画像を得る事ができた。この結果より、本発明の一態様である有機発光素子によれば、開発途上の青色燐光材料などの青色発光材料を使用することなく、既存の赤色燐光発光材料を使用することにより、所望の良好な画素を得ることができることが確認された。 A desired good image could be obtained by applying a desired current to the desired stripe-shaped electrode from an external power source to the produced organic light emitting device. From this result, according to the organic light-emitting element which is one embodiment of the present invention, it is possible to obtain the desired good by using the existing red phosphorescent light emitting material without using the blue light emitting material such as the blue phosphorescent material under development. It was confirmed that a simple pixel can be obtained.
(実施例2)
 図1に示す構成の有機発光素子20を作製した。
 実施例2の有機発光素子が実施例1と異なる部分は、波長変換層として図5に示す波長変換層18Bを使用した点である。
 波長変換層の形成は、有機EL発光部の第2電極上に、SHG活性な半導体層であるZnO層50nmと、SHG不活性な誘電体層であるTiO層25nmとをArイオンビームスパッタ法により交互に計10層積層形成することにより行った。
 作製した有機発光素子に、外部電源により所望の電流を所望のストライプ状電極に印加することで所望の良好な画像を得る事ができた。この結果より、本実施例の有機発光素子によれば、開発途上の青色燐光材料などの青色発光材料を使用することなく、既存の緑色燐光発光材料を使用することにより、所望の良好な画素を得ることができることが確認された。
(Example 2)
An organic light emitting device 20 having the configuration shown in FIG. 1 was produced.
The organic light emitting device of Example 2 is different from Example 1 in that the wavelength conversion layer 18B shown in FIG. 5 is used as the wavelength conversion layer.
The wavelength conversion layer is formed by using an Ar ion beam sputtering method on the second electrode of the organic EL light emitting portion, a ZnO layer 50 nm as an SHG active semiconductor layer and a TiO 2 layer 25 nm as an SHG inactive dielectric layer. By alternately forming a total of 10 layers.
A desired good image could be obtained by applying a desired current to the desired stripe electrode from an external power source to the produced organic light emitting device. As a result, according to the organic light emitting device of this example, a desired good pixel can be obtained by using an existing green phosphorescent light emitting material without using a blue light emitting material such as a developing blue phosphorescent material. It was confirmed that it can be obtained.
(実施例3)
 図7に示す構成の有機発光素子30を作製した。
 実施例3の有機発光素子が実施例1と異なる部分は、有機EL発光部の発光層のホスト材料に1,3,5-トリス[4-(ジフェニルアミノ)フェニル]ベンゼン(TDAPB)を、発光材料(ドーパント)には緑色燐光発光するfac-トリス(2―フェニルピリジン)イリジウム(III)[Ir(ppy)]を用いた点、マイクロキャビティ効果は発光ピークを580nmに調整した点、及び、波長変換層の出射側の面上に光反射性層(厚さ0.05μm、透過率5%)を蒸着法により形成し、有機EL発光部の第2電極(半透過陰極)と対として、波長変換層にて変換した光(波長290nm)のマイクロキャビティ効果を備えた点である。
 作製した有機発光素子に、外部電源により所望の電流を所望のストライプ状電極に印加することで所望の良好な画像を得る事ができた。この結果より、本発明の一態様である有機発光素子によれば、開発途上の青色燐光材料などの青色発光材料を使用することなく、既存の赤色燐光発光材料を使用することにより、所望の良好な画素を得ることができることが確認された。また、波長変換された光のマイクロキャビティ効果により、強度の強い光が蛍光変換層に照射されるため、実施例1より5%輝度が増加した。
(Example 3)
An organic light emitting device 30 having the configuration shown in FIG. 7 was produced.
The organic light emitting device of Example 3 is different from Example 1 in that 1,3,5-tris [4- (diphenylamino) phenyl] benzene (TDAPB) is emitted as the host material of the light emitting layer of the organic EL light emitting part. As the material (dopant), fac-tris (2-phenylpyridine) iridium (III) [Ir (ppy) 3 ] that emits green phosphorescence was used, the microcavity effect was that the emission peak was adjusted to 580 nm, and A light reflective layer (thickness 0.05 μm, transmittance 5%) is formed on the emission side surface of the wavelength conversion layer by vapor deposition, and is paired with the second electrode (semi-transmissive cathode) of the organic EL light emitting unit. This is a point provided with a microcavity effect of light (wavelength 290 nm) converted by the wavelength conversion layer.
A desired good image could be obtained by applying a desired current to the desired stripe electrode from an external power source to the produced organic light emitting device. From this result, according to the organic light-emitting element which is one embodiment of the present invention, it is possible to obtain the desired good by using the existing red phosphorescent light emitting material without using the blue light emitting material such as the blue phosphorescent material under development. It was confirmed that a simple pixel can be obtained. Further, due to the microcavity effect of the wavelength-converted light, the fluorescence conversion layer was irradiated with strong light, so that the luminance increased by 5% compared to Example 1.
(実施例4)
 図9に示す構成の有機発光素子50を作製した。
 実施例4の有機発光素子が実施例1と異なる部分は、3色の蛍光変換層を使用せず、緑色蛍光変換層のみを設けた点である。また、実施例4の有機発光素子が実施例1と異なる部分は、実施例3と同様にして、波長変換層の出射側にも光反射性層(厚さ0.1μm、透過率1%)を設け、有機EL発光部の第2電極(半透過陰極)と対として、波長変換層にて変換した光(波長340nm)のマイクロキャビティ効果を備えた点である。
 作製した有機発光素子に、外部電源により第1電極及び第2電極に印加することにより、波長540nm、半値幅3nmの指向性の大きい緑色光が得られた。この結果より、本発明の一態様である有機発光素子によれば、開発途上の青色燐光材料などの青色発光材料を使用することなく、既存の燐光発光材料を使用することにより、緑色の指向性の高い光を得ることができた。また、実施例4で作成した有機発光素子を用いて、図10に示すような簡易的有機レーザポインターを得ることもできた。
Example 4
An organic light emitting device 50 having the configuration shown in FIG. 9 was produced.
The organic light emitting device of Example 4 is different from Example 1 in that the three-color fluorescence conversion layer is not used and only the green fluorescence conversion layer is provided. Further, the organic light emitting device of Example 4 is different from Example 1 in the same manner as in Example 3. The light reflective layer (thickness 0.1 μm, transmittance 1%) is also provided on the emission side of the wavelength conversion layer. And having a microcavity effect of light (wavelength 340 nm) converted by the wavelength conversion layer as a pair with the second electrode (semi-transmissive cathode) of the organic EL light emitting unit.
By applying the produced organic light emitting device to the first electrode and the second electrode from an external power source, green light having a large directivity having a wavelength of 540 nm and a half width of 3 nm was obtained. As a result, according to the organic light-emitting element which is one embodiment of the present invention, green directivity can be obtained by using an existing phosphorescent light-emitting material without using a blue light-emitting material such as a blue phosphorescent material under development. High light was able to be obtained. In addition, a simple organic laser pointer as shown in FIG. 10 could be obtained using the organic light emitting device prepared in Example 4.
 高効率(高輝度)の有機発光素子、有機発光装置および色変換方法を提供することができる。 High-efficiency (high brightness) organic light-emitting elements, organic light-emitting devices, and color conversion methods can be provided.
 1…基板、2…TFT回路、3…層間絶縁膜、4…平坦化膜、5…無機封止膜、6…封止材、7…ブラックマトリックス、8R…赤色蛍光変換層、8G…緑色蛍光変換層、8B…青色蛍光変換層、9…封止基板、10…有機EL発光部(光源)、11…反射電極、12…第1電極(反射性電極)、13…正孔輸送層、14…発光層、15…電子輸送層、16…第2電極(反射性電極)、17…有機EL層(有機層)、18…波長変換層、19…エッジカバー、20、20B、30、40、50…有機発光素子。 DESCRIPTION OF SYMBOLS 1 ... Board | substrate, 2 ... TFT circuit, 3 ... Interlayer insulating film, 4 ... Planarization film, 5 ... Inorganic sealing film, 6 ... Sealing material, 7 ... Black matrix, 8R ... Red fluorescence conversion layer, 8G ... Green fluorescence Conversion layer, 8B ... Blue fluorescence conversion layer, 9 ... Sealing substrate, 10 ... Organic EL light emitting part (light source), 11 ... Reflective electrode, 12 ... First electrode (reflective electrode), 13 ... Hole transport layer, 14 Luminescent layer, 15 electron transport layer, 16 second electrode (reflective electrode), 17 organic EL layer (organic layer), 18 wavelength conversion layer, 19 edge cover, 20, 20B, 30, 40, 50: Organic light emitting device.

Claims (18)

  1.  発光層を含む少なくとも一層の有機層と、前記有機層を狭持する一対の電極間とを含む有機EL発光部と、
     この有機EL発光部の光を取り出す面側に配され、入射された光を蛍光変換する蛍光変換層と、
     前記有機EL発光部と前記蛍光変換層との間に配され、前記有機EL発光部より発光された光の波長を変換して前記蛍光変換層側へと射出する波長変換層とを有する有機発光素子。
    An organic EL light emitting unit including at least one organic layer including a light emitting layer, and a pair of electrodes sandwiching the organic layer;
    A fluorescence conversion layer that is disposed on the surface side from which light from the organic EL light emitting unit is extracted and converts incident light to fluorescence;
    Organic light emission having a wavelength conversion layer that is disposed between the organic EL light emitting unit and the fluorescence conversion layer, converts a wavelength of light emitted from the organic EL light emission unit, and emits the light to the fluorescence conversion layer side element.
  2.  前記電極が反射性電極であって、この一対の反射性電極によって定められる反射性界面間の光学膜厚が、前記有機EL発光部より放出された光のうち特定波長の光の強度を増強するように設定される請求項1に記載の有機発光素子。 The electrode is a reflective electrode, and the optical film thickness between the reflective interfaces defined by the pair of reflective electrodes enhances the intensity of light of a specific wavelength among the light emitted from the organic EL light emitting unit. The organic light emitting device according to claim 1, which is set as follows.
  3.  前記波長変換層は、前記有機EL発光部より発光された光の波長を2分の1に変換する請求項1に記載の有機発光素子。 The organic light-emitting element according to claim 1, wherein the wavelength conversion layer converts the wavelength of light emitted from the organic EL light-emitting unit into one half.
  4.  前記波長変換層は、分極方向が交互に反転している複数層が積層されて構成されてなる請求項1に記載の有機発光素子。 The organic light-emitting element according to claim 1, wherein the wavelength conversion layer is formed by laminating a plurality of layers whose polarization directions are alternately reversed.
  5.  前記波長変換層は、半導体層と誘電体層とが交互に積層されて構成されてなる請求項1に記載の有機発光素子。 The organic light-emitting element according to claim 1, wherein the wavelength conversion layer is configured by alternately laminating semiconductor layers and dielectric layers.
  6.  前記波長変換層を構成する複数層の各層が、単一分極化された誘電体材料より構成されてなる請求項4に記載の有機発光素子。 The organic light-emitting device according to claim 4, wherein each of a plurality of layers constituting the wavelength conversion layer is made of a single-polarized dielectric material.
  7.  前記誘電体材料が、強誘電体材料、ガラス材料、及びポリマー材料からなる群より選択された材料よりなる請求項6に記載の有機発光素子。 The organic light emitting device according to claim 6, wherein the dielectric material is made of a material selected from the group consisting of a ferroelectric material, a glass material, and a polymer material.
  8.  前記有機EL発光部が、赤色領域の光を発光する請求項1に記載の有機発光素子。 The organic light-emitting device according to claim 1, wherein the organic EL light-emitting unit emits light in a red region.
  9.  前記有機EL発光部が、緑色領域の光を発光する請求項1に記載の有機発光素子。 The organic light-emitting device according to claim 1, wherein the organic EL light-emitting unit emits light in a green region.
  10.  前記波長変換層で変換された光の取り出し面側に光反射性層をさらに有し、
     この光反射性層と前記有機EL発光部の光を取り出す面側の反射性電極によって定められる反射性界面の光学膜厚が、前記波長変換層において波長変換した光のうち特定波長の光の強度を増強するように設定されてなる請求項2に記載の有機発光素子。
    A light reflective layer is further provided on the light extraction surface side of the light converted by the wavelength conversion layer,
    The optical film thickness of the reflective interface determined by the reflective electrode on the surface side from which the light from the light emitting layer and the organic EL light emitting unit is extracted is the intensity of light of a specific wavelength among the light converted in wavelength in the wavelength converting layer. The organic light-emitting device according to claim 2, wherein the organic light-emitting device is set so as to enhance the resistance.
  11.  前記波長変換層は、前記有機EL発光部より発光された光を紫外領域~青色領域の光に変換し、前記蛍光変換層が前記波長変換層で変換された光を緑色領域の光または赤色領域の光に変換する請求項1に記載の有機発光素子。 The wavelength conversion layer converts light emitted from the organic EL light emitting unit into light in an ultraviolet region to a blue region, and converts the light converted by the wavelength conversion layer into light in a green region or red region. The organic light-emitting device according to claim 1, which converts the light into the light of
  12.  前記蛍光変換層が少なくとも二種の色変換が可能であり、その一つが前記波長変換層で変換された光を緑色領域の光に変換する色変換であり、かつ他の一つが前記波長変換層で変換された光を赤色領域の光に変換する色変換であり、有機発光素子は多色発光素子である請求項1に記載の有機発光素子。 The fluorescence conversion layer is capable of at least two types of color conversion, one of which is color conversion for converting light converted by the wavelength conversion layer into light of a green region, and the other is the wavelength conversion layer. The organic light emitting device according to claim 1, wherein the organic light emitting device is a multicolor light emitting device.
  13.  前記蛍光変換層で変換した光を出射する側に、さらにカラーフィルターを有する請求項1に記載の有機発光素子。 The organic light emitting device according to claim 1, further comprising a color filter on a side of emitting the light converted by the fluorescence conversion layer.
  14.  有機発光装置において、前記有機EL発光部を駆動させる駆動ユニットと共に備えられるよう構成された請求項1に記載の有機発光素子。 The organic light-emitting device according to claim 1, wherein the organic light-emitting device is provided with a drive unit that drives the organic EL light-emitting unit.
  15.  発光層を含む少なくとも一層の有機層と、前記有機層を狭持する一対の電極とを含む有機EL発光部から光を発し、
     前記有機EL発光部と入射された光を蛍光変換する蛍光変換層との間に配置された波長変換層により、前記有機EL発光部より発光された光の波長を変換して前記蛍光変換層側へと射出し、
     前記波長変換層により変換された光を前記蛍光変換層により蛍光変換して、可視光を発生する色変換方法。
    Light is emitted from an organic EL light emitting unit including at least one organic layer including a light emitting layer and a pair of electrodes sandwiching the organic layer,
    The wavelength conversion layer disposed between the organic EL light emitting unit and the fluorescence conversion layer that converts incident light to fluorescence converts the wavelength of the light emitted from the organic EL light emitting unit to the fluorescence conversion layer side. Shoot into and
    A color conversion method for generating visible light by fluorescently converting light converted by the wavelength conversion layer by the fluorescence conversion layer.
  16.  前記波長変換層は、前記有機EL発光部より発光された光の波長を2分の1に変換する請求項15に記載の色変換方法。 The color conversion method according to claim 15, wherein the wavelength conversion layer converts a wavelength of light emitted from the organic EL light emitting unit into a half.
  17.  前記波長変換層は、分極方向が交互に反転している複数層が積層されて構成されてなる積層体である請求項15に記載の色変換方法。 The color conversion method according to claim 15, wherein the wavelength conversion layer is a stacked body formed by stacking a plurality of layers whose polarization directions are alternately reversed.
  18.  前記波長変換層は、半導体層と誘電体層とが交互に積層されて構成されてなる積層体である請求項15に記載の色変換方法。 The color conversion method according to claim 15, wherein the wavelength conversion layer is a stacked body formed by alternately stacking semiconductor layers and dielectric layers.
PCT/JP2011/064392 2010-08-04 2011-06-23 Organic light emitting element, organic light emitting device, and color conversion method WO2012017751A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-175521 2010-08-04
JP2010175521 2010-08-04

Publications (1)

Publication Number Publication Date
WO2012017751A1 true WO2012017751A1 (en) 2012-02-09

Family

ID=45559264

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/064392 WO2012017751A1 (en) 2010-08-04 2011-06-23 Organic light emitting element, organic light emitting device, and color conversion method

Country Status (1)

Country Link
WO (1) WO2012017751A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020068380A (en) * 2018-10-23 2020-04-30 ユニバーサル ディスプレイ コーポレイション Deep homo (highest occupied molecular orbital) emitter device structures
CN111092101A (en) * 2018-10-24 2020-05-01 群创光电股份有限公司 Display device
CN111244141A (en) * 2014-05-30 2020-06-05 株式会社半导体能源研究所 Light-emitting device, display device, and electronic apparatus
CN112057745A (en) * 2019-06-11 2020-12-11 乐金显示有限公司 Electronic device for skin management or skin treatment

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001337355A (en) * 2000-05-26 2001-12-07 Japan Science & Technology Corp Optical wavelength conversion element and optical wavelength conversion device
JP2003307758A (en) * 2002-03-19 2003-10-31 Hc Photonics Corp Method of patterning and fabricating poled dielectric microstructure within dielectric material
JP2006147598A (en) * 1999-11-22 2006-06-08 Sony Corp Display element
WO2006100957A1 (en) * 2005-03-22 2006-09-28 Idemitsu Kosan Co., Ltd. Color conversion substrate, method for manufacturing same and light-emitting device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006147598A (en) * 1999-11-22 2006-06-08 Sony Corp Display element
JP2001337355A (en) * 2000-05-26 2001-12-07 Japan Science & Technology Corp Optical wavelength conversion element and optical wavelength conversion device
JP2003307758A (en) * 2002-03-19 2003-10-31 Hc Photonics Corp Method of patterning and fabricating poled dielectric microstructure within dielectric material
WO2006100957A1 (en) * 2005-03-22 2006-09-28 Idemitsu Kosan Co., Ltd. Color conversion substrate, method for manufacturing same and light-emitting device

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111244141A (en) * 2014-05-30 2020-06-05 株式会社半导体能源研究所 Light-emitting device, display device, and electronic apparatus
CN111244141B (en) * 2014-05-30 2023-10-13 株式会社半导体能源研究所 Light emitting device, display device, and electronic apparatus
JP2020068380A (en) * 2018-10-23 2020-04-30 ユニバーサル ディスプレイ コーポレイション Deep homo (highest occupied molecular orbital) emitter device structures
JP7381286B2 (en) 2018-10-23 2023-11-15 ユニバーサル ディスプレイ コーポレイション Deep HOMO (highest occupied molecular orbital) emitter device structure
CN111092101A (en) * 2018-10-24 2020-05-01 群创光电股份有限公司 Display device
CN111092101B (en) * 2018-10-24 2022-10-04 群创光电股份有限公司 Display device
CN112057745A (en) * 2019-06-11 2020-12-11 乐金显示有限公司 Electronic device for skin management or skin treatment
US11311743B2 (en) 2019-06-11 2022-04-26 Lg Display Co., Ltd. Electronic device for skin management or skin treatments

Similar Documents

Publication Publication Date Title
JP5538519B2 (en) Light emitting element, display and display device
WO2012108384A1 (en) Fluorescent substrate, and display device and lighting device using same
US8908125B2 (en) Fluorescent substrate and method for producing the same, and display device
US9099409B2 (en) Organic electroluminescent display device, electronic apparatus including the same, and method for producing organic electroluminescent display device
WO2012090786A1 (en) Light-emitting device, display device, and illumination device
WO2013021941A1 (en) Phosphor substrate, display device, and electronic device
WO2012026209A1 (en) Organic light emitting device and antistatic method for same
WO2013039072A1 (en) Light-emitting device, display apparatus, illumination apparatus, and electricity-generating apparatus
WO2013111696A1 (en) Fluorescent material substrate, display apparatus, and electronic apparatus
WO2013137052A1 (en) Fluorescent substrate and display device provided with same
WO2012081568A1 (en) Fluorescent substrate, display device, and lighting device
JP5858367B2 (en) ORGANIC EL DISPLAY UNIT, ORGANIC EL DISPLAY DEVICE, AND ORGANIC EL DISPLAY UNIT MANUFACTURING METHOD
WO2016204166A1 (en) Wavelength conversion-type light emission device, and display device, illumination device, and electronic instrument provided with same
WO2012121372A1 (en) Display element and electronic device
WO2011145418A1 (en) Phosphor display device, and phosphor layer
JP2016218151A (en) Wavelength conversion substrate, light-emitting device and display device comprising the same, lighting device, and electronic apparatus
WO2012043611A1 (en) Organic el display device and method for manufacturing same
JP2017037121A (en) Color conversion substrate and display device
JP2013109907A (en) Phosphor substrate and display device
WO2013133139A1 (en) Wavelength conversion substrate and display device using same, electronic apparatus, and wavelength conversion substrate manufacturing method
JP2016143658A (en) Light emitting element and display device
WO2011102024A1 (en) Display device
WO2012043172A1 (en) Phosphor substrate, and display device and lighting device each equipped with same
JP2013191464A (en) Organic electroluminescent element and manufacturing method therefor, liquid crystal display device
WO2013039027A1 (en) Display apparatus, electronic device, and illumination apparatus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11814381

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11814381

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP