WO2012017575A1 - Air conditioner - Google Patents

Air conditioner Download PDF

Info

Publication number
WO2012017575A1
WO2012017575A1 PCT/JP2011/002005 JP2011002005W WO2012017575A1 WO 2012017575 A1 WO2012017575 A1 WO 2012017575A1 JP 2011002005 W JP2011002005 W JP 2011002005W WO 2012017575 A1 WO2012017575 A1 WO 2012017575A1
Authority
WO
WIPO (PCT)
Prior art keywords
noise
fan
control
rotational speed
sound
Prior art date
Application number
PCT/JP2011/002005
Other languages
French (fr)
Japanese (ja)
Inventor
聡 道籏
山田 彰二
智哉 福井
健一 迫田
加賀 邦彦
森 剛
仁一 鈴木
輝 高守
琢也 向山
代田 光宏
谷川 喜則
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to CN201180037968.6A priority Critical patent/CN103052851B/en
Priority to EP11814215.7A priority patent/EP2602566A4/en
Priority to JP2012527534A priority patent/JP5430763B2/en
Publication of WO2012017575A1 publication Critical patent/WO2012017575A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/0007Indoor units, e.g. fan coil units
    • F24F1/0018Indoor units, e.g. fan coil units characterised by fans
    • F24F1/0029Axial fans
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/0007Indoor units, e.g. fan coil units
    • F24F1/0018Indoor units, e.g. fan coil units characterised by fans
    • F24F1/0033Indoor units, e.g. fan coil units characterised by fans having two or more fans
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F13/00Details common to, or for air-conditioning, air-humidification, ventilation or use of air currents for screening
    • F24F13/02Ducting arrangements
    • F24F13/06Outlets for directing or distributing air into rooms or spaces, e.g. ceiling air diffuser
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F13/00Details common to, or for air-conditioning, air-humidification, ventilation or use of air currents for screening
    • F24F13/24Means for preventing or suppressing noise
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F13/00Details common to, or for air-conditioning, air-humidification, ventilation or use of air currents for screening
    • F24F13/24Means for preventing or suppressing noise
    • F24F2013/247Active noise-suppression

Definitions

  • the present invention relates to an air conditioner in which a fan and a heat exchanger are housed in a casing, and relates to an air conditioner including a silencer unit (speaker and microphone) for silencing sound generated by the fan. is there.
  • an air conditioner in which a fan and a heat exchanger are housed in a casing.
  • an air conditioner comprising a main body casing having an air inlet and an air outlet, and a heat exchanger disposed in the main body casing, wherein the air outlet includes a plurality of small propellers.
  • an air conditioner in which a fan unit having a fan arranged in the width direction of the air outlet is disposed” (see, for example, Patent Document 1).
  • This air conditioner is provided with a fan unit at the air outlet to facilitate airflow direction control, and a fan unit having the same configuration is also provided at the suction port to improve the heat exchanger performance due to an increase in the air volume. I am doing so.
  • the air conditioner like patent document 1 is provided with the heat exchanger in the upstream of the fan unit (blower). For this reason, since the movable fan unit is provided on the air outlet side, the air flow is changed due to the movement of the fan and the instability of the flow due to the asymmetric suction causes a decrease in the air volume and a reverse flow. Furthermore, the air whose flow is disturbed flows into the fan unit. Therefore, in an air conditioner like Patent Document 1, the flow of air flowing into the outer peripheral part of the wing part (propeller) of the fan unit whose flow rate is high is disturbed, and the fan unit itself becomes a noise source (noise deterioration). There was a problem that
  • Type or mixed flow type blower and air provided on the downstream side of the blower in the casing and upstream of the blower outlet, and a heat exchanger for exchanging heat between the air blown from the blower and the refrigerant
  • the present invention provides an air conditioner that can further suppress noise by providing a silencer unit (speaker and microphone) at a suitable position of an air conditioner equipped with an axial flow type or mixed flow type blower (fan).
  • a silencer unit speaker and microphone
  • the aim is to get a chance.
  • the air conditioner according to the present invention has a casing in which an inlet is formed in the upper part and an outlet is formed in the lower part of the front surface, and a plurality of axial flow types provided in parallel on the downstream side of the inlet in the casing or A mixed flow type fan, a heat exchanger provided downstream of the fan in the casing and upstream of the air outlet, and heat exchanged between the air blown out from the fan and the refrigerant and radiated from the fan.
  • An air conditioner comprising: a control sound generation device that outputs a control sound to a control sound output device; and a control device that individually controls the rotational speed for a plurality of fans. Radiated from Based on the silencing effect when causing interference control tone to sound, and controls the
  • the air conditioner according to the present invention has a casing in which a suction port is formed in the upper part and a blower outlet is formed in the lower part of the front surface, and a plurality of axial flows provided in parallel on the downstream side of the suction port in the casing.
  • Type or mixed flow type fan a heat exchanger provided on the downstream side of the fan in the casing and upstream of the outlet, and for exchanging heat between the air blown from the fan and the refrigerant, and radiation from the fan
  • the control sound output device that outputs the control sound that reduces the generated noise
  • the noise / silence effect detection device that detects the noise and detects the silencing effect of the control sound
  • An air conditioner comprising: a control sound generating device that outputs a control sound to a control sound output device; and a control device that individually controls the rotational speed of a plurality of fans. Against radiated noise Based on the silencing effect when caused to interfere the control sound Te, and controls the rotational speed of the plurality of fans.
  • the air conditioner according to the present invention has a casing in which a suction port is formed in the upper part and a blower outlet is formed in the lower part of the front surface, and a plurality of axial flows provided in parallel on the downstream side of the suction port in the casing.
  • Type or mixed flow type fan a heat exchanger provided on the downstream side of the fan in the casing and upstream of the outlet, and for exchanging heat between the air blown from the fan and the refrigerant, and radiation from the fan Detection device for detecting generated noise, control sound output device for outputting control sound for reducing noise, silence effect detection device for detecting silence effect by control sound, detection of noise detection device and silence effect detection device Based on the result, a control sound generating device that outputs a control sound to the control sound output device, and a control device that individually controls the rotational speed for a plurality of fans, the control devices are arranged at both ends of the casing. Fan Rotational speed control to increase the rotational speed, and is performed at least one of the rotational speed control of the rotational speed control to decrease the rotational speed of the fan than fan disposed at opposite ends of the casing.
  • the air conditioner according to the present invention has a casing in which a suction port is formed in the upper part and a blower outlet is formed in the lower part of the front surface, and a plurality of axial flows provided in parallel on the downstream side of the suction port in the casing.
  • Type or mixed flow type fan a heat exchanger provided on the downstream side of the fan in the casing and upstream of the outlet, and for exchanging heat between the air blown from the fan and the refrigerant, and radiation from the fan
  • the control sound output device that outputs the control sound that reduces the generated noise
  • the noise / silence effect detection device that detects the noise and detects the silencing effect of the control sound
  • the noise / silence effect detection device A control sound generation device that outputs a control sound to the control sound output device, and a control device that individually controls the rotational speed of the plurality of fans, and the control device includes fans disposed at both ends of the casing. Increase rotation speed That the rotation speed control, and is performed at least one of the rotational speed control of the rotational speed control to decrease the rotational speed of the fan than fan disposed at opposite ends of the casing.
  • the air conditioner according to the present invention includes a “noise reduction device including a noise detection device, a control sound output device, a noise reduction effect detection device, and a control sound generation device”, or “a control sound output device, a noise / noise reduction effect detection device, and A muffler mechanism including a control sound generator is provided. Furthermore, the air conditioner according to the present invention includes a plurality of blower fans and a control device that individually controls the rotational speed of the blower fans. For this reason, the noise of an air conditioner can be reduced by controlling the rotation speed of each blower fan based on the silencing effect.
  • FIG. 20 is a cross-sectional view taken along the line MM in FIG.
  • FIG. 10 It is a block diagram which shows the control apparatus which concerns on Embodiment 10 of this invention. It is a front view which shows the indoor unit which concerns on Embodiment 11 of this invention. It is a front view which shows another example of the indoor unit which concerns on Embodiment 11 of this invention. It is a left view of the indoor unit shown in FIG. It is a front view which shows the indoor unit which concerns on Embodiment 12 of this invention. It is a front view which shows another example of the indoor unit which concerns on Embodiment 12 of this invention. It is a left view of the indoor unit shown in FIG. It is a front view which shows another example of the indoor unit which concerns on Embodiment 12 of this invention.
  • each unit constituting the indoor unit of the air conditioner will be described.
  • the second and subsequent embodiments the detailed configuration of each unit or another example will be described.
  • the present invention will be described by taking a wall-mounted indoor unit as an example.
  • the shape and size of each unit (or a constituent member of each unit) may be partially different.
  • FIG. 1 is a longitudinal sectional view showing an indoor unit (referred to as an indoor unit 100) of an air conditioner according to Embodiment 1 of the present invention.
  • FIG. 2 is an external perspective view showing the indoor unit.
  • the left side in FIG. 1 will be described as the front side of the indoor unit 100.
  • the configuration of the indoor unit 100 will be described with reference to FIGS. 1 and 2.
  • the indoor unit 100 supplies conditioned air to an air-conditioning target area such as a room by using a refrigeration cycle that circulates a refrigerant.
  • the indoor unit 100 is mainly accommodated in a casing 1 in which a suction port 2 for sucking indoor air into the interior and a blower outlet 3 for supplying conditioned air to an air-conditioning target area are formed.
  • the fan 20 sucks room air from the suction port 2 and blows out the conditioned air from the blower outlet 3 and the air passage from the fan 20 to the blower outlet 3, and exchanges heat between the refrigerant and the room air for conditioned air.
  • a heat exchanger 50 for producing And the air path (arrow Z) is connected in the casing 1 by these components.
  • the suction port 2 is formed in the upper part of the casing 1.
  • the blower outlet 3 has an opening formed in the lower part of the casing 1 (more specifically, on the lower side of the front part of the casing 1).
  • the fan 20 is disposed on the downstream side of the suction port 2 and on the upstream side of the heat exchanger 50, and is configured by, for example, an axial flow fan or a diagonal flow fan.
  • the indoor unit 100 includes a control device 281 that controls the rotation speed of the fan 20 and the directions (angles) of the upper and lower vanes 70 and the left and right vanes, which will be described later.
  • the controller 281 may not be shown in the drawings shown in the first embodiment and each embodiment described later.
  • the fan 20 is provided on the upstream side of the heat exchanger 50, so that it is compared with a conventional air conditioner indoor unit in which the fan 20 is provided at the outlet 3.
  • the generation of the swirling flow of the air blown from the outlet 3 and the variation in the wind speed distribution can be suppressed. For this reason, comfortable ventilation to an air-conditioning object area is attained.
  • there is no complicated structure such as a fan at the air outlet 3 it is easy to take measures against condensation that occurs at the boundary between warm air and cold air during cooling operation.
  • the fan motor 30 is not exposed to cold air or warm air that is air-conditioned air, a long operating life can be provided.
  • the indoor unit 100 according to Embodiment 1 includes three fans 20 arranged in parallel along the longitudinal direction of the casing 1 (in other words, the longitudinal direction of the air outlet 3). Yes.
  • approximately two to four fans 20 are preferable.
  • all the fans 20 are configured in the same shape, and almost the same amount of air flow can be obtained by all the fans 20 by operating all the operation rotational speeds equally.
  • the optimum fan design corresponding to the indoor unit 100 of various specifications can be achieved by combining the number, shape, size, and the like of the fans 20 according to the required air volume and the ventilation resistance inside the indoor unit 100. Is possible.
  • a bell mouth 5 on a duct is disposed around the fan 20.
  • the bell mouth 5 is for smoothly guiding the intake and exhaust of air to the fan.
  • the bell mouth 5 according to the first embodiment has a substantially circular shape in plan view.
  • the bell mouth 5 according to the first embodiment has the following shape.
  • the upper part 5a has a substantially arc shape whose end part widens upward.
  • the central portion 5b is a straight portion where the diameter of the bell mouth is constant.
  • the lower part 5c has a substantially arc shape whose end part extends downward.
  • the suction inlet 2 is formed in the edge part (arc part of the suction side) of the upper part 5a of the bellmouth 5.
  • FIG. 1 of the first embodiment has a duct shape configured higher than the height of the impeller of the fan 20, but is not limited thereto, and the height of the bell mouth 5 is not limited thereto.
  • a semi-open bellmouth configured lower than the height of the impeller of the fan 20 may be used.
  • the bell mouth 5 may not be provided with the straight portion 5b shown in FIG. 1 but may be constituted only by the end portions 5a and 5c.
  • the bell mouth 5 may be formed integrally with the casing 1, for example, in order to reduce the number of parts and improve the strength. Further, for example, the bell mouth 5, the fan 20, the fan motor 30, and the like may be modularized, and the casing 1 may be attached and detached to improve maintenance.
  • the end of the upper portion 5a of the bell mouth 5 (arc portion on the suction side) is configured in a uniform shape with respect to the circumferential direction of the opening surface of the bell mouth 5.
  • the bell mouth 5 has no structure such as a notch or a rib with respect to the rotation direction about the rotation axis 20a of the fan 20, and has a uniform shape having axial symmetry.
  • the end of the upper portion 5a of the bell mouth 5 (the arc portion on the suction side) has a uniform shape with respect to the rotation of the fan 20.
  • a uniform flow is realized as a flow. For this reason, the noise which generate
  • partition plate 90 As shown in FIG. 2, in the indoor unit 100 according to the first embodiment, a partition plate 90 is provided between adjacent fans 20. These partition plates 90 are installed between the heat exchanger 50 and the fan 20. That is, the air path between the heat exchanger 50 and the fan 20 is divided into a plurality of air paths (three in the first embodiment). Since the partition plate 90 is installed between the heat exchanger 50 and the fan 20, the end on the side in contact with the heat exchanger 50 has a shape along the heat exchanger 50. More specifically, as shown in FIG. 1, the heat exchanger 50 includes a longitudinal section from the front side to the rear side of the indoor unit 100 (that is, a longitudinal section when the indoor unit 100 is viewed from the right side. Are arranged in a substantially ⁇ shape. For this reason, the heat exchanger 50 side end part of the partition plate 90 is also substantially [Lambda] type.
  • the position of the end portion of the partition plate 90 on the fan 20 side may be determined as follows, for example.
  • the end of the partition plate 90 on the fan 20 side may be extended to the outlet surface of the fan 20.
  • the adjacent fans 20 are close enough to influence each other on the suction side, and the shape of the end of the upper portion 5a of the bell mouth 5 (arc portion on the suction side) can be formed sufficiently large.
  • the end of the plate 90 on the fan 20 side extends to the upstream side (suction side) of the fan 20 so as not to affect the adjacent air path (so that the adjacent fans 20 do not affect each other on the suction side). It may be extended.
  • the partition plate 90 can be formed of various materials.
  • the partition plate 90 may be formed of a metal such as steel or aluminum.
  • the partition plate 90 may be formed of resin or the like.
  • the heat exchanger 50 becomes a high temperature during the heating operation, when the partition plate 90 is formed of a low melting point material such as a resin, the heat exchanger 50 is slightly between the partition plate 90 and the heat exchanger 50. A good space should be formed.
  • the partition plate 90 is made of a material having a high melting point such as aluminum or steel, the partition plate 90 may be disposed in contact with the heat exchanger 50.
  • the heat exchanger 50 is, for example, a fin tube type heat exchanger, a partition plate 90 may be inserted between the fins of the heat exchanger 50.
  • the air path between the heat exchanger 50 and the fan 20 is divided into a plurality of air paths (three in the first embodiment).
  • a noise absorbing material can be provided in this air passage, that is, in the partition plate 90 and the casing 1 to reduce noise generated in the duct.
  • these divided air paths are formed in a substantially square shape with one side being L1 and L2 in a plan view. That is, the width of the divided air path is L1 and L2. For this reason, for example, the amount of air generated by the fan 20 installed inside the substantially square shape formed by L1 and L2 is reliably transferred to the heat exchanger 50 in the region surrounded by L1 and L2 downstream of the fan 20. pass.
  • the air blown from each fan 20 is blown into the indoor unit 100 even if the flow field created downstream by the fan 20 has a swirling component. Cannot move freely in the longitudinal direction (the direction perpendicular to the plane of FIG. 1). For this reason, the air blown out by the fan 20 can be passed through the heat exchanger 50 in the region surrounded by L1 and L2 downstream of the fan 20. As a result, variation in the air volume distribution in the longitudinal direction of the indoor unit 100 flowing into the entire heat exchanger 50 (in the direction orthogonal to the plane of FIG. 1) can be suppressed, and high heat exchange performance can be achieved.
  • each partition plate 90 does not need to be formed with a single plate, and may be formed with a plurality of plates.
  • the partition plate 90 may be divided into two parts on the front side heat exchanger 51 side and the back side heat exchanger 55 side. Needless to say, it is preferable that there is no gap at the joint between the plates constituting the partition plate 90. By dividing the partition plate 90 into a plurality of parts, the assembling property of the partition plate 90 is improved.
  • the fan 20 is rotationally driven by a fan motor 30.
  • the fan motor 30 used may be an inner rotor type or an outer rotor type.
  • the outer rotor type fan motor 30 a structure in which the rotor is integrated with the boss 21 of the fan 20 (the boss 21 is provided with a rotor) is also used. Further, by making the size of the fan motor 30 smaller than the size of the boss 21 of the fan 20, it is possible to prevent loss of the airflow generated by the fan 20. Further, by arranging a motor inside the boss 21, the axial dimension can be reduced. By making the fan motor 30 and the fan 20 easy to attach and detach, the maintainability is also improved.
  • the use of a relatively expensive DC brushless motor as the fan motor 30 can improve efficiency, extend the service life, and improve the controllability. However, even if other types of motors are used, air conditioning It goes without saying that the primary function of the machine is satisfied. Further, the circuit for driving the fan motor 30 may be integrated with the fan motor 30 or may be configured externally to take dust and fire prevention measures.
  • the fan motor 30 is attached to the casing 1 by a motor stay 16. Further, the fan motor 30 is a box type (fan 20, housing, fan motor 30, bell mouth 5, motor stay 16 and the like are integrated into a module) used for CPU cooling and the like, and is detachable from the casing 1. If the structure is possible, the maintainability is improved and the accuracy of the chip clearance of the fan 20 can be increased. In general, a narrow tip clearance is preferable because of high air blowing performance.
  • the drive circuit of the fan motor 30 may be configured inside the fan motor 30 or may be outside.
  • the motor stay 16 includes a fixing member 17 and a support member 18.
  • the fixing member 17 is to which the fan motor 30 is attached.
  • the support member 18 is a member for fixing the fixing member 17 to the casing 1.
  • the support member 18 is, for example, a rod-like member, and extends from the outer peripheral portion of the fixing member 17, for example, radially. As shown in FIG. 1, the support member 18 according to the first embodiment extends approximately in the horizontal direction.
  • the support member 18 may provide a stationary blade effect as a blade shape or a plate shape.
  • the heat exchanger 50 of the indoor unit 100 according to Embodiment 1 is arranged on the leeward side of the fan 20.
  • the heat exchanger 50 for example, a fin tube heat exchanger or the like may be used.
  • the heat exchanger 50 is divided by a symmetry line 50a in the right vertical section.
  • the symmetry line 50a divides the installation range of the heat exchanger 50 in this cross section in the left-right direction at a substantially central portion. That is, the front side heat exchanger 51 is on the front side (left side in FIG. 1) with respect to the symmetry line 50a, and the rear side heat exchanger 55 is on the back side (right side in FIG. 1) with respect to the symmetry line 50a.
  • Each is arranged.
  • the front-side heat exchanger 51 and the rear-side heat exchanger 55 are arranged so that the distance between the front-side heat exchanger 51 and the rear-side heat exchanger 55 widens with respect to the air flow direction, that is, the right-side longitudinal section.
  • the heat exchanger 50 is arranged in the casing 1 so that the cross-sectional shape of the heat exchanger 50 is substantially ⁇ -shaped. That is, the front side heat exchanger 51 and the back side heat exchanger 55 are arranged so as to be inclined with respect to the flow direction of the air supplied from the fan 20.
  • the heat exchanger 50 is characterized in that the air passage area of the rear heat exchanger 55 is larger than the air passage area of the front heat exchanger 51. That is, in the heat exchanger 50, the air volume of the back side heat exchanger 55 is larger than the air volume of the front side heat exchanger 51.
  • the longitudinal length of the back side heat exchanger 55 is longer than the longitudinal length of the front side heat exchanger 51 in the right vertical section.
  • the air path area of the back surface side heat exchanger 55 is larger than the air path area of the front surface side heat exchanger 51.
  • the other configurations (such as the length in the depth direction in FIG. 1) of the front side heat exchanger 51 and the back side heat exchanger 55 are the same. That is, the heat transfer area of the back side heat exchanger 55 is larger than the heat transfer area of the front side heat exchanger 51.
  • the rotating shaft 20a of the fan 20 is installed above the symmetry line 50a.
  • the heat exchanger 50 By configuring the heat exchanger 50 in this manner, the generation of a swirling flow of the air blown from the blower outlet 3 and the distribution of the wind speed are compared with a conventional air conditioner indoor unit in which a fan is provided at the blower outlet. Occurrence can be suppressed.
  • the air volume of the back side heat exchanger 55 is larger than the air volume of the front side heat exchanger 51. And when the air which passed each of the front side heat exchanger 51 and the back side heat exchanger 55 merges by this air volume difference, this merged air will bend to the front side (blower outlet 3 side). For this reason, it is no longer necessary to bend the airflow rapidly in the vicinity of the outlet 3, and the pressure loss in the vicinity of the outlet 3 can be reduced.
  • the flow direction of the air flowing out from the back side heat exchanger 55 is the flow from the back side to the front side. For this reason, the indoor unit 100 according to the first embodiment bends the flow of air after passing through the heat exchanger 50, as compared with the case where the heat exchanger 50 is arranged in a substantially v shape in the right vertical section. It becomes easy.
  • the indoor unit 100 has a plurality of fans 20 and thus tends to be heavy.
  • the strength of the wall surface for installing the indoor unit 100 is required, which is a restriction on installation. For this reason, it is preferable to reduce the weight of the heat exchanger 50.
  • positions the fan 20 in the upstream of the heat exchanger 50 the height dimension of the indoor unit 100 becomes large and tends to become restrictions on installation. For this reason, it is preferable to reduce the weight of the heat exchanger 50.
  • a fin tube heat exchanger is used as the heat exchanger 50 (the front side heat exchanger 51 and the back side heat exchanger 55), and the heat exchanger 50 is downsized.
  • the heat exchanger 50 according to the first embodiment includes a plurality of fins 56 stacked via a predetermined gap, and a plurality of heat transfer tubes 57 penetrating the fins 56.
  • the fins 56 are stacked in the left-right direction of the casing 1 (the direction orthogonal to the plane of FIG. 1). That is, the heat transfer tube 57 passes through the fin 56 along the left-right direction of the casing 1 (the direction orthogonal to the plane of FIG. 1).
  • Embodiment 1 in order to improve the heat exchange efficiency of the heat exchanger 50, two rows of heat transfer tubes 57 are arranged in the ventilation direction of the heat exchanger 50 (the width direction of the fins 56). These heat transfer tubes 57 are arranged in a substantially zigzag shape in the right vertical section.
  • the heat transfer tube 57 is formed by a thin tube (diameter of about 3 mm to 7 mm) and the refrigerant flowing through the heat transfer tube 57 (the refrigerant used in the indoor unit 100 and the air conditioner equipped with the indoor unit 100) is R32.
  • the heat exchanger 50 is reduced in size. That is, the heat exchanger 50 exchanges heat between the refrigerant flowing in the heat transfer tube 57 and the room air via the fins 56. For this reason, when the heat transfer tube 57 is made thin, the pressure loss of the refrigerant becomes large at the same refrigerant circulation amount as compared with a heat exchanger having a large heat transfer tube diameter.
  • R32 has a larger latent heat of vaporization at the same temperature than R410A, and can exhibit the same ability with a smaller amount of refrigerant circulation. For this reason, by using R32, the amount of refrigerant to be used can be reduced, and the pressure loss in the heat exchanger 50 can be reduced. Therefore, the heat exchanger 50 can be reduced in size by configuring the heat transfer tube 57 as a thin circular tube and using R32 as the refrigerant.
  • the heat exchanger 50 is reduced in weight by forming the fins 56 and the heat transfer tubes 57 from aluminum or an aluminum alloy.
  • the weight of the heat exchanger 50 does not become an installation-like restriction
  • the finger guard 15 and the filter 10 are provided at the suction port 2.
  • the finger guard 15 is installed for the purpose of preventing the rotating fan 20 from being touched.
  • the shape of the finger guard 15 is arbitrary as long as the hand cannot be touched to the fan 20.
  • the shape of the finger guard 15 may be a lattice shape, or may be a circular shape formed of a large number of different rings.
  • the finger guard 15 may be made of a material such as a resin or a metal material. However, when strength is required, the finger guard 15 is preferably made of a metal.
  • the finger guard 15 is preferably as thin and strong as possible from the viewpoint of lowering ventilation resistance and maintaining strength.
  • the filter 10 is provided to prevent dust from flowing into the indoor unit 100.
  • the filter 10 is detachably provided on the casing 1.
  • the indoor unit 100 which concerns on this Embodiment 1 may be provided with the automatic cleaning mechanism which cleans the filter 10 automatically.
  • the indoor unit 100 which concerns on this Embodiment 1 is provided in the blower outlet 3 with the up-and-down vane 70 and the right-and-left vane (not shown) which are mechanisms which control the blowing direction of airflow.
  • FIG. 3 is a perspective view of the indoor unit according to Embodiment 1 of the present invention as viewed from the front right side.
  • FIG. 4 is a perspective view of the indoor unit as viewed from the rear right side.
  • FIG. 5 is a perspective view of the indoor unit as viewed from the front left side.
  • FIG. 6 is a perspective view showing the drain pan according to Embodiment 1 of the present invention.
  • the right side of the indoor unit 100 is shown in cross section
  • FIG. 5 the left side of the indoor unit 100 is shown in cross section.
  • a front side drain pan 110 is provided below a lower end portion of the front side heat exchanger 51 (a front side end portion of the front side heat exchanger 51).
  • a back side drain pan 115 is provided below the lower end portion of the back side heat exchanger 55 (the back side end of the back side heat exchanger 55).
  • the back side drain pan 115 and the back portion 1b of the casing 1 are integrally formed.
  • the back side drain pan 115 is provided with connection ports 116 to which the drain hose 117 is connected at both the left end and the right end. In addition, it is not necessary to connect the drain hose 117 to both the connection ports 116, and the drain hose 117 may be connected to one of the connection ports 116.
  • the drain hose 117 when the drain hose 117 is to be pulled out to the right side of the indoor unit 100 during the installation work of the indoor unit 100, the drain hose 117 is connected to the connection port 116 provided at the right end of the back side drain pan 115, and the back side
  • the connection port 116 provided at the left end of the drain pan 115 may be closed with a rubber cap or the like.
  • the front side drain pan 110 is disposed at a position higher than the back side drain pan 115. Further, between the front side drain pan 110 and the back side drain pan 115, a drainage channel 111 serving as a drain moving path is provided at both the left end and the right end.
  • the drainage channel 111 has a front end connected to the front drain pan 110 and is provided so as to incline downward from the front drain pan 110 toward the rear drain pan 115.
  • a tongue portion 111 a is formed at the end of the drainage channel 111 on the back side. The rear end of the drainage channel 111 is disposed so as to cover the upper surface of the back side drain pan 115.
  • the front-side drain pan 110 is provided at a position higher than the back-side drain pan 115, so that the drain collected by the front-side drain pan 110 is directed toward the back-side drain pan 115 toward the drainage channel 111. Flowing.
  • the drain is dropped from the tongue 111 a of the drainage channel 111 to the back side drain pan 115 and collected by the back side drain pan 115.
  • the drain collected by the back side drain pan 115 passes through the drain hose 117 and is discharged to the outside of the casing 1 (indoor unit 100).
  • the drain collected by both drain pans is disposed on the back-side drain pan 115 (most rear side of the casing 1). Can be collected in the drain pan).
  • the connection port 116 of the drain hose 117 in the back side drain pan 115 the drain collected by the front side drain pan 110 and the back side drain pan 115 can be discharged to the outside of the casing 1. Therefore, when performing maintenance (such as cleaning the heat exchanger 50) of the indoor unit 100 by opening the front surface of the casing 1, it is not necessary to attach or detach the drain pan to which the drain hose 117 is connected. Improves.
  • the drainage channels 111 are provided at both the left end and the right end, even if the indoor unit 100 is installed in an inclined state, the drain collected by the front side drain pan 110 can be surely received from the back side drain pan. 115.
  • the connection ports for connecting the drain hose 117 are provided at both the left end and the right end, the hose pull-out direction can be selected according to the installation conditions of the indoor unit 100, and the indoor unit 100 The workability when installing is improved.
  • the drainage channel 111 is disposed so as to cover the backside drain pan 115 (that is, a connection mechanism is not required between the drainage channel 111 and the backside drain pan 115), the front side drain pan 110 is disposed. It becomes easy to attach and detach, and the maintainability is further improved.
  • the drainage channel 111 may be disposed so that the rear side end of the drainage channel 111 is connected to the rear side drain pan 115 and the front side drain pan 110 covers the drainage channel 111. Even in such a configuration, it is possible to obtain the same effect as the configuration in which the drainage channel 111 is disposed so as to cover the back side drain pan 115. Further, the front-side drain pan 110 does not necessarily need to be higher than the rear-side drain pan 115. Even if the front-side drain pan 110 and the rear-side drain pan 115 have the same height, the drain collected by both drain pans is connected to the rear-side drain pan 115. The drainage hose can be discharged.
  • the indoor unit 100 according to Embodiment 1 has an opening length d1 on the entrance side of the nozzle 6 in the right vertical section (between the drain pans defined between the front-side drain pan 110 and the back-side drain pan 115 portion.
  • the throttle length d1) is configured to be larger than the opening length d2 on the outlet side of the nozzle 6 (the length of the outlet 3). That is, the nozzle 6 of the indoor unit 100 satisfies d1> d2 (see FIG. 1).
  • d2 of the indoor unit 100 according to the first embodiment is approximately the same as the air outlet of the conventional indoor unit. It will be described as being length.
  • the air passage becomes larger and the angle A of the heat exchanger 50 arranged on the upstream side (the front side heat on the downstream side of the heat exchanger 50). It is possible to increase the angle formed by the exchanger 51 and the back side heat exchanger 55. For this reason, the wind speed distribution generated in the heat exchanger 50 is relaxed, and the air path downstream of the heat exchanger 50 can be formed large, so that the pressure loss of the entire indoor unit 100 can be reduced. Furthermore, the deviation of the wind speed distribution that has occurred near the inlet of the nozzle 6 can be made uniform by the effect of contraction and guided to the outlet 3.
  • the indoor unit 100 according to Embodiment 1 is provided with an active silencing mechanism as shown in FIG.
  • the silencing mechanism of the indoor unit 100 includes a noise detection microphone 161, a control speaker 181, a silencing effect detection microphone 191, and a signal processing device 201.
  • the noise detection microphone 161 is a noise detection device that detects the operation sound (noise) of the indoor unit 100 including the blowing sound of the fan 20.
  • the noise detection microphone 161 is disposed between the fan 20 and the heat exchanger 50. In the first embodiment, it is provided on the front surface in the casing 1.
  • the control speaker 181 is a control sound output device that outputs a control sound for noise.
  • the control speaker 181 is disposed below the noise detection microphone 161 and above the heat exchanger 50.
  • the silencing effect detection microphone 191 is a silencing effect detection device that detects the silencing effect by the control sound.
  • the muffler effect detection microphone 191 is provided in the vicinity of the air outlet 3 in order to detect noise coming from the air outlet 3. Further, the muffler effect detection microphone 191 is attached at a position avoiding the wind flow so as not to hit the blown air coming out of the blowout port 3.
  • the signal processing device 201 is a control sound generation device that causes the control speaker 181 to output a control sound based on the detection results of the noise detection microphone 161 and the silencing effect detection microphone 191.
  • the signal processing device 201 is accommodated in the control device 281, for example.
  • FIG. 8 is a block diagram showing the signal processing apparatus according to Embodiment 1 of the present invention.
  • Electric signals input from the noise detection microphone 161 and the muffler effect detection microphone 191 are amplified by the microphone amplifier 151 and converted from an analog signal to a digital signal by the A / D converter 152.
  • the converted digital signal is input to the FIR filter 158 and the LMS algorithm 159.
  • the FIR filter 158 generates a control signal that has been corrected so that the noise detected by the noise detection microphone 161 has the same amplitude and opposite phase as the noise when the noise reduction effect detection microphone 191 is installed.
  • the indoor unit 100 is provided with a water receptacle or the like (not shown) for preventing water droplets from coming out of the air outlet 3 in the vicinity of the air outlet 3.
  • a water receptacle or the like not shown
  • positioned is upstream of the area
  • the operation sound (noise) including the blowing sound of the fan 20 in the indoor unit 100 is detected by the noise detection microphone 161 attached between the fan 20 and the heat exchanger 50, and the microphone amplifier 151 and the A / D converter 152 are detected. And is input to the FIR filter 158 and the LMS algorithm 159.
  • the tap coefficients of the FIR filter 158 are sequentially updated by the LMS algorithm 159.
  • the coefficient is updated.
  • h is a filter tap coefficient
  • e is an error signal
  • x is a filter input signal
  • is a step size parameter.
  • the step size parameter ⁇ controls a filter coefficient update amount for each sampling.
  • the digital signal that has passed through the FIR filter 158 whose tap coefficient has been updated by the LMS algorithm 159 is converted to an analog signal by the D / A converter 154, amplified by the amplifier 155, and the fan 20 and heat exchanger. 50 is emitted as a control sound from the control speaker 181 attached between the indoor unit 100 and the air passage in the indoor unit 100.
  • the sound is transmitted from the fan 20 through the air path to the muffler effect detection microphone 191 attached in the direction of the outer wall of the air outlet 3 so that the wind emitted from the air outlet 3 does not hit.
  • the sound after the control sound emitted from the control speaker 181 interferes with the noise coming out from the blow outlet 3 is detected. Since the sound detected by the muffling effect detection microphone 191 is input to the error signal of the LMS algorithm 159 described above, the tap coefficient of the FIR filter 158 is updated so that the sound after the interference approaches zero. become. As a result, noise in the vicinity of the air outlet 3 can be suppressed by the control sound that has passed through the FIR filter 158.
  • the noise detection microphone 161 and the control speaker 181 are arranged between the fan 20 and the heat exchanger 50, and the silencing effect detection microphone 191 is connected to the blower outlet 3. It is installed in the place where the wind current does not hit. For this reason, since it is not necessary to attach a member that requires active silencing to the region B where condensation occurs, water droplets are prevented from adhering to the control speaker 181, the noise detecting microphone 161, and the silencing effect detecting microphone 191, and the silencing performance is deteriorated. The failure of the speaker and microphone can be prevented.
  • the mounting positions of the noise detection microphone 161, the control speaker 181 and the mute effect detection microphone 191 shown in the first embodiment are merely examples.
  • the noise reduction effect detection microphone 191 may be disposed between the fan 20 and the heat exchanger 50 together with the noise detection microphone 161 and the control speaker 181.
  • the microphone has been exemplified as a means for detecting the silencing effect after the noise is canceled by the noise or the control sound, it may be configured by an acceleration sensor or the like that detects the vibration of the casing.
  • the sound may be regarded as air flow disturbance, and the noise reduction effect after the noise is canceled by noise or control sound may be detected as air flow disturbance.
  • a flow rate sensor, a hot wire probe, or the like that detects an air flow may be used as a means for detecting a silencing effect after noise is canceled by noise or control sound. It is also possible to detect the air flow by increasing the gain of the microphone.
  • the FIR filter 158 and the LMS algorithm 159 are used in the signal processing device 201.
  • any adaptive signal processing circuit that brings the sound detected by the mute effect detection microphone 191 close to zero may be active.
  • a filtered-X algorithm that is generally used in the dynamic silencing method may be used.
  • the signal processing device 201 may be configured to generate the control sound by a fixed tap coefficient instead of the adaptive signal processing.
  • the signal processing device 201 may be an analog signal processing circuit instead of digital signal processing.
  • the present invention is applicable even when the heat exchanger 50 that does not cause condensation is disposed. Therefore, it is possible to prevent performance deterioration of the noise detection microphone 161, the control speaker 181, the silencing effect detection microphone 191, and the like without considering the presence or absence of dew condensation due to the heat exchanger 50.
  • Embodiment 2 FIG. In the following, another embodiment of the active silencing method will be described. In the second embodiment, the same functions and configurations as those in the first embodiment will be described using the same reference numerals.
  • FIG. 10 is a longitudinal sectional view showing the indoor unit according to Embodiment 2 of the present invention.
  • the right side of the figure is the front side of the indoor unit 100.
  • the indoor unit 100 described in the second embodiment is different from the indoor unit 100 according to the first embodiment in that the indoor unit 100 described in the first embodiment has a noise detection microphone 161 and a mute for active silencing.
  • the control sound is generated by the signal processing device 201 using the two microphones of the effect detection microphone 191, in the indoor unit 100 of the second embodiment, these are one microphone and the noise / silence effect detection is performed.
  • the microphone 211 has been replaced. Accordingly, since the signal processing method is different, the contents of the signal processing device 204 are different.
  • a control speaker 181 that outputs a control sound for noise is disposed on the lower wall portion of the fan 20 so as to face the center of the air path from the wall, and further on the lower side of the fan 20 through the air path.
  • a noise / muffling effect detection microphone 211 for detecting a sound after propagating the control sound emitted from the control speaker 181 to the noise that propagates and exits from the air outlet 3 is disposed.
  • the control speaker 181 and the noise / silence effect detection microphone 211 are attached between the fan 20 and the heat exchanger 50.
  • the output signal of the noise / muffling effect detection microphone 211 is input to a signal processing device 204 which is a control sound generating means for generating a signal (control sound) for controlling the control speaker 181.
  • FIG. 11 is a block diagram showing a signal processing apparatus according to Embodiment 2 of the present invention.
  • the block diagram of the signal processing apparatus 204 is shown.
  • the electrical signal converted from the sound signal by the noise / muffling effect detection microphone 211 is amplified by the microphone amplifier 151 and converted from an analog signal to a digital signal by the A / D converter 152.
  • the converted digital signal is input to the LMS algorithm 159, and a difference signal from the signal obtained by convolving the FIR filter 160 with the output signal of the FIR filter 158 is input to the FIR filter 158 and the LMS algorithm 159.
  • the difference signal is subjected to a convolution operation by the tap coefficient calculated by the LMS algorithm 159 by the FIR filter 158, converted from a digital signal to an analog signal by the D / A converter 154, and amplified by the amplifier 155.
  • the sound is emitted from the control speaker 181 as a control sound.
  • the sound after the control sound output from the control speaker 181 interferes with the operation sound (noise) including the blowing sound of the fan 20 in the indoor unit 100 is attached between the fan 20 and the heat exchanger 50. It is detected by the noise / silence effect detection microphone 211 and converted into a digital signal via the microphone amplifier 151 and the A / D converter 152.
  • noise to be silenced is input to the FIR filter 158, and an input signal is input to the LMS algorithm 159 as shown in Equation 1 as well. It is necessary to input the sound after the interference between the noise to be silenced and the control sound as an error signal. However, since the noise / muffling effect detection microphone 211 can only detect the sound after the control sound interferes with it, it is necessary to create noise to be muffled from the sound detected by the noise / muffling effect detection microphone 211.
  • FIG. 13 shows a path in which the control signal output from the FIR filter 158 is output as a control sound and output from the control speaker 181, and then detected by the noise / silence effect detection microphone 211 and input to the signal processing device 204. It is a figure. It passes through a D / A converter 154, an amplifier 155, a path from the control speaker 181 to the noise / silence effect detection microphone 211, a noise / silence effect detection microphone 211, a microphone amplifier 151, and an A / D converter 152.
  • the FIR filter 160 in FIG. 11 estimates the transfer characteristic H.
  • the control sound can be estimated as the signal b detected by the noise / silence effect detection microphone 211, and after the interference detected by the noise / silence effect detection microphone 211
  • the noise c to be silenced is generated by taking the difference from the sound a.
  • the noise c to be silenced generated in this way is supplied as an input signal to the LMS algorithm 159 and the FIR filter 158.
  • the digital signal that has passed through the FIR filter 158 whose tap coefficient has been updated by the LMS algorithm 159 is converted into an analog signal by the D / A converter 154, amplified by the amplifier 155, and between the fan 20 and the heat exchanger 50. Control sound is emitted from the attached control speaker 181 to the air passage in the indoor unit 100.
  • the noise / muffling effect detection microphone 211 attached to the lower side of the control speaker 181 propagates through the air path from the fan 20 and is emitted from the control speaker 181 to the noise coming out from the air outlet 3.
  • the sound after the control sound is made to interfere is detected. Since the sound detected by the noise / silencing effect detection microphone 211 is input to the error signal of the LMS algorithm 159 described above, the tap coefficient of the FIR filter 158 is updated so that the sound after the interference approaches zero. Will be. As a result, noise in the vicinity of the air outlet 3 can be suppressed by the control sound that has passed through the FIR filter 158.
  • the noise / silencing effect detection microphone 211 and the control speaker 181 are arranged between the fan 20 and the heat exchanger 50, so that a dew condensation occurs in the region B. Since it is not necessary to attach a member necessary for active silencing, it is possible to prevent water droplets from adhering to the control speaker 181 and the noise / silencing effect detection microphone 211, thereby preventing deterioration of the silencing performance and failure of the speaker and microphone.
  • the noise / muffling effect detection microphone 211 is arranged on the upstream side of the heat exchanger 50. However, as shown in FIG. It may be installed in a location where it does not hit (a position avoiding wind flow). Further, although the microphone has been exemplified as a means for detecting the silencing effect after the noise is canceled by the noise or the control sound, it may be configured by an acceleration sensor or the like that detects the vibration of the casing. Alternatively, the sound may be regarded as air flow disturbance, and the noise reduction effect after the noise is canceled by noise or control sound may be detected as air flow disturbance.
  • a flow rate sensor, a hot wire probe, or the like that detects an air flow may be used as a means for detecting a silencing effect after noise is canceled by noise or control sound. It is also possible to detect the air flow by increasing the gain of the microphone.
  • the FIR filter 158 and the LMS algorithm 159 are used as the adaptive signal processing circuit of the signal processing device 204.
  • the adaptive signal processing circuit that brings the sound detected by the noise / silencing effect detection microphone 211 close to zero. Any filter-X algorithm that is generally used in the active silencing method may be used.
  • the signal processing device 204 may be configured to generate the control sound by a fixed tap coefficient instead of the adaptive signal processing. Further, the signal processing device 204 may be an analog signal processing circuit instead of digital signal processing.
  • the present invention is applicable even when the heat exchanger 50 that does not cause condensation is disposed. Therefore, it is possible to prevent the performance deterioration of the noise / silencing effect detection microphone 211, the control speaker 181 and the like without considering the presence / absence of condensation due to the heat exchanger 50.
  • Embodiment 3 For example, a silencer mechanism may be installed at the following position.
  • a silencer mechanism may be installed at the following position.
  • the same functions and configurations as those in the first and second embodiments will be described using the same reference numerals.
  • a noise detection microphone 161 (corresponding to a noise detection device), a control speaker 181 (corresponding to a control sound output device), and a silencing effect detection microphone 191 (silence effect detection) (Corresponding to the apparatus) is provided downstream of the heat exchanger 50. For this reason, it is possible to reduce the influence of the turbulence of the airflow generated by the fan 20 on the muffler effect detection microphone 191 and to shorten the path until the control sound emitted from the control speaker 181 reaches the control point. Therefore, the indoor unit 100 according to the third embodiment can perform highly accurate noise control by the silencer mechanism. Furthermore, the indoor unit according to Embodiment 3 can also reduce the cost of the signal processing circuit.
  • FIG. 15 is a longitudinal sectional view showing an indoor unit according to Embodiment 3 of the present invention.
  • FIG. 15 shows the left side of the figure as the front side of the indoor unit 100 as in FIG. 1. Based on FIG. 15, the configuration of the indoor unit 100 will be described.
  • the configuration of the indoor unit 100 is different from that of FIG. 1 in the arrangement of a noise detection microphone 161 and a control speaker 181 that are silencers, and the other configuration is the same as that of the indoor unit 100 according to the first embodiment.
  • the indoor unit 100 includes a noise reduction mechanism including a noise detection microphone 161, a control speaker 181, a noise reduction effect detection microphone 191, and a signal processing device 201.
  • the noise detection microphone 161 is attached to the downstream side of the heat exchanger 50.
  • the muffler effect detection microphone 191 is attached in the vicinity of the air outlet 3 on the downstream side of the heat exchanger 50 (for example, the nozzle 6 portion forming the air outlet 3).
  • the control speaker 181 is provided on the side surface of the casing 1 (more specifically, on the lower side of the heat exchanger 50 and near the muffler effect detection microphone 191). Further, the control speaker 181 and the muffler effect detection microphone 191 are arranged so as to face the center of the air path from the wall of the casing 1.
  • the installation position of the muffler effect detection microphone 191 is not limited to the nozzle 6 portion of the air outlet 3 and may be an opening portion of the air outlet 3.
  • the muffling effect detection microphone 191 may be attached to the lower part or the side part of the air outlet 3.
  • the control speaker 181 is attached to the side surface of the casing 1, but the control speaker 181 may be attached to the front surface or the back surface of the casing 1.
  • the noise detection microphone 161 is not necessarily provided on the downstream side of the heat exchanger 50, and the control speaker 181 and the silencing effect detection microphone 191 may be provided on the downstream side of the heat exchanger 50.
  • the output signals of the noise detection microphone 161 and the silencing effect detection microphone 191 are input to the signal processing device 201 for generating a signal (control sound) for controlling the control speaker 181.
  • the configuration of the signal processing device 201 is exactly the same as that of the indoor unit 100 in the first embodiment.
  • a noise detection microphone 161 and a silencing effect detection microphone 191 are provided in a region where the airflow turbulence occurs due to the rotation of the impeller 25 of the fan 20 (for example, the air path between the fan 20 and the heat exchanger 50 in the indoor unit 100).
  • a pressure fluctuation component due to airflow turbulence which is a component other than the original noise, is detected, and the coherence between the two microphones decreases.
  • the noise detection microphone 161 and the silencing effect detection microphone 191 are installed on the downstream side of the heat exchanger 50. Since the indoor unit 100 has the fan 20 installed on the upstream side of the heat exchanger 50, the heat exchanger 50 can be installed between the noise detection microphone 161 and the muffler effect detection microphone 191 and the fan 20. When the noise detection microphone 161 and the silencing effect detection microphone 191 are installed in this way, the airflow turbulence generated in the fan 20 is suppressed by passing between the fins 56 of the heat exchanger 50. Therefore, the noise detection microphone 161 and the silencing effect detection are detected. The microphone 191 can reduce the influence of air current disturbance. Therefore, the coherence between the noise detection microphone 161 and the silencing effect detection microphone 191 increases, and a high silencing effect can be obtained.
  • FIG. 16 is a characteristic diagram showing the coherence characteristics between the two microphones depending on the installation positions of the noise detection microphone and the silencing effect detection microphone.
  • FIG. 16A shows both microphones when the noise detection microphone 161 and the muffling effect detection microphone 191 are provided upstream of the heat exchanger 50 (more specifically, between the fan 20 and the heat exchanger 50). It is the characteristic view which showed the coherence characteristic between.
  • FIG. 16B is a characteristic diagram showing the coherence characteristics between the microphones when the noise detection microphone 161 and the silencing effect detection microphone 191 are provided on the downstream side of the heat exchanger 50. Comparing FIG. 16A and FIG.
  • the noise detection microphone 161 and the silencing effect detection microphone 191 are connected to the heat exchanger 50. It can be seen that the coherence between the two microphones increases by providing it on the downstream side.
  • the silence effect is affected by the distance from the installation position of the control speaker 181 to the installation position (control point) of the silencer detection microphone 191. That is, the length of the transmission path until the control sound emitted from the control speaker 181 reaches the control point (the installation position of the silence effect detection microphone 191) also affects the noise reduction effect. More specifically, the amplitude characteristic and the phase characteristic of the control sound emitted from the control speaker 181 change in the transmission path until it reaches the control point (installation position of the muffling effect detection microphone 191). If the amplitude characteristic and the phase characteristic change in the transmission path and the control sound does not have the same amplitude and opposite phase as the noise, the silencing effect is reduced.
  • the transmission path of the control sound is obtained in advance, and correction is performed in the process of generating the control sound.
  • the problem of is solved.
  • the transmission path becomes longer, the number of filter taps of the required transmission path becomes longer, and the calculation processing increases.
  • the transmission path is long, such as when the sound speed changes due to changes in temperature or the like, the error between the determined transmission path and the actual transmission path becomes large, and the silencing effect is reduced.
  • control speaker 181 and the silencing effect detection microphone 191 close to each other.
  • the transmission distance of the control sound can be shortened, and changes in the amplitude characteristic and the phase characteristic can be suppressed to a small level.
  • the control speaker 181 and the silencing effect detection microphone 191 close to each other it becomes possible to superimpose highly accurate sound waves, so that a high silencing effect can be obtained.
  • the control speaker 181 is provided on the downstream side of the heat exchanger 50 that is the installation position of the silencing effect detection microphone 191. For this reason, the transmission path
  • the indoor unit 100 can install the fan 20 on the upstream side of the heat exchanger 50, the fan 20 serving as a noise source can be installed above the casing 1. For this reason, the noise transmission path until the noise from the fan 20 is emitted from the blower outlet 3 can be lengthened. For this reason, by installing the control speaker 181 on the downstream side of the heat exchanger 50, the distance between the noise detection microphone 161 and the control speaker 181 can be increased. That is, it is possible to take a long calculation time until the control sound is generated for the sound detected by the noise detection microphone 161, so that it is not necessary to increase the calculation speed. Therefore, since the indoor unit 100 according to the first embodiment can reduce the specifications of the A / D converter 152 and the digital signal processor that performs signal processing, the cost can be reduced.
  • the noise detection microphone 161, the control speaker 181 and the muffler effect detection microphone 191 are provided on the downstream side of the heat exchanger 50, there is a possibility that condensation may occur due to direct contact with the cold air. May be used.
  • the indoor unit 100 includes at least the control speaker 181 and the silencing effect detection microphone 191 on the downstream side of the heat exchanger 50 among the components of the silencing mechanism. Therefore, the indoor unit 100 can reduce the influence of the turbulence of the airflow generated by the fan 20 on the silencing effect detection microphone 191, and the control sound emitted from the control speaker 181 is controlled by the control point (installation position of the silencing effect detection microphone 191). It is possible to shorten the route to reach. For this reason, the indoor unit 100 can perform highly accurate noise control by the silencer mechanism.
  • the noise detection microphone 161 is also provided on the downstream side of the heat exchanger 50. For this reason, since the influence which the disturbance of the airflow which generate
  • the fan 20 can be provided on the upstream side of the heat exchanger 50 and above the casing 1. For this reason, the transmission path of the noise from the fan 20 can be lengthened, and the distance between the noise detection microphone 161 and the control speaker 181 can be increased. For this reason, since it is not necessary to increase the speed of the arithmetic processing, the cost of the indoor unit 100 can be reduced.
  • Embodiment 4 Even if the following silencing mechanism is used, the same silencing effect as in the third embodiment can be obtained.
  • items that are not particularly described are the same as those in Embodiments 1 to 3, and the same functions and configurations are described using the same reference numerals.
  • FIG. 17 is a longitudinal sectional view showing an indoor unit according to Embodiment 4 of the present invention.
  • the difference between the indoor unit 100 according to the fourth embodiment and the indoor unit 100 according to the third embodiment is that a microphone used for active silencing is different. More specifically, the indoor unit 100 according to Embodiment 3 uses two microphones (noise detection microphone 161 and mute effect detection microphone 191), and the signal processing device 201 generates control sound. On the other hand, in the indoor unit 100 of the fourth embodiment, the noise detection microphone 161 and the silencing effect detection microphone 191 are replaced with a noise / silencing effect detection microphone 211 which is one microphone. Further, since the signal processing method differs depending on the microphone used for dynamic silencing, the indoor unit 100 according to the fourth embodiment is different from the signal processing device 201 of the indoor unit 100 according to the third embodiment. A processing device 204 is used.
  • the indoor unit 100 includes a silencer mechanism including a control speaker 181, a noise / silence effect detection microphone 211, and a signal processing device 204.
  • the noise / silencing effect detection microphone 211 is attached in the vicinity of the air outlet 3 downstream of the heat exchanger 50 (for example, the nozzle 6 portion forming the air outlet 3).
  • the noise / silencing effect detection microphone 211 detects sound after the control sound emitted from the control speaker 181 interferes with the operation sound (noise) of the indoor unit 100 including the blowing sound of the fan 20.
  • a control speaker 181 that outputs a control sound for noise is provided on the side surface of the casing 1 (more specifically, on the lower side of the heat exchanger 50 and near the noise / silencing effect detection microphone 211).
  • the control speaker 181 and the noise / silence effect detection microphone 211 are arranged below the heat exchanger 50 so as to face the center of the air path from the wall of the casing 1.
  • the installation position of the noise / silencing effect detection microphone 211 is not limited to the nozzle 6 portion of the air outlet 3, but may be an opening portion of the air outlet 3.
  • the noise / muffling effect detection microphone 211 may be attached to the lower part or the side part of the air outlet 3.
  • the control speaker 181 is attached to the side surface of the casing 1, but the control speaker 181 may be attached to the front surface or the back surface of the casing 1.
  • the output signal of the noise / muffling effect detection microphone 211 is input to the signal processing device 204 for generating a signal (control sound) for controlling the control speaker 181.
  • the configuration of the signal processing device 204 is exactly the same as that of the indoor unit 100 in the second embodiment.
  • the silencing mechanism according to the fourth embodiment in order for the silencing mechanism according to the fourth embodiment to obtain a high silencing effect, it is necessary that the sound detected by the noise / silencing effect detection microphone 211 does not detect a pressure fluctuation component due to airflow turbulence. .
  • the noise / silencing effect detection microphone 211 is installed on the downstream side of the heat exchanger 50.
  • the heat exchanger 50 can be installed between the noise / silencing effect detection microphone 211 and the fan 20.
  • the noise / silence effect detecting microphone 211 is installed in this way, airflow turbulence generated in the fan 20 is suppressed by passing between the fins 56 of the heat exchanger 50. For this reason, the noise / silencing effect detection microphone 211 can obtain a high silencing effect by reducing the influence of airflow turbulence.
  • the noise reduction effect is affected by the distance from the installation position of the control speaker 181 to the installation position (control point) of the noise / silence effect detection microphone 211. That is, the length of the transmission path until the control sound emitted from the control speaker 181 reaches the control point (the installation position of the noise / silence effect detection microphone 211) also affects the silencing effect. More specifically, the amplitude characteristic and the phase characteristic of the control sound emitted from the control speaker 181 change in the transmission path until it reaches the control point (the installation position of the noise / muffling effect detection microphone 211). If the amplitude characteristic and the phase characteristic change in the transmission path and the control sound does not have the same amplitude and opposite phase as the noise, the silencing effect is reduced.
  • the transmission path of the control sound is obtained in advance, and correction is performed in the process of generating the control sound.
  • the problem of is solved.
  • the transmission path becomes longer, the number of filter taps of the required transmission path becomes longer, and the calculation processing increases.
  • the transmission path is long, such as when the sound speed changes due to changes in temperature or the like, the error between the determined transmission path and the actual transmission path becomes large, and the silencing effect is reduced.
  • control speaker 181 and the noise / silencing effect detecting microphone 211 close to each other.
  • the control speaker 181 and the noise / silencing effect detection microphone 211 in this way, the transmission distance of the control sound can be shortened, and changes in the amplitude characteristic and the phase characteristic can be suppressed to be small.
  • the control speaker 181 and the noise / silencing effect detection microphone 211 close to each other, it is possible to superimpose highly accurate sound waves, and thus a high silencing effect can be obtained.
  • the control speaker 181 is provided on the downstream side of the heat exchanger 50 where the noise / silencing effect detection microphone 211 is installed. For this reason, the transmission path
  • control speaker 181 and the noise / silencing effect detection microphone 211 are provided on the downstream side of the heat exchanger 50, condensation may occur due to direct contact with the cold air. Also good.
  • the heat exchanger 50 is provided on the downstream side of the fan 20. Furthermore, the indoor unit 100 includes at least a control speaker 181 and a noise / silencing effect detection microphone 211 on the downstream side of the heat exchanger 50 among the components of the silencing mechanism. For this reason, the indoor unit 100 can reduce the influence of the turbulence of the airflow generated by the fan 20 on the noise / silencing effect detection microphone 211, and the control sound generated from the control speaker 181 is controlled by the control point (noise / silence effect detection microphone 211). It is possible to shorten the route to reach the installation position. For this reason, the indoor unit 100 can perform highly accurate noise control by the silencer mechanism.
  • Embodiment 5 A noise detection microphone is installed on the boss.
  • a silencer mechanism may be installed at the following position.
  • the same functions and configurations as those in the first to fourth embodiments are described using the same reference numerals.
  • FIG. 18 is a longitudinal sectional view showing the indoor unit according to Embodiment 5 of the present invention.
  • FIG. 18 shows the right side of the drawing as the front side of the indoor unit 100.
  • the heat exchanger 50 is fixed in the casing 1 by the heat exchanger fixing bracket 58.
  • the fan 20 when the fan 20 is activated, indoor air is sucked into the air passage in the indoor unit 100 from the suction port 2, and the intake air is sucked into the heat exchanger 50 below the fan 20. After cooling or heating, the air is blown out from the air outlet 3 into the room.
  • FIG. 19 is a bottom view of the fan according to Embodiment 5 of the present invention (viewed from the lower side of FIG. 18).
  • 20 is a cross-sectional view of the fan 20 shown in FIG.
  • a fan in which the fan 20, fan motor, bell mouth, motor stay 16 and the like are modularized is used. This is because if the structure is detachable from the casing 1, the maintainability is improved and the accuracy of the chip clearance of the fan 20 can be improved.
  • the fan 20 includes an impeller 25 called a moving blade.
  • a fan motor serving as a power source for the impeller 25 is provided in the fixing member 17 of the motor stay 16.
  • the fixing member 17 is connected to a modularized fan housing or the like via a support member 18.
  • the support member 18 indicates a portion corresponding to the inner periphery of the blade of the fan 20 (that is, an inscribed circle in contact with the inner periphery of the blade of the impeller 25).
  • the support member 18 may provide a stationary blade effect as a blade shape or a plate shape.
  • the fan motor that is the power source of the impeller 25 and the boss 21 of the impeller 25 are connected by a rotating shaft 20a. Thereby, rotation of a fan motor is transmitted to the impeller 25 via the rotating shaft 20a, and the impeller 25 rotates. As the impeller 25 rotates, air flows (blows) in the direction indicated by the white arrow in FIG. In FIG. 20, a hatched portion indicates a portion that rotates when the fan 20 operates. In addition, a portion without hatching indicates a portion that does not rotate even when the fan 20 is operating (that is, a non-moving member).
  • a portion corresponding to the inner periphery of the blade of the fan 20 (that is, an inscribed circle in contact with the inner periphery of the blade of the impeller 25) is an outer periphery of the boss 21.
  • the diameter of the fixing member 17 is substantially the same as the diameter of the boss 21.
  • the fixing member 17 corresponding to the inner periphery of the blade of the fan 20 has a noise detection microphone as a noise detection device for detecting the operation sound (noise) of the indoor unit 100 including the blowing sound of the fan 20.
  • 161 is attached. That is, the noise detection microphone 161 is disposed in a cylindrical region (hereinafter referred to as a cylindrical region S) in which an inscribed circle that is in contact with the inner peripheral portion of the blade of the impeller 25 extends in the direction of the rotation axis of the impeller 25. .
  • the fixing member 17 is configured to be independent of the rotating impeller 25 and not to rotate when the fan 20 is operated, as shown in FIG. For this reason, the noise detection microphone 161 does not rotate when the fan 20 operates.
  • a control speaker 181 is disposed below the noise detection microphone 161 as a control sound output device that outputs a control sound for noise from the wall of the casing 1 toward the center of the air path.
  • a muffler effect detection microphone 191 is attached to the lower wall of the indoor unit 100 as a muffler effect detection device for detecting a noise coming out of the outlet 3 and detecting a muffler effect, for example, at the top of the outlet 3. ing.
  • the silencing effect detection microphone 191 is attached in the direction opposite to the flow path.
  • the installation position of the muffler effect detection microphone 191 is not limited to the upper part of the air outlet 3 but may be an opening of the air outlet 3.
  • the muffling effect detection microphone 191 may be attached to the lower part or the side part of the air outlet 3.
  • the silencing effect detection microphone 191 does not need to be provided in the direction opposite to the flow path accurately.
  • the silencing effect detection microphone 191 only needs to be provided toward the outside of the indoor unit 100 (casing). That is, the silencing effect detection microphone 191 may be installed at a position where noise radiated indoors can be detected.
  • the output signals of the noise detection microphone 161 and the mute effect detection microphone 191 are input to a signal processing device 207 that is a control sound generation device for generating a signal (control sound) for controlling the control speaker 181.
  • the silencing mechanism of the indoor unit 100 includes the noise detection microphone 161, the control speaker 181, the silencing effect detection microphone 191, and the signal processing device 207.
  • the impeller 25 of the fan 20 rotates, air in the room is sucked from the upper side of the fan 20, and air is generated by being sent to the lower side of the fan 20.
  • an operating sound (noise) is generated in the vicinity of the air outlet of the fan 20, and the sound propagates downstream.
  • FIG. 22 shows the results of an experiment in which the airflow blown from the fan 20 was visualized.
  • FIG. 22 is a photograph when the fan 20 is operated after the fan 20 is attached to the right end of the duct-shaped cylinder and white smoke is retained in the duct. Focusing on the vicinity of the blower outlet of the fan 20, it can be seen that in the area excluding the vicinity of the fixing member 17 and the cylindrical area S, the smoke staying in white is thin, and the white smoke is swept away by the airflow. On the other hand, in the vicinity of the fixing member 17 of the fan 20 and the cylindrical region S, white smoke remains and the influence of the airflow is small. In other words, it can be seen that the vicinity of the fixing member 17 of the fan 20 and the columnar region S are not easily affected by the airflow, and the pressure fluctuation due to the airflow turbulence is small.
  • the air sent by the fan 20 passes through the air path and is sent to the heat exchanger 50.
  • the heat exchanger 50 is supplied with refrigerant from a refrigerant pipe connected to an outdoor unit (not shown).
  • the air sent to the heat exchanger 50 is cooled by the refrigerant flowing through the heat exchanger 50 to become cold air, and is directly discharged into the room from the outlet 3.
  • FIG. 21 is a block diagram showing a signal processing apparatus according to Embodiment 5 of the present invention.
  • the operation sound (noise) including the blowing sound of the fan 20 in the indoor unit 100 is detected by the noise detection microphone 161 attached to the fixing member 17 of the fan 20.
  • Noise detected by the noise detection microphone 161 becomes a digital signal via the microphone amplifier 151 and the A / D converter 152 and is input to the FIR filter 158 and the LMS algorithm 159.
  • the tap coefficient of the FIR filter 158 is sequentially updated by the LMS algorithm 159.
  • the optimal tap coefficient is updated.
  • the digital signal having the tap coefficient updated by the LMS algorithm 159 and passing through the FIR filter 158 is converted to an analog signal by the D / A converter 154, amplified by the amplifier 155, and sent as control sound from the control speaker 181. It is discharged to the air path in the indoor unit 100.
  • noise that propagates through the air path from the fan 20 and is emitted from the air outlet 3 into the room is transmitted to the muffler effect detection microphone 191 that is attached to the upper part of the air outlet 3 of the indoor unit 100 in the direction opposite to the flow path.
  • the sound after the control sound emitted from the control speaker 181 interferes is detected.
  • the signal detected by the silencing effect detection microphone 191 is converted into a digital signal and averaged by the weighting means 153.
  • FIG. 23 is a block diagram showing a circuit of weighting means according to the fifth embodiment of the present invention.
  • the weighting unit 153 includes an integrator including a multiplier 121 that multiplies an input signal by a weighting coefficient, an adder 122, a delay element 123 for one sampling, and a multiplier 124.
  • the weighting coefficient of the multiplier 121 can be set from the outside depending on the installation environment or the like. For example, in an environment where the disturbance is large and the operation is unstable, the weighting coefficient of the multiplier 121 may be set small. Conversely, in an environment where the disturbance is small, the weighting coefficient of the multiplier 121 may be set large. Thereby, the sensitivity with respect to an environmental change can be changed.
  • the averaging by the weighting unit 153 may not be performed until the LMS algorithm 159 is stabilized. This is because the noise cannot be sufficiently reduced while the LMS algorithm 159 is not stable, and the output value of the weighting means 153 may run away. Further, resetting may be performed when the output value of the weighting means 153 exceeds a certain value.
  • the signal averaged in this way is treated as the error signal e of the LMS algorithm 159 described above. Then, feedback control is performed so that the error signal e approaches zero, and the tap coefficient of the FIR filter 158 is appropriately updated. As a result, noise in the vicinity of the air outlet 3 can be suppressed by the control sound that has passed through the FIR filter 158.
  • the noise from the indoor unit 100 felt by humans is the noise after being released into the room from the air outlet 3, it is emitted into the room by directing the muffler effect detection microphone 191 toward the room on the opposite side of the flow path.
  • Noise can be detected. That is, by attaching the muffling effect detection microphone 191 to the upper part of the air outlet 3 in the direction opposite to the flow path, it is possible to detect noise emitted into the room and sound with high coherence. Further, the muffler effect detection microphone 191 does not detect wind noise due to the airflow because the airflow is not directly applied. On the other hand, when the muffling effect detection microphone 191 is directed into the flow path, noise in the flow path is detected.
  • the muffler effect detection microphone 191 since the change of the characteristic of the sound in the place discharged
  • the stability of the feedback control is impaired by the sound other than the noise.
  • sounds other than noise are averaged by arranging the weighting means 153 in the previous stage of the feedback control. Thereby, sound components other than uncorrelated noise can be canceled, and feedback control can be stably operated. That is, the coherence between the noise detection microphone 161 and the silencing effect detection microphone 191 can be increased.
  • the noise detection microphone 161 since the noise detection microphone 161 is attached to the fixing member 17 of the fan 20, the airflow does not directly hit the noise detection microphone 161. For this reason, it can reduce that the noise detection microphone 161 detects the pressure fluctuation component by airflow disturbance. Therefore, the noise detection microphone 161 can detect noise that is the operation sound of the fan 20 and sound with high coherence. Further, since the muffler effect detection microphone 191 is attached to the upper part of the air outlet 3 in the direction opposite to the flow path, the muffler effect detection microphone 191 is not directly exposed to the airflow, and the muffler effect detection microphone 191 is not affected by the airflow. .
  • the silencing effect detection microphone 191 can detect only the noise emitted into the room, the silencing effect detection microphone 191 can detect noise actually heard by a person in the room and noise with high coherence. it can. Furthermore, since the sound detected by the muffling effect detection microphone 191 is averaged by the weighting means 153 and feedback control is performed, components other than noise from the indoor unit 100 included in the sound detected by the muffling effect detection microphone 191 Can be canceled out. For this reason, high coherence can be obtained for the detection sounds of the noise detection microphone 161 and the silencing effect detection microphone 191.
  • FIG. 24 shows the coherence characteristics between the detection sound of the noise detection microphone 161 and the detection sound of the mute effect detection microphone 191 when the noise detection microphone 161 is installed outside the cylindrical region S and the fan 20 is operated.
  • FIG. 25 shows coherence characteristics between the detection sound of the noise detection microphone 161 and the detection sound of the mute effect detection microphone 191 when the fan 20 is operated inside the cylindrical region S. Comparing FIG. 24 and FIG. 25, it can be seen that the coherence is clearly higher when the noise detection microphone 161 is installed inside the cylindrical region S.
  • the noise detection microphone 161 can be easily attached without newly increasing the number of parts, and a precise attachment mechanism becomes unnecessary. Further, by installing the noise detection microphone 161 on the fixing member 17 of the fan 20, the distance between the fan 20 and the noise detection microphone 161 can be shortened, so that the height of the indoor unit 100 can be shortened.
  • the noise detection microphone 161 is installed on the fixed member 17, but inherent mechanical vibration accompanying the rotation of the fan 20 is transmitted to the fixed member 17, and the noise detection microphone 161 detects the vibration.
  • the coherence between the noise detection microphone 161 and the silencing effect detection microphone 191 may locally deteriorate.
  • the noise detection microphone 161 may be installed in a portion other than the fixed member 17 in the cylindrical region S.
  • the noise detection microphone 161 may be installed on the heat exchanger 50 in the range within the cylindrical region S.
  • a noise detection microphone 161 may be installed under the heat exchanger fixing bracket 58 in a range within the cylindrical region S.
  • the noise detection microphone 161 may be covered with a wall member 270. Since the air current can be blocked from the wall member, it is less affected by the air current, and a higher silencing effect can be obtained.
  • the wall member 270 is formed in a substantially cylindrical shape, but the shape of the wall member 270 is arbitrary. Even when the noise detection microphone 161 is attached to the heat exchanger 50 or the heat exchanger fixing bracket 58, the noise detection microphone 161 may be covered with the wall member 270. It is less affected by the airflow, and a higher silencing effect can be obtained.
  • the muffler effect detection microphone 191 attached to the upper part of the air outlet 3 in the direction opposite to the flow path may be covered with a wall member. Since the airflow can be blocked, the noise reduction effect detecting microphone 191 is not affected by the airflow, and a higher noise reduction effect can be obtained.
  • the FIR filter 158 and the LMS algorithm 159 are used for the signal processing device 207.
  • any adaptive signal processing circuit that brings the sound detected by the mute effect detection microphone 191 close to zero may be used.
  • a filtered-X algorithm generally used in the mute method may be used.
  • the weighting means 153 does not have to be an integrator, and may be any means that can average.
  • the signal processing device 207 does not need to be configured to perform adaptive signal processing, and may be configured to generate a control sound using a fixed tap coefficient. Further, the signal processing device 207 does not have to be a digital signal processing circuit, but may be an analog signal processing circuit.
  • the noise detection microphone 161 that is a noise detection device is provided in the cylindrical region S and on the stationary member of the fan 20. For this reason, since the influence of the airflow from the blower outlet of the fan 20 can be reduced and a sound with high noise and coherence can be detected, active silencing with high accuracy can be performed. Further, since the noise detection microphone 161 can be installed without changing the mechanism of the fan 20 and without increasing the number of parts of the indoor unit 100, the indoor unit 100 having a high degree of freedom in installation can be realized.
  • the immovable member of the fan 20 is not limited to the fixed member 17. If there is a stationary member in which at least a part of the components of the fan 20 is disposed in the cylindrical region S, the noise detection microphone 161 may be provided in a range that is in the cylindrical region S of the stationary member.
  • the noise detection microphone 161 that is a noise detection device is provided in the cylindrical region S and on the downstream side of the fan 20. For this reason, since the influence of the airflow from the blower outlet of the fan 20 can be reduced and a sound with high noise and coherence can be detected, active silencing with high accuracy can be performed. Further, since the noise detection microphone 161 can be installed without changing the mechanism of the fan 20 and without increasing the number of parts of the indoor unit 100, the indoor unit 100 having a high degree of freedom in installation can be realized. Furthermore, since the mechanical vibration inherent to the rotation of the fan 20 is not detected by the noise detection microphone 161, active noise reduction can be performed with higher accuracy than when the noise detection microphone 161 is provided on the stationary member of the fan 20. .
  • the components for providing the noise detection microphone 161 are not limited to the heat exchanger 50 or the heat exchanger fixing bracket 58. If there is a component that is at least partially in the cylindrical region S and disposed on the downstream side of the fan 20, the noise detection microphone 161 may be provided in a range that is in the cylindrical region S of the component.
  • a muffler effect detection microphone 191 that is a muffler effect detection device is provided at the opening of the air outlet 3 and is disposed toward the outside of the indoor unit 100. For this reason, the noise emitted into the room can be detected without being influenced by the airflow. Therefore, high coherence can be obtained for the indoor noise radiated from the indoor unit 100 and the sound detected by the muffler effect detection microphone 191. For this reason, it is possible to perform active silencing with high accuracy with respect to indoor noise radiated from the indoor unit 100.
  • the signal processing device 207 that is the control sound generation device weights the detection result detected by the mute effect detection microphone 191 that is the mute effect detection device, and provides feedback.
  • a circuit for performing control is provided. For this reason, it can cancel by averaging sounds other than the noise of the indoor unit 100 detected by the muffler effect detection microphone 191. Therefore, a high coherence sound can be detected between the noise detection microphone 161 and the silencing effect detection microphone 191, and more accurate active silencing can be performed.
  • the noise detection microphone 161 is installed in a range that is in the cylindrical region S in the fixing member 17 of the fan 20. For this reason, since the influence of the airflow from the blower outlet of the fan 20 can be reduced and a sound with high noise and coherence can be detected, active silencing with high accuracy can be performed. Moreover, since the noise detection microphone 161 can be installed without changing the mechanism of the fan 20 and without increasing the number of parts of the air conditioner, the indoor unit 100 with a high degree of installation freedom can be realized.
  • the noise detection microphone 161 is provided in a range that is in the cylindrical region S of the heat exchanger 50. For this reason, since the influence of the airflow from the blower outlet of the fan 20 can be reduced and a sound with high noise and coherence can be detected, active silencing with high accuracy can be performed. Moreover, since the noise detection microphone 161 can be installed without changing the mechanism of the fan 20 and without increasing the number of parts of the air conditioner, the indoor unit 100 with a high degree of installation freedom can be realized. Furthermore, since the mechanical vibration inherent to the rotation of the fan 20 is not detected by the noise detection microphone 161, active noise reduction can be performed with higher accuracy than when the noise detection microphone 161 is provided on the stationary member of the fan 20. .
  • the noise detection microphone 161 is provided in a range that is within the cylindrical region S of the heat exchanger fixing bracket 58. For this reason, since the influence of the airflow from the blower outlet of the fan 20 can be reduced and a sound with high noise and coherence can be detected, active silencing with high accuracy can be performed. Moreover, since the noise detection microphone 161 can be installed without changing the mechanism of the fan 20 and without increasing the number of parts of the air conditioner, the indoor unit 100 with a high degree of installation freedom can be realized. Furthermore, since the mechanical vibration inherent to the rotation of the fan 20 is not detected by the noise detection microphone 161, active noise reduction can be performed with higher accuracy than when the noise detection microphone 161 is provided on the stationary member of the fan 20. .
  • the noise detection microphone 161 is covered with the wall member 270. By blocking the air flow, the noise detection microphone 161 is less affected by the air flow, so that a higher silencing effect can be obtained.
  • the silencing effect detection microphone 191 is covered with a wall member. By blocking the air flow, the muffler effect detection microphone 191 is less affected by the air flow, so that a higher sound deadening effect can be obtained.
  • Embodiment 6 the indoor unit 100 in which the noise / muffling effect detection microphone 211 is arranged as a noise / muffling effect detection device that integrates the noise detection microphone 161 and the muffling effect detection microphone 191 in the fifth embodiment will be described. .
  • items not particularly described are the same as those in the fifth embodiment, and the same functions and configurations are described using the same reference numerals.
  • FIG. 29 is a longitudinal sectional view showing the indoor unit according to Embodiment 6 of the present invention.
  • FIG. 29 shows the right side of the drawing as the front side of the indoor unit 100.
  • the heat exchanger 50 is fixed in the casing 1 by the heat exchanger fixing bracket 58. As indicated by the white arrow in FIG. 29, when the fan 20 is activated, indoor air is sucked into the air passage in the indoor unit 100 from the suction port 2, and the intake air is sucked into the heat exchanger 50 below the fan 20. After cooling or heating, the air is blown out from the air outlet 3 into the room.
  • the difference between the indoor unit 100 according to the sixth embodiment and the indoor unit 100 according to the fifth embodiment is as follows. That is, the indoor unit 100 according to Embodiment 5 generates control sound by the signal processing device 207 using two microphones, a noise detection microphone 161 and a silencing effect detection microphone 191 for active silencing. It was. On the other hand, in the indoor unit 100 according to the sixth embodiment, these are replaced with a noise / silencing effect detection microphone 211 which is one microphone. Accordingly, since the signal processing method is different, the contents of the signal processing device 204 are different. On the side wall of the casing 1 of the indoor unit 100, a control speaker 181 that outputs a control sound for noise is disposed so as to face the center of the air path from the wall.
  • the sound after the control sound emitted from the control speaker 181 interferes with the operation sound (noise) of the indoor unit 100 including the blowing sound of the fan 20.
  • a noise / muffling effect detection microphone 211 for detecting the noise is disposed.
  • the fixing member 17 is configured so that the rotating impeller 25 is independent and does not rotate when the fan 20 operates. For this reason, the noise / silencing effect detection microphone 211 does not rotate when the fan 20 operates.
  • the output signal of the noise / muffling effect detection microphone 211 is input to a signal processing device 204 which is a control sound generation device for generating a signal (control sound) for controlling the control speaker 181.
  • the silencer mechanism of the indoor unit 100 includes the noise / silencer effect detection microphone 211, the control speaker 181, and the signal processing device 204.
  • the signal processing device 204 has the same configuration as that of FIG. 11 described in the second embodiment.
  • the impeller 25 of the fan 20 rotates, air in the room is sucked from the upper side of the fan 20, and air is generated by being sent to the lower side of the fan 20.
  • an operating sound (noise) is generated in the vicinity of the air outlet of the fan 20, and the sound propagates downstream.
  • air current turbulence occurs due to the rotation of the impeller 25, as in the fifth embodiment.
  • the air blown out from the fan 20 is blown outward from the blower outlet of the fan 20, the air hits the side wall of the casing of the indoor unit 100, and further air turbulence is caused.
  • the air sent by the fan 20 passes through the air path and is sent to the heat exchanger 50.
  • the heat exchanger 50 is supplied with refrigerant from a refrigerant pipe connected to an outdoor unit (not shown).
  • the air sent to the heat exchanger 50 is cooled by the refrigerant flowing through the heat exchanger 50 to become cold air, and is directly discharged into the room from the outlet 3.
  • the method for suppressing the operation sound of the indoor unit 100 is exactly the same as the method described in the second embodiment, and the control sound is output so that the noise detected by the noise / silence effect detection microphone 211 approaches zero, and as a result
  • the noise / silence effect detection microphone 211 operates to suppress noise.
  • the noise / silencing effect detection microphone 211 is attached in a range that is within the cylindrical region S of the fixed member 17, and thus the air flow Is not directly hit, and detection of pressure fluctuation components due to airflow turbulence can be reduced. For this reason, the noise which is the driving
  • the noise / silence effect detection microphone 211 can be easily attached without increasing the number of parts, and a precise attachment mechanism is provided. It becomes unnecessary. Further, by installing the noise / silence effect detection microphone 211 on the fixing member 17 of the fan 20, the distance between the fan 20 and the noise / silence effect detection microphone 211 can be shortened, so the height of the indoor unit 100 is shortened. be able to.
  • the noise / silencing effect detection microphone 211 is installed on the fixed member 17, but the inherent mechanical vibration accompanying the rotation of the fan 20 is transmitted to the noise / silencing effect detection microphone 211, and the vibration is regarded as noise.
  • the mute effect detection microphone 211 may detect. For this reason, the silencing effect may be reduced.
  • the noise / muffling effect detection microphone 211 may be installed in a portion other than the fixed member 17 in the cylindrical region S.
  • a noise / silencing effect detection microphone 211 may be installed on the heat exchanger 50 in a range within the cylindrical region S. For example, as shown in FIG.
  • a noise / silencing effect detection microphone 211 may be installed under the heat exchanger fixing bracket 58 in a range within the cylindrical region S. By installing the noise / silence effect detecting microphone 211 in this way, a higher silencing effect can be obtained than when the noise / silence effect detecting microphone 211 is installed on the fixed member 17.
  • the noise / silencing effect detection microphone 211 may be covered with a wall member 270. Since the air flow can be blocked from the wall member 270, the influence of the air flow is further lessened, and a higher silencing effect can be obtained.
  • the wall member 270 is formed in a substantially cylindrical shape, but the shape of the wall member 270 is arbitrary. Further, even when the noise / silencing effect detecting microphone 211 is attached to the heat exchanger 50 or the heat exchanger fixing bracket 58, the noise / silencing effect detecting microphone 211 may be covered with the wall member 270. It is less affected by the airflow, and a higher silencing effect can be obtained.
  • the noise / silence effect detection microphone 211 that is a noise / silence effect detection device is provided in the cylindrical region S and on the stationary member of the fan 20. For this reason, since the influence of the airflow from the blower outlet of the fan 20 can be reduced and a sound with high noise and coherence can be detected, active silencing with high accuracy can be performed. In addition, since the noise / silencing effect detection microphone 211 can be installed without increasing the number of parts of the indoor unit 100, the indoor unit 100 having a high degree of freedom in installation can be realized.
  • the FIR filter 158 and the LMS algorithm 159 are used for the signal processing device 204.
  • any adaptive signal processing circuit that brings the sound detected by the noise / silence effect detection microphone 211 close to zero may be used.
  • a filtered-X algorithm generally used in the active silencing method may be used.
  • the signal processing device 204 need not be configured to perform adaptive signal processing, and may be configured to generate a control sound using a fixed tap coefficient. Further, the signal processing device 204 does not have to be a digital signal processing circuit, but may be an analog signal processing circuit.
  • the noise / silence effect detection microphone 211 that is a noise / silence effect detection device is provided in the cylindrical region S and on the downstream side of the fan 20. For this reason, since the influence of the airflow from the blower outlet of the fan 20 can be reduced and a sound with high noise and coherence can be detected, active silencing with high accuracy can be performed. In addition, since the noise / silencing effect detection microphone 211 can be installed without changing the mechanism of the fan 20 and without increasing the number of parts of the indoor unit 100, the indoor unit 100 having a high degree of freedom in installation can be realized.
  • the noise / silence effect detection microphone 211 is more accurately active than when the noise / silence effect detection microphone 211 is provided on the stationary member of the fan 20. It can mute.
  • the noise / muffling effect detection microphone 211 is installed in a range within the cylindrical region S of the fixing member 17 of the fan 20. For this reason, since the influence of the airflow from the blower outlet of the fan 20 can be reduced and a sound with high noise and coherence can be detected, active silencing with high accuracy can be performed. In addition, since the noise / silencing effect detection microphone 211 can be installed without changing the mechanism of the fan 20 and without increasing the number of parts of the air conditioner, the indoor unit 100 having a high degree of freedom in installation can be realized.
  • the noise / silencing effect detection microphone 211 is provided in a range that is within the cylindrical region S of the heat exchanger 50. For this reason, since the influence of the airflow from the blower outlet of the fan 20 can be reduced and a sound with high noise and coherence can be detected, active silencing with high accuracy can be performed. In addition, since the noise / silencing effect detection microphone 211 can be installed without changing the mechanism of the fan 20 and without increasing the number of parts of the air conditioner, the indoor unit 100 having a high degree of freedom in installation can be realized.
  • the noise / silence effect detection microphone 211 is more accurately active than when the noise / silence effect detection microphone 211 is provided on the stationary member of the fan 20. It can mute.
  • the noise / silencing effect detection microphone 211 is provided in a range that is within the cylindrical region S of the heat exchanger fixing bracket 58. For this reason, since the influence of the airflow from the blower outlet of the fan 20 can be reduced and a sound with high noise and coherence can be detected, active silencing with high accuracy can be performed. In addition, since the noise / silencing effect detection microphone 211 can be installed without changing the mechanism of the fan 20 and without increasing the number of parts of the air conditioner, the indoor unit 100 having a high degree of freedom in installation can be realized.
  • the noise / silence effect detection microphone 211 is more accurately active than when the noise / silence effect detection microphone 211 is provided on the stationary member of the fan 20. It can mute.
  • the noise / muffling effect detection microphone 211 is covered with the wall member 270. By blocking the air flow, the noise / silence effect detection microphone 211 is less affected by the air flow, so that a higher silencing effect can be obtained.
  • Embodiment 7 FIG. In the seventh embodiment, a description will be given of an indoor unit 100 in which a noise / silencing effect detection microphone 211 is installed on the upper part of the air outlet 3 so as to face the opposite side of the flow path.
  • items not particularly described are the same as those in Embodiment 5 or Embodiment 6, and the same functions and configurations are described using the same reference numerals.
  • FIG. 33 is a longitudinal sectional view showing the indoor unit according to Embodiment 7 of the present invention.
  • FIG. 33 shows the right side of the figure as the front side of the indoor unit 100.
  • the indoor unit 100 according to the seventh embodiment is different from the indoor unit 100 according to the sixth embodiment in that a noise / silencing effect detection microphone 211 is arranged above the air outlet 3 so as to face the opposite side of the flow path. This is the point. Accordingly, the configuration of the signal processing device 208 is also different. Even when the noise / silence effect detection microphone 211 is attached to the upper part of the air outlet 3 in the direction opposite to the flow path, the noise / silence effect detection microphone 211 is newly added without increasing the number of parts as in the sixth embodiment. It can be easily installed, eliminating the need for a precise mounting mechanism.
  • a control speaker 181 that outputs a control sound for noise is disposed so as to face the center of the air path from the wall.
  • a noise / silencing effect detection microphone 211 that detects sound after the control sound emitted from the control speaker 181 interferes with the operation sound (noise) of the indoor unit 100 including the blowing sound of the fan 20 is provided at the outlet. 3 is arranged so as to face the opposite side of the flow path.
  • the output signal of the noise / muffling effect detection microphone 211 is input to a signal processing device 208 which is a control sound generation device for generating a signal (control sound) for controlling the control speaker 181.
  • FIG. 34 shows a configuration diagram of the signal processing device 208.
  • a difference from the signal processing device 204 shown in FIG. 11 is that weighting means 153 is arranged between the output of the A / D converter 152 and the input of the LMS algorithm 159.
  • Other configurations are the same as those of the signal processing device 204 of the second embodiment.
  • the impeller 25 of the fan 20 is rotated, indoor air is sucked from the upper side of the fan 20, and air is generated by being sent to the lower side of the fan 20.
  • an operating sound (noise) is generated in the vicinity of the air outlet of the fan 20, and the sound propagates downstream.
  • air current turbulence occurs due to the rotation of the impeller 25, as in the fifth and sixth embodiments.
  • the air blown out from the fan 20 is blown outward from the blower outlet of the fan 20
  • the air hits the side wall of the casing of the indoor unit 100, and further air turbulence is caused. For this reason, pressure fluctuation due to airflow turbulence increases on the side wall of the indoor unit 100.
  • the noise / silencing effect detection microphone 211 is arranged on the upper part of the air outlet 3 in the direction opposite to the flow path.
  • the distance from the air outlet of the fan 20 having a large airflow turbulence is sufficiently larger than the vicinity of the fan 20.
  • the air turbulence is rectified by the heat exchanger 50. For this reason, the turbulence of the air current in the vicinity of the noise / silencing effect detection microphone 211 is small.
  • the noise / silence effect detection microphone 211 is hardly affected by the airflow turbulence.
  • the noise / silence effect detection microphone 211 is directed to the room on the opposite side of the flow path.
  • the noise emitted into the room can be detected. That is, by attaching the noise / muffling effect detection microphone 211 to the upper part of the air outlet 3 in the direction opposite to the flow path, it is possible to detect noise emitted into the room and sound with high coherence.
  • the control sound generation method of the seventh embodiment is the same as the method described in the second embodiment.
  • the control sound generation method of the seventh embodiment is different from the method described in the second embodiment in that the weighting means 153 performs averaging on the signal input as an error signal to the LMS algorithm 159.
  • the noise detected by the noise / silence effect detection microphone 211 includes sound other than the noise generated from the fan 20. Maybe included. For this reason, the stability of feedback control is impaired by sounds other than these noises.
  • sounds other than noise are averaged by arranging the weighting means 153 in the previous stage of feedback control. Thereby, sound components other than uncorrelated noise can be canceled, and feedback control can be stably operated. That is, it is possible to increase the coherence between the noise after being discharged from the blowout port 3 into the room and the noise / silence effect detection microphone 211.
  • the averaging by the weighting unit 153 may not be performed until the LMS algorithm 159 is stabilized. This is because the noise cannot be sufficiently reduced while the LMS algorithm 159 is not stable, and the output value of the weighting means 153 may run away. Further, resetting may be performed when the output value of the weighting means 153 exceeds a certain value. Further, the noise / muffling effect detection microphone 211 may be covered with a wall member 270 so as not to be further affected by the airflow. Since the air current can be blocked by the wall member, it is less affected by the air current, and a higher silencing effect can be obtained.
  • the installation position of the noise / muffling effect detection microphone 211 is not limited to the upper part of the air outlet 3, but may be an opening of the air outlet 3.
  • the noise / muffling effect detection microphone 211 may be attached to the lower part or the side part of the air outlet 3.
  • the noise / muffling effect detection microphone 211 does not have to be provided in the direction opposite to the flow path accurately.
  • the noise / muffling effect detection microphone 211 may be provided toward the outside of the indoor unit 100 (housing). That is, the noise / muffling effect detection microphone 211 may be installed at a position where noise radiated indoors can be detected.
  • the FIR filter 158 and the LMS algorithm 159 are used for the signal processing device 208.
  • any adaptive signal processing circuit may be used as long as the sound detected by the noise / muffling effect detection microphone 211 approaches zero.
  • a filtered-X algorithm generally used in the active silencing method may be used.
  • the weighting means 153 does not have to be an integrator, and may be any means that can average.
  • the signal processing device 208 does not need to be configured to perform adaptive signal processing, and may be configured to generate control sound using a fixed tap coefficient. Further, the signal processing device 208 does not need to be a digital signal processing circuit, and may be an analog signal processing circuit.
  • the noise / silencing effect detection microphone 211 that is a noise / silencing effect detection device is provided at the opening of the air outlet 3 and is arranged toward the outside of the indoor unit 100. is doing. For this reason, the noise emitted into the room can be detected without being influenced by the airflow. Therefore, high coherence can be obtained for the indoor noise radiated from the indoor unit 100 and the detection sound of the noise / silence effect detection microphone 211. For this reason, it is possible to perform active silencing with high accuracy with respect to indoor noise radiated from the indoor unit 100.
  • the signal processing device 208 as the control sound generation device weights the detection result detected by the noise / silence effect detection microphone 211 as the noise / silence effect detection device. And a circuit for performing feedback control. For this reason, the sound other than the noise of the indoor unit 100 detected by the noise / silencing effect detection microphone 211 can be canceled by averaging. Therefore, it is possible to perform active silencing with higher accuracy.
  • the noise / silencing effect detection microphone 211 is covered with the wall member 270. By blocking the air flow, the noise / silence effect detection microphone 211 is less affected by the air flow, so that a higher silencing effect can be obtained.
  • Embodiment 8 (Fan individual control) By individually controlling the rotation speed of each fan 20 provided in the indoor unit 100, the silencing effect of the active silencing mechanism is further improved.
  • the same functions and configurations as those in the first to seventh embodiments will be described using the same reference numerals.
  • FIG. 35 is a front view showing an indoor unit according to Embodiment 8 of the present invention.
  • FIG. 36 is a side view showing the indoor unit shown in FIG.
  • FIG. 36 is a view of the indoor unit 100 shown in FIG. 35 as seen from the direction of the shaded arrows in FIG. 35, and shows the side wall of the casing 1 of the indoor unit 100 in a transparent manner.
  • the remote controller 280, the control device 281 and the motor drivers 282A to 282C shown in FIG. 35 are not shown.
  • the indoor unit 100 shown in FIGS. 35 and 36 is formed with an inlet 2 in the upper part of the indoor unit 100 (more specifically, the casing 1 of the indoor unit 100). An opening 3 is formed at the lower end of the casing 1). That is, in the indoor unit 100, an air passage that communicates the suction port 2 and the air outlet 3 is formed.
  • a plurality of fans 20 each having an impeller 25 are provided along the left-right direction (longitudinal direction) below the suction port 2 in the air passage.
  • three fans fans 20A to 20C
  • These fans 20A to 20C are provided such that the rotational axis center of the impeller 25 is in a substantially vertical direction.
  • Each of these fans 20A to 20C is connected to the blower fan control means 171 of the control device 281 via motor drivers 282A to 282C. Details of the control device 281 will be described later.
  • a heat exchanger 50 that heats and cools or heats the air. As indicated by the white arrows in FIG. 35, when the fans 20A to 20C are activated, the indoor air is sucked into the air passages in the indoor unit 100 from the suction port 2, and the intake air is heated by the heat below the fans 20A to 20C. After cooling or heating with the exchanger 50, the air is blown out into the room from the air outlet 3.
  • the indoor unit 100 according to the eighth embodiment is provided with a silencing mechanism used for active silencing.
  • the silencing mechanism of the indoor unit 100 according to the eighth embodiment includes noise detection microphones 161 and 162, control speakers 181 and 182, silencing effect detection microphones 191 and 192, and signal processing devices 201 and 202. That is, the silencing mechanism of the indoor unit 100 according to Embodiment 8 includes two noise detection microphones, two control speakers, and two silencing effect detection microphones.
  • the mute mechanism including the noise detection microphone 161, the control speaker 181, the mute effect detection microphone 191, and the signal processing device 201 is referred to as a mute mechanism A.
  • a silencing mechanism including the noise detection microphone 162, the control speaker 182, the silencing effect detection microphone 192, and the signal processing device 202 is referred to as a silencing mechanism B.
  • the noise detection microphones 161 and 162 are noise detection devices that detect the operation sound (noise) of the indoor unit 100 including the blowing sound of the fans 20A to 20C (noise emitted from the fans 20A to 20C).
  • the noise detection microphones 161 and 162 are provided at positions downstream of the fans 20A to 20C (for example, between the fans 20A to 20C and the heat exchanger 50).
  • the noise detection microphone 161 is provided on the left side surface of the indoor unit 100, and the noise detection microphone 162 is provided on the right side surface of the indoor unit 100.
  • Control speakers 181 and 182 are control sound output devices that output a control sound for noise.
  • the control speakers 181 and 182 are provided at positions downstream of the noise detection microphones 161 and 162 (for example, downstream of the heat exchanger 50).
  • the control speaker 181 is provided on the left side surface of the indoor unit 100, and the control speaker 182 is provided on the right side surface of the indoor unit 100.
  • Control speakers 181 and 182 are arranged so as to face the center of the air path from the wall surface of casing 1 of indoor unit 100.
  • the silencing effect detection microphones 191 and 192 are silencing effect detection devices that detect the silencing effect by the control sound.
  • the mute effect detection microphones 191 and 192 are provided at positions on the downstream side of the control speakers 181 and 182. Further, the muffling effect detection microphone 191 is provided, for example, on an approximately extension line of the rotation axis of the fan 20A, and the mute effect detection microphone 192 is provided, for example, on an extension line of the rotation axis of the fan 20C.
  • the mute effect detection microphones 191 and 192 are provided on the nozzle 6 that forms the air outlet 3. That is, the silencing effect detection microphones 191 and 192 detect the noise coming out from the air outlet 3 and detect the silencing effect.
  • the configuration of the signal processing devices 201 and 202 is exactly the same as the configuration shown in FIG. 8 described in the first embodiment.
  • FIG. 37 is a block diagram showing a control apparatus according to Embodiment 8 of the present invention. Various operations and means described below are performed by executing a program incorporated in the control device 281 included in the indoor unit 100.
  • the control device 281 mainly includes an input unit 130 for inputting a signal from an external input device such as the remote controller 280, a CPU 131 for performing calculations according to an embedded program, and a memory 132 for storing data and programs. Further, the CPU 131 includes a blower fan control unit 171.
  • the blower fan control means 171 includes the same rotation speed determination means 133, a fan individual control rotation speed determination means 134, and a plurality of SWs 135 (the same number as the fan 20).
  • the rotation speed determination means 133 determines the rotation speed when all the fans 20A to 20C are operated at the same rotation speed based on the operation information input from the remote controller 280.
  • the operation information input from the remote controller 280 is, for example, operation mode information such as a cooling operation mode, a heating operation mode, and a dehumidifying operation mode, and air volume information such as strong, medium, and weak.
  • the fan individual control rotation speed determination means 134 determines the rotation speed when individually controlling the rotation speeds of the fans 20A to 20C.
  • the SW 135 switches the rotation control signals of the fans 20A to 20C sent to the motor drivers 282A to 282C, for example, based on a signal input from the remote controller 280. That is, the SW 135 switches between operating all the fans 20A to 20C at the same rotational speed or operating the fans 20A to 20C at individual rotational speeds.
  • the impellers of the fans 20A to 20C rotate, the indoor air is sucked from the upper side of the fans 20A to 20C, and the air is sent to the lower side of the fans 20A to 20C, thereby generating an air flow.
  • a driving sound (noise) is generated in the vicinity of the air outlets of the fans 20A to 20C, and the sound propagates downstream.
  • the air sent by the fans 20A to 20C passes through the air path and is sent to the heat exchanger 50.
  • low-temperature refrigerant is sent to the heat exchanger 50 from a pipe connected to an outdoor unit (not shown).
  • the air sent to the heat exchanger 50 is cooled by the refrigerant flowing through the heat exchanger 50 to become cold air, and is directly discharged into the room from the outlet 3.
  • the operations of the silencing mechanism A and the silencing mechanism B are exactly the same as in the first embodiment, and a control sound is output so that the noise detected by the silencing effect detection microphones 191 and 192 approaches zero.
  • the effect detection microphones 191 and 192 operate to suppress noise.
  • the control sound is output from the control speakers 181 and 182 so that the phase is opposite to the noise at the installation locations (control points) of the silencing effect detection microphones 191 and 192. For this reason, the silencing effect becomes high in the vicinity of the silencing effect detection microphones 191, 192, but the phase of the control sound changes as the distance from the point increases. Therefore, at a location away from the muffler effect detection microphones 191 and 192, the phase shift between the noise and the control sound is increased, and the muffler effect is reduced.
  • Operation information selected by the remote controller 280 is input to the control device 281.
  • the operation information is, for example, operation mode information such as a cooling operation mode, a heating operation mode, and a dehumidifying operation mode.
  • the air volume information such as strong, medium, and weak is similarly input as operation information from the remote controller 280 to the control device 281.
  • the operation information input to the control device 281 is input to the rotation speed determination unit 133 via the input unit 130.
  • the same rotation speed determination means 133 to which the operation information is input determines the rotation speed when the fans 20A to 20C are all operated at the same rotation speed from the input operation information.
  • all of the fans 20A to 20C are controlled at the same rotational speed (hereinafter also referred to as the same rotational speed control).
  • the information on the rotational speed (the rotational speed at the same rotational speed control) determined by the same rotational speed determination means 133 is input to the fan individual control rotational speed determination means 134.
  • the fan individual control rotation speed determination means 134 reads out the blower fan information stored in advance in the memory 132 at the time of product shipment.
  • the blower fan information is information of the fan 20 that emits noise with a high noise reduction effect when the control sound is interfered. That is, the blower fan information is information on the fan 20 that is highly related to the muffler effect detection microphones 191 and 192. These identification numbers are assigned to each silencing effect detection microphone.
  • the identification number of the fan 20 that is the closest (highly related) to the muffler effect detection microphones 191 and 192 is used as the blower fan information. Specifically, the identification number of the fan 20A closest to the muffler effect detection microphone 191 and the identification number of the fan 20C closest to the muffler effect detection microphone 192 are shown.
  • the fan individual control rotation speed determination means 134 determines the rotation speed of each fan 20 when performing individual fan control based on the rotation speed information determined by the rotation speed determination means 133 and the blower fan information read from the memory 132. To do. Specifically, the fan individual control rotational speed determination means 134 increases the rotational speed of the fans 20A and 20C that are closest to the silencing effect detection microphones 191 and 192, and the distance from the silencing effect detection microphones 191 and 192 increases. The rotational speed of the fan 20B is reduced. At this time, the rotation speeds of the fans 20A to 20C may be determined so that the air volume obtained in the individual fan control is the same as that in the same rotation speed control.
  • the air volume and the rotation speed are in a proportional relationship, for example, in the case of the configuration shown in FIG. 35, if the rotation speed of the fan 20A and the fan 20C is increased by 10%, the rotation speed of the fan 20B is decreased by 20%. It becomes.
  • an operation information signal for performing individual fan control (for example, a signal for the silent mode) is input from the remote controller 280, the rotation control signal for the same speed control is changed to the rotation control signal for the individual fan control by switching the SW 135.
  • the rotation control signal is output from the control device 281 to the fans 20A to 20C.
  • the rotation control signal output from the control device 281 is input to the motor drivers 282A to 282C, and the fans 20A to 20C are controlled to the number of rotations according to the rotation control signal.
  • the indoor unit 100 is provided with a plurality of fans 20A to 20C, so that the fans 20A and 20C (the silencing effect is close to the silencing effect detection microphones 191 and 192 having a high silencing effect).
  • the number of rotations of the fan 20B (fan that emits noise with a low noise reduction effect) far from the noise reduction effect detection microphones 191 and 192 can be reduced.
  • the region where the silencing effect is high further increases the silencing effect, and the region where the silencing effect is low reduces noise. Therefore, the indoor unit or fan using a single fan Compared with an indoor unit that does not perform individual control, noise radiated from the entire outlet 3 can be reduced. Further, by controlling the rotational speeds of the plurality of fans 20A to 20C so that the air volume becomes constant, it can be realized without deterioration of aerodynamic performance.
  • the silencing effect can be further improved by dividing the air path of the indoor unit 100 into a plurality of regions.
  • FIG. 38 is a front view showing another example of the indoor unit according to Embodiment 8 of the present invention.
  • FIG. 39 is a left side view of the indoor unit shown in FIG. Note that FIG. 39 shows the side wall of the casing 1 of the indoor unit 100 in a transparent manner.
  • the indoor unit 100 shown in FIGS. 38 and 39 divides the air path with the partition plates 90 and 90a, thereby allowing the air blown out by the fan 20A, the region through which the air blown out by the fan 20B passes, and the air blown out by the fan 20C. It is divided into the areas where.
  • the noise detection microphone 161, the control speaker 181 and the silencing effect detection microphone 191 of the silencing mechanism A are arranged in a region through which the air blown out by the fan 20A passes. Further, the noise detection microphone 162, the control speaker 182 and the noise reduction effect detection microphone 192 of the silencer mechanism B are arranged in a region through which air blown out by the fan 20C passes.
  • the noise radiated from the fans 20A to 20C can be separated into the respective regions, and the silencing mechanism A reduces only the noise radiated from the fan 20A. B reduces only the noise radiated from the fan 20C. Therefore, it is possible to prevent the noise detection microphones 161 and 162 and the silencing effect detection microphones 191 and 192 from detecting the noise radiated from the fan 20B, and thus the noise detection microphones 161 and 162 and the silencing effect detection microphones 191 and 192.
  • noise can be captured in one dimension because the air path is closer to the duct structure. For this reason, the phase of the noise transmitted through the interior of the indoor unit 100 becomes uniform, and the phase error when the control sound interferes is reduced, so that the silencing effect is further enhanced.
  • the noise in the area where the silencing mechanism is not provided is reduced. Therefore, by configuring the indoor unit 100 as shown in FIGS. 38 and 39, noise can be further reduced compared to the configuration of FIG. In FIGS. 38 and 39, a partition plate is inserted in the entire air path. However, a part of the air path is separated by a partition plate, for example, only on the upstream side of the heat exchanger 50 or only on the downstream side of the heat exchanger 50. You may make it delimit.
  • the noise detection microphones 161 and 162 are installed on both side surfaces of the indoor unit 100.
  • the noise detection microphones 161 and 162 may be installed anywhere on the upstream side of the control speakers 181 and 182.
  • the control speakers 181 and 182 are arranged on both side surfaces of the indoor unit 100.
  • the control speakers 181 and 182 are arranged on the downstream side of the noise detection microphones 161 and 162 and the upstream side of the silencing effect detection microphones 191 and 192, respectively.
  • the installation positions of the control speakers 181 and 182 may be anywhere.
  • the muffling effect detection microphones 191 and 192 are arranged almost on the extension line of the rotation axes of the fans 20A and 20C.
  • the installation position of 192 may be anywhere.
  • two noise detection microphones, control speakers, muffler effect detection microphones, and signal processing devices are disposed, but the present invention is not limited to this.
  • the blower fan control unit 171 is configured by the CPU 131 in the control device 281.
  • the blower fan control unit 171 is implemented by hardware such as LSI (Large Scale Integration) or FPGA (Field Programmable Gate Array). May be configured.
  • LSI Large Scale Integration
  • FPGA Field Programmable Gate Array
  • the blower fan control means 171 increases the rotational speed of the fans 20A and 20C that are close to the silencing effect detection microphones 191 and 192, and decreases the rotational speed of the fan 20B that is far away.
  • it may be configured to perform either one of them.
  • the plurality of fans 20A to 20C are arranged, and the control device 281 (more specifically, the blower fan control means 171) controls the rotational speed of the fans 20A to 20C individually. ) Is provided.
  • the blower fan control means 171 controls the fan 20A, 20C blowing to the area near the muffler effect detection microphones 191, 192, which is a high noise reduction area, to increase the rotational speed, and the area where the noise reduction effect is low.
  • the rotational speed control is performed so as to reduce the rotational speed of the fan 20B that is blowing air to a region far from the muffler effect detection microphones 191 and 192.
  • the region where the silencing effect is high has a higher silencing effect, and the region where the silencing effect is low has less noise. For this reason, a high noise reduction effect can be obtained as compared with an indoor unit that uses a single fan with the silencer mechanism having the same configuration or an indoor unit that does not perform individual fan control.
  • blower fan control means 171 controls the rotational speeds of the fans 20A to 20C so that the amount of air radiated from the air outlet 3 is the same when the same rotational speed control is performed as when the individual fan control is performed. Therefore, noise can be reduced without deteriorating the aerodynamic performance.
  • the noise radiated from the fans 20A to 20C can be separated, respectively, and the silencing mechanism A is radiated from the fan 20A.
  • the noise reduction mechanism B reduces only the noise radiated from the fan 20C. For this reason, the crosstalk noise component by the noise radiated
  • the air passage of the indoor unit 100 is brought closer to the duct structure, so that noise can be captured in one dimension. For this reason, the phase of the noise transmitted through the interior of the indoor unit 100 becomes uniform, and the phase error when the control sound interferes is reduced. Further, by reducing the rotation speed of the fan 20B not provided with the silencer mechanism, the noise in the area where the silencer mechanism is not provided is reduced, and a higher noise reduction effect can be obtained compared to the configuration of FIG. it can.
  • Embodiment 9 FIG.
  • individual fan control may be performed based on the silencing effect detected by the silencing effect detection microphone.
  • differences from the above-described eighth embodiment will be mainly described, and the same parts as those in the eighth embodiment are denoted by the same reference numerals.
  • FIG. 40 is a front view of the indoor unit according to Embodiment 9 of the present invention.
  • the indoor unit 100 according to the ninth embodiment is different from the indoor unit 100 according to the eighth embodiment in that a silencing mechanism C (a noise detection microphone 163, a control speaker 183, a silencing effect detection microphone 193, and a signal processing device 203) is provided.
  • a silencing mechanism C a noise detection microphone 163, a control speaker 183, a silencing effect detection microphone 193, and a signal processing device 203 is provided.
  • the configuration of the signal processing device 203 is exactly the same as that of the signal processing devices 201 and 202.
  • the noise detection microphone 163, the control speaker 183, and the silencing effect detection microphone 193 are attached to the noise detection microphone 163, the control speaker 183, and the silencing effect detection microphone 193 in order from the downstream side of the fan 20B, as in the eighth embodiment. Should just be installed.
  • a signal line (signal line for sending signals S1, S2, S3) connected from the signal processing devices 201 to 203 to the blower fan control means 172 is provided.
  • the structure of the blower fan control means 172 is also different from the structure of the blower fan control means 171 according to the eighth embodiment.
  • the signals S1, S2, and S3 sent from the signal processing devices 201 to 203 to the blower fan control means 172 are A / D converted from the signals input from the mute effect detection microphones 191 to 193 via the microphone amplifier 151.
  • the signal is digitally converted by the device 152. That is, the signals S1, S2, and S3 are digital values of sound pressure levels detected by the mute effect detection microphones 191 to 193.
  • FIG. 41 is a block diagram showing a control apparatus according to Embodiment 9 of the present invention. Various operations and means described below are performed by executing a program incorporated in the control device 281 included in the indoor unit 100. Similar to the configuration described in the eighth embodiment, the control device 281 mainly stores an input unit 130 for inputting a signal from an external input device such as the remote controller 280, a CPU 131 for performing calculations in accordance with an embedded program, and stores data and programs. A memory 132 is provided. Further, the CPU 131 includes a blower fan control unit 172.
  • the blower fan control means 172 includes the same rotation speed determination means 133, a plurality of averaging means 136 (the same number as the mute effect detection microphone), a fan individual control rotation speed determination means 134A, and a plurality of SWs 135 (the same number as the fan 20). Yes.
  • the rotation speed determination means 133 determines the rotation speed when all the fans 20A to 20C are operated at the same rotation speed based on the operation information input from the remote controller 280.
  • the operation information input from the remote controller 280 is, for example, operation mode information such as a cooling operation mode, a heating operation mode, and a dehumidifying operation mode, and air volume information such as strong, medium, and weak.
  • the averaging means 136 receives the digital values S1, S2 and S3 of the sound pressure levels detected by the muffler effect detection microphones 191 to 193, and averages these S1, S2 and S3 signals for a certain period of time. To do.
  • the individual fan control rotation speed determination means 134A determines the fans 20A to 20C based on the rotation speed information inputted from the same rotation speed determination means 133 and the signals S1, S2 and S3 averaged by the averaging means 136. The number of rotations for individual fan control is determined.
  • the SW 135 switches the rotation control signals of the fans 20A to 20C sent to the motor drivers 282A to 282C, for example, based on a signal input from the remote controller 280. That is, the SW 135 switches whether the fans 20A to 20C are all operated at the same rotational speed (whether the same rotational speed is controlled) or whether the fans 20A to 20C are respectively operated at individual rotational speeds (whether the fan is individually controlled). Is.
  • the impellers of the fans 20A to 20C rotate, the indoor air is sucked from the upper side of the fans 20A to 20C, and the air is sent to the lower side of the fans 20A to 20C. Airflow is generated. Along with this, a driving sound (noise) is generated in the vicinity of the air outlets of the fans 20A to 20C, and the sound propagates downstream.
  • the air sent by the fans 20A to 20C passes through the air path and is sent to the heat exchanger 50.
  • low-temperature refrigerant is sent to the heat exchanger 50 from a pipe connected to an outdoor unit (not shown).
  • the air sent to the heat exchanger 50 is cooled by the refrigerant flowing through the heat exchanger 50 to become cold air, and is directly discharged into the room from the outlet 3.
  • the operations of the silencing mechanisms A to C are exactly the same as in the eighth embodiment, and the control sound is output so that the noise detected by the silencing effect detection microphones 191 to 193 approaches zero, and as a result, the silencing effect detection The microphones 191 to 193 operate to suppress noise.
  • the noise reduction effect detection microphone 193 includes noise radiated from the adjacent fans 20A and 20C (crosstalk noise component) in addition to the noise radiated from the fan 20B. ) Also comes in.
  • the crosstalk noise component detected by the silencing effect detection microphones 191 and 192 is smaller than the crosstalk noise component detected by the silencing effect detection microphone 193. This is because the silencing effect detection microphones 191 and 192 have only one adjacent fan 20 (fan 20B). For this reason, the silencing effect of the silencing mechanisms A and B is higher than that of the silencing mechanism C.
  • Operation information selected by the remote controller 280 is input to the control device 281.
  • the operation information is, for example, operation mode information such as a cooling operation mode, a heating operation mode, and a dehumidifying operation mode.
  • the air volume information such as strong, medium, and weak is similarly input as operation information from the remote controller 280 to the control device 281.
  • the operation information input to the control device 281 is input to the rotation speed determination unit 133 via the input unit 130.
  • the same rotation speed determining means 133 to which the operation information is input determines the rotation speed when the fans 20A to 20C are controlled at the same rotation speed from the input operation information.
  • S1 to S3 (digital values of sound pressure levels detected by the mute effect detection microphones 191 to 193) input from the signal processing devices 201 to 203 to the averaging means 136 are averaged by the averaging means 136 for a certain period. Averaged.
  • the sound pressure level value obtained by averaging each of these S1 to S3 and the information on the rotational speed determined by the same rotational speed determining means 133 (the rotational speed at the same rotational speed control) are the fan individual control rotational speed determining means 134A. Is input. Based on these pieces of information, the individual fan control rotation speed determination means 134A determines the rotation speed of each fan 20 when performing individual fan control. Specifically, the muffler effect detection with a small averaged sound pressure level value is detected by increasing the number of rotations of the fan that is close to (highly related to) the microphone with a small sound pressure level value and having a large averaged sound pressure level value.
  • the rotation speed of the fan is determined so as to reduce the rotation speed of the fan that is close to the microphone (highly related).
  • the rotation speeds of the fans 20A to 20C may be determined so that the air volume obtained in the individual fan control is the same as that in the same rotation speed control.
  • the average value of the noise level detected by the silencing effect detection microphone 191 is 45 dB
  • the average value of the noise level detected by the silencing effect detection microphone 192 is 45 dB
  • the silencing effect detection When the average value of the noise level detected by the microphone 193 is 50 dB, the fan individual control rotation speed determination means 134A increases the rotation speed of the fans 20A and 20C and decreases the rotation speed of the fan 20B. Determine the number of revolutions. Since the air volume and the rotation speed are in a proportional relationship, for example, in the case of the configuration shown in FIG. 40, if the rotation speed of the fan 20A and the fan 20C is increased by 10%, the rotation speed of the fan 20B is decreased by 20%. It becomes.
  • the above-described method for determining the rotational speed of the fans 20A to 20C is merely an example.
  • the average value of the noise level detected by the silencing effect detection microphone 191 is 45 dB
  • the average value of the noise level detected by the silencing effect detection microphone 192 is 47 dB
  • the average value of the noise level detected by the silencing effect detection microphone 193 is 50 dB.
  • the rotational speed of each fan 20 may be determined such that the rotational speed of the fan 20A is increased, the rotational speed of the fan 20B is decreased, and the rotational speed of the fan 20C is left as it is.
  • the rotation speed of the fan 20A close to the noise reduction effect detection microphone 191 with the lowest detected noise level is increased, and the rotation speed of the fan 20B close to the noise reduction effect detection microphone 193 with the highest detected noise level is decreased.
  • the rotational speed of each fan 20 may be determined so that the rotational speed of the fan 20C that is neither of them is left as it is.
  • an operation information signal for performing individual fan control (for example, a signal for the silent mode) is input from the remote controller 280, the rotation control signal for the same speed control is changed to the rotation control signal for the individual fan control by switching the SW 135.
  • the rotation control signal is output from the control device 281 to the fans 20A to 20C.
  • the rotation control signal output from the control device 281 is input to the motor drivers 282A to 282C, and the fans 20A to 20C are controlled to the number of rotations according to the rotation control signal.
  • the silencing effect detection microphone is compared with the region near the silencing effect detection microphone 193 due to the magnitude of the crosstalk noise component from the adjacent fan.
  • the area near 191 and 192 has a higher noise reduction effect.
  • the noise level detected in the area near the silencing effect detection microphones 191 and 192 is smaller than the area near the silencing effect detection microphone 193.
  • the silencing effect is low in the area near the silencing effect detection microphone 193.
  • the rotational speeds of the fans 20A and 20C close to the sound deadening effect detection microphones 191 and 192 are increased, and the rotational speed of the fan 20B close to the sound deadening effect detection microphone 193 having a large average noise level detected is decreased. Yes.
  • the indoor unit 100 according to the ninth embodiment has a higher silencing effect in a region where the silencing effect is high, and noise is small in a region where the silencing effect is low. Therefore, the indoor unit or fan using a single fan Compared with an indoor unit that does not perform individual control, noise radiated from the entire outlet 3 can be reduced.
  • the silencing effect can be further improved by dividing the air path of the indoor unit 100 into a plurality of regions.
  • FIG. 42 is a front view showing another example of the indoor unit according to Embodiment 9 of the present invention.
  • FIG. 43 is a left side view of the indoor unit shown in FIG. FIG. 43 shows the side wall of the casing 1 of the indoor unit 100 in a transparent manner.
  • the indoor unit 100 shown in FIGS. 42 and 43 divides the air path with the partition plates 90 and 90a, thereby allowing the air blown by the fan 20A to pass through, the air passing through the fan 20B, and the air blown out by the fan 20C. It is divided into areas that pass.
  • the noise detection microphone 161, the control speaker 181 and the silencing effect detection microphone 191 of the silencing mechanism A are arranged in a region through which the air blown out by the fan 20A passes.
  • the noise detection microphone 162, the control speaker 182 and the noise reduction effect detection microphone 192 of the silencer mechanism B are arranged in a region through which air blown out by the fan 20C passes. Further, the noise detection microphone 163, the control speaker 183, and the noise reduction effect detection microphone 193 of the silencer mechanism C are arranged in a region through which the air blown out by the fan 20B passes.
  • the noise radiated from the fans 20A to 20C can be separated into the respective regions, and the silencing mechanism A reduces only the noise radiated from the fan 20A.
  • B reduces only the noise radiated from the fan 20C
  • the silencing mechanism C reduces only the noise radiated from the fan 20B.
  • the crosstalk noise components noise radiated from the fans provided in the adjacent flow paths detected by the noise detection microphones 161 to 163 and the silencing effect detection microphones 191 to 193 are reduced.
  • noise can be captured in one dimension because the air path is closer to the duct structure. For this reason, the phase of the noise transmitted through the interior of the indoor unit 100 becomes uniform, and the phase error when the control sound interferes is reduced, so that the silencing effect is further enhanced. Therefore, by configuring the indoor unit 100 as shown in FIGS. 42 and 43, noise can be further reduced as compared with the configuration of FIG. 42 and 43, a partition plate is inserted in the entire air path. However, a part of the air path is separated by a partition plate, for example, only on the upstream side of the heat exchanger 50 or only on the downstream side of the heat exchanger 50. You may make it delimit.
  • the installation positions of the noise detection microphones 161 to 163 may be anywhere upstream of the control speakers 181 to 183. Further, the installation positions of the control speakers 181 to 183 may be anywhere as long as they are downstream of the noise detection microphones 161 to 163 and upstream of the silencing effect detection microphones 191 to 193. Further, in the ninth embodiment, the silencing effect detection microphones 191 to 193 are arranged on substantially the extension line of the rotation shafts of the fans 20A to 20C, but the silencing effect detection microphones 191 to 191 are provided on the downstream side of the control speakers 181 to 183. The installation position of 193 may be anywhere. Furthermore, in the ninth embodiment, two to three noise detection microphones, control speakers, muffler effect detection microphones, and signal processing devices are arranged, but the present invention is not limited to this.
  • the blower fan control unit 172 is configured by the CPU 131 in the control device 281, but may be configured by hardware such as LSI (Large Scale Integration) or FPGA (Field Programmable Gate Array). . Further, the configuration of the blower fan control means 172 is not limited to the configuration shown in FIG.
  • the blower fan control means 172 increases the number of rotations of the fans 20A and 20C that are close to the noise reduction effect detection microphones 191 and 192 having a low noise level and has a high noise level.
  • the configuration is such that the rotational speed of the fan 20B close to the detection microphone 193 is low, it may be configured to perform either one of them.
  • the plurality of fans 20A to 20C are arranged, and the control device 281 (more specifically, the blower fan control means 172) that individually controls the rotational speed of the fans 20A to 20C. ) Is provided.
  • the blower fan control means 172 performs control so as to increase the rotational speed of the fan whose distance is close to the muffler effect detection microphone having a small detected noise level among the average values of the noise levels detected by the muffler effect detection microphones 191 to 193. Then, the rotational speed control is performed so as to reduce the rotational speed of the fan that is close to the muffler effect detection microphone having a large detected noise level.
  • the region where the silencing effect is high (that is, the noise level is small) is further enhanced, and the region where the silencing effect is low (that is, the noise level is large) is low. For this reason, noise can be further reduced as compared with an indoor unit that uses a single fan with a silencing mechanism having the same configuration, or an indoor unit that does not perform individual fan control.
  • blower fan control means 172 controls the rotational speeds of the fans 20A to 20C so that the amount of air radiated from the air outlet 3 is the same when the rotational speed control is the same as when performing individual fan control. Therefore, noise can be reduced without deteriorating the aerodynamic performance.
  • the noise radiated from the fans 20A to 20C can be separated, respectively, and the silencing mechanism A is radiated from the fan 20A.
  • the noise reduction mechanism B reduces only the noise emitted from the fan 20C
  • the noise reduction mechanism C reduces only the noise emitted from the fan 20B. For this reason, in each area
  • the air passage of the indoor unit 100 is brought closer to the duct structure, so that noise can be captured in one dimension. For this reason, the phase of the noise transmitted through the interior of the indoor unit 100 becomes uniform, and the phase error when the control sound interferes is reduced, so that a higher noise reduction effect can be obtained compared to the configuration of FIG. . Further, even when there is a fan 20 that is not provided with a silencing mechanism as shown in FIG. 44, by reducing the rotation speed of the fan 20, the noise in the area where the silencing mechanism is not provided is reduced, and the same silencing effect is obtained. Can be obtained.
  • Embodiment 10 When performing individual fan control according to the silencing effect detected by the silencing effect detection microphone, for example, the individual fan control may be performed as follows. In the tenth embodiment, differences from the above-described eighth or ninth embodiment will be mainly described, and the same reference numerals are given to the same portions as those in the eighth or ninth embodiment. is doing.
  • FIG. 45 is a front view showing an indoor unit according to Embodiment 10 of the present invention.
  • the indoor unit 100 according to the tenth embodiment is different from the indoor unit 100 according to the ninth embodiment in that signal lines (signals T1, T2, T3) connected from the signal processing devices 201 to 203 to the blower fan control means 173 are different. Is further provided with a signal line).
  • the structure of the ventilation fan control means 173 is also different from the structure of the ventilation fan control means 172 according to the ninth embodiment.
  • the signals S1, S2, and S3 sent from the signal processing devices 201 to 203 to the blower fan control means 173 are the signals input from the mute effect detection microphones 191 to 193, as in the ninth embodiment.
  • This signal is digitally converted by the A / D converter 152 through the amplifier 151. That is, the signals S1, S2, and S3 are digital values of sound pressure levels detected by the mute effect detection microphones 191 to 193.
  • the newly added signals T1, T2, and T3 are signals obtained by digitally converting the signals input from the noise detection microphones 161 to 163 through the microphone amplifier 151 by the A / D converter 152. That is, the signals T1, T2, and T3 are digital values of sound pressure levels detected by the noise detection microphones 161 to 163.
  • FIG. 46 is a block diagram showing a control apparatus according to Embodiment 10 of the present invention. Various operations and means described below are performed by executing a program incorporated in the control device 281 included in the indoor unit 100. Similar to the configuration described in the ninth embodiment, the control device 281 mainly stores an input unit 130 for inputting a signal from an external input device such as the remote controller 280, a CPU 131 for performing an operation according to a built-in program, and data and programs. A memory 132 is provided. Further, the CPU 131 includes a blower fan control unit 173.
  • the blower fan control means 173 includes the same rotation speed determination means 133, a plurality of coherence calculation means 137 (the same number as the silencing effect detection microphone), a fan individual control rotation speed determination means 134B, and a plurality of SW 135 (the same number as the fan 20). Yes.
  • the rotation speed determination means 133 determines the rotation speed when all the fans 20A to 20C are operated at the same rotation speed based on the operation information input from the remote controller 280.
  • the operation information input from the remote controller 280 is, for example, operation mode information such as a cooling operation mode, a heating operation mode, and a dehumidifying operation mode, and air volume information such as strong, medium, and weak.
  • the coherence calculating means 137 includes digital values S1, S2, S3 of sound pressure levels detected by the mute effect detection microphones 191 to 193 and digital values T1, T2, T3 of sound pressure levels detected by the noise detection microphones 161 to 163. Is input.
  • the coherence calculating means 137 calculates the coherence of S1 and T1, S2 and T2, and S3 and T3.
  • the fan individual control rotation number determining unit 134B controls each of the fans 20A to 20C when performing individual fan control. The number of revolutions is determined.
  • the SW 135 switches the rotation control signals of the fans 20A to 20C sent to the motor drivers 282A to 282C, for example, based on a signal input from the remote controller 280. That is, the SW 135 switches whether the fans 20A to 20C are all operated at the same rotational speed (whether the same rotational speed is controlled) or whether the fans 20A to 20C are respectively operated at individual rotational speeds (whether the fan is individually controlled). Is.
  • the impellers of the fans 20A to 20C rotate, the indoor air is sucked from the upper side of the fans 20A to 20C, and the air is sent to the lower side of the fans 20A to 20C. Airflow is generated. Along with this, a driving sound (noise) is generated in the vicinity of the air outlets of the fans 20A to 20C, and the sound propagates downstream.
  • the air sent by the fans 20A to 20C passes through the air path and is sent to the heat exchanger 50.
  • low-temperature refrigerant is sent to the heat exchanger 50 from a pipe connected to an outdoor unit (not shown).
  • the air sent to the heat exchanger 50 is cooled by the refrigerant flowing through the heat exchanger 50 to become cold air, and is directly discharged into the room from the outlet 3.
  • the operations of the silencing mechanisms A to C are exactly the same as in the ninth embodiment, and the control sound is output so that the noise detected by the silencing effect detection microphones 191 to 193 approaches zero, and as a result, the silencing effect detection The microphones 191 to 193 operate to suppress noise.
  • the silencing effect due to active silencing is greatly influenced by the coherence values of the noise detection microphones 161 to 163 and the silencing effect detection microphones 191 to 193. That is, the noise reduction effect cannot be expected unless the coherence between the noise detection microphones 161 to 163 and the noise reduction effect detection microphones 191 to 193 is high. Conversely, the silencing effect can be predicted from the coherence values of the noise detection microphones 161 to 163 and the silencing effect detection microphones 191 to 193.
  • the indoor unit 100 is based on the coherence values of the noise detection microphones 161 to 163 and the silencing effect detection microphones 191 to 193.
  • the rotation speeds of the fans 20A to 20C are controlled so as to increase the rotation speed of the fan in the area where the silencing effect is estimated to be high and to decrease the rotation speed of the fan in the area where the silencing effect is estimated to be low.
  • Operation information selected by the remote controller 280 is input to the control device 281.
  • the operation information is, for example, operation mode information such as a cooling operation mode, a heating operation mode, and a dehumidifying operation mode.
  • the air volume information such as strong, medium, and weak is similarly input as operation information from the remote controller 280 to the control device 281.
  • the operation information input to the control device 281 is input to the rotation speed determination unit 133 via the input unit 130.
  • the same rotation speed determining means 133 to which the operation information is input determines the rotation speed when the fans 20A to 20C are controlled at the same rotation speed from the input operation information.
  • the fan individual control rotational speed determination means 134B determines the rotation speed of each fan when performing individual fan control. Specifically, the fan speed is close (highly related) to the muffler effect detection microphone with a high coherence value, and the fan is close (highly related) to the noise reduction effect detection microphone with a low coherence value. The number of rotations of the fan is determined so as to reduce the number of rotations. At this time, the rotation speeds of the fans 20A to 20C may be determined so that the air volume obtained in the individual fan control is the same as that in the same rotation speed control.
  • the coherence value between the noise detection microphone 161 and the silencing effect detection microphone 191 is 0.8
  • the coherence between the noise detection microphone 162 and the silencing effect detection microphone 192 is
  • the fan individual control rotation speed determination unit 134B increases the rotation speed of the fans 20A and 20C.
  • the rotational speed of each fan is determined so as to reduce the rotational speed of the fan 20B. Since the air volume and the rotational speed are in a proportional relationship, for example, in the case of the configuration shown in FIG. 45, if the rotational speed of the fan 20A and the fan 20C is increased by 10%, the rotational speed of the fan 20B is decreased by 20%. It becomes.
  • the above-described method for determining the rotational speed of the fans 20A to 20C is merely an example.
  • the coherence value between the noise detection microphone 161 and the silencing effect detection microphone 191 is 0.8
  • the coherence value between the noise detection microphone 162 and the silencing effect detection microphone 192 is 0.7
  • the noise detection microphone 163 When the coherence value with the muffler effect detection microphone 193 is 0.5, the rotational speed of the fan 20A is increased, the rotational speed of the fan 20B is decreased, and the rotational speed of the fan 20C is left as it is. You may determine the rotation speed of a fan.
  • the rotation speed of the fan 20A whose distance is close to the silencing effect detection microphone 191 having the highest coherence value is increased, and the rotation speed of the fan 20B whose distance is closest to the silencing effect detection microphone 193 having the lowest coherence value is decreased.
  • the rotational speed of each fan may be determined so that the rotational speed of the fan 20C remains unchanged.
  • an operation information signal for performing individual fan control (for example, a signal for the silent mode) is input from the remote controller 280, the rotation control signal for the same speed control is changed to the rotation control signal for the individual fan control by switching the SW 135.
  • the rotation control signal is output from the control device 281 to the fans 20A to 20C.
  • the rotation control signal output from the control device 281 is input to the motor drivers 282A to 282C, and the fans 20A to 20C are controlled to the number of rotations according to the rotation control signal.
  • the expected silencing effect varies depending on the coherence values of the noise detection microphones 161 to 163 and the silencing effect detection microphones 191 to 193. That is, it can be inferred that the muffling effect detection microphone with a high coherence value has a high silencing effect, and the silencing effect detection microphone with a low coherence value has a low silencing effect. Therefore, in the indoor unit 100 according to the tenth embodiment provided with a plurality of fans 20A to 20C, the number of rotations of a fan close to the silencing effect detection microphone with a high coherence value is increased, and the silencing effect detection with a low coherence value is detected. The fan speed close to the microphone is reduced.
  • the region where the silencing effect is estimated to be higher has a higher silencing effect, and the region where the silencing effect is estimated to be lower has less noise.
  • emitted from the blower outlet 3 whole can be reduced compared with the indoor unit which uses a single fan, and the indoor unit which does not perform fan separate control.
  • the indoor unit 100 according to the tenth embodiment has aerodynamic performance degradation by individually controlling the rotational speeds of the plurality of fans 20A to 20C so that the airflow is constant when the rotational speed control is performed. Can be suppressed.
  • the silencing effect can be further improved by dividing the air path of the indoor unit 100 into a plurality of regions.
  • the noise radiated from the fans 20A to 20C can be separated into the respective areas, the silencing mechanism A reduces only the noise radiated from the fan 20A, and the silencing mechanism B only the noise radiated from the fan 20C.
  • the silencing mechanism C can reduce only the noise radiated from the fan 20B. Therefore, crosstalk noise components (noise radiated from fans provided in adjacent flow paths) detected by the noise detection microphones 161 to 163 and the silencing effect detection microphones 191 to 193 are reduced.
  • noise can be captured in one dimension because the air path is closer to the duct structure. For this reason, the phase of the noise transmitted through the interior of the indoor unit 100 becomes uniform, and the phase error when the control sound interferes is reduced, so that the silencing effect is further enhanced. Therefore, by dividing the air path of the indoor unit 100 into a plurality of regions, noise can be further reduced compared to the configuration of FIG. Similarly to FIG. 44 of the ninth embodiment, when there is a fan that is not provided with the silencing mechanism, the noise in the area where the silencing mechanism is not provided is reduced by lowering the rotational speed of the fan 20, A similar silencing effect can be obtained.
  • the installation positions of the noise detection microphones 161 to 163 may be anywhere upstream of the control speakers 181 to 183. Further, the installation positions of the control speakers 181 to 183 may be anywhere as long as they are downstream of the noise detection microphones 161 to 163 and upstream of the silencing effect detection microphones 191 to 193. Further, in the tenth embodiment, the muffler effect detection microphones 191 to 193 are arranged on substantially the extension line of the rotation shafts of the fans 20A to 20C, but the muffler effect detection microphones 191 to 193 are provided downstream of the control speakers 181 to 183. The installation position of can be anywhere. Further, in the tenth embodiment, three noise detection microphones, control speakers, muffler effect detection microphones, and signal processing devices are arranged, but the present invention is not limited to this.
  • the blower fan control unit 173 is configured by the CPU 131 in the control device 281, but may be configured by hardware such as LSI (Large Scale Integration) or FPGA (Field Programmable Gate Array). . Further, the configuration of the blower fan control means 173 is not limited to the configuration shown in FIG.
  • the blower fan control means 173 increases the number of rotations of the fans 20A and 20C that are close to the silencing effect detection microphones 191 and 192 having a large coherence value and the silencing effect that has a small coherence value.
  • the configuration is such that the rotational speed of the fan 20B close to the detection microphone 193 is low, it may be configured to perform either one of them.
  • a plurality of fans 20A to 20C are arranged, and the control device 281 (more specifically, the blower fan control means 173) that individually controls the rotational speed of the fans 20A to 20C. ) Is provided.
  • the blower fan control means 173 calculates coherence values between the noise detection microphones 161 to 163 and the silencing effect detection microphones 191 to 193, and the rotation speed of the fan that is close to the silencing effect detection microphone having a high coherence value with the noise detection microphone. And the rotational speed control is performed so as to reduce the rotational speed of the fan that is close to the muffler effect detection microphone having a low coherence value with the noise detection microphone.
  • the region where a high silencing effect can be expected has a higher silencing effect, and the region where no silencing effect can be expected has less noise. For this reason, noise can be further reduced as compared with an indoor unit that uses a single fan with a silencing mechanism having the same configuration, or an indoor unit that does not perform individual fan control.
  • the blower fan control means 173 controls the rotational speeds of the fans 20A to 20C so that the amount of air radiated from the air outlet 3 is the same when the rotational speed control is the same as when the individual fan control is performed. Therefore, noise can be reduced without deteriorating the aerodynamic performance.
  • the noise radiated from the fans 20A to 20C can be separated, respectively, and the silencing mechanism A is radiated from the fan 20A.
  • the noise reduction mechanism B reduces only the noise emitted from the fan 20C
  • the noise reduction mechanism C reduces only the noise emitted from the fan 20B. For this reason, in each area
  • the air passage of the indoor unit 100 is brought closer to the duct structure, so that noise can be captured in one dimension. For this reason, the phase of the noise transmitted through the interior of the indoor unit 100 becomes uniform, and the phase error when the control sound interferes is reduced, so that a higher noise reduction effect can be obtained compared to the configuration of FIG. . Further, even when there is a fan 20 that is not provided with a silencing mechanism, by reducing the rotation speed of the fan 20, noise in a region where the silencing mechanism is not provided is reduced, and a similar silencing effect can be obtained. .
  • the number of revolutions is controlled based on the coherence values of the noise detection microphone and the silencing effect detection microphone. Since the theoretical silencing effect can be estimated from the coherence value, the rotation speed of the fan can be controlled more optimally and finely based on the coherence value of each silencing effect detection microphone. For this reason, the indoor unit 100 which concerns on this Embodiment 10 can acquire a higher noise reduction effect compared with the structure of Embodiment 8 and Embodiment 9. FIG.
  • Embodiment 11 FIG.
  • the silencing mechanism for carrying out the present invention is not limited to the silencing mechanism shown in the eighth to tenth embodiments.
  • an air conditioner having effects similar to those of the eighth to tenth embodiments can be obtained even if a silencer mechanism different from the above is used.
  • an example in which a different silencing mechanism is used for the air conditioner according to the eighth embodiment will be described.
  • differences from the above-described eighth to tenth embodiments will be mainly described, and the same parts as those in the eighth to tenth embodiments are denoted by the same reference numerals. is doing.
  • FIG. 47 is a front view showing the indoor unit according to Embodiment 11 of the present invention.
  • the difference between the indoor unit 100 according to the eleventh embodiment and the indoor unit 100 according to the eighth embodiment is the configuration of the silencer mechanism.
  • two microphones (noise detection microphone 161 and silencing effect detection microphone 191) are used for active silencing.
  • the silencing mechanism D used in the indoor unit 100 according to Embodiment 11 as the silencing mechanism corresponding to the silencing mechanism A is the two microphones of the silencing mechanism A (noise detection microphone 161 and silencing effect detection microphone 191).
  • the silencing mechanism B of the indoor unit 100 according to Embodiment 8 two microphones (noise detection microphone 162 and silencing effect detection microphone 192) are used for active silencing.
  • the silencing mechanism E used in the indoor unit 100 according to Embodiment 11 as the silencing mechanism corresponding to the silencing mechanism B is the two microphones of the silencing mechanism B (noise detection microphone 162 and silencing effect detection microphone 192). Is replaced with one microphone (noise / muffling effect detection microphone 212).
  • the indoor unit 100 according to Embodiment 11 is provided with signal processing devices 204 and 205 instead of the signal processing devices 201 and 202. Note that the configuration of the signal processing devices 204 and 205 is exactly the same as the configuration described in the second embodiment.
  • the impellers of the fans 20A to 20C rotate, the indoor air is sucked from the upper side of the fans 20A to 20C, and the air is sent to the lower side of the fans 20A to 20C. Airflow is generated. Along with this, a driving sound (noise) is generated in the vicinity of the air outlets of the fans 20A to 20C, and the sound propagates downstream.
  • the air sent by the fans 20A to 20C passes through the air path and is sent to the heat exchanger 50.
  • low-temperature refrigerant is sent to the heat exchanger 50 from a pipe connected to an outdoor unit (not shown).
  • the air sent to the heat exchanger 50 is cooled by the refrigerant flowing through the heat exchanger 50 to become cold air, and is directly discharged into the room from the outlet 3.
  • the method for suppressing the operation sound of the indoor unit 100 is exactly the same as in the second embodiment, and the control sound is output so that the noise detected by the noise / silence effect detection microphones 211 and 212 approaches zero.
  • the noise / silencing effect detection microphones 211 and 212 operate to suppress noise.
  • the control sound from the control speakers 181 and 182 is set so that the noise and the silencing effect detection microphones 211 and 212 are opposite in phase to the noise at the installation locations (control points). Is output.
  • the silencing effect is high in the vicinity of the noise / silencing effect detection microphones 211 and 212, but the phase of the control sound changes as the distance from the point increases. Therefore, at a location away from the noise / silence effect detection microphones 211 and 212, the phase shift between the noise and the control sound becomes large and the silencing effect becomes low.
  • the individual fan control of the fans 20A to 20C according to the eleventh embodiment is the same control as the blower fan control unit 171 described in the eighth embodiment.
  • the rotation speed of the fans 20A and 20C which are close to the noise / silence effect detection microphones 211 and 212, is increased, and the noise / silence effect detection microphone 211 is obtained.
  • the noise and the silencing effect detection by the active silencing are increased.
  • the noise near the microphones 211 and 212 is increased, and the silencing effect by the active silencing is reduced.
  • Noise reduction effect detection area The noise in a region away from the microphones 211 and 212 can be reduced.
  • the indoor unit 100 is provided with a plurality of fans 20A to 20C, so that the fans 20A and 20C that are close to the noise / silencing effect detection microphones 211 and 212 (noise with a high silencing effect).
  • the number of rotations of the fan 20B (the fan that emits noise with a low noise reduction effect) far from the noise / silencing effect detection microphones 211 and 212 can be reduced.
  • the region where the silencing effect is high further increases the silencing effect, and the region where the silencing effect is low reduces noise. Therefore, the indoor unit or fan using a single fan Compared with an indoor unit that does not perform individual control, noise radiated from the entire outlet 3 can be reduced. Furthermore, the indoor unit 100 according to the eleventh embodiment has aerodynamic performance degradation by individually controlling the rotational speeds of the fans 20A to 20C so that the airflow is constant when the rotational speed control is performed. Can be suppressed.
  • the silencing effect can be further improved by dividing the air path of the indoor unit 100 into a plurality of regions.
  • FIG. 48 is a front view showing another example of the indoor unit according to Embodiment 11 of the present invention.
  • FIG. 49 is a left side view of the indoor unit shown in FIG. FIG. 49 shows the side wall of the casing 1 of the indoor unit 100 in a transparent manner.
  • the indoor unit 100 shown in FIGS. 48 and 49 divides the air path with the partition plates 90 and 90a, thereby allowing the air blown by the fan 20A to pass through, the air passing through the fan 20B, and the air blown out by the fan 20C. It is divided into the areas where.
  • the control speaker 181 and the noise / silencing effect detection microphone 211 of the silencing mechanism D are arranged in a region through which the air blown by the fan 20A passes.
  • the control speaker 182 and the noise / silencing effect detection microphone 212 of the silencing mechanism E are arranged in a region through which the air blown out by the fan 20C passes.
  • the noise radiated from the fans 20A to 20C can be separated into the respective regions, and the silencing mechanism D reduces only the noise radiated from the fan 20A, and the silencing mechanism E reduces only the noise radiated from the fan 20C. For this reason, it is possible to prevent the noise emitted from the fan 20B from being detected by the noise / muffling effect detection microphones 211 and 212, so that the crosstalk noise components of the noise / muffling effect detection microphones 211 and 212 are reduced.
  • noise can be captured in one dimension because the air path is closer to the duct structure. For this reason, the phase of the noise transmitted through the interior of the indoor unit 100 becomes uniform, and the phase error when the control sound interferes is reduced, so that the silencing effect is further enhanced. Therefore, by configuring the indoor unit 100 as shown in FIGS. 48 and 49, noise can be further reduced compared to the configuration of FIG. 48 and 49, a partition plate is inserted in the entire air path. However, a part of the air path is separated by a partition plate, for example, only on the upstream side of the heat exchanger 50 or only on the downstream side of the heat exchanger 50. You may make it delimit.
  • the noise / silence effect detection microphones 211 and 212 are installed on the downstream side of the control speakers 181 and 182, but the noise / silence effect detection microphones 211 and 212 on the upstream side of the control speakers 181 and 182. May be installed. Furthermore, in the eleventh embodiment, two control speakers, noise / muffling effect detection microphones, and two signal processing devices are arranged, but the present invention is not limited to this.
  • the blower fan control means 171 is configured by the CPU 131 in the control device 281, but is configured by hardware such as LSI (Large Scale Integration) or FPGA (Field Programmable Gate Array). Also good. Further, the configuration of the blower fan control means 171 is not limited to the configuration shown in FIG. 37 as in the eighth embodiment.
  • the blower fan control means 171 increases the rotational speed of the fans 20A and 20C that are close to the noise / silence effect detection microphones 211 and 212 and the rotational speed of the fan 20B that is far away. Although it is configured to be lowered, it may be configured to perform either one of them.
  • the plurality of fans 20A to 20C are arranged, and the control device 281 (more specifically, the blower fan control means 171) controls the rotational speed of the fans 20A to 20C individually. ) Is provided.
  • the blower fan control means 171 controls the fan 20A, 20C blowing to the area in the vicinity of the noise / silence effect detection microphones 211, 212, which is the area where the noise reduction effect is high, to increase the rotation speed, and the noise reduction effect is low.
  • Rotational speed control is performed so as to reduce the rotational speed of the fan 20B that is blowing air to a region far from the noise / silence effect detection microphones 211 and 212, which are regions.
  • the region where the silencing effect is high further increases the silencing effect, and the region where the silencing effect is low has low noise. For this reason, noise can be further reduced as compared with an indoor unit that uses a single fan with a silencing mechanism having the same configuration, or an indoor unit that does not perform individual fan control.
  • blower fan control means 171 controls the rotational speed of the fans 20A to 20C so that the amount of air radiated from the air outlet 3 is the same when the rotational speed control is the same as when the individual fan control is performed. Noise can be reduced without degrading aerodynamic performance.
  • the noise radiated from the fans 20A to 20C can be separated, respectively, and the silencing mechanism D is radiated from the fan 20A.
  • the noise reduction mechanism E reduces only the noise radiated from the fan 20C. For this reason, the crosstalk noise component by the noise radiated
  • the air passage of the indoor unit 100 is brought closer to the duct structure, so that noise can be captured in one dimension. For this reason, the phase of the noise transmitted through the interior of the indoor unit 100 becomes uniform, and the phase error when the control sound interferes is reduced. Further, by reducing the rotational speed of the fan 20B not provided with the silencing mechanism, the noise in the area where the silencing mechanism is not provided is reduced, and a high noise reduction effect can be obtained as compared with the configuration of FIG. .
  • the noise detection microphones 161 and 162 and the silencing effect detection microphones 191 and 192 are integrated into the noise / silencing effect detection microphones 211 and 212, the number of microphones can be reduced. Since the number of points can be reduced, the cost can be further reduced.
  • Embodiment 12 FIG.
  • the silencing mechanism shown in the eleventh embodiment may be used for the indoor unit shown in the ninth embodiment.
  • differences from the above-described eighth to eleventh embodiments will be mainly described, and the same parts as those in the eighth to eleventh embodiments are denoted by the same reference numerals. is doing.
  • FIG. 50 is a front view showing an indoor unit according to Embodiment 12 of the present invention.
  • the indoor unit 100 according to the twelfth embodiment is different from the indoor unit 100 according to the eleventh embodiment in that a silencing mechanism F (a control speaker 183, a noise / silencing effect detection microphone 213, and a signal processing device 206) is provided. Is a point.
  • the configuration of the signal processing device 206 is exactly the same as that of the signal processing devices 204 and 205.
  • a signal line (signal line for sending signals S1, S2, S3) connected from the signal processing devices 204 to 206 to the blower fan control means 172 is also provided.
  • Signals S 1, S 2, and S 3 sent from the signal processing devices 204 to 206 to the blower fan control means 172 are signals input from the noise / silence effect detection microphones 211 to 213 through the microphone amplifier 151 to the A / D converter 152.
  • the configuration of the blower fan control means 172 is the same as the configuration described in the ninth embodiment, and is the configuration shown in FIG.
  • the blower fan control means 172 includes the same rotation speed determination means 133, a plurality of averaging means 136 (the same number as the mute effect detection microphone), a fan individual control rotation speed determination means 134A, and a plurality of SWs 135 (the same number as the fan 20). Yes.
  • the rotation speed determination means 133 determines the rotation speed when all the fans 20A to 20C are operated at the same rotation speed based on the operation information input from the remote controller 280.
  • the operation information input from the remote controller 280 is, for example, operation mode information such as a cooling operation mode, a heating operation mode, and a dehumidifying operation mode, and air volume information such as strong, medium, and weak.
  • the averaging means 136 receives the digital values S1, S2 and S3 of the sound pressure levels detected by the muffler effect detection microphones 191 to 193, and averages these S1, S2 and S3 signals for a certain period of time. To do.
  • the individual fan control rotation speed determination means 134A determines the fans 20A to 20C based on the rotation speed information inputted from the same rotation speed determination means 133 and the signals S1, S2 and S3 averaged by the averaging means 136. The number of rotations for individual fan control is determined.
  • the SW 135 switches the rotation control signals of the fans 20A to 20C sent to the motor drivers 282A to 282C, for example, based on a signal input from the remote controller 280. That is, the SW 135 switches whether the fans 20A to 20C are all operated at the same rotational speed (whether the same rotational speed is controlled) or whether the fans 20A to 20C are respectively operated at individual rotational speeds (whether the fan is individually controlled). Is.
  • the operation of the indoor unit 100 will be described.
  • the difference from the eleventh embodiment is only the operation of the blower fan control means 172.
  • the operation of the blower fan control means 172 is as described in the ninth embodiment. That is, the digital values S1 to S3 of the sound pressure levels detected by the noise / silence effect detecting microphones 211 to 213 are averaged by the averaging means 136 for a certain period. Based on the averaged sound pressure level value and the rotation speed determined by the rotation speed determination means 133, the fan individual control rotation speed determination means 134A determines the rotation speed of each fan when performing fan individual control. To do.
  • the muffler effect detection with a small averaged sound pressure level value is detected by increasing the number of rotations of the fan that is close to (highly related to) the microphone with a small sound pressure level value and having a large averaged sound pressure level value.
  • the rotation speed of the fan is determined so as to reduce the rotation speed of the fan that is close to the microphone (highly related).
  • the rotation speeds of the fans 20A to 20C may be determined so that the air volume obtained in the individual fan control is the same as that in the same rotation speed control.
  • the average value of the noise level detected by the noise / silence effect detection microphone 211 is 45 dB
  • the average value of the noise level detected by the noise / silence effect detection microphone 212 is 45 dB
  • the fan individual control rotation speed determination means 134A increases the rotation speed of the fans 20A and 20C and decreases the rotation speed of the fan 20B.
  • the number of rotations of each fan is determined as follows. Since the air volume and the rotational speed are in a proportional relationship, for example, in the case of the configuration shown in FIG. 50, if the rotational speed of the fan 20A and the fan 20C is increased by 10%, the rotational speed of the fan 20B is decreased by 20%. It becomes.
  • the above-described method for determining the rotational speed of the fans 20A to 20C is merely an example.
  • the average value of the noise level detected by the noise / silence effect detection microphone 211 is 45 dB
  • the average value of the noise level detected by the noise / silence effect detection microphone 212 is 47 dB
  • the noise detected by the noise / silence effect detection microphone 213 If the average value of the levels is 50 dB, the rotational speed of each fan is determined so that the rotational speed of the fan 20A is increased, the rotational speed of the fan 20B is decreased, and the rotational speed of the fan 20C is left as it is. Good.
  • the rotation speed of the fan 20A whose distance is close to the noise / silencing effect detection microphone 211 with the smallest detected noise level is increased, and the fan 20B whose distance is close to the noise / silence effect detection microphone 213 with the largest detected noise level.
  • the rotational speed of each fan may be determined so that the rotational speed is lowered and the rotational speed of the fan 20C that is neither of them is left as it is.
  • an operation information signal for performing individual fan control for example, a signal such as a silent mode
  • the rotational speed of each fan is individually controlled. That is, when an operation information signal for performing individual fan control (for example, a signal such as a silent mode) is input from the remote controller 280, the rotation control in the individual fan control is performed from the rotation control signal of the same rotation speed control by switching the SW 135.
  • the rotation control signal is output from the control device 281 to the fans 20A to 20C.
  • the rotation control signal output from the control device 281 is input to the motor drivers 282A to 282C, and the fans 20A to 20C are controlled to the number of rotations according to the rotation control signal.
  • the magnitude of the crosstalk noise component from the adjacent fan is larger than that in the vicinity of the noise / silencing effect detection microphone 213 due to the magnitude of the crosstalk noise component.
  • the noise reduction effect is enhanced in the area near the noise / silence effect detection microphones 211 and 212. That is, the noise level detected in the area near the noise / silence effect detection microphones 211 and 212 is smaller than that in the area near the noise / silence effect detection microphone 213.
  • the noise reduction effect is low.
  • the detected noise level among the average values of the noise level values detected by the noise / silence effect detecting microphones 211 to 213 is detected.
  • the rotation speed of the fans 20A, 20C close to the noise / silence effect detection microphones 211, 212 having a small average value is increased, and the detected noise / silence effect detection microphone 213 having a large average noise level is detected.
  • the rotation speed is lowered.
  • the region where the silencing effect is high further increases the silencing effect, and the region where the silencing effect is low reduces noise. Therefore, the indoor unit or fan using a single fan Compared with an indoor unit that does not perform individual control, noise radiated from the entire outlet 3 can be reduced. Furthermore, the indoor unit 100 according to the twelfth embodiment has aerodynamic performance degradation by individually controlling the rotational speeds of the fans 20A to 20C so that the airflow is constant when the rotational speed control is performed. Can be suppressed.
  • the silencing effect can be further improved by dividing the air path of the indoor unit 100 into a plurality of regions.
  • FIG. 51 is a front view showing another example of the indoor unit according to Embodiment 12 of the present invention.
  • FIG. 52 is a left side view of the indoor unit shown in FIG. FIG. 52 shows the side wall of the casing 1 of the indoor unit 100 in a translucent manner.
  • the indoor unit 100 shown in FIGS. 51 and 52 divides the air path with the partition plates 90 and 90a, thereby allowing the air blown by the fan 20A to pass through, the air passing through the fan 20B, and the air blown out by the fan 20C. It is divided into the areas where.
  • the control speaker 181 and the noise / silencing effect detection microphone 211 of the silencing mechanism D are arranged in a region through which the air blown by the fan 20A passes.
  • control speaker 182 and the noise / silencing effect detection microphone 212 of the silencing mechanism E are arranged in a region through which the air blown out by the fan 20C passes. Further, the control speaker 183 and the noise / silencing effect detection microphone 213 of the silencing mechanism F are arranged in a region through which the air blown out by the fan 20B passes.
  • the noise radiated from the fans 20A to 20C can be separated into the respective regions, and the silencing mechanism D reduces only the noise radiated from the fan 20A, and the silencing mechanism E reduces only the noise radiated from the fan 20C, and the silencing mechanism F reduces only the noise radiated from the fan 20B.
  • the crosstalk noise component noise radiated from the fan provided in the adjacent flow path detected by the noise / silencing effect detection microphones 211 to 213 is reduced.
  • noise can be captured in one dimension because the air path is closer to the duct structure. For this reason, the phase of the noise transmitted through the interior of the indoor unit 100 becomes uniform, and the phase error when the control sound interferes is reduced, so that the silencing effect is further enhanced. Therefore, by configuring the indoor unit 100 as shown in FIGS. 51 and 52, noise can be further reduced compared to the configuration of FIG. 51 and 52, a partition plate is inserted in the entire air path. However, a part of the air path is separated by a partition plate, for example, only on the upstream side of the heat exchanger 50 or only on the downstream side of the heat exchanger 50. You may make it delimit.
  • the eleventh embodiment even when there is a fan 20 that is not provided with a silencing mechanism as shown in FIG. 53, the noise in the area where the silencing mechanism is not provided by reducing the rotation speed of the fan 20. Can be reduced, and a similar silencing effect can be obtained.
  • the noise / silencing effect detection microphones 211 to 213 are installed on the downstream side of the control speakers 181 to 183, but the noise / silence effect detection microphones 211 to 213 are installed on the upstream side of the control speakers 181 to 183. May be installed. Furthermore, in the twelfth embodiment, two to three control speakers, noise / muffling effect detection microphones, and signal processing devices are arranged, but the present invention is not limited to this.
  • the blower fan control unit 172 is configured by the CPU 131 in the control device 281, but is configured by hardware such as LSI (Large Scale Integration) or FPGA (Field Programmable Gate Array). Also good. Further, the configuration of the blower fan control means 172 is not limited to the configuration shown in FIG. 41 as in the ninth embodiment.
  • the blower fan control means 172 increases the number of rotations of a fan that is close to the noise / silence effect detection microphone with a low noise level and also has a noise / silence effect detection microphone with a large noise level.
  • the configuration is such that the number of rotations of a fan with a short distance is reduced, it may be configured to perform either one of them.
  • the plurality of fans 20A to 20C are arranged, and the control device 281 for controlling the rotational speed of the fans 20A to 20C individually (more specifically, the blower fan control means 172). ) Is provided.
  • the blower fan control means 172 increases the rotation speed of the fan whose distance is close to the noise / silence effect detection microphone having a small detected noise level among the average values of the noise levels detected by the noise / silence effect detection microphones 211 to 213.
  • the rotational speed control is performed so as to reduce the rotational speed of the blower fan that is close to the noise / silencing effect detection microphone having a large detected noise level.
  • the region where the silencing effect is high (that is, the noise level is small) is further enhanced, and the region where the silencing effect is low (that is, the noise level is large) is low. For this reason, noise can be further reduced as compared with an indoor unit that uses a single fan with a silencing mechanism having the same configuration, or an indoor unit that does not perform individual fan control.
  • blower fan control means 172 controls the rotational speed of the fans 20A to 20C so that the amount of air radiated from the blowout port 3 is the same when the same rotational speed control is performed as when the individual fan control is performed. Noise can be reduced without degrading aerodynamic performance.
  • the noise radiated from the fans 20A to 20C can be separated, respectively, and the silencing mechanism D is radiated from the fan 20A.
  • the noise reduction mechanism E reduces only the noise emitted from the fan 20C
  • the noise reduction mechanism F reduces only the noise emitted from the fan 20B. For this reason, in each area
  • the air passage of the indoor unit 100 is brought closer to the duct structure, so that noise can be captured in one dimension. For this reason, the phase of the noise transmitted through the interior of the indoor unit 100 becomes uniform, and the phase error when the control sound interferes is reduced. Therefore, the silencing effect in the noise / silencing effect detection microphones 211 to 213 is increased, and noise can be further reduced as compared with the configuration of FIG. Further, even when there is a fan 20 that is not provided with a silencing mechanism, by reducing the rotation speed of the fan 20, noise in a region where the silencing mechanism is not provided is reduced, and a similar silencing effect can be obtained. .
  • the noise detection microphones 161 to 163 and the silencing effect detection microphones 191 to 193 are integrated into the noise / silencing effect detection microphones 211 to 213, the number of microphones can be reduced, and the parts can be reduced. The number of points can be reduced and the cost can be further reduced.
  • a noise releasing effect detection microphone or a noise / silence effect detection microphone that emits highly relevant noise (that is, the silence effect detection microphone or the noise / silence effect detection microphone has a silence effect).
  • the fan that emits noise that can be easily exerted is a fan that is close to the mute effect detection microphone or the noise / mute effect detection microphone.
  • a fan that emits noise that is highly relevant to the mute effect detection microphone or the noise / mute effect detection microphone (that is, the mute effect detection microphone or the noise / mute effect detection microphone emits noise that can easily exert a mute effect) Fan) may be the following fan.
  • an air conditioner according to the eighth embodiment will be described as an example.
  • differences from the above-described eighth to twelfth embodiments will be mainly described, and the same parts as those in the eighth to twelfth embodiments are denoted by the same reference numerals. is doing.
  • the basic configuration of the indoor unit 100 according to the thirteenth embodiment is the same as that of FIG. 35 described in the eighth embodiment.
  • the indoor unit 100 according to the thirteenth embodiment is different from the indoor unit 100 according to the eighth embodiment in that the blower fan information input to the memory 132 of the control device 281 is different. That is, the indoor unit 100 according to the thirteenth embodiment is different from the indoor unit 100 according to the eighth embodiment in that the blower fan information input from the memory 132 to the fan individual control rotation speed determining means 134 is different.
  • control speakers 181 and 182 are installed as follows. It is installed on 100 sides. Since the control speakers 181 and 182 have a certain thickness, if they are installed on the front surface or the rear surface of the indoor unit 100, the air passage is blocked, leading to deterioration of aerodynamic performance. For this reason, in the thirteenth embodiment, control speakers 181 and 182 are arranged in a machine box (a box in which a control board or the like is stored, not shown) provided on both side portions of the casing 1. By arranging the control speakers 181 and 182 in this way, the control speakers 181 and 182 can be prevented from protruding into the air path.
  • a machine box a box in which a control board or the like is stored, not shown
  • the identification number of the fan 20 that is close to the mute effect detection microphones 191 and 192 is used as the blower fan information.
  • the identification numbers of the fans 20 installed at both ends of the casing 1 of the indoor unit 100 are used as the blower fan information. That is, as can be seen from FIG. 35, the blower fan information in the thirteenth embodiment is the identification number of the fan 20A and the fan 20C.
  • the operation in the indoor unit 100 is the same as the operation described in the eighth embodiment. Therefore, hereinafter, individual fan control of the fans 20A to 20C will be described.
  • the fan individual control rotation speed determination means 134 of the blower fan control means 171 is based on the rotation speed information determined by the rotation speed determination means 133 and the blower fan information read from the memory 132. The number of rotations of each fan 20 when performing individual control is determined. Specifically, the fan individual control rotation speed determination means 134 increases the rotation speed of the fans 20A and 20C whose identification number is input to the memory 132, and the rotation speed of the fan 20B whose identification number is not input to the memory 132. Lower.
  • the fan individual control rotation speed determining means 134 increases the rotation speed of the fans 20A and 20C installed at both ends of the casing 1 of the indoor unit 100, and is installed at other than both ends of the casing 1 of the indoor unit 100.
  • the rotation speed of the fan 20B is reduced.
  • the rotation speeds of the fans 20A to 20C may be determined so that the air volume obtained in the individual fan control is the same as that in the same rotation speed control.
  • an operation information signal for performing individual fan control (for example, a signal for the silent mode) is input from the remote controller 280, the rotation control signal for the same speed control is changed to the rotation control signal for the individual fan control by switching the SW 135.
  • the rotation control signal is output from the control device 281 to the fans 20A to 20C.
  • the rotation control signal output from the control device 281 is input to the motor drivers 282A to 282C, and the fans 20A to 20C are controlled to the number of rotations according to the rotation control signal.
  • Crosstalk noise when detecting noise from the fans 20A and 20C at both ends is actively silenced when noise from the fans 20B other than both ends is actively silenced.
  • the ingredients are different. This is because when noise radiated from the fan 20B is detected, noise radiated from the adjacent fans 20A and 20C also enters as a crosstalk noise component.
  • the indoor unit 100 is configured to include a plurality of fans 20A to 20C, and at the time of noise detection, the rotational speeds of the fans 20A and 20C at both ends having a small crosstalk noise component are increased to detect noise. Sometimes the rotational speed of the fan 20B other than both ends where the crosstalk noise component is large is lowered.
  • the indoor unit 100 according to the thirteenth embodiment has a higher silencing effect in a region where the silencing effect is high, and noise is small in a region where the silencing effect is low. Therefore, the indoor unit or fan using a single fan Compared with an indoor unit that does not perform individual control, noise radiated from the entire outlet 3 can be reduced. Furthermore, the indoor unit 100 according to the thirteenth embodiment has aerodynamic performance degradation by individually controlling the rotational speeds of the plurality of fans 20A to 20C so that the airflow is constant when the rotational speed is controlled. Can be suppressed.
  • control speakers 181 and 182 are installed on both side surfaces of the indoor unit 100 so that the control speakers 181 and 182 do not protrude into the air path. For this reason, it is possible to prevent pressure loss caused by the control speakers 181 and 182 protruding into the air path, and to prevent aerodynamic performance deterioration.
  • the air path of the indoor unit 100 is divided into a plurality of regions. Further, the silencing effect can be further improved.
  • the noise radiated from the fans 20A to 20C can be separated into the respective regions, and the silencing mechanism A is used in the fan 20A. Only the noise radiated from the fan 20C is reduced, and the silencing mechanism B reduces only the noise radiated from the fan 20C. Therefore, it is possible to prevent the noise detection microphones 161 and 162 and the silencing effect detection microphones 191 and 192 from detecting the noise radiated from the fan 20B, and thus the noise detection microphones 161 and 162 and the silencing effect detection microphones 191 and 192.
  • the crosstalk noise component of becomes smaller.
  • noise can be captured in one dimension because the air path is closer to the duct structure. For this reason, the phase of the noise transmitted through the interior of the indoor unit 100 becomes uniform, and the phase error when the control sound interferes is reduced, so that the silencing effect is further enhanced.
  • the noise in the area where the silencing mechanism is not provided is reduced. Therefore, also in the indoor unit 100 according to the thirteenth embodiment, by dividing the air path of the indoor unit 100 into a plurality of regions, noise can be further reduced compared to the configuration of FIG.
  • the partition plate does not need to be provided in the entire air path, and a part of the air path may be partitioned by the partition plate, for example, only on the upstream side of the heat exchanger 50 or only on the downstream side of the heat exchanger 50. Good.
  • the noise detection microphones 161 and 162 are installed on both sides of the indoor unit 100.
  • the noise detection microphones 161 and 162 may be installed anywhere as long as they are upstream of the control speakers 181 and 182.
  • the silencing effect detection microphones 191 and 192 are arranged on substantially the extension lines of the rotation axes of the fans 20A and 20C, but the silencing effect detection microphones 191 and 191 are provided on the downstream side of the control speakers 181 and 182.
  • the installation position of 192 may be anywhere.
  • two noise detection microphones, control speakers, muffler effect detection microphones, and signal processing devices are arranged, but the present invention is not limited to this.
  • the blower fan control means 171 is configured by the CPU 131 in the control device 281.
  • the blower fan control means 171 is implemented by hardware such as LSI (Large Scale Integration) or FPGA (Field Programmable Gate Array). May be configured.
  • LSI Large Scale Integration
  • FPGA Field Programmable Gate Array
  • the blower fan control means 171 is configured to increase the rotation speed of the fans 20A and 20C at both ends of the indoor unit 100 and to decrease the rotation speed of the fan 20B other than both ends. However, you may comprise so that either one may be performed.
  • the plurality of fans 20A to 20C are arranged, and the blower fan control means 171 for individually controlling the rotation speed of the fans 20A to 20C is provided.
  • the blower fan control means 171 controls the fan 20A, 20C installed at both ends of the indoor unit 100 to increase the rotation speed, and reduces the rotation speed of the fan 20B installed outside the both ends of the indoor unit 100.
  • Rotational speed control is performed as follows. For this reason, the region where the crosstalk noise component from the adjacent fan is small and the silencing effect is high further increases the silencing effect, and the region where the crosstalk noise component is large and the silencing effect is low decreases the noise. For this reason, a high noise reduction effect can be obtained as compared with an indoor unit that uses a single fan with the silencer mechanism having the same configuration or an indoor unit that does not perform individual fan control.
  • blower fan control means 171 controls the rotational speeds of the fans 20A to 20C so that the amount of air radiated from the air outlet 3 is the same when the same rotational speed control is performed as when the individual fan control is performed. Therefore, noise can be reduced without deteriorating the aerodynamic performance.
  • control speakers 181 and 182 are installed on both side surfaces of the indoor unit 100 so that the control speakers 181 and 182 do not protrude into the air path. For this reason, it is possible to prevent pressure loss caused by the control speakers 181 and 182 protruding into the air path, and to prevent aerodynamic performance deterioration.
  • the noise radiated from the fans 20A to 20C can be separated, respectively, and the silencing mechanism A is radiated from the fan 20A.
  • the noise reduction mechanism B reduces only the noise radiated from the fan 20C. For this reason, the crosstalk noise component by the noise radiated
  • the air passage of the indoor unit 100 is brought closer to the duct structure, so that noise can be captured in one dimension. For this reason, the phase of the noise transmitted through the interior of the indoor unit 100 becomes uniform, and the phase error when the control sound interferes is reduced. Further, by reducing the rotation speed of the fan 20B not provided with the silencer mechanism, the noise in the area where the silencer mechanism is not provided is reduced, and a higher noise reduction effect can be obtained compared to the configuration of FIG. it can.
  • Embodiment 14 the blower fan information shown in the thirteenth embodiment may be used for the indoor unit according to the eleventh embodiment.
  • the fourteenth embodiment differences from the above-described eighth to thirteenth embodiments will be mainly described, and the same parts as those in the eighth to thirteenth embodiments are denoted by the same reference numerals. is doing.
  • the basic configuration of the indoor unit 100 according to Embodiment 14 is the same as that in FIG. 47 described in Embodiment 11.
  • the indoor unit 100 according to the fourteenth embodiment is different from the indoor unit 100 according to the eleventh embodiment in that the blower fan information input to the memory 132 of the control device 281 is different.
  • the identification numbers of the fans 20 installed at both ends of the casing 1 of the indoor unit 100 are used as the blower fan information. That is, as can be seen from FIG. 47, the blower fan information in the fourteenth embodiment is the identification number of the fan 20A and the fan 20C.
  • control speakers 181 and 182 are connected as follows. It is installed on 100 sides. Since the control speakers 181 and 182 have a certain thickness, if they are installed on the front surface or the rear surface of the indoor unit 100, the air passage is blocked, leading to deterioration of aerodynamic performance. For this reason, in the fourteenth embodiment, control speakers 181 and 182 are arranged in a machine box (a box in which a control board or the like is stored, not shown) provided on both side portions of the casing 1. By arranging the control speakers 181 and 182 in this way, the control speakers 181 and 182 can be prevented from protruding into the air path.
  • a machine box a box in which a control board or the like is stored, not shown
  • the operation in the indoor unit 100 is the same as the operation described in the eleventh embodiment. Therefore, hereinafter, individual fan control of the fans 20A to 20C will be described.
  • the fan individual control rotation speed determination means 134 of the blower fan control means 171 is based on the rotation speed information determined by the rotation speed determination means 133 and the blower fan information read from the memory 132, as in the eleventh embodiment. The number of rotations of each fan when performing individual control is determined. Specifically, the fan individual control rotation speed determination means 134 increases the rotation speed of the fans 20A and 20C whose identification number is input to the memory 132, and the rotation speed of the fan 20B whose identification number is not input to the memory 132. Lower.
  • the fan individual control rotation speed determining means 134 increases the rotation speed of the fans 20A and 20C installed at both ends of the casing 1 of the indoor unit 100, and is installed at other than both ends of the casing 1 of the indoor unit 100.
  • the rotation speed of the fan 20B is reduced.
  • the rotation speeds of the fans 20A to 20C may be determined so that the air volume obtained in the individual fan control is the same as that in the same rotation speed control.
  • an operation information signal for performing individual fan control (for example, a signal for the silent mode) is input from the remote controller 280, the rotation control signal for the same speed control is changed to the rotation control signal for the individual fan control by switching the SW 135.
  • the rotation control signal is output from the control device 281 to the fans 20A to 20C.
  • the rotation control signal output from the control device 281 is input to the motor drivers 282A to 282C, and the fans 20A to 20C are controlled to the number of rotations according to the rotation control signal.
  • Crosstalk noise when detecting noise from the fans 20A and 20C at both ends is actively silenced when noise from the fans 20B other than both ends is actively silenced.
  • the ingredients are different. This is because when noise radiated from the fan 20B is detected, noise radiated from the adjacent fans 20A and 20C also enters as a crosstalk noise component.
  • the indoor unit 100 is provided with a plurality of fans 20A to 20C, and the rotational speeds of the fans 20A and 20C at both ends having a small crosstalk noise component are increased during noise detection to detect noise. Sometimes the rotational speed of the fan 20B other than both ends where the crosstalk noise component is large is lowered.
  • an area with a high silencing effect has a higher silencing effect, and an area with a low silencing effect has a low noise level. Therefore, an indoor unit or fan that uses a single fan. Compared with an indoor unit that does not perform individual control, noise radiated from the entire outlet 3 can be reduced. Furthermore, in the indoor unit 100 according to Embodiment 14, the aerodynamic performance is deteriorated by individually controlling the rotational speeds of the fans 20A to 20C so that the airflow is constant when the rotational speed is controlled. Can be suppressed.
  • control speakers 181 and 182 are installed on both side surfaces of the indoor unit 100 so that the control speakers 181 and 182 do not protrude into the air path. For this reason, it is possible to prevent pressure loss caused by the control speakers 181 and 182 protruding into the air path, and to prevent aerodynamic performance deterioration.
  • the air path of the indoor unit 100 is divided into a plurality of regions. Further, the silencing effect can be further improved.
  • the noise radiated from the fans 20A to 20C can be separated into the respective regions, and the silencing mechanism D is used in the fan 20A. Only the noise radiated from the fan 20C is reduced, and the silencing mechanism E reduces only the noise radiated from the fan 20C. For this reason, it is possible to prevent the noise / silencing effect detection microphones 211 and 212 emitted from the fan 20B from being detected, so that the crosstalk noise component of the noise / silence effect detection microphones 211 and 212 is reduced.
  • noise can be captured in one dimension because the air path is closer to the duct structure. For this reason, the phase of the noise transmitted through the interior of the indoor unit 100 becomes uniform, and the phase error when the control sound interferes is reduced, so that the silencing effect is further enhanced.
  • the noise in the area where the silencing mechanism is not provided is reduced. Therefore, also in the indoor unit 100 according to the fourteenth embodiment, by dividing the air path of the indoor unit 100 into a plurality of regions, noise can be further reduced compared to the configuration of FIG.
  • the partition plate does not need to be provided in the entire air path, and a part of the air path may be partitioned by the partition plate, for example, only on the upstream side of the heat exchanger 50 or only on the downstream side of the heat exchanger 50. Good.
  • the noise / silence effect detection microphones 211 and 212 are installed on the downstream side of the control speakers 181 and 182, but the noise / silence effect detection microphones 211 and 212 on the upstream side of the control speakers 181 and 182. May be installed. Furthermore, in the fourteenth embodiment, two control speakers, noise / muffling effect detection microphones, and two signal processing devices are arranged, but the present invention is not limited to this.
  • the blower fan control means 171 is configured by the CPU 131 in the control device 281, but is configured by hardware such as LSI (Large Scale Integration) or FPGA (Field Programmable Gate Array). Also good. Further, the configuration of the blower fan control means 171 is not limited.
  • the blower fan control means 171 is configured to increase the rotational speed of the fans 20A and 20C at both ends of the indoor unit 100 and to decrease the rotational speed of the fan 20B other than both ends. However, you may comprise so that either one may be performed.
  • the plurality of fans 20A to 20C are arranged, and the blower fan control means 171 for individually controlling the rotational speed of the fans 20A to 20C is provided.
  • the blower fan control means 171 controls the fan 20A, 20C installed at both ends of the indoor unit 100 to increase the rotation speed, and reduces the rotation speed of the fan 20B installed outside the both ends of the indoor unit 100.
  • Rotational speed control is performed as follows. For this reason, the region where the crosstalk noise from the adjacent fan is small and the silencing effect is high is further enhanced, and the region where the crosstalk noise is large and the silencing effect is low is low. For this reason, noise can be further reduced as compared with an indoor unit that uses a single fan with a silencing mechanism having the same configuration, or an indoor unit that does not perform individual fan control.
  • blower fan control means 171 controls the rotational speeds of the fans 20A to 20C so that the amount of air radiated from the air outlet 3 is the same when the same rotational speed control is performed as when the individual fan control is performed. Therefore, noise can be reduced without deteriorating the aerodynamic performance.
  • control speakers 181 and 182 are installed on both side surfaces of the indoor unit 100 so that the control speakers 181 and 182 do not protrude into the air path. For this reason, it is possible to prevent pressure loss caused by the control speakers 181 and 182 protruding into the air path, and to prevent aerodynamic performance deterioration.
  • the noise radiated from the fans 20A to 20C can be separated, respectively, and the silencing mechanism D is radiated from the fan 20A.
  • the noise reduction mechanism E reduces only the noise radiated from the fan 20C. For this reason, the crosstalk noise component by the noise radiated
  • the air passage of the indoor unit 100 is brought closer to the duct structure, so that noise can be captured in one dimension. For this reason, the phase of the noise transmitted through the interior of the indoor unit 100 becomes uniform, and the phase error when the control sound interferes is reduced. Further, by reducing the rotation speed of the fan 20B not provided with the silencer mechanism, the noise in the area where the silencer mechanism is not provided is reduced, and a higher noise reduction effect can be obtained compared to the configuration of FIG. it can.
  • the noise detection microphones 161 and 162 and the silencing effect detection microphones 191 and 192 are integrated into the noise / silencing effect detection microphones 211 and 212, the number of microphones can be reduced. Since the number of points can be reduced, the cost can be further reduced.
  • Embodiment 15 When performing individual fan control according to the silencing effect of the silencing effect detection microphone or the noise / silencing effect detection microphone, for example, the individual fan control may be performed as follows.
  • the fifteenth embodiment differences from the above-described eighth to fourteenth embodiments will be mainly described, and the same parts as those in the eighth to fourteenth embodiments are denoted by the same reference numerals. is doing.
  • FIG. 54 is a front view showing an indoor unit according to Embodiment 15 of the present invention.
  • the indoor unit 100 according to the fifteenth embodiment is different from the indoor unit 100 according to the ninth embodiment only in the configuration of the blower fan control means 174.
  • FIG. 55 is a block diagram showing a control apparatus according to Embodiment 15 of the present invention. Various operations and means described below are performed by executing a program incorporated in the control device 281 included in the indoor unit 100. Similar to the configuration described in the eighth to fourteenth embodiments, the control device 281 mainly includes an input unit 130 for inputting a signal from an external input device such as the remote controller 280, a CPU 131 for performing an operation according to an embedded program, A memory 132 for storing data and programs is provided. Furthermore, the CPU 131 according to the fifteenth embodiment includes a blower fan control unit 174.
  • the blower fan control means 174 includes the same rotation speed determination means 133, a plurality of silence volume calculation means 138 (the same number as the silencing effect detection microphone), a fan individual control rotation speed determination means 134C, and a plurality of SW 135 (the same number as the fan 20). ing.
  • the rotation speed determination means 133 determines the rotation speed when all the fans 20A to 20C are operated at the same rotation speed based on the operation information input from the remote controller 280.
  • the operation information input from the remote controller 280 is, for example, operation mode information such as a cooling operation mode, a heating operation mode, and a dehumidifying operation mode, and air volume information such as strong, medium, and weak.
  • the muffling volume calculation means 138 receives the digital values S1, S2 and S3 of the sound pressure levels detected by the muffling effect detection microphones 191 to 193, and calculates the muffling volume from these S1, S2 and S3 signals. To do.
  • the individual fan control rotation speed determination means 134C is based on the silence volume calculated by the silence volume calculation means 138 and the blower fan information stored in the memory 132, and each revolution speed when the fans 20A to 20C are individually controlled. Is to determine.
  • the blower fan information is information on the fan 20 that is highly related to the muffler effect detection microphones 191 to 193.
  • the SW 135 switches the rotation control signals of the fans 20A to 20C sent to the motor drivers 282A to 282C, for example, based on a signal input from the remote controller 280. That is, the SW 135 switches whether the fans 20A to 20C are all operated at the same rotational speed (whether the same rotational speed is controlled) or whether the fans 20A to 20C are respectively operated at individual rotational speeds (whether the fan is individually controlled). Is.
  • FIG. 56 is a block diagram showing a muffled sound level calculation means according to Embodiment 15 of the present invention.
  • the muffled sound volume calculating means 138 averages the input signal (S1, S2 or S3), and the pre-control sound pressure level for storing the sound pressure level before starting the active mute control.
  • a storage unit 139 and a differentiator 140 are provided.
  • the impellers of the fans 20A to 20C rotate, the indoor air is sucked from the upper side of the fans 20A to 20C, and the air is sent to the lower side of the fans 20A to 20C. Airflow is generated. Along with this, a driving sound (noise) is generated in the vicinity of the air outlets of the fans 20A to 20C, and the sound propagates downstream.
  • the air sent by the fans 20A to 20C passes through the air path and is sent to the heat exchanger 50.
  • low-temperature refrigerant is sent to the heat exchanger 50 from a pipe connected to an outdoor unit (not shown).
  • the air sent to the heat exchanger 50 is cooled by the refrigerant flowing through the heat exchanger 50 to become cold air, and is directly discharged into the room from the outlet 3.
  • the operations of the silencing mechanisms A to C are exactly the same as in the ninth embodiment, and the control sound is output so that the noise detected by the silencing effect detection microphones 191 to 193 approaches zero, and as a result, the silencing effect detection The microphones 191 to 193 operate to suppress noise.
  • the silencing effect detection microphone 193 also includes noise (crosstalk noise component) radiated from the adjacent fans 20A and 20C in addition to the noise radiated from the fan 20B.
  • noise crosstalk noise component
  • the crosstalk noise component detected by the silencing effect detection microphones 191 and 192 is smaller than the crosstalk noise component detected by the silencing effect detection microphone 193. This is because the silencing effect detection microphones 191 and 192 have only one adjacent fan (fan 20B). For this reason, the silencing effect of the silencing mechanisms A and B is higher than that of the silencing mechanism C.
  • Operation information selected by the remote controller 280 is input to the control device 281.
  • the operation information is, for example, operation mode information such as a cooling operation mode, a heating operation mode, and a dehumidifying operation mode.
  • the air volume information such as strong, medium, and weak is similarly input as operation information from the remote controller 280 to the control device 281.
  • the operation information input to the control device 281 is input to the rotation speed determination unit 133 via the input unit 130.
  • the same rotation speed determining means 133 to which the operation information is input determines the rotation speed when the fans 20A to 20C are controlled at the same rotation speed from the input operation information. When the individual fan control is not performed, all the fans 20A to 20C are controlled at the same rotational speed.
  • S1 to S3 (the digital value of the sound pressure level detected by the mute effect detection microphones 191 to 193) is input from the signal processing devices 201 to 203 to the averaging unit 136 to the mute volume calculation unit 138. Further, the sound dead volume calculating means 138 averages the sound pressure level detected by the sound deadening effect detecting microphones 191 to 193 for a certain period of time before performing the active sound deadening control, and the averaged sound pressure level is averaged. This is stored in the pre-control sound pressure level storage means 139. Next, the silence volume calculation means 138 averages the sound pressure levels detected by the silence effect detection microphones 191 to 193 during the active silence control by the averaging means 136 for a certain period.
  • the muffled sound volume calculation means 138 reads “the sound pressure level obtained by averaging the sound pressure levels detected by the mute effect detection microphones 191 to 193 during the active mute control for a certain period of time by the averaging means 136” and “active mute control. Difference from “the sound pressure level obtained by averaging the sound pressure levels detected by the muffler effect detection microphones 191 to 193 before being performed by the averaging means 136 for a certain period” (stored in the pre-control sound pressure level storage means 139) From the above, the silence volume is calculated. The silence volume calculated by the silence volume calculation means 138 is input to the fan individual control rotation speed determination means 134C.
  • the memory 132 stores air blower information.
  • the blower fan information is information on the fan 20 that emits noise most relevant to the sound detected by the muffler effect detection microphones 191 to 193. These identification numbers are assigned to each silencing effect detection microphone. In the fifteenth embodiment, the identification number serving as the blower fan information is obtained as follows. For example, it is confirmed which sound detected by the muffler effect detection microphone 191 is most relevant to which of the noises radiated from the fans 20A to 20C. When the sound detected by the silencing effect detection microphone 191 is most relevant to the noise emitted from the fan 20A, the blower fan information corresponding to the silencing effect detection microphone 191 is an identification number indicating the fan 20A. Similarly, corresponding blowing fan information is determined for the silencing effect detection microphones 192 and 193 and stored in the memory 132 in advance.
  • the determination of the blower fan information may be performed as follows, for example.
  • the noise detected from the fans 20A to 20C is detected by a microphone that accurately detects the fans 20A to 20C in a state in which the fans 20A to 20C are operated before product shipment.
  • the coherence value between the sound detected by these microphones and the sound detected by the mute effect detection microphone 191 is measured.
  • the microphone of the detection value having the highest coherence value with respect to the detection value of the muffler effect detection microphone 191 is determined.
  • the identification number of the fan 20 that emits noise detected by the microphone is the blower fan information corresponding to the silencing effect detection microphone 191.
  • the blower fan information corresponding to the silencing effect detection microphones 192 and 193 may be determined in the same manner.
  • the determination of the blower fan information may be performed as follows, for example.
  • Coherence calculation means 137 as shown in the tenth embodiment is mounted on the blower fan control means 174 of the indoor unit 100. Then, during operation after product shipment, the coherence value between the detection values of the noise detection microphones 161 to 163 and the detection values of the silencing effect detection microphones 191 to 193 is measured. The identification number of the fan 20 that is closest to the noise detection microphone having the highest coherence value for each of the mute effect detection microphones 191 to 193 may be used as the blower fan information.
  • the method of determining the blower fan information is not limited to the above method. Any method can be used as long as it can identify the fan that emits the noise most closely related to the sound detected by the muffler effect detection microphones 191 to 193.
  • the silence volume calculated by the silence volume calculation means 138 and the blower fan information stored in the memory 132 are input to the fan individual control rotation speed determination means 134C. Based on these pieces of information, the individual fan control rotation speed determination means 134C determines the rotation speed of each fan when performing individual fan control. Specifically, the fan that is highly relevant to the sound detected by the muffler effect detection microphone with a high mute volume is increased, and the fan that is highly relevant to the sound detected by the muffler effect detection microphone with a low muffler volume is set. The number of rotations of the fan is determined so as to reduce the number of rotations. At this time, the rotation speeds of the fans 20A to 20C may be determined so that the air volume obtained in the individual fan control is the same as that in the same rotation speed control.
  • the fan 20A that radiates noise most highly relevant to the sound detected by the muffler effect detection microphone 191 is the fan 20A, and is detected by the muffler effect detection microphone 192.
  • the fan radiating the noise most relevant to the sound is the fan 20C
  • the fan radiating the noise most relevant to the sound detected by the mute effect detection microphone 193 is the fan 20B.
  • the muffled sound volume in the muffling effect detection microphone 191 is -5 dB
  • the muffled sound volume in the muffling effect detection microphone 192 is -5 dB
  • the muffled sound volume in the muffling effect detection microphone 193 is -2 dB.
  • the fan individual control rotation speed determination means 134C determines the rotation speed of each fan so as to increase the rotation speed of the fans 20A and 20C and decrease the rotation speed of the fan 20B. Since the air volume and the rotational speed are in a proportional relationship, for example, in the case of the configuration shown in FIG. 54, if the rotational speed of the fan 20A and the fan 20C is increased by 10%, the rotational speed of the fan 20B is decreased by 20%. It becomes.
  • the above-described method for determining the rotational speed of the fans 20A to 20C is merely an example.
  • the fan 20A that radiates noise most highly relevant to the sound detected by the muffler effect detection microphone 191 is the fan 20A, and is detected by the muffler effect detection microphone 192. It is assumed that the fan radiating the noise most relevant to the sound is the fan 20C, and the fan radiating the noise most relevant to the sound detected by the mute effect detection microphone 193 is the fan 20B.
  • the rotational speed of each fan may be determined such that the rotational speed of the fan 20A is increased, the rotational speed of the fan 20B is decreased, and the rotational speed of the fan 20C is left as it is.
  • the rotation speed of the fan 20A having high relevance to the muffler effect detection microphone 191 having the highest muffle volume is increased, and the rotation speed of the fan 20B having high relevance to the muffler effect detection microphone 193 having the lowest muffle volume is decreased.
  • the rotation speed of each fan may be determined so that the rotation speed of the fan 20C which is neither of them is left as it is.
  • an operation information signal for performing individual fan control (for example, a signal for the silent mode) is input from the remote controller 280, the rotation control signal for the same speed control is changed to the rotation control signal for the individual fan control by switching the SW 135.
  • the rotation control signal is output from the control device 281 to the fans 20A to 20C.
  • the rotation control signal output from the control device 281 is input to the motor drivers 282A to 282C, and the fans 20A to 20C are controlled to the number of rotations according to the rotation control signal.
  • the silencing effect detection microphone is compared with the region near the silencing effect detection microphone 193 due to the magnitude of the crosstalk noise component from the adjacent fan.
  • the area near 191 and 192 has a large amount.
  • the silencing volume is small. Therefore, in the indoor unit 100 according to the fifteenth embodiment provided with a plurality of fans 20A to 20C, the fans 20A and 20C that radiate highly relevant noise to the silencing effect detection microphones 191 and 192 having a large silencing level. , And the rotation speed of the fan 20B that emits highly relevant noise to the muffler effect detection microphone 193 with a low muffled sound volume is lowered.
  • an area with a high silencing effect has a higher silencing effect, and an area with a low silencing effect has less noise.
  • noise radiated from the entire outlet 3 can be reduced.
  • aerodynamic performance is degraded by individually controlling the rotational speeds of the plurality of fans 20A to 20C so that the airflow is constant when the rotational speed control is performed. Can be suppressed.
  • the air path of the indoor unit 100 is divided into a plurality of regions. Further, the silencing effect can be further improved.
  • the noise radiated from the fans 20A to 20C can be separated into the respective regions, and the silencing mechanism A is used in the fan 20A. Only the noise radiated from the fan 20C is reduced, the silencer mechanism B reduces only the noise radiated from the fan 20C, and the silencer mechanism C reduces only the noise radiated from the fan 20B. For this reason, the crosstalk noise components (noise radiated from the fans provided in the adjacent flow paths) detected by the noise detection microphones 161 to 163 and the silencing effect detection microphones 191 to 193 are reduced.
  • noise can be captured in one dimension because the air path is closer to the duct structure. For this reason, the phase of the noise transmitted through the interior of the indoor unit 100 becomes uniform, and the phase error when the control sound interferes is reduced, so that the silencing effect is further enhanced. Therefore, also in the indoor unit 100 according to the fifteenth embodiment, by dividing the air path of the indoor unit 100 into a plurality of regions, noise can be further reduced compared to the configuration of FIG. On the other hand, when there is a fan that is not provided with a silencing mechanism, noise in an area where the silencing mechanism is not provided is reduced by lowering the rotation speed of the fan 20, and the same effect can be obtained. 42 and 43, a partition plate is inserted in the entire air path. However, a part of the air path is separated by a partition plate, for example, only on the upstream side of the heat exchanger 50 or only on the downstream side of the heat exchanger 50. You may make it delimit.
  • the muffling effect detection microphones 191 to 193 are arranged almost on the extension line of the rotation axis of the fans 20A to 20C.
  • the installation position of 193 may be anywhere.
  • three noise detection microphones, control speakers, muffler effect detection microphones, and signal processing devices are arranged, but the present invention is not limited to this.
  • the blower fan control means 174 is configured by the CPU 131 in the control device 281, but may be configured by hardware such as LSI (Large Scale Integration) or FPGA (Field Programmable Gate Array). . Further, the configuration of the blower fan control means 174 is not limited to the configuration shown in FIGS. 55 and 56.
  • the blower fan control means 174 increases the rotation speed of the fan that emits noise highly relevant to the sound detected by the muffler effect detection microphone having a high muffing volume, and mute the sound.
  • the configuration is such that the number of rotations of the fan emitting noise that is highly relevant to the sound detected by the muffler effect detection microphone with a small amount is reduced, it may be configured to perform either one of them.
  • the muffling volume in the muffler effect detection microphones 191 to 193 is used as a parameter for controlling the rotational speed of the fan.
  • other parameters may be used as the parameter for controlling the rotational speed of the fan.
  • the average value of the sound pressure level detected by each of the muffler effect detection microphones 191 to 193 is calculated, and noise that is highly relevant to the sound detected by the muffler effect detection microphone having the largest average value of the sound pressure level is emitted.
  • the number of rotations of the fan may be lowered.
  • the average value of the sound pressure level detected by each of the muffler effect detection microphones 191 to 193 is calculated, and the noise that is highly relevant to the sound detected by the muffler effect detection microphone having the smallest average sound pressure level is radiated.
  • the number of rotations of the fan being used may be increased. Of course, both may be performed.
  • the noise detection microphone 161 and the silencing effect detection microphone 191 As parameters for controlling the rotation speed of the fan, the noise detection microphone 161 and the silencing effect detection microphone 191, the noise detection microphone 162 and the silencing effect detection microphone 192, and the coherence values of the noise detection microphone 163 and the silencing effect detection microphone 193 are used. May be.
  • the rotational speed of a fan that emits noise highly relevant to the sound detected by the muffler effect detection microphone having the smallest coherence value may be reduced.
  • the rotational speed of the fan that emits noise highly relevant to the sound detected by the muffler effect detection microphone having the largest coherence value may be increased. Of course, both may be performed.
  • the plurality of fans 20A to 20C are arranged, and the control device 281 for controlling the rotational speed of the fans 20A to 20C individually (more specifically, the blower fan control means 174). ) Is provided.
  • the blower fan control means 174 increases the rotation speed of the fan that emits noise that is highly relevant to the sound detected by the muffler effect detection microphone having a high mute level among the mute levels of the muffler effect detection microphones 191 to 193.
  • the rotational speed control is performed so as to reduce the rotational speed of the fan that emits noise having high relevance to the sound detected by the muffler effect detection microphone having a low muffled sound volume.
  • the noise reduction effect is further enhanced by increasing the number of rotations in a region where the volume level is low, and the noise in that region is reduced by reducing the number of rotations in a region where the level level is low. For this reason, noise can be further reduced as compared with an indoor unit that uses a single fan with a silencing mechanism having the same configuration, or an indoor unit that does not perform individual fan control.
  • the indoor unit 100 since the fan that emits noise that is highly relevant to the sound detected by the muffler effect detection microphone having a high muffled volume is specified, the emitted sound is Even when a plurality of fans 20A to 20C having different pressure levels are used, the rotational speed can be accurately controlled.
  • blower fan control means 174 controls the rotational speed of each of the fans 20A to 20C so that the amount of air radiated from the blowout port 3 is the same when the same rotational speed control is performed as when the individual fan control is performed. Therefore, noise can be reduced without deteriorating the aerodynamic performance.
  • the noise radiated from the fans 20A to 20C can be separated, respectively, and the silencing mechanism A is radiated from the fan 20A.
  • the noise reduction mechanism B reduces only the noise emitted from the fan 20C
  • the noise reduction mechanism C reduces only the noise emitted from the fan 20B. For this reason, in each area
  • the air passage of the indoor unit 100 is brought closer to the duct structure, so that noise can be captured in one dimension. For this reason, the phase of the noise transmitted through the interior of the indoor unit 100 becomes uniform, and the phase error when the control sound interferes is reduced, so that a higher noise reduction effect can be obtained compared to the configuration of FIG. .
  • the silencing mechanism when there is a region where the silencing mechanism is not provided, by reducing the rotational speed of the fan not equipped with the silencing mechanism, the noise in that region is reduced, and a silencing effect can be obtained similarly.
  • Embodiment 16 FIG.
  • the individual fan control shown in the fifteenth embodiment is an air conditioner equipped with a silencing mechanism different from the silencing mechanism according to the fifteenth embodiment. It can also be implemented in the machine.
  • the case where the individual fan control shown in the fifteenth embodiment is adopted in the indoor unit according to the twelfth embodiment will be described.
  • differences from the above-described eighth to fifteenth embodiments will be mainly described, and the same parts as those in the eighth to fifteenth embodiments are denoted by the same reference numerals. is doing.
  • FIG. 57 is a front view showing an indoor unit according to Embodiment 16 of the present invention.
  • the difference between the indoor unit 100 according to the sixteenth embodiment and the indoor unit 100 according to the twelfth embodiment is only the configuration of the blower fan control means 174.
  • the structure of the blower fan control means 174 is exactly the same as the structure shown in FIG. 55 of the fifteenth embodiment.
  • the impellers of the fans 20A to 20C rotate, the indoor air is sucked from the upper side of the fans 20A to 20C, and the air is sent to the lower side of the fans 20A to 20C. Airflow is generated. Along with this, a driving sound (noise) is generated in the vicinity of the air outlets of the fans 20A to 20C, and the sound propagates downstream.
  • the air sent by the fans 20A to 20C passes through the air path and is sent to the heat exchanger 50.
  • low-temperature refrigerant is sent to the heat exchanger 50 from a pipe connected to an outdoor unit (not shown).
  • the air sent to the heat exchanger 50 is cooled by the refrigerant flowing through the heat exchanger 50 to become cold air, and is directly discharged into the room from the outlet 3.
  • the operation of the silencer mechanisms D to F is exactly the same as in the twelfth embodiment, and a control sound is output so that the noise detected by the noise / silence effect detection microphones 211 to 213 approaches zero, and as a result, the noise The noise reduction effect detection microphones 211 to 213 operate to suppress noise.
  • the noise (crosstalk noise component) radiated from the adjacent fans 20A and 20C is also included in the noise / silencing effect detection microphone 213.
  • the crosstalk noise component detected by the noise / silence effect detection microphones 211 and 212 is smaller than the crosstalk noise component detected by the noise / silence effect detection microphone 213. This is because the noise / silencing effect detection microphones 211 and 212 have only one adjacent fan (fan 20B). For this reason, the silencing effect of the silencing mechanisms D and E is higher than that of the silencing mechanism F.
  • the fan individual control of the fans 20A to 20C is almost the same as the contents described in the fifteenth embodiment.
  • the individual fan control of the sixteenth embodiment is different from the individual fan described in the fifteenth embodiment in that the sounds detected by the noise / silence effect detecting microphones 211 to 213 in S1 to S3 input to the muffling volume calculation means 138 are as follows. This is a digital value of the pressure level.
  • the individual fan control of the sixteenth embodiment differs from the individual fan control described in the fifteenth embodiment, in that the fan information stored in the memory 132 is detected by the noise / silence effect detection microphones 211 to 213. This is the identification number of the fan 20 that emits the noise most relevant to the generated sound.
  • the fan individual control rotation speed determination means 134C of the blower fan control means 174 is based on the silence volume calculated by the silence volume calculation means 138 and the blower fan information stored in the memory 132. Increase the fan speed, which is highly related to the sound detected by the mute effect detection microphone, and decrease the fan speed, which is highly related to the sound detected by the noise / silence effect detection microphone, which has a low mute level. Determine the fan speed. At this time, the rotation speeds of the fans 20A to 20C may be determined so that the air volume obtained in the individual fan control is the same as that in the same rotation speed control.
  • the fan 20A is the fan that emits the noise most closely related to the sound detected by the noise / silence effect detection microphone 211, and the noise / silence effect detection microphone.
  • the fan radiating the noise most closely related to the sound detected at 212 is the fan 20C
  • the fan radiating the noise most relevant to the sound detected by the noise / silencing effect detection microphone 213 is the fan.
  • the noise reduction level in the noise / silence effect detection microphone 211 is ⁇ 5 dB
  • the noise reduction level in the noise / silence effect detection microphone 212 is ⁇ 5 dB
  • the noise reduction level in the noise / silence effect detection microphone 213 is ⁇ 2 dB.
  • the fan individual control rotation speed determination means 134C determines the rotation speed of each fan so as to increase the rotation speed of the fans 20A and 20C and decrease the rotation speed of the fan 20B. Since the air volume and the rotational speed are in a proportional relationship, for example, in the case of the configuration shown in FIG. 57, if the rotational speed of the fan 20A and the fan 20C is increased by 10%, the rotational speed of the fan 20B is decreased by 20%. It becomes.
  • the fan 20A that radiates the noise most closely related to the sound detected by the noise / silence effect detection microphone 211 is the fan 20A
  • the noise / silence effect detection microphone 212 is the fan.
  • the fan radiating noise most relevant to the detected sound is the fan 20C
  • the fan radiating noise most relevant to the sound detected by the noise / muffling effect detection microphone 213 is the fan 20B.
  • the noise reduction level in the noise / silence effect detection microphone 211 is ⁇ 5 dB
  • the noise reduction level in the noise / silence effect detection microphone 212 is ⁇ 3 dB
  • the noise reduction level in the noise / silence effect detection microphone 213 is ⁇ 2 dB.
  • the rotational speed of each fan may be determined such that the rotational speed of the fan 20A is increased, the rotational speed of the fan 20B is decreased, and the rotational speed of the fan 20C is left as it is.
  • the rotation speed of the fan 20A having high relevance to the muffler effect detection microphone 191 having the highest muffle volume is increased, and the rotation speed of the fan 20B having high relevance to the muffler effect detection microphone 193 having the lowest muffle volume is decreased.
  • the rotation speed of each fan may be determined so that the rotation speed of the fan 20C which is neither of them is left as it is.
  • an operation information signal for performing individual fan control (for example, a signal for the silent mode) is input from the remote controller 280, the rotation control signal for the same speed control is changed to the rotation control signal for the individual fan control by switching the SW 135.
  • the rotation control signal is output from the control device 281 to the fans 20A to 20C.
  • the rotation control signal output from the control device 281 is input to the motor drivers 282A to 282C, and the fans 20A to 20C are controlled to the number of rotations according to the rotation control signal.
  • the noise / noise reduction effect detection microphone 213 is compared with the noise / silence effect detection microphone 213 due to the magnitude of the crosstalk noise component from the adjacent fan.
  • the silencing volume increases.
  • the silencing volume is small. Therefore, in the indoor unit 100 according to the sixteenth embodiment provided with a plurality of fans 20A to 20C, the fans 20A and 20C that radiate noise highly relevant to the muffler effect detection microphones 191 and 192 having a large muffled sound volume. , And the rotation speed of the fan 20B that emits highly relevant noise to the muffler effect detection microphone 193 with a low muffled sound volume is lowered.
  • the indoor unit 100 according to the sixteenth embodiment has a higher silencing effect in a region where the silencing effect is high, and noise is small in a region where the silencing effect is low. Therefore, the indoor unit or fan using a single fan Compared with an indoor unit that does not perform individual control, noise radiated from the entire outlet 3 can be reduced. Furthermore, the indoor unit 100 according to the sixteenth embodiment has aerodynamic performance degradation by individually controlling the rotational speeds of the plurality of fans 20A to 20C so that the airflow is constant when the rotational speed control is performed. Can be suppressed.
  • the air path of the indoor unit 100 is divided into a plurality of regions. Further, the silencing effect can be further improved.
  • the noise radiated from the fans 20A to 20C can be separated into the respective regions, and the silencing mechanism D is used in the fan 20A. Only the noise radiated from the fan 20C is reduced, the silencing mechanism E reduces only the noise radiated from the fan 20C, and the silencing mechanism F reduces only the noise radiated from the fan 20B. For this reason, the crosstalk noise component (noise radiated from the fan provided in the adjacent flow path) detected by the noise / silencing effect detection microphones 211 to 213 is reduced.
  • the indoor unit 100 by dividing the air path of the indoor unit 100 into a plurality of regions, noise can be further reduced compared to the configuration of FIG.
  • the partition plate is inserted in the entire air path. However, a part of the air path is formed by the partition plate, for example, only on the upstream side of the heat exchanger 50 or only on the downstream side of the heat exchanger 50. You may make it delimit.
  • the noise / silencing effect detection microphones 211 to 213 are installed on the downstream side of the control speakers 181 to 183, but the noise / silence effect detection microphones 211 to 213 are installed on the upstream side of the control speakers 181 to 183. May be installed. Furthermore, in the sixteenth embodiment, three control speakers, noise / muffling effect detection microphones, and three signal processing devices are arranged, but the present invention is not limited to this.
  • the blower fan control means 174 is configured by the CPU 131 in the control device 281, but is configured by hardware such as LSI (Large Scale Integration) or FPGA (Field Programmable Gate Array). Also good. Further, the configuration of the blower fan control means 174 is not limited to the configuration shown in FIG.
  • the blower fan control means 174 increases the rotation speed of the fan that emits noise highly relevant to the sound detected by the muffler effect detection microphone having a high muffing volume, and mute the sound.
  • the configuration is such that the number of rotations of the fan that emits noise that is highly relevant to the sound detected by the microphone and the noise detected by the microphone is low, it may be configured to perform either one of them. .
  • the noise reduction level in the noise / silencing effect detection microphones 211 to 213 is used as a parameter for controlling the rotational speed of the fan, but other parameters are used as parameters for controlling the rotational speed of the fan.
  • the average value of the sound pressure level detected by each of the noise / silence effect detection microphones 211 to 213 is calculated, and is highly relevant to the sound detected by the noise / silence effect detection microphone having the largest average sound pressure level.
  • the rotational speed of the fan that emits noise may be lowered.
  • the average value of the sound pressure level detected by each of the noise / silence effect detection microphones 211 to 213 is calculated, and the average value of the sound pressure level is related to the sound detected by the noise / silence effect detection microphone.
  • the rotational speed of the fan emitting high noise may be increased. Of course, both may be performed.
  • the plurality of fans 20A to 20C are arranged, and the control device 281 (more specifically, the blower fan control means 174) that individually controls the rotational speed of the fans 20A to 20C. ) Is provided.
  • the blower fan control means 174 rotates the fan that emits noise that is highly relevant to the sound detected by the noise / silencing effect detection microphone having a high silencing level among the noise reduction levels of the noise / silencing effect detection microphones 211 to 213.
  • the number of revolutions is controlled to be high, and the number of revolutions of the fan that emits noise that is highly relevant to the sound detected by the noise / noise-reduction effect detection microphone with low muffled sound volume is reduced.
  • the silencing effect is further enhanced in a region where the volume level is high, and noise is reduced in a region where the volume level is small. For this reason, noise can be further reduced as compared with an indoor unit that uses a single fan with a silencing mechanism having the same configuration, or an indoor unit that does not perform individual fan control.
  • the fan that emits noise that is highly relevant to the sound detected by the noise / noise-reduction effect detection microphone having a high noise reduction level is identified, the fan is radiated. Even when a plurality of fans 20A to 20C having different sound pressure levels are used, the rotational speed can be accurately controlled.
  • blower fan control means 174 controls the rotational speed of each of the fans 20A to 20C so that the amount of air radiated from the blowout port 3 is the same when the same rotational speed control is performed as when the individual fan control is performed. Therefore, noise can be reduced without deteriorating the aerodynamic performance.
  • the noise radiated from the fans 20A to 20C can be separated, respectively, and the silencing mechanism D is radiated from the fan 20A.
  • the noise reduction mechanism E reduces only the noise emitted from the fan 20C
  • the noise reduction mechanism F reduces only the noise emitted from the fan 20B. For this reason, in each area
  • the air passage of the indoor unit 100 is brought closer to the duct structure, so that noise can be captured in one dimension. For this reason, the phase of the noise transmitted through the interior of the indoor unit 100 becomes uniform, and the phase error when the control sound interferes is reduced, so that a higher noise reduction effect can be obtained compared to the configuration of FIG. .
  • the silencing mechanism when there is a region where the silencing mechanism is not provided, by reducing the rotational speed of the fan not equipped with the silencing mechanism, the noise in that region is reduced, and a silencing effect can be obtained similarly.
  • the noise detection microphones 161 to 163 and the silencing effect detection microphones 191 to 193 are integrated into the noise / silencing effect detection microphones 211 to 213, the number of microphones can be reduced and the number of parts can be reduced. Can be further reduced.

Abstract

Provided is an air conditioner which produces less noise. The indoor unit (100) of an air conditioner is provided with: a casing (1) having a suction opening (2) which is formed in the upper part thereof and also having a discharge opening (3) which is formed on the lower side of the front surface thereof; axial-flow or mixed-flow fans (20) provided side by side downstream of the suction opening (2); a heat exchanger (50) provided at a position downstream of the fans (20) and upstream of the discharge opening (3); noise detection microphones (161, 162) for detecting the noise emitted from the fans (20); control speakers (181, 182) for outputting a control sound for reducing the noise; noise deadening effect detection microphones (191, 192) for detecting the noise deadening effect achieved by the control sound; signal processing devices (201, 202) for causing the control speakers (181, 182) to output the control sound on the basis of the result of the detection by the noise detection microphones (161, 162) and by the noise deadening effect detection microphones (191, 192); and a control device (281) for individually controlling the rotational speed of the fans.

Description

空気調和機Air conditioner
 本発明は、ファンと熱交換器とをケーシング内に収納した空気調和機であって、当該ファンにより発生した音を消音するための消音ユニット(スピーカーとマイクロホン)を備えた空気調和機に関するものである。 The present invention relates to an air conditioner in which a fan and a heat exchanger are housed in a casing, and relates to an air conditioner including a silencer unit (speaker and microphone) for silencing sound generated by the fan. is there.
 従来から、ファンと熱交換器とをケーシング内に収納した空気調和機が存在する。そのようなものとして、「空気入り口及び空気出口を有する本体ケーシングと、該本体ケーシング内に配設された熱交換器とからなる空気調和機であって、前記空気出口には、複数の小型プロペラファンを前記空気出口の幅方向に併設して構成されたファンユニットを配設した空気調和機」が提案されている(例えば、特許文献1参照)。この空気調和機は、空気出口にファンユニットを配設し、気流の方向制御を容易にするとともに、吸込口にも同一構成のファンユニットを設けることで、風量増加による熱交換器性能を向上するようにしている。 Conventionally, there exists an air conditioner in which a fan and a heat exchanger are housed in a casing. As such, “an air conditioner comprising a main body casing having an air inlet and an air outlet, and a heat exchanger disposed in the main body casing, wherein the air outlet includes a plurality of small propellers. There has been proposed an “air conditioner in which a fan unit having a fan arranged in the width direction of the air outlet is disposed” (see, for example, Patent Document 1). This air conditioner is provided with a fan unit at the air outlet to facilitate airflow direction control, and a fan unit having the same configuration is also provided at the suction port to improve the heat exchanger performance due to an increase in the air volume. I am doing so.
特開2005-3244号公報(段落0012,0013,0018~0021、図5及び図6)Japanese Patent Laying-Open No. 2005-3244 (paragraphs 0012, 0013, 0018 to 0021, FIGS. 5 and 6)
 特許文献1のような空気調和機は、ファンユニット(送風機)の上流側に熱交換器が設けられている。このため、空気出口側に可動ファンユニットを設けているため、ファン可動に伴う風路変化や非対称吸い込みによる流れの不安定性から、風量低下や逆流等を引き起こす原因となる。さらに、流れの乱れた空気がファンユニットに流入することとなる。
 したがって、特許文献1のような空気調和機は、流速が速くなるファンユニットの羽部(プロペラ)外周部に流入する空気の流れが乱れ、ファンユニット自体が騒音の音源となってしまう(騒音悪化の原因となってしまう)という問題点があった。
The air conditioner like patent document 1 is provided with the heat exchanger in the upstream of the fan unit (blower). For this reason, since the movable fan unit is provided on the air outlet side, the air flow is changed due to the movement of the fan and the instability of the flow due to the asymmetric suction causes a decrease in the air volume and a reverse flow. Furthermore, the air whose flow is disturbed flows into the fan unit.
Therefore, in an air conditioner like Patent Document 1, the flow of air flowing into the outer peripheral part of the wing part (propeller) of the fan unit whose flow rate is high is disturbed, and the fan unit itself becomes a noise source (noise deterioration). There was a problem that
 そこで、出願人は、上記の課題を解決するため、「上部に吸込口が形成され、前面部下側に吹出口が形成されたケーシングと、ケーシング内の吸込口の下流側に設けられた軸流型又は斜流型の送風機と、ケーシング内の送風機の下流側であって、吹出口の上流側に設けられ、送風機から吹き出された空気と冷媒とが熱交換する熱交換器とを備えた空気調和機の室内機」というものを国際出願済み(国際出願番号PCT/JP2009/67265)である。 Therefore, in order to solve the above-mentioned problem, the applicant has described, “A casing in which a suction port is formed in the upper part and a blower outlet is formed in the lower part of the front part, and an axial flow provided on the downstream side of the suction port in the casing. Type or mixed flow type blower and air provided on the downstream side of the blower in the casing and upstream of the blower outlet, and a heat exchanger for exchanging heat between the air blown from the blower and the refrigerant An international application has been filed for “indoor unit of harmony machine” (international application number PCT / JP2009 / 67265).
 本発明は、軸流型又は斜流型の送風機(ファン)を備えた空気調和機の好適な位置に消音ユニット(スピーカーとマイクロホン)を備えることにより、騒音をさらに抑制することが可能な空気調和機を得ることを目的とする。 The present invention provides an air conditioner that can further suppress noise by providing a silencer unit (speaker and microphone) at a suitable position of an air conditioner equipped with an axial flow type or mixed flow type blower (fan). The aim is to get a chance.
 本発明に係る空気調和機は、上部に吸込口が形成され、前面部下側に吹出口が形成されたケーシングと、ケーシング内の吸込口の下流側に並列に設けられた複数の軸流型又は斜流型のファンと、ケーシング内のファンの下流側であって、吹出口の上流側に設けられ、ファンから吹き出された空気と冷媒とが熱交換する熱交換器と、ファンから放射される騒音を検出する騒音検出装置と、騒音を低減させる制御音を出力する制御音出力装置と、制御音による消音効果を検出する消音効果検出装置と、騒音検出装置及び消音効果検出装置の検出結果に基づき、制御音出力装置に制御音を出力させる制御音生成装置と、複数のファンに対して個別に回転数制御を行う制御装置と、を備えた空気調和機であって、制御装置は、ファンから放射される騒音に対して制御音を干渉させたときの消音効果に基づき、複数のファンの回転数を制御するものである。 The air conditioner according to the present invention has a casing in which an inlet is formed in the upper part and an outlet is formed in the lower part of the front surface, and a plurality of axial flow types provided in parallel on the downstream side of the inlet in the casing or A mixed flow type fan, a heat exchanger provided downstream of the fan in the casing and upstream of the air outlet, and heat exchanged between the air blown out from the fan and the refrigerant and radiated from the fan The detection results of the noise detection device for detecting noise, the control sound output device for outputting the control sound for reducing the noise, the silencing effect detection device for detecting the silencing effect by the control sound, and the noise detection device and the silencing effect detection device An air conditioner comprising: a control sound generation device that outputs a control sound to a control sound output device; and a control device that individually controls the rotational speed for a plurality of fans. Radiated from Based on the silencing effect when causing interference control tone to sound, and controls the rotational speed of the plurality of fans.
 また、本発明に係る空気調和機は、上部に吸込口が形成され、前面部下側に吹出口が形成されたケーシングと、ケーシング内の吸込口の下流側に並列に設けられた複数の軸流型又は斜流型のファンと、ケーシング内のファンの下流側であって、吹出口の上流側に設けられ、ファンから吹き出された空気と冷媒とが熱交換する熱交換器と、ファンから放射される騒音を低減させる制御音を出力する制御音出力装置と、騒音を検出するとともに、制御音の消音効果を検出する騒音・消音効果検出装置と、騒音・消音効果検出装置の検出結果に基づき、制御音出力装置に制御音を出力させる制御音生成装置と、複数のファンに対して個別に回転数制御を行う制御装置と、を備えた空気調和機であって、制御装置は、ファンから放射される騒音に対して前記制御音を干渉させたときの消音効果に基づき、複数のファンの回転数を制御するものである。 Further, the air conditioner according to the present invention has a casing in which a suction port is formed in the upper part and a blower outlet is formed in the lower part of the front surface, and a plurality of axial flows provided in parallel on the downstream side of the suction port in the casing. Type or mixed flow type fan, a heat exchanger provided on the downstream side of the fan in the casing and upstream of the outlet, and for exchanging heat between the air blown from the fan and the refrigerant, and radiation from the fan Based on the detection result of the control sound output device that outputs the control sound that reduces the generated noise, the noise / silence effect detection device that detects the noise and detects the silencing effect of the control sound, and the noise / silence effect detection device An air conditioner comprising: a control sound generating device that outputs a control sound to a control sound output device; and a control device that individually controls the rotational speed of a plurality of fans. Against radiated noise Based on the silencing effect when caused to interfere the control sound Te, and controls the rotational speed of the plurality of fans.
 また、本発明に係る空気調和機は、上部に吸込口が形成され、前面部下側に吹出口が形成されたケーシングと、ケーシング内の吸込口の下流側に並列に設けられた複数の軸流型又は斜流型のファンと、ケーシング内のファンの下流側であって、吹出口の上流側に設けられ、ファンから吹き出された空気と冷媒とが熱交換する熱交換器と、ファンから放射される騒音を検出する騒音検出装置と、騒音を低減させる制御音を出力する制御音出力装置と、制御音による消音効果を検出する消音効果検出装置と、騒音検出装置及び消音効果検出装置の検出結果に基づき、制御音出力装置に制御音を出力させる制御音生成装置と、複数のファンに対して個別に回転数制御を行う制御装置と、を備え、制御装置は、ケーシングの両端に配置されたファンの回転数を高くする回転数制御、及びケーシングの両端に配置されたファン以外のファンの回転数を低くする回転数制御のうちの少なくとも一方の回転数制御を行うものである。 Further, the air conditioner according to the present invention has a casing in which a suction port is formed in the upper part and a blower outlet is formed in the lower part of the front surface, and a plurality of axial flows provided in parallel on the downstream side of the suction port in the casing. Type or mixed flow type fan, a heat exchanger provided on the downstream side of the fan in the casing and upstream of the outlet, and for exchanging heat between the air blown from the fan and the refrigerant, and radiation from the fan Detection device for detecting generated noise, control sound output device for outputting control sound for reducing noise, silence effect detection device for detecting silence effect by control sound, detection of noise detection device and silence effect detection device Based on the result, a control sound generating device that outputs a control sound to the control sound output device, and a control device that individually controls the rotational speed for a plurality of fans, the control devices are arranged at both ends of the casing. Fan Rotational speed control to increase the rotational speed, and is performed at least one of the rotational speed control of the rotational speed control to decrease the rotational speed of the fan than fan disposed at opposite ends of the casing.
 また、本発明に係る空気調和機は、上部に吸込口が形成され、前面部下側に吹出口が形成されたケーシングと、ケーシング内の吸込口の下流側に並列に設けられた複数の軸流型又は斜流型のファンと、ケーシング内のファンの下流側であって、吹出口の上流側に設けられ、ファンから吹き出された空気と冷媒とが熱交換する熱交換器と、ファンから放射される騒音を低減させる制御音を出力する制御音出力装置と、騒音を検出するとともに、制御音の消音効果を検出する騒音・消音効果検出装置と、騒音・消音効果検出装置の検出結果に基づき、制御音出力装置に制御音を出力させる制御音生成装置と、複数のファンに対して個別に回転数制御を行う制御装置と、を備え、制御装置は、ケーシングの両端に配置されたファンの回転数を高くする回転数制御、及びケーシングの両端に配置されたファン以外のファンの回転数を低くする回転数制御のうちの少なくとも一方の回転数制御を行うものである。 Further, the air conditioner according to the present invention has a casing in which a suction port is formed in the upper part and a blower outlet is formed in the lower part of the front surface, and a plurality of axial flows provided in parallel on the downstream side of the suction port in the casing. Type or mixed flow type fan, a heat exchanger provided on the downstream side of the fan in the casing and upstream of the outlet, and for exchanging heat between the air blown from the fan and the refrigerant, and radiation from the fan Based on the detection result of the control sound output device that outputs the control sound that reduces the generated noise, the noise / silence effect detection device that detects the noise and detects the silencing effect of the control sound, and the noise / silence effect detection device A control sound generation device that outputs a control sound to the control sound output device, and a control device that individually controls the rotational speed of the plurality of fans, and the control device includes fans disposed at both ends of the casing. Increase rotation speed That the rotation speed control, and is performed at least one of the rotational speed control of the rotational speed control to decrease the rotational speed of the fan than fan disposed at opposite ends of the casing.
 本発明に係る空気調和機は、「騒音検出装置、制御音出力装置、消音効果検出装置及び制御音生成装置を備えた消音機構」、又は、「制御音出力装置、騒音・消音効果検出装置及び制御音生成装置を備えた消音機構」を備えている。さらに、本発明に係る空気調和機は、複数の送風ファン、及びこれら送風ファンの回転数を個別に制御する制御装置を備えている。このため、消音効果に基づいて各送風ファンの回転数を制御することにより、空気調和機の騒音を低減することができる。 The air conditioner according to the present invention includes a “noise reduction device including a noise detection device, a control sound output device, a noise reduction effect detection device, and a control sound generation device”, or “a control sound output device, a noise / noise reduction effect detection device, and A muffler mechanism including a control sound generator is provided. Furthermore, the air conditioner according to the present invention includes a plurality of blower fans and a control device that individually controls the rotational speed of the blower fans. For this reason, the noise of an air conditioner can be reduced by controlling the rotation speed of each blower fan based on the silencing effect.
本発明の実施の形態1に係る空気調和機の室内機を示す縦断面図である。It is a longitudinal cross-sectional view which shows the indoor unit of the air conditioner which concerns on Embodiment 1 of this invention. 本発明の実施の形態1に係る空気調和機の室内機を示す外観斜視図である。It is an external appearance perspective view which shows the indoor unit of the air conditioner which concerns on Embodiment 1 of this invention. 本発明の実施の形態1に係る室内機を前面右側から見た斜視図である。It is the perspective view which looked at the indoor unit which concerns on Embodiment 1 of this invention from the front right side. 本発明の実施の形態1に係る室内機を背面右側から見た斜視図である。It is the perspective view which looked at the indoor unit which concerns on Embodiment 1 of this invention from the back right side. 本発明の実施の形態1に係る室内機を前面左側から見た斜視図である。It is the perspective view which looked at the indoor unit which concerns on Embodiment 1 of this invention from the front left side. 本発明の実施の形態1に係るドレンパンを示す斜視図である。It is a perspective view which shows the drain pan which concerns on Embodiment 1 of this invention. 本発明の実施の形態1に係る室内機の結露発生位置を示す縦断面図である。It is a longitudinal cross-sectional view which shows the dew condensation generation | occurrence | production position of the indoor unit which concerns on Embodiment 1 of this invention. 本発明の実施の形態1に係る信号処理装置を示す構成図である。It is a block diagram which shows the signal processing apparatus which concerns on Embodiment 1 of this invention. 本発明の実施の形態1に係る空気調和機の室内機の別の一例を示す縦断面図である。It is a longitudinal cross-sectional view which shows another example of the indoor unit of the air conditioner which concerns on Embodiment 1 of this invention. 本発明の実施の形態2に係る室内機を示す縦断面図である。It is a longitudinal cross-sectional view which shows the indoor unit which concerns on Embodiment 2 of this invention. 本発明の実施の形態2に係る信号処理装置を示す構成図である。It is a block diagram which shows the signal processing apparatus which concerns on Embodiment 2 of this invention. 干渉後の音から消音したい騒音を算出する方法を説明するための波形図である。It is a wave form diagram for demonstrating the method of calculating the noise which wants to mute from the sound after interference. 本発明の実施の形態2の制御音を推定する方法を説明するためのブロック図である。It is a block diagram for demonstrating the method of estimating the control sound of Embodiment 2 of this invention. 本発明の実施の形態2に係る室内機の別の一例を示す縦断面図である。It is a longitudinal cross-sectional view which shows another example of the indoor unit which concerns on Embodiment 2 of this invention. 本発明の実施の形態3に係る室内機を示す縦断面図である。It is a longitudinal cross-sectional view which shows the indoor unit which concerns on Embodiment 3 of this invention. 騒音検出マイクロホン及び消音効果検出マイクロホンの設置位置による両マイクロホン間のコヒーレンス特性を示した特性図である。It is the characteristic figure which showed the coherence characteristic between both microphones by the installation position of a noise detection microphone and a silencing effect detection microphone. 本発明の実施の形態4に係る室内機を示す縦断面図である。It is a longitudinal cross-sectional view which shows the indoor unit which concerns on Embodiment 4 of this invention. 本発明の実施の形態5に係る室内機を示す縦断面図である。It is a longitudinal cross-sectional view which shows the indoor unit which concerns on Embodiment 5 of this invention. 本発明の実施の形態5に係るファンの底面図(図18の下側から見た図)である。It is a bottom view (figure seen from the lower side of Drawing 18) of a fan concerning Embodiment 5 of the present invention. 図19のM-M断面図である。FIG. 20 is a cross-sectional view taken along the line MM in FIG. 本発明の実施の形態5に係る信号処理装置を示す構成図である。It is a block diagram which shows the signal processing apparatus which concerns on Embodiment 5 of this invention. 本発明の実施の形態5におけるファンから吹出される気流を可視化した実験結果の図である。It is a figure of the experimental result which visualized the airflow which blows off from the fan in Embodiment 5 of this invention. 本発明の実施の形態5に係る重み付け手段の回路を示す構成図である。It is a block diagram which shows the circuit of the weighting means which concerns on Embodiment 5 of this invention. 騒音検出マイクロホン161を円柱領域Sの外側に設置してファン20を動作させた時の、騒音検出マイクロホン161の検出音と消音効果検出マイクロホン191の検出音とのコヒーレンス特性である。This is a coherence characteristic between the detection sound of the noise detection microphone 161 and the detection sound of the mute effect detection microphone 191 when the noise detection microphone 161 is installed outside the cylindrical region S and the fan 20 is operated. 円柱領域Sの内側に設置してファン20を動作させた時の、騒音検出マイクロホン161の検出音と消音効果検出マイクロホン191の検出音とのコヒーレンス特性である。This is a coherence characteristic between the detection sound of the noise detection microphone 161 and the detection sound of the mute effect detection microphone 191 when the fan 20 is operated inside the cylindrical region S. 本発明の実施の形態5に係る室内機の別の一例を示す縦断面図である。It is a longitudinal cross-sectional view which shows another example of the indoor unit which concerns on Embodiment 5 of this invention. 本発明の実施の形態5に係る室内機のさらに別の一例を示す縦断面図である。It is a longitudinal cross-sectional view which shows another example of the indoor unit which concerns on Embodiment 5 of this invention. 本発明の実施の形態5における騒音検出マイクロホンの別の取り付け例を示す断面図である。It is sectional drawing which shows another example of attachment of the noise detection microphone in Embodiment 5 of this invention. 本発明の実施の形態6に係る室内機を示す縦断面図である。It is a longitudinal cross-sectional view which shows the indoor unit which concerns on Embodiment 6 of this invention. 本発明の実施の形態6に係る室内機の別の一例を示す縦断面図である。It is a longitudinal cross-sectional view which shows another example of the indoor unit which concerns on Embodiment 6 of this invention. 本発明の実施の形態6に係る室内機のさらに別の一例を示す縦断面図である。It is a longitudinal cross-sectional view which shows another example of the indoor unit which concerns on Embodiment 6 of this invention. 本実施の形態6における騒音検出マイクロホンの別の取り付け例を示す断面図である。It is sectional drawing which shows another example of attachment of the noise detection microphone in this Embodiment 6. 本発明の実施の形態7に係る室内機を示す縦断面図である。It is a longitudinal cross-sectional view which shows the indoor unit which concerns on Embodiment 7 of this invention. 本発明の実施の形態7に係る信号処理装置を示す構成図である。It is a block diagram which shows the signal processing apparatus which concerns on Embodiment 7 of this invention. 本発明の実施の形態8に係る室内機を示す正面図である。It is a front view which shows the indoor unit which concerns on Embodiment 8 of this invention. 本発明の実施の形態8に係る室内機を示す側面図である。It is a side view which shows the indoor unit which concerns on Embodiment 8 of this invention. 本発明の実施の形態8に係る制御装置を示す構成図である。It is a block diagram which shows the control apparatus which concerns on Embodiment 8 of this invention. 本発明の実施の形態8に係る室内機の別の一例を示す正面図である。It is a front view which shows another example of the indoor unit which concerns on Embodiment 8 of this invention. 図38に示す室内機の左側面図である。It is a left view of the indoor unit shown in FIG. 本発明の実施の形態9に係る室内機の正面図である。It is a front view of the indoor unit which concerns on Embodiment 9 of this invention. 本発明の実施の形態9に係る制御装置を示す構成図である。It is a block diagram which shows the control apparatus which concerns on Embodiment 9 of this invention. 本発明の実施の形態9に係る室内機の別の一例を示す正面図である。It is a front view which shows another example of the indoor unit which concerns on Embodiment 9 of this invention. 図42に示す室内機の左側面図である。It is a left view of the indoor unit shown in FIG. 本発明の実施の形態9に係る室内機のさらに別の一例を示す正面図である。It is a front view which shows another example of the indoor unit which concerns on Embodiment 9 of this invention. 本発明の実施の形態10に係る室内機を示す正面図である。It is a front view which shows the indoor unit which concerns on Embodiment 10 of this invention. 本発明の実施の形態10に係る制御装置を示す構成図である。It is a block diagram which shows the control apparatus which concerns on Embodiment 10 of this invention. 本発明の実施の形態11に係る室内機を示す正面図である。It is a front view which shows the indoor unit which concerns on Embodiment 11 of this invention. 本発明の実施の形態11に係る室内機の別の一例を示す正面図である。It is a front view which shows another example of the indoor unit which concerns on Embodiment 11 of this invention. 図48に示す室内機の左側面図である。It is a left view of the indoor unit shown in FIG. 本発明の実施の形態12に係る室内機を示す正面図である。It is a front view which shows the indoor unit which concerns on Embodiment 12 of this invention. 本発明の実施の形態12に係る室内機の別の一例を示す正面図である。It is a front view which shows another example of the indoor unit which concerns on Embodiment 12 of this invention. 図51に示す室内機の左側面図である。It is a left view of the indoor unit shown in FIG. 本発明の実施の形態12に係る室内機のさらに別の一例を示す正面図である。It is a front view which shows another example of the indoor unit which concerns on Embodiment 12 of this invention. 本発明の実施の形態15に係る室内機を示す正面図である。It is a front view which shows the indoor unit which concerns on Embodiment 15 of this invention. 本発明の実施の形態15に係る制御装置を示す構成図である。It is a block diagram which shows the control apparatus which concerns on Embodiment 15 of this invention. 本発明の実施の形態15に係る消音量算出手段を示す構成図である。It is a block diagram which shows the silence volume calculation means which concerns on Embodiment 15 of this invention. 本発明の実施の形態16に係る室内機を示す正面図である。It is a front view which shows the indoor unit which concerns on Embodiment 16 of this invention.
 以下、本発明に係る空気調和機(より詳しくは、空気調和機の室内機)の具体的な実施の形態について説明する。なお、実施の形態1では、空気調和機の室内機を構成する各ユニットの基本構成について説明する。また、実施の形態2以降において、各ユニットの詳細構成又は別の実施例について説明する。また、以下の各実施の形態では、壁掛け型の室内機を例に本発明を説明する。また、各実施の形態で示す図では、各ユニット(又は各ユニットの構成部材)の形状や大きさ等が一部異なる場合もある。 Hereinafter, specific embodiments of the air conditioner according to the present invention (more specifically, the indoor unit of the air conditioner) will be described. In the first embodiment, a basic configuration of each unit constituting the indoor unit of the air conditioner will be described. In the second and subsequent embodiments, the detailed configuration of each unit or another example will be described. In each of the following embodiments, the present invention will be described by taking a wall-mounted indoor unit as an example. In the drawings shown in each embodiment, the shape and size of each unit (or a constituent member of each unit) may be partially different.
実施の形態1.
<基本構成>
 図1は、本発明の実施の形態1に係る空気調和機の室内機(室内機100と称する)を示す縦断面図である。また、図2は、この室内機を示す外観斜視図である。なお、本実施の形態1及び後述する実施の形態では、図1の左側を室内機100の前面側として説明する。以下、図1及び図2に基づいて、室内機100の構成について説明する。
Embodiment 1 FIG.
<Basic configuration>
FIG. 1 is a longitudinal sectional view showing an indoor unit (referred to as an indoor unit 100) of an air conditioner according to Embodiment 1 of the present invention. FIG. 2 is an external perspective view showing the indoor unit. In the first embodiment and the embodiments described later, the left side in FIG. 1 will be described as the front side of the indoor unit 100. Hereinafter, the configuration of the indoor unit 100 will be described with reference to FIGS. 1 and 2.
(全体構成)
 この室内機100は、冷媒を循環させる冷凍サイクルを利用することで、室内等の空調対象域に空調空気を供給するものである。室内機100は、主に、室内空気を内部に吸い込むための吸込口2及び空調空気を空調対象域に供給するための吹出口3が形成されているケーシング1と、このケーシング1内に収納され、吸込口2から室内空気を吸い込み、吹出口3から空調空気を吹き出すファン20と、ファン20から吹出口3までの風路に配設され、冷媒と室内空気とで熱交換することで空調空気を作り出す熱交換器50と、を有している。そして、これらの構成要素によりケーシング1内に風路(矢印Z)が連通されている。吸込口2は、ケーシング1の上部に開口形成されている。吹出口3は、ケーシング1の下部(より詳しくは、ケーシング1の前面部下側)に開口形成されている。ファン20は、吸込口2の下流側でかつ、熱交換器50の上流側に配設されており、例えば軸流ファン又は斜流ファン等で構成されている。
(overall structure)
The indoor unit 100 supplies conditioned air to an air-conditioning target area such as a room by using a refrigeration cycle that circulates a refrigerant. The indoor unit 100 is mainly accommodated in a casing 1 in which a suction port 2 for sucking indoor air into the interior and a blower outlet 3 for supplying conditioned air to an air-conditioning target area are formed. The fan 20 sucks room air from the suction port 2 and blows out the conditioned air from the blower outlet 3 and the air passage from the fan 20 to the blower outlet 3, and exchanges heat between the refrigerant and the room air for conditioned air. And a heat exchanger 50 for producing And the air path (arrow Z) is connected in the casing 1 by these components. The suction port 2 is formed in the upper part of the casing 1. The blower outlet 3 has an opening formed in the lower part of the casing 1 (more specifically, on the lower side of the front part of the casing 1). The fan 20 is disposed on the downstream side of the suction port 2 and on the upstream side of the heat exchanger 50, and is configured by, for example, an axial flow fan or a diagonal flow fan.
 また、室内機100には、ファン20の回転数、及び後述する上下ベーン70及び左右ベーンの向き(角度)等を制御する制御装置281を備えている。なお、本実施の形態1及び後述する各実施の形態に示す図面には、制御装置281の図示を省略する場合もある。 Further, the indoor unit 100 includes a control device 281 that controls the rotation speed of the fan 20 and the directions (angles) of the upper and lower vanes 70 and the left and right vanes, which will be described later. Note that the controller 281 may not be shown in the drawings shown in the first embodiment and each embodiment described later.
 このように構成された室内機100においては、ファン20が熱交換器50の上流側に設けられているので、吹出口3にファン20が設けられている従来の空気調和機の室内機と比べ、吹出口3から吹き出される空気の旋回流の発生や風速分布のバラツキの発生を抑制することができる。このため、空調対象域への快適な送風が可能となる。また、吹出口3にファン等の複雑な構造物がないため、冷房運転時に暖気と冷気の境界で生じる結露の対策も容易となる。さらに、ファンモーター30が空調空気である冷気や暖気にさらされることがないため、長時間の運転寿命を提供することができる。 In the indoor unit 100 configured as described above, the fan 20 is provided on the upstream side of the heat exchanger 50, so that it is compared with a conventional air conditioner indoor unit in which the fan 20 is provided at the outlet 3. The generation of the swirling flow of the air blown from the outlet 3 and the variation in the wind speed distribution can be suppressed. For this reason, comfortable ventilation to an air-conditioning object area is attained. Further, since there is no complicated structure such as a fan at the air outlet 3, it is easy to take measures against condensation that occurs at the boundary between warm air and cold air during cooling operation. Furthermore, since the fan motor 30 is not exposed to cold air or warm air that is air-conditioned air, a long operating life can be provided.
(ファン)
 一般的に、空気調和機の室内機は設置スペースに制約があるため、ファンを大きくできないことが多い。このため、所望の風量を得るために、適度な大きさのファンを複数並列に配置する。本実施の形態1に係る室内機100は、図2に示すように、ケーシング1の長手方向(換言すると、吹出口3の長手方向)に沿って、3個のファン20が並列に配置されている。現在の一般的な空気調和機の室内機の寸法において所望の熱交換能力を得るには、ファン20はおよそ2個~4個が好ましい。本実施の形態1に係る室内機においては、ファン20はすべて同一形状で構成され、動作回転数をすべて等しく運転することにより全てのファン20でほぼ等しい送風量を得ることができる。
(fan)
In general, an indoor unit of an air conditioner has a limited installation space, and thus often cannot have a large fan. For this reason, in order to obtain a desired air volume, a plurality of fans having an appropriate size are arranged in parallel. As shown in FIG. 2, the indoor unit 100 according to Embodiment 1 includes three fans 20 arranged in parallel along the longitudinal direction of the casing 1 (in other words, the longitudinal direction of the air outlet 3). Yes. In order to obtain a desired heat exchanging capacity in the dimensions of a current general air conditioner indoor unit, approximately two to four fans 20 are preferable. In the indoor unit according to the first embodiment, all the fans 20 are configured in the same shape, and almost the same amount of air flow can be obtained by all the fans 20 by operating all the operation rotational speeds equally.
 このように構成することにより、必要風量や室内機100内部の通風抵抗に応じてファン20の個数、形状及び大きさ等を組合せることで、多様なスペックの室内機100に対応した最適ファン設計が可能となる。 By configuring in this way, the optimum fan design corresponding to the indoor unit 100 of various specifications can be achieved by combining the number, shape, size, and the like of the fans 20 according to the required air volume and the ventilation resistance inside the indoor unit 100. Is possible.
(ベルマウス)
 本実施の形態1に係る室内機100には、ファン20の周りに、ダクト上のベルマウス5が配置されている。ベルマウス5は、ファンへの吸気と排気を滑らかに誘導するためのものである。図1に示すように、本実施の形態1に係るベルマウス5は、平面視において略円形状をしている。また、縦断面において、本実施の形態1に係るベルマウス5は次のような形状をしている。上部5aは、その端部が上方に向かって広がる略円弧形状をしている。中央部5bは、ベルマウスの直径が一定となったストレート部分となっている。下部5cは、その端部が下方に向かって広がる略円弧形状をしている。そして、ベルマウス5の上部5aの端部(吸い込み側の円弧部分)で吸込口2を形成している。
 本実施の形態1の図1で示したベルマウス5は、ファン20の羽根車の高さより高く構成されたダクト形状となっているが、それに限定したものではなく、ベルマウス5の高さがファン20の羽根車の高さより低く構成されている半開放型のベルマウスでもよい。さらに、ベルマウス5は、図1に示す5bのストレート部分がなく、端部の5a,5cのみで構成されていてもよい。
(Bellmouth)
In the indoor unit 100 according to the first embodiment, a bell mouth 5 on a duct is disposed around the fan 20. The bell mouth 5 is for smoothly guiding the intake and exhaust of air to the fan. As shown in FIG. 1, the bell mouth 5 according to the first embodiment has a substantially circular shape in plan view. In the longitudinal section, the bell mouth 5 according to the first embodiment has the following shape. The upper part 5a has a substantially arc shape whose end part widens upward. The central portion 5b is a straight portion where the diameter of the bell mouth is constant. The lower part 5c has a substantially arc shape whose end part extends downward. And the suction inlet 2 is formed in the edge part (arc part of the suction side) of the upper part 5a of the bellmouth 5. FIG.
The bell mouth 5 shown in FIG. 1 of the first embodiment has a duct shape configured higher than the height of the impeller of the fan 20, but is not limited thereto, and the height of the bell mouth 5 is not limited thereto. A semi-open bellmouth configured lower than the height of the impeller of the fan 20 may be used. Furthermore, the bell mouth 5 may not be provided with the straight portion 5b shown in FIG. 1 but may be constituted only by the end portions 5a and 5c.
 なお、ベルマウス5は、部品点数の削減や強度向上のため、例えばケーシング1と一体で形成してもよい。また例えば、ベルマウス5、ファン20及びファンモーター30等でモジュール化し、これらとケーシング1を着脱可能な構成として、メンテナンス性を向上してもよい。 The bell mouth 5 may be formed integrally with the casing 1, for example, in order to reduce the number of parts and improve the strength. Further, for example, the bell mouth 5, the fan 20, the fan motor 30, and the like may be modularized, and the casing 1 may be attached and detached to improve maintenance.
 また、本実施の形態1においては、ベルマウス5の上部5aの端部(吸い込み側の円弧部分)は、ベルマウス5の開口面の周方向に対して、一様形状で構成されている。つまり、ファン20の回転軸20aを中心とした回転方向に対して、ベルマウス5は切り欠きやリブ等の構造が無く、軸対称性を有した一様な形状をしている。 In the first embodiment, the end of the upper portion 5a of the bell mouth 5 (arc portion on the suction side) is configured in a uniform shape with respect to the circumferential direction of the opening surface of the bell mouth 5. In other words, the bell mouth 5 has no structure such as a notch or a rib with respect to the rotation direction about the rotation axis 20a of the fan 20, and has a uniform shape having axial symmetry.
 このようにベルマウス5を構成することにより、ファン20の回転に対してベルマウス5の上部5aの端部(吸い込み側の円弧部分)が一様な形状をしているので、ファン20の吸込み流れとしても一様な流れが実現される。このため、ファン20の吸込み流れの偏流によって発生する騒音を低減することができる。 By configuring the bell mouth 5 in this way, the end of the upper portion 5a of the bell mouth 5 (the arc portion on the suction side) has a uniform shape with respect to the rotation of the fan 20. A uniform flow is realized as a flow. For this reason, the noise which generate | occur | produces by the drift of the suction flow of the fan 20 can be reduced.
(仕切り板について)
 図2に示すように、本実施の形態1に係る室内機100は、隣接したファン20の間に、仕切り板90が設けられている。これら仕切り板90は、熱交換器50とファン20の間に設置されている。つまり、熱交換器50とファン20の間の風路が、複数の風路(本実施の形態1では3つ)に分割されている。仕切り板90は、熱交換器50とファン20の間に設置されるため、熱交換器50に接する側の端部が熱交換器50に沿った形状となっている。より詳しくは、図1に示すように、熱交換器50は、室内機100の前面側から背面側にかけての縦断面(つまり、室内機100を右側から見た縦断面。以下、右側縦断面と称する)において、略Λ型に配置されている。このため、仕切り板90の熱交換器50側端部も略Λ型となっている。
(Partition plate)
As shown in FIG. 2, in the indoor unit 100 according to the first embodiment, a partition plate 90 is provided between adjacent fans 20. These partition plates 90 are installed between the heat exchanger 50 and the fan 20. That is, the air path between the heat exchanger 50 and the fan 20 is divided into a plurality of air paths (three in the first embodiment). Since the partition plate 90 is installed between the heat exchanger 50 and the fan 20, the end on the side in contact with the heat exchanger 50 has a shape along the heat exchanger 50. More specifically, as shown in FIG. 1, the heat exchanger 50 includes a longitudinal section from the front side to the rear side of the indoor unit 100 (that is, a longitudinal section when the indoor unit 100 is viewed from the right side. Are arranged in a substantially Λ shape. For this reason, the heat exchanger 50 side end part of the partition plate 90 is also substantially [Lambda] type.
 なお、仕切り板90のファン20側端部の位置は、例えば次のように決定すればよい。隣接するファン20が吸込側において互いに影響を生じない程度に十分離れている場合、仕切り板90のファン20側の端部は、ファン20の出口面までとすればよい。しかし、隣接するファン20が吸込側において互いに影響を及ぼす程度に近づいている場合で、さらにベルマウス5の上部5aの端部(吸い込み側の円弧部分)の形状が十分に大きく形成できる場合、仕切り板90のファン20側の端部は、隣接する風路に影響を与えないように(隣接するファン20が吸込側において互いに影響を及ぼさないように)、ファン20の上流側(吸入側)まで延設してもよい。 The position of the end portion of the partition plate 90 on the fan 20 side may be determined as follows, for example. When the adjacent fans 20 are sufficiently separated from each other on the suction side so as not to affect each other, the end of the partition plate 90 on the fan 20 side may be extended to the outlet surface of the fan 20. However, when the adjacent fans 20 are close enough to influence each other on the suction side, and the shape of the end of the upper portion 5a of the bell mouth 5 (arc portion on the suction side) can be formed sufficiently large, The end of the plate 90 on the fan 20 side extends to the upstream side (suction side) of the fan 20 so as not to affect the adjacent air path (so that the adjacent fans 20 do not affect each other on the suction side). It may be extended.
 また、仕切り板90は、種々の材質で形成することができる。例えば、スチールやアルミ等の金属で仕切り板90を形成してもよい。また例えば、樹脂等で仕切り板90を形成してもよい。ただし、熱交換器50は暖房運転のときに高温となるため、仕切り板90が樹脂等のような低融点の材質で形成されている場合、仕切り板90と熱交換器50との間にわずかな空間を形成するとよい。仕切り板90がアルミやスチール等の融点が高い材質の場合、仕切り板90を熱交換器50と接するように配置してもよい。熱交換器50が例えばフィンチューブ型熱交換器の場合、熱交換器50のフィン間に仕切り板90を挿入してもよい。 Further, the partition plate 90 can be formed of various materials. For example, the partition plate 90 may be formed of a metal such as steel or aluminum. For example, the partition plate 90 may be formed of resin or the like. However, since the heat exchanger 50 becomes a high temperature during the heating operation, when the partition plate 90 is formed of a low melting point material such as a resin, the heat exchanger 50 is slightly between the partition plate 90 and the heat exchanger 50. A good space should be formed. When the partition plate 90 is made of a material having a high melting point such as aluminum or steel, the partition plate 90 may be disposed in contact with the heat exchanger 50. When the heat exchanger 50 is, for example, a fin tube type heat exchanger, a partition plate 90 may be inserted between the fins of the heat exchanger 50.
 上述したように、熱交換器50とファン20の間の風路が、複数の風路(本実施の形態1では3つ)に分割されている。この風路内、つまり、仕切り板90やケーシング1等に吸音材を設けて、ダクト内で生じる騒音を低減することもできる。 As described above, the air path between the heat exchanger 50 and the fan 20 is divided into a plurality of air paths (three in the first embodiment). A noise absorbing material can be provided in this air passage, that is, in the partition plate 90 and the casing 1 to reduce noise generated in the duct.
 また、これら分割された風路は、平面視において、一辺がL1及びL2となった略四角形状に形成されている。つまり、分割された風路の幅が、L1及びL2となっている。このため、例えば、L1,L2で形成された略四角形状の内部に設置されたファン20が生じる風量は、確実にファン20の下流にあるL1,L2で囲まれた領域の熱交換器50を通過する。 Further, these divided air paths are formed in a substantially square shape with one side being L1 and L2 in a plan view. That is, the width of the divided air path is L1 and L2. For this reason, for example, the amount of air generated by the fan 20 installed inside the substantially square shape formed by L1 and L2 is reliably transferred to the heat exchanger 50 in the region surrounded by L1 and L2 downstream of the fan 20. pass.
 このようにケーシング1内の風路を複数の風路に分割することにより、ファン20が下流に作る流れ場が旋回成分を有していても、各ファン20から吹き出された空気が室内機100の長手方向(図1紙面直交方向)に自由に移動できなくなる。このため、ファン20が吹き出した空気は、このファン20の下流にあるL1,L2で囲まれた領域の熱交換器50に通過させることが可能となる。その結果として、熱交換器50全体に流入する室内機100の長手方向(図1紙面直交方向)の風量分布のバラツキを抑制し、高い熱交換性能を有すことができる。また、ケーシング1内を仕切り板90で分断することで、互いに隣接したファン20同士において、隣接したファン20の発生する旋回流との干渉を防ぐことができる。このため、旋回流同士の干渉による流体のエネルギーのロスを抑制することができ、風速分布の改善と合わせて、室内機100の圧力損失低減が可能となる。なお、各仕切り板90は一枚の板で形成されている必要はなく、複数の板で形成されていてもよい。例えば、仕切り板90を前面側熱交換器51側と背面側熱交換器55側で二分割してもよい。言うまでもなく仕切り板90を構成する各板どうしの接合箇所には隙間はない方が好ましい。仕切り板90を複数に分割することにより、仕切り板90の組み付け性が向上する。 Thus, by dividing the air passage in the casing 1 into a plurality of air passages, the air blown from each fan 20 is blown into the indoor unit 100 even if the flow field created downstream by the fan 20 has a swirling component. Cannot move freely in the longitudinal direction (the direction perpendicular to the plane of FIG. 1). For this reason, the air blown out by the fan 20 can be passed through the heat exchanger 50 in the region surrounded by L1 and L2 downstream of the fan 20. As a result, variation in the air volume distribution in the longitudinal direction of the indoor unit 100 flowing into the entire heat exchanger 50 (in the direction orthogonal to the plane of FIG. 1) can be suppressed, and high heat exchange performance can be achieved. Further, by dividing the inside of the casing 1 with the partition plate 90, interference between the adjacent fans 20 and the swirl flow generated by the adjacent fans 20 can be prevented. For this reason, the loss of fluid energy due to the interference between the swirling flows can be suppressed, and the pressure loss of the indoor unit 100 can be reduced together with the improvement of the wind speed distribution. In addition, each partition plate 90 does not need to be formed with a single plate, and may be formed with a plurality of plates. For example, the partition plate 90 may be divided into two parts on the front side heat exchanger 51 side and the back side heat exchanger 55 side. Needless to say, it is preferable that there is no gap at the joint between the plates constituting the partition plate 90. By dividing the partition plate 90 into a plurality of parts, the assembling property of the partition plate 90 is improved.
(ファンモーター)
 ファン20はファンモーター30で回転駆動される。用いられるファンモーター30は、インナーローター型でもよいし、アウターローター型でもよい。アウターローター型のファンモーター30の場合には、ローターをファン20のボス21と一体にした構造(ボス21にローターを持たせる)のものも用いられる。また、ファンモーター30の寸法をファン20のボス21の寸法よりも小さくすることで、ファン20の生成する気流に損失を与えることを防止できる。さらに、ボス21の内部にモーターを配設することで、軸方向寸法も小さくすることができる。ファンモーター30とファン20を着脱容易な構造とすることにより、メンテナンス性も向上する。
(fan motor)
The fan 20 is rotationally driven by a fan motor 30. The fan motor 30 used may be an inner rotor type or an outer rotor type. In the case of the outer rotor type fan motor 30, a structure in which the rotor is integrated with the boss 21 of the fan 20 (the boss 21 is provided with a rotor) is also used. Further, by making the size of the fan motor 30 smaller than the size of the boss 21 of the fan 20, it is possible to prevent loss of the airflow generated by the fan 20. Further, by arranging a motor inside the boss 21, the axial dimension can be reduced. By making the fan motor 30 and the fan 20 easy to attach and detach, the maintainability is also improved.
 なお、ファンモーター30として比較的コストの高いDCブラシレスモーターを用いることにより、効率の向上、長寿命化及び制御性の向上を図ることができるが、他の形式のモーターを採用しても空気調和機としての一次機能が満足されることは言うまでもない。 また、ファンモーター30駆動用の回路は、ファンモーター30と一体にしてもよいし、外部で構成して防塵、防火対策を施すこともできる。 The use of a relatively expensive DC brushless motor as the fan motor 30 can improve efficiency, extend the service life, and improve the controllability. However, even if other types of motors are used, air conditioning It goes without saying that the primary function of the machine is satisfied. Further, the circuit for driving the fan motor 30 may be integrated with the fan motor 30 or may be configured externally to take dust and fire prevention measures.
 ファンモーター30は、モーターステイ16により、ケーシング1に取り付けられている。さらに、ファンモーター30をCPU冷却等に用いられるボックス型(ファン20、筐体、ファンモーター30、ベルマウス5、及びモーターステイ16等が一体でモジュール化されているもの)とし、ケーシング1と着脱可能な構造とすれば、メンテナンス性が向上し、ファン20のチップクリアランスの精度も高くすることができる。一般に、チップクリアランスが狭い方が、送風性能が高く好ましい。 The fan motor 30 is attached to the casing 1 by a motor stay 16. Further, the fan motor 30 is a box type (fan 20, housing, fan motor 30, bell mouth 5, motor stay 16 and the like are integrated into a module) used for CPU cooling and the like, and is detachable from the casing 1. If the structure is possible, the maintainability is improved and the accuracy of the chip clearance of the fan 20 can be increased. In general, a narrow tip clearance is preferable because of high air blowing performance.
 なお、ファンモーター30の駆動回路は、ファンモーター30内部に構成しても良いし、外部にあってもよい。 In addition, the drive circuit of the fan motor 30 may be configured inside the fan motor 30 or may be outside.
(モーターステイ)
 モーターステイ16は、固定部材17及び支持部材18を備えている。固定部材17は、ファンモーター30が取り付けられるものである。支持部材18は、固定部材17をケーシング1へ固定するための部材である。支持部材18は、例えば棒状のものであり、固定部材17の外周部から例えば放射状に延設されている。図1に示すように、本実施の形態1に係る支持部材18は、およそ水平方向に延設されている。なお、支持部材18は、翼形状や板形状として静翼効果を与えてもよい。
(Motor stay)
The motor stay 16 includes a fixing member 17 and a support member 18. The fixing member 17 is to which the fan motor 30 is attached. The support member 18 is a member for fixing the fixing member 17 to the casing 1. The support member 18 is, for example, a rod-like member, and extends from the outer peripheral portion of the fixing member 17, for example, radially. As shown in FIG. 1, the support member 18 according to the first embodiment extends approximately in the horizontal direction. In addition, the support member 18 may provide a stationary blade effect as a blade shape or a plate shape.
(熱交換器)
 本実施の形態1に係る室内機100の熱交換器50は、ファン20の風下側に配置されている。この熱交換器50には、例えばフィンチューブ型熱交換器等を用いるとよい。熱交換器50は、図1に示すように、右側縦断面において、対称線50aで分断されている。対称線50aは、この断面における熱交換器50の設置範囲を、略中央部において左右方向に分断するものである。つまり、前面側熱交換器51は対称線50aに対して前面側(図1の紙面左側)に、背面側熱交換器55は対称線50aに対して背面側(図1の紙面右側)に、それぞれ配置されている。そして、前面側熱交換器51及び背面側熱交換器55は、前面側熱交換器51と背面側熱交換器55との間の間隔が空気の流れ方向に対して広がるように、つまり右側縦断面において熱交換器50の断面形状が略Λ型となるように、ケーシング1内に配置されている。つまり、前面側熱交換器51及び背面側熱交換器55は、ファン20から供給される空気の流れ方向に対して傾斜を有するように配置されているのである。
(Heat exchanger)
The heat exchanger 50 of the indoor unit 100 according to Embodiment 1 is arranged on the leeward side of the fan 20. As the heat exchanger 50, for example, a fin tube heat exchanger or the like may be used. As shown in FIG. 1, the heat exchanger 50 is divided by a symmetry line 50a in the right vertical section. The symmetry line 50a divides the installation range of the heat exchanger 50 in this cross section in the left-right direction at a substantially central portion. That is, the front side heat exchanger 51 is on the front side (left side in FIG. 1) with respect to the symmetry line 50a, and the rear side heat exchanger 55 is on the back side (right side in FIG. 1) with respect to the symmetry line 50a. Each is arranged. The front-side heat exchanger 51 and the rear-side heat exchanger 55 are arranged so that the distance between the front-side heat exchanger 51 and the rear-side heat exchanger 55 widens with respect to the air flow direction, that is, the right-side longitudinal section. The heat exchanger 50 is arranged in the casing 1 so that the cross-sectional shape of the heat exchanger 50 is substantially Λ-shaped. That is, the front side heat exchanger 51 and the back side heat exchanger 55 are arranged so as to be inclined with respect to the flow direction of the air supplied from the fan 20.
 さらに、熱交換器50は、背面側熱交換器55の風路面積が前面側熱交換器51の風路面積よりも大きくなっていることを特徴としている。つまり、熱交換器50は、背面側熱交換器55の風量が前面側熱交換器51の風量よりも大きくなっている。本実施の形態1では、右側縦断面において、背面側熱交換器55の長手方向の長さが前面側熱交換器51の長手方向長さよりも長くなっている。これにより、背面側熱交換器55の風路面積は、前面側熱交換器51の風路面積よりも大きくなっている。なお、前面側熱交換器51及び背面側熱交換器55のその他の構成(図1における奥行き方向の長さ等)は、同じとなっている。つまり、背面側熱交換器55の伝熱面積は、前面側熱交換器51の伝熱面積よりも大きくなっている。また、ファン20の回転軸20aは、対称線50aの上方に設置されている。 Furthermore, the heat exchanger 50 is characterized in that the air passage area of the rear heat exchanger 55 is larger than the air passage area of the front heat exchanger 51. That is, in the heat exchanger 50, the air volume of the back side heat exchanger 55 is larger than the air volume of the front side heat exchanger 51. In the first embodiment, the longitudinal length of the back side heat exchanger 55 is longer than the longitudinal length of the front side heat exchanger 51 in the right vertical section. Thereby, the air path area of the back surface side heat exchanger 55 is larger than the air path area of the front surface side heat exchanger 51. The other configurations (such as the length in the depth direction in FIG. 1) of the front side heat exchanger 51 and the back side heat exchanger 55 are the same. That is, the heat transfer area of the back side heat exchanger 55 is larger than the heat transfer area of the front side heat exchanger 51. Moreover, the rotating shaft 20a of the fan 20 is installed above the symmetry line 50a.
 このように熱交換器50を構成することにより、吹出口にファンが設けられている従来の空気調和機の室内機と比べ、吹出口3から吹き出される空気の旋回流の発生や風速分布の発生を抑制することができる。また、このように熱交換器50を構成することにより、背面側熱交換器55の風量が前面側熱交換器51の風量よりも大きくなる。そして、この風量差により、前面側熱交換器51及び背面側熱交換器55のそれぞれを通過した空気が合流した際、この合流した空気は前面側(吹出口3側)へ曲がることとなる。このため、吹出口3近傍で気流を急激に曲げる必要が無くなり、吹出口3近傍での圧力損失を低減することができる。 By configuring the heat exchanger 50 in this manner, the generation of a swirling flow of the air blown from the blower outlet 3 and the distribution of the wind speed are compared with a conventional air conditioner indoor unit in which a fan is provided at the blower outlet. Occurrence can be suppressed. In addition, by configuring the heat exchanger 50 in this manner, the air volume of the back side heat exchanger 55 is larger than the air volume of the front side heat exchanger 51. And when the air which passed each of the front side heat exchanger 51 and the back side heat exchanger 55 merges by this air volume difference, this merged air will bend to the front side (blower outlet 3 side). For this reason, it is no longer necessary to bend the airflow rapidly in the vicinity of the outlet 3, and the pressure loss in the vicinity of the outlet 3 can be reduced.
 また、本実施の形態1に係る室内機100においては、背面側熱交換器55から流出する空気の流れ方向が、背面側から前面側への流れとなる。このため、本実施の形態1に係る室内機100は、右側縦断面において熱交換器50を略v型に配置する場合と比べて、熱交換器50を通過した後の空気の流れをより曲げやすくなる。 Moreover, in the indoor unit 100 according to the first embodiment, the flow direction of the air flowing out from the back side heat exchanger 55 is the flow from the back side to the front side. For this reason, the indoor unit 100 according to the first embodiment bends the flow of air after passing through the heat exchanger 50, as compared with the case where the heat exchanger 50 is arranged in a substantially v shape in the right vertical section. It becomes easy.
 室内機100は、ファン20を複数個有するため、重量が重くなりがちである。室内機100が重くなると、室内機100を据付けするための壁面の強度が必要とされ、据付け上の制約となる。このため、熱交換器50の軽量化を図ることが好ましい。また、室内機100は、熱交換器50の上流側にファン20を配置するので、室内機100の高さ寸法が大きくなり、据付け上の制約となりがちである。このため、熱交換器50を軽量化することが好ましい。また、熱交換器50を小型化することが好ましい。 The indoor unit 100 has a plurality of fans 20 and thus tends to be heavy. When the indoor unit 100 becomes heavy, the strength of the wall surface for installing the indoor unit 100 is required, which is a restriction on installation. For this reason, it is preferable to reduce the weight of the heat exchanger 50. Moreover, since the indoor unit 100 arrange | positions the fan 20 in the upstream of the heat exchanger 50, the height dimension of the indoor unit 100 becomes large and tends to become restrictions on installation. For this reason, it is preferable to reduce the weight of the heat exchanger 50. Moreover, it is preferable to reduce the size of the heat exchanger 50.
 そこで、本実施の形態1では、熱交換器50(前面側熱交換器51及び背面側熱交換器55)としてフィンチューブ型熱交換器を用い、熱交換器50の小型化を図っている。より詳しくは、本実施の形態1に係る熱交換器50は、所定の間隙を介して積層された複数のフィン56と、これらフィン56を貫通する複数の伝熱管57と、を備えている。本実施の形態1では、ケーシング1の左右方向(図1の紙面直交方向)に、フィン56を積層している。つまり、伝熱管57は、ケーシング1の左右方向(図1の紙面直交方向)に沿って、フィン56を貫通している。また、本実施の形態1では、熱交換器50の熱交換効率を向上させるため、熱交換器50の通風方向(フィン56の幅方向)に伝熱管57を2列配置している。これら伝熱管57は、右側縦断面において略千鳥形状に配置されている。 Therefore, in the first embodiment, a fin tube heat exchanger is used as the heat exchanger 50 (the front side heat exchanger 51 and the back side heat exchanger 55), and the heat exchanger 50 is downsized. More specifically, the heat exchanger 50 according to the first embodiment includes a plurality of fins 56 stacked via a predetermined gap, and a plurality of heat transfer tubes 57 penetrating the fins 56. In the first embodiment, the fins 56 are stacked in the left-right direction of the casing 1 (the direction orthogonal to the plane of FIG. 1). That is, the heat transfer tube 57 passes through the fin 56 along the left-right direction of the casing 1 (the direction orthogonal to the plane of FIG. 1). In Embodiment 1, in order to improve the heat exchange efficiency of the heat exchanger 50, two rows of heat transfer tubes 57 are arranged in the ventilation direction of the heat exchanger 50 (the width direction of the fins 56). These heat transfer tubes 57 are arranged in a substantially zigzag shape in the right vertical section.
 また、伝熱管57を直径が細い(直径3mm~7mm程度)円管で構成し、伝熱管57を流れる冷媒(室内機100及びこの室内機100を備えた空気調和機に用いられる冷媒)をR32とすることにより、熱交換器50の小型化を図っている。つまり、熱交換器50は、伝熱管57の内部を流れる冷媒と室内空気とがフィン56を介して熱交換するものである。このため、伝熱管57を細くした場合、伝熱管の径が太い熱交換器と比べ、同一冷媒循環量では冷媒の圧力損失が大きくなる。しかしながら、R32は、R410Aと比べ、同一温度における蒸発潜熱が大きく、より少ない冷媒循環量で同一能力を発揮できる。このため、R32を使用することにより、使用する冷媒量の削減が可能となり、熱交換器50において圧力損失の低減ができる。したがって、伝熱管57を細い円管で構成し、冷媒としてR32を用いることにより、熱交換器50を小型化することができる。 Further, the heat transfer tube 57 is formed by a thin tube (diameter of about 3 mm to 7 mm) and the refrigerant flowing through the heat transfer tube 57 (the refrigerant used in the indoor unit 100 and the air conditioner equipped with the indoor unit 100) is R32. Thus, the heat exchanger 50 is reduced in size. That is, the heat exchanger 50 exchanges heat between the refrigerant flowing in the heat transfer tube 57 and the room air via the fins 56. For this reason, when the heat transfer tube 57 is made thin, the pressure loss of the refrigerant becomes large at the same refrigerant circulation amount as compared with a heat exchanger having a large heat transfer tube diameter. However, R32 has a larger latent heat of vaporization at the same temperature than R410A, and can exhibit the same ability with a smaller amount of refrigerant circulation. For this reason, by using R32, the amount of refrigerant to be used can be reduced, and the pressure loss in the heat exchanger 50 can be reduced. Therefore, the heat exchanger 50 can be reduced in size by configuring the heat transfer tube 57 as a thin circular tube and using R32 as the refrigerant.
 また、本実施の形態1に係る熱交換器50では、フィン56及び伝熱管57をアルミニウム又はアルミニウム合金で形成することにより、熱交換器50の軽量化を図っている。なお、熱交換器50の重量が据付状の制約とならない場合、伝熱管57を銅で構成しても勿論よい。 Also, in the heat exchanger 50 according to the first embodiment, the heat exchanger 50 is reduced in weight by forming the fins 56 and the heat transfer tubes 57 from aluminum or an aluminum alloy. In addition, when the weight of the heat exchanger 50 does not become an installation-like restriction | limiting, of course, you may comprise the heat exchanger tube 57 with copper.
(フィンガーガード&フィルター)
 また、本実施の形態1に係る室内機100は、吸込口2に、フィンガーガード15やフィルター10が設けられている。フィンガーガード15は、回転するファン20に手を触れることができないようにする目的で設置されているものである。このため、フィンガーガード15の形状は、ファン20に手を触れることができなければ任意である。例えば、フィンガーガード15の形状は、格子状でもよいし、多数の大小異なるリングで構成されたような円形状でもよい。また、フィンガーガード15は、樹脂等の材料で構成しても金属の材料で構成してもよいが、強度が必要な場合、金属で構成することが望ましい。また、フィンガーガード15は、通風抵抗の低下と強度の保持の観点からできるだけ細く、強い材料や形状が好ましい。フィルター10は、室内機100の内部へ粉塵が流入することを防止するために設けられているものである。フィルター10は、着脱自在にケーシング1に設けられている。また、図示しないが、本実施の形態1に係る室内機100は、フィルター10を自動で掃除する自動清掃機構を備えていてもよい。
(Finger guard & filter)
In the indoor unit 100 according to the first embodiment, the finger guard 15 and the filter 10 are provided at the suction port 2. The finger guard 15 is installed for the purpose of preventing the rotating fan 20 from being touched. For this reason, the shape of the finger guard 15 is arbitrary as long as the hand cannot be touched to the fan 20. For example, the shape of the finger guard 15 may be a lattice shape, or may be a circular shape formed of a large number of different rings. In addition, the finger guard 15 may be made of a material such as a resin or a metal material. However, when strength is required, the finger guard 15 is preferably made of a metal. In addition, the finger guard 15 is preferably as thin and strong as possible from the viewpoint of lowering ventilation resistance and maintaining strength. The filter 10 is provided to prevent dust from flowing into the indoor unit 100. The filter 10 is detachably provided on the casing 1. Moreover, although not shown in figure, the indoor unit 100 which concerns on this Embodiment 1 may be provided with the automatic cleaning mechanism which cleans the filter 10 automatically.
(風向制御ベーン)
 また、本実施の形態1に係る室内機100は吹出口3に、気流の吹出し方向を制御する機構である上下ベーン70と左右ベーン(図示せず)が設けられている。
(Wind direction control vane)
Moreover, the indoor unit 100 which concerns on this Embodiment 1 is provided in the blower outlet 3 with the up-and-down vane 70 and the right-and-left vane (not shown) which are mechanisms which control the blowing direction of airflow.
(ドレンパン)
 図3は、本発明の実施の形態1に係る室内機を前面右側から見た斜視図である。図4は、この室内機を背面右側から見た斜視図である。図5は、この室内機を前面左側から見た斜視図である。また、図6は、本発明の実施の形態1に係るドレンパンを示す斜視図である。なお、ドレンパンの形状の理解を容易とするため、図3及び図4では室内機100の右側を断面で示し、図5では室内機100の左側を断面で示している。
(Drain pan)
FIG. 3 is a perspective view of the indoor unit according to Embodiment 1 of the present invention as viewed from the front right side. FIG. 4 is a perspective view of the indoor unit as viewed from the rear right side. FIG. 5 is a perspective view of the indoor unit as viewed from the front left side. FIG. 6 is a perspective view showing the drain pan according to Embodiment 1 of the present invention. In order to facilitate understanding of the shape of the drain pan, in FIGS. 3 and 4, the right side of the indoor unit 100 is shown in cross section, and in FIG. 5, the left side of the indoor unit 100 is shown in cross section.
 前面側熱交換器51の下端部(前面側熱交換器51の前面側端部)の下方には、前面側ドレンパン110が設けられている。背面側熱交換器55の下端部(背面側熱交換器55の背面側端部)の下方には、背面側ドレンパン115が設けられている。なお、本実施の形態1では、背面側ドレンパン115とケーシング1の背面部1bが一体で形成されている。この背面側ドレンパン115には、左側端部及び右側端部の双方に、ドレンホース117が接続される接続口116が設けられている。なお、接続口116の双方へドレンホース117を接続する必要はなく、どちらか一方の接続口116へドレンホース117を接続すればよい。例えば、室内機100の据付工事の際に室内機100の右側へドレンホース117を引き出したい場合、背面側ドレンパン115の右側端部に設けられた接続口116へドレンホース117を接続し、背面側ドレンパン115の左側端部に設けられた接続口116はゴムキャップ等で閉塞すればよい。 A front side drain pan 110 is provided below a lower end portion of the front side heat exchanger 51 (a front side end portion of the front side heat exchanger 51). A back side drain pan 115 is provided below the lower end portion of the back side heat exchanger 55 (the back side end of the back side heat exchanger 55). In the first embodiment, the back side drain pan 115 and the back portion 1b of the casing 1 are integrally formed. The back side drain pan 115 is provided with connection ports 116 to which the drain hose 117 is connected at both the left end and the right end. In addition, it is not necessary to connect the drain hose 117 to both the connection ports 116, and the drain hose 117 may be connected to one of the connection ports 116. For example, when the drain hose 117 is to be pulled out to the right side of the indoor unit 100 during the installation work of the indoor unit 100, the drain hose 117 is connected to the connection port 116 provided at the right end of the back side drain pan 115, and the back side The connection port 116 provided at the left end of the drain pan 115 may be closed with a rubber cap or the like.
 前面側ドレンパン110は、背面側ドレンパン115よりも高い位置に配置されている。また、前面側ドレンパン110と背面側ドレンパン115との間には、左側端部及び右側端部の双方に、ドレンの移動路となる排水路111が設けられている。排水路111は、前面側の端部が前面側ドレンパン110と接続されており、前面側ドレンパン110から背面側ドレンパン115に向かって下方に傾斜するように設けられている。また、排水路111の背面側の端部には、舌部111aが形成されている。排水路111の背面側の端部は、背面側ドレンパン115の上面に覆い被さるように配置されている。 The front side drain pan 110 is disposed at a position higher than the back side drain pan 115. Further, between the front side drain pan 110 and the back side drain pan 115, a drainage channel 111 serving as a drain moving path is provided at both the left end and the right end. The drainage channel 111 has a front end connected to the front drain pan 110 and is provided so as to incline downward from the front drain pan 110 toward the rear drain pan 115. In addition, a tongue portion 111 a is formed at the end of the drainage channel 111 on the back side. The rear end of the drainage channel 111 is disposed so as to cover the upper surface of the back side drain pan 115.
 冷房運転時、熱交換器50で室内空気が冷却される際、熱交換器50に結露が発生する。そして、前面側熱交換器51に付着した露は、前面側熱交換器51の下端部から滴下し、前面側ドレンパン110で回収される。背面側熱交換器55に付着した露は、背面側熱交換器55の下端部から滴下し、背面側ドレンパン115で回収される。
 また、本実施の形態1では背面側ドレンパン115よりも高い位置に前面側ドレンパン110を設けているので、前面側ドレンパン110で回収されたドレンは、背面側ドレンパン115の方へ向かって排水路111を流れる。そして、このドレンは、排水路111の舌部111aから背面側ドレンパン115へ滴下し、背面側ドレンパン115で回収される。背面側ドレンパン115で回収されたドレンは、ドレンホース117を通って、ケーシング1(室内機100)の外部へ排出される。
During the cooling operation, when the indoor air is cooled by the heat exchanger 50, condensation occurs in the heat exchanger 50. The dew adhering to the front side heat exchanger 51 is dropped from the lower end portion of the front side heat exchanger 51 and collected by the front side drain pan 110. The dew adhering to the back side heat exchanger 55 drops from the lower end of the back side heat exchanger 55 and is collected by the back side drain pan 115.
In the first embodiment, the front-side drain pan 110 is provided at a position higher than the back-side drain pan 115, so that the drain collected by the front-side drain pan 110 is directed toward the back-side drain pan 115 toward the drainage channel 111. Flowing. Then, the drain is dropped from the tongue 111 a of the drainage channel 111 to the back side drain pan 115 and collected by the back side drain pan 115. The drain collected by the back side drain pan 115 passes through the drain hose 117 and is discharged to the outside of the casing 1 (indoor unit 100).
 本実施の形態1のように、背面側ドレンパン115よりも高い位置に前面側ドレンパン110を設けることにより、両ドレンパンで回収されたドレンを、背面側ドレンパン115(最もケーシング1の背面側に配置されたドレンパン)に集めることができる。このため、背面側ドレンパン115にドレンホース117の接続口116を設けることにより、前面側ドレンパン110及び背面側ドレンパン115で回収されたドレンをケーシング1の外部へ排出することができる。したがって、ケーシング1の前面部等を開けて室内機100のメンテナンス(熱交換器50の清掃等)を行う場合等、ドレンホース117の接続されたドレンパンを着脱等する必要がなく、メンテナンス等の作業性が向上する。 By providing the front-side drain pan 110 at a position higher than the back-side drain pan 115 as in the first embodiment, the drain collected by both drain pans is disposed on the back-side drain pan 115 (most rear side of the casing 1). Can be collected in the drain pan). For this reason, by providing the connection port 116 of the drain hose 117 in the back side drain pan 115, the drain collected by the front side drain pan 110 and the back side drain pan 115 can be discharged to the outside of the casing 1. Therefore, when performing maintenance (such as cleaning the heat exchanger 50) of the indoor unit 100 by opening the front surface of the casing 1, it is not necessary to attach or detach the drain pan to which the drain hose 117 is connected. Improves.
 また、排水路111が左側端部及び右側端部の双方に設けられているので、室内機100が傾いた状態で設置されても、前面側ドレンパン110で回収されたドレンを確実に背面側ドレンパン115へ導くことができる。また、ドレンホース117を接続する接続口が左側端部及び右側端部の双方に設けられているので、室内機100の据付条件に応じてホースの引き出し方向を選択することができ、室内機100を設置する際の作業性が向上する。また、排水路111が背面側ドレンパン115の上方に覆い被さるように配置されているので(つまり、排水路111と背面側ドレンパン115との間に接続機構が不要となるので)、前面側ドレンパン110を着脱することが容易となり、メンテナンス性がより向上する。 Further, since the drainage channels 111 are provided at both the left end and the right end, even if the indoor unit 100 is installed in an inclined state, the drain collected by the front side drain pan 110 can be surely received from the back side drain pan. 115. In addition, since the connection ports for connecting the drain hose 117 are provided at both the left end and the right end, the hose pull-out direction can be selected according to the installation conditions of the indoor unit 100, and the indoor unit 100 The workability when installing is improved. In addition, since the drainage channel 111 is disposed so as to cover the backside drain pan 115 (that is, a connection mechanism is not required between the drainage channel 111 and the backside drain pan 115), the front side drain pan 110 is disposed. It becomes easy to attach and detach, and the maintainability is further improved.
 なお、排水路111の背面側の端部を背面側ドレンパン115と接続し、前面側ドレンパン110が排水路111の上方に覆い被さるように、排水路111を配置してもよい。このような構成でも、排水路111が背面側ドレンパン115の上方に覆い被さるように配置された構成と同様の効果を得ることができる。また、前面側ドレンパン110が背面側ドレンパン115よりも高い必要は必ずしもなく、前面側ドレンパン110と背面側ドレンパン115が同じ高さであっても、両ドレンパンで回収したドレンを背面側ドレンパン115に接続されたドレンホースから排出することができる。 It should be noted that the drainage channel 111 may be disposed so that the rear side end of the drainage channel 111 is connected to the rear side drain pan 115 and the front side drain pan 110 covers the drainage channel 111. Even in such a configuration, it is possible to obtain the same effect as the configuration in which the drainage channel 111 is disposed so as to cover the back side drain pan 115. Further, the front-side drain pan 110 does not necessarily need to be higher than the rear-side drain pan 115. Even if the front-side drain pan 110 and the rear-side drain pan 115 have the same height, the drain collected by both drain pans is connected to the rear-side drain pan 115. The drainage hose can be discharged.
(ノズル)
 また、本実施の形態1に係る室内機100は、右側縦断面において、ノズル6の入り口側の開口長さd1(前面側ドレンパン110と背面側ドレンパン115部分との間で定義されるドレンパン間の絞り長さd1)が、ノズル6の出口側の開口長さd2(吹出口3の長さ)よりも大きく構成されている。つまり、室内機100のノズル6は、d1>d2となっている(図1参照)。
(nozzle)
Further, the indoor unit 100 according to Embodiment 1 has an opening length d1 on the entrance side of the nozzle 6 in the right vertical section (between the drain pans defined between the front-side drain pan 110 and the back-side drain pan 115 portion. The throttle length d1) is configured to be larger than the opening length d2 on the outlet side of the nozzle 6 (the length of the outlet 3). That is, the nozzle 6 of the indoor unit 100 satisfies d1> d2 (see FIG. 1).
 ノズル6がd1>d2となっているのは、次のような理由のためである。なお、d2は室内機の基本機能の一つである気流の到達性に影響するため、以下では、本実施の形態1に係る室内機100のd2が従来の室内機の吹出口と同程度の長さであるとして説明する。 The reason why the nozzle 6 satisfies d1> d2 is as follows. In addition, since d2 affects the reachability of the airflow, which is one of the basic functions of the indoor unit, in the following, d2 of the indoor unit 100 according to the first embodiment is approximately the same as the air outlet of the conventional indoor unit. It will be described as being length.
 縦断面におけるノズル6の形状をd1>d2とすることにより、空気の風路が大きくなると共に、上流側に配置された熱交換器50の角度A(熱交換器50の下流側における前面側熱交換器51と背面側熱交換器55とがなす角度)を大きくすることが可能となる。このため、熱交換器50に生じる風速分布が緩和されると共に、熱交換器50の下流の空気の風路を大きく形成できるため、室内機100全体の圧力損失の低減が可能となる。さらに、ノズル6の入口付近に生じていた風速分布の偏りを、縮流する効果によって均一化し、吹出口3に案内することができる。 By making d1> d2 the shape of the nozzle 6 in the longitudinal section, the air passage becomes larger and the angle A of the heat exchanger 50 arranged on the upstream side (the front side heat on the downstream side of the heat exchanger 50). It is possible to increase the angle formed by the exchanger 51 and the back side heat exchanger 55. For this reason, the wind speed distribution generated in the heat exchanger 50 is relaxed, and the air path downstream of the heat exchanger 50 can be formed large, so that the pressure loss of the entire indoor unit 100 can be reduced. Furthermore, the deviation of the wind speed distribution that has occurred near the inlet of the nozzle 6 can be made uniform by the effect of contraction and guided to the outlet 3.
 例えばd1=d2の場合、ノズル6の入口付近で生じた風速分布の偏り(例えば、背面側に偏った流れ)が、そのまま吹出口3における風速分布の偏りとなる。つまり、d1=d2の場合、風速分布の偏りを持った状態で、吹出口3から空気が吹き出される。また、例えばd1<d2の場合、前面側熱交換器51及び背面側熱交換器55を通過した空気がノズル6の入口付近で合流する際、縮流損失が大きくなってしまう。このため、d1<d2の場合、吹出口3のディフューズ効果が得られなければ、縮流損失分の損失が発生する。 For example, in the case of d1 = d2, the deviation of the wind speed distribution generated near the inlet of the nozzle 6 (for example, the flow biased toward the back side) becomes the deviation of the wind speed distribution at the outlet 3 as it is. That is, in the case of d1 = d2, air is blown out from the outlet 3 in a state where the wind speed distribution is uneven. For example, in the case of d1 <d2, when the air that has passed through the front-side heat exchanger 51 and the rear-side heat exchanger 55 merges in the vicinity of the inlet of the nozzle 6, the contraction loss increases. For this reason, in the case of d1 <d2, if the diffusion effect of the outlet 3 is not obtained, a loss corresponding to the contraction loss occurs.
(ANC)
 また、本実施の形態1に係る室内機100は、図1に示すように能動的消音機構が設置されている。
(ANC)
In addition, the indoor unit 100 according to Embodiment 1 is provided with an active silencing mechanism as shown in FIG.
 より詳しくは、本実施の形態1に係る室内機100の消音機構は、騒音検出マイクロホン161、制御スピーカー181、消音効果検出マイクロホン191、及び信号処理装置201により構成されている。騒音検出マイクロホン161は、ファン20の送風音を含む室内機100の運転音(騒音)を検出する騒音検出装置である。この騒音検出マイクロホン161は、ファン20と熱交換器50との間に配置されている。本実施の形態1では、ケーシング1内の前面部に設けられている。制御スピーカー181は、騒音に対する制御音を出力する制御音出力装置である。この制御スピーカー181は、騒音検出マイクロホン161の下側であって、熱交換器50の上側に配置されている。本実施の形態1では、ケーシング1内の前面部に、風路の中央を向くように設けられている。消音効果検出マイクロホン191は、制御音による消音効果を検出する消音効果検出装置である。この消音効果検出マイクロホン191は、吹出口3から出てくる騒音を検出するため、吹出口3近傍に設けられている。また、消音効果検出マイクロホン191は、吹出口3から出てくる吹出空気に当たらないように、風流を避けた位置に取り付けられている。信号処理装置201は、騒音検出マイクロホン161及び消音効果検出マイクロホン191の検出結果に基づき、制御スピーカー181に制御音を出力させる制御音生成装置である。信号処理装置201は、例えば制御装置281に収容されている。 More specifically, the silencing mechanism of the indoor unit 100 according to the first embodiment includes a noise detection microphone 161, a control speaker 181, a silencing effect detection microphone 191, and a signal processing device 201. The noise detection microphone 161 is a noise detection device that detects the operation sound (noise) of the indoor unit 100 including the blowing sound of the fan 20. The noise detection microphone 161 is disposed between the fan 20 and the heat exchanger 50. In the first embodiment, it is provided on the front surface in the casing 1. The control speaker 181 is a control sound output device that outputs a control sound for noise. The control speaker 181 is disposed below the noise detection microphone 161 and above the heat exchanger 50. In this Embodiment 1, it is provided in the front part in the casing 1 so that it may face the center of an air path. The silencing effect detection microphone 191 is a silencing effect detection device that detects the silencing effect by the control sound. The muffler effect detection microphone 191 is provided in the vicinity of the air outlet 3 in order to detect noise coming from the air outlet 3. Further, the muffler effect detection microphone 191 is attached at a position avoiding the wind flow so as not to hit the blown air coming out of the blowout port 3. The signal processing device 201 is a control sound generation device that causes the control speaker 181 to output a control sound based on the detection results of the noise detection microphone 161 and the silencing effect detection microphone 191. The signal processing device 201 is accommodated in the control device 281, for example.
 図8は、本発明の実施の形態1に係る信号処理装置を示す構成図である。騒音検出マイクロホン161、及び消音効果検出マイクロホン191から入力された電気信号はマイクアンプ151により増幅され、A/D変換器152によりアナログ信号からデジタル信号に変換される。変換されたデジタル信号はFIRフィルター158、及びLMSアルゴリズム159に入力される。FIRフィルター158では騒音検出マイクロホン161で検出した騒音が、消音効果検出マイクロホン191が設置されている場所に到達したときの騒音と同振幅・逆位相となるように補正をかけた制御信号を生成し、D/A変換器154によりデジタル信号からアナログ信号に変換された後、アンプ155により増幅され、制御スピーカー181から制御音として放出される。 FIG. 8 is a block diagram showing the signal processing apparatus according to Embodiment 1 of the present invention. Electric signals input from the noise detection microphone 161 and the muffler effect detection microphone 191 are amplified by the microphone amplifier 151 and converted from an analog signal to a digital signal by the A / D converter 152. The converted digital signal is input to the FIR filter 158 and the LMS algorithm 159. The FIR filter 158 generates a control signal that has been corrected so that the noise detected by the noise detection microphone 161 has the same amplitude and opposite phase as the noise when the noise reduction effect detection microphone 191 is installed. After being converted from a digital signal to an analog signal by the D / A converter 154, it is amplified by the amplifier 155 and emitted from the control speaker 181 as a control sound.
 空気調和機が冷房運転する場合等、図7に示すように、熱交換器50と吹出口3の間の領域Bは、冷気により温度が低下するため、空気中の水蒸気が水滴となって現れる結露が発生する。このため、室内機100には、吹出口3付近に水滴が吹出口3から出てこないようにするための水受け等(図示せず)が取り付けられている。なお、熱交換器50の上流である騒音検出マイクロホン161及び制御スピーカー181が配置される領域は、冷気により冷やされる領域の上流にあたるため、結露が生じない。 As shown in FIG. 7, when the air conditioner is in a cooling operation, the temperature of the region B between the heat exchanger 50 and the outlet 3 is lowered by the cold air, so that water vapor in the air appears as water droplets. Condensation occurs. For this reason, the indoor unit 100 is provided with a water receptacle or the like (not shown) for preventing water droplets from coming out of the air outlet 3 in the vicinity of the air outlet 3. In addition, since the area | region where the noise detection microphone 161 and the control speaker 181 which are upstream of the heat exchanger 50 are arrange | positioned is upstream of the area | region cooled with cold air | atmosphere, dew condensation does not arise.
 次に室内機100の運転音の抑制方法について説明する。室内機100におけるファン20の送風音を含む運転音(騒音)は、ファン20と熱交換器50との間に取り付けられた騒音検出マイクロホン161で検出してマイクアンプ151、A/D変換器152を介してデジタル信号となり、FIRフィルター158とLMSアルゴリズム159に入力される。 Next, a method for suppressing the operation sound of the indoor unit 100 will be described. The operation sound (noise) including the blowing sound of the fan 20 in the indoor unit 100 is detected by the noise detection microphone 161 attached between the fan 20 and the heat exchanger 50, and the microphone amplifier 151 and the A / D converter 152 are detected. And is input to the FIR filter 158 and the LMS algorithm 159.
 FIRフィルター158のタップ係数はLMSアルゴリズム159により逐次更新される。LMSアルゴリズム159にてタップ係数は式1(h(n+1)=h(n)+2・μ・e(n)・x(n))に従って更新され、誤差信号eがゼロに近づくように最適なタップ係数が更新される。
 なお、h:フィルターのタップ係数、e:誤差信号、x:フィルター入力信号、μ:ステップサイズパラメータであり、ステップサイズパラメータμはサンプリングごとのフィルター係数更新量を制御するものである。
The tap coefficients of the FIR filter 158 are sequentially updated by the LMS algorithm 159. In the LMS algorithm 159, the tap coefficient is updated according to the equation 1 (h (n + 1) = h (n) + 2 · μ · e (n) · x (n)), and the optimum tap is set so that the error signal e approaches zero. The coefficient is updated.
Note that h is a filter tap coefficient, e is an error signal, x is a filter input signal, and μ is a step size parameter. The step size parameter μ controls a filter coefficient update amount for each sampling.
 このように、LMSアルゴリズム159でタップ係数が更新されたFIRフィルター158を通過したデジタル信号は、D/A変換器154にてアナログ信号に変換され、アンプ155で増幅され、ファン20と熱交換器50との間に取り付けられた制御スピーカー181から制御音として室内機100内の風路に放出される。 Thus, the digital signal that has passed through the FIR filter 158 whose tap coefficient has been updated by the LMS algorithm 159 is converted to an analog signal by the D / A converter 154, amplified by the amplifier 155, and the fan 20 and heat exchanger. 50 is emitted as a control sound from the control speaker 181 attached between the indoor unit 100 and the air passage in the indoor unit 100.
 一方、室内機100の下端で、吹出口3から放出される風が当たらないように吹出口3の外側壁方向に取り付けられた消音効果検出マイクロホン191には、ファン20から風路を通って伝播し吹出口3から出てくる騒音に制御スピーカー181から放出された制御音を干渉させた後の音が検出される。上述したLMSアルゴリズム159の誤差信号には、消音効果検出マイクロホン191で検出された音を入力しているため、この干渉後の音がゼロに近づくようにFIRフィルター158のタップ係数が更新されることになる。その結果、FIRフィルター158を通過した制御音により吹出口3近傍の騒音を抑制することができる。 On the other hand, at the lower end of the indoor unit 100, the sound is transmitted from the fan 20 through the air path to the muffler effect detection microphone 191 attached in the direction of the outer wall of the air outlet 3 so that the wind emitted from the air outlet 3 does not hit. The sound after the control sound emitted from the control speaker 181 interferes with the noise coming out from the blow outlet 3 is detected. Since the sound detected by the muffling effect detection microphone 191 is input to the error signal of the LMS algorithm 159 described above, the tap coefficient of the FIR filter 158 is updated so that the sound after the interference approaches zero. become. As a result, noise in the vicinity of the air outlet 3 can be suppressed by the control sound that has passed through the FIR filter 158.
 このように、能動的消音方法を適用した室内機100においては、騒音検出マイクロホン161と制御スピーカー181をファン20と熱交換器50との間に配置し、消音効果検出マイクロホン191を吹出口3からの風流が当たらない箇所に取り付けている。このため、結露が起きる領域Bに能動的消音の必要部材を取り付けなくて済むため、制御スピーカー181、騒音検出マイクロホン161及び消音効果検出マイクロホン191への水滴の付着を防止し、消音性能の劣化やスピーカーやマイクロホンの故障を防ぐことができる。 As described above, in the indoor unit 100 to which the active silencing method is applied, the noise detection microphone 161 and the control speaker 181 are arranged between the fan 20 and the heat exchanger 50, and the silencing effect detection microphone 191 is connected to the blower outlet 3. It is installed in the place where the wind current does not hit. For this reason, since it is not necessary to attach a member that requires active silencing to the region B where condensation occurs, water droplets are prevented from adhering to the control speaker 181, the noise detecting microphone 161, and the silencing effect detecting microphone 191, and the silencing performance is deteriorated. The failure of the speaker and microphone can be prevented.
 なお、本実施の形態1で示した騒音検出マイクロホン161、制御スピーカー181及び消音効果検出マイクロホン191の取り付け位置は、あくまでも一例である。例えば、図9に示すように、騒音検出マイクロホン161と制御スピーカー181と共に、消音効果検出マイクロホン191をファン20と熱交換器50との間に配置してもよい。また、騒音や制御音により騒音を打ち消した後の消音効果の検出手段としてマイクロホンを例に挙げたが、ケーシングの振動を検知する加速度センサー等で構成されてもよい。また、音を空気流れの乱れとして捉え、騒音や制御音により騒音を打ち消した後の消音効果を、空気流れの乱れとして検出してもよい。つまり、騒音や制御音により騒音を打ち消した後の消音効果の検出手段として、空気流れを検出する流速センサー、熱線プローブ等を用いてもよい。マイクロホンのゲインを上げて、空気流れを検出することも可能である。 Note that the mounting positions of the noise detection microphone 161, the control speaker 181 and the mute effect detection microphone 191 shown in the first embodiment are merely examples. For example, as shown in FIG. 9, the noise reduction effect detection microphone 191 may be disposed between the fan 20 and the heat exchanger 50 together with the noise detection microphone 161 and the control speaker 181. Further, although the microphone has been exemplified as a means for detecting the silencing effect after the noise is canceled by the noise or the control sound, it may be configured by an acceleration sensor or the like that detects the vibration of the casing. Alternatively, the sound may be regarded as air flow disturbance, and the noise reduction effect after the noise is canceled by noise or control sound may be detected as air flow disturbance. That is, a flow rate sensor, a hot wire probe, or the like that detects an air flow may be used as a means for detecting a silencing effect after noise is canceled by noise or control sound. It is also possible to detect the air flow by increasing the gain of the microphone.
 また、本実施の形態1では、信号処理装置201にてFIRフィルター158とLMSアルゴリズム159を用いたが、消音効果検出マイクロホン191で検出した音をゼロに近づける適応信号処理回路であればよく、能動的消音方法で一般的に使用されているfiltered-Xアルゴリズムを用いたものでもよい。さらに、信号処理装置201は適応信号処理ではなく、固定のタップ係数により制御音を生成する構成にしても良い。また、信号処理装置201はデジタル信号処理ではなく、アナログ信号処理回路であってもよい。 In the first embodiment, the FIR filter 158 and the LMS algorithm 159 are used in the signal processing device 201. However, any adaptive signal processing circuit that brings the sound detected by the mute effect detection microphone 191 close to zero may be active. Alternatively, a filtered-X algorithm that is generally used in the dynamic silencing method may be used. Further, the signal processing device 201 may be configured to generate the control sound by a fixed tap coefficient instead of the adaptive signal processing. Further, the signal processing device 201 may be an analog signal processing circuit instead of digital signal processing.
 さらに、本実施の形態1では結露が起こるような空気の冷却を行う熱交換器50を配置した場合について記載したが、結露が起きない程度の熱交換器50を配置する場合であっても適用でき、熱交換器50による結露発生の有無を考慮せずに騒音検出マイクロホン161、制御スピーカー181及び消音効果検出マイクロホン191等の性能劣化を防止できる効果がある。 Further, in the first embodiment, the case where the heat exchanger 50 that cools the air so that condensation occurs is described, but the present invention is applicable even when the heat exchanger 50 that does not cause condensation is disposed. Therefore, it is possible to prevent performance deterioration of the noise detection microphone 161, the control speaker 181, the silencing effect detection microphone 191, and the like without considering the presence or absence of dew condensation due to the heat exchanger 50.
実施の形態2.
 以下では、能動的消音方法の他の実施の形態について説明する。なお、本実施の形態2においては、実施の形態1と同一の機能や構成については同一の符号を用いて述べることとする。
Embodiment 2. FIG.
In the following, another embodiment of the active silencing method will be described. In the second embodiment, the same functions and configurations as those in the first embodiment will be described using the same reference numerals.
 図10は、本発明の実施の形態2に係る室内機を示す縦断面図である。なお、図10は、図の右側を室内機100の前面側としている。
 本実施の形態2に記載した室内機100が実施の形態1に係る室内機100と異なる点は、実施の形態1に記載の室内機100では能動的消音を行うための騒音検出マイクロホン161と消音効果検出マイクロホン191の二つのマイクロホンを用いて信号処理装置201にて制御音の生成を行っていたが、本実施の形態2の室内機100では、これらを一つのマイクロホンである騒音・消音効果検出マイクロホン211に置き換わっているところである。また、それに伴い、信号処理の方法が異なるため、信号処理装置204の内容が異なっている。
FIG. 10 is a longitudinal sectional view showing the indoor unit according to Embodiment 2 of the present invention. In FIG. 10, the right side of the figure is the front side of the indoor unit 100.
The indoor unit 100 described in the second embodiment is different from the indoor unit 100 according to the first embodiment in that the indoor unit 100 described in the first embodiment has a noise detection microphone 161 and a mute for active silencing. Although the control sound is generated by the signal processing device 201 using the two microphones of the effect detection microphone 191, in the indoor unit 100 of the second embodiment, these are one microphone and the noise / silence effect detection is performed. The microphone 211 has been replaced. Accordingly, since the signal processing method is different, the contents of the signal processing device 204 are different.
 ファン20下側の壁部には、騒音に対する制御音を出力する制御スピーカー181が壁から風路の中央に向くように配置されており、さらにその下側に、ファン20から風路を通って伝播し、吹出口3から出てくる騒音に、制御スピーカー181から放出された制御音を干渉させた後の音を検出する騒音・消音効果検出マイクロホン211が配置されている。制御スピーカー181と騒音・消音効果検出マイクロホン211とは、ファン20と熱交換器50の間に取り付けられている。 A control speaker 181 that outputs a control sound for noise is disposed on the lower wall portion of the fan 20 so as to face the center of the air path from the wall, and further on the lower side of the fan 20 through the air path. A noise / muffling effect detection microphone 211 for detecting a sound after propagating the control sound emitted from the control speaker 181 to the noise that propagates and exits from the air outlet 3 is disposed. The control speaker 181 and the noise / silence effect detection microphone 211 are attached between the fan 20 and the heat exchanger 50.
 騒音・消音効果検出マイクロホン211の出力信号は制御スピーカー181を制御する信号(制御音)を生成するための制御音生成手段である信号処理装置204に入力されている。 The output signal of the noise / muffling effect detection microphone 211 is input to a signal processing device 204 which is a control sound generating means for generating a signal (control sound) for controlling the control speaker 181.
 図11は、本発明の実施の形態2に係る信号処理装置を示す構成図である。信号処理装置204の構成図を示している。騒音・消音効果検出マイクロホン211により音声信号から変換された電気信号はマイクアンプ151により増幅され、A/D変換器152によりアナログ信号からデジタル信号に変換される。変換されたデジタル信号は、LMSアルゴリズム159に入力される他、FIRフィルター158の出力信号にFIRフィルター160を畳み込んだ信号との差分信号がFIRフィルター158とLMSアルゴリズム159に入力される。次に、差分信号は、FIRフィルター158でLMSアルゴリズム159により算出されたタップ係数による畳み込み演算が施された後、D/A変換器154によりデジタル信号からアナログ信号に変換され、アンプ155により増幅され、制御スピーカー181から制御音として放出される。 FIG. 11 is a block diagram showing a signal processing apparatus according to Embodiment 2 of the present invention. The block diagram of the signal processing apparatus 204 is shown. The electrical signal converted from the sound signal by the noise / muffling effect detection microphone 211 is amplified by the microphone amplifier 151 and converted from an analog signal to a digital signal by the A / D converter 152. The converted digital signal is input to the LMS algorithm 159, and a difference signal from the signal obtained by convolving the FIR filter 160 with the output signal of the FIR filter 158 is input to the FIR filter 158 and the LMS algorithm 159. Next, the difference signal is subjected to a convolution operation by the tap coefficient calculated by the LMS algorithm 159 by the FIR filter 158, converted from a digital signal to an analog signal by the D / A converter 154, and amplified by the amplifier 155. The sound is emitted from the control speaker 181 as a control sound.
 次に室内機100の運転音の抑制方法について説明する。室内機100におけるファン20の送風音を含む運転音(騒音)に対し、制御スピーカー181から出力される制御音を干渉させた後の音は、ファン20と熱交換器50との間に取り付けられた騒音・消音効果検出マイクロホン211で検出してマイクアンプ151、A/D変換器152を介してデジタル信号となる。 Next, a method for suppressing the operation sound of the indoor unit 100 will be described. The sound after the control sound output from the control speaker 181 interferes with the operation sound (noise) including the blowing sound of the fan 20 in the indoor unit 100 is attached between the fan 20 and the heat exchanger 50. It is detected by the noise / silence effect detection microphone 211 and converted into a digital signal via the microphone amplifier 151 and the A / D converter 152.
 実施の形態1に記述した運転音の抑制方法と同等の抑制方法を行うにはFIRフィルター158には消音したい騒音を入力し、LMSアルゴリズム159には式1にも示した通り、入力信号となる消音したい騒音と誤差信号となる制御音を干渉させた後の音を入力する必要がある。しかし、騒音・消音効果検出マイクロホン211では制御音を干渉させた後の音しか検出することができないため、騒音・消音効果検出マイクロホン211で検出した音から消音したい騒音を作り出すことが必要となる。 In order to perform a suppression method equivalent to the driving sound suppression method described in the first embodiment, noise to be silenced is input to the FIR filter 158, and an input signal is input to the LMS algorithm 159 as shown in Equation 1 as well. It is necessary to input the sound after the interference between the noise to be silenced and the control sound as an error signal. However, since the noise / muffling effect detection microphone 211 can only detect the sound after the control sound interferes with it, it is necessary to create noise to be muffled from the sound detected by the noise / muffling effect detection microphone 211.
 図12は、騒音と制御音との干渉後の音の波形(図12中のa)、制御音の波形(図12中のb)、騒音の波形(図12中のc)を示したものである。音の重ね合わせの原理からb+c=aとなることから、aからcを得るためにはaとbとの差分を取ることでcを得ることができる。つまり、騒音・消音効果検出マイクロホン211で検出した干渉後の音と制御音との差分から消音したい騒音を作り出すことができる。 FIG. 12 shows a sound waveform (a in FIG. 12), a control sound waveform (b in FIG. 12), and a noise waveform (c in FIG. 12) after interference between the noise and the control sound. It is. Since b + c = a from the principle of sound superposition, in order to obtain c from a, c can be obtained by taking the difference between a and b. That is, it is possible to create noise to be silenced from the difference between the interference sound detected by the noise / silence effect detection microphone 211 and the control sound.
 図13は、FIRフィルター158から出力される制御信号が制御音となって制御スピーカー181から出力された後、騒音・消音効果検出マイクロホン211で検出され、信号処理装置204に入力される経路を示した図である。D/A変換器154、アンプ155、制御スピーカー181から騒音・消音効果検出マイクロホン211までの経路、騒音・消音効果検出マイクロホン211、マイクアンプ151、A/D変換器152を経ている。 FIG. 13 shows a path in which the control signal output from the FIR filter 158 is output as a control sound and output from the control speaker 181, and then detected by the noise / silence effect detection microphone 211 and input to the signal processing device 204. It is a figure. It passes through a D / A converter 154, an amplifier 155, a path from the control speaker 181 to the noise / silence effect detection microphone 211, a noise / silence effect detection microphone 211, a microphone amplifier 151, and an A / D converter 152.
 この経路がもつ伝達特性をHとすると、図11のFIRフィルター160は、この伝達特性Hを推定したものである。FIRフィルター158の出力信号に対してFIRフィルター160を畳み込むことで、制御音を騒音・消音効果検出マイクロホン211にて検出した信号bとして推定でき、騒音・消音効果検出マイクロホン211にて検出した干渉後の音aとの差分を取ることで消音したい騒音cが生成される。 Suppose that the transfer characteristic of this route is H, the FIR filter 160 in FIG. 11 estimates the transfer characteristic H. By convolving the FIR filter 160 with the output signal of the FIR filter 158, the control sound can be estimated as the signal b detected by the noise / silence effect detection microphone 211, and after the interference detected by the noise / silence effect detection microphone 211 The noise c to be silenced is generated by taking the difference from the sound a.
 このようにして生成した消音したい騒音cが入力信号としてLMSアルゴリズム159、及びFIRフィルター158に供給される。LMSアルゴリズム159でタップ係数が更新されたFIRフィルター158を通過したデジタル信号はD/A変換器154にてアナログ信号に変換され、アンプ155で増幅され、ファン20と熱交換器50との間に取り付けられた制御スピーカー181から制御音として室内機100内の風路に放出される。 The noise c to be silenced generated in this way is supplied as an input signal to the LMS algorithm 159 and the FIR filter 158. The digital signal that has passed through the FIR filter 158 whose tap coefficient has been updated by the LMS algorithm 159 is converted into an analog signal by the D / A converter 154, amplified by the amplifier 155, and between the fan 20 and the heat exchanger 50. Control sound is emitted from the attached control speaker 181 to the air passage in the indoor unit 100.
 一方、制御スピーカー181の下側に取り付けられた騒音・消音効果検出マイクロホン211には、ファン20から風路を通って伝播し、吹出口3から出てくる騒音に、制御スピーカー181から放出された制御音を干渉させた後の音が検出される。上述したLMSアルゴリズム159の誤差信号には、騒音・消音効果検出マイクロホン211で検出された音を入力しているため、この干渉後の音がゼロに近づくようにFIRフィルター158のタップ係数が更新されることになる。その結果、FIRフィルター158を通過した制御音により吹出口3近傍の騒音を抑制することができる。 On the other hand, the noise / muffling effect detection microphone 211 attached to the lower side of the control speaker 181 propagates through the air path from the fan 20 and is emitted from the control speaker 181 to the noise coming out from the air outlet 3. The sound after the control sound is made to interfere is detected. Since the sound detected by the noise / silencing effect detection microphone 211 is input to the error signal of the LMS algorithm 159 described above, the tap coefficient of the FIR filter 158 is updated so that the sound after the interference approaches zero. Will be. As a result, noise in the vicinity of the air outlet 3 can be suppressed by the control sound that has passed through the FIR filter 158.
 このように、能動的消音方法を適用した室内機100において、騒音・消音効果検出マイクロホン211と制御スピーカー181をファン20と熱交換器50との間に配置することにより、結露が起きる領域Bに能動的消音の必要部材を取り付けなくて済むため、制御スピーカー181、騒音・消音効果検出マイクロホン211への水滴の付着を防止し、消音性能の劣化やスピーカーやマイクロホンの故障を防ぐことができる。 As described above, in the indoor unit 100 to which the active silencing method is applied, the noise / silencing effect detection microphone 211 and the control speaker 181 are arranged between the fan 20 and the heat exchanger 50, so that a dew condensation occurs in the region B. Since it is not necessary to attach a member necessary for active silencing, it is possible to prevent water droplets from adhering to the control speaker 181 and the noise / silencing effect detection microphone 211, thereby preventing deterioration of the silencing performance and failure of the speaker and microphone.
 なお、本実施の形態2では、騒音・消音効果検出マイクロホン211を熱交換器50の上流側に配置したが、図14のように室内機100の下端で、吹出口3から放出される風が当たらない箇所(風流を避けた位置)に設置してもよい。また、騒音や制御音により騒音を打ち消した後の消音効果の検出手段としてマイクロホンを例に挙げたが、ケーシングの振動を検知する加速度センサー等で構成されてもよい。また、音を空気流れの乱れとして捉え、騒音や制御音により騒音を打ち消した後の消音効果を、空気流れの乱れとして検出してもよい。つまり、騒音や制御音により騒音を打ち消した後の消音効果の検出手段として、空気流れを検出する流速センサー、熱線プローブ等を用いてもよい。マイクロホンのゲインを上げて、空気流れを検出することも可能である。 In the second embodiment, the noise / muffling effect detection microphone 211 is arranged on the upstream side of the heat exchanger 50. However, as shown in FIG. It may be installed in a location where it does not hit (a position avoiding wind flow). Further, although the microphone has been exemplified as a means for detecting the silencing effect after the noise is canceled by the noise or the control sound, it may be configured by an acceleration sensor or the like that detects the vibration of the casing. Alternatively, the sound may be regarded as air flow disturbance, and the noise reduction effect after the noise is canceled by noise or control sound may be detected as air flow disturbance. That is, a flow rate sensor, a hot wire probe, or the like that detects an air flow may be used as a means for detecting a silencing effect after noise is canceled by noise or control sound. It is also possible to detect the air flow by increasing the gain of the microphone.
 また、本実施の形態2では、信号処理装置204の適応信号処理回路としてFIRフィルター158とLMSアルゴリズム159を用いたが、騒音・消音効果検出マイクロホン211で検出した音をゼロに近づける適応信号処理回路であればよく、能動的消音方法で一般的に使用されているfiltered-Xアルゴリズムを用いたものでもよい。さらに、信号処理装置204は適応信号処理ではなく、固定のタップ係数により制御音を生成する構成にしても良い。また、信号処理装置204はデジタル信号処理ではなく、アナログ信号処理回路であってもよい。 In the second embodiment, the FIR filter 158 and the LMS algorithm 159 are used as the adaptive signal processing circuit of the signal processing device 204. However, the adaptive signal processing circuit that brings the sound detected by the noise / silencing effect detection microphone 211 close to zero. Any filter-X algorithm that is generally used in the active silencing method may be used. Further, the signal processing device 204 may be configured to generate the control sound by a fixed tap coefficient instead of the adaptive signal processing. Further, the signal processing device 204 may be an analog signal processing circuit instead of digital signal processing.
 さらに、本実施の形態2では結露が起こるような空気の冷却を行う熱交換器50を配置した場合について記載したが、結露が起きない程度の熱交換器50を配置する場合であっても適用でき、熱交換器50による結露発生の有無を考慮せずに騒音・消音効果検出マイクロホン211、制御スピーカー181等の性能劣化を防止できる効果がある。 Further, in the second embodiment, the case where the heat exchanger 50 that cools the air so that condensation occurs is described, but the present invention is applicable even when the heat exchanger 50 that does not cause condensation is disposed. Therefore, it is possible to prevent the performance deterioration of the noise / silencing effect detection microphone 211, the control speaker 181 and the like without considering the presence / absence of condensation due to the heat exchanger 50.
実施の形態3.
 例えば、以下のような位置に消音機構を設置してもよい。なお、本実施の形態3においては、実施の形態1~実施の形態2と同一の機能や構成については同一の符号を用いて述べることとする。
Embodiment 3 FIG.
For example, a silencer mechanism may be installed at the following position. In the third embodiment, the same functions and configurations as those in the first and second embodiments will be described using the same reference numerals.
 本発明の実施の形態3では、消音機構の構成要素のうち、騒音検出マイクロホン161(騒音検出装置に相当)、制御スピーカー181(制御音出力装置に相当)及び消音効果検出マイクロホン191(消音効果検出装置に相当)を熱交換器50の下流側に備えている。このため、ファン20で発生した気流の乱れが消音効果検出マイクロホン191に及ぼす影響を低減でき、制御スピーカー181から発した制御音が制御点へ到達するまでの経路を短縮することが可能となる。したがって、本実施の形態3に係る室内機100は、消音機構によって精度の高い騒音制御を行うことができる。さらに、本実施の形態3に係る室内機は、信号処理回路のコストを削減することも可能となっている。 In Embodiment 3 of the present invention, among the components of the silencer mechanism, a noise detection microphone 161 (corresponding to a noise detection device), a control speaker 181 (corresponding to a control sound output device), and a silencing effect detection microphone 191 (silence effect detection) (Corresponding to the apparatus) is provided downstream of the heat exchanger 50. For this reason, it is possible to reduce the influence of the turbulence of the airflow generated by the fan 20 on the muffler effect detection microphone 191 and to shorten the path until the control sound emitted from the control speaker 181 reaches the control point. Therefore, the indoor unit 100 according to the third embodiment can perform highly accurate noise control by the silencer mechanism. Furthermore, the indoor unit according to Embodiment 3 can also reduce the cost of the signal processing circuit.
 以下、更に詳しく説明する。
 図15は、本発明の実施の形態3に係る室内機を示す縦断面図である。この図15は、図1と同様、図の左側を室内機100の前面側として示している。図15に基づいて、室内機100の構成について説明する。
 室内機100の構成は消音機構である騒音検出マイクロホン161、制御スピーカー181の配置が図1と異なっており、それ以外の構成は実施の形態1に係る室内機100と同じである。
This will be described in more detail below.
FIG. 15 is a longitudinal sectional view showing an indoor unit according to Embodiment 3 of the present invention. FIG. 15 shows the left side of the figure as the front side of the indoor unit 100 as in FIG. 1. Based on FIG. 15, the configuration of the indoor unit 100 will be described.
The configuration of the indoor unit 100 is different from that of FIG. 1 in the arrangement of a noise detection microphone 161 and a control speaker 181 that are silencers, and the other configuration is the same as that of the indoor unit 100 according to the first embodiment.
 室内機100は、騒音検出マイクロホン161、制御スピーカー181、消音効果検出マイクロホン191及び信号処理装置201で構成されている消音機構を備えている。騒音検出マイクロホン161は、熱交換器50の下流側に取り付けられている。消音効果検出マイクロホン191は、熱交換器50の下流側の吹出口3付近(例えば吹出口3を形成しているノズル6部分)に取り付けられている。また、制御スピーカー181は、ケーシング1の側面(より詳しくは、熱交換器50の下側であって消音効果検出マイクロホン191の近く)に設けられている。また、制御スピーカー181及び消音効果検出マイクロホン191は、ケーシング1の壁から風路の中央に向くように配置されている。 The indoor unit 100 includes a noise reduction mechanism including a noise detection microphone 161, a control speaker 181, a noise reduction effect detection microphone 191, and a signal processing device 201. The noise detection microphone 161 is attached to the downstream side of the heat exchanger 50. The muffler effect detection microphone 191 is attached in the vicinity of the air outlet 3 on the downstream side of the heat exchanger 50 (for example, the nozzle 6 portion forming the air outlet 3). In addition, the control speaker 181 is provided on the side surface of the casing 1 (more specifically, on the lower side of the heat exchanger 50 and near the muffler effect detection microphone 191). Further, the control speaker 181 and the muffler effect detection microphone 191 are arranged so as to face the center of the air path from the wall of the casing 1.
 なお、消音効果検出マイクロホン191の設置位置は、吹出口3のノズル6部分に限らず、吹出口3の開口部であればよい。例えば、消音効果検出マイクロホン191を、吹出口3の下部や側部に取り付けてもよい。また、本実施の形態3では、制御スピーカー181がケーシング1の側面に取り付けられているが、ケーシング1の前面又は背面に制御スピーカー181を取り付けてもよい。また、騒音検出マイクロホン161は必ずしも熱交換器50の下流側に設けられている必要はなく、制御スピーカー181及び消音効果検出マイクロホン191が熱交換器50の下流側に設けられていればよい。 It should be noted that the installation position of the muffler effect detection microphone 191 is not limited to the nozzle 6 portion of the air outlet 3 and may be an opening portion of the air outlet 3. For example, the muffling effect detection microphone 191 may be attached to the lower part or the side part of the air outlet 3. In the third embodiment, the control speaker 181 is attached to the side surface of the casing 1, but the control speaker 181 may be attached to the front surface or the back surface of the casing 1. Further, the noise detection microphone 161 is not necessarily provided on the downstream side of the heat exchanger 50, and the control speaker 181 and the silencing effect detection microphone 191 may be provided on the downstream side of the heat exchanger 50.
 また、騒音検出マイクロホン161と消音効果検出マイクロホン191の出力信号は、制御スピーカー181を制御する信号(制御音)を生成するための信号処理装置201に入力されている。信号処理装置201の構成は実施の形態1における室内機100と全く同じである。 Also, the output signals of the noise detection microphone 161 and the silencing effect detection microphone 191 are input to the signal processing device 201 for generating a signal (control sound) for controlling the control speaker 181. The configuration of the signal processing device 201 is exactly the same as that of the indoor unit 100 in the first embodiment.
 ここで、本実施の形態3に係る消音機構が高い消音効果を得るためには、騒音検出マイクロホン161で検出した音と消音効果検出マイクロホン191で検出した音のコヒーレンスが高い必要がある。しかしながら、ファン20の羽根車25の回転による気流乱れが起こっている領域(例えば、室内機100ではファン20と熱交換器50との間の風路)に騒音検出マイクロホン161及び消音効果検出マイクロホン191を設置すると、本来の騒音以外の成分である気流乱れによる圧力変動成分を検出してしまい、両マイクロホン間のコヒーレンスが低下してしまう。 Here, in order for the silencing mechanism according to the third embodiment to obtain a high silencing effect, it is necessary that the sound detected by the noise detection microphone 161 and the sound detected by the silencing effect detection microphone 191 have high coherence. However, a noise detection microphone 161 and a silencing effect detection microphone 191 are provided in a region where the airflow turbulence occurs due to the rotation of the impeller 25 of the fan 20 (for example, the air path between the fan 20 and the heat exchanger 50 in the indoor unit 100). When the is installed, a pressure fluctuation component due to airflow turbulence, which is a component other than the original noise, is detected, and the coherence between the two microphones decreases.
 そこで、本実施の形態3に係る室内機100では、騒音検出マイクロホン161及び消音効果検出マイクロホン191を熱交換器50の下流側に設置している。室内機100は、熱交換器50の上流側にファン20を設置しているため、騒音検出マイクロホン161及び消音効果検出マイクロホン191とファン20との間に熱交換器50を設置することができる。このように騒音検出マイクロホン161及び消音効果検出マイクロホン191を設置すると、ファン20で発生した気流乱れが熱交換器50のフィン56間を通過することにより抑えられるため、騒音検出マイクロホン161及び消音効果検出マイクロホン191では気流乱れによる影響を低減することができる。したがって、騒音検出マイクロホン161と消音効果検出マイクロホン191との間のコヒーレンスが上昇し、高い消音効果を得ることができる。 Therefore, in the indoor unit 100 according to the third embodiment, the noise detection microphone 161 and the silencing effect detection microphone 191 are installed on the downstream side of the heat exchanger 50. Since the indoor unit 100 has the fan 20 installed on the upstream side of the heat exchanger 50, the heat exchanger 50 can be installed between the noise detection microphone 161 and the muffler effect detection microphone 191 and the fan 20. When the noise detection microphone 161 and the silencing effect detection microphone 191 are installed in this way, the airflow turbulence generated in the fan 20 is suppressed by passing between the fins 56 of the heat exchanger 50. Therefore, the noise detection microphone 161 and the silencing effect detection are detected. The microphone 191 can reduce the influence of air current disturbance. Therefore, the coherence between the noise detection microphone 161 and the silencing effect detection microphone 191 increases, and a high silencing effect can be obtained.
 図16は、騒音検出マイクロホン及び消音効果検出マイクロホンの設置位置による両マイクロホン間のコヒーレンス特性を示した特性図である。ここで、図16(a)は、騒音検出マイクロホン161及び消音効果検出マイクロホン191を熱交換器50の上流側(より詳しくはファン20と熱交換器50との間)に設けた場合の両マイクロホン間のコヒーレンス特性を示した特性図である。また、図16(b)は、騒音検出マイクロホン161及び消音効果検出マイクロホン191を熱交換器50の下流側に設けた場合の両マイクロホン間のコヒーレンス特性を示した特性図である。図16(a)と図16(b)を比較すると、ファン20が熱交換器50の上流側にあるような室内機100では、騒音検出マイクロホン161及び消音効果検出マイクロホン191を熱交換器50の下流側に設けることで、両マイクロホン間のコヒーレンスが上昇することがわかる。 FIG. 16 is a characteristic diagram showing the coherence characteristics between the two microphones depending on the installation positions of the noise detection microphone and the silencing effect detection microphone. Here, FIG. 16A shows both microphones when the noise detection microphone 161 and the muffling effect detection microphone 191 are provided upstream of the heat exchanger 50 (more specifically, between the fan 20 and the heat exchanger 50). It is the characteristic view which showed the coherence characteristic between. FIG. 16B is a characteristic diagram showing the coherence characteristics between the microphones when the noise detection microphone 161 and the silencing effect detection microphone 191 are provided on the downstream side of the heat exchanger 50. Comparing FIG. 16A and FIG. 16B, in the indoor unit 100 in which the fan 20 is on the upstream side of the heat exchanger 50, the noise detection microphone 161 and the silencing effect detection microphone 191 are connected to the heat exchanger 50. It can be seen that the coherence between the two microphones increases by providing it on the downstream side.
 また、消音効果には、制御スピーカー181の設置位置から消音効果検出マイクロホン191の設置位置(制御点)までの距離も影響する。つまり、消音効果には、制御スピーカー181から放出された制御音が制御点(消音効果検出マイクロホン191の設置位置)に到達するまでの伝達経路の長さも影響する。より詳しくは、制御スピーカー181から放出された制御音は、制御点(消音効果検出マイクロホン191の設置位置)に到達するまでの伝達経路において振幅特性及び位相特性が変化する。伝達経路において振幅特性及び位相特性が変化してしまい、制御音が騒音と同振幅・逆位相ではなくなると、消音効果が低下してしまう。 Also, the silence effect is affected by the distance from the installation position of the control speaker 181 to the installation position (control point) of the silencer detection microphone 191. That is, the length of the transmission path until the control sound emitted from the control speaker 181 reaches the control point (the installation position of the silence effect detection microphone 191) also affects the noise reduction effect. More specifically, the amplitude characteristic and the phase characteristic of the control sound emitted from the control speaker 181 change in the transmission path until it reaches the control point (installation position of the muffling effect detection microphone 191). If the amplitude characteristic and the phase characteristic change in the transmission path and the control sound does not have the same amplitude and opposite phase as the noise, the silencing effect is reduced.
 このような伝達経路に起因する消音効果の低下を抑制するため、一般的なFiltered-Xアルゴリズムでは、制御音の伝達経路を予め求めておき、制御音を生成する過程で補正をかけることで上記の問題点を解消している。しかしながら、伝達経路が長くなると、求める伝達経路のフィルタータップ数が長くなってしまい、演算処理が増えてしまう。さらに、気温等の変化により音速が変化した場合等、伝達経路が長いと、求めた伝達経路と実際の伝達経路との誤差が大きくなってしまい、消音効果が低下してしまう。 In order to suppress a decrease in the silencing effect due to such a transmission path, in the general Filtered-X algorithm, the transmission path of the control sound is obtained in advance, and correction is performed in the process of generating the control sound. The problem of is solved. However, if the transmission path becomes longer, the number of filter taps of the required transmission path becomes longer, and the calculation processing increases. Furthermore, if the transmission path is long, such as when the sound speed changes due to changes in temperature or the like, the error between the determined transmission path and the actual transmission path becomes large, and the silencing effect is reduced.
 このため、伝達経路に起因する消音効果の低下を抑制するためには、制御スピーカー181と消音効果検出マイクロホン191とを近くに設置することが好ましい。このように制御スピーカー181及び消音効果検出マイクロホン191を設置することにより、制御音の伝達距離を短くすることができ、振幅特性及び位相特性の変化を小さく抑えることができる。つまり、制御スピーカー181及び消音効果検出マイクロホン191を近くに設置することにより、精度の高い音波の重ねあわせが可能となるため、高い消音効果を得ることができる。そこで、本実施の形態3に係る室内機100では、消音効果検出マイクロホン191の設置位置である熱交換器50の下流側に、制御スピーカー181を設けている。このため、制御スピーカー181から放出された制御音が制御点(消音効果検出マイクロホン191の設置位置)に到達するまでの伝達経路を短縮することができ、高い消音効果を得ることができる。 For this reason, in order to suppress a decrease in the silencing effect due to the transmission path, it is preferable to install the control speaker 181 and the silencing effect detection microphone 191 close to each other. By installing the control speaker 181 and the muffling effect detection microphone 191 in this way, the transmission distance of the control sound can be shortened, and changes in the amplitude characteristic and the phase characteristic can be suppressed to a small level. In other words, by installing the control speaker 181 and the silencing effect detection microphone 191 close to each other, it becomes possible to superimpose highly accurate sound waves, so that a high silencing effect can be obtained. Therefore, in the indoor unit 100 according to the third embodiment, the control speaker 181 is provided on the downstream side of the heat exchanger 50 that is the installation position of the silencing effect detection microphone 191. For this reason, the transmission path | route until the control sound discharge | released from the control speaker 181 arrives at a control point (installation position of the silencing effect detection microphone 191) can be shortened, and a high silencing effect can be acquired.
 また、室内機100は、熱交換器50の上流側にファン20を設置することができるので、騒音源となるファン20をケーシング1内の上方に設置することができる。このため、ファン20からの騒音が吹出口3から放出されるまでの騒音の伝達経路を長くすることができる。このため、制御スピーカー181を熱交換器50の下流側に設置することにより、騒音検出マイクロホン161と制御スピーカー181との距離を長くとることができる。つまり、騒音検出マイクロホン161で検出した音に対する制御音を生成するまでの演算時間を長くとることができるため、演算速度を高速にする必要がなくなる。したがって、本実施の形態1に係る室内機100は、A/D変換器152や信号処理を行うデジタルシグナルプロセッサーのスペックを低くすることができるため、コストを削減することができる。 Moreover, since the indoor unit 100 can install the fan 20 on the upstream side of the heat exchanger 50, the fan 20 serving as a noise source can be installed above the casing 1. For this reason, the noise transmission path until the noise from the fan 20 is emitted from the blower outlet 3 can be lengthened. For this reason, by installing the control speaker 181 on the downstream side of the heat exchanger 50, the distance between the noise detection microphone 161 and the control speaker 181 can be increased. That is, it is possible to take a long calculation time until the control sound is generated for the sound detected by the noise detection microphone 161, so that it is not necessary to increase the calculation speed. Therefore, since the indoor unit 100 according to the first embodiment can reduce the specifications of the A / D converter 152 and the digital signal processor that performs signal processing, the cost can be reduced.
 なお、騒音検出マイクロホン161、制御スピーカー181及び消音効果検出マイクロホン191を熱交換器50の下流側に設ける場合、冷気に直接触れることで結露を起こす可能性があるため、防水加工を施したものを使用してもよい。 In addition, when the noise detection microphone 161, the control speaker 181 and the muffler effect detection microphone 191 are provided on the downstream side of the heat exchanger 50, there is a possibility that condensation may occur due to direct contact with the cold air. May be used.
 以上、本実施の形態3に係る室内機100は、消音機構の構成要素のうち、少なくとも制御スピーカー181及び消音効果検出マイクロホン191を熱交換器50の下流側に備えている。このため、室内機100は、ファン20で発生した気流の乱れが消音効果検出マイクロホン191に及ぼす影響を低減でき、制御スピーカー181から発した制御音が制御点(消音効果検出マイクロホン191の設置位置)へ到達するまでの経路を短縮することが可能となる。このため、室内機100は、消音機構によって精度の高い騒音制御を行うことができる。 As described above, the indoor unit 100 according to the third embodiment includes at least the control speaker 181 and the silencing effect detection microphone 191 on the downstream side of the heat exchanger 50 among the components of the silencing mechanism. Therefore, the indoor unit 100 can reduce the influence of the turbulence of the airflow generated by the fan 20 on the silencing effect detection microphone 191, and the control sound emitted from the control speaker 181 is controlled by the control point (installation position of the silencing effect detection microphone 191). It is possible to shorten the route to reach. For this reason, the indoor unit 100 can perform highly accurate noise control by the silencer mechanism.
 また、本実施の形態3に係る室内機100においては、騒音検出マイクロホン161も熱交換器50の下流側に設けている。このため、ファン20で発生した気流の乱れが騒音検出マイクロホン161及び消音効果検出マイクロホン191に及ぼす影響を低減でき、両マイクロホン間のコヒーレンスを上昇させることができるので、高い消音効果を得ることができる。 In the indoor unit 100 according to the third embodiment, the noise detection microphone 161 is also provided on the downstream side of the heat exchanger 50. For this reason, since the influence which the disturbance of the airflow which generate | occur | produced in the fan 20 has on the noise detection microphone 161 and the silencing effect detection microphone 191 can be reduced and the coherence between both microphones can be raised, a high silencing effect can be obtained. .
 また、本実施の形態3に係る室内機100においては、熱交換器50の上流側であってケーシング1内の上方にファン20を設けることができる。このため、ファン20からの騒音の伝達経路を長くすることができ、騒音検出マイクロホン161と制御スピーカー181との距離を長くとることができる。このため、演算処理の速度を高速にする必要がなくなるので、室内機100のコストを削減することができる。 Moreover, in the indoor unit 100 according to the third embodiment, the fan 20 can be provided on the upstream side of the heat exchanger 50 and above the casing 1. For this reason, the transmission path of the noise from the fan 20 can be lengthened, and the distance between the noise detection microphone 161 and the control speaker 181 can be increased. For this reason, since it is not necessary to increase the speed of the arithmetic processing, the cost of the indoor unit 100 can be reduced.
実施の形態4.
 以下のような消音機構を用いても実施の形態3と同様の消音効果を得ることができる。なお、本実施の形態4において、特に記述しない項目については実施の形態1~実施の形態3と同様とし、同一の機能や構成については同一の符号を用いて述べることとする。
Embodiment 4 FIG.
Even if the following silencing mechanism is used, the same silencing effect as in the third embodiment can be obtained. In Embodiment 4, items that are not particularly described are the same as those in Embodiments 1 to 3, and the same functions and configurations are described using the same reference numerals.
 図17は、本発明の実施の形態4に係る室内機を示す縦断面図である。
 本実施の形態4に係る室内機100と実施の形態3に係る室内機100との異なる点は、能動的消音に用いられるマイクロホンが異なる点である。より詳しくは、実施の形態3に係る室内機100は、二つのマイクロホン(騒音検出マイクロホン161及び消音効果検出マイクロホン191)を用い、信号処理装置201にて制御音の生成を行っていた。一方、本実施の形態4の室内機100では、これら騒音検出マイクロホン161及び消音効果検出マイクロホン191を一つのマイクロホンである騒音・消音効果検出マイクロホン211に置き換えている。また、動的消音に用いられるマイクロホンが異なることによって信号処理の方法が異なるため、本実施の形態4の室内機100は、実施の形態3に係る室内機100の信号処理装置201とは異なる信号処理装置204を用いている。
FIG. 17 is a longitudinal sectional view showing an indoor unit according to Embodiment 4 of the present invention.
The difference between the indoor unit 100 according to the fourth embodiment and the indoor unit 100 according to the third embodiment is that a microphone used for active silencing is different. More specifically, the indoor unit 100 according to Embodiment 3 uses two microphones (noise detection microphone 161 and mute effect detection microphone 191), and the signal processing device 201 generates control sound. On the other hand, in the indoor unit 100 of the fourth embodiment, the noise detection microphone 161 and the silencing effect detection microphone 191 are replaced with a noise / silencing effect detection microphone 211 which is one microphone. Further, since the signal processing method differs depending on the microphone used for dynamic silencing, the indoor unit 100 according to the fourth embodiment is different from the signal processing device 201 of the indoor unit 100 according to the third embodiment. A processing device 204 is used.
 つまり、本実施の形態4に係る室内機100は、制御スピーカー181、騒音・消音効果検出マイクロホン211及び信号処理装置204で構成されている消音機構を備えている。 That is, the indoor unit 100 according to the fourth embodiment includes a silencer mechanism including a control speaker 181, a noise / silence effect detection microphone 211, and a signal processing device 204.
 より詳しくは、騒音・消音効果検出マイクロホン211は、熱交換器50の下流にある吹出口3付近(例えば吹出口3を形成しているノズル6部分)に取り付けられている。この騒音・消音効果検出マイクロホン211は、ファン20の送風音を含む室内機100の運転音(騒音)に、制御スピーカー181から放出された制御音を干渉させた後の音を検出する。また、騒音に対する制御音を出力する制御スピーカー181が、ケーシング1の側面(より詳しくは、熱交換器50の下側であって騒音・消音効果検出マイクロホン211の近く)に設けられている。また、制御スピーカー181及び騒音・消音効果検出マイクロホン211は、熱交換器50の下側に、ケーシング1の壁から風路の中央に向くように配置されている。 More specifically, the noise / silencing effect detection microphone 211 is attached in the vicinity of the air outlet 3 downstream of the heat exchanger 50 (for example, the nozzle 6 portion forming the air outlet 3). The noise / silencing effect detection microphone 211 detects sound after the control sound emitted from the control speaker 181 interferes with the operation sound (noise) of the indoor unit 100 including the blowing sound of the fan 20. In addition, a control speaker 181 that outputs a control sound for noise is provided on the side surface of the casing 1 (more specifically, on the lower side of the heat exchanger 50 and near the noise / silencing effect detection microphone 211). In addition, the control speaker 181 and the noise / silence effect detection microphone 211 are arranged below the heat exchanger 50 so as to face the center of the air path from the wall of the casing 1.
 なお、騒音・消音効果検出マイクロホン211の設置位置は、吹出口3のノズル6部分に限らず、吹出口3の開口部であればよい。例えば、騒音・消音効果検出マイクロホン211を、吹出口3の下部や側部に取り付けてもよい。また、本実施の形態4では、制御スピーカー181がケーシング1の側面に取り付けられているが、ケーシング1の前面又は背面に制御スピーカー181を取り付けてもよい。 In addition, the installation position of the noise / silencing effect detection microphone 211 is not limited to the nozzle 6 portion of the air outlet 3, but may be an opening portion of the air outlet 3. For example, the noise / muffling effect detection microphone 211 may be attached to the lower part or the side part of the air outlet 3. In the fourth embodiment, the control speaker 181 is attached to the side surface of the casing 1, but the control speaker 181 may be attached to the front surface or the back surface of the casing 1.
 また、騒音・消音効果検出マイクロホン211の出力信号は、制御スピーカー181を制御する信号(制御音)を生成するための信号処理装置204に入力されている。なお、信号処理装置204の構成は実施の形態2における室内機100と全く同じである。 Further, the output signal of the noise / muffling effect detection microphone 211 is input to the signal processing device 204 for generating a signal (control sound) for controlling the control speaker 181. Note that the configuration of the signal processing device 204 is exactly the same as that of the indoor unit 100 in the second embodiment.
 ここで本実施の形態4に係る消音機構が高い消音効果を得るためには、騒音・消音効果検出マイクロホン211で検出した音が気流乱れによる圧力変動成分を検出しないようにすることが必要である。 Here, in order for the silencing mechanism according to the fourth embodiment to obtain a high silencing effect, it is necessary that the sound detected by the noise / silencing effect detection microphone 211 does not detect a pressure fluctuation component due to airflow turbulence. .
 そこで、本実施の形態4に係る室内機100では、騒音・消音効果検出マイクロホン211を熱交換器50の下流側に設置している。室内機100は、熱交換器50の上流側にファン20が設置されているため、騒音・消音効果検出マイクロホン211とファン20との間に熱交換器50を設置することができる。このように騒音・消音効果検出マイクロホン211を設置すると、ファン20で発生した気流乱れが熱交換器50のフィン56間を通過することにより抑えられる。このため、騒音・消音効果検出マイクロホン211は、気流乱れによる影響が低減され、高い消音効果を得ることができる。 Therefore, in the indoor unit 100 according to the fourth embodiment, the noise / silencing effect detection microphone 211 is installed on the downstream side of the heat exchanger 50. In the indoor unit 100, since the fan 20 is installed on the upstream side of the heat exchanger 50, the heat exchanger 50 can be installed between the noise / silencing effect detection microphone 211 and the fan 20. When the noise / silence effect detecting microphone 211 is installed in this way, airflow turbulence generated in the fan 20 is suppressed by passing between the fins 56 of the heat exchanger 50. For this reason, the noise / silencing effect detection microphone 211 can obtain a high silencing effect by reducing the influence of airflow turbulence.
 また、消音効果には、制御スピーカー181の設置位置から騒音・消音効果検出マイクロホン211の設置位置(制御点)までの距離も影響する。つまり、消音効果には、制御スピーカー181から放出された制御音が制御点(騒音・消音効果検出マイクロホン211の設置位置)に到達するまでの伝達経路の長さも影響する。より詳しくは、制御スピーカー181から放出された制御音は、制御点(騒音・消音効果検出マイクロホン211の設置位置)に到達するまでの伝達経路において振幅特性及び位相特性が変化する。伝達経路において振幅特性及び位相特性が変化してしまい、制御音が騒音と同振幅・逆位相ではなくなると、消音効果が低下してしまう。 Also, the noise reduction effect is affected by the distance from the installation position of the control speaker 181 to the installation position (control point) of the noise / silence effect detection microphone 211. That is, the length of the transmission path until the control sound emitted from the control speaker 181 reaches the control point (the installation position of the noise / silence effect detection microphone 211) also affects the silencing effect. More specifically, the amplitude characteristic and the phase characteristic of the control sound emitted from the control speaker 181 change in the transmission path until it reaches the control point (the installation position of the noise / muffling effect detection microphone 211). If the amplitude characteristic and the phase characteristic change in the transmission path and the control sound does not have the same amplitude and opposite phase as the noise, the silencing effect is reduced.
 このような伝達経路に起因する消音効果の低下を抑制するため、一般的なFiltered-Xアルゴリズムでは、制御音の伝達経路を予め求めておき、制御音を生成する過程で補正をかけることで上記の問題点を解消している。しかしながら、伝達経路が長くなると、求める伝達経路のフィルタータップ数が長くなってしまい、演算処理が増えてしまう。さらに、気温等の変化により音速が変化した場合等、伝達経路が長いと、求めた伝達経路と実際の伝達経路との誤差が大きくなってしまい、消音効果が低下してしまう。 In order to suppress a decrease in the silencing effect due to such a transmission path, in the general Filtered-X algorithm, the transmission path of the control sound is obtained in advance, and correction is performed in the process of generating the control sound. The problem of is solved. However, if the transmission path becomes longer, the number of filter taps of the required transmission path becomes longer, and the calculation processing increases. Furthermore, if the transmission path is long, such as when the sound speed changes due to changes in temperature or the like, the error between the determined transmission path and the actual transmission path becomes large, and the silencing effect is reduced.
 このため、伝達経路に起因する消音効果の低下を抑制するためには、制御スピーカー181と騒音・消音効果検出マイクロホン211とを近くに設置することが好ましい。このように制御スピーカー181及び騒音・消音効果検出マイクロホン211を設置することにより、制御音の伝達距離を短くすることができ、振幅特性及び位相特性の変化を小さく抑えることができる。つまり、制御スピーカー181及び騒音・消音効果検出マイクロホン211を近くに設置することにより、精度の高い音波の重ねあわせが可能となるため、高い消音効果を得ることができる。 Therefore, in order to suppress a decrease in the silencing effect due to the transmission path, it is preferable to install the control speaker 181 and the noise / silencing effect detecting microphone 211 close to each other. By installing the control speaker 181 and the noise / silencing effect detection microphone 211 in this way, the transmission distance of the control sound can be shortened, and changes in the amplitude characteristic and the phase characteristic can be suppressed to be small. In other words, by installing the control speaker 181 and the noise / silencing effect detection microphone 211 close to each other, it is possible to superimpose highly accurate sound waves, and thus a high silencing effect can be obtained.
 そこで、本実施の形態4に係る室内機100では、騒音・消音効果検出マイクロホン211の設置位置である熱交換器50の下流側に、制御スピーカー181を設けている。このため、制御スピーカー181から放出された制御音が制御点(騒音・消音効果検出マイクロホン211の設置位置)に到達するまでの伝達経路を短縮することができ、高い消音効果を得ることができる。 Therefore, in the indoor unit 100 according to the fourth embodiment, the control speaker 181 is provided on the downstream side of the heat exchanger 50 where the noise / silencing effect detection microphone 211 is installed. For this reason, the transmission path | route until the control sound discharge | released from the control speaker 181 arrives at a control point (installation position of the noise and the silencing effect detection microphone 211) can be shortened, and a high silencing effect can be acquired.
 なお、制御スピーカー181及び騒音・消音効果検出マイクロホン211を熱交換器50の下流側に設ける場合、冷気に直接触れることで結露を起こす可能性があるため、防水加工を施したものを使用してもよい。 In addition, when the control speaker 181 and the noise / silencing effect detection microphone 211 are provided on the downstream side of the heat exchanger 50, condensation may occur due to direct contact with the cold air. Also good.
 以上、本実施の形態4に係る室内機100は、熱交換器50がファン20の下流側に設けられている。さらに、室内機100は、消音機構の構成要素のうち、少なくとも制御スピーカー181及び騒音・消音効果検出マイクロホン211を熱交換器50の下流側に備えている。このため、室内機100は、ファン20で発生した気流の乱れが騒音・消音効果検出マイクロホン211に及ぼす影響を低減でき、制御スピーカー181から発した制御音が制御点(騒音・消音効果検出マイクロホン211の設置位置)へ到達するまでの経路を短縮することが可能となる。このため、室内機100は、消音機構によって精度の高い騒音制御を行うことができる。 As described above, in the indoor unit 100 according to the fourth embodiment, the heat exchanger 50 is provided on the downstream side of the fan 20. Furthermore, the indoor unit 100 includes at least a control speaker 181 and a noise / silencing effect detection microphone 211 on the downstream side of the heat exchanger 50 among the components of the silencing mechanism. For this reason, the indoor unit 100 can reduce the influence of the turbulence of the airflow generated by the fan 20 on the noise / silencing effect detection microphone 211, and the control sound generated from the control speaker 181 is controlled by the control point (noise / silence effect detection microphone 211). It is possible to shorten the route to reach the installation position. For this reason, the indoor unit 100 can perform highly accurate noise control by the silencer mechanism.
実施の形態5.
(騒音検出マイクロホンをボスに設置)
 また例えば、以下のような位置に消音機構を設置してもよい。なお、本実施の形態5においては、実施の形態1~実施の形態4と同一の機能や構成については同一の符号を用いて述べることとする。
Embodiment 5 FIG.
(A noise detection microphone is installed on the boss.)
For example, a silencer mechanism may be installed at the following position. In the fifth embodiment, the same functions and configurations as those in the first to fourth embodiments are described using the same reference numerals.
 図18は、本発明の実施の形態5に係る室内機を示す縦断面図である。この図18は、図の右側を室内機100の前面側として示している。 FIG. 18 is a longitudinal sectional view showing the indoor unit according to Embodiment 5 of the present invention. FIG. 18 shows the right side of the drawing as the front side of the indoor unit 100.
 本実施の形態5に係る室内機100は、熱交換器50が熱交換器固定金具58によってケーシング1内に固定されている。図18中の白抜き矢印に示すように、ファン20が作動すると、吸込口2から室内機100内の風路に室内の空気を吸い込み、この吸入空気をファン20の下部にある熱交換器50で冷却又は加熱した後、吹出口3から室内に吹き出すようになっている。 In the indoor unit 100 according to the fifth embodiment, the heat exchanger 50 is fixed in the casing 1 by the heat exchanger fixing bracket 58. As indicated by the white arrow in FIG. 18, when the fan 20 is activated, indoor air is sucked into the air passage in the indoor unit 100 from the suction port 2, and the intake air is sucked into the heat exchanger 50 below the fan 20. After cooling or heating, the air is blown out from the air outlet 3 into the room.
 図19は、本発明の実施の形態5に係るファンの底面図(図18の下側から見た図)である。また、図20は、図19に示したファン20を断面Mで切った断面図である。
 本実施の形態5では、ファン20、ファンモーター、ベルマウス及びモーターステイ16等がモジュール化されたファンを用いている。ケーシング1と着脱可能な構造とすれば、メンテナンス性が向上し、ファン20のチップクリアランスの精度を向上させることができるからである。ファン20は、動翼と呼ばれる羽根車25を備えている。この羽根車25の動力源となるファンモーターは、モーターステイ16の固定部材17の中に設けられている。また、固定部材17は、支持部材18を介して、モジュール化されたファンの筐体等に接続されている。図19中の網掛けの部分が、ファン20の羽根の内周にあたる部分(つまり、羽根車25の羽根の内周部に接する内接円)を示している。なお、支持部材18は、翼形状や板形状として静翼効果を与えてもよい。
FIG. 19 is a bottom view of the fan according to Embodiment 5 of the present invention (viewed from the lower side of FIG. 18). 20 is a cross-sectional view of the fan 20 shown in FIG.
In the fifth embodiment, a fan in which the fan 20, fan motor, bell mouth, motor stay 16 and the like are modularized is used. This is because if the structure is detachable from the casing 1, the maintainability is improved and the accuracy of the chip clearance of the fan 20 can be improved. The fan 20 includes an impeller 25 called a moving blade. A fan motor serving as a power source for the impeller 25 is provided in the fixing member 17 of the motor stay 16. The fixing member 17 is connected to a modularized fan housing or the like via a support member 18. A shaded portion in FIG. 19 indicates a portion corresponding to the inner periphery of the blade of the fan 20 (that is, an inscribed circle in contact with the inner periphery of the blade of the impeller 25). In addition, the support member 18 may provide a stationary blade effect as a blade shape or a plate shape.
 羽根車25の動力源となるファンモーターと羽根車25のボス21は、回転軸20aによって接続されている。これにより、ファンモーターの回転が回転軸20aを介して羽根車25に伝えられ、羽根車25が回転する。羽根車25が回転することにより、図20の白抜き矢印に示す方向へ、空気が流れる(送風される)。なお、図20中、斜線で示している部分が、ファン20の動作時に回転する部分を示している。また、斜線のない部分が、ファン20の動作時でも回転しない部分(つまり不動部材)を示している。また、ファン20の羽根の内周にあたる部分(つまり、羽根車25の羽根の内周部に接する内接円)は、ボス21の外周部となっている。なお、本実施の形態5では、固定部材17の直径を、ボス21の直径と略同じに形成している。 The fan motor that is the power source of the impeller 25 and the boss 21 of the impeller 25 are connected by a rotating shaft 20a. Thereby, rotation of a fan motor is transmitted to the impeller 25 via the rotating shaft 20a, and the impeller 25 rotates. As the impeller 25 rotates, air flows (blows) in the direction indicated by the white arrow in FIG. In FIG. 20, a hatched portion indicates a portion that rotates when the fan 20 operates. In addition, a portion without hatching indicates a portion that does not rotate even when the fan 20 is operating (that is, a non-moving member). Further, a portion corresponding to the inner periphery of the blade of the fan 20 (that is, an inscribed circle in contact with the inner periphery of the blade of the impeller 25) is an outer periphery of the boss 21. In the fifth embodiment, the diameter of the fixing member 17 is substantially the same as the diameter of the boss 21.
 再び、図18に着目すると、ファン20の羽根の内周に相当する固定部材17には、ファン20の送風音を含む室内機100の運転音(騒音)を検出する騒音検出装置として騒音検出マイクロホン161が取り付けられている。つまり、騒音検出マイクロホン161は、羽根車25の羽根の内周部に接する内接円を羽根車25の回転軸方向に延設した円柱領域(以下、円柱領域Sと称する)に配置されている。なお、この固定部材17は、ファン20の動作時、図20に示したとおり、回転する羽根車25とは独立しており、回転しないように構成されている。このため、騒音検出マイクロホン161もファン20の動作時は回転しない。さらに、騒音検出マイクロホン161の下側には、騒音に対する制御音を出力する制御音出力装置として制御スピーカー181が、ケーシング1の壁から風路の中央に向くように配置されている。 18 again, the fixing member 17 corresponding to the inner periphery of the blade of the fan 20 has a noise detection microphone as a noise detection device for detecting the operation sound (noise) of the indoor unit 100 including the blowing sound of the fan 20. 161 is attached. That is, the noise detection microphone 161 is disposed in a cylindrical region (hereinafter referred to as a cylindrical region S) in which an inscribed circle that is in contact with the inner peripheral portion of the blade of the impeller 25 extends in the direction of the rotation axis of the impeller 25. . The fixing member 17 is configured to be independent of the rotating impeller 25 and not to rotate when the fan 20 is operated, as shown in FIG. For this reason, the noise detection microphone 161 does not rotate when the fan 20 operates. Further, a control speaker 181 is disposed below the noise detection microphone 161 as a control sound output device that outputs a control sound for noise from the wall of the casing 1 toward the center of the air path.
 さらに、室内機100の下端の壁には、吹出口3から出てくる騒音を検出し、消音効果を検出する消音効果検出装置として消音効果検出マイクロホン191が、吹出口3の例えば上部に取り付けられている。この消音効果検出マイクロホン191は、流路と反対向きに取り付けられている。なお、消音効果検出マイクロホン191の設置位置は、吹出口3の上部に限らず、吹出口3の開口部であればよい。例えば消音効果検出マイクロホン191を、吹出口3の下部や側部に取り付けてもよい。また、消音効果検出マイクロホン191は、正確に流路と反対向きに設けられている必要はない。消音効果検出マイクロホン191は、室内機100(ケーシング)の外側に向かって設けられていればよい。つまり、消音効果検出マイクロホン191は、室内に放射された騒音を検出できる位置に設置すればよい。 Furthermore, a muffler effect detection microphone 191 is attached to the lower wall of the indoor unit 100 as a muffler effect detection device for detecting a noise coming out of the outlet 3 and detecting a muffler effect, for example, at the top of the outlet 3. ing. The silencing effect detection microphone 191 is attached in the direction opposite to the flow path. Note that the installation position of the muffler effect detection microphone 191 is not limited to the upper part of the air outlet 3 but may be an opening of the air outlet 3. For example, the muffling effect detection microphone 191 may be attached to the lower part or the side part of the air outlet 3. Further, the silencing effect detection microphone 191 does not need to be provided in the direction opposite to the flow path accurately. The silencing effect detection microphone 191 only needs to be provided toward the outside of the indoor unit 100 (casing). That is, the silencing effect detection microphone 191 may be installed at a position where noise radiated indoors can be detected.
 また、騒音検出マイクロホン161と消音効果検出マイクロホン191の出力信号は、制御スピーカー181を制御する信号(制御音)を生成するための制御音生成装置である信号処理装置207に入力されている。室内機100の消音機構は、これら騒音検出マイクロホン161、制御スピーカー181、消音効果検出マイクロホン191、及び信号処理装置207により構成されている。 The output signals of the noise detection microphone 161 and the mute effect detection microphone 191 are input to a signal processing device 207 that is a control sound generation device for generating a signal (control sound) for controlling the control speaker 181. The silencing mechanism of the indoor unit 100 includes the noise detection microphone 161, the control speaker 181, the silencing effect detection microphone 191, and the signal processing device 207.
 次に室内機100の動作について説明する。室内機100が動作すると、ファン20の羽根車25が回転し、ファン20の上側から室内の空気が吸い込まれ、ファン20下側へと空気が送られることにより気流が発生する。これに伴い、ファン20の吹出口近傍において運転音(騒音)が発生し、その音は下流側へと伝搬する。 Next, the operation of the indoor unit 100 will be described. When the indoor unit 100 is operated, the impeller 25 of the fan 20 rotates, air in the room is sucked from the upper side of the fan 20, and air is generated by being sent to the lower side of the fan 20. Along with this, an operating sound (noise) is generated in the vicinity of the air outlet of the fan 20, and the sound propagates downstream.
 ファン20の吹出口3近傍では羽根車25の回転により気流乱れが起こっている。また、ファン20から吹出される空気は、ファン20の吹出口から外側へ向かって吹出されるため、室内機100のケーシング1の側壁にぶつかり、更なる気流乱れが引き起こされる。このため、ケーシング1の側壁では、気流乱れによる圧力変動が大きくなる。それに比べ、ファン20の羽根の内周よりも内側の領域(円柱領域S)では気流の乱れが小さく、気流による圧力変動も小さい。 In the vicinity of the blower outlet 3 of the fan 20, airflow turbulence occurs due to the rotation of the impeller 25. Moreover, since the air blown out from the fan 20 is blown outward from the blower outlet of the fan 20, the air hits the side wall of the casing 1 of the indoor unit 100, and further air turbulence is caused. For this reason, in the side wall of the casing 1, the pressure fluctuation due to the airflow turbulence becomes large. In contrast, in the region inside the inner periphery of the blades of the fan 20 (cylindrical region S), the turbulence of the airflow is small, and the pressure fluctuation due to the airflow is also small.
 これを裏付けるため、ファン20から吹出される気流を可視化した実験の結果を図22に示す。図22は、ダクト形状の筒の右端にファン20を取り付け、ダクト内に白煙を滞留させた後、ファン20を動作させた時の写真である。ファン20の吹出口近傍に着目すると、固定部材17付近及び円柱領域Sを除いた領域は、白く滞留していた煙が薄くなっており、白煙が気流によって流されていることがわかる。一方、ファン20の固定部材17付近及び円柱領域Sは、白煙が滞留したままとなっており、気流の影響が小さい。つまり、ファン20の固定部材17付近及び円柱領域Sは、気流の影響を受けにくく、気流乱れによる圧力変動が小さいことがわかる。 In order to support this, FIG. 22 shows the results of an experiment in which the airflow blown from the fan 20 was visualized. FIG. 22 is a photograph when the fan 20 is operated after the fan 20 is attached to the right end of the duct-shaped cylinder and white smoke is retained in the duct. Focusing on the vicinity of the blower outlet of the fan 20, it can be seen that in the area excluding the vicinity of the fixing member 17 and the cylindrical area S, the smoke staying in white is thin, and the white smoke is swept away by the airflow. On the other hand, in the vicinity of the fixing member 17 of the fan 20 and the cylindrical region S, white smoke remains and the influence of the airflow is small. In other words, it can be seen that the vicinity of the fixing member 17 of the fan 20 and the columnar region S are not easily affected by the airflow, and the pressure fluctuation due to the airflow turbulence is small.
 ファン20により送られた空気は、風路を通り、熱交換器50へと送られる。例えば、冷房運転の場合、熱交換器50には、室外機(図示せず)とつながっている冷媒配管から冷媒が送られる。熱交換器50へと送られた空気は、熱交換器50を流れる冷媒に冷やされて冷気となり、そのまま吹出口3から室内へ放出される。 The air sent by the fan 20 passes through the air path and is sent to the heat exchanger 50. For example, in the case of cooling operation, the heat exchanger 50 is supplied with refrigerant from a refrigerant pipe connected to an outdoor unit (not shown). The air sent to the heat exchanger 50 is cooled by the refrigerant flowing through the heat exchanger 50 to become cold air, and is directly discharged into the room from the outlet 3.
 次に、室内機100の運転音の抑制方法について説明する。
 図21は、本発明の実施の形態5に係る信号処理装置を示す構成図である。
 室内機100におけるファン20の送風音を含む運転音(騒音)は、ファン20の固定部材17に取り付けられた騒音検出マイクロホン161で検出される。騒音検出マイクロホン161で検出された騒音は、マイクアンプ151、A/D変換器152を介してデジタル信号となり、FIRフィルター158とLMSアルゴリズム159に入力される。
Next, a method for suppressing the operation sound of the indoor unit 100 will be described.
FIG. 21 is a block diagram showing a signal processing apparatus according to Embodiment 5 of the present invention.
The operation sound (noise) including the blowing sound of the fan 20 in the indoor unit 100 is detected by the noise detection microphone 161 attached to the fixing member 17 of the fan 20. Noise detected by the noise detection microphone 161 becomes a digital signal via the microphone amplifier 151 and the A / D converter 152 and is input to the FIR filter 158 and the LMS algorithm 159.
 FIRフィルター158のタップ係数はLMSアルゴリズム159により逐次更新される。LMSアルゴリズム159では、実施の形態1の式1と同様に(h(n+1)=h(n)+2・μ・e(n)・x(n))に従い、誤差信号eがゼロに近づくように最適なタップ係数が更新される。 The tap coefficient of the FIR filter 158 is sequentially updated by the LMS algorithm 159. In the LMS algorithm 159, the error signal e approaches zero according to (h (n + 1) = h (n) + 2 · μ · e (n) · x (n)), similar to Equation 1 of the first embodiment. The optimal tap coefficient is updated.
 このようにLMSアルゴリズム159でタップ係数が更新されてFIRフィルター158を通過したデジタル信号は、D/A変換器154にてアナログ信号に変換され、アンプ155で増幅され、制御スピーカー181から制御音として室内機100内の風路に放出される。 In this way, the digital signal having the tap coefficient updated by the LMS algorithm 159 and passing through the FIR filter 158 is converted to an analog signal by the D / A converter 154, amplified by the amplifier 155, and sent as control sound from the control speaker 181. It is discharged to the air path in the indoor unit 100.
 一方、室内機100の吹出口3の上部に流路と反対向きに取り付けられた消音効果検出マイクロホン191には、ファン20から風路を通って伝播し、吹出口3から室内へ放出された騒音に、制御スピーカー181から放出された制御音を干渉させた後の音が検出される。消音効果検出マイクロホン191で検出した信号は、デジタル信号に変換され、重み付け手段153にて平均化される。 On the other hand, noise that propagates through the air path from the fan 20 and is emitted from the air outlet 3 into the room is transmitted to the muffler effect detection microphone 191 that is attached to the upper part of the air outlet 3 of the indoor unit 100 in the direction opposite to the flow path. In addition, the sound after the control sound emitted from the control speaker 181 interferes is detected. The signal detected by the silencing effect detection microphone 191 is converted into a digital signal and averaged by the weighting means 153.
 図23は、本発明の実施の形態5に係る重み付け手段の回路を示す構成図である。重み付け手段153は、入力信号に対して重み付け係数を乗じる乗算器121、加算器122、1サンプリング分の遅延素子123、及び乗算器124からなる積分器で構成される。 FIG. 23 is a block diagram showing a circuit of weighting means according to the fifth embodiment of the present invention. The weighting unit 153 includes an integrator including a multiplier 121 that multiplies an input signal by a weighting coefficient, an adder 122, a delay element 123 for one sampling, and a multiplier 124.
 本実施の形態5では、乗算器121の重み付け係数は、設置環境等により外部から設定可能となっている。
 例えば、外乱が大きく動作が不安定となる環境下では、乗算器121の重み付け係数を小さく設定してもよい。逆に外乱が小さい環境下では、乗算器121の重み付け係数を大きく設定してもよい。これにより、環境変化に対する感度を変化させることができる。ここで、LMSアルゴリズム159が安定するまでは、重み付け手段153による平均化は行わないようにしてもよい。これは、LMSアルゴリズム159が安定していない間は騒音が十分低減できておらず、重み付け手段153の出力値が暴走する場合があるからである。さらに、重み付け手段153の出力値が一定の値を超えた場合にリセットがかかるようにしておいてもよい。
In the fifth embodiment, the weighting coefficient of the multiplier 121 can be set from the outside depending on the installation environment or the like.
For example, in an environment where the disturbance is large and the operation is unstable, the weighting coefficient of the multiplier 121 may be set small. Conversely, in an environment where the disturbance is small, the weighting coefficient of the multiplier 121 may be set large. Thereby, the sensitivity with respect to an environmental change can be changed. Here, the averaging by the weighting unit 153 may not be performed until the LMS algorithm 159 is stabilized. This is because the noise cannot be sufficiently reduced while the LMS algorithm 159 is not stable, and the output value of the weighting means 153 may run away. Further, resetting may be performed when the output value of the weighting means 153 exceeds a certain value.
 このようにして平均化された信号は、上述したLMSアルゴリズム159の誤差信号eとして扱われる。そして、この誤差信号eがゼロに近づくようにフィードバック制御され、FIRフィルター158のタップ係数が適宜更新される。その結果、FIRフィルター158を通過した制御音により吹出口3近傍の騒音を抑制することができる。 The signal averaged in this way is treated as the error signal e of the LMS algorithm 159 described above. Then, feedback control is performed so that the error signal e approaches zero, and the tap coefficient of the FIR filter 158 is appropriately updated. As a result, noise in the vicinity of the air outlet 3 can be suppressed by the control sound that has passed through the FIR filter 158.
 人が感じる室内機100からの騒音は吹出口3から室内へと放出された後の騒音であるため、消音効果検出マイクロホン191を流路の反対側である室内に向けることで、室内へと放出された騒音を検出することができる。つまり、消音効果検出マイクロホン191を吹出口3の上部に流路と反対向きに取り付けることで、室内へ放出された騒音とコヒーレンスの高い音を検出することが可能となる。さらに、消音効果検出マイクロホン191は、気流が直接当たらないため、気流による風切音を検出することがない。一方、消音効果検出マイクロホン191を流路内に向けると、流路内の騒音を検出することになる。このため、吹出口から放出されるところでの音の特性の変化を検出することができないので、消音効果検出マイクロホン191の検出する音は、室内の騒音と特性が異なってしまう。したがって、消音効果検出マイクロホン191で検出した音と室内へ放出された音とのコヒーレンスの低下を招いてしまう。さらに、消音効果検出マイクロホン191には気流が直接当たるため、消音効果検出マイクロホン191は、風切音を検出してしまい、更なるコヒーレンスの低下を招いてしまう。 Since the noise from the indoor unit 100 felt by humans is the noise after being released into the room from the air outlet 3, it is emitted into the room by directing the muffler effect detection microphone 191 toward the room on the opposite side of the flow path. Noise can be detected. That is, by attaching the muffling effect detection microphone 191 to the upper part of the air outlet 3 in the direction opposite to the flow path, it is possible to detect noise emitted into the room and sound with high coherence. Further, the muffler effect detection microphone 191 does not detect wind noise due to the airflow because the airflow is not directly applied. On the other hand, when the muffling effect detection microphone 191 is directed into the flow path, noise in the flow path is detected. For this reason, since the change of the characteristic of the sound in the place discharged | emitted from a blower outlet cannot be detected, the sound detected by the muffling effect detection microphone 191 differs from the noise in the room. Therefore, the coherence between the sound detected by the mute effect detection microphone 191 and the sound emitted into the room is reduced. Furthermore, since the airflow directly hits the muffler effect detection microphone 191, the muffler effect detection microphone 191 detects wind noise and further reduces coherence.
 また、室内では、ファン20から発生する騒音以外の音が多分に含まれているため、これらの騒音以外の音により、フィードバック制御の安定性が損なわれてしまう。このため、フィードバック制御の前段に重み付け手段153を配置することで、騒音以外の音を平均化している。これにより、無相関な騒音以外の音の成分をキャンセルすることができ、フィードバック制御を安定的に動作させることができる。つまり、騒音検出マイクロホン161と消音効果検出マイクロホン191とのコヒーレンスを高めることが可能となる。 In addition, since the sound other than the noise generated from the fan 20 is included in the room, the stability of the feedback control is impaired by the sound other than the noise. For this reason, sounds other than noise are averaged by arranging the weighting means 153 in the previous stage of the feedback control. Thereby, sound components other than uncorrelated noise can be canceled, and feedback control can be stably operated. That is, the coherence between the noise detection microphone 161 and the silencing effect detection microphone 191 can be increased.
 そして、本実施の形態5では、騒音検出マイクロホン161をファン20の固定部材17に取り付けているため、騒音検出マイクロホン161に気流が直接当たらない。このため、騒音検出マイクロホン161が気流乱れによる圧力変動成分を検出することを低減できる。したがって、騒音検出マイクロホン161は、ファン20の運転音である騒音とコヒーレンスの高い音を検出することができる。また、消音効果検出マイクロホン191を吹出口3の上部に流路と反対向きに取り付けているため、消音効果検出マイクロホン191には気流が直接当たらず、消音効果検出マイクロホン191は気流の影響を受けない。さらに、消音効果検出マイクロホン191は室内へと放出された騒音のみを検出することができるため、実際に室内にいる人が聞く騒音とコヒーレンスの高い騒音を消音効果検出マイクロホン191にて検出することができる。さらに、消音効果検出マイクロホン191で検出した音に対して重み付け手段153による平均化を行い、フィードバック制御を行うため、消音効果検出マイクロホン191で検出した音に含まれる室内機100からの騒音以外の成分を平均化し、キャンセルすることができる。このため、騒音検出マイクロホン161と消音効果検出マイクロホン191の検出音について高いコヒーレンスが得られる。これらのことから、ファン20から発生する騒音、騒音検出マイクロホン161の検出音、消音効果検出マイクロホン191の検出音、及び室内機100から騒音が放射された室内の騒音の間で、高いコヒーレンスを得ることができ、高い消音効果を得ることができる。 And in this Embodiment 5, since the noise detection microphone 161 is attached to the fixing member 17 of the fan 20, the airflow does not directly hit the noise detection microphone 161. For this reason, it can reduce that the noise detection microphone 161 detects the pressure fluctuation component by airflow disturbance. Therefore, the noise detection microphone 161 can detect noise that is the operation sound of the fan 20 and sound with high coherence. Further, since the muffler effect detection microphone 191 is attached to the upper part of the air outlet 3 in the direction opposite to the flow path, the muffler effect detection microphone 191 is not directly exposed to the airflow, and the muffler effect detection microphone 191 is not affected by the airflow. . Furthermore, since the silencing effect detection microphone 191 can detect only the noise emitted into the room, the silencing effect detection microphone 191 can detect noise actually heard by a person in the room and noise with high coherence. it can. Furthermore, since the sound detected by the muffling effect detection microphone 191 is averaged by the weighting means 153 and feedback control is performed, components other than noise from the indoor unit 100 included in the sound detected by the muffling effect detection microphone 191 Can be canceled out. For this reason, high coherence can be obtained for the detection sounds of the noise detection microphone 161 and the silencing effect detection microphone 191. Therefore, high coherence is obtained among the noise generated from the fan 20, the detection sound of the noise detection microphone 161, the detection sound of the mute effect detection microphone 191, and the indoor noise radiated from the indoor unit 100. And a high silencing effect can be obtained.
 騒音検出マイクロホン161を実際にファン20の羽根内周(円柱領域S)よりも内側に取り付けたときの、騒音検出マイクロホン161-消音効果検出マイクロホン191間のコヒーレンスを測定した実験結果について説明する。 An experimental result of measuring the coherence between the noise detection microphone 161 and the silencing effect detection microphone 191 when the noise detection microphone 161 is actually attached to the inner side of the inner periphery (cylindrical region S) of the fan 20 will be described.
 図24は、騒音検出マイクロホン161を円柱領域Sの外側に設置してファン20を動作させた時の、騒音検出マイクロホン161の検出音と消音効果検出マイクロホン191の検出音とのコヒーレンス特性である。次に、図25は、円柱領域Sの内側に設置してファン20を動作させた時の、騒音検出マイクロホン161の検出音と消音効果検出マイクロホン191の検出音とのコヒーレンス特性である。図24と図25を比較すると、騒音検出マイクロホン161を円柱領域Sの内側に設置した場合の方が、明らかにコヒーレンスが高いことがわかる。 FIG. 24 shows the coherence characteristics between the detection sound of the noise detection microphone 161 and the detection sound of the mute effect detection microphone 191 when the noise detection microphone 161 is installed outside the cylindrical region S and the fan 20 is operated. Next, FIG. 25 shows coherence characteristics between the detection sound of the noise detection microphone 161 and the detection sound of the mute effect detection microphone 191 when the fan 20 is operated inside the cylindrical region S. Comparing FIG. 24 and FIG. 25, it can be seen that the coherence is clearly higher when the noise detection microphone 161 is installed inside the cylindrical region S.
 さらに、ファン20の固定部材17に騒音検出マイクロホン161を取り付けることで、新たに部品点数を増やすことなく、騒音検出マイクロホン161を容易に取り付けることができ、精密な取付け機構が不要となる。また、ファン20の固定部材17に騒音検出マイクロホン161を設置することで、ファン20と騒音検出マイクロホン161との距離が短くてすむため、室内機100の高さを短くすることができる。 Furthermore, by attaching the noise detection microphone 161 to the fixing member 17 of the fan 20, the noise detection microphone 161 can be easily attached without newly increasing the number of parts, and a precise attachment mechanism becomes unnecessary. Further, by installing the noise detection microphone 161 on the fixing member 17 of the fan 20, the distance between the fan 20 and the noise detection microphone 161 can be shortened, so that the height of the indoor unit 100 can be shortened.
 なお、本実施の形態5では騒音検出マイクロホン161を固定部材17に設置したが、ファン20の回転に伴う固有の機械振動が固定部材17に伝わり、その振動を騒音検出マイクロホン161が検出してしまう場合がある。この場合、局所的に騒音検出マイクロホン161と消音効果検出マイクロホン191とのコヒーレンスが悪化してしまうことがある。このような場合、円柱領域S内で固定部材17以外の箇所に騒音検出マイクロホン161を設置してもよい。例えば図26に示すように、円柱領域S内となる範囲の熱交換器50上に騒音検出マイクロホン161を設置してもよい。また例えば図27に示すように、円柱領域S内となる範囲の熱交換器固定金具58の下に騒音検出マイクロホン161を設置してもよい。このように騒音検出マイクロホン161を設置することにより、騒音検出マイクロホン161を固定部材17に設置した場合よりも、騒音検出マイクロホン161と消音効果検出マイクロホン191とのコヒーレンスをさらに高めることができ、より高い消音効果を得ることができる。 In the fifth embodiment, the noise detection microphone 161 is installed on the fixed member 17, but inherent mechanical vibration accompanying the rotation of the fan 20 is transmitted to the fixed member 17, and the noise detection microphone 161 detects the vibration. There is a case. In this case, the coherence between the noise detection microphone 161 and the silencing effect detection microphone 191 may locally deteriorate. In such a case, the noise detection microphone 161 may be installed in a portion other than the fixed member 17 in the cylindrical region S. For example, as shown in FIG. 26, the noise detection microphone 161 may be installed on the heat exchanger 50 in the range within the cylindrical region S. Further, for example, as shown in FIG. 27, a noise detection microphone 161 may be installed under the heat exchanger fixing bracket 58 in a range within the cylindrical region S. By installing the noise detection microphone 161 in this way, the coherence between the noise detection microphone 161 and the silencing effect detection microphone 191 can be further increased and higher than when the noise detection microphone 161 is installed on the fixed member 17. A silencing effect can be obtained.
 また、図28に示すように、騒音検出マイクロホン161を壁部材270で覆ってもよい。壁部材より気流を遮断することができるため、気流の影響を一層受けなくなり、より高い消音効果を得ることができる。図28では、壁部材270を略円筒状に形成しているが、壁部材270の形状は任意である。
 また、熱交換器50や熱交換器固定金具58に騒音検出マイクロホン161を取り付けた場合にも、騒音検出マイクロホン161を壁部材270で覆うとよい。気流の影響を一層受けなくなり、より高い消音効果を得ることができる。
 また、吹出口3の上部に流路と反対向きに取り付けられた消音効果検出マイクロホン191を、壁部材で覆ってもよい。気流を遮断することができるため、消音効果検出マイクロホン191においても気流の影響を受けなくなり、より高い消音効果を得ることができる。
In addition, as shown in FIG. 28, the noise detection microphone 161 may be covered with a wall member 270. Since the air current can be blocked from the wall member, it is less affected by the air current, and a higher silencing effect can be obtained. In FIG. 28, the wall member 270 is formed in a substantially cylindrical shape, but the shape of the wall member 270 is arbitrary.
Even when the noise detection microphone 161 is attached to the heat exchanger 50 or the heat exchanger fixing bracket 58, the noise detection microphone 161 may be covered with the wall member 270. It is less affected by the airflow, and a higher silencing effect can be obtained.
Further, the muffler effect detection microphone 191 attached to the upper part of the air outlet 3 in the direction opposite to the flow path may be covered with a wall member. Since the airflow can be blocked, the noise reduction effect detecting microphone 191 is not affected by the airflow, and a higher noise reduction effect can be obtained.
 また、本実施の形態5では、信号処理装置207にFIRフィルター158とLMSアルゴリズム159を用いたが、消音効果検出マイクロホン191で検出した音をゼロに近づける適応信号処理回路であればよく、能動的消音方法で一般的に使用されているfiltered-Xアルゴリズムを用いたものでもよい。また、重み付け手段153は、積分器である必要はなく、平均化できる手段であればよい。また、信号処理装置207は、適応信号処理をする構成である必要はなく、固定のタップ係数により制御音を生成する構成にしてもよい。また、信号処理装置207は、デジタル信号処理回路である必要はなく、アナログ信号処理回路であってもよい。 In the fifth embodiment, the FIR filter 158 and the LMS algorithm 159 are used for the signal processing device 207. However, any adaptive signal processing circuit that brings the sound detected by the mute effect detection microphone 191 close to zero may be used. A filtered-X algorithm generally used in the mute method may be used. Further, the weighting means 153 does not have to be an integrator, and may be any means that can average. Further, the signal processing device 207 does not need to be configured to perform adaptive signal processing, and may be configured to generate a control sound using a fixed tap coefficient. Further, the signal processing device 207 does not have to be a digital signal processing circuit, but may be an analog signal processing circuit.
 以上、本実施の形態5に係る室内機100においては、騒音検出装置である騒音検出マイクロホン161は、円柱領域S内で、かつファン20の不動部材に設けられている。このため、ファン20の吹出口からの気流の影響を低減でき、騒音とコヒーレンスの高い音を検出することができるので、精度の高い能動消音を行うことができる。また、ファン20の機構を変えずに、室内機100の部品点数を増やすことなく騒音検出マイクロホン161を設置できるため、設置自由度が高い室内機100を実現することができる。
 なお、ファン20の不動部材は、固定部材17に限定されるものではない。ファン20の構成要素のうち、少なくとも一部が円柱領域S内に配置される不動部材があれば、その不動部材の円柱領域S内となる範囲に騒音検出マイクロホン161を設けてもよい。
As described above, in the indoor unit 100 according to the fifth embodiment, the noise detection microphone 161 that is a noise detection device is provided in the cylindrical region S and on the stationary member of the fan 20. For this reason, since the influence of the airflow from the blower outlet of the fan 20 can be reduced and a sound with high noise and coherence can be detected, active silencing with high accuracy can be performed. Further, since the noise detection microphone 161 can be installed without changing the mechanism of the fan 20 and without increasing the number of parts of the indoor unit 100, the indoor unit 100 having a high degree of freedom in installation can be realized.
The immovable member of the fan 20 is not limited to the fixed member 17. If there is a stationary member in which at least a part of the components of the fan 20 is disposed in the cylindrical region S, the noise detection microphone 161 may be provided in a range that is in the cylindrical region S of the stationary member.
 また、本実施の形態5に係る室内機100においては、騒音検出装置である騒音検出マイクロホン161は、円柱領域S内で、かつファン20の下流側に設けられている。このため、ファン20の吹出口からの気流の影響を低減でき、騒音とコヒーレンスの高い音を検出することができるので、精度の高い能動消音を行うことができる。また、ファン20の機構を変えずに、室内機100の部品点数を増やすことなく騒音検出マイクロホン161を設置できるため、設置自由度が高い室内機100を実現することができる。さらに、ファン20の回転に伴う固有の機械振動を騒音検出マイクロホン161により検出しないため、騒音検出マイクロホン161をファン20の不動部材に設けた場合よりも、さらに精度の高い能動消音を行うことができる。 In the indoor unit 100 according to the fifth embodiment, the noise detection microphone 161 that is a noise detection device is provided in the cylindrical region S and on the downstream side of the fan 20. For this reason, since the influence of the airflow from the blower outlet of the fan 20 can be reduced and a sound with high noise and coherence can be detected, active silencing with high accuracy can be performed. Further, since the noise detection microphone 161 can be installed without changing the mechanism of the fan 20 and without increasing the number of parts of the indoor unit 100, the indoor unit 100 having a high degree of freedom in installation can be realized. Furthermore, since the mechanical vibration inherent to the rotation of the fan 20 is not detected by the noise detection microphone 161, active noise reduction can be performed with higher accuracy than when the noise detection microphone 161 is provided on the stationary member of the fan 20. .
 なお、騒音検出マイクロホン161をファン20の下流側に設ける場合、騒音検出マイクロホン161を設ける構成要素は、熱交換器50や熱交換器固定金具58に限定されるものではない。少なくとも一部が円柱領域S内であってファン20の下流側に配置された構成要素があれば、その構成要素の円柱領域S内となる範囲に騒音検出マイクロホン161を設けてもよい。 In the case where the noise detection microphone 161 is provided on the downstream side of the fan 20, the components for providing the noise detection microphone 161 are not limited to the heat exchanger 50 or the heat exchanger fixing bracket 58. If there is a component that is at least partially in the cylindrical region S and disposed on the downstream side of the fan 20, the noise detection microphone 161 may be provided in a range that is in the cylindrical region S of the component.
 また、本実施の形態5に係る室内機100においては、消音効果検出装置である消音効果検出マイクロホン191を、吹出口3の開口部に設け、室内機100の外側に向けて配置している。このため、気流の影響を受けず、室内へと放出された騒音を検出することができる。したがって、室内機100から放射された室内の騒音と消音効果検出マイクロホン191の検出音について高いコヒーレンスが得られる。このため、室内機100から放射された室内の騒音に対して精度の高い能動消音を行うことができる。 Further, in the indoor unit 100 according to the fifth embodiment, a muffler effect detection microphone 191 that is a muffler effect detection device is provided at the opening of the air outlet 3 and is disposed toward the outside of the indoor unit 100. For this reason, the noise emitted into the room can be detected without being influenced by the airflow. Therefore, high coherence can be obtained for the indoor noise radiated from the indoor unit 100 and the sound detected by the muffler effect detection microphone 191. For this reason, it is possible to perform active silencing with high accuracy with respect to indoor noise radiated from the indoor unit 100.
 また、本実施の形態5に係る室内機100においては、制御音生成装置である信号処理装置207は、消音効果検出装置である消音効果検出マイクロホン191にて検出した検出結果に重み付けをし、フィードバック制御を行う回路を備えている。このため、消音効果検出マイクロホン191にて検出した室内機100の騒音以外の音を平均化することでキャンセルすることができる。したがって、騒音検出マイクロホン161と消音効果検出マイクロホン191との間で高いコヒーレンスの音を検出することができ、さらに精度の高い能動消音を行うことができる。 In the indoor unit 100 according to the fifth embodiment, the signal processing device 207 that is the control sound generation device weights the detection result detected by the mute effect detection microphone 191 that is the mute effect detection device, and provides feedback. A circuit for performing control is provided. For this reason, it can cancel by averaging sounds other than the noise of the indoor unit 100 detected by the muffler effect detection microphone 191. Therefore, a high coherence sound can be detected between the noise detection microphone 161 and the silencing effect detection microphone 191, and more accurate active silencing can be performed.
 また、本実施の形態5に係る室内機100においては、騒音検出マイクロホン161は、ファン20の固定部材17における円柱領域S内となる範囲に設置されている。このため、ファン20の吹出口からの気流の影響を低減でき、騒音とコヒーレンスの高い音を検出することができるので、精度の高い能動消音を行うことができる。また、ファン20の機構を変えずに、空気調和機の部品点数を増やすことなく騒音検出マイクロホン161を設置できるため、設置自由度が高い室内機100を実現することができる。 Further, in the indoor unit 100 according to the fifth embodiment, the noise detection microphone 161 is installed in a range that is in the cylindrical region S in the fixing member 17 of the fan 20. For this reason, since the influence of the airflow from the blower outlet of the fan 20 can be reduced and a sound with high noise and coherence can be detected, active silencing with high accuracy can be performed. Moreover, since the noise detection microphone 161 can be installed without changing the mechanism of the fan 20 and without increasing the number of parts of the air conditioner, the indoor unit 100 with a high degree of installation freedom can be realized.
 また、本実施の形態5に係る室内機100においては、騒音検出マイクロホン161は、熱交換器50の円柱領域S内となる範囲に設けられている。このため、ファン20の吹出口からの気流の影響を低減でき、騒音とコヒーレンスの高い音を検出することができるので、精度の高い能動消音を行うことができる。また、ファン20の機構を変えずに、空気調和機の部品点数を増やすことなく騒音検出マイクロホン161を設置できるため、設置自由度が高い室内機100を実現することができる。さらに、ファン20の回転に伴う固有の機械振動を騒音検出マイクロホン161により検出しないため、騒音検出マイクロホン161をファン20の不動部材に設けた場合よりも、さらに精度の高い能動消音を行うことができる。 In the indoor unit 100 according to the fifth embodiment, the noise detection microphone 161 is provided in a range that is in the cylindrical region S of the heat exchanger 50. For this reason, since the influence of the airflow from the blower outlet of the fan 20 can be reduced and a sound with high noise and coherence can be detected, active silencing with high accuracy can be performed. Moreover, since the noise detection microphone 161 can be installed without changing the mechanism of the fan 20 and without increasing the number of parts of the air conditioner, the indoor unit 100 with a high degree of installation freedom can be realized. Furthermore, since the mechanical vibration inherent to the rotation of the fan 20 is not detected by the noise detection microphone 161, active noise reduction can be performed with higher accuracy than when the noise detection microphone 161 is provided on the stationary member of the fan 20. .
 また、本実施の形態5に係る室内機100においては、騒音検出マイクロホン161は、熱交換器固定金具58の円柱領域S内となる範囲に設けられている。このため、ファン20の吹出口からの気流の影響を低減でき、騒音とコヒーレンスの高い音を検出することができるので、精度の高い能動消音を行うことができる。また、ファン20の機構を変えずに、空気調和機の部品点数を増やすことなく騒音検出マイクロホン161を設置できるため、設置自由度が高い室内機100を実現することができる。さらに、ファン20の回転に伴う固有の機械振動を騒音検出マイクロホン161により検出しないため、騒音検出マイクロホン161をファン20の不動部材に設けた場合よりも、さらに精度の高い能動消音を行うことができる。 In the indoor unit 100 according to the fifth embodiment, the noise detection microphone 161 is provided in a range that is within the cylindrical region S of the heat exchanger fixing bracket 58. For this reason, since the influence of the airflow from the blower outlet of the fan 20 can be reduced and a sound with high noise and coherence can be detected, active silencing with high accuracy can be performed. Moreover, since the noise detection microphone 161 can be installed without changing the mechanism of the fan 20 and without increasing the number of parts of the air conditioner, the indoor unit 100 with a high degree of installation freedom can be realized. Furthermore, since the mechanical vibration inherent to the rotation of the fan 20 is not detected by the noise detection microphone 161, active noise reduction can be performed with higher accuracy than when the noise detection microphone 161 is provided on the stationary member of the fan 20. .
 また、本実施の形態5に係る室内機100においては、騒音検出マイクロホン161を壁部材270で覆っている。気流を遮断することにより、騒音検出マイクロホン161が気流の影響を一層受けなくなるので、より高い消音効果を得ることができる。 Further, in the indoor unit 100 according to the fifth embodiment, the noise detection microphone 161 is covered with the wall member 270. By blocking the air flow, the noise detection microphone 161 is less affected by the air flow, so that a higher silencing effect can be obtained.
 また、本実施の形態5に係る室内機100においては、消音効果検出マイクロホン191を壁部材で覆っている。気流を遮断することにより、消音効果検出マイクロホン191が気流の影響を一層受けなくなるので、より高い消音効果を得ることができる。 Further, in the indoor unit 100 according to the fifth embodiment, the silencing effect detection microphone 191 is covered with a wall member. By blocking the air flow, the muffler effect detection microphone 191 is less affected by the air flow, so that a higher sound deadening effect can be obtained.
実施の形態6.
 本実施の形態6では、本実施の形態5における騒音検出マイクロホン161と消音効果検出マイクロホン191とを集約した騒音・消音効果検出装置として騒音・消音効果検出マイクロホン211を配置した室内機100について説明する。なお、本実施の形態6において、特に記述しない項目については実施の形態5と同様とし、同一の機能や構成については同一の符号を用いて述べることとする。
Embodiment 6 FIG.
In the sixth embodiment, the indoor unit 100 in which the noise / muffling effect detection microphone 211 is arranged as a noise / muffling effect detection device that integrates the noise detection microphone 161 and the muffling effect detection microphone 191 in the fifth embodiment will be described. . In the sixth embodiment, items not particularly described are the same as those in the fifth embodiment, and the same functions and configurations are described using the same reference numerals.
 図29は、本発明の実施の形態6に係る室内機を示す縦断面図である。この図29は、図の右側を室内機100の前面側として示している。 FIG. 29 is a longitudinal sectional view showing the indoor unit according to Embodiment 6 of the present invention. FIG. 29 shows the right side of the drawing as the front side of the indoor unit 100.
 本実施の形態6に係る室内機100は、熱交換器50が熱交換器固定金具58によってケーシング1内に固定されている。図29中の白抜き矢印に示すように、ファン20が作動すると、吸込口2から室内機100内の風路に室内の空気を吸い込み、この吸入空気をファン20の下部にある熱交換器50で冷却又は加熱した後、吹出口3から室内に吹き出すようになっている。 In the indoor unit 100 according to the sixth embodiment, the heat exchanger 50 is fixed in the casing 1 by the heat exchanger fixing bracket 58. As indicated by the white arrow in FIG. 29, when the fan 20 is activated, indoor air is sucked into the air passage in the indoor unit 100 from the suction port 2, and the intake air is sucked into the heat exchanger 50 below the fan 20. After cooling or heating, the air is blown out from the air outlet 3 into the room.
 本実施の形態6に係る室内機100が実施の形態5に係る室内機100と異なる点は、以下の点である。つまり、実施の形態5に係る室内機100は、能動的消音を行うための騒音検出マイクロホン161と消音効果検出マイクロホン191の二つのマイクロホンを用いて信号処理装置207にて制御音の生成を行っていた。一方、本実施の形態6に係る室内機100で、これらを一つのマイクロホンである騒音・消音効果検出マイクロホン211に置き換えている。また、それに伴い、信号処理の方法が異なるため、信号処理装置204の内容が異なっている。室内機100のケーシング1の側壁部には、騒音に対する制御音を出力する制御スピーカー181が壁から風路の中央に向くように配置されている。また、固定部材17の円柱領域S内となる範囲には、ファン20の送風音を含む室内機100の運転音(騒音)に、制御スピーカー181から放出された制御音を干渉させた後の音を検出する騒音・消音効果検出マイクロホン211が配置されている。 The difference between the indoor unit 100 according to the sixth embodiment and the indoor unit 100 according to the fifth embodiment is as follows. That is, the indoor unit 100 according to Embodiment 5 generates control sound by the signal processing device 207 using two microphones, a noise detection microphone 161 and a silencing effect detection microphone 191 for active silencing. It was. On the other hand, in the indoor unit 100 according to the sixth embodiment, these are replaced with a noise / silencing effect detection microphone 211 which is one microphone. Accordingly, since the signal processing method is different, the contents of the signal processing device 204 are different. On the side wall of the casing 1 of the indoor unit 100, a control speaker 181 that outputs a control sound for noise is disposed so as to face the center of the air path from the wall. Further, in the range within the cylindrical region S of the fixing member 17, the sound after the control sound emitted from the control speaker 181 interferes with the operation sound (noise) of the indoor unit 100 including the blowing sound of the fan 20. A noise / muffling effect detection microphone 211 for detecting the noise is disposed.
 なお、この固定部材17は、ファン20の動作時、回転する羽根車25は独立しており、回転しないように構成されている。このため、騒音・消音効果検出マイクロホン211もファン20の動作時は回転しないことになる。騒音・消音効果検出マイクロホン211の出力信号は、制御スピーカー181を制御する信号(制御音)を生成するための制御音生成装置である信号処理装置204に入力されている。室内機100の消音機構は、これら騒音・消音効果検出マイクロホン211、制御スピーカー181、及び信号処理装置204により構成されている。信号処理装置204は、実施の形態2で説明した図11と全く同じ構成である。 The fixing member 17 is configured so that the rotating impeller 25 is independent and does not rotate when the fan 20 operates. For this reason, the noise / silencing effect detection microphone 211 does not rotate when the fan 20 operates. The output signal of the noise / muffling effect detection microphone 211 is input to a signal processing device 204 which is a control sound generation device for generating a signal (control sound) for controlling the control speaker 181. The silencer mechanism of the indoor unit 100 includes the noise / silencer effect detection microphone 211, the control speaker 181, and the signal processing device 204. The signal processing device 204 has the same configuration as that of FIG. 11 described in the second embodiment.
 次に室内機100の動作について説明する。室内機100が動作すると、ファン20の羽根車25が回転し、ファン20の上側から室内の空気が吸い込まれ、ファン20下側へと空気が送られることにより気流が発生する。これに伴い、ファン20の吹出口近傍において運転音(騒音)が発生し、その音は下流側へと伝搬する。ファン20の吹出口近傍では、実施の形態5と同様に、羽根車25の回転により気流乱れが起こっている。また、ファン20から吹出される空気は、ファン20の吹出口から外側へ向かって吹出すため、室内機100の筐体の側壁にぶつかり、更なる気流乱れが引き起こされる。このため、室内機100の側壁では気流乱れによる圧力変動が大きくなる。それに比べ、ファン20の羽根内周よりも内側の領域(円柱領域S)では気流の乱れが小さく、気流による圧力変動も小さい。 Next, the operation of the indoor unit 100 will be described. When the indoor unit 100 is operated, the impeller 25 of the fan 20 rotates, air in the room is sucked from the upper side of the fan 20, and air is generated by being sent to the lower side of the fan 20. Along with this, an operating sound (noise) is generated in the vicinity of the air outlet of the fan 20, and the sound propagates downstream. In the vicinity of the blower outlet of the fan 20, air current turbulence occurs due to the rotation of the impeller 25, as in the fifth embodiment. Moreover, since the air blown out from the fan 20 is blown outward from the blower outlet of the fan 20, the air hits the side wall of the casing of the indoor unit 100, and further air turbulence is caused. For this reason, pressure fluctuation due to airflow turbulence increases on the side wall of the indoor unit 100. In contrast, in the region (cylindrical region S) inside the inner periphery of the blades of the fan 20, the turbulence of the airflow is small, and the pressure fluctuation due to the airflow is also small.
 ファン20により送られた空気は、風路を通り、熱交換器50へと送られる。例えば、冷房運転の場合、熱交換器50には、室外機(図示せず)とつながっている冷媒配管から冷媒が送られる。熱交換器50へと送られた空気は、熱交換器50を流れる冷媒に冷やされて冷気となり、そのまま吹出口3から室内へ放出される。 The air sent by the fan 20 passes through the air path and is sent to the heat exchanger 50. For example, in the case of cooling operation, the heat exchanger 50 is supplied with refrigerant from a refrigerant pipe connected to an outdoor unit (not shown). The air sent to the heat exchanger 50 is cooled by the refrigerant flowing through the heat exchanger 50 to become cold air, and is directly discharged into the room from the outlet 3.
 室内機100の運転音の抑制方法は実施の形態2で説明した方法と全く同じであり、騒音・消音効果検出マイクロホン211で検出される騒音をゼロに近づけるように制御音を出力し、結果として騒音・消音効果検出マイクロホン211における騒音を抑制するよう動作する。 The method for suppressing the operation sound of the indoor unit 100 is exactly the same as the method described in the second embodiment, and the control sound is output so that the noise detected by the noise / silence effect detection microphone 211 approaches zero, and as a result The noise / silence effect detection microphone 211 operates to suppress noise.
 このように、本実施の形態6では、能動的消音方法を適用した室内機100において、騒音・消音効果検出マイクロホン211を固定部材17の円柱領域S内となる範囲に取り付けているため、空気流れが直接当たらず、気流乱れによる圧力変動成分の検出を低減することができる。このため、ファン20の運転音である騒音とコヒーレンスの高い音を検出することができ、高い消音効果を得ることができる。 As described above, in the sixth embodiment, in the indoor unit 100 to which the active silencing method is applied, the noise / silencing effect detection microphone 211 is attached in a range that is within the cylindrical region S of the fixed member 17, and thus the air flow Is not directly hit, and detection of pressure fluctuation components due to airflow turbulence can be reduced. For this reason, the noise which is the driving | running | working sound of the fan 20, and a sound with high coherence can be detected, and a high silencing effect can be acquired.
 さらに、ファン20の固定部材17に騒音・消音効果検出マイクロホン211を取り付けることで、新たに部品点数を増やすことなく、騒音・消音効果検出マイクロホン211を容易に取り付けることができ、精密な取付け機構が不要となる。また、ファン20の固定部材17に騒音・消音効果検出マイクロホン211を設置することで、ファン20と騒音・消音効果検出マイクロホン211との距離が短くてすむため、室内機100の高さを短くすることができる。 Furthermore, by attaching the noise / silence effect detection microphone 211 to the fixing member 17 of the fan 20, the noise / silence effect detection microphone 211 can be easily attached without increasing the number of parts, and a precise attachment mechanism is provided. It becomes unnecessary. Further, by installing the noise / silence effect detection microphone 211 on the fixing member 17 of the fan 20, the distance between the fan 20 and the noise / silence effect detection microphone 211 can be shortened, so the height of the indoor unit 100 is shortened. be able to.
 なお、本実施の形態6では、騒音・消音効果検出マイクロホン211を固定部材17に設置したが、ファン20の回転に伴う固有の機械振動が騒音・消音効果検出マイクロホン211に伝わり、その振動を騒音・消音効果検出マイクロホン211が検出してしまう場合がある。このため、消音効果が低減してしまうことがある。このような場合、円柱領域S内で固定部材17以外の箇所に騒音・消音効果検出マイクロホン211を設置してもよい。例えば図30に示すように、円柱領域S内となる範囲の熱交換器50上に騒音・消音効果検出マイクロホン211を設置してもよい。また例えば図31に示すように、円柱領域S内となる範囲の熱交換器固定金具58の下に騒音・消音効果検出マイクロホン211を設置してもよい。このように騒音・消音効果検出マイクロホン211を設置することにより、騒音・消音効果検出マイクロホン211を固定部材17に設置した場合よりも、より高い消音効果を得ることができる。 In the sixth embodiment, the noise / silencing effect detection microphone 211 is installed on the fixed member 17, but the inherent mechanical vibration accompanying the rotation of the fan 20 is transmitted to the noise / silencing effect detection microphone 211, and the vibration is regarded as noise. The mute effect detection microphone 211 may detect. For this reason, the silencing effect may be reduced. In such a case, the noise / muffling effect detection microphone 211 may be installed in a portion other than the fixed member 17 in the cylindrical region S. For example, as shown in FIG. 30, a noise / silencing effect detection microphone 211 may be installed on the heat exchanger 50 in a range within the cylindrical region S. For example, as shown in FIG. 31, a noise / silencing effect detection microphone 211 may be installed under the heat exchanger fixing bracket 58 in a range within the cylindrical region S. By installing the noise / silence effect detecting microphone 211 in this way, a higher silencing effect can be obtained than when the noise / silence effect detecting microphone 211 is installed on the fixed member 17.
 また、図32に示すように、騒音・消音効果検出マイクロホン211を壁部材270で覆ってもよい。壁部材270より気流を遮断することができるため、気流の影響を一層受けなくなり、より高い消音効果を得ることができる。図32では、壁部材270を略円筒状に形成しているが、壁部材270の形状は任意である。また、熱交換器50や熱交換器固定金具58に騒音・消音効果検出マイクロホン211を取り付けた場合にも、騒音・消音効果検出マイクロホン211を壁部材270で覆うとよい。気流の影響を一層受けなくなり、より高い消音効果を得ることができる。 Further, as shown in FIG. 32, the noise / silencing effect detection microphone 211 may be covered with a wall member 270. Since the air flow can be blocked from the wall member 270, the influence of the air flow is further lessened, and a higher silencing effect can be obtained. In FIG. 32, the wall member 270 is formed in a substantially cylindrical shape, but the shape of the wall member 270 is arbitrary. Further, even when the noise / silencing effect detecting microphone 211 is attached to the heat exchanger 50 or the heat exchanger fixing bracket 58, the noise / silencing effect detecting microphone 211 may be covered with the wall member 270. It is less affected by the airflow, and a higher silencing effect can be obtained.
 以上、本実施の形態6に係る室内機100においては、騒音・消音効果検出装置である騒音・消音効果検出マイクロホン211は、円柱領域S内で、かつファン20の不動部材に設けられている。このため、ファン20の吹出口からの気流の影響を低減でき、騒音とコヒーレンスの高い音を検出することができるので、精度の高い能動消音を行うことができる。また、室内機100の部品点数を増やすことなく騒音・消音効果検出マイクロホン211を設置できるため、設置自由度が高い室内機100を実現することができる。 As described above, in the indoor unit 100 according to the sixth embodiment, the noise / silence effect detection microphone 211 that is a noise / silence effect detection device is provided in the cylindrical region S and on the stationary member of the fan 20. For this reason, since the influence of the airflow from the blower outlet of the fan 20 can be reduced and a sound with high noise and coherence can be detected, active silencing with high accuracy can be performed. In addition, since the noise / silencing effect detection microphone 211 can be installed without increasing the number of parts of the indoor unit 100, the indoor unit 100 having a high degree of freedom in installation can be realized.
 また、本実施の形態6では、信号処理装置204にFIRフィルター158とLMSアルゴリズム159を用いたが、騒音・消音効果検出マイクロホン211で検出した音をゼロに近づける適応信号処理回路であればよく、能動的消音方法で一般的に使用されているfiltered-Xアルゴリズムを用いたものでもよい。また、信号処理装置204は、適応信号処理をする構成である必要はなく、固定のタップ係数により制御音を生成する構成にしてもよい。また、信号処理装置204は、デジタル信号処理回路である必要はなく、アナログ信号処理回路であってもよい。 In the sixth embodiment, the FIR filter 158 and the LMS algorithm 159 are used for the signal processing device 204. However, any adaptive signal processing circuit that brings the sound detected by the noise / silence effect detection microphone 211 close to zero may be used. A filtered-X algorithm generally used in the active silencing method may be used. Further, the signal processing device 204 need not be configured to perform adaptive signal processing, and may be configured to generate a control sound using a fixed tap coefficient. Further, the signal processing device 204 does not have to be a digital signal processing circuit, but may be an analog signal processing circuit.
 また、本実施の形態6に係る室内機100においては、騒音・消音効果検出装置である騒音・消音効果検出マイクロホン211は、円柱領域S内で、かつファン20の下流側に設けられている。このため、ファン20の吹出口からの気流の影響を低減でき、騒音とコヒーレンスの高い音を検出することができるので、精度の高い能動消音を行うことができる。また、ファン20の機構を変えずに、室内機100の部品点数を増やすことなく騒音・消音効果検出マイクロホン211を設置できるため、設置自由度が高い室内機100を実現することができる。さらに、ファン20の回転に伴う固有の機械振動を騒音・消音効果検出マイクロホン211により検出しないため、騒音・消音効果検出マイクロホン211をファン20の不動部材に設けた場合よりも、さらに精度の高い能動消音を行うことができる。 Further, in the indoor unit 100 according to the sixth embodiment, the noise / silence effect detection microphone 211 that is a noise / silence effect detection device is provided in the cylindrical region S and on the downstream side of the fan 20. For this reason, since the influence of the airflow from the blower outlet of the fan 20 can be reduced and a sound with high noise and coherence can be detected, active silencing with high accuracy can be performed. In addition, since the noise / silencing effect detection microphone 211 can be installed without changing the mechanism of the fan 20 and without increasing the number of parts of the indoor unit 100, the indoor unit 100 having a high degree of freedom in installation can be realized. Furthermore, since the inherent mechanical vibration associated with the rotation of the fan 20 is not detected by the noise / silencing effect detection microphone 211, the noise / silence effect detection microphone 211 is more accurately active than when the noise / silence effect detection microphone 211 is provided on the stationary member of the fan 20. It can mute.
 また、本実施の形態6に係る室内機100においては、騒音・消音効果検出マイクロホン211は、ファン20の固定部材17における円柱領域S内となる範囲に設置されている。このため、ファン20の吹出口からの気流の影響を低減でき、騒音とコヒーレンスの高い音を検出することができるので、精度の高い能動消音を行うことができる。また、ファン20の機構を変えずに、空気調和機の部品点数を増やすことなく騒音・消音効果検出マイクロホン211を設置できるため、設置自由度が高い室内機100を実現することができる。 Further, in the indoor unit 100 according to the sixth embodiment, the noise / muffling effect detection microphone 211 is installed in a range within the cylindrical region S of the fixing member 17 of the fan 20. For this reason, since the influence of the airflow from the blower outlet of the fan 20 can be reduced and a sound with high noise and coherence can be detected, active silencing with high accuracy can be performed. In addition, since the noise / silencing effect detection microphone 211 can be installed without changing the mechanism of the fan 20 and without increasing the number of parts of the air conditioner, the indoor unit 100 having a high degree of freedom in installation can be realized.
 また、本実施の形態6に係る室内機100においては、騒音・消音効果検出マイクロホン211は、熱交換器50の円柱領域S内となる範囲に設けられている。このため、ファン20の吹出口からの気流の影響を低減でき、騒音とコヒーレンスの高い音を検出することができるので、精度の高い能動消音を行うことができる。また、ファン20の機構を変えずに、空気調和機の部品点数を増やすことなく騒音・消音効果検出マイクロホン211を設置できるため、設置自由度が高い室内機100を実現することができる。さらに、ファン20の回転に伴う固有の機械振動を騒音・消音効果検出マイクロホン211により検出しないため、騒音・消音効果検出マイクロホン211をファン20の不動部材に設けた場合よりも、さらに精度の高い能動消音を行うことができる。 Further, in the indoor unit 100 according to the sixth embodiment, the noise / silencing effect detection microphone 211 is provided in a range that is within the cylindrical region S of the heat exchanger 50. For this reason, since the influence of the airflow from the blower outlet of the fan 20 can be reduced and a sound with high noise and coherence can be detected, active silencing with high accuracy can be performed. In addition, since the noise / silencing effect detection microphone 211 can be installed without changing the mechanism of the fan 20 and without increasing the number of parts of the air conditioner, the indoor unit 100 having a high degree of freedom in installation can be realized. Furthermore, since the inherent mechanical vibration associated with the rotation of the fan 20 is not detected by the noise / silencing effect detection microphone 211, the noise / silence effect detection microphone 211 is more accurately active than when the noise / silence effect detection microphone 211 is provided on the stationary member of the fan 20. It can mute.
 また、本実施の形態6に係る室内機100においては、騒音・消音効果検出マイクロホン211は、熱交換器固定金具58の円柱領域S内となる範囲に設けられている。このため、ファン20の吹出口からの気流の影響を低減でき、騒音とコヒーレンスの高い音を検出することができるので、精度の高い能動消音を行うことができる。また、ファン20の機構を変えずに、空気調和機の部品点数を増やすことなく騒音・消音効果検出マイクロホン211を設置できるため、設置自由度が高い室内機100を実現することができる。さらに、ファン20の回転に伴う固有の機械振動を騒音・消音効果検出マイクロホン211により検出しないため、騒音・消音効果検出マイクロホン211をファン20の不動部材に設けた場合よりも、さらに精度の高い能動消音を行うことができる。 Further, in the indoor unit 100 according to the sixth embodiment, the noise / silencing effect detection microphone 211 is provided in a range that is within the cylindrical region S of the heat exchanger fixing bracket 58. For this reason, since the influence of the airflow from the blower outlet of the fan 20 can be reduced and a sound with high noise and coherence can be detected, active silencing with high accuracy can be performed. In addition, since the noise / silencing effect detection microphone 211 can be installed without changing the mechanism of the fan 20 and without increasing the number of parts of the air conditioner, the indoor unit 100 having a high degree of freedom in installation can be realized. Furthermore, since the inherent mechanical vibration associated with the rotation of the fan 20 is not detected by the noise / silencing effect detection microphone 211, the noise / silence effect detection microphone 211 is more accurately active than when the noise / silence effect detection microphone 211 is provided on the stationary member of the fan 20. It can mute.
 また、本実施の形態6に係る室内機100においては、騒音・消音効果検出マイクロホン211を壁部材270で覆っている。気流を遮断することにより、騒音・消音効果検出マイクロホン211が気流の影響を一層受けなくなるので、より高い消音効果を得ることができる。 Further, in the indoor unit 100 according to the sixth embodiment, the noise / muffling effect detection microphone 211 is covered with the wall member 270. By blocking the air flow, the noise / silence effect detection microphone 211 is less affected by the air flow, so that a higher silencing effect can be obtained.
実施の形態7.
 本実施の形態7では、騒音・消音効果検出マイクロホン211を吹出口3の上部に流路と反対側を向くように設置した室内機100について説明する。なお、本実施の形態7において、特に記述しない項目については実施の形態5又は実施の形態6と同様とし、同一の機能や構成については同一の符号を用いて述べることとする。
Embodiment 7 FIG.
In the seventh embodiment, a description will be given of an indoor unit 100 in which a noise / silencing effect detection microphone 211 is installed on the upper part of the air outlet 3 so as to face the opposite side of the flow path. In Embodiment 7, items not particularly described are the same as those in Embodiment 5 or Embodiment 6, and the same functions and configurations are described using the same reference numerals.
 図33は、本発明の実施の形態7に係る室内機を示す縦断面図である。この図33は、図の右側を室内機100の前面側として示している。 FIG. 33 is a longitudinal sectional view showing the indoor unit according to Embodiment 7 of the present invention. FIG. 33 shows the right side of the figure as the front side of the indoor unit 100.
 本実施の形態7に係る室内機100が実施の形態6に係る室内機100と異なる点は、騒音・消音効果検出マイクロホン211を、吹出口3の上部に流路と反対側を向くように配置した点である。これに伴い、信号処理装置208の構成も異なっている。騒音・消音効果検出マイクロホン211を吹出口3の上部に流路と反対向きに取り付けた場合も、実施の形態6と同様に、新たに部品点数を増やすことなく、騒音・消音効果検出マイクロホン211を容易に取り付けることができ、精密な取付け機構が不要となる。室内機100のケーシング1の側壁部には、騒音に対する制御音を出力する制御スピーカー181が壁から風路の中央に向くように配置されている。また、ファン20の送風音を含む室内機100の運転音(騒音)に、制御スピーカー181から放出された制御音を干渉させた後の音を検出する騒音・消音効果検出マイクロホン211が、吹出口3の上部に流路の反対側を向くように配置されている。騒音・消音効果検出マイクロホン211の出力信号は、制御スピーカー181を制御する信号(制御音)を生成するための制御音生成装置である信号処理装置208に入力されている。 The indoor unit 100 according to the seventh embodiment is different from the indoor unit 100 according to the sixth embodiment in that a noise / silencing effect detection microphone 211 is arranged above the air outlet 3 so as to face the opposite side of the flow path. This is the point. Accordingly, the configuration of the signal processing device 208 is also different. Even when the noise / silence effect detection microphone 211 is attached to the upper part of the air outlet 3 in the direction opposite to the flow path, the noise / silence effect detection microphone 211 is newly added without increasing the number of parts as in the sixth embodiment. It can be easily installed, eliminating the need for a precise mounting mechanism. On the side wall of the casing 1 of the indoor unit 100, a control speaker 181 that outputs a control sound for noise is disposed so as to face the center of the air path from the wall. In addition, a noise / silencing effect detection microphone 211 that detects sound after the control sound emitted from the control speaker 181 interferes with the operation sound (noise) of the indoor unit 100 including the blowing sound of the fan 20 is provided at the outlet. 3 is arranged so as to face the opposite side of the flow path. The output signal of the noise / muffling effect detection microphone 211 is input to a signal processing device 208 which is a control sound generation device for generating a signal (control sound) for controlling the control speaker 181.
 図34は信号処理装置208の構成図を示している。図11に示した信号処理装置204と異なる点は、A/D変換器152の出力とLMSアルゴリズム159の入力との間に重み付け手段153が配置されている点である。それ以外の構成は実施の形態2の信号処理装置204と同様である。 FIG. 34 shows a configuration diagram of the signal processing device 208. A difference from the signal processing device 204 shown in FIG. 11 is that weighting means 153 is arranged between the output of the A / D converter 152 and the input of the LMS algorithm 159. Other configurations are the same as those of the signal processing device 204 of the second embodiment.
 次に室内機100の動作について説明する。室内機100が動作すると、ファン20の羽根車25が回転し、ファン20上側から室内の空気が吸い込まれ、ファン20下側へと空気が送られることにより気流が発生する。これに伴い、ファン20の吹出口近傍において運転音(騒音)が発生し、その音は下流側へと伝搬する。ファン20の吹出口近傍では、実施の形態5及び実施の形態6と同様に、羽根車25の回転により気流乱れが起こっている。また、ファン20から吹出される空気は、ファン20の吹出口から外側へ向かって吹出すため、室内機100の筐体の側壁にぶつかり、更なる気流乱れが引き起こされる。このため、室内機100の側壁では気流乱れによる圧力変動が大きくなる。 Next, the operation of the indoor unit 100 will be described. When the indoor unit 100 is operated, the impeller 25 of the fan 20 is rotated, indoor air is sucked from the upper side of the fan 20, and air is generated by being sent to the lower side of the fan 20. Along with this, an operating sound (noise) is generated in the vicinity of the air outlet of the fan 20, and the sound propagates downstream. In the vicinity of the blower outlet of the fan 20, air current turbulence occurs due to the rotation of the impeller 25, as in the fifth and sixth embodiments. Moreover, since the air blown out from the fan 20 is blown outward from the blower outlet of the fan 20, the air hits the side wall of the casing of the indoor unit 100, and further air turbulence is caused. For this reason, pressure fluctuation due to airflow turbulence increases on the side wall of the indoor unit 100.
 しかし、本実施の形態7では、騒音・消音効果検出マイクロホン211が、吹出口3の上部に流路と反対向きに配置されている。吹出口3付近は、ファン20近傍に比べると、気流乱れの大きいファン20の吹出口からの距離が十分に大きい。さらに、吹出口3付近では、熱交換器50によって気流乱れが整流される。このため、騒音・消音効果検出マイクロホン211の付近での気流乱れは小さくなっている。さらに、騒音・消音効果検出マイクロホン211が設けられている領域には気流が直接当たらないため、騒音・消音効果検出マイクロホン211は気流乱れによる影響をほとんど受けない。さらに、人が感じる室内機100からの騒音は、吹出口3から室内へと放出された後の騒音であるため、騒音・消音効果検出マイクロホン211を流路の反対側である室内に向けることで、室内へと放出された騒音を検出することができる。すなわち、騒音・消音効果検出マイクロホン211を吹出口3の上部に流路と反対向きに取り付けることで、室内へ放出された騒音とコヒーレンスの高い音を検出することが可能となる。 However, in the seventh embodiment, the noise / silencing effect detection microphone 211 is arranged on the upper part of the air outlet 3 in the direction opposite to the flow path. In the vicinity of the air outlet 3, the distance from the air outlet of the fan 20 having a large airflow turbulence is sufficiently larger than the vicinity of the fan 20. Further, near the air outlet 3, the air turbulence is rectified by the heat exchanger 50. For this reason, the turbulence of the air current in the vicinity of the noise / silencing effect detection microphone 211 is small. Furthermore, since the airflow is not directly applied to the area where the noise / silence effect detection microphone 211 is provided, the noise / silence effect detection microphone 211 is hardly affected by the airflow turbulence. Furthermore, since the noise from the indoor unit 100 that humans feel is the noise after being released from the outlet 3 into the room, the noise / silence effect detection microphone 211 is directed to the room on the opposite side of the flow path. The noise emitted into the room can be detected. That is, by attaching the noise / muffling effect detection microphone 211 to the upper part of the air outlet 3 in the direction opposite to the flow path, it is possible to detect noise emitted into the room and sound with high coherence.
 次に、室内機100の運転音の抑制方法について説明する。本実施の形態7の制御音の生成方法は、実施の形態2に記述した方法と同様である。本実施の形態7の制御音の生成方法が実施の形態2に記述した方法と異なる点は、LMSアルゴリズム159に誤差信号として入力される信号に対して重み付け手段153により平均化を行う点である。騒音・消音効果検出マイクロホン211を吹出口3の上部に流路と反対向きに配置した場合、騒音・消音効果検出マイクロホン211が検出する騒音の中には、ファン20から発生する騒音以外の音が多分に含まれている。このため、これらの騒音以外の音によりフィードバック制御の安定性が損なわれてしまう。そこで、本実施の形態7では、フィードバック制御の前段に重み付け手段153を配置することで騒音以外の音を平均化している。これにより、無相関な騒音以外の音の成分をキャンセルすることができ、フィードバック制御を安定的に動作させることができる。すなわち、吹出口3から室内へと放出された後の騒音と騒音・消音効果検出マイクロホン211とのコヒーレンスを高めることが可能となる。 Next, a method for suppressing the operation sound of the indoor unit 100 will be described. The control sound generation method of the seventh embodiment is the same as the method described in the second embodiment. The control sound generation method of the seventh embodiment is different from the method described in the second embodiment in that the weighting means 153 performs averaging on the signal input as an error signal to the LMS algorithm 159. . When the noise / silencing effect detection microphone 211 is disposed on the upper portion of the air outlet 3 in the direction opposite to the flow path, the noise detected by the noise / silence effect detection microphone 211 includes sound other than the noise generated from the fan 20. Maybe included. For this reason, the stability of feedback control is impaired by sounds other than these noises. Therefore, in the seventh embodiment, sounds other than noise are averaged by arranging the weighting means 153 in the previous stage of feedback control. Thereby, sound components other than uncorrelated noise can be canceled, and feedback control can be stably operated. That is, it is possible to increase the coherence between the noise after being discharged from the blowout port 3 into the room and the noise / silence effect detection microphone 211.
 なお、実施の形態5と同様に、LMSアルゴリズム159が安定するまでは、重み付け手段153による平均化は行わないようにしてもよい。これは、LMSアルゴリズム159が安定していない間は騒音が十分低減できておらず、重み付け手段153の出力値が暴走する場合があるからである。さらに、重み付け手段153の出力値が一定の値を超えた場合にリセットがかかるようにしておいてもよい。また、気流の影響をさらに受けなくするために、騒音・消音効果検出マイクロホン211を壁部材270で覆ってもよい。壁部材により気流を遮断することができるため、気流の影響を一層受けなくなり、より高い消音効果を得ることができる。 As in the fifth embodiment, the averaging by the weighting unit 153 may not be performed until the LMS algorithm 159 is stabilized. This is because the noise cannot be sufficiently reduced while the LMS algorithm 159 is not stable, and the output value of the weighting means 153 may run away. Further, resetting may be performed when the output value of the weighting means 153 exceeds a certain value. Further, the noise / muffling effect detection microphone 211 may be covered with a wall member 270 so as not to be further affected by the airflow. Since the air current can be blocked by the wall member, it is less affected by the air current, and a higher silencing effect can be obtained.
 また、騒音・消音効果検出マイクロホン211の設置位置は、吹出口3の上部に限らず、吹出口3の開口部であればよい。例えば騒音・消音効果検出マイクロホン211を、吹出口3の下部や側部に取り付けてもよい。また、騒音・消音効果検出マイクロホン211は、正確に流路と反対向きに設けられている必要はない。騒音・消音効果検出マイクロホン211は、室内機100(筐体)の外側に向かって設けられていればよい。つまり、騒音・消音効果検出マイクロホン211は、室内に放射された騒音を検出できる位置に設置すればよい。 Further, the installation position of the noise / muffling effect detection microphone 211 is not limited to the upper part of the air outlet 3, but may be an opening of the air outlet 3. For example, the noise / muffling effect detection microphone 211 may be attached to the lower part or the side part of the air outlet 3. Further, the noise / muffling effect detection microphone 211 does not have to be provided in the direction opposite to the flow path accurately. The noise / muffling effect detection microphone 211 may be provided toward the outside of the indoor unit 100 (housing). That is, the noise / muffling effect detection microphone 211 may be installed at a position where noise radiated indoors can be detected.
 また、本実施の形態7では、信号処理装置208にFIRフィルター158とLMSアルゴリズム159を用いたが、騒音・消音効果検出マイクロホン211で検出した音をゼロに近づける適応信号処理回路であればよく、能動的消音方法で一般的に使用されているfiltered-Xアルゴリズムを用いたものでもよい。また、重み付け手段153は、積分器である必要はなく、平均化できる手段であればよい。また、信号処理装置208は、適応信号処理をする構成である必要はなく、固定のタップ係数により制御音を生成する構成にしてもよい。また、信号処理装置208は、デジタル信号処理回路である必要はなく、アナログ信号処理回路であってもよい。 In the seventh embodiment, the FIR filter 158 and the LMS algorithm 159 are used for the signal processing device 208. However, any adaptive signal processing circuit may be used as long as the sound detected by the noise / muffling effect detection microphone 211 approaches zero. A filtered-X algorithm generally used in the active silencing method may be used. Further, the weighting means 153 does not have to be an integrator, and may be any means that can average. Further, the signal processing device 208 does not need to be configured to perform adaptive signal processing, and may be configured to generate control sound using a fixed tap coefficient. Further, the signal processing device 208 does not need to be a digital signal processing circuit, and may be an analog signal processing circuit.
 以上、本実施の形態7に係る室内機100においては、騒音・消音効果検出装置である騒音・消音効果検出マイクロホン211を、吹出口3の開口部に設け、室内機100の外側に向けて配置している。このため、気流の影響を受けず、室内へと放出された騒音を検出することができる。したがって、室内機100から放射された室内の騒音と騒音・消音効果検出マイクロホン211の検出音について高いコヒーレンスが得られる。このため、室内機100から放射された室内の騒音に対して精度の高い能動消音を行うことができる。 As described above, in the indoor unit 100 according to the seventh embodiment, the noise / silencing effect detection microphone 211 that is a noise / silencing effect detection device is provided at the opening of the air outlet 3 and is arranged toward the outside of the indoor unit 100. is doing. For this reason, the noise emitted into the room can be detected without being influenced by the airflow. Therefore, high coherence can be obtained for the indoor noise radiated from the indoor unit 100 and the detection sound of the noise / silence effect detection microphone 211. For this reason, it is possible to perform active silencing with high accuracy with respect to indoor noise radiated from the indoor unit 100.
 また、本実施の形態7に係る室内機100においては、制御音生成装置である信号処理装置208は、騒音・消音効果検出装置である騒音・消音効果検出マイクロホン211にて検出した検出結果に重み付けをし、フィードバック制御を行う回路を備えている。このため、騒音・消音効果検出マイクロホン211にて検出した室内機100の騒音以外の音を平均化することでキャンセルすることができる。したがって、さらに精度の高い能動消音を行うことができる。また、本実施の形態7に係る室内機100においては、騒音・消音効果検出マイクロホン211を壁部材270で覆っている。気流を遮断することにより、騒音・消音効果検出マイクロホン211が気流の影響を一層受けなくなるので、より高い消音効果を得ることができる。 In the indoor unit 100 according to the seventh embodiment, the signal processing device 208 as the control sound generation device weights the detection result detected by the noise / silence effect detection microphone 211 as the noise / silence effect detection device. And a circuit for performing feedback control. For this reason, the sound other than the noise of the indoor unit 100 detected by the noise / silencing effect detection microphone 211 can be canceled by averaging. Therefore, it is possible to perform active silencing with higher accuracy. In the indoor unit 100 according to the seventh embodiment, the noise / silencing effect detection microphone 211 is covered with the wall member 270. By blocking the air flow, the noise / silence effect detection microphone 211 is less affected by the air flow, so that a higher silencing effect can be obtained.
実施の形態8.
(ファン個別制御)
 室内機100に設けられた各ファン20の回転数を個別に制御することにより、能動的消音機構の消音効果がより向上する。なお、本実施の形態8においては、実施の形態1~実施の形態7と同一の機能や構成については同一の符号を用いて述べることとする。
Embodiment 8 FIG.
(Fan individual control)
By individually controlling the rotation speed of each fan 20 provided in the indoor unit 100, the silencing effect of the active silencing mechanism is further improved. In the eighth embodiment, the same functions and configurations as those in the first to seventh embodiments will be described using the same reference numerals.
 図35は、本発明の実施の形態8に係る室内機を示す正面図である。また、図36は、図35に示す室内機を示す側面図である。なお、図36は図35に示した室内機100を図35の斜線塗りつぶしの矢印方向から見た図であり、室内機100のケーシング1の側壁を透写して示している。なお、図36では、図35に示しているリモコン280、制御装置281及びモータードライバー282A~282Cの図示を省略している。 FIG. 35 is a front view showing an indoor unit according to Embodiment 8 of the present invention. FIG. 36 is a side view showing the indoor unit shown in FIG. FIG. 36 is a view of the indoor unit 100 shown in FIG. 35 as seen from the direction of the shaded arrows in FIG. 35, and shows the side wall of the casing 1 of the indoor unit 100 in a transparent manner. In FIG. 36, the remote controller 280, the control device 281 and the motor drivers 282A to 282C shown in FIG. 35 are not shown.
 図35及び図36に示す室内機100は室内機100(より詳しくは、室内機100のケーシング1)の上部には吸込口2が開口形成され、室内機100(より詳しくは、室内機100のケーシング1)の下端には吹出口3が開口形成されている。つまり、室内機100内には、吸込口2と吹出口3を連通する風路が形成されている。そして、風路における吸込口2の下側には、左右方向(長手方向)に沿って、羽根車25を有するファン20が複数設けられている。なお、本実施の形態8では、3つのファン(ファン20A~20C)が設けられている。これらファン20A~20Cは、羽根車25の回転軸中心が略垂直方向となるように設けられている。これらファン20A~20Cのそれぞれは、モータードライバー282A~282Cを介して、制御装置281の送風ファン制御手段171に接続されている。なお、制御装置281の詳細については後述する。 The indoor unit 100 shown in FIGS. 35 and 36 is formed with an inlet 2 in the upper part of the indoor unit 100 (more specifically, the casing 1 of the indoor unit 100). An opening 3 is formed at the lower end of the casing 1). That is, in the indoor unit 100, an air passage that communicates the suction port 2 and the air outlet 3 is formed. A plurality of fans 20 each having an impeller 25 are provided along the left-right direction (longitudinal direction) below the suction port 2 in the air passage. In the eighth embodiment, three fans (fans 20A to 20C) are provided. These fans 20A to 20C are provided such that the rotational axis center of the impeller 25 is in a substantially vertical direction. Each of these fans 20A to 20C is connected to the blower fan control means 171 of the control device 281 via motor drivers 282A to 282C. Details of the control device 281 will be described later.
 ファン20A~20Cの下方には、空気を熱交換して冷却又は加熱する熱交換器50が配置されている。図35の白抜き矢印に示すように、ファン20A~20Cが作動すると、吸込口2から室内機100内の風路に室内の空気を吸い込み、この吸入空気をファン20A~20Cの下部にある熱交換器50で冷却又は加熱した後、吹出口3から室内に吹き出すようになっている。 Below the fans 20A to 20C, there is disposed a heat exchanger 50 that heats and cools or heats the air. As indicated by the white arrows in FIG. 35, when the fans 20A to 20C are activated, the indoor air is sucked into the air passages in the indoor unit 100 from the suction port 2, and the intake air is heated by the heat below the fans 20A to 20C. After cooling or heating with the exchanger 50, the air is blown out into the room from the air outlet 3.
 また、本実施の形態8に係る室内機100は、能動的消音に用いる消音機構が設けられている。本実施の形態8に係る室内機100の消音機構は、騒音検出マイクロホン161,162、制御スピーカー181,182、消音効果検出マイクロホン191,192、及び信号処理装置201,202により構成されている。つまり、本実施の形態8に係る室内機100の消音機構は、2つの騒音検出マイクロホン、2つの制御スピーカー及び2つの消音効果検出マイクロホンを備えている。以下、騒音検出マイクロホン161、制御スピーカー181、消音効果検出マイクロホン191及び信号処理装置201で構成される消音機構を消音機構Aとする。また、騒音検出マイクロホン162、制御スピーカー182、消音効果検出マイクロホン192及び信号処理装置202で構成される消音機構を消音機構Bとする。 In addition, the indoor unit 100 according to the eighth embodiment is provided with a silencing mechanism used for active silencing. The silencing mechanism of the indoor unit 100 according to the eighth embodiment includes noise detection microphones 161 and 162, control speakers 181 and 182, silencing effect detection microphones 191 and 192, and signal processing devices 201 and 202. That is, the silencing mechanism of the indoor unit 100 according to Embodiment 8 includes two noise detection microphones, two control speakers, and two silencing effect detection microphones. Hereinafter, the mute mechanism including the noise detection microphone 161, the control speaker 181, the mute effect detection microphone 191, and the signal processing device 201 is referred to as a mute mechanism A. Further, a silencing mechanism including the noise detection microphone 162, the control speaker 182, the silencing effect detection microphone 192, and the signal processing device 202 is referred to as a silencing mechanism B.
 騒音検出マイクロホン161,162は、ファン20A~20Cの送風音(ファン20A~20Cから放射される騒音)を含む室内機100の運転音(騒音)を検出する騒音検出装置である。騒音検出マイクロホン161,162は、ファン20A~20Cの下流側となる位置(例えば、ファン20A~20Cと熱交換器50との間)に設けられている。また、騒音検出マイクロホン161は室内機100の左側面に設けられており、騒音検出マイクロホン162は室内機100の右側面に設けられている。 The noise detection microphones 161 and 162 are noise detection devices that detect the operation sound (noise) of the indoor unit 100 including the blowing sound of the fans 20A to 20C (noise emitted from the fans 20A to 20C). The noise detection microphones 161 and 162 are provided at positions downstream of the fans 20A to 20C (for example, between the fans 20A to 20C and the heat exchanger 50). The noise detection microphone 161 is provided on the left side surface of the indoor unit 100, and the noise detection microphone 162 is provided on the right side surface of the indoor unit 100.
 制御スピーカー181,182は、騒音に対する制御音を出力する制御音出力装置である。制御スピーカー181,182は、騒音検出マイクロホン161,162の下流側となる位置(例えば、熱交換器50の下流側)に設けられている。また、制御スピーカー181は室内機100の左側面に設けられており、制御スピーカー182は室内機100の右側面に設けられている。そして、制御スピーカー181,182は、室内機100のケーシング1の壁面から風路の中央に向くように配置されている。 Control speakers 181 and 182 are control sound output devices that output a control sound for noise. The control speakers 181 and 182 are provided at positions downstream of the noise detection microphones 161 and 162 (for example, downstream of the heat exchanger 50). The control speaker 181 is provided on the left side surface of the indoor unit 100, and the control speaker 182 is provided on the right side surface of the indoor unit 100. Control speakers 181 and 182 are arranged so as to face the center of the air path from the wall surface of casing 1 of indoor unit 100.
 消音効果検出マイクロホン191,192は、制御音による消音効果を検出する消音効果検出装置である。消音効果検出マイクロホン191,192は、制御スピーカー181,182の下流側となる位置に設けられている。また、消音効果検出マイクロホン191は例えばファン20Aの回転軸のほぼ延長線上に設けられており、消音効果検出マイクロホン192は例えばファン20Cの回転軸のほぼ延長線上に設けられている。なお、本実施の形態8では、吹出口3を形成するノズル6上に、消音効果検出マイクロホン191,192が設けられている。つまり、消音効果検出マイクロホン191,192は、吹出口3から出てくる騒音を検出し、消音効果を検出している。 The silencing effect detection microphones 191 and 192 are silencing effect detection devices that detect the silencing effect by the control sound. The mute effect detection microphones 191 and 192 are provided at positions on the downstream side of the control speakers 181 and 182. Further, the muffling effect detection microphone 191 is provided, for example, on an approximately extension line of the rotation axis of the fan 20A, and the mute effect detection microphone 192 is provided, for example, on an extension line of the rotation axis of the fan 20C. In the eighth embodiment, the mute effect detection microphones 191 and 192 are provided on the nozzle 6 that forms the air outlet 3. That is, the silencing effect detection microphones 191 and 192 detect the noise coming out from the air outlet 3 and detect the silencing effect.
 信号処理装置201,202の構成は実施の形態1で説明した図8に示した構成と全く同じである。 The configuration of the signal processing devices 201 and 202 is exactly the same as the configuration shown in FIG. 8 described in the first embodiment.
 図37は、本発明の実施の形態8に係る制御装置を示す構成図である。
 以下で説明する各種動作及び手段は、室内機100が備える制御装置281に組み込まれたプログラムを実行することにより行われる。制御装置281は主に、リモコン280等の外部入力装置からの信号を入力する入力部130、組み込まれたプログラムに従って演算を行うCPU131、データーやプログラムを記憶するメモリー132を備えている。さらに、CPU131は送風ファン制御手段171を備えている。
FIG. 37 is a block diagram showing a control apparatus according to Embodiment 8 of the present invention.
Various operations and means described below are performed by executing a program incorporated in the control device 281 included in the indoor unit 100. The control device 281 mainly includes an input unit 130 for inputting a signal from an external input device such as the remote controller 280, a CPU 131 for performing calculations according to an embedded program, and a memory 132 for storing data and programs. Further, the CPU 131 includes a blower fan control unit 171.
 送風ファン制御手段171は、同回転数決定手段133、ファン個別制御回転数決定手段134及び複数のSW135(ファン20と同数)を備えている。同回転数決定手段133は、リモコン280から入力された運転情報に基づき、ファン20A~20Cを全て同じ回転数で動作させる場合の回転数を決定するものである。リモコン280から入力された運転情報とは、例えば、冷房運転モード、暖房運転モード及び除湿運転モード等の運転モード情報や、強、中、及び弱等の風量情報である。ファン個別制御回転数決定手段134は、ファン20A~20Cの回転数を個別に制御するときのそれぞれの回転数を決定するものである。SW135は、例えばリモコン280から入力される信号に基づき、モータードライバー282A~282Cへ送られるファン20A~20Cの回転制御信号を切り替えるものである。つまり、SW135は、ファン20A~20Cを全て同じ回転数で動作させるか、ファン20A~20Cをそれぞれ個別の回転数で動作させるかを切り替えるものである。 The blower fan control means 171 includes the same rotation speed determination means 133, a fan individual control rotation speed determination means 134, and a plurality of SWs 135 (the same number as the fan 20). The rotation speed determination means 133 determines the rotation speed when all the fans 20A to 20C are operated at the same rotation speed based on the operation information input from the remote controller 280. The operation information input from the remote controller 280 is, for example, operation mode information such as a cooling operation mode, a heating operation mode, and a dehumidifying operation mode, and air volume information such as strong, medium, and weak. The fan individual control rotation speed determination means 134 determines the rotation speed when individually controlling the rotation speeds of the fans 20A to 20C. The SW 135 switches the rotation control signals of the fans 20A to 20C sent to the motor drivers 282A to 282C, for example, based on a signal input from the remote controller 280. That is, the SW 135 switches between operating all the fans 20A to 20C at the same rotational speed or operating the fans 20A to 20C at individual rotational speeds.
 次に、室内機100の動作について説明する。
 室内機100が動作すると、ファン20A~20Cの羽根車が回転し、ファン20A~20Cの上側から室内の空気が吸い込まれ、ファン20A~20C下側へと空気が送られることにより気流が発生する。これに伴い、ファン20A~20Cの吹出口近傍において運転音(騒音)が発生し、その音は下流側へと伝搬する。ファン20A~20Cにより送られた空気は、風路を通り、熱交換器50へと送られる。例えば、冷房運転の場合、熱交換器50には、室外機(図示せず)とつながっている配管から低温の冷媒が送られる。熱交換器50へと送られた空気は、熱交換器50を流れる冷媒に冷やされて冷気となり、そのまま吹出口3から室内へ放出される。
Next, the operation of the indoor unit 100 will be described.
When the indoor unit 100 operates, the impellers of the fans 20A to 20C rotate, the indoor air is sucked from the upper side of the fans 20A to 20C, and the air is sent to the lower side of the fans 20A to 20C, thereby generating an air flow. . Along with this, a driving sound (noise) is generated in the vicinity of the air outlets of the fans 20A to 20C, and the sound propagates downstream. The air sent by the fans 20A to 20C passes through the air path and is sent to the heat exchanger 50. For example, in the case of cooling operation, low-temperature refrigerant is sent to the heat exchanger 50 from a pipe connected to an outdoor unit (not shown). The air sent to the heat exchanger 50 is cooled by the refrigerant flowing through the heat exchanger 50 to become cold air, and is directly discharged into the room from the outlet 3.
 なお、消音機構A及び消音機構Bの動作については実施の形態1と全く同じであり、消音効果検出マイクロホン191,192で検出される騒音をゼロに近づけるように制御音を出力し、結果として消音効果検出マイクロホン191,192における騒音を抑制するよう動作する。
 能動的消音方法では、消音効果検出マイクロホン191,192の設置箇所(制御点)で騒音と逆位相となるように、制御スピーカー181,182から制御音を出力する。このため、消音効果検出マイクロホン191,192の付近では消音効果は高くなるが、その点から距離が離れると制御音の位相が変化してしまう。したがって、消音効果検出マイクロホン191,192から距離が離れた箇所では、騒音と制御音との位相ずれが大きくなり消音効果は低くなってしまう。
The operations of the silencing mechanism A and the silencing mechanism B are exactly the same as in the first embodiment, and a control sound is output so that the noise detected by the silencing effect detection microphones 191 and 192 approaches zero. The effect detection microphones 191 and 192 operate to suppress noise.
In the active silencing method, the control sound is output from the control speakers 181 and 182 so that the phase is opposite to the noise at the installation locations (control points) of the silencing effect detection microphones 191 and 192. For this reason, the silencing effect becomes high in the vicinity of the silencing effect detection microphones 191, 192, but the phase of the control sound changes as the distance from the point increases. Therefore, at a location away from the muffler effect detection microphones 191 and 192, the phase shift between the noise and the control sound is increased, and the muffler effect is reduced.
 次に、ファン20A~20Cの回転数を個別に制御する制御方法(以下、ファン個別制御ともいう)について説明する。
 制御装置281には、リモコン280で選択された運転情報が入力される。運転情報とは、例えば、冷房運転モード、暖房運転モード及び除湿運転モード等の運転モード情報である。さらに、強、中、及び弱等の風量情報も同様に、リモコン280から制御装置281へ運転情報として入力される。制御装置281に入力された運転情報は、入力部130を介して同回転数決定手段133に入力される。運転情報が入力された同回転数決定手段133は、入力された運転情報から、ファン20A~20Cを全て同じ回転数で動作させる場合の回転数を決定する。ファン個別制御を行わない場合、ファン20A~20Cは、全て同じ回転数で制御される(以下、同回転数制御ともいう)。
Next, a control method for individually controlling the rotation speeds of the fans 20A to 20C (hereinafter also referred to as fan individual control) will be described.
Operation information selected by the remote controller 280 is input to the control device 281. The operation information is, for example, operation mode information such as a cooling operation mode, a heating operation mode, and a dehumidifying operation mode. Further, the air volume information such as strong, medium, and weak is similarly input as operation information from the remote controller 280 to the control device 281. The operation information input to the control device 281 is input to the rotation speed determination unit 133 via the input unit 130. The same rotation speed determination means 133 to which the operation information is input determines the rotation speed when the fans 20A to 20C are all operated at the same rotation speed from the input operation information. When the individual fan control is not performed, all of the fans 20A to 20C are controlled at the same rotational speed (hereinafter also referred to as the same rotational speed control).
 同回転数決定手段133で決定された回転数(同回転数制御時の回転数)の情報は、ファン個別制御回転数決定手段134へ入力される。一方、ファン個別制御回転数決定手段134では、製品出荷時に予めメモリー132に記憶されている送風ファン情報を読み出す。この送風ファン情報とは、制御音を干渉させたときの消音効果が高い騒音を放射しているファン20の情報である。つまり、この送風ファン情報とは、消音効果検出マイクロホン191,192と関連性が高いファン20の情報である。これらの識別番号は、各消音効果検出マイクロホンごとに振り分けられている。本実施の形態8では、送風ファン情報として、消音効果検出マイクロホン191,192に最も距離が近い(関連性が高い)ファン20の識別番号を用いている。具体的には、消音効果検出マイクロホン191に最も距離が近いファン20Aの識別番号と、消音効果検出マイクロホン192に最も距離が近いファン20Cの識別番号である。 The information on the rotational speed (the rotational speed at the same rotational speed control) determined by the same rotational speed determination means 133 is input to the fan individual control rotational speed determination means 134. On the other hand, the fan individual control rotation speed determination means 134 reads out the blower fan information stored in advance in the memory 132 at the time of product shipment. The blower fan information is information of the fan 20 that emits noise with a high noise reduction effect when the control sound is interfered. That is, the blower fan information is information on the fan 20 that is highly related to the muffler effect detection microphones 191 and 192. These identification numbers are assigned to each silencing effect detection microphone. In the eighth embodiment, the identification number of the fan 20 that is the closest (highly related) to the muffler effect detection microphones 191 and 192 is used as the blower fan information. Specifically, the identification number of the fan 20A closest to the muffler effect detection microphone 191 and the identification number of the fan 20C closest to the muffler effect detection microphone 192 are shown.
 ファン個別制御回転数決定手段134は、同回転数決定手段133で決定された回転数情報及びメモリー132から読み出した送風ファン情報に基づき、ファン個別制御を行う際の各ファン20の回転数を決定する。具体的には、ファン個別制御回転数決定手段134は、消音効果検出マイクロホン191,192の最も近くにあるファン20A,20Cの回転数を高くし、消音効果検出マイクロホン191,192から距離が離れているファン20Bの回転数を低くする。このとき、ファン個別制御をした場合に得られる風量が同回転数制御時と同じ風量となるように、ファン20A~20Cのそれぞれの回転数を決定するとよい。風量と回転数は比例関係にあるため、例えば、図35のような構成の場合、ファン20Aとファン20Cの回転数を10%高くすると、ファン20Bの回転数を20%低くすることで同一風量となる。 The fan individual control rotation speed determination means 134 determines the rotation speed of each fan 20 when performing individual fan control based on the rotation speed information determined by the rotation speed determination means 133 and the blower fan information read from the memory 132. To do. Specifically, the fan individual control rotational speed determination means 134 increases the rotational speed of the fans 20A and 20C that are closest to the silencing effect detection microphones 191 and 192, and the distance from the silencing effect detection microphones 191 and 192 increases. The rotational speed of the fan 20B is reduced. At this time, the rotation speeds of the fans 20A to 20C may be determined so that the air volume obtained in the individual fan control is the same as that in the same rotation speed control. Since the air volume and the rotation speed are in a proportional relationship, for example, in the case of the configuration shown in FIG. 35, if the rotation speed of the fan 20A and the fan 20C is increased by 10%, the rotation speed of the fan 20B is decreased by 20%. It becomes.
 リモコン280からファン個別制御を行う旨の運転情報信号(例えば静音モード等の信号)が入力された場合、SW135を切り替えることにより、同回転数制御の回転制御信号からファン個別制御における回転制御信号に切り替え、この回転制御信号を制御装置281からファン20A~20Cへ出力する。制御装置281から出力された回転制御信号はモータードライバー282A~282Cに入力され、回転制御信号に従った回転数にファン20A~20Cは制御される。 When an operation information signal for performing individual fan control (for example, a signal for the silent mode) is input from the remote controller 280, the rotation control signal for the same speed control is changed to the rotation control signal for the individual fan control by switching the SW 135. The rotation control signal is output from the control device 281 to the fans 20A to 20C. The rotation control signal output from the control device 281 is input to the motor drivers 282A to 282C, and the fans 20A to 20C are controlled to the number of rotations according to the rotation control signal.
 上述のように、能動的消音を行う場合、騒音制御の制御点となる消音効果検出マイクロホン191,192及びその周辺の消音効果は高くなるが、制御点から離れた箇所では制御スピーカー181,182から放射された制御音と騒音との位相ずれが大きくなり消音効果が低くなる。しかしながら、本実施の形態8では室内機100に複数のファン20A~20Cを備えた構成とすることで、消音効果が高い消音効果検出マイクロホン191,192に距離の近いファン20A,20C(消音効果が高い騒音を放射するファン)の回転数を高くし、消音効果検出マイクロホン191,192から距離の遠いファン20B(消音効果が低い騒音を放射するファン)の回転数を低くすることができる。 As described above, when active silencing is performed, the silencing effect detection microphones 191 and 192 that serve as control points for noise control and the surrounding silencing effects are enhanced, but from the control speakers 181 and 182 at locations away from the control points. The phase shift between the radiated control sound and noise is increased, and the silencing effect is reduced. However, in the eighth embodiment, the indoor unit 100 is provided with a plurality of fans 20A to 20C, so that the fans 20A and 20C (the silencing effect is close to the silencing effect detection microphones 191 and 192 having a high silencing effect). The number of rotations of the fan 20B (fan that emits noise with a low noise reduction effect) far from the noise reduction effect detection microphones 191 and 192 can be reduced.
 その結果、本実施の形態8に係る室内機100は、消音効果の高い領域はさらに消音効果が高くなり、消音効果の低い領域は騒音が小さくなるため、単数のファンを使用した室内機やファン個別制御を行わない室内機に比べ、吹出口3全体から放射される騒音を低減することができる。さらに風量が一定となるように複数のファン20A~20Cの回転数を制御することで空力的な性能の劣化もなく実現することができる。 As a result, in the indoor unit 100 according to the eighth embodiment, the region where the silencing effect is high further increases the silencing effect, and the region where the silencing effect is low reduces noise. Therefore, the indoor unit or fan using a single fan Compared with an indoor unit that does not perform individual control, noise radiated from the entire outlet 3 can be reduced. Further, by controlling the rotational speeds of the plurality of fans 20A to 20C so that the air volume becomes constant, it can be realized without deterioration of aerodynamic performance.
 さらに、図38及び図39に示すように、室内機100の風路を複数の領域に分割することにより、消音効果をさらに向上させることができる。 Furthermore, as shown in FIGS. 38 and 39, the silencing effect can be further improved by dividing the air path of the indoor unit 100 into a plurality of regions.
 図38は、本発明の実施の形態8に係る室内機の別の一例を示す正面図である。また、図39は、図38に示す室内機の左側面図である。なお、図39は、室内機100のケーシング1の側壁を透写して示している。図38及び図39に示す室内機100は、風路を仕切り板90,90aで分割することにより、ファン20Aが吹き出す空気が通る領域、ファン20Bが吹き出す空気が通る領域、及びファン20Cが吹き出す空気が通る領域に区切っている。そして、消音機構Aの騒音検出マイクロホン161、制御スピーカー181及び消音効果検出マイクロホン191は、ファン20Aが吹き出す空気が通る領域に配置されている。また、消音機構Bの騒音検出マイクロホン162、制御スピーカー182及び消音効果検出マイクロホン192は、ファン20Cが吹き出す空気が通る領域に配置されている。 FIG. 38 is a front view showing another example of the indoor unit according to Embodiment 8 of the present invention. FIG. 39 is a left side view of the indoor unit shown in FIG. Note that FIG. 39 shows the side wall of the casing 1 of the indoor unit 100 in a transparent manner. The indoor unit 100 shown in FIGS. 38 and 39 divides the air path with the partition plates 90 and 90a, thereby allowing the air blown out by the fan 20A, the region through which the air blown out by the fan 20B passes, and the air blown out by the fan 20C. It is divided into the areas where. And the noise detection microphone 161, the control speaker 181 and the silencing effect detection microphone 191 of the silencing mechanism A are arranged in a region through which the air blown out by the fan 20A passes. Further, the noise detection microphone 162, the control speaker 182 and the noise reduction effect detection microphone 192 of the silencer mechanism B are arranged in a region through which air blown out by the fan 20C passes.
 このように室内機100を構成することにより、ファン20A~20Cから放射される騒音をそれぞれの領域に分離することができ、消音機構Aはファン20Aから放射される騒音のみを低減し、消音機構Bはファン20Cから放射される騒音のみを低減することになる。このため、ファン20Bから放射された騒音を騒音検出マイクロホン161,162及び消音効果検出マイクロホン191,192が検出してしまうことを防止できるので、騒音検出マイクロホン161,162及び消音効果検出マイクロホン191,192のクロストークノイズ成分が小さくなる。 By configuring the indoor unit 100 in this way, the noise radiated from the fans 20A to 20C can be separated into the respective regions, and the silencing mechanism A reduces only the noise radiated from the fan 20A. B reduces only the noise radiated from the fan 20C. Therefore, it is possible to prevent the noise detection microphones 161 and 162 and the silencing effect detection microphones 191 and 192 from detecting the noise radiated from the fan 20B, and thus the noise detection microphones 161 and 162 and the silencing effect detection microphones 191 and 192. The crosstalk noise component of becomes smaller.
 さらに、風路をダクト構造に近づけることになるため、騒音を一次元で捉えられる。このため、室内機100内部を伝達する騒音の位相が均一となり、制御音を干渉させた際の位相誤差が小さくなるので、消音効果がより高くなる。一方、消音機構が設けられていないファン20Bの回転数を低くすることで、消音機構が設けられていない領域の騒音が小さくなる。したがって、図38及び図39のように室内機100を構成することにより、図35の構成に比べ、さらに騒音を低減することができる。なお、図38及び図39では風路全域に仕切り板を挿入したが、例えば熱交換器50の上流側のみ又は熱交換器50の下流側のみといったように、風路の一部を仕切り板で区切るようにしてもよい。 Furthermore, noise can be captured in one dimension because the air path is closer to the duct structure. For this reason, the phase of the noise transmitted through the interior of the indoor unit 100 becomes uniform, and the phase error when the control sound interferes is reduced, so that the silencing effect is further enhanced. On the other hand, by reducing the rotational speed of the fan 20B that is not provided with the silencing mechanism, the noise in the area where the silencing mechanism is not provided is reduced. Therefore, by configuring the indoor unit 100 as shown in FIGS. 38 and 39, noise can be further reduced compared to the configuration of FIG. In FIGS. 38 and 39, a partition plate is inserted in the entire air path. However, a part of the air path is separated by a partition plate, for example, only on the upstream side of the heat exchanger 50 or only on the downstream side of the heat exchanger 50. You may make it delimit.
 なお、本実施の形態8では騒音検出マイクロホン161,162を室内機100の両側面に設置したが、制御スピーカー181,182の上流側であれば騒音検出マイクロホン161,162の設置位置はどこでもよい。さらに、本実施の形態8では制御スピーカー181,182を室内機100の両側面に配置したが、騒音検出マイクロホン161,162の下流側、かつ、消音効果検出マイクロホン191,192の上流側であれば、制御スピーカー181,182の設置位置はどこでもよい。さらに、本実施の形態8では、消音効果検出マイクロホン191,192をファン20A,20Cの回転軸のほぼ延長線上に配置したが、制御スピーカー181,182の下流側であれば消音効果検出マイクロホン191,192の設置位置はどこでもよい。さらに、本実施の形態8では、騒音検出マイクロホン、制御スピーカー、消音効果検出マイクロホン及び信号処理装置をそれぞれ2個配置しているが、これに限るものではない。 In the eighth embodiment, the noise detection microphones 161 and 162 are installed on both side surfaces of the indoor unit 100. However, the noise detection microphones 161 and 162 may be installed anywhere on the upstream side of the control speakers 181 and 182. Further, in the eighth embodiment, the control speakers 181 and 182 are arranged on both side surfaces of the indoor unit 100. However, if the control speakers 181 and 182 are arranged on the downstream side of the noise detection microphones 161 and 162 and the upstream side of the silencing effect detection microphones 191 and 192, respectively. The installation positions of the control speakers 181 and 182 may be anywhere. Furthermore, in the eighth embodiment, the muffling effect detection microphones 191 and 192 are arranged almost on the extension line of the rotation axes of the fans 20A and 20C. The installation position of 192 may be anywhere. Furthermore, in the eighth embodiment, two noise detection microphones, control speakers, muffler effect detection microphones, and signal processing devices are disposed, but the present invention is not limited to this.
 また、本実施の形態8では、送風ファン制御手段171を制御装置281内のCPU131で構成したが、LSI(Large Scale Integration)やFPGA(Field Programmable Gate Array)等のハードウェアにより送風ファン制御手段171を構成してもよい。さらに、送風ファン制御手段171の構成についても図37に示した構成に限るものではない。 In the eighth embodiment, the blower fan control unit 171 is configured by the CPU 131 in the control device 281. However, the blower fan control unit 171 is implemented by hardware such as LSI (Large Scale Integration) or FPGA (Field Programmable Gate Array). May be configured. Further, the configuration of the blower fan control means 171 is not limited to the configuration shown in FIG.
 また、本実施の形態8では、送風ファン制御手段171は消音効果検出マイクロホン191,192に距離の近いファン20A,20Cの回転数を高くし、かつ、距離の遠いファン20Bの回転数を低くするように構成したが、そのどちらか一方を行うように構成してもよい。 Further, in the eighth embodiment, the blower fan control means 171 increases the rotational speed of the fans 20A and 20C that are close to the silencing effect detection microphones 191 and 192, and decreases the rotational speed of the fan 20B that is far away. However, it may be configured to perform either one of them.
 以上、本実施の形態8に係る室内機100においては、複数のファン20A~20Cを配置し、ファン20A~20Cの回転数を個別に制御する制御装置281(より詳しくは、送風ファン制御手段171)が設けられている。送風ファン制御手段171は、消音効果が高い領域である消音効果検出マイクロホン191,192付近の領域に送風しているファン20A,20Cの回転数を高くするように制御し、消音効果が低くなる領域である消音効果検出マイクロホン191,192から距離が遠い領域に送風しているファン20Bの回転数を低くするように回転数制御を行う。このため、消音効果の高い領域はさらに消音効果が高くなり、消音効果の低い領域は騒音が小さくなる。このため、同じ構成の消音機構にて単数のファンを使用した室内機、又はファン個別制御を行わない室内機に比べ、高い騒音低減効果を得ることができる。 As described above, in the indoor unit 100 according to the eighth embodiment, the plurality of fans 20A to 20C are arranged, and the control device 281 (more specifically, the blower fan control means 171) controls the rotational speed of the fans 20A to 20C individually. ) Is provided. The blower fan control means 171 controls the fan 20A, 20C blowing to the area near the muffler effect detection microphones 191, 192, which is a high noise reduction area, to increase the rotational speed, and the area where the noise reduction effect is low. The rotational speed control is performed so as to reduce the rotational speed of the fan 20B that is blowing air to a region far from the muffler effect detection microphones 191 and 192. For this reason, the region where the silencing effect is high has a higher silencing effect, and the region where the silencing effect is low has less noise. For this reason, a high noise reduction effect can be obtained as compared with an indoor unit that uses a single fan with the silencer mechanism having the same configuration or an indoor unit that does not perform individual fan control.
 また、送風ファン制御手段171は、吹出口3から放射される風量がファン個別制御をした場合と同回転数制御をした場合で同じとなるように、ファン20A~20Cのそれぞれの回転数を制御するため、空力性能を劣化させることなく騒音を低減することができる。 Further, the blower fan control means 171 controls the rotational speeds of the fans 20A to 20C so that the amount of air radiated from the air outlet 3 is the same when the same rotational speed control is performed as when the individual fan control is performed. Therefore, noise can be reduced without deteriorating the aerodynamic performance.
 さらに、仕切り板90,90aで室内機100の風路を複数の領域に分割することにより、ファン20A~20Cから放射される騒音をそれぞれ分離することができ、消音機構Aはファン20Aから放射される騒音のみを低減し、消音機構Bはファン20Cから放射される騒音のみを低減することになる。このため、ファン20Bから放射された騒音によるクロストークノイズ成分が小さくなる。 Furthermore, by dividing the air path of the indoor unit 100 into a plurality of regions by the partition plates 90 and 90a, the noise radiated from the fans 20A to 20C can be separated, respectively, and the silencing mechanism A is radiated from the fan 20A. The noise reduction mechanism B reduces only the noise radiated from the fan 20C. For this reason, the crosstalk noise component by the noise radiated | emitted from the fan 20B becomes small.
 さらに、仕切り板90,90aで室内機100の風路を複数の領域に分割することにより、風路をダクト構造に近づけることになるため、騒音を一次元で捉えられる。このため、室内機100内部を伝達する騒音の位相が均一となり、制御音を干渉させた際の位相誤差が小さくなる。さらに、消音機構が設けられていないファン20Bの回転数を低くすることで消音機構が設けられていない領域の騒音が小さくなり、図35の構成に比べて、さらに高い騒音低減効果を得ることができる。 Furthermore, by dividing the air passage of the indoor unit 100 into a plurality of regions by the partition plates 90 and 90a, the air passage is brought closer to the duct structure, so that noise can be captured in one dimension. For this reason, the phase of the noise transmitted through the interior of the indoor unit 100 becomes uniform, and the phase error when the control sound interferes is reduced. Further, by reducing the rotation speed of the fan 20B not provided with the silencer mechanism, the noise in the area where the silencer mechanism is not provided is reduced, and a higher noise reduction effect can be obtained compared to the configuration of FIG. it can.
実施の形態9.
 実施の形態8の構成に限らず、消音効果検出マイクロホンが検出する消音効果に基づいてファン個別制御を行ってもよい。なお、本実施の形態9では、上述した実施の形態8との相違点を中心に説明するものとし、実施の形態8と同一部分には同一符号を付している。
Embodiment 9 FIG.
In addition to the configuration of the eighth embodiment, individual fan control may be performed based on the silencing effect detected by the silencing effect detection microphone. In the ninth embodiment, differences from the above-described eighth embodiment will be mainly described, and the same parts as those in the eighth embodiment are denoted by the same reference numerals.
 図40は、本発明の実施の形態9に係る室内機の正面図である。
 本実施の形態9に係る室内機100が実施の形態8の室内機100と異なる点は、消音機構C(騒音検出マイクロホン163、制御スピーカー183、消音効果検出マイクロホン193及び信号処理装置203)が設けられている点である。信号処理装置203の構成は、信号処理装置201,202と全く同じである。なお、騒音検出マイクロホン163、制御スピーカー183及び消音効果検出マイクロホン193の取り付け位置は、実施の形態8と同様、ファン20Bの下流側から順に、騒音検出マイクロホン163、制御スピーカー183及び消音効果検出マイクロホン193が設置されていればよい。
FIG. 40 is a front view of the indoor unit according to Embodiment 9 of the present invention.
The indoor unit 100 according to the ninth embodiment is different from the indoor unit 100 according to the eighth embodiment in that a silencing mechanism C (a noise detection microphone 163, a control speaker 183, a silencing effect detection microphone 193, and a signal processing device 203) is provided. This is the point. The configuration of the signal processing device 203 is exactly the same as that of the signal processing devices 201 and 202. Note that the noise detection microphone 163, the control speaker 183, and the silencing effect detection microphone 193 are attached to the noise detection microphone 163, the control speaker 183, and the silencing effect detection microphone 193 in order from the downstream side of the fan 20B, as in the eighth embodiment. Should just be installed.
 さらに、信号処理装置201~203から送風ファン制御手段172へと接続される信号線(信号S1,S2,S3を送る信号線)が設けられている点も、実施の形態8の室内機100と異なる。このため、送風ファン制御手段172の構成も、実施の形態8に係る送風ファン制御手段171の構成と異なっている。具体的には、信号処理装置201~203から送風ファン制御手段172へ送られる信号S1,S2,S3は、消音効果検出マイクロホン191~193から入力された信号がマイクアンプ151を経てA/D変換器152にてデジタル変換された信号である。つまり、信号S1,S2,S3は、消音効果検出マイクロホン191~193で検出した音圧レベルのデジタル値である。 Further, in addition to the indoor unit 100 of the eighth embodiment, a signal line (signal line for sending signals S1, S2, S3) connected from the signal processing devices 201 to 203 to the blower fan control means 172 is provided. Different. For this reason, the structure of the blower fan control means 172 is also different from the structure of the blower fan control means 171 according to the eighth embodiment. Specifically, the signals S1, S2, and S3 sent from the signal processing devices 201 to 203 to the blower fan control means 172 are A / D converted from the signals input from the mute effect detection microphones 191 to 193 via the microphone amplifier 151. The signal is digitally converted by the device 152. That is, the signals S1, S2, and S3 are digital values of sound pressure levels detected by the mute effect detection microphones 191 to 193.
 次に、送風ファン制御手段172の構成について説明する。
 図41は、本発明の実施の形態9に係る制御装置を示す構成図である。以下で説明する各種動作及び手段は、室内機100が備える制御装置281に組み込まれたプログラムを実行することにより行われる。制御装置281は主に、実施の形態8で述べた構成と同様、リモコン280等の外部入力装置からの信号を入力する入力部130、組み込まれたプログラムに従って演算を行うCPU131、データーやプログラムを記憶するメモリー132を備えている。さらに、CPU131は送風ファン制御手段172を備えている。
Next, the configuration of the blower fan control means 172 will be described.
FIG. 41 is a block diagram showing a control apparatus according to Embodiment 9 of the present invention. Various operations and means described below are performed by executing a program incorporated in the control device 281 included in the indoor unit 100. Similar to the configuration described in the eighth embodiment, the control device 281 mainly stores an input unit 130 for inputting a signal from an external input device such as the remote controller 280, a CPU 131 for performing calculations in accordance with an embedded program, and stores data and programs. A memory 132 is provided. Further, the CPU 131 includes a blower fan control unit 172.
 送風ファン制御手段172は、同回転数決定手段133、複数の平均化手段136(消音効果検出マイクロホンと同数)、ファン個別制御回転数決定手段134A及び複数のSW135(ファン20と同数)を備えている。同回転数決定手段133は、リモコン280から入力された運転情報に基づき、ファン20A~20Cを全て同じ回転数で動作させる場合の回転数を決定するものである。リモコン280から入力された運転情報とは、例えば、冷房運転モード、暖房運転モード及び除湿運転モード等の運転モード情報や、強、中、及び弱等の風量情報である。平均化手段136は、消音効果検出マイクロホン191~193にて検出した音圧レベルのデジタル値S1,S2,S3が入力されるものであり、これらS1,S2,S3の信号をある一定時間平均化するものである。 The blower fan control means 172 includes the same rotation speed determination means 133, a plurality of averaging means 136 (the same number as the mute effect detection microphone), a fan individual control rotation speed determination means 134A, and a plurality of SWs 135 (the same number as the fan 20). Yes. The rotation speed determination means 133 determines the rotation speed when all the fans 20A to 20C are operated at the same rotation speed based on the operation information input from the remote controller 280. The operation information input from the remote controller 280 is, for example, operation mode information such as a cooling operation mode, a heating operation mode, and a dehumidifying operation mode, and air volume information such as strong, medium, and weak. The averaging means 136 receives the digital values S1, S2 and S3 of the sound pressure levels detected by the muffler effect detection microphones 191 to 193, and averages these S1, S2 and S3 signals for a certain period of time. To do.
 ファン個別制御回転数決定手段134Aは、平均化手段136にて平均化されたS1,S2,S3それぞれの信号と同回転数決定手段133から入力された回転数情報に基づき、ファン20A~20Cをファン個別制御するときのそれぞれの回転数を決定するものである。SW135は、例えばリモコン280から入力される信号に基づき、モータードライバー282A~282Cへ送られるファン20A~20Cの回転制御信号を切り替えるものである。つまり、SW135は、ファン20A~20Cを全て同じ回転数で動作させるか(同回転数制御するか)、ファン20A~20Cをそれぞれ個別の回転数で動作させるか(ファン個別制御するか)を切り替えるものである。 The individual fan control rotation speed determination means 134A determines the fans 20A to 20C based on the rotation speed information inputted from the same rotation speed determination means 133 and the signals S1, S2 and S3 averaged by the averaging means 136. The number of rotations for individual fan control is determined. The SW 135 switches the rotation control signals of the fans 20A to 20C sent to the motor drivers 282A to 282C, for example, based on a signal input from the remote controller 280. That is, the SW 135 switches whether the fans 20A to 20C are all operated at the same rotational speed (whether the same rotational speed is controlled) or whether the fans 20A to 20C are respectively operated at individual rotational speeds (whether the fan is individually controlled). Is.
 次に、室内機100の動作について説明する。
 実施の形態8と同様、室内機100が動作すると、ファン20A~20Cの羽根車が回転し、ファン20A~20Cの上側から室内の空気が吸い込まれ、ファン20A~20C下側へと空気が送られることにより気流が発生する。これに伴い、ファン20A~20Cの吹出口近傍において運転音(騒音)が発生し、その音は下流側へと伝搬する。ファン20A~20Cにより送られた空気は、風路を通り、熱交換器50へと送られる。例えば、冷房運転の場合、熱交換器50には、室外機(図示せず)とつながっている配管から低温の冷媒が送られる。熱交換器50へと送られた空気は、熱交換器50を流れる冷媒に冷やされて冷気となり、そのまま吹出口3から室内へ放出される。
Next, the operation of the indoor unit 100 will be described.
As in the eighth embodiment, when the indoor unit 100 operates, the impellers of the fans 20A to 20C rotate, the indoor air is sucked from the upper side of the fans 20A to 20C, and the air is sent to the lower side of the fans 20A to 20C. Airflow is generated. Along with this, a driving sound (noise) is generated in the vicinity of the air outlets of the fans 20A to 20C, and the sound propagates downstream. The air sent by the fans 20A to 20C passes through the air path and is sent to the heat exchanger 50. For example, in the case of cooling operation, low-temperature refrigerant is sent to the heat exchanger 50 from a pipe connected to an outdoor unit (not shown). The air sent to the heat exchanger 50 is cooled by the refrigerant flowing through the heat exchanger 50 to become cold air, and is directly discharged into the room from the outlet 3.
 また、消音機構A~Cの動作についても実施の形態8と全く同じであり、消音効果検出マイクロホン191~193で検出される騒音をゼロに近づけるように制御音を出力し、結果として消音効果検出マイクロホン191~193における騒音を抑制するよう動作する。 Also, the operations of the silencing mechanisms A to C are exactly the same as in the eighth embodiment, and the control sound is output so that the noise detected by the silencing effect detection microphones 191 to 193 approaches zero, and as a result, the silencing effect detection The microphones 191 to 193 operate to suppress noise.
 なお、本実施の形態9に係る室内機100の場合、消音効果検出マイクロホン193には、ファン20Bから放射される騒音の他に、隣接するファン20A,20Cから放射される騒音(クロストークノイズ成分)も入ってくる。一方、消音効果検出マイクロホン191,192にて検出されるクロストークノイズ成分は、消音効果検出マイクロホン193で検出されるクロストークノイズ成分と比べて小さくなる。消音効果検出マイクロホン191,192は、隣接するファン20が1つのみ(ファン20B)だからである。このため、消音機構Cに比べて、消音機構A,Bの消音効果が高くなる。 In the case of the indoor unit 100 according to the ninth embodiment, the noise reduction effect detection microphone 193 includes noise radiated from the adjacent fans 20A and 20C (crosstalk noise component) in addition to the noise radiated from the fan 20B. ) Also comes in. On the other hand, the crosstalk noise component detected by the silencing effect detection microphones 191 and 192 is smaller than the crosstalk noise component detected by the silencing effect detection microphone 193. This is because the silencing effect detection microphones 191 and 192 have only one adjacent fan 20 (fan 20B). For this reason, the silencing effect of the silencing mechanisms A and B is higher than that of the silencing mechanism C.
 次に、本実施の形態9に係るファン20A~20Cのファン個別制御について説明する。
 制御装置281には、リモコン280で選択された運転情報が入力される。上述したように、運転情報とは、例えば、冷房運転モード、暖房運転モード及び除湿運転モード等の運転モード情報である。さらに、強、中、及び弱等の風量情報も同様に、リモコン280から制御装置281へ運転情報として入力される。制御装置281に入力された運転情報は、入力部130を介して同回転数決定手段133に入力される。運転情報が入力された同回転数決定手段133は、入力された運転情報から、ファン20A~20Cを同回転数制御する場合の回転数を決定する。
Next, individual fan control of the fans 20A to 20C according to the ninth embodiment will be described.
Operation information selected by the remote controller 280 is input to the control device 281. As described above, the operation information is, for example, operation mode information such as a cooling operation mode, a heating operation mode, and a dehumidifying operation mode. Further, the air volume information such as strong, medium, and weak is similarly input as operation information from the remote controller 280 to the control device 281. The operation information input to the control device 281 is input to the rotation speed determination unit 133 via the input unit 130. The same rotation speed determining means 133 to which the operation information is input determines the rotation speed when the fans 20A to 20C are controlled at the same rotation speed from the input operation information.
 一方、信号処理装置201~203から平均化手段136へ入力されたS1~S3(消音効果検出マイクロホン191~193で検出された音圧レベルのデジタル値)は、平均化手段136にてある一定期間平均化される。 On the other hand, S1 to S3 (digital values of sound pressure levels detected by the mute effect detection microphones 191 to 193) input from the signal processing devices 201 to 203 to the averaging means 136 are averaged by the averaging means 136 for a certain period. Averaged.
 これらS1~S3のそれぞれを平均化した音圧レベル値、及び同回転数決定手段133で決定された回転数(同回転数制御時の回転数)の情報は、ファン個別制御回転数決定手段134Aへ入力される。ファン個別制御回転数決定手段134Aは、これらの情報に基づき、ファン個別制御を行う際の各ファン20の回転数を決定する。具体的には、平均化された音圧レベル値の小さい消音効果検出マイクロホンに距離が近い(関連性が高い)ファンの回転数を高くし、平均化された音圧レベル値の大きい消音効果検出マイクロホンに距離が近い(関連性が高い)ファンの回転数を低くするように、ファンの回転数を決定する。このとき、ファン個別制御をした場合に得られる風量が同回転数制御時と同じ風量となるように、ファン20A~20Cのそれぞれの回転数を決定するとよい。 The sound pressure level value obtained by averaging each of these S1 to S3 and the information on the rotational speed determined by the same rotational speed determining means 133 (the rotational speed at the same rotational speed control) are the fan individual control rotational speed determining means 134A. Is input. Based on these pieces of information, the individual fan control rotation speed determination means 134A determines the rotation speed of each fan 20 when performing individual fan control. Specifically, the muffler effect detection with a small averaged sound pressure level value is detected by increasing the number of rotations of the fan that is close to (highly related to) the microphone with a small sound pressure level value and having a large averaged sound pressure level value. The rotation speed of the fan is determined so as to reduce the rotation speed of the fan that is close to the microphone (highly related). At this time, the rotation speeds of the fans 20A to 20C may be determined so that the air volume obtained in the individual fan control is the same as that in the same rotation speed control.
 例えば、本実施の形態9に係る室内機100において、消音効果検出マイクロホン191で検出した騒音レベルの平均値が45dB、消音効果検出マイクロホン192で検出した騒音レベルの平均値が45dB、及び消音効果検出マイクロホン193で検出した騒音レベルの平均値が50dBだった場合、ファン個別制御回転数決定手段134Aは、ファン20A,20Cの回転数を高くし、ファン20Bの回転数を低くするように各ファン20の回転数を決定する。風量と回転数は比例関係にあるため、例えば、図40のような構成の場合、ファン20Aとファン20Cの回転数を10%高くすると、ファン20Bの回転数を20%低くすることで同一風量となる。 For example, in the indoor unit 100 according to the ninth embodiment, the average value of the noise level detected by the silencing effect detection microphone 191 is 45 dB, the average value of the noise level detected by the silencing effect detection microphone 192 is 45 dB, and the silencing effect detection When the average value of the noise level detected by the microphone 193 is 50 dB, the fan individual control rotation speed determination means 134A increases the rotation speed of the fans 20A and 20C and decreases the rotation speed of the fan 20B. Determine the number of revolutions. Since the air volume and the rotation speed are in a proportional relationship, for example, in the case of the configuration shown in FIG. 40, if the rotation speed of the fan 20A and the fan 20C is increased by 10%, the rotation speed of the fan 20B is decreased by 20%. It becomes.
 なお、上述したファン20A~20Cの回転数の決定方法は、あくまでも一例である。例えば、消音効果検出マイクロホン191で検出した騒音レベルの平均値が45dB、消音効果検出マイクロホン192で検出した騒音レベルの平均値が47dB、及び消音効果検出マイクロホン193で検出した騒音レベルの平均値が50dBだった場合、ファン20Aの回転数を高くし、ファン20Bの回転数を低くし、ファン20Cの回転数をそのままにするように、各ファン20の回転数を決定してもよい。つまり、検出した騒音レベルが最も小さい消音効果検出マイクロホン191に距離が近いファン20Aの回転数を高くし、検出した騒音レベルが最も大きい消音効果検出マイクロホン193に距離が近いファン20Bの回転数を低くし、そのどちらでもないファン20Cの回転数はそのままにするように、各ファン20の回転数を決定してもよい。 Note that the above-described method for determining the rotational speed of the fans 20A to 20C is merely an example. For example, the average value of the noise level detected by the silencing effect detection microphone 191 is 45 dB, the average value of the noise level detected by the silencing effect detection microphone 192 is 47 dB, and the average value of the noise level detected by the silencing effect detection microphone 193 is 50 dB. In such a case, the rotational speed of each fan 20 may be determined such that the rotational speed of the fan 20A is increased, the rotational speed of the fan 20B is decreased, and the rotational speed of the fan 20C is left as it is. That is, the rotation speed of the fan 20A close to the noise reduction effect detection microphone 191 with the lowest detected noise level is increased, and the rotation speed of the fan 20B close to the noise reduction effect detection microphone 193 with the highest detected noise level is decreased. However, the rotational speed of each fan 20 may be determined so that the rotational speed of the fan 20C that is neither of them is left as it is.
 リモコン280からファン個別制御を行う旨の運転情報信号(例えば静音モード等の信号)が入力された場合、SW135を切り替えることにより、同回転数制御の回転制御信号からファン個別制御における回転制御信号に切り替え、この回転制御信号を制御装置281からファン20A~20Cへ出力する。制御装置281から出力された回転制御信号はモータードライバー282A~282Cに入力され、回転制御信号に従った回転数にファン20A~20Cは制御される。 When an operation information signal for performing individual fan control (for example, a signal for the silent mode) is input from the remote controller 280, the rotation control signal for the same speed control is changed to the rotation control signal for the individual fan control by switching the SW 135. The rotation control signal is output from the control device 281 to the fans 20A to 20C. The rotation control signal output from the control device 281 is input to the motor drivers 282A to 282C, and the fans 20A to 20C are controlled to the number of rotations according to the rotation control signal.
 ここで上述したように、本実施の形態9に係る室内機100の場合、隣接するファンからのクロストークノイズ成分の大小により、消音効果検出マイクロホン193の近辺の領域に比べて、消音効果検出マイクロホン191,192の近辺の領域は消音効果が高くなる。つまり、本実施の形態9に係る室内機100の場合、消音効果検出マイクロホン193の近辺の領域に比べて、消音効果検出マイクロホン191,192の近辺の領域は検出する騒音レベルが小さくなる。一方、消音効果検出マイクロホン193の近辺の領域は、消音効果が低くなる。そこで、複数のファン20A~20Cを備えた本実施の形態9に係る室内機100においては、消音効果検出マイクロホン191~193により検出された騒音レベル値の平均値のうち、検出した騒音レベル平均値が小さい消音効果検出マイクロホン191,192に距離の近いファン20A,20Cの回転数を高くし、検出した騒音レベル平均値が大きい消音効果検出マイクロホン193に距離の近いファン20Bの回転数を低くしている。 As described above, in the indoor unit 100 according to the ninth embodiment, the silencing effect detection microphone is compared with the region near the silencing effect detection microphone 193 due to the magnitude of the crosstalk noise component from the adjacent fan. The area near 191 and 192 has a higher noise reduction effect. In other words, in the case of the indoor unit 100 according to the ninth embodiment, the noise level detected in the area near the silencing effect detection microphones 191 and 192 is smaller than the area near the silencing effect detection microphone 193. On the other hand, the silencing effect is low in the area near the silencing effect detection microphone 193. Therefore, in the indoor unit 100 according to the ninth embodiment provided with a plurality of fans 20A to 20C, the detected noise level average value among the average values of the noise level values detected by the silencing effect detection microphones 191 to 193. The rotational speeds of the fans 20A and 20C close to the sound deadening effect detection microphones 191 and 192 are increased, and the rotational speed of the fan 20B close to the sound deadening effect detection microphone 193 having a large average noise level detected is decreased. Yes.
 その結果、本実施の形態9に係る室内機100は、消音効果の高い領域はさらに消音効果が高くなり、消音効果の低い領域は騒音が小さくなるため、単数のファンを使用した室内機やファン個別制御を行わない室内機に比べ、吹出口3全体から放射される騒音を低減することができる。 As a result, the indoor unit 100 according to the ninth embodiment has a higher silencing effect in a region where the silencing effect is high, and noise is small in a region where the silencing effect is low. Therefore, the indoor unit or fan using a single fan Compared with an indoor unit that does not perform individual control, noise radiated from the entire outlet 3 can be reduced.
 さらに、図42及び図43に示すように、室内機100の風路を複数の領域に分割することにより、消音効果をさらに向上させることができる。 Furthermore, as shown in FIGS. 42 and 43, the silencing effect can be further improved by dividing the air path of the indoor unit 100 into a plurality of regions.
 図42は、本発明の実施の形態9に係る室内機の別の一例を示す正面図である。また、図43は、図42に示す室内機の左側面図である。なお、図43は、室内機100のケーシング1の側壁を透写して示している。図42及び図43に示す室内機100は、風路を仕切り板90,90aで分割することにより、ファン20Aが吹き出す空気が通る領域、ファン20Bが吹き出す空気が通る領域、及びファン20Cが吹き出す空気が通る領域に区切っている。そして、消音機構Aの騒音検出マイクロホン161、制御スピーカー181及び消音効果検出マイクロホン191は、ファン20Aが吹き出す空気が通る領域に配置されている。また、消音機構Bの騒音検出マイクロホン162、制御スピーカー182及び消音効果検出マイクロホン192は、ファン20Cが吹き出す空気が通る領域に配置されている。また、消音機構Cの騒音検出マイクロホン163、制御スピーカー183及び消音効果検出マイクロホン193は、ファン20Bが吹き出す空気が通る領域に配置されている。 FIG. 42 is a front view showing another example of the indoor unit according to Embodiment 9 of the present invention. FIG. 43 is a left side view of the indoor unit shown in FIG. FIG. 43 shows the side wall of the casing 1 of the indoor unit 100 in a transparent manner. The indoor unit 100 shown in FIGS. 42 and 43 divides the air path with the partition plates 90 and 90a, thereby allowing the air blown by the fan 20A to pass through, the air passing through the fan 20B, and the air blown out by the fan 20C. It is divided into areas that pass. And the noise detection microphone 161, the control speaker 181 and the silencing effect detection microphone 191 of the silencing mechanism A are arranged in a region through which the air blown out by the fan 20A passes. Further, the noise detection microphone 162, the control speaker 182 and the noise reduction effect detection microphone 192 of the silencer mechanism B are arranged in a region through which air blown out by the fan 20C passes. Further, the noise detection microphone 163, the control speaker 183, and the noise reduction effect detection microphone 193 of the silencer mechanism C are arranged in a region through which the air blown out by the fan 20B passes.
 このように室内機100を構成することにより、ファン20A~20Cから放射される騒音をそれぞれの領域に分離することができ、消音機構Aはファン20Aから放射される騒音のみを低減し、消音機構Bはファン20Cから放射される騒音のみを低減し、消音機構Cはファン20Bから放射される騒音のみを低減することになる。このため、騒音検出マイクロホン161~163及び消音効果検出マイクロホン191~193が検出するクロストークノイズ成分(隣接する流路に設けられたファンから放射される騒音)が小さくなる。 By configuring the indoor unit 100 in this way, the noise radiated from the fans 20A to 20C can be separated into the respective regions, and the silencing mechanism A reduces only the noise radiated from the fan 20A. B reduces only the noise radiated from the fan 20C, and the silencing mechanism C reduces only the noise radiated from the fan 20B. For this reason, the crosstalk noise components (noise radiated from the fans provided in the adjacent flow paths) detected by the noise detection microphones 161 to 163 and the silencing effect detection microphones 191 to 193 are reduced.
 さらに、風路をダクト構造に近づけることになるため、騒音を一次元で捉えられる。このため、室内機100内部を伝達する騒音の位相が均一となり、制御音を干渉させた際の位相誤差が小さくなるので、消音効果がより高くなる。したがって、図42及び図43のように室内機100を構成することにより、図40の構成に比べ、さらに騒音を低減することができる。なお、図42及び図43では風路全域に仕切り板を挿入したが、例えば熱交換器50の上流側のみ又は熱交換器50の下流側のみといったように、風路の一部を仕切り板で区切るようにしてもよい。また、実施の形態8と同様に、図44のように消音機構が設けられていないファン20(図44中ではファン20Bに消音機構Cが設けられていない)がある場合でも、そのファン20の回転数を低くすることで消音機構が設けられていない領域の騒音が小さくなり、同様の消音効果を得ることができる。 Furthermore, noise can be captured in one dimension because the air path is closer to the duct structure. For this reason, the phase of the noise transmitted through the interior of the indoor unit 100 becomes uniform, and the phase error when the control sound interferes is reduced, so that the silencing effect is further enhanced. Therefore, by configuring the indoor unit 100 as shown in FIGS. 42 and 43, noise can be further reduced as compared with the configuration of FIG. 42 and 43, a partition plate is inserted in the entire air path. However, a part of the air path is separated by a partition plate, for example, only on the upstream side of the heat exchanger 50 or only on the downstream side of the heat exchanger 50. You may make it delimit. Similarly to the eighth embodiment, even when there is a fan 20 that is not provided with a silencing mechanism as shown in FIG. 44 (the fan 20B is not provided with a silencing mechanism C in FIG. 44), By reducing the number of revolutions, the noise in the area where the silencing mechanism is not provided is reduced, and a similar silencing effect can be obtained.
 なお、騒音検出マイクロホン161~163の設置位置は、制御スピーカー181~183の上流側であればどこでもよい。さらに、制御スピーカー181~183の設置位置は、騒音検出マイクロホン161~163の下流側、かつ、消音効果検出マイクロホン191~193の上流側であればどこでもよい。さらに、本実施の形態9では、消音効果検出マイクロホン191~193をファン20A~20Cの回転軸のほぼ延長線上に配置したが、制御スピーカー181~183の下流側であれば消音効果検出マイクロホン191~193の設置位置はどこでもよい。さらに、本実施の形態9では、騒音検出マイクロホン、制御スピーカー、消音効果検出マイクロホン及び信号処理装置をそれぞれ2~3個配置しているが、これに限るものではない。 The installation positions of the noise detection microphones 161 to 163 may be anywhere upstream of the control speakers 181 to 183. Further, the installation positions of the control speakers 181 to 183 may be anywhere as long as they are downstream of the noise detection microphones 161 to 163 and upstream of the silencing effect detection microphones 191 to 193. Further, in the ninth embodiment, the silencing effect detection microphones 191 to 193 are arranged on substantially the extension line of the rotation shafts of the fans 20A to 20C, but the silencing effect detection microphones 191 to 191 are provided on the downstream side of the control speakers 181 to 183. The installation position of 193 may be anywhere. Furthermore, in the ninth embodiment, two to three noise detection microphones, control speakers, muffler effect detection microphones, and signal processing devices are arranged, but the present invention is not limited to this.
 また、本実施の形態9では、送風ファン制御手段172を制御装置281内のCPU131で構成したが、LSI(Large Scale Integration)やFPGA(Field Programmable Gate Array)等のハードウェアにより構成してもよい。さらに、送風ファン制御手段172の構成についても図41に示した構成に限るものではない。 In the ninth embodiment, the blower fan control unit 172 is configured by the CPU 131 in the control device 281, but may be configured by hardware such as LSI (Large Scale Integration) or FPGA (Field Programmable Gate Array). . Further, the configuration of the blower fan control means 172 is not limited to the configuration shown in FIG.
 また、本実施の形態9では、送風ファン制御手段172は、騒音レベルの小さい消音効果検出マイクロホン191,192に距離の近いファン20A,20Cの回転数を高くし、かつ、騒音レベルの大きい消音効果検出マイクロホン193に距離の近いファン20Bの回転数を低くするように構成したが、そのどちらか一方を行うように構成してもよい。 In the ninth embodiment, the blower fan control means 172 increases the number of rotations of the fans 20A and 20C that are close to the noise reduction effect detection microphones 191 and 192 having a low noise level and has a high noise level. Although the configuration is such that the rotational speed of the fan 20B close to the detection microphone 193 is low, it may be configured to perform either one of them.
 以上、本実施の形態9に係る室内機100においては、複数のファン20A~20Cを配置し、ファン20A~20Cの回転数を個別に制御する制御装置281(より詳しくは、送風ファン制御手段172)が設けられている。送風ファン制御手段172は、消音効果検出マイクロホン191~193で検出した騒音レベルの平均値のうち、検出した騒音レベルが小さい消音効果検出マイクロホンに距離が近いファンの回転数を高くするように制御し、検出した騒音レベルが大きい消音効果検出マイクロホンに距離が近いファンの回転数を低くするように回転数制御を行う。このため、消音効果が高い(つまり、騒音レベルの小さい)領域はさらに消音効果が高くなり、消音効果が低い(つまり騒音レベルの大きい)領域は騒音が小さくなる。このため、同じ構成の消音機構にて単数のファンを使用した室内機、又はファン個別制御を行わない室内機に比べ、より騒音を低減することができる。 As described above, in the indoor unit 100 according to the ninth embodiment, the plurality of fans 20A to 20C are arranged, and the control device 281 (more specifically, the blower fan control means 172) that individually controls the rotational speed of the fans 20A to 20C. ) Is provided. The blower fan control means 172 performs control so as to increase the rotational speed of the fan whose distance is close to the muffler effect detection microphone having a small detected noise level among the average values of the noise levels detected by the muffler effect detection microphones 191 to 193. Then, the rotational speed control is performed so as to reduce the rotational speed of the fan that is close to the muffler effect detection microphone having a large detected noise level. For this reason, the region where the silencing effect is high (that is, the noise level is small) is further enhanced, and the region where the silencing effect is low (that is, the noise level is large) is low. For this reason, noise can be further reduced as compared with an indoor unit that uses a single fan with a silencing mechanism having the same configuration, or an indoor unit that does not perform individual fan control.
 また、送風ファン制御手段172は、吹出口3から放射される風量がファン個別制御をした場合と同回転数制御をした場合で同じとなるように、ファン20A~20Cのそれぞれの回転数を制御するため、空力性能を劣化させることなく騒音を低減することができる。 Further, the blower fan control means 172 controls the rotational speeds of the fans 20A to 20C so that the amount of air radiated from the air outlet 3 is the same when the rotational speed control is the same as when performing individual fan control. Therefore, noise can be reduced without deteriorating the aerodynamic performance.
 さらに、仕切り板90,90aで室内機100の風路を複数の領域に分割することにより、ファン20A~20Cから放射される騒音をそれぞれ分離することができ、消音機構Aはファン20Aから放射される騒音のみを低減し、消音機構Bはファン20Cから放射される騒音のみを低減し、消音機構Cはファン20Bから放射される騒音のみを低減することになる。このため、各領域において、隣接する領域に放射された騒音によるクロストークノイズ成分が小さくなる。 Furthermore, by dividing the air path of the indoor unit 100 into a plurality of regions by the partition plates 90 and 90a, the noise radiated from the fans 20A to 20C can be separated, respectively, and the silencing mechanism A is radiated from the fan 20A. The noise reduction mechanism B reduces only the noise emitted from the fan 20C, and the noise reduction mechanism C reduces only the noise emitted from the fan 20B. For this reason, in each area | region, the crosstalk noise component by the noise radiated | emitted to the adjacent area | region becomes small.
 さらに、仕切り板90,90aで室内機100の風路を複数の領域に分割することにより、風路をダクト構造に近づけることになるため、騒音を一次元で捉えられる。このため、室内機100内部を伝達する騒音の位相が均一となり、制御音を干渉させた際の位相誤差が小さくなるので、図40の構成に比べて、さらに高い騒音低減効果を得ることができる。また、図44のように消音機構が設けられていないファン20がある場合でも、そのファン20の回転数を低くすることで消音機構が設けられていない領域の騒音が小さくなり、同様の消音効果を得ることができる。 Furthermore, by dividing the air passage of the indoor unit 100 into a plurality of regions by the partition plates 90 and 90a, the air passage is brought closer to the duct structure, so that noise can be captured in one dimension. For this reason, the phase of the noise transmitted through the interior of the indoor unit 100 becomes uniform, and the phase error when the control sound interferes is reduced, so that a higher noise reduction effect can be obtained compared to the configuration of FIG. . Further, even when there is a fan 20 that is not provided with a silencing mechanism as shown in FIG. 44, by reducing the rotation speed of the fan 20, the noise in the area where the silencing mechanism is not provided is reduced, and the same silencing effect is obtained. Can be obtained.
実施の形態10.
 消音効果検出マイクロホンが検出する消音効果に応じてファン個別制御を行う場合、例えば以下のようにファン個別制御を行ってもよい。なお、本実施の形態10では、上述した実施の形態8又は実施の形態9との相違点を中心に説明するものとし、実施の形態8又は実施の形態9と同一部分には同一符号を付している。
Embodiment 10 FIG.
When performing individual fan control according to the silencing effect detected by the silencing effect detection microphone, for example, the individual fan control may be performed as follows. In the tenth embodiment, differences from the above-described eighth or ninth embodiment will be mainly described, and the same reference numerals are given to the same portions as those in the eighth or ninth embodiment. is doing.
 図45は、本発明の実施の形態10に係る室内機を示す正面図である。
 本実施の形態10に係る室内機100が実施の形態9の室内機100と異なる点は、信号処理装置201~203から送風ファン制御手段173へと接続される信号線(信号T1,T2,T3を送る信号線)がさらに設けられている点である。このため、送風ファン制御手段173の構成も、実施の形態9に係る送風ファン制御手段172の構成と異なっている。具体的には、信号処理装置201~203から送風ファン制御手段173へ送られる信号S1,S2,S3は、実施の形態9と同様に、消音効果検出マイクロホン191~193から入力された信号がマイクアンプ151を経てA/D変換器152にてデジタル変換された信号である。つまり、信号S1,S2,S3は、消音効果検出マイクロホン191~193で検出した音圧レベルのデジタル値である。また、新たに追加された信号T1,T2,T3は、騒音検出マイクロホン161~163から入力された信号がマイクアンプ151を経てA/D変換器152にてデジタル変換された信号である。つまり、信号T1,T2,T3は、騒音検出マイクロホン161~163で検出した音圧レベルのデジタル値である。
FIG. 45 is a front view showing an indoor unit according to Embodiment 10 of the present invention.
The indoor unit 100 according to the tenth embodiment is different from the indoor unit 100 according to the ninth embodiment in that signal lines (signals T1, T2, T3) connected from the signal processing devices 201 to 203 to the blower fan control means 173 are different. Is further provided with a signal line). For this reason, the structure of the ventilation fan control means 173 is also different from the structure of the ventilation fan control means 172 according to the ninth embodiment. Specifically, the signals S1, S2, and S3 sent from the signal processing devices 201 to 203 to the blower fan control means 173 are the signals input from the mute effect detection microphones 191 to 193, as in the ninth embodiment. This signal is digitally converted by the A / D converter 152 through the amplifier 151. That is, the signals S1, S2, and S3 are digital values of sound pressure levels detected by the mute effect detection microphones 191 to 193. The newly added signals T1, T2, and T3 are signals obtained by digitally converting the signals input from the noise detection microphones 161 to 163 through the microphone amplifier 151 by the A / D converter 152. That is, the signals T1, T2, and T3 are digital values of sound pressure levels detected by the noise detection microphones 161 to 163.
 次に、送風ファン制御手段173の構成について説明する。
 図46は、本発明の実施の形態10に係る制御装置を示す構成図である。以下で説明する各種動作及び手段は、室内機100が備える制御装置281に組み込まれたプログラムを実行することにより行われる。制御装置281は主に、実施の形態9で述べた構成と同様、リモコン280等の外部入力装置からの信号を入力する入力部130、組み込まれたプログラムに従って演算を行うCPU131、データーやプログラムを記憶するメモリー132を備えている。さらに、CPU131は送風ファン制御手段173を備えている。
Next, the configuration of the blower fan control means 173 will be described.
FIG. 46 is a block diagram showing a control apparatus according to Embodiment 10 of the present invention. Various operations and means described below are performed by executing a program incorporated in the control device 281 included in the indoor unit 100. Similar to the configuration described in the ninth embodiment, the control device 281 mainly stores an input unit 130 for inputting a signal from an external input device such as the remote controller 280, a CPU 131 for performing an operation according to a built-in program, and data and programs. A memory 132 is provided. Further, the CPU 131 includes a blower fan control unit 173.
 送風ファン制御手段173は、同回転数決定手段133、複数のコヒーレンス演算手段137(消音効果検出マイクロホンと同数)、ファン個別制御回転数決定手段134B及び複数のSW135(ファン20と同数)を備えている。同回転数決定手段133は、リモコン280から入力された運転情報に基づき、ファン20A~20Cを全て同じ回転数で動作させる場合の回転数を決定するものである。リモコン280から入力された運転情報とは、例えば、冷房運転モード、暖房運転モード及び除湿運転モード等の運転モード情報や、強、中、及び弱等の風量情報である。コヒーレンス演算手段137は、消音効果検出マイクロホン191~193にて検出した音圧レベルのデジタル値S1,S2,S3及び騒音検出マイクロホン161~163にて検出した音圧レベルのデジタル値T1,T2,T3が入力されるものである。コヒーレンス演算手段137は、S1とT1、S2とT2及びS3とT3のコヒーレンスを演算する。 The blower fan control means 173 includes the same rotation speed determination means 133, a plurality of coherence calculation means 137 (the same number as the silencing effect detection microphone), a fan individual control rotation speed determination means 134B, and a plurality of SW 135 (the same number as the fan 20). Yes. The rotation speed determination means 133 determines the rotation speed when all the fans 20A to 20C are operated at the same rotation speed based on the operation information input from the remote controller 280. The operation information input from the remote controller 280 is, for example, operation mode information such as a cooling operation mode, a heating operation mode, and a dehumidifying operation mode, and air volume information such as strong, medium, and weak. The coherence calculating means 137 includes digital values S1, S2, S3 of sound pressure levels detected by the mute effect detection microphones 191 to 193 and digital values T1, T2, T3 of sound pressure levels detected by the noise detection microphones 161 to 163. Is input. The coherence calculating means 137 calculates the coherence of S1 and T1, S2 and T2, and S3 and T3.
 ファン個別制御回転数決定手段134Bは、コヒーレンス演算手段137で演算されたコヒーレンス値と同回転数決定手段133から入力された回転数情報に基づき、ファン20A~20Cをファン個別制御するときのそれぞれの回転数を決定するものである。SW135は、例えばリモコン280から入力される信号に基づき、モータードライバー282A~282Cへ送られるファン20A~20Cの回転制御信号を切り替えるものである。つまり、SW135は、ファン20A~20Cを全て同じ回転数で動作させるか(同回転数制御するか)、ファン20A~20Cをそれぞれ個別の回転数で動作させるか(ファン個別制御するか)を切り替えるものである。 Based on the coherence value calculated by the coherence calculating unit 137 and the rotation number information input from the same rotation number determining unit 133, the fan individual control rotation number determining unit 134B controls each of the fans 20A to 20C when performing individual fan control. The number of revolutions is determined. The SW 135 switches the rotation control signals of the fans 20A to 20C sent to the motor drivers 282A to 282C, for example, based on a signal input from the remote controller 280. That is, the SW 135 switches whether the fans 20A to 20C are all operated at the same rotational speed (whether the same rotational speed is controlled) or whether the fans 20A to 20C are respectively operated at individual rotational speeds (whether the fan is individually controlled). Is.
 次に、室内機100の動作について説明する。
 実施の形態9と同様、室内機100が動作すると、ファン20A~20Cの羽根車が回転し、ファン20A~20Cの上側から室内の空気が吸い込まれ、ファン20A~20C下側へと空気が送られることにより気流が発生する。これに伴い、ファン20A~20Cの吹出口近傍において運転音(騒音)が発生し、その音は下流側へと伝搬する。ファン20A~20Cにより送られた空気は、風路を通り、熱交換器50へと送られる。例えば、冷房運転の場合、熱交換器50には、室外機(図示せず)とつながっている配管から低温の冷媒が送られる。熱交換器50へと送られた空気は、熱交換器50を流れる冷媒に冷やされて冷気となり、そのまま吹出口3から室内へ放出される。
Next, the operation of the indoor unit 100 will be described.
As in the ninth embodiment, when the indoor unit 100 operates, the impellers of the fans 20A to 20C rotate, the indoor air is sucked from the upper side of the fans 20A to 20C, and the air is sent to the lower side of the fans 20A to 20C. Airflow is generated. Along with this, a driving sound (noise) is generated in the vicinity of the air outlets of the fans 20A to 20C, and the sound propagates downstream. The air sent by the fans 20A to 20C passes through the air path and is sent to the heat exchanger 50. For example, in the case of cooling operation, low-temperature refrigerant is sent to the heat exchanger 50 from a pipe connected to an outdoor unit (not shown). The air sent to the heat exchanger 50 is cooled by the refrigerant flowing through the heat exchanger 50 to become cold air, and is directly discharged into the room from the outlet 3.
 また、消音機構A~Cの動作についても実施の形態9と全く同じであり、消音効果検出マイクロホン191~193で検出される騒音をゼロに近づけるように制御音を出力し、結果として消音効果検出マイクロホン191~193における騒音を抑制するよう動作する。 Also, the operations of the silencing mechanisms A to C are exactly the same as in the ninth embodiment, and the control sound is output so that the noise detected by the silencing effect detection microphones 191 to 193 approaches zero, and as a result, the silencing effect detection The microphones 191 to 193 operate to suppress noise.
 一般的に、能動的消音による消音効果は、騒音検出マイクロホン161~163と消音効果検出マイクロホン191~193とのコヒーレンス値が大きく影響する。つまり、騒音検出マイクロホン161~163と消音効果検出マイクロホン191~193とのコヒーレンスが高くないと消音効果は期待できない。逆に、騒音検出マイクロホン161~163と消音効果検出マイクロホン191~193とのコヒーレンス値から消音効果を予測することもできる。 Generally, the silencing effect due to active silencing is greatly influenced by the coherence values of the noise detection microphones 161 to 163 and the silencing effect detection microphones 191 to 193. That is, the noise reduction effect cannot be expected unless the coherence between the noise detection microphones 161 to 163 and the noise reduction effect detection microphones 191 to 193 is high. Conversely, the silencing effect can be predicted from the coherence values of the noise detection microphones 161 to 163 and the silencing effect detection microphones 191 to 193.
 そこで、本実施の形態10に係る室内機100(より詳しくは、制御装置281の送風ファン制御手段173)は、騒音検出マイクロホン161~163と消音効果検出マイクロホン191~193とのコヒーレンス値に基づき、消音効果が高いと推測される領域のファンの回転数を高くし、消音効果が低いと推測される領域のファンの回転数を低くするようにファン20A~20Cの回転数を制御する。 Therefore, the indoor unit 100 according to the tenth embodiment (more specifically, the blower fan control means 173 of the control device 281) is based on the coherence values of the noise detection microphones 161 to 163 and the silencing effect detection microphones 191 to 193. The rotation speeds of the fans 20A to 20C are controlled so as to increase the rotation speed of the fan in the area where the silencing effect is estimated to be high and to decrease the rotation speed of the fan in the area where the silencing effect is estimated to be low.
 次に、本実施の形態10に係るファン20A~20Cのファン個別制御について説明する。
 制御装置281には、リモコン280で選択された運転情報が入力される。上述したように、運転情報とは、例えば、冷房運転モード、暖房運転モード及び除湿運転モード等の運転モード情報である。さらに、強、中、及び弱等の風量情報も同様に、リモコン280から制御装置281へ運転情報として入力される。制御装置281に入力された運転情報は、入力部130を介して同回転数決定手段133に入力される。運転情報が入力された同回転数決定手段133は、入力された運転情報から、ファン20A~20Cを同回転数制御する場合の回転数を決定する。
Next, individual fan control of the fans 20A to 20C according to the tenth embodiment will be described.
Operation information selected by the remote controller 280 is input to the control device 281. As described above, the operation information is, for example, operation mode information such as a cooling operation mode, a heating operation mode, and a dehumidifying operation mode. Further, the air volume information such as strong, medium, and weak is similarly input as operation information from the remote controller 280 to the control device 281. The operation information input to the control device 281 is input to the rotation speed determination unit 133 via the input unit 130. The same rotation speed determining means 133 to which the operation information is input determines the rotation speed when the fans 20A to 20C are controlled at the same rotation speed from the input operation information.
 一方、信号処理装置201~203から入力される消音効果検出マイクロホン191~193で検出された音圧レベルのデジタル値S1~S3、及び騒音検出マイクロホン161~163で検出された音圧レベルのデジタル値T1~T3は、コヒーレンス演算手段137にてそれぞれのマイクロホン間のコヒーレンス値が求められる。 On the other hand, the digital values S1 to S3 of the sound pressure levels detected by the mute effect detection microphones 191 to 193 and the digital values of the sound pressure levels detected by the noise detection microphones 161 to 163, which are input from the signal processing devices 201 to 203. From T1 to T3, a coherence value between the respective microphones is obtained by the coherence calculating means 137.
 コヒーレンス演算手段137で演算されたコヒーレンス値及び同回転数決定手段133で決定された回転数(同回転数制御時の回転数)の情報、は、ファン個別制御回転数決定手段134Bへ入力される。ファン個別制御回転数決定手段134Bは、これらの情報に基づき、ファン個別制御を行う際の各ファンの回転数を決定する。具体的には、コヒーレンス値の高い消音効果検出マイクロホンに距離が近い(関連性が高い)ファンの回転数を高くし、コヒーレンス値の低い消音効果検出マイクロホンに距離が近い(関連性が高い)ファンの回転数を低くするように、ファンの回転数を決定する。このとき、ファン個別制御をした場合に得られる風量が同回転数制御時と同じ風量となるように、ファン20A~20Cのそれぞれの回転数を決定するとよい。 Information on the coherence value calculated by the coherence calculating means 137 and the rotational speed determined by the rotational speed determining means 133 (the rotational speed at the same rotational speed control) is input to the fan individual control rotational speed determining means 134B. . Based on these pieces of information, the individual fan control rotation speed determination means 134B determines the rotation speed of each fan when performing individual fan control. Specifically, the fan speed is close (highly related) to the muffler effect detection microphone with a high coherence value, and the fan is close (highly related) to the noise reduction effect detection microphone with a low coherence value. The number of rotations of the fan is determined so as to reduce the number of rotations. At this time, the rotation speeds of the fans 20A to 20C may be determined so that the air volume obtained in the individual fan control is the same as that in the same rotation speed control.
 例えば、本実施の形態10に係る室内機100において、騒音検出マイクロホン161と消音効果検出マイクロホン191との間のコヒーレンス値が0.8、騒音検出マイクロホン162と消音効果検出マイクロホン192との間のコヒーレンス値が0.8、及び騒音検出マイクロホン163と消音効果検出マイクロホン193との間のコヒーレンス値が0.5だった場合、ファン個別制御回転数決定手段134Bは、ファン20A,20Cの回転数を高くし、ファン20Bの回転数を低くするように、各ファンの回転数を決定する。風量と回転数は比例関係にあるため、例えば、図45のような構成の場合、ファン20Aとファン20Cの回転数を10%高くすると、ファン20Bの回転数を20%低くすることで同一風量となる。 For example, in the indoor unit 100 according to Embodiment 10, the coherence value between the noise detection microphone 161 and the silencing effect detection microphone 191 is 0.8, and the coherence between the noise detection microphone 162 and the silencing effect detection microphone 192 is When the value is 0.8 and the coherence value between the noise detection microphone 163 and the muffler effect detection microphone 193 is 0.5, the fan individual control rotation speed determination unit 134B increases the rotation speed of the fans 20A and 20C. Then, the rotational speed of each fan is determined so as to reduce the rotational speed of the fan 20B. Since the air volume and the rotational speed are in a proportional relationship, for example, in the case of the configuration shown in FIG. 45, if the rotational speed of the fan 20A and the fan 20C is increased by 10%, the rotational speed of the fan 20B is decreased by 20%. It becomes.
 なお、上述したファン20A~20Cの回転数の決定方法は、あくまでも一例である。例えば、騒音検出マイクロホン161と消音効果検出マイクロホン191との間のコヒーレンス値が0.8、騒音検出マイクロホン162と消音効果検出マイクロホン192との間のコヒーレンス値が0.7、及び騒音検出マイクロホン163と消音効果検出マイクロホン193との間のコヒーレンス値が0.5だった場合、ファン20Aの回転数を高くし、ファン20Bの回転数を低くし、ファン20Cの回転数をそのままにするように、各ファンの回転数を決定してもよい。つまり、最もコヒーレンス値が高い消音効果検出マイクロホン191に距離が近いファン20Aの回転数を高くし、最もコヒーレンス値が低い消音効果検出マイクロホン193に距離が近いファン20Bの回転数を低くし、そのどちらでもないファン20Cの回転数はそのままにするように、各ファンの回転数を決定してもよい。 Note that the above-described method for determining the rotational speed of the fans 20A to 20C is merely an example. For example, the coherence value between the noise detection microphone 161 and the silencing effect detection microphone 191 is 0.8, the coherence value between the noise detection microphone 162 and the silencing effect detection microphone 192 is 0.7, and the noise detection microphone 163 When the coherence value with the muffler effect detection microphone 193 is 0.5, the rotational speed of the fan 20A is increased, the rotational speed of the fan 20B is decreased, and the rotational speed of the fan 20C is left as it is. You may determine the rotation speed of a fan. That is, the rotation speed of the fan 20A whose distance is close to the silencing effect detection microphone 191 having the highest coherence value is increased, and the rotation speed of the fan 20B whose distance is closest to the silencing effect detection microphone 193 having the lowest coherence value is decreased. However, the rotational speed of each fan may be determined so that the rotational speed of the fan 20C remains unchanged.
 リモコン280からファン個別制御を行う旨の運転情報信号(例えば静音モード等の信号)が入力された場合、SW135を切り替えることにより、同回転数制御の回転制御信号からファン個別制御における回転制御信号に切り替え、この回転制御信号を制御装置281からファン20A~20Cへ出力する。制御装置281から出力された回転制御信号はモータードライバー282A~282Cに入力され、回転制御信号に従った回転数にファン20A~20Cは制御される。 When an operation information signal for performing individual fan control (for example, a signal for the silent mode) is input from the remote controller 280, the rotation control signal for the same speed control is changed to the rotation control signal for the individual fan control by switching the SW 135. The rotation control signal is output from the control device 281 to the fans 20A to 20C. The rotation control signal output from the control device 281 is input to the motor drivers 282A to 282C, and the fans 20A to 20C are controlled to the number of rotations according to the rotation control signal.
 上述のように、能動的消音を用いる場合、騒音検出マイクロホン161~163と消音効果検出マイクロホン191~193とのコヒーレンス値によって、期待される消音効果が異なる。つまり、コヒーレンス値の高い消音効果検出マイクロホンは消音効果が高いと推測でき、コヒーレンス値の低い消音効果検出マイクロホンは消音効果が低いと推測できる。そこで、複数のファン20A~20Cを備えた本実施の形態10に係る室内機100では、コヒーレンス値の高い消音効果検出マイクロホンに距離の近いファンの回転数を高くし、コヒーレンス値の低い消音効果検出マイクロホンに距離の近いファンの回転数を低くしている。 As described above, when active silencing is used, the expected silencing effect varies depending on the coherence values of the noise detection microphones 161 to 163 and the silencing effect detection microphones 191 to 193. That is, it can be inferred that the muffling effect detection microphone with a high coherence value has a high silencing effect, and the silencing effect detection microphone with a low coherence value has a low silencing effect. Therefore, in the indoor unit 100 according to the tenth embodiment provided with a plurality of fans 20A to 20C, the number of rotations of a fan close to the silencing effect detection microphone with a high coherence value is increased, and the silencing effect detection with a low coherence value is detected. The fan speed close to the microphone is reduced.
 その結果、本実施の形態10に係る室内機100は、消音効果が高いと推測される領域はさらに消音効果が高くなり、消音効果が低いと推測される領域は騒音が小さくなる。このため、単数のファンを使用した室内機やファン個別制御を行わない室内機に比べ、吹出口3全体から放射される騒音を低減することができる。さらに、本実施の形態10に係る室内機100は、同回転数制御時と風量が一定となるように複数のファン20A~20Cの回転数を個別に制御することで、空力的な性能の劣化を抑制することができる。 As a result, in the indoor unit 100 according to the tenth embodiment, the region where the silencing effect is estimated to be higher has a higher silencing effect, and the region where the silencing effect is estimated to be lower has less noise. For this reason, the noise radiated | emitted from the blower outlet 3 whole can be reduced compared with the indoor unit which uses a single fan, and the indoor unit which does not perform fan separate control. Furthermore, the indoor unit 100 according to the tenth embodiment has aerodynamic performance degradation by individually controlling the rotational speeds of the plurality of fans 20A to 20C so that the airflow is constant when the rotational speed control is performed. Can be suppressed.
 さらに、実施の形態9の図42及び図43に示したように、室内機100の風路を複数の領域に分割することにより、消音効果をさらに向上させることができる。つまり、ファン20A~20Cから放射される騒音をそれぞれの領域に分離することができ、消音機構Aはファン20Aから放射される騒音のみを低減し、消音機構Bはファン20Cから放射される騒音のみを低減し、消音機構Cはファン20Bから放射される騒音のみを低減することができる。このため、騒音を騒音検出マイクロホン161~163及び消音効果検出マイクロホン191~193が検出するクロストークノイズ成分(隣接する流路に設けられたファンから放射される騒音)が小さくなる。 Furthermore, as shown in FIGS. 42 and 43 of the ninth embodiment, the silencing effect can be further improved by dividing the air path of the indoor unit 100 into a plurality of regions. In other words, the noise radiated from the fans 20A to 20C can be separated into the respective areas, the silencing mechanism A reduces only the noise radiated from the fan 20A, and the silencing mechanism B only the noise radiated from the fan 20C. The silencing mechanism C can reduce only the noise radiated from the fan 20B. Therefore, crosstalk noise components (noise radiated from fans provided in adjacent flow paths) detected by the noise detection microphones 161 to 163 and the silencing effect detection microphones 191 to 193 are reduced.
 さらに、風路をダクト構造に近づけることになるため、騒音を一次元で捉えられる。このため、室内機100内部を伝達する騒音の位相が均一となり、制御音を干渉させた際の位相誤差が小さくなるので、消音効果がより高くなる。したがって、室内機100の風路を複数の領域に分割することにより、図45の構成に比べ、さらに騒音を低減することができる。なお、実施の形態9の図44と同様に、消音機構が設けられていないファンがある場合、そのファン20の回転数を低くすることで消音機構が設けられていない領域の騒音が小さくなり、同様の消音効果を得ることができる。 Furthermore, noise can be captured in one dimension because the air path is closer to the duct structure. For this reason, the phase of the noise transmitted through the interior of the indoor unit 100 becomes uniform, and the phase error when the control sound interferes is reduced, so that the silencing effect is further enhanced. Therefore, by dividing the air path of the indoor unit 100 into a plurality of regions, noise can be further reduced compared to the configuration of FIG. Similarly to FIG. 44 of the ninth embodiment, when there is a fan that is not provided with the silencing mechanism, the noise in the area where the silencing mechanism is not provided is reduced by lowering the rotational speed of the fan 20, A similar silencing effect can be obtained.
 なお、本実施の形態10に係る騒音検出マイクロホン161~163の設置位置は、制御スピーカー181~183の上流側であればどこでもよい。さらに、制御スピーカー181~183の設置位置は、騒音検出マイクロホン161~163の下流側、かつ、消音効果検出マイクロホン191~193の上流側であればどこでもよい。さらに、本実施の形態10では、消音効果検出マイクロホン191~193をファン20A~20Cの回転軸のほぼ延長線上に配置したが制御スピーカー181~183の下流側であれば消音効果検出マイクロホン191~193の設置位置はどこでもよい。さらに、本実施の形態10では、騒音検出マイクロホン、制御スピーカー、消音効果検出マイクロホン及び信号処理装置をそれぞれ3個配置しているが、これに限るものではない。 Note that the installation positions of the noise detection microphones 161 to 163 according to the tenth embodiment may be anywhere upstream of the control speakers 181 to 183. Further, the installation positions of the control speakers 181 to 183 may be anywhere as long as they are downstream of the noise detection microphones 161 to 163 and upstream of the silencing effect detection microphones 191 to 193. Further, in the tenth embodiment, the muffler effect detection microphones 191 to 193 are arranged on substantially the extension line of the rotation shafts of the fans 20A to 20C, but the muffler effect detection microphones 191 to 193 are provided downstream of the control speakers 181 to 183. The installation position of can be anywhere. Further, in the tenth embodiment, three noise detection microphones, control speakers, muffler effect detection microphones, and signal processing devices are arranged, but the present invention is not limited to this.
 また、本実施の形態10では、送風ファン制御手段173を制御装置281内のCPU131で構成したが、LSI(Large Scale Integration)やFPGA(Field Programmable Gate Array)等のハードウェアにより構成してもよい。さらに、送風ファン制御手段173の構成についても図46に示した構成に限るものではない。 In the tenth embodiment, the blower fan control unit 173 is configured by the CPU 131 in the control device 281, but may be configured by hardware such as LSI (Large Scale Integration) or FPGA (Field Programmable Gate Array). . Further, the configuration of the blower fan control means 173 is not limited to the configuration shown in FIG.
 また、本実施の形態10では、送風ファン制御手段173は、コヒーレンス値の大きい消音効果検出マイクロホン191,192に距離の近いファン20A,20Cの回転数を高くし、かつ、コヒーレンス値の小さい消音効果検出マイクロホン193に距離の近いファン20Bの回転数を低くするように構成したが、そのどちらか一方を行うように構成してもよい。 Further, in the tenth embodiment, the blower fan control means 173 increases the number of rotations of the fans 20A and 20C that are close to the silencing effect detection microphones 191 and 192 having a large coherence value and the silencing effect that has a small coherence value. Although the configuration is such that the rotational speed of the fan 20B close to the detection microphone 193 is low, it may be configured to perform either one of them.
 以上、本実施の形態10に係る室内機100においては、複数のファン20A~20Cを配置し、ファン20A~20Cの回転数を個別に制御する制御装置281(より詳しくは、送風ファン制御手段173)が設けられている。送風ファン制御手段173は、騒音検出マイクロホン161~163と消音効果検出マイクロホン191~193とのコヒーレンス値を算出し、騒音検出マイクロホンとのコヒーレンス値が高い消音効果検出マイクロホンに距離が近いファンの回転数を高くするように制御し、騒音検出マイクロホンとのコヒーレンス値が低い消音効果検出マイクロホンに距離が近いファンの回転数を低くするように回転数制御を行う。その結果、高い消音効果が期待できる領域はさらに消音効果が高くなり、消音効果が期待できない領域は騒音が小さくなる。このため、同じ構成の消音機構にて単数のファンを使用した室内機、又はファン個別制御を行わない室内機に比べ、より騒音を低減することができる。 As described above, in the indoor unit 100 according to the tenth embodiment, a plurality of fans 20A to 20C are arranged, and the control device 281 (more specifically, the blower fan control means 173) that individually controls the rotational speed of the fans 20A to 20C. ) Is provided. The blower fan control means 173 calculates coherence values between the noise detection microphones 161 to 163 and the silencing effect detection microphones 191 to 193, and the rotation speed of the fan that is close to the silencing effect detection microphone having a high coherence value with the noise detection microphone. And the rotational speed control is performed so as to reduce the rotational speed of the fan that is close to the muffler effect detection microphone having a low coherence value with the noise detection microphone. As a result, the region where a high silencing effect can be expected has a higher silencing effect, and the region where no silencing effect can be expected has less noise. For this reason, noise can be further reduced as compared with an indoor unit that uses a single fan with a silencing mechanism having the same configuration, or an indoor unit that does not perform individual fan control.
 また、送風ファン制御手段173は、吹出口3から放射される風量がファン個別制御をした場合と同回転数制御をした場合で同じとなるように、ファン20A~20Cのそれぞれの回転数を制御するため、空力性能を劣化させることなく騒音を低減することができる。 The blower fan control means 173 controls the rotational speeds of the fans 20A to 20C so that the amount of air radiated from the air outlet 3 is the same when the rotational speed control is the same as when the individual fan control is performed. Therefore, noise can be reduced without deteriorating the aerodynamic performance.
 さらに、仕切り板90,90aで室内機100の風路を複数の領域に分割することにより、ファン20A~20Cから放射される騒音をそれぞれ分離することができ、消音機構Aはファン20Aから放射される騒音のみを低減し、消音機構Bはファン20Cから放射される騒音のみを低減し、消音機構Cはファン20Bから放射される騒音のみを低減することになる。このため、各領域において、隣接する領域に放射された騒音によるクロストークノイズ成分が小さくなる。 Furthermore, by dividing the air path of the indoor unit 100 into a plurality of regions by the partition plates 90 and 90a, the noise radiated from the fans 20A to 20C can be separated, respectively, and the silencing mechanism A is radiated from the fan 20A. The noise reduction mechanism B reduces only the noise emitted from the fan 20C, and the noise reduction mechanism C reduces only the noise emitted from the fan 20B. For this reason, in each area | region, the crosstalk noise component by the noise radiated | emitted to the adjacent area | region becomes small.
 さらに、仕切り板90,90aで室内機100の風路を複数の領域に分割することにより、風路をダクト構造に近づけることになるため、騒音を一次元で捉えられる。このため、室内機100内部を伝達する騒音の位相が均一となり、制御音を干渉させた際の位相誤差が小さくなるので、図45の構成に比べて、さらに高い騒音低減効果を得ることができる。また、消音機構が設けられていないファン20がある場合でも、そのファン20の回転数を低くすることで消音機構が設けられていない領域の騒音が小さくなり、同様の消音効果を得ることができる。 Furthermore, by dividing the air passage of the indoor unit 100 into a plurality of regions by the partition plates 90 and 90a, the air passage is brought closer to the duct structure, so that noise can be captured in one dimension. For this reason, the phase of the noise transmitted through the interior of the indoor unit 100 becomes uniform, and the phase error when the control sound interferes is reduced, so that a higher noise reduction effect can be obtained compared to the configuration of FIG. . Further, even when there is a fan 20 that is not provided with a silencing mechanism, by reducing the rotation speed of the fan 20, noise in a region where the silencing mechanism is not provided is reduced, and a similar silencing effect can be obtained. .
 さらに、本実施の形態10に係る室内機100においては、騒音検出マイクロホンと消音効果検出マイクロホンとのコヒーレンス値に基づき回転数の制御を行っている。コヒーレンス値から理論上の消音効果を推測することができるため、各消音効果検出マイクロホンのコヒーレンス値に基づき、より最適で細かにファンの回転数の制御が可能となる。このため、本実施の形態10に係る室内機100は、実施の形態8及び実施の形態9の構成に比べて、より高い消音効果を得ることができる。 Furthermore, in the indoor unit 100 according to the tenth embodiment, the number of revolutions is controlled based on the coherence values of the noise detection microphone and the silencing effect detection microphone. Since the theoretical silencing effect can be estimated from the coherence value, the rotation speed of the fan can be controlled more optimally and finely based on the coherence value of each silencing effect detection microphone. For this reason, the indoor unit 100 which concerns on this Embodiment 10 can acquire a higher noise reduction effect compared with the structure of Embodiment 8 and Embodiment 9. FIG.
実施の形態11.
 本発明を実施するための消音機構は、実施の形態8~実施の形態10に示した消音機構に限定されるものではない。例えば上述とは異なる消音機構を用いても、実施の形態8~実施の形態10と同様の効果を有する空気調和機を得ることができる。なお、本実施の形態11では、実施の形態8に係る空気調和機に異なる消音機構を用いた例について説明する。また、本実施の形態11では、上述した実施の形態8~実施の形態10との相違点を中心に説明するものとし、実施の形態8~実施の形態10と同一部分には同一符号を付している。
Embodiment 11 FIG.
The silencing mechanism for carrying out the present invention is not limited to the silencing mechanism shown in the eighth to tenth embodiments. For example, an air conditioner having effects similar to those of the eighth to tenth embodiments can be obtained even if a silencer mechanism different from the above is used. In the eleventh embodiment, an example in which a different silencing mechanism is used for the air conditioner according to the eighth embodiment will be described. In the eleventh embodiment, differences from the above-described eighth to tenth embodiments will be mainly described, and the same parts as those in the eighth to tenth embodiments are denoted by the same reference numerals. is doing.
 図47は、本発明の実施の形態11に係る室内機を示す正面図である。
 本実施の形態11に係る室内機100が実施の形態8の室内機100と異なる点は、消音機構の構成である。具体的には、実施の形態8に係る室内機100の消音機構Aでは、能動的消音を行うために2つのマイクロホン(騒音検出マイクロホン161及び消音効果検出マイクロホン191)を用いていた。一方、消音機構Aに対応する消音機構として本実施の形態11に係る室内機100に用いられている消音機構Dは、消音機構Aの2つのマイクロホン(騒音検出マイクロホン161及び消音効果検出マイクロホン191)を1つのマイクロホン(騒音・消音効果検出マイクロホン211)に置き換えている。同様に、実施の形態8に係る室内機100の消音機構Bでは、能動的消音を行うために2つのマイクロホン(騒音検出マイクロホン162及び消音効果検出マイクロホン192)を用いていた。一方、消音機構Bに対応する消音機構として本実施の形態11に係る室内機100に用いられている消音機構Eは、消音機構Bの2つのマイクロホン(騒音検出マイクロホン162及び消音効果検出マイクロホン192)を1つのマイクロホン(騒音・消音効果検出マイクロホン212)に置き換えている。また、これに伴って信号処理の方法が異なってくるため、本実施の形態11に係る室内機100では、信号処理装置201,202に換えて、信号処理装置204,205を設けている。なお、信号処理装置204,205の構成は、実施の形態2で説明した構成と全く同じである。
FIG. 47 is a front view showing the indoor unit according to Embodiment 11 of the present invention.
The difference between the indoor unit 100 according to the eleventh embodiment and the indoor unit 100 according to the eighth embodiment is the configuration of the silencer mechanism. Specifically, in the silencing mechanism A of the indoor unit 100 according to Embodiment 8, two microphones (noise detection microphone 161 and silencing effect detection microphone 191) are used for active silencing. On the other hand, the silencing mechanism D used in the indoor unit 100 according to Embodiment 11 as the silencing mechanism corresponding to the silencing mechanism A is the two microphones of the silencing mechanism A (noise detection microphone 161 and silencing effect detection microphone 191). Is replaced with one microphone (noise / silencing effect detection microphone 211). Similarly, in the silencing mechanism B of the indoor unit 100 according to Embodiment 8, two microphones (noise detection microphone 162 and silencing effect detection microphone 192) are used for active silencing. On the other hand, the silencing mechanism E used in the indoor unit 100 according to Embodiment 11 as the silencing mechanism corresponding to the silencing mechanism B is the two microphones of the silencing mechanism B (noise detection microphone 162 and silencing effect detection microphone 192). Is replaced with one microphone (noise / muffling effect detection microphone 212). In addition, since the signal processing method differs accordingly, the indoor unit 100 according to Embodiment 11 is provided with signal processing devices 204 and 205 instead of the signal processing devices 201 and 202. Note that the configuration of the signal processing devices 204 and 205 is exactly the same as the configuration described in the second embodiment.
 次に室内機100の動作について説明する。
 実施の形態8と同様、室内機100が動作すると、ファン20A~20Cの羽根車が回転し、ファン20A~20Cの上側から室内の空気が吸い込まれ、ファン20A~20C下側へと空気が送られることにより気流が発生する。これに伴い、ファン20A~20Cの吹出口近傍において運転音(騒音)が発生し、その音は下流側へと伝搬する。ファン20A~20Cにより送られた空気は、風路を通り、熱交換器50へと送られる。例えば、冷房運転の場合、熱交換器50には、室外機(図示せず)とつながっている配管から低温の冷媒が送られる。熱交換器50へと送られた空気は、熱交換器50を流れる冷媒に冷やされて冷気となり、そのまま吹出口3から室内へ放出される。
Next, the operation of the indoor unit 100 will be described.
As in the eighth embodiment, when the indoor unit 100 operates, the impellers of the fans 20A to 20C rotate, the indoor air is sucked from the upper side of the fans 20A to 20C, and the air is sent to the lower side of the fans 20A to 20C. Airflow is generated. Along with this, a driving sound (noise) is generated in the vicinity of the air outlets of the fans 20A to 20C, and the sound propagates downstream. The air sent by the fans 20A to 20C passes through the air path and is sent to the heat exchanger 50. For example, in the case of cooling operation, low-temperature refrigerant is sent to the heat exchanger 50 from a pipe connected to an outdoor unit (not shown). The air sent to the heat exchanger 50 is cooled by the refrigerant flowing through the heat exchanger 50 to become cold air, and is directly discharged into the room from the outlet 3.
 なお、室内機100の運転音の抑制方法についても実施の形態2と全く同じであり、騒音・消音効果検出マイクロホン211,212で検出される騒音をゼロに近づけるように制御音を出力し、結果として騒音・消音効果検出マイクロホン211,212における騒音を抑制するよう動作する。 The method for suppressing the operation sound of the indoor unit 100 is exactly the same as in the second embodiment, and the control sound is output so that the noise detected by the noise / silence effect detection microphones 211 and 212 approaches zero. The noise / silencing effect detection microphones 211 and 212 operate to suppress noise.
 実施の形態8でも説明したように、能動的消音方法では、騒音・消音効果検出マイクロホン211,212の設置箇所(制御点)で騒音と逆位相となるように、制御スピーカー181,182から制御音を出力する。このため、騒音・消音効果検出マイクロホン211,212の付近では消音効果は高くなるが、その点から距離が離れると制御音の位相が変化してしまう。したがって、騒音・消音効果検出マイクロホン211,212から距離が離れた箇所では、騒音と制御音との位相ずれが大きくなり消音効果は低くなってしまう。 As described in the eighth embodiment, in the active silencing method, the control sound from the control speakers 181 and 182 is set so that the noise and the silencing effect detection microphones 211 and 212 are opposite in phase to the noise at the installation locations (control points). Is output. For this reason, the silencing effect is high in the vicinity of the noise / silencing effect detection microphones 211 and 212, but the phase of the control sound changes as the distance from the point increases. Therefore, at a location away from the noise / silence effect detection microphones 211 and 212, the phase shift between the noise and the control sound becomes large and the silencing effect becomes low.
 なお、本実施の形態11に係るファン20A~20Cのファン個別制御は、実施の形態8で説明した送風ファン制御手段171と同じ制御である。 Note that the individual fan control of the fans 20A to 20C according to the eleventh embodiment is the same control as the blower fan control unit 171 described in the eighth embodiment.
 このように、複数のファン20A~20Cを備えた室内機100においては、騒音・消音効果検出マイクロホン211,212と距離が近いファン20A,20Cの回転数を高くし、騒音・消音効果検出マイクロホン211,212と距離が遠いファン20Bの回転数を低くすることにより、能動消音による消音効果が高い騒音・消音効果検出マイクロホン211,212付近への騒音を大きくし、能動消音による消音効果が低くなる騒音・消音効果検出マイクロホン211,212から距離が離れている領域の騒音を小さくすることができる。 As described above, in the indoor unit 100 including the plurality of fans 20A to 20C, the rotation speed of the fans 20A and 20C, which are close to the noise / silence effect detection microphones 211 and 212, is increased, and the noise / silence effect detection microphone 211 is obtained. , 212 and the fan 20B far away from each other, the noise and the silencing effect detection by the active silencing are increased. The noise near the microphones 211 and 212 is increased, and the silencing effect by the active silencing is reduced. Noise reduction effect detection area The noise in a region away from the microphones 211 and 212 can be reduced.
 つまり、能動的消音を用いる場合、上述のように、騒音制御の制御点となる騒音・消音効果検出マイクロホン211,212及びその周辺の消音効果は高くなるが、制御点から離れた箇所では制御スピーカー181,182から放射された制御音と騒音との位相ずれが大きくなり消音効果が低くなる。しかしながら、本実施の形態11では室内機100に複数のファン20A~20Cを備えた構成とすることで、騒音・消音効果検出マイクロホン211,212に距離の近いファン20A,20C(消音効果が高い騒音を放射するファン)の回転数を高くし、騒音・消音効果検出マイクロホン211,212から距離の遠いファン20B(消音効果が低い騒音を放射するファン)の回転数を低くすることができる。 In other words, when active silencing is used, as described above, the noise / silencing effect detection microphones 211 and 212 that serve as the control points for noise control and the surrounding silencing effects are enhanced, but the control speakers are located away from the control points. The phase shift between the control sound and noise radiated from 181 and 182 becomes large, and the silencing effect is lowered. However, in the eleventh embodiment, the indoor unit 100 is provided with a plurality of fans 20A to 20C, so that the fans 20A and 20C that are close to the noise / silencing effect detection microphones 211 and 212 (noise with a high silencing effect). The number of rotations of the fan 20B (the fan that emits noise with a low noise reduction effect) far from the noise / silencing effect detection microphones 211 and 212 can be reduced.
 その結果、本実施の形態11に係る室内機100は、消音効果の高い領域はさらに消音効果が高くなり、消音効果の低い領域は騒音が小さくなるため、単数のファンを使用した室内機やファン個別制御を行わない室内機に比べ、吹出口3全体から放射される騒音を低減することができる。さらに、本実施の形態11に係る室内機100は、同回転数制御時と風量が一定となるように複数のファン20A~20Cの回転数を個別に制御することで、空力的な性能の劣化を抑制することができる。 As a result, in the indoor unit 100 according to the eleventh embodiment, the region where the silencing effect is high further increases the silencing effect, and the region where the silencing effect is low reduces noise. Therefore, the indoor unit or fan using a single fan Compared with an indoor unit that does not perform individual control, noise radiated from the entire outlet 3 can be reduced. Furthermore, the indoor unit 100 according to the eleventh embodiment has aerodynamic performance degradation by individually controlling the rotational speeds of the fans 20A to 20C so that the airflow is constant when the rotational speed control is performed. Can be suppressed.
 さらに、図48及び図49に示すように、室内機100の風路を複数の領域に分割することにより、消音効果をさらに向上させることができる。 Further, as shown in FIGS. 48 and 49, the silencing effect can be further improved by dividing the air path of the indoor unit 100 into a plurality of regions.
 図48は、本発明の実施の形態11に係る室内機の別の一例を示す正面図である。また、図49は、図48に示す室内機の左側面図である。なお、図49は、室内機100のケーシング1の側壁を透写して示している。図48及び図49に示す室内機100は、風路を仕切り板90,90aで分割することにより、ファン20Aが吹き出す空気が通る領域、ファン20Bが吹き出す空気が通る領域、及びファン20Cが吹き出す空気が通る領域に区切っている。そして、消音機構Dの制御スピーカー181及び騒音・消音効果検出マイクロホン211は、ファン20Aが吹き出す空気が通る領域に配置されている。また、消音機構Eの制御スピーカー182及び騒音・消音効果検出マイクロホン212は、ファン20Cが吹き出す空気が通る領域に配置されている。 FIG. 48 is a front view showing another example of the indoor unit according to Embodiment 11 of the present invention. FIG. 49 is a left side view of the indoor unit shown in FIG. FIG. 49 shows the side wall of the casing 1 of the indoor unit 100 in a transparent manner. The indoor unit 100 shown in FIGS. 48 and 49 divides the air path with the partition plates 90 and 90a, thereby allowing the air blown by the fan 20A to pass through, the air passing through the fan 20B, and the air blown out by the fan 20C. It is divided into the areas where. The control speaker 181 and the noise / silencing effect detection microphone 211 of the silencing mechanism D are arranged in a region through which the air blown by the fan 20A passes. Further, the control speaker 182 and the noise / silencing effect detection microphone 212 of the silencing mechanism E are arranged in a region through which the air blown out by the fan 20C passes.
 このように室内機100を構成することにより、ファン20A~20Cから放射される騒音をそれぞれの領域に分離することができ、消音機構Dはファン20Aから放射される騒音のみを低減し、消音機構Eはファン20Cから放射される騒音のみを低減することになる。このため、ファン20Bから放射された騒音を騒音・消音効果検出マイクロホン211,212が検出してしまうことを防止できるので、騒音・消音効果検出マイクロホン211,212のクロストークノイズ成分が小さくなる。 By configuring the indoor unit 100 in this way, the noise radiated from the fans 20A to 20C can be separated into the respective regions, and the silencing mechanism D reduces only the noise radiated from the fan 20A, and the silencing mechanism E reduces only the noise radiated from the fan 20C. For this reason, it is possible to prevent the noise emitted from the fan 20B from being detected by the noise / muffling effect detection microphones 211 and 212, so that the crosstalk noise components of the noise / muffling effect detection microphones 211 and 212 are reduced.
 さらに、風路をダクト構造に近づけることになるため、騒音を一次元で捉えられる。このため、室内機100内部を伝達する騒音の位相が均一となり、制御音を干渉させた際の位相誤差が小さくなるので、消音効果がより高くなる。したがって、図48及び図49のように室内機100を構成することにより、図47の構成に比べ、さらに騒音を低減することができる。なお、図48及び図49では風路全域に仕切り板を挿入したが、例えば熱交換器50の上流側のみ又は熱交換器50の下流側のみといったように、風路の一部を仕切り板で区切るようにしてもよい。 Furthermore, noise can be captured in one dimension because the air path is closer to the duct structure. For this reason, the phase of the noise transmitted through the interior of the indoor unit 100 becomes uniform, and the phase error when the control sound interferes is reduced, so that the silencing effect is further enhanced. Therefore, by configuring the indoor unit 100 as shown in FIGS. 48 and 49, noise can be further reduced compared to the configuration of FIG. 48 and 49, a partition plate is inserted in the entire air path. However, a part of the air path is separated by a partition plate, for example, only on the upstream side of the heat exchanger 50 or only on the downstream side of the heat exchanger 50. You may make it delimit.
 なお、本実施の形態11では、騒音・消音効果検出マイクロホン211,212を制御スピーカー181,182の下流側に設置したが、制御スピーカー181,182の上流側に騒音・消音効果検出マイクロホン211,212を設置してもよい。さらに、本実施の形態11では、制御スピーカー、騒音・消音効果検出マイクロホン及び信号処理装置をそれぞれ2個配置しているが、これに限るものではない。 In the eleventh embodiment, the noise / silence effect detection microphones 211 and 212 are installed on the downstream side of the control speakers 181 and 182, but the noise / silence effect detection microphones 211 and 212 on the upstream side of the control speakers 181 and 182. May be installed. Furthermore, in the eleventh embodiment, two control speakers, noise / muffling effect detection microphones, and two signal processing devices are arranged, but the present invention is not limited to this.
 また、本実施の形態11では、送風ファン制御手段171を制御装置281内のCPU131で構成しているが、LSI(Large Scale Integration)やFPGA(Field Programmable Gate Array)等のハードウェアにより構成してもよい。さらに、送風ファン制御手段171の構成についても、実施の形態8と同様に、図37に示した構成に限るものではない。 In the eleventh embodiment, the blower fan control means 171 is configured by the CPU 131 in the control device 281, but is configured by hardware such as LSI (Large Scale Integration) or FPGA (Field Programmable Gate Array). Also good. Further, the configuration of the blower fan control means 171 is not limited to the configuration shown in FIG. 37 as in the eighth embodiment.
 また、本実施の形態11では、送風ファン制御手段171は騒音・消音効果検出マイクロホン211,212に距離の近いファン20A,20Cの回転数を高くし、かつ、距離の遠いファン20Bの回転数を低くするように構成したが、そのどちらか一方を行うように構成してもよい。 Further, in the eleventh embodiment, the blower fan control means 171 increases the rotational speed of the fans 20A and 20C that are close to the noise / silence effect detection microphones 211 and 212 and the rotational speed of the fan 20B that is far away. Although it is configured to be lowered, it may be configured to perform either one of them.
 以上、本実施の形態11に係る室内機100においては、複数のファン20A~20Cを配置し、ファン20A~20Cの回転数を個別に制御する制御装置281(より詳しくは、送風ファン制御手段171)が設けられている。送風ファン制御手段171は、消音効果が高い領域である騒音・消音効果検出マイクロホン211,212付近の領域に送風しているファン20A,20Cの回転数を高くするように制御し、消音効果が低くなる領域である騒音・消音効果検出マイクロホン211,212から距離が遠い領域に送風しているファン20Bの回転数を低くするように回転数制御を行う。このため、消音効果が高い領域はさらに消音効果が高くなり、消音効果が低い領域は騒音が小さくなる。このため、同じ構成の消音機構にて単数のファンを使用した室内機、又はファン個別制御を行わない室内機に比べ、より騒音を低減することができる。 As described above, in the indoor unit 100 according to the eleventh embodiment, the plurality of fans 20A to 20C are arranged, and the control device 281 (more specifically, the blower fan control means 171) controls the rotational speed of the fans 20A to 20C individually. ) Is provided. The blower fan control means 171 controls the fan 20A, 20C blowing to the area in the vicinity of the noise / silence effect detection microphones 211, 212, which is the area where the noise reduction effect is high, to increase the rotation speed, and the noise reduction effect is low. Rotational speed control is performed so as to reduce the rotational speed of the fan 20B that is blowing air to a region far from the noise / silence effect detection microphones 211 and 212, which are regions. For this reason, the region where the silencing effect is high further increases the silencing effect, and the region where the silencing effect is low has low noise. For this reason, noise can be further reduced as compared with an indoor unit that uses a single fan with a silencing mechanism having the same configuration, or an indoor unit that does not perform individual fan control.
 また、送風ファン制御手段171は、吹出口3から放射される風量がファン個別制御をした場合と同回転数制御をした場合で同じとなるように、ファン20A~20Cの回転数を制御するため、空力性能を劣化させることなく騒音を低減することができる。 Further, the blower fan control means 171 controls the rotational speed of the fans 20A to 20C so that the amount of air radiated from the air outlet 3 is the same when the rotational speed control is the same as when the individual fan control is performed. Noise can be reduced without degrading aerodynamic performance.
 さらに、仕切り板90,90aで室内機100の風路を複数の領域に分割することにより、ファン20A~20Cから放射される騒音をそれぞれ分離することができ、消音機構Dはファン20Aから放射される騒音のみを低減し、消音機構Eはファン20Cから放射される騒音のみを低減することになる。このため、ファン20Bから放射された騒音によるクロストークノイズ成分が小さくなる。 Furthermore, by dividing the air path of the indoor unit 100 into a plurality of regions by the partition plates 90 and 90a, the noise radiated from the fans 20A to 20C can be separated, respectively, and the silencing mechanism D is radiated from the fan 20A. The noise reduction mechanism E reduces only the noise radiated from the fan 20C. For this reason, the crosstalk noise component by the noise radiated | emitted from the fan 20B becomes small.
 さらに、仕切り板90,90aで室内機100の風路を複数の領域に分割することにより、風路をダクト構造に近づけることになるため、騒音を一次元で捉えられる。このため、室内機100内部を伝達する騒音の位相が均一となり、制御音を干渉させた際の位相誤差が小さくなる。さらに、消音機構が設けられていないファン20Bの回転数を低くすることで消音機構が設けられていない領域の騒音が小さくなり、図47の構成に比べて、高い騒音低減効果を得ることができる。 Furthermore, by dividing the air passage of the indoor unit 100 into a plurality of regions by the partition plates 90 and 90a, the air passage is brought closer to the duct structure, so that noise can be captured in one dimension. For this reason, the phase of the noise transmitted through the interior of the indoor unit 100 becomes uniform, and the phase error when the control sound interferes is reduced. Further, by reducing the rotational speed of the fan 20B not provided with the silencing mechanism, the noise in the area where the silencing mechanism is not provided is reduced, and a high noise reduction effect can be obtained as compared with the configuration of FIG. .
 さらに、本実施の形態11では、騒音検出マイクロホン161,162と消音効果検出マイクロホン191,192を騒音・消音効果検出マイクロホン211,212に集約しているため、マイクロホンの数を減らすことができ、部品点数を削減できるので、さらにコストを下げることができる。 Furthermore, in the eleventh embodiment, since the noise detection microphones 161 and 162 and the silencing effect detection microphones 191 and 192 are integrated into the noise / silencing effect detection microphones 211 and 212, the number of microphones can be reduced. Since the number of points can be reduced, the cost can be further reduced.
実施の形態12.
 実施の形態9で示した室内機に、実施の形態11で示した消音機構を用いても勿論よい。なお、本実施の形態12では、上述した実施の形態8~実施の形態11との相違点を中心に説明するものとし、実施の形態8~実施の形態11と同一部分には同一符号を付している。
Embodiment 12 FIG.
Of course, the silencing mechanism shown in the eleventh embodiment may be used for the indoor unit shown in the ninth embodiment. In the twelfth embodiment, differences from the above-described eighth to eleventh embodiments will be mainly described, and the same parts as those in the eighth to eleventh embodiments are denoted by the same reference numerals. is doing.
 図50は、本発明の実施の形態12に係る室内機を示す正面図である。
 本実施の形態12に係る室内機100が実施の形態11の室内機100と異なる点は、消音機構F(制御スピーカー183、騒音・消音効果検出マイクロホン213及び信号処理装置206)が設けられている点である。信号処理装置206の構成は、信号処理装置204,205と全く同じである。
FIG. 50 is a front view showing an indoor unit according to Embodiment 12 of the present invention.
The indoor unit 100 according to the twelfth embodiment is different from the indoor unit 100 according to the eleventh embodiment in that a silencing mechanism F (a control speaker 183, a noise / silencing effect detection microphone 213, and a signal processing device 206) is provided. Is a point. The configuration of the signal processing device 206 is exactly the same as that of the signal processing devices 204 and 205.
 さらに、実施の形態9と同様に、信号処理装置204~206から送風ファン制御手段172へと接続される信号線(信号S1,S2,S3を送る信号線)が設けられている点も、実施の形態11の室内機100と異なる。信号処理装置204~206から送風ファン制御手段172へ送られる信号S1,S2,S3は、騒音・消音効果検出マイクロホン211~213から入力された信号がマイクアンプ151を経てA/D変換器152にてデジタル変換された信号である。つまり、信号S1,S2,S3は、騒音・消音効果検出マイクロホン211~213で検出した音圧レベルのデジタル値である。 Further, as in the ninth embodiment, a signal line (signal line for sending signals S1, S2, S3) connected from the signal processing devices 204 to 206 to the blower fan control means 172 is also provided. This is different from the indoor unit 100 of the form 11. Signals S 1, S 2, and S 3 sent from the signal processing devices 204 to 206 to the blower fan control means 172 are signals input from the noise / silence effect detection microphones 211 to 213 through the microphone amplifier 151 to the A / D converter 152. This is a digitally converted signal. That is, the signals S1, S2, and S3 are digital values of sound pressure levels detected by the noise / silence effect detection microphones 211 to 213.
 送風ファン制御手段172の構成は実施の形態9で説明した構成と同じであり、図41に示す構成となる。送風ファン制御手段172は、同回転数決定手段133、複数の平均化手段136(消音効果検出マイクロホンと同数)、ファン個別制御回転数決定手段134A及び複数のSW135(ファン20と同数)を備えている。同回転数決定手段133は、リモコン280から入力された運転情報に基づき、ファン20A~20Cを全て同じ回転数で動作させる場合の回転数を決定するものである。リモコン280から入力された運転情報とは、例えば、冷房運転モード、暖房運転モード及び除湿運転モード等の運転モード情報や、強、中、及び弱等の風量情報である。平均化手段136は、消音効果検出マイクロホン191~193にて検出した音圧レベルのデジタル値S1,S2,S3が入力されるものであり、これらS1,S2,S3の信号をある一定時間平均化するものである。 The configuration of the blower fan control means 172 is the same as the configuration described in the ninth embodiment, and is the configuration shown in FIG. The blower fan control means 172 includes the same rotation speed determination means 133, a plurality of averaging means 136 (the same number as the mute effect detection microphone), a fan individual control rotation speed determination means 134A, and a plurality of SWs 135 (the same number as the fan 20). Yes. The rotation speed determination means 133 determines the rotation speed when all the fans 20A to 20C are operated at the same rotation speed based on the operation information input from the remote controller 280. The operation information input from the remote controller 280 is, for example, operation mode information such as a cooling operation mode, a heating operation mode, and a dehumidifying operation mode, and air volume information such as strong, medium, and weak. The averaging means 136 receives the digital values S1, S2 and S3 of the sound pressure levels detected by the muffler effect detection microphones 191 to 193, and averages these S1, S2 and S3 signals for a certain period of time. To do.
 ファン個別制御回転数決定手段134Aは、平均化手段136にて平均化されたS1,S2,S3それぞれの信号と同回転数決定手段133から入力された回転数情報に基づき、ファン20A~20Cをファン個別制御するときのそれぞれの回転数を決定するものである。SW135は、例えばリモコン280から入力される信号に基づき、モータードライバー282A~282Cへ送られるファン20A~20Cの回転制御信号を切り替えるものである。つまり、SW135は、ファン20A~20Cを全て同じ回転数で動作させるか(同回転数制御するか)、ファン20A~20Cをそれぞれ個別の回転数で動作させるか(ファン個別制御するか)を切り替えるものである。 The individual fan control rotation speed determination means 134A determines the fans 20A to 20C based on the rotation speed information inputted from the same rotation speed determination means 133 and the signals S1, S2 and S3 averaged by the averaging means 136. The number of rotations for individual fan control is determined. The SW 135 switches the rotation control signals of the fans 20A to 20C sent to the motor drivers 282A to 282C, for example, based on a signal input from the remote controller 280. That is, the SW 135 switches whether the fans 20A to 20C are all operated at the same rotational speed (whether the same rotational speed is controlled) or whether the fans 20A to 20C are respectively operated at individual rotational speeds (whether the fan is individually controlled). Is.
 次に室内機100の動作について説明する。
 実施の形態11と異なる点は、送風ファン制御手段172の動作のみである。また、送風ファン制御手段172の動作は、実施の形態9で説明したとおりである。つまり、騒音・消音効果検出マイクロホン211~213で検出された音圧レベルのデジタル値S1~S3を平均化手段136にてある一定期間平均化する。これら平均化された音圧レベル値と及び同回転数決定手段133で決定された回転数に基づき、ファン個別制御回転数決定手段134Aは、ファン個別制御を行う際の各ファンの回転数を決定する。具体的には、平均化された音圧レベル値の小さい消音効果検出マイクロホンに距離が近い(関連性が高い)ファンの回転数を高くし、平均化された音圧レベル値の大きい消音効果検出マイクロホンに距離が近い(関連性が高い)ファンの回転数を低くするように、ファンの回転数を決定する。このとき、ファン個別制御をした場合に得られる風量が同回転数制御時と同じ風量となるように、ファン20A~20Cのそれぞれの回転数を決定するとよい。
Next, the operation of the indoor unit 100 will be described.
The difference from the eleventh embodiment is only the operation of the blower fan control means 172. The operation of the blower fan control means 172 is as described in the ninth embodiment. That is, the digital values S1 to S3 of the sound pressure levels detected by the noise / silence effect detecting microphones 211 to 213 are averaged by the averaging means 136 for a certain period. Based on the averaged sound pressure level value and the rotation speed determined by the rotation speed determination means 133, the fan individual control rotation speed determination means 134A determines the rotation speed of each fan when performing fan individual control. To do. Specifically, the muffler effect detection with a small averaged sound pressure level value is detected by increasing the number of rotations of the fan that is close to (highly related to) the microphone with a small sound pressure level value and having a large averaged sound pressure level value. The rotation speed of the fan is determined so as to reduce the rotation speed of the fan that is close to the microphone (highly related). At this time, the rotation speeds of the fans 20A to 20C may be determined so that the air volume obtained in the individual fan control is the same as that in the same rotation speed control.
 例えば、本実施の形態12に係る室内機100において、騒音・消音効果検出マイクロホン211で検出した騒音レベルの平均値が45dB、騒音・消音効果検出マイクロホン212で検出した騒音レベルの平均値が45dB、及び騒音・消音効果検出マイクロホン213で検出した騒音レベルの平均値が50dBだった場合、ファン個別制御回転数決定手段134Aは、ファン20A,20Cの回転数を高くし、ファン20Bの回転数を低くするように各ファンの回転数を決定する。風量と回転数は比例関係にあるため、例えば、図50のような構成の場合、ファン20Aとファン20Cの回転数を10%高くすると、ファン20Bの回転数を20%低くすることで同一風量となる。 For example, in the indoor unit 100 according to the twelfth embodiment, the average value of the noise level detected by the noise / silence effect detection microphone 211 is 45 dB, the average value of the noise level detected by the noise / silence effect detection microphone 212 is 45 dB, When the average value of the noise level detected by the noise / silencing effect detection microphone 213 is 50 dB, the fan individual control rotation speed determination means 134A increases the rotation speed of the fans 20A and 20C and decreases the rotation speed of the fan 20B. The number of rotations of each fan is determined as follows. Since the air volume and the rotational speed are in a proportional relationship, for example, in the case of the configuration shown in FIG. 50, if the rotational speed of the fan 20A and the fan 20C is increased by 10%, the rotational speed of the fan 20B is decreased by 20%. It becomes.
 なお、上述したファン20A~20Cの回転数の決定方法は、あくまでも一例である。例えば、騒音・消音効果検出マイクロホン211で検出した騒音レベルの平均値が45dB、騒音・消音効果検出マイクロホン212で検出した騒音レベルの平均値が47dB、及び騒音・消音効果検出マイクロホン213で検出した騒音レベルの平均値が50dBだった場合、ファン20Aの回転数を高くし、ファン20Bの回転数を低くし、ファン20Cの回転数をそのままにするように、各ファンの回転数を決定してもよい。つまり、検出した騒音レベルが最も小さい騒音・消音効果検出マイクロホン211に距離が近いファン20Aの回転数を高くし、検出した騒音レベルが最も大きい騒音・消音効果検出マイクロホン213に距離が近いファン20Bの回転数を低くし、そのどちらでもないファン20Cの回転数はそのままにするように、各ファンの回転数を決定してもよい。 Note that the above-described method for determining the rotational speed of the fans 20A to 20C is merely an example. For example, the average value of the noise level detected by the noise / silence effect detection microphone 211 is 45 dB, the average value of the noise level detected by the noise / silence effect detection microphone 212 is 47 dB, and the noise detected by the noise / silence effect detection microphone 213 If the average value of the levels is 50 dB, the rotational speed of each fan is determined so that the rotational speed of the fan 20A is increased, the rotational speed of the fan 20B is decreased, and the rotational speed of the fan 20C is left as it is. Good. That is, the rotation speed of the fan 20A whose distance is close to the noise / silencing effect detection microphone 211 with the smallest detected noise level is increased, and the fan 20B whose distance is close to the noise / silence effect detection microphone 213 with the largest detected noise level. The rotational speed of each fan may be determined so that the rotational speed is lowered and the rotational speed of the fan 20C that is neither of them is left as it is.
 リモコン280からファン個別制御を行う旨の運転情報信号(例えば静音モード等の信号)が入力された場合、各ファンの回転数は個別に制御される。つまり、リモコン280からファン個別制御を行う旨の運転情報信号(例えば静音モード等の信号)が入力された場合、SW135を切り替えることにより、同回転数制御の回転制御信号からファン個別制御における回転制御信号に切り替え、この回転制御信号を制御装置281からファン20A~20Cへ出力する。制御装置281から出力された回転制御信号はモータードライバー282A~282Cに入力され、回転制御信号に従った回転数にファン20A~20Cは制御される。 When an operation information signal for performing individual fan control (for example, a signal such as a silent mode) is input from the remote controller 280, the rotational speed of each fan is individually controlled. That is, when an operation information signal for performing individual fan control (for example, a signal such as a silent mode) is input from the remote controller 280, the rotation control in the individual fan control is performed from the rotation control signal of the same rotation speed control by switching the SW 135. The rotation control signal is output from the control device 281 to the fans 20A to 20C. The rotation control signal output from the control device 281 is input to the motor drivers 282A to 282C, and the fans 20A to 20C are controlled to the number of rotations according to the rotation control signal.
 ここで、本実施の形態12に係る室内機100の場合、実施の形態9と同様に、隣接するファンからのクロストークノイズ成分の大小により、騒音・消音効果検出マイクロホン213の近辺の領域に比べて、騒音・消音効果検出マイクロホン211,212の近辺の領域は消音効果が高くなる。つまり、騒音・消音効果検出マイクロホン213の近辺の領域に比べて、騒音・消音効果検出マイクロホン211,212の近辺の領域は検出する騒音レベルが小さくなる。一方、騒音・消音効果検出マイクロホン213の近辺の領域は、消音効果が低くなる。そこで、複数のファン20A~20Cを備えた本実施の形態12に係る室内機100においては、騒音・消音効果検出マイクロホン211~213により検出された騒音レベル値の平均値のうち、検出した騒音レベル平均値が小さい騒音・消音効果検出マイクロホン211,212に距離の近いファン20A,20Cの回転数を高くし、検出した騒音レベル平均値が大きい騒音・消音効果検出マイクロホン213に距離の近いファン20Bの回転数を低くしている。 Here, in the case of the indoor unit 100 according to the twelfth embodiment, as in the ninth embodiment, the magnitude of the crosstalk noise component from the adjacent fan is larger than that in the vicinity of the noise / silencing effect detection microphone 213 due to the magnitude of the crosstalk noise component. Thus, the noise reduction effect is enhanced in the area near the noise / silence effect detection microphones 211 and 212. That is, the noise level detected in the area near the noise / silence effect detection microphones 211 and 212 is smaller than that in the area near the noise / silence effect detection microphone 213. On the other hand, in the area near the noise / silence effect detection microphone 213, the noise reduction effect is low. Therefore, in the indoor unit 100 according to the twelfth embodiment having the plurality of fans 20A to 20C, the detected noise level among the average values of the noise level values detected by the noise / silence effect detecting microphones 211 to 213 is detected. The rotation speed of the fans 20A, 20C close to the noise / silence effect detection microphones 211, 212 having a small average value is increased, and the detected noise / silence effect detection microphone 213 having a large average noise level is detected. The rotation speed is lowered.
 その結果、本実施の形態12に係る室内機100は、消音効果の高い領域はさらに消音効果が高くなり、消音効果の低い領域は騒音が小さくなるため、単数のファンを使用した室内機やファン個別制御を行わない室内機に比べ、吹出口3全体から放射される騒音を低減することができる。さらに、本実施の形態12に係る室内機100は、同回転数制御時と風量が一定となるように複数のファン20A~20Cの回転数を個別に制御することで、空力的な性能の劣化を抑制することができる。 As a result, in the indoor unit 100 according to the twelfth embodiment, the region where the silencing effect is high further increases the silencing effect, and the region where the silencing effect is low reduces noise. Therefore, the indoor unit or fan using a single fan Compared with an indoor unit that does not perform individual control, noise radiated from the entire outlet 3 can be reduced. Furthermore, the indoor unit 100 according to the twelfth embodiment has aerodynamic performance degradation by individually controlling the rotational speeds of the fans 20A to 20C so that the airflow is constant when the rotational speed control is performed. Can be suppressed.
 さらに、図51及び図52に示すように、室内機100の風路を複数の領域に分割することにより、消音効果をさらに向上させることができる。 Furthermore, as shown in FIG. 51 and FIG. 52, the silencing effect can be further improved by dividing the air path of the indoor unit 100 into a plurality of regions.
 図51は、本発明の実施の形態12に係る室内機の別の一例を示す正面図である。また、図52は、図51に示す室内機の左側面図である。なお、図52は、室内機100のケーシング1の側壁を透写して示している。図51及び図52に示す室内機100は、風路を仕切り板90,90aで分割することにより、ファン20Aが吹き出す空気が通る領域、ファン20Bが吹き出す空気が通る領域、及びファン20Cが吹き出す空気が通る領域に区切っている。そして、消音機構Dの制御スピーカー181及び騒音・消音効果検出マイクロホン211は、ファン20Aが吹き出す空気が通る領域に配置されている。また、消音機構Eの制御スピーカー182及び騒音・消音効果検出マイクロホン212は、ファン20Cが吹き出す空気が通る領域に配置されている。また、消音機構Fの制御スピーカー183及び騒音・消音効果検出マイクロホン213は、ファン20Bが吹き出す空気が通る領域に配置されている。 FIG. 51 is a front view showing another example of the indoor unit according to Embodiment 12 of the present invention. FIG. 52 is a left side view of the indoor unit shown in FIG. FIG. 52 shows the side wall of the casing 1 of the indoor unit 100 in a translucent manner. The indoor unit 100 shown in FIGS. 51 and 52 divides the air path with the partition plates 90 and 90a, thereby allowing the air blown by the fan 20A to pass through, the air passing through the fan 20B, and the air blown out by the fan 20C. It is divided into the areas where. The control speaker 181 and the noise / silencing effect detection microphone 211 of the silencing mechanism D are arranged in a region through which the air blown by the fan 20A passes. Further, the control speaker 182 and the noise / silencing effect detection microphone 212 of the silencing mechanism E are arranged in a region through which the air blown out by the fan 20C passes. Further, the control speaker 183 and the noise / silencing effect detection microphone 213 of the silencing mechanism F are arranged in a region through which the air blown out by the fan 20B passes.
 このように室内機100を構成することにより、ファン20A~20Cから放射される騒音をそれぞれの領域に分離することができ、消音機構Dはファン20Aから放射される騒音のみを低減し、消音機構Eはファン20Cから放射される騒音のみを低減し、消音機構Fはファン20Bから放射される騒音のみを低減することになる。このため、騒音・消音効果検出マイクロホン211~213が検出するクロストークノイズ成分(隣接する流路に設けられたファンから放射される騒音)が小さくなる。 By configuring the indoor unit 100 in this way, the noise radiated from the fans 20A to 20C can be separated into the respective regions, and the silencing mechanism D reduces only the noise radiated from the fan 20A, and the silencing mechanism E reduces only the noise radiated from the fan 20C, and the silencing mechanism F reduces only the noise radiated from the fan 20B. For this reason, the crosstalk noise component (noise radiated from the fan provided in the adjacent flow path) detected by the noise / silencing effect detection microphones 211 to 213 is reduced.
 さらに、風路をダクト構造に近づけることになるため、騒音を一次元で捉えられる。このため、室内機100内部を伝達する騒音の位相が均一となり、制御音を干渉させた際の位相誤差が小さくなるので、消音効果がより高くなる。したがって、図51及び図52のように室内機100を構成することにより、図50の構成に比べ、さらに騒音を低減することができる。なお、図51及び図52では風路全域に仕切り板を挿入したが、例えば熱交換器50の上流側のみ又は熱交換器50の下流側のみといったように、風路の一部を仕切り板で区切るようにしてもよい。また、実施の形態11と同様に、図53のように消音機構が設けられていないファン20がある場合でも、そのファン20の回転数を低くすることで消音機構が設けられていない領域の騒音が小さくなり、同様の消音効果を得ることができる。 Furthermore, noise can be captured in one dimension because the air path is closer to the duct structure. For this reason, the phase of the noise transmitted through the interior of the indoor unit 100 becomes uniform, and the phase error when the control sound interferes is reduced, so that the silencing effect is further enhanced. Therefore, by configuring the indoor unit 100 as shown in FIGS. 51 and 52, noise can be further reduced compared to the configuration of FIG. 51 and 52, a partition plate is inserted in the entire air path. However, a part of the air path is separated by a partition plate, for example, only on the upstream side of the heat exchanger 50 or only on the downstream side of the heat exchanger 50. You may make it delimit. Similarly to the eleventh embodiment, even when there is a fan 20 that is not provided with a silencing mechanism as shown in FIG. 53, the noise in the area where the silencing mechanism is not provided by reducing the rotation speed of the fan 20. Can be reduced, and a similar silencing effect can be obtained.
 なお、本実施の形態12では、騒音・消音効果検出マイクロホン211~213を制御スピーカー181~183の下流側に設置したが、制御スピーカー181~183の上流側に騒音・消音効果検出マイクロホン211~213を設置してもよい。さらに、本実施の形態12では、制御スピーカー、騒音・消音効果検出マイクロホン、信号処理装置をそれぞれ2~3個配置しているが、これに限るものではない。 In the twelfth embodiment, the noise / silencing effect detection microphones 211 to 213 are installed on the downstream side of the control speakers 181 to 183, but the noise / silence effect detection microphones 211 to 213 are installed on the upstream side of the control speakers 181 to 183. May be installed. Furthermore, in the twelfth embodiment, two to three control speakers, noise / muffling effect detection microphones, and signal processing devices are arranged, but the present invention is not limited to this.
 また、本実施の形態12では、送風ファン制御手段172を制御装置281内のCPU131で構成しているが、LSI(Large Scale Integration)やFPGA(Field Programmable Gate Array)等のハードウェアにより構成してもよい。さらに、送風ファン制御手段172の構成についても、実施の形態9と同様に、図41に示した構成に限るものではない。 In the twelfth embodiment, the blower fan control unit 172 is configured by the CPU 131 in the control device 281, but is configured by hardware such as LSI (Large Scale Integration) or FPGA (Field Programmable Gate Array). Also good. Further, the configuration of the blower fan control means 172 is not limited to the configuration shown in FIG. 41 as in the ninth embodiment.
 また、本実施の形態12では、送風ファン制御手段172は、騒音レベルの小さい騒音・消音効果検出マイクロホンに距離の近いファンの回転数を高くし、かつ、騒音レベルの大きい騒音・消音効果検出マイクロホンに距離の近いファンの回転数を低くするように構成したが、そのどちらか一方を行うように構成してもよい。 In the twelfth embodiment, the blower fan control means 172 increases the number of rotations of a fan that is close to the noise / silence effect detection microphone with a low noise level and also has a noise / silence effect detection microphone with a large noise level. Although the configuration is such that the number of rotations of a fan with a short distance is reduced, it may be configured to perform either one of them.
 以上、本実施の形態12に係る室内機100においては、複数のファン20A~20Cを配置し、ファン20A~20Cの回転数を個別に制御する制御装置281(より詳しくは、送風ファン制御手段172)が設けられている。送風ファン制御手段172は、騒音・消音効果検出マイクロホン211~213で検出した騒音レベルの平均値のうち、検出した騒音レベルが小さい騒音・消音効果検出マイクロホンに距離が近いファンの回転数を高くするように制御し、検出した騒音レベルが大きい騒音・消音効果検出マイクロホンに距離が近い送風ファンの回転数を低くするように回転数制御を行う。このため、消音効果が高い(つまり、騒音レベルの小さい)領域はさらに消音効果が高くなり、消音効果が低い(つまり騒音レベルの大きい)領域は騒音が小さくなる。このため、同じ構成の消音機構にて単数のファンを使用した室内機、又はファン個別制御を行わない室内機に比べ、より騒音を低減することができる。 As described above, in the indoor unit 100 according to the twelfth embodiment, the plurality of fans 20A to 20C are arranged, and the control device 281 for controlling the rotational speed of the fans 20A to 20C individually (more specifically, the blower fan control means 172). ) Is provided. The blower fan control means 172 increases the rotation speed of the fan whose distance is close to the noise / silence effect detection microphone having a small detected noise level among the average values of the noise levels detected by the noise / silence effect detection microphones 211 to 213. Thus, the rotational speed control is performed so as to reduce the rotational speed of the blower fan that is close to the noise / silencing effect detection microphone having a large detected noise level. For this reason, the region where the silencing effect is high (that is, the noise level is small) is further enhanced, and the region where the silencing effect is low (that is, the noise level is large) is low. For this reason, noise can be further reduced as compared with an indoor unit that uses a single fan with a silencing mechanism having the same configuration, or an indoor unit that does not perform individual fan control.
 また、送風ファン制御手段172は、吹出口3から放射される風量がファン個別制御をした場合と同回転数制御をした場合で同じとなるように、ファン20A~20Cの回転数を制御するため、空力性能を劣化させることなく騒音を低減することができる。 Further, the blower fan control means 172 controls the rotational speed of the fans 20A to 20C so that the amount of air radiated from the blowout port 3 is the same when the same rotational speed control is performed as when the individual fan control is performed. Noise can be reduced without degrading aerodynamic performance.
 さらに、仕切り板90,90aで室内機100の風路を複数の領域に分割することにより、ファン20A~20Cから放射される騒音をそれぞれ分離することができ、消音機構Dはファン20Aから放射される騒音のみを低減し、消音機構Eはファン20Cから放射される騒音のみを低減し、消音機構Fはファン20Bから放射される騒音のみを低減することになる。このため、各領域において、隣接する領域に放射された騒音によるクロストークノイズ成分が小さくなる。 Furthermore, by dividing the air path of the indoor unit 100 into a plurality of regions by the partition plates 90 and 90a, the noise radiated from the fans 20A to 20C can be separated, respectively, and the silencing mechanism D is radiated from the fan 20A. The noise reduction mechanism E reduces only the noise emitted from the fan 20C, and the noise reduction mechanism F reduces only the noise emitted from the fan 20B. For this reason, in each area | region, the crosstalk noise component by the noise radiated | emitted to the adjacent area | region becomes small.
 さらに、仕切り板90,90aで室内機100の風路を複数の領域に分割することにより、風路をダクト構造に近づけることになるため、騒音を一次元で捉えられる。このため、室内機100内部を伝達する騒音の位相が均一となり、制御音を干渉させた際の位相誤差が小さくなる。したがって、騒音・消音効果検出マイクロホン211~213における消音効果が高くなり、図51の構成に比べ、さらに騒音を低減することができる。また、消音機構が設けられていないファン20がある場合でも、そのファン20の回転数を低くすることで消音機構が設けられていない領域の騒音が小さくなり、同様の消音効果を得ることができる。 Furthermore, by dividing the air passage of the indoor unit 100 into a plurality of regions by the partition plates 90 and 90a, the air passage is brought closer to the duct structure, so that noise can be captured in one dimension. For this reason, the phase of the noise transmitted through the interior of the indoor unit 100 becomes uniform, and the phase error when the control sound interferes is reduced. Therefore, the silencing effect in the noise / silencing effect detection microphones 211 to 213 is increased, and noise can be further reduced as compared with the configuration of FIG. Further, even when there is a fan 20 that is not provided with a silencing mechanism, by reducing the rotation speed of the fan 20, noise in a region where the silencing mechanism is not provided is reduced, and a similar silencing effect can be obtained. .
 さらに、本実施の形態12では、騒音検出マイクロホン161~163と消音効果検出マイクロホン191~193を騒音・消音効果検出マイクロホン211~213に集約しているため、マイクロホンの数を減らすことができ、部品点数を削減し、さらにコストを下げることができる。 Further, in the twelfth embodiment, since the noise detection microphones 161 to 163 and the silencing effect detection microphones 191 to 193 are integrated into the noise / silencing effect detection microphones 211 to 213, the number of microphones can be reduced, and the parts can be reduced. The number of points can be reduced and the cost can be further reduced.
実施の形態13.
 実施の形態8~実施の形態12では、消音効果検出マイクロホン又は騒音・消音効果検出マイクロホンに関連性の高い騒音を放出するファン(つまり、消音効果検出マイクロホン又は騒音・消音効果検出マイクロホンが消音効果を発揮しやすい騒音を放出するファン)を、消音効果検出マイクロホン又は騒音・消音効果検出マイクロホンから距離の近いファンとしていた。これに限らず、消音効果検出マイクロホン又は騒音・消音効果検出マイクロホンに関連性の高い騒音を放出するファン(つまり、消音効果検出マイクロホン又は騒音・消音効果検出マイクロホンが消音効果を発揮しやすい騒音を放出するファン)を、以下のようなファンとしてもよい。なお、本実施の形態13では、実施の形態8に係る空気調和機を例に用いて説明する。また、本実施の形態13では、上述した実施の形態8~実施の形態12との相違点を中心に説明するものとし、実施の形態8~実施の形態12と同一部分には同一符号を付している。
Embodiment 13 FIG.
In the eighth to twelfth embodiments, a noise releasing effect detection microphone or a noise / silence effect detection microphone that emits highly relevant noise (that is, the silence effect detection microphone or the noise / silence effect detection microphone has a silence effect). The fan that emits noise that can be easily exerted is a fan that is close to the mute effect detection microphone or the noise / mute effect detection microphone. Not limited to this, a fan that emits noise that is highly relevant to the mute effect detection microphone or the noise / mute effect detection microphone (that is, the mute effect detection microphone or the noise / mute effect detection microphone emits noise that can easily exert a mute effect) Fan) may be the following fan. In the thirteenth embodiment, an air conditioner according to the eighth embodiment will be described as an example. In the thirteenth embodiment, differences from the above-described eighth to twelfth embodiments will be mainly described, and the same parts as those in the eighth to twelfth embodiments are denoted by the same reference numerals. is doing.
 上述のように、本実施の形態13に係る室内機100の基本的な構成は、実施の形態8で説明した図35と同様である。本実施の形態13に係る室内機100が実施の形態8の室内機100と異なる点は、制御装置281のメモリー132に入力されている送風ファン情報が異なる点である。つまり、本実施の形態13に係る室内機100が実施の形態8の室内機100と異なる点は、メモリー132からファン個別制御回転数決定手段134へ入力される送風ファン情報が異なる点である。 As described above, the basic configuration of the indoor unit 100 according to the thirteenth embodiment is the same as that of FIG. 35 described in the eighth embodiment. The indoor unit 100 according to the thirteenth embodiment is different from the indoor unit 100 according to the eighth embodiment in that the blower fan information input to the memory 132 of the control device 281 is different. That is, the indoor unit 100 according to the thirteenth embodiment is different from the indoor unit 100 according to the eighth embodiment in that the blower fan information input from the memory 132 to the fan individual control rotation speed determining means 134 is different.
 また、実施の形態8では制御スピーカー181,182の室内機100側面への詳細な設置構成については説明しなかったが、本実施の形態13では、次のように制御スピーカー181,182を室内機100側面へ設置している。
 制御スピーカー181,182はある程度の厚みがあるため、室内機100の前面や背面に設置すると、風路を塞いでしまい、空力性能の劣化につながってしまう。このため、本実施の形態13では、ケーシング1の両側面部に設けられた機械ボックス(制御基板等が格納されているボックス、図示せず)内に、制御スピーカー181,182を配置している。このように制御スピーカー181,182を配置することにより、制御スピーカー181,182が風路にはみ出ることを防止できる。
Further, although the detailed installation configuration of the control speakers 181 and 182 on the side surface of the indoor unit 100 has not been described in the eighth embodiment, in the thirteenth embodiment, the control speakers 181 and 182 are installed as follows. It is installed on 100 sides.
Since the control speakers 181 and 182 have a certain thickness, if they are installed on the front surface or the rear surface of the indoor unit 100, the air passage is blocked, leading to deterioration of aerodynamic performance. For this reason, in the thirteenth embodiment, control speakers 181 and 182 are arranged in a machine box (a box in which a control board or the like is stored, not shown) provided on both side portions of the casing 1. By arranging the control speakers 181 and 182 in this way, the control speakers 181 and 182 can be prevented from protruding into the air path.
 より詳しくは、実施の形態8では、消音効果検出マイクロホン191,192に距離が近いファン20の識別番号を送風ファン情報としていた。一方、本実施の形態13では、室内機100のケーシング1の両端に設置されているファン20の識別番号を送風ファン情報としている。つまり、図35からわかるように、本実施の形態13における送風ファン情報は、ファン20Aとファン20Cの識別番号となる。 More specifically, in the eighth embodiment, the identification number of the fan 20 that is close to the mute effect detection microphones 191 and 192 is used as the blower fan information. On the other hand, in Embodiment 13, the identification numbers of the fans 20 installed at both ends of the casing 1 of the indoor unit 100 are used as the blower fan information. That is, as can be seen from FIG. 35, the blower fan information in the thirteenth embodiment is the identification number of the fan 20A and the fan 20C.
 室内機100における動作は実施の形態8で説明した動作と同様である。このため、以下には、ファン20A~20Cのファン個別制御について説明する。 The operation in the indoor unit 100 is the same as the operation described in the eighth embodiment. Therefore, hereinafter, individual fan control of the fans 20A to 20C will be described.
 送風ファン制御手段171のファン個別制御回転数決定手段134は、実施の形態8と同様に、同回転数決定手段133で決定された回転数情報及びメモリー132から読み出した送風ファン情報に基づき、ファン個別制御を行う際の各ファン20の回転数を決定する。具体的には、ファン個別制御回転数決定手段134は識別番号がメモリー132に入力されているファン20A,20Cの回転数を高くし、識別番号がメモリー132に入力されていないファン20Bの回転数を低くする。結果として、ファン個別制御回転数決定手段134は、室内機100のケーシング1の両端に設置されているファン20A,20Cの回転数を高くし、室内機100のケーシング1の両端以外に設置されているファン20Bの回転数を低くすることになる。なお、このとき、ファン個別制御をした場合に得られる風量が同回転数制御時と同じ風量となるように、ファン20A~20Cのそれぞれの回転数を決定するとよい。 Similarly to the eighth embodiment, the fan individual control rotation speed determination means 134 of the blower fan control means 171 is based on the rotation speed information determined by the rotation speed determination means 133 and the blower fan information read from the memory 132. The number of rotations of each fan 20 when performing individual control is determined. Specifically, the fan individual control rotation speed determination means 134 increases the rotation speed of the fans 20A and 20C whose identification number is input to the memory 132, and the rotation speed of the fan 20B whose identification number is not input to the memory 132. Lower. As a result, the fan individual control rotation speed determining means 134 increases the rotation speed of the fans 20A and 20C installed at both ends of the casing 1 of the indoor unit 100, and is installed at other than both ends of the casing 1 of the indoor unit 100. The rotation speed of the fan 20B is reduced. At this time, the rotation speeds of the fans 20A to 20C may be determined so that the air volume obtained in the individual fan control is the same as that in the same rotation speed control.
 リモコン280からファン個別制御を行う旨の運転情報信号(例えば静音モード等の信号)が入力された場合、SW135を切り替えることにより、同回転数制御の回転制御信号からファン個別制御における回転制御信号に切り替え、この回転制御信号を制御装置281からファン20A~20Cへ出力する。制御装置281から出力された回転制御信号はモータードライバー282A~282Cに入力され、回転制御信号に従った回転数にファン20A~20Cは制御される。 When an operation information signal for performing individual fan control (for example, a signal for the silent mode) is input from the remote controller 280, the rotation control signal for the same speed control is changed to the rotation control signal for the individual fan control by switching the SW 135. The rotation control signal is output from the control device 281 to the fans 20A to 20C. The rotation control signal output from the control device 281 is input to the motor drivers 282A to 282C, and the fans 20A to 20C are controlled to the number of rotations according to the rotation control signal.
 両端のファン20A,20Cが放射する騒音を能動的に消音する場合と、両端以外のファン20Bが放射する騒音を能動的に消音する場合とでは、これらファンの騒音を検出する際のクロストークノイズ成分が異なってくる。ファン20Bから放射される騒音を検出する場合、隣接するファン20A,20Cから放射される騒音もクロストークノイズ成分として入ってくるためである。このため、本実施の形態13では、室内機100を複数のファン20A~20Cを備えた構成とし、騒音検出時にクロストークノイズ成分が小さい両端のファン20A,20Cの回転数を高くし、騒音検出時にクロストークノイズ成分が大きい両端以外のファン20Bの回転数を低くする。 Crosstalk noise when detecting noise from the fans 20A and 20C at both ends is actively silenced when noise from the fans 20B other than both ends is actively silenced. The ingredients are different. This is because when noise radiated from the fan 20B is detected, noise radiated from the adjacent fans 20A and 20C also enters as a crosstalk noise component. For this reason, in the thirteenth embodiment, the indoor unit 100 is configured to include a plurality of fans 20A to 20C, and at the time of noise detection, the rotational speeds of the fans 20A and 20C at both ends having a small crosstalk noise component are increased to detect noise. Sometimes the rotational speed of the fan 20B other than both ends where the crosstalk noise component is large is lowered.
 その結果、本実施の形態13に係る室内機100は、消音効果の高い領域はさらに消音効果が高くなり、消音効果の低い領域は騒音が小さくなるため、単数のファンを使用した室内機やファン個別制御を行わない室内機に比べ、吹出口3全体から放射される騒音を低減することができる。さらに、本実施の形態13に係る室内機100は、同回転数制御時と風量が一定となるように複数のファン20A~20Cの回転数を個別に制御することで、空力的な性能の劣化を抑制することができる。 As a result, the indoor unit 100 according to the thirteenth embodiment has a higher silencing effect in a region where the silencing effect is high, and noise is small in a region where the silencing effect is low. Therefore, the indoor unit or fan using a single fan Compared with an indoor unit that does not perform individual control, noise radiated from the entire outlet 3 can be reduced. Furthermore, the indoor unit 100 according to the thirteenth embodiment has aerodynamic performance degradation by individually controlling the rotational speeds of the plurality of fans 20A to 20C so that the airflow is constant when the rotational speed is controlled. Can be suppressed.
 さらに、本実施の形態13では、制御スピーカー181,182が風路へはみ出さないように、制御スピーカー181,182を室内機100の両側面に設置している。このため、制御スピーカー181,182が風路にはみ出ることによって発生する圧力損失を防止でき、空力的な性能の劣化を防止することができる。 Furthermore, in the thirteenth embodiment, the control speakers 181 and 182 are installed on both side surfaces of the indoor unit 100 so that the control speakers 181 and 182 do not protrude into the air path. For this reason, it is possible to prevent pressure loss caused by the control speakers 181 and 182 protruding into the air path, and to prevent aerodynamic performance deterioration.
 さらに、本実施の形態13に係る室内機100においても、実施の形態8の図38及び図39で示した室内機100と同様に、室内機100の風路を複数の領域に分割することにより、消音効果をさらに向上させることができる。 Furthermore, in the indoor unit 100 according to the thirteenth embodiment, as with the indoor unit 100 shown in FIGS. 38 and 39 in the eighth embodiment, the air path of the indoor unit 100 is divided into a plurality of regions. Further, the silencing effect can be further improved.
 つまり、仕切り板90,90aで室内機100の風路を複数の領域に分割することにより、ファン20A~20Cから放射される騒音をそれぞれの領域に分離することができ、消音機構Aはファン20Aから放射される騒音のみを低減し、消音機構Bはファン20Cから放射される騒音のみを低減することになる。このため、ファン20Bから放射された騒音を騒音検出マイクロホン161,162及び消音効果検出マイクロホン191,192が検出してしまうことを防止できるので、騒音検出マイクロホン161,162及び消音効果検出マイクロホン191,192のクロストークノイズ成分が小さくなる。 That is, by dividing the air path of the indoor unit 100 into a plurality of regions by the partition plates 90 and 90a, the noise radiated from the fans 20A to 20C can be separated into the respective regions, and the silencing mechanism A is used in the fan 20A. Only the noise radiated from the fan 20C is reduced, and the silencing mechanism B reduces only the noise radiated from the fan 20C. Therefore, it is possible to prevent the noise detection microphones 161 and 162 and the silencing effect detection microphones 191 and 192 from detecting the noise radiated from the fan 20B, and thus the noise detection microphones 161 and 162 and the silencing effect detection microphones 191 and 192. The crosstalk noise component of becomes smaller.
 さらに、風路をダクト構造に近づけることになるため、騒音を一次元で捉えられる。このため、室内機100内部を伝達する騒音の位相が均一となり、制御音を干渉させた際の位相誤差が小さくなるので、消音効果がより高くなる。一方、消音機構が設けられていないファン20Bの回転数を低くすることで、消音機構が設けられていない領域の騒音が小さくなる。したがって、本実施の形態13に係る室内機100においても、室内機100の風路を複数の領域に分割することにより、図35の構成に比べ、さらに騒音を低減することができる。なお、仕切り板は風路全域に設ける必要はなく、例えば熱交換器50の上流側のみ又は熱交換器50の下流側のみといったように、風路の一部を仕切り板で区切るようにしてもよい。 Furthermore, noise can be captured in one dimension because the air path is closer to the duct structure. For this reason, the phase of the noise transmitted through the interior of the indoor unit 100 becomes uniform, and the phase error when the control sound interferes is reduced, so that the silencing effect is further enhanced. On the other hand, by reducing the rotational speed of the fan 20B that is not provided with the silencing mechanism, the noise in the area where the silencing mechanism is not provided is reduced. Therefore, also in the indoor unit 100 according to the thirteenth embodiment, by dividing the air path of the indoor unit 100 into a plurality of regions, noise can be further reduced compared to the configuration of FIG. Note that the partition plate does not need to be provided in the entire air path, and a part of the air path may be partitioned by the partition plate, for example, only on the upstream side of the heat exchanger 50 or only on the downstream side of the heat exchanger 50. Good.
 なお、本実施の形態13では騒音検出マイクロホン161,162を室内機100の両側面に設置したが、制御スピーカー181,182の上流側であれば騒音検出マイクロホン161,162の設置位置はどこでもよい。さらに、本実施の形態13では、消音効果検出マイクロホン191,192をファン20A,20Cの回転軸のほぼ延長線上に配置したが、制御スピーカー181,182の下流側であれば消音効果検出マイクロホン191,192の設置位置はどこでもよい。さらに、本実施の形態13では、騒音検出マイクロホン、制御スピーカー、消音効果検出マイクロホン及び信号処理装置をそれぞれ2個配置しているが、これに限るものではない。 In the thirteenth embodiment, the noise detection microphones 161 and 162 are installed on both sides of the indoor unit 100. However, the noise detection microphones 161 and 162 may be installed anywhere as long as they are upstream of the control speakers 181 and 182. Furthermore, in the thirteenth embodiment, the silencing effect detection microphones 191 and 192 are arranged on substantially the extension lines of the rotation axes of the fans 20A and 20C, but the silencing effect detection microphones 191 and 191 are provided on the downstream side of the control speakers 181 and 182. The installation position of 192 may be anywhere. Furthermore, in the thirteenth embodiment, two noise detection microphones, control speakers, muffler effect detection microphones, and signal processing devices are arranged, but the present invention is not limited to this.
 また、本実施の形態13では、送風ファン制御手段171を制御装置281内のCPU131で構成したが、LSI(Large Scale Integration)やFPGA(Field Programmable Gate Array)等のハードウェアにより送風ファン制御手段171を構成してもよい。さらに、送風ファン制御手段171の構成についても図37に示した構成に限るものではない。 In the thirteenth embodiment, the blower fan control means 171 is configured by the CPU 131 in the control device 281. However, the blower fan control means 171 is implemented by hardware such as LSI (Large Scale Integration) or FPGA (Field Programmable Gate Array). May be configured. Further, the configuration of the blower fan control means 171 is not limited to the configuration shown in FIG.
 また、本実施の形態13では、送風ファン制御手段171は、室内機100の両端のファン20A,20Cの回転数を高くし、かつ、両端以外のファン20Bの回転数を低くするように構成したが、そのどちらか一方を行うように構成してもよい。 Further, in the thirteenth embodiment, the blower fan control means 171 is configured to increase the rotation speed of the fans 20A and 20C at both ends of the indoor unit 100 and to decrease the rotation speed of the fan 20B other than both ends. However, you may comprise so that either one may be performed.
 以上、本実施の形態13に係る室内機100においては、複数のファン20A~20Cを配置し、ファン20A~20Cの回転数を個別に制御する送風ファン制御手段171が設けられている。送風ファン制御手段171は、室内機100の両端に設置しているファン20A,20Cの回転数を高くするように制御し、室内機100の両端以外に設置しているファン20Bの回転数を低くするように回転数制御を行う。このため、隣接するファンからのクロストークノイズ成分が小さく消音効果が高い領域はさらに消音効果が高くなり、クロストークノイズ成分が大きく消音効果が低い領域は騒音が小さくなる。このため、同じ構成の消音機構にて単数のファンを使用した室内機、又はファン個別制御を行わない室内機に比べ、高い騒音低減効果を得ることができる。 As described above, in the indoor unit 100 according to the thirteenth embodiment, the plurality of fans 20A to 20C are arranged, and the blower fan control means 171 for individually controlling the rotation speed of the fans 20A to 20C is provided. The blower fan control means 171 controls the fan 20A, 20C installed at both ends of the indoor unit 100 to increase the rotation speed, and reduces the rotation speed of the fan 20B installed outside the both ends of the indoor unit 100. Rotational speed control is performed as follows. For this reason, the region where the crosstalk noise component from the adjacent fan is small and the silencing effect is high further increases the silencing effect, and the region where the crosstalk noise component is large and the silencing effect is low decreases the noise. For this reason, a high noise reduction effect can be obtained as compared with an indoor unit that uses a single fan with the silencer mechanism having the same configuration or an indoor unit that does not perform individual fan control.
 また、送風ファン制御手段171は、吹出口3から放射される風量がファン個別制御をした場合と同回転数制御をした場合で同じとなるように、ファン20A~20Cのそれぞれの回転数を制御するため、空力性能を劣化させることなく騒音を低減することができる。 Further, the blower fan control means 171 controls the rotational speeds of the fans 20A to 20C so that the amount of air radiated from the air outlet 3 is the same when the same rotational speed control is performed as when the individual fan control is performed. Therefore, noise can be reduced without deteriorating the aerodynamic performance.
 さらに、制御スピーカー181,182が風路へはみ出さないように、制御スピーカー181,182を室内機100の両側面に設置している。このため、制御スピーカー181,182が風路にはみ出ることによって発生する圧力損失を防止でき、空力的な性能の劣化を防止することができる。 Furthermore, the control speakers 181 and 182 are installed on both side surfaces of the indoor unit 100 so that the control speakers 181 and 182 do not protrude into the air path. For this reason, it is possible to prevent pressure loss caused by the control speakers 181 and 182 protruding into the air path, and to prevent aerodynamic performance deterioration.
 さらに、仕切り板90,90aで室内機100の風路を複数の領域に分割することにより、ファン20A~20Cから放射される騒音をそれぞれ分離することができ、消音機構Aはファン20Aから放射される騒音のみを低減し、消音機構Bはファン20Cから放射される騒音のみを低減することになる。このため、ファン20Bから放射された騒音によるクロストークノイズ成分が小さくなる。 Furthermore, by dividing the air path of the indoor unit 100 into a plurality of regions by the partition plates 90 and 90a, the noise radiated from the fans 20A to 20C can be separated, respectively, and the silencing mechanism A is radiated from the fan 20A. The noise reduction mechanism B reduces only the noise radiated from the fan 20C. For this reason, the crosstalk noise component by the noise radiated | emitted from the fan 20B becomes small.
 さらに、仕切り板90,90aで室内機100の風路を複数の領域に分割することにより、風路をダクト構造に近づけることになるため、騒音を一次元で捉えられる。このため、室内機100内部を伝達する騒音の位相が均一となり、制御音を干渉させた際の位相誤差が小さくなる。さらに、消音機構が設けられていないファン20Bの回転数を低くすることで消音機構が設けられていない領域の騒音が小さくなり、図35の構成に比べて、さらに高い騒音低減効果を得ることができる。 Furthermore, by dividing the air passage of the indoor unit 100 into a plurality of regions by the partition plates 90 and 90a, the air passage is brought closer to the duct structure, so that noise can be captured in one dimension. For this reason, the phase of the noise transmitted through the interior of the indoor unit 100 becomes uniform, and the phase error when the control sound interferes is reduced. Further, by reducing the rotation speed of the fan 20B not provided with the silencer mechanism, the noise in the area where the silencer mechanism is not provided is reduced, and a higher noise reduction effect can be obtained compared to the configuration of FIG. it can.
実施の形態14.
 実施の形態11に係る室内機に、実施の形態13で示した送風ファン情報を用いても勿論よい。なお、本実施の形態14では、上述した実施の形態8~実施の形態13との相違点を中心に説明するものとし、実施の形態8~実施の形態13と同一部分には同一符号を付している。
Embodiment 14 FIG.
Of course, the blower fan information shown in the thirteenth embodiment may be used for the indoor unit according to the eleventh embodiment. In the fourteenth embodiment, differences from the above-described eighth to thirteenth embodiments will be mainly described, and the same parts as those in the eighth to thirteenth embodiments are denoted by the same reference numerals. is doing.
 本実施の形態14に係る室内機100の基本的な構成は、実施の形態11で説明した図47と同様である。本実施の形態14に係る室内機100が実施の形態11の室内機100と異なる点は、制御装置281のメモリー132に入力されている送風ファン情報が異なる点である。より詳しくは、本実施の形態14では、室内機100のケーシング1の両端に設置されているファン20の識別番号を送風ファン情報としている。つまり、図47からわかるように、本実施の形態14における送風ファン情報は、ファン20Aとファン20Cの識別番号となる。 The basic configuration of the indoor unit 100 according to Embodiment 14 is the same as that in FIG. 47 described in Embodiment 11. The indoor unit 100 according to the fourteenth embodiment is different from the indoor unit 100 according to the eleventh embodiment in that the blower fan information input to the memory 132 of the control device 281 is different. More specifically, in the fourteenth embodiment, the identification numbers of the fans 20 installed at both ends of the casing 1 of the indoor unit 100 are used as the blower fan information. That is, as can be seen from FIG. 47, the blower fan information in the fourteenth embodiment is the identification number of the fan 20A and the fan 20C.
 また、実施の形態11では制御スピーカー181,182の室内機100側面への詳細な設置構成については説明しなかったが、本実施の形態14では、次のように制御スピーカー181,182を室内機100側面へ設置している。
 制御スピーカー181,182はある程度の厚みがあるため、室内機100の前面や背面に設置すると、風路を塞いでしまい、空力性能の劣化につながってしまう。このため、本実施の形態14では、ケーシング1の両側面部に設けられた機械ボックス(制御基板等が格納されているボックス、図示せず)内に、制御スピーカー181,182を配置している。このように制御スピーカー181,182を配置することにより、制御スピーカー181,182が風路にはみ出ることを防止できる。
Although the eleventh embodiment does not describe the detailed installation configuration of the control speakers 181 and 182 on the side surface of the indoor unit 100, in the fourteenth embodiment, the control speakers 181 and 182 are connected as follows. It is installed on 100 sides.
Since the control speakers 181 and 182 have a certain thickness, if they are installed on the front surface or the rear surface of the indoor unit 100, the air passage is blocked, leading to deterioration of aerodynamic performance. For this reason, in the fourteenth embodiment, control speakers 181 and 182 are arranged in a machine box (a box in which a control board or the like is stored, not shown) provided on both side portions of the casing 1. By arranging the control speakers 181 and 182 in this way, the control speakers 181 and 182 can be prevented from protruding into the air path.
 室内機100における動作は実施の形態11で説明した動作と同様である。このため、以下には、ファン20A~20Cのファン個別制御について説明する。 The operation in the indoor unit 100 is the same as the operation described in the eleventh embodiment. Therefore, hereinafter, individual fan control of the fans 20A to 20C will be described.
 送風ファン制御手段171のファン個別制御回転数決定手段134は、実施の形態11と同様に、同回転数決定手段133で決定された回転数情報及びメモリー132から読み出した送風ファン情報に基づき、ファン個別制御を行う際の各ファンの回転数を決定する。具体的には、ファン個別制御回転数決定手段134は識別番号がメモリー132に入力されているファン20A,20Cの回転数を高くし、識別番号がメモリー132に入力されていないファン20Bの回転数を低くする。結果として、ファン個別制御回転数決定手段134は、室内機100のケーシング1の両端に設置されているファン20A,20Cの回転数を高くし、室内機100のケーシング1の両端以外に設置されているファン20Bの回転数を低くすることになる。なお、このとき、ファン個別制御をした場合に得られる風量が同回転数制御時と同じ風量となるように、ファン20A~20Cのそれぞれの回転数を決定するとよい。 The fan individual control rotation speed determination means 134 of the blower fan control means 171 is based on the rotation speed information determined by the rotation speed determination means 133 and the blower fan information read from the memory 132, as in the eleventh embodiment. The number of rotations of each fan when performing individual control is determined. Specifically, the fan individual control rotation speed determination means 134 increases the rotation speed of the fans 20A and 20C whose identification number is input to the memory 132, and the rotation speed of the fan 20B whose identification number is not input to the memory 132. Lower. As a result, the fan individual control rotation speed determining means 134 increases the rotation speed of the fans 20A and 20C installed at both ends of the casing 1 of the indoor unit 100, and is installed at other than both ends of the casing 1 of the indoor unit 100. The rotation speed of the fan 20B is reduced. At this time, the rotation speeds of the fans 20A to 20C may be determined so that the air volume obtained in the individual fan control is the same as that in the same rotation speed control.
 リモコン280からファン個別制御を行う旨の運転情報信号(例えば静音モード等の信号)が入力された場合、SW135を切り替えることにより、同回転数制御の回転制御信号からファン個別制御における回転制御信号に切り替え、この回転制御信号を制御装置281からファン20A~20Cへ出力する。制御装置281から出力された回転制御信号はモータードライバー282A~282Cに入力され、回転制御信号に従った回転数にファン20A~20Cは制御される。 When an operation information signal for performing individual fan control (for example, a signal for the silent mode) is input from the remote controller 280, the rotation control signal for the same speed control is changed to the rotation control signal for the individual fan control by switching the SW 135. The rotation control signal is output from the control device 281 to the fans 20A to 20C. The rotation control signal output from the control device 281 is input to the motor drivers 282A to 282C, and the fans 20A to 20C are controlled to the number of rotations according to the rotation control signal.
 両端のファン20A,20Cが放射する騒音を能動的に消音する場合と、両端以外のファン20Bが放射する騒音を能動的に消音する場合とでは、これらファンの騒音を検出する際のクロストークノイズ成分が異なってくる。ファン20Bから放射される騒音を検出する場合、隣接するファン20A,20Cから放射される騒音もクロストークノイズ成分として入ってくるためである。このため、本実施の形態14では、室内機100を複数のファン20A~20Cを備えた構成とし、騒音検出時にクロストークノイズ成分が小さい両端のファン20A,20Cの回転数を高くし、騒音検出時にクロストークノイズ成分が大きい両端以外のファン20Bの回転数を低くする。 Crosstalk noise when detecting noise from the fans 20A and 20C at both ends is actively silenced when noise from the fans 20B other than both ends is actively silenced. The ingredients are different. This is because when noise radiated from the fan 20B is detected, noise radiated from the adjacent fans 20A and 20C also enters as a crosstalk noise component. For this reason, in the fourteenth embodiment, the indoor unit 100 is provided with a plurality of fans 20A to 20C, and the rotational speeds of the fans 20A and 20C at both ends having a small crosstalk noise component are increased during noise detection to detect noise. Sometimes the rotational speed of the fan 20B other than both ends where the crosstalk noise component is large is lowered.
 その結果、本実施の形態14に係る室内機100は、消音効果の高い領域はさらに消音効果が高くなり、消音効果の低い領域は騒音が小さくなるため、単数のファンを使用した室内機やファン個別制御を行わない室内機に比べ、吹出口3全体から放射される騒音を低減することができる。さらに、本実施の形態14に係る室内機100は、同回転数制御時と風量が一定となるように複数のファン20A~20Cの回転数を個別に制御することで、空力的な性能の劣化を抑制することができる。 As a result, in the indoor unit 100 according to the fourteenth embodiment, an area with a high silencing effect has a higher silencing effect, and an area with a low silencing effect has a low noise level. Therefore, an indoor unit or fan that uses a single fan. Compared with an indoor unit that does not perform individual control, noise radiated from the entire outlet 3 can be reduced. Furthermore, in the indoor unit 100 according to Embodiment 14, the aerodynamic performance is deteriorated by individually controlling the rotational speeds of the fans 20A to 20C so that the airflow is constant when the rotational speed is controlled. Can be suppressed.
 さらに、本実施の形態14では、制御スピーカー181,182が風路へはみ出さないように、制御スピーカー181,182を室内機100の両側面に設置している。このため、制御スピーカー181,182が風路にはみ出ることによって発生する圧力損失を防止でき、空力的な性能の劣化を防止することができる。 Further, in the fourteenth embodiment, the control speakers 181 and 182 are installed on both side surfaces of the indoor unit 100 so that the control speakers 181 and 182 do not protrude into the air path. For this reason, it is possible to prevent pressure loss caused by the control speakers 181 and 182 protruding into the air path, and to prevent aerodynamic performance deterioration.
 さらに、本実施の形態14に係る室内機100においても、実施の形態11の図48及び図49で示した室内機100と同様に、室内機100の風路を複数の領域に分割することにより、消音効果をさらに向上させることができる。 Furthermore, in the indoor unit 100 according to the fourteenth embodiment, as with the indoor unit 100 shown in FIGS. 48 and 49 of the eleventh embodiment, the air path of the indoor unit 100 is divided into a plurality of regions. Further, the silencing effect can be further improved.
 つまり、仕切り板90,90aで室内機100の風路を複数の領域に分割することにより、ファン20A~20Cから放射される騒音をそれぞれの領域に分離することができ、消音機構Dはファン20Aから放射される騒音のみを低減し、消音機構Eはファン20Cから放射される騒音のみを低減することになる。このため、ファン20Bから放射された騒音・消音効果検出マイクロホン211,212が検出してしまうことを防止できるので、騒音・消音効果検出マイクロホン211,212のクロストークノイズ成分が小さくなる。 That is, by dividing the air path of the indoor unit 100 into a plurality of regions by the partition plates 90 and 90a, the noise radiated from the fans 20A to 20C can be separated into the respective regions, and the silencing mechanism D is used in the fan 20A. Only the noise radiated from the fan 20C is reduced, and the silencing mechanism E reduces only the noise radiated from the fan 20C. For this reason, it is possible to prevent the noise / silencing effect detection microphones 211 and 212 emitted from the fan 20B from being detected, so that the crosstalk noise component of the noise / silence effect detection microphones 211 and 212 is reduced.
 さらに、風路をダクト構造に近づけることになるため、騒音を一次元で捉えられる。このため、室内機100内部を伝達する騒音の位相が均一となり、制御音を干渉させた際の位相誤差が小さくなるので、消音効果がより高くなる。一方、消音機構が設けられていないファン20Bの回転数を低くすることで、消音機構が設けられていない領域の騒音が小さくなる。したがって、本実施の形態14に係る室内機100においても、室内機100の風路を複数の領域に分割することにより、図47の構成に比べ、さらに騒音を低減することができる。なお、仕切り板は風路全域に設ける必要はなく、例えば熱交換器50の上流側のみ又は熱交換器50の下流側のみといったように、風路の一部を仕切り板で区切るようにしてもよい。 Furthermore, noise can be captured in one dimension because the air path is closer to the duct structure. For this reason, the phase of the noise transmitted through the interior of the indoor unit 100 becomes uniform, and the phase error when the control sound interferes is reduced, so that the silencing effect is further enhanced. On the other hand, by reducing the rotational speed of the fan 20B that is not provided with the silencing mechanism, the noise in the area where the silencing mechanism is not provided is reduced. Therefore, also in the indoor unit 100 according to the fourteenth embodiment, by dividing the air path of the indoor unit 100 into a plurality of regions, noise can be further reduced compared to the configuration of FIG. Note that the partition plate does not need to be provided in the entire air path, and a part of the air path may be partitioned by the partition plate, for example, only on the upstream side of the heat exchanger 50 or only on the downstream side of the heat exchanger 50. Good.
 なお、本実施の形態14では、騒音・消音効果検出マイクロホン211,212を制御スピーカー181,182の下流側に設置したが、制御スピーカー181,182の上流側に騒音・消音効果検出マイクロホン211,212を設置してもよい。さらに、本実施の形態14では、制御スピーカー、騒音・消音効果検出マイクロホン及び信号処理装置をそれぞれ2個配置しているが、これに限るものではない。 In the fourteenth embodiment, the noise / silence effect detection microphones 211 and 212 are installed on the downstream side of the control speakers 181 and 182, but the noise / silence effect detection microphones 211 and 212 on the upstream side of the control speakers 181 and 182. May be installed. Furthermore, in the fourteenth embodiment, two control speakers, noise / muffling effect detection microphones, and two signal processing devices are arranged, but the present invention is not limited to this.
 また、本実施の形態14では、送風ファン制御手段171を制御装置281内のCPU131で構成しているが、LSI(Large Scale Integration)やFPGA(Field Programmable Gate Array)等のハードウェアにより構成してもよい。さらに、送風ファン制御手段171の構成についても限定されるものではない。 In the fourteenth embodiment, the blower fan control means 171 is configured by the CPU 131 in the control device 281, but is configured by hardware such as LSI (Large Scale Integration) or FPGA (Field Programmable Gate Array). Also good. Further, the configuration of the blower fan control means 171 is not limited.
 また、本実施の形態14では、送風ファン制御手段171は、室内機100の両端のファン20A,20Cの回転数を高くし、かつ、両端以外のファン20Bの回転数を低くするように構成したが、そのどちらか一方を行うように構成してもよい。 In the fourteenth embodiment, the blower fan control means 171 is configured to increase the rotational speed of the fans 20A and 20C at both ends of the indoor unit 100 and to decrease the rotational speed of the fan 20B other than both ends. However, you may comprise so that either one may be performed.
 以上、本実施の形態14に係る室内機100においては、複数のファン20A~20Cを配置し、ファン20A~20Cの回転数を個別に制御する送風ファン制御手段171が設けられている。送風ファン制御手段171は、室内機100の両端に設置しているファン20A,20Cの回転数を高くするように制御し、室内機100の両端以外に設置しているファン20Bの回転数を低くするように回転数制御を行う。このため、隣接するファンからのクロストークノイズが小さく消音効果が高い領域はさらに消音効果が高くなり、クロストークノイズが大きく消音効果が低い領域は騒音が小さくなる。このため、同じ構成の消音機構にて単数のファンを使用した室内機、又はファン個別制御を行わない室内機に比べ、より騒音を低減することができる。 As described above, in the indoor unit 100 according to the fourteenth embodiment, the plurality of fans 20A to 20C are arranged, and the blower fan control means 171 for individually controlling the rotational speed of the fans 20A to 20C is provided. The blower fan control means 171 controls the fan 20A, 20C installed at both ends of the indoor unit 100 to increase the rotation speed, and reduces the rotation speed of the fan 20B installed outside the both ends of the indoor unit 100. Rotational speed control is performed as follows. For this reason, the region where the crosstalk noise from the adjacent fan is small and the silencing effect is high is further enhanced, and the region where the crosstalk noise is large and the silencing effect is low is low. For this reason, noise can be further reduced as compared with an indoor unit that uses a single fan with a silencing mechanism having the same configuration, or an indoor unit that does not perform individual fan control.
 また、送風ファン制御手段171は、吹出口3から放射される風量がファン個別制御をした場合と同回転数制御をした場合で同じとなるように、ファン20A~20Cのそれぞれの回転数を制御するため、空力性能を劣化させることなく騒音を低減することができる。 Further, the blower fan control means 171 controls the rotational speeds of the fans 20A to 20C so that the amount of air radiated from the air outlet 3 is the same when the same rotational speed control is performed as when the individual fan control is performed. Therefore, noise can be reduced without deteriorating the aerodynamic performance.
 さらに、制御スピーカー181,182が風路へはみ出さないように、制御スピーカー181,182を室内機100の両側面に設置している。このため、制御スピーカー181,182が風路にはみ出ることによって発生する圧力損失を防止でき、空力的な性能の劣化を防止することができる。 Furthermore, the control speakers 181 and 182 are installed on both side surfaces of the indoor unit 100 so that the control speakers 181 and 182 do not protrude into the air path. For this reason, it is possible to prevent pressure loss caused by the control speakers 181 and 182 protruding into the air path, and to prevent aerodynamic performance deterioration.
 さらに、仕切り板90,90aで室内機100の風路を複数の領域に分割することにより、ファン20A~20Cから放射される騒音をそれぞれ分離することができ、消音機構Dはファン20Aから放射される騒音のみを低減し、消音機構Eはファン20Cから放射される騒音のみを低減することになる。このため、ファン20Bから放射された騒音によるクロストークノイズ成分が小さくなる。 Furthermore, by dividing the air path of the indoor unit 100 into a plurality of regions by the partition plates 90 and 90a, the noise radiated from the fans 20A to 20C can be separated, respectively, and the silencing mechanism D is radiated from the fan 20A. The noise reduction mechanism E reduces only the noise radiated from the fan 20C. For this reason, the crosstalk noise component by the noise radiated | emitted from the fan 20B becomes small.
 さらに、仕切り板90,90aで室内機100の風路を複数の領域に分割することにより、風路をダクト構造に近づけることになるため、騒音を一次元で捉えられる。このため、室内機100内部を伝達する騒音の位相が均一となり、制御音を干渉させた際の位相誤差が小さくなる。さらに、消音機構が設けられていないファン20Bの回転数を低くすることで消音機構が設けられていない領域の騒音が小さくなり、図47の構成に比べて、さらに高い騒音低減効果を得ることができる。 Furthermore, by dividing the air passage of the indoor unit 100 into a plurality of regions by the partition plates 90 and 90a, the air passage is brought closer to the duct structure, so that noise can be captured in one dimension. For this reason, the phase of the noise transmitted through the interior of the indoor unit 100 becomes uniform, and the phase error when the control sound interferes is reduced. Further, by reducing the rotation speed of the fan 20B not provided with the silencer mechanism, the noise in the area where the silencer mechanism is not provided is reduced, and a higher noise reduction effect can be obtained compared to the configuration of FIG. it can.
 さらに、本実施の形態14では、騒音検出マイクロホン161,162と消音効果検出マイクロホン191,192を騒音・消音効果検出マイクロホン211,212に集約しているため、マイクロホンの数を減らすことができ、部品点数を削減できるので、さらにコストを下げることができる。 Furthermore, in the fourteenth embodiment, since the noise detection microphones 161 and 162 and the silencing effect detection microphones 191 and 192 are integrated into the noise / silencing effect detection microphones 211 and 212, the number of microphones can be reduced. Since the number of points can be reduced, the cost can be further reduced.
実施の形態15.
 消音効果検出マイクロホンや騒音・消音効果検出マイクロホンの消音効果に応じてファン個別制御を行う場合、例えば以下のようにファン個別制御を行ってもよい。なお、本実施の形態15では、上述した実施の形態8~実施の形態14との相違点を中心に説明するものとし、実施の形態8~実施の形態14と同一部分には同一符号を付している。
Embodiment 15 FIG.
When performing individual fan control according to the silencing effect of the silencing effect detection microphone or the noise / silencing effect detection microphone, for example, the individual fan control may be performed as follows. In the fifteenth embodiment, differences from the above-described eighth to fourteenth embodiments will be mainly described, and the same parts as those in the eighth to fourteenth embodiments are denoted by the same reference numerals. is doing.
 図54は、本発明の実施の形態15に係る室内機を示す正面図である。
 本実施の形態15に係る室内機100が実施の形態9の室内機100と異なる点は、送風ファン制御手段174の構成のみである。
FIG. 54 is a front view showing an indoor unit according to Embodiment 15 of the present invention.
The indoor unit 100 according to the fifteenth embodiment is different from the indoor unit 100 according to the ninth embodiment only in the configuration of the blower fan control means 174.
 本実施の形態15に係る送風ファン制御手段174について説明する。
 図55は、本発明の実施の形態15に係る制御装置を示す構成図である。以下で説明する各種動作及び手段は、室内機100が備える制御装置281に組み込まれたプログラムを実行することにより行われる。制御装置281は主に、実施の形態8~実施の形態14で述べた構成と同様、リモコン280等の外部入力装置からの信号を入力する入力部130、組み込まれたプログラムに従って演算を行うCPU131、データーやプログラムを記憶するメモリー132を備えている。さらに、本実施の形態15に係るCPU131は、送風ファン制御手段174を備えている。
The blower fan control means 174 according to the fifteenth embodiment will be described.
FIG. 55 is a block diagram showing a control apparatus according to Embodiment 15 of the present invention. Various operations and means described below are performed by executing a program incorporated in the control device 281 included in the indoor unit 100. Similar to the configuration described in the eighth to fourteenth embodiments, the control device 281 mainly includes an input unit 130 for inputting a signal from an external input device such as the remote controller 280, a CPU 131 for performing an operation according to an embedded program, A memory 132 for storing data and programs is provided. Furthermore, the CPU 131 according to the fifteenth embodiment includes a blower fan control unit 174.
 送風ファン制御手段174は、同回転数決定手段133、複数の消音量算出手段138(消音効果検出マイクロホンと同数)、ファン個別制御回転数決定手段134C及び複数のSW135(ファン20と同数)を備えている。同回転数決定手段133は、リモコン280から入力された運転情報に基づき、ファン20A~20Cを全て同じ回転数で動作させる場合の回転数を決定するものである。リモコン280から入力された運転情報とは、例えば、冷房運転モード、暖房運転モード及び除湿運転モード等の運転モード情報や、強、中、及び弱等の風量情報である。消音量算出手段138は、消音効果検出マイクロホン191~193にて検出した音圧レベルのデジタル値S1,S2,S3が入力されるものであり、これらS1,S2,S3の信号から消音量を算出するものである。 The blower fan control means 174 includes the same rotation speed determination means 133, a plurality of silence volume calculation means 138 (the same number as the silencing effect detection microphone), a fan individual control rotation speed determination means 134C, and a plurality of SW 135 (the same number as the fan 20). ing. The rotation speed determination means 133 determines the rotation speed when all the fans 20A to 20C are operated at the same rotation speed based on the operation information input from the remote controller 280. The operation information input from the remote controller 280 is, for example, operation mode information such as a cooling operation mode, a heating operation mode, and a dehumidifying operation mode, and air volume information such as strong, medium, and weak. The muffling volume calculation means 138 receives the digital values S1, S2 and S3 of the sound pressure levels detected by the muffling effect detection microphones 191 to 193, and calculates the muffling volume from these S1, S2 and S3 signals. To do.
 ファン個別制御回転数決定手段134Cは、消音量算出手段138で算出された消音量とメモリー132に記憶されている送風ファン情報に基づき、ファン20A~20Cをファン個別制御するときのそれぞれの回転数を決定するものである。送風ファン情報とは、消音効果検出マイクロホン191~193と関連性が高いファン20の情報である。SW135は、例えばリモコン280から入力される信号に基づき、モータードライバー282A~282Cへ送られるファン20A~20Cの回転制御信号を切り替えるものである。つまり、SW135は、ファン20A~20Cを全て同じ回転数で動作させるか(同回転数制御するか)、ファン20A~20Cをそれぞれ個別の回転数で動作させるか(ファン個別制御するか)を切り替えるものである。 The individual fan control rotation speed determination means 134C is based on the silence volume calculated by the silence volume calculation means 138 and the blower fan information stored in the memory 132, and each revolution speed when the fans 20A to 20C are individually controlled. Is to determine. The blower fan information is information on the fan 20 that is highly related to the muffler effect detection microphones 191 to 193. The SW 135 switches the rotation control signals of the fans 20A to 20C sent to the motor drivers 282A to 282C, for example, based on a signal input from the remote controller 280. That is, the SW 135 switches whether the fans 20A to 20C are all operated at the same rotational speed (whether the same rotational speed is controlled) or whether the fans 20A to 20C are respectively operated at individual rotational speeds (whether the fan is individually controlled). Is.
 図56は、本発明の実施の形態15に係る消音量算出手段を示す構成図である。
 消音量算出手段138は、入力される信号(S1、S2又はS3)を平均化する平均化手段136と、能動的消音制御を開始する前の音圧レベルを記憶しておく制御前音圧レベル記憶手段139と、差分器140と、を備えている。
FIG. 56 is a block diagram showing a muffled sound level calculation means according to Embodiment 15 of the present invention.
The muffled sound volume calculating means 138 averages the input signal (S1, S2 or S3), and the pre-control sound pressure level for storing the sound pressure level before starting the active mute control. A storage unit 139 and a differentiator 140 are provided.
 次に室内機100の動作について説明する。
 実施の形態9と同様、室内機100が動作すると、ファン20A~20Cの羽根車が回転し、ファン20A~20Cの上側から室内の空気が吸い込まれ、ファン20A~20C下側へと空気が送られることにより気流が発生する。これに伴い、ファン20A~20Cの吹出口近傍において運転音(騒音)が発生し、その音は下流側へと伝搬する。ファン20A~20Cにより送られた空気は、風路を通り、熱交換器50へと送られる。例えば、冷房運転の場合、熱交換器50には、室外機(図示せず)とつながっている配管から低温の冷媒が送られる。熱交換器50へと送られた空気は、熱交換器50を流れる冷媒に冷やされて冷気となり、そのまま吹出口3から室内へ放出される。
Next, the operation of the indoor unit 100 will be described.
As in the ninth embodiment, when the indoor unit 100 operates, the impellers of the fans 20A to 20C rotate, the indoor air is sucked from the upper side of the fans 20A to 20C, and the air is sent to the lower side of the fans 20A to 20C. Airflow is generated. Along with this, a driving sound (noise) is generated in the vicinity of the air outlets of the fans 20A to 20C, and the sound propagates downstream. The air sent by the fans 20A to 20C passes through the air path and is sent to the heat exchanger 50. For example, in the case of cooling operation, low-temperature refrigerant is sent to the heat exchanger 50 from a pipe connected to an outdoor unit (not shown). The air sent to the heat exchanger 50 is cooled by the refrigerant flowing through the heat exchanger 50 to become cold air, and is directly discharged into the room from the outlet 3.
 また、消音機構A~Cの動作についても実施の形態9と全く同じであり、消音効果検出マイクロホン191~193で検出される騒音をゼロに近づけるように制御音を出力し、結果として消音効果検出マイクロホン191~193における騒音を抑制するよう動作する。 Also, the operations of the silencing mechanisms A to C are exactly the same as in the ninth embodiment, and the control sound is output so that the noise detected by the silencing effect detection microphones 191 to 193 approaches zero, and as a result, the silencing effect detection The microphones 191 to 193 operate to suppress noise.
 本実施の形態15に係る室内機100の場合、消音効果検出マイクロホン193には、ファン20Bから放射される騒音の他に、隣接するファン20A,20Cから放射される騒音(クロストークノイズ成分)も入ってくる。一方、消音効果検出マイクロホン191,192にて検出されるクロストークノイズ成分は、消音効果検出マイクロホン193で検出されるクロストークノイズ成分と比べて小さくなる。消音効果検出マイクロホン191,192は、隣接するファンが1つのみ(ファン20B)だからである。このため、消音機構Cに比べて、消音機構A,Bの消音効果が高くなる。 In the indoor unit 100 according to the fifteenth embodiment, the silencing effect detection microphone 193 also includes noise (crosstalk noise component) radiated from the adjacent fans 20A and 20C in addition to the noise radiated from the fan 20B. Come in. On the other hand, the crosstalk noise component detected by the silencing effect detection microphones 191 and 192 is smaller than the crosstalk noise component detected by the silencing effect detection microphone 193. This is because the silencing effect detection microphones 191 and 192 have only one adjacent fan (fan 20B). For this reason, the silencing effect of the silencing mechanisms A and B is higher than that of the silencing mechanism C.
 次に、本実施の形態15に係るファン20A~20Cのファン個別制御について説明する。
 制御装置281には、リモコン280で選択された運転情報が入力される。上述したように、運転情報とは、例えば、冷房運転モード、暖房運転モード及び除湿運転モード等の運転モード情報である。さらに、強、中、及び弱等の風量情報も同様に、リモコン280から制御装置281へ運転情報として入力される。制御装置281に入力された運転情報は、入力部130を介して同回転数決定手段133に入力される。運転情報が入力された同回転数決定手段133は、入力された運転情報から、ファン20A~20Cを同回転数制御する場合の回転数を決定する。ファン個別制御を行わない場合、ファン20A~20Cは、全て同じ回転数で制御される。
Next, individual fan control of the fans 20A to 20C according to the fifteenth embodiment will be described.
Operation information selected by the remote controller 280 is input to the control device 281. As described above, the operation information is, for example, operation mode information such as a cooling operation mode, a heating operation mode, and a dehumidifying operation mode. Further, the air volume information such as strong, medium, and weak is similarly input as operation information from the remote controller 280 to the control device 281. The operation information input to the control device 281 is input to the rotation speed determination unit 133 via the input unit 130. The same rotation speed determining means 133 to which the operation information is input determines the rotation speed when the fans 20A to 20C are controlled at the same rotation speed from the input operation information. When the individual fan control is not performed, all the fans 20A to 20C are controlled at the same rotational speed.
 一方、消音量算出手段138には、信号処理装置201~203から平均化手段136へS1~S3(消音効果検出マイクロホン191~193で検出された音圧レベルのデジタル値)が入力される。また、消音量算出手段138は、能動的消音制御を行う前に消音効果検出マイクロホン191~193で検出した音圧レベルを平均化手段136で一定期間平均化し、この平均化された音圧レベルを制御前音圧レベル記憶手段139に記憶しておく。次に、消音量算出手段138は、能動的消音制御時に消音効果検出マイクロホン191~193で検出した音圧レベルを平均化手段136で一定期間平均化する。 On the other hand, S1 to S3 (the digital value of the sound pressure level detected by the mute effect detection microphones 191 to 193) is input from the signal processing devices 201 to 203 to the averaging unit 136 to the mute volume calculation unit 138. Further, the sound dead volume calculating means 138 averages the sound pressure level detected by the sound deadening effect detecting microphones 191 to 193 for a certain period of time before performing the active sound deadening control, and the averaged sound pressure level is averaged. This is stored in the pre-control sound pressure level storage means 139. Next, the silence volume calculation means 138 averages the sound pressure levels detected by the silence effect detection microphones 191 to 193 during the active silence control by the averaging means 136 for a certain period.
 そして、消音量算出手段138は、「能動的消音制御時に消音効果検出マイクロホン191~193で検出した音圧レベルを平均化手段136で一定期間平均化した音圧レベル」と「能動的消音制御を行う前に消音効果検出マイクロホン191~193で検出した音圧レベルを平均化手段136で一定期間平均化した音圧レベル」(制御前音圧レベル記憶手段139に記憶されているもの)との差から、消音量を算出する。消音量算出手段138で算出された消音量は、ファン個別制御回転数決定手段134Cに入力される。 Then, the muffled sound volume calculation means 138 reads “the sound pressure level obtained by averaging the sound pressure levels detected by the mute effect detection microphones 191 to 193 during the active mute control for a certain period of time by the averaging means 136” and “active mute control. Difference from “the sound pressure level obtained by averaging the sound pressure levels detected by the muffler effect detection microphones 191 to 193 before being performed by the averaging means 136 for a certain period” (stored in the pre-control sound pressure level storage means 139) From the above, the silence volume is calculated. The silence volume calculated by the silence volume calculation means 138 is input to the fan individual control rotation speed determination means 134C.
 また、メモリー132には、送風ファン情報が記憶されている。送風ファン情報とは、消音効果検出マイクロホン191~193で検出される音に対して最も関連性が高い騒音を放射するファン20の情報である。これらの識別番号は、各消音効果検出マイクロホンごとに振り分けられている。本実施の形態15では、送風ファン情報となる識別番号を以下のように求めている。例えば、消音効果検出マイクロホン191で検出される音が、ファン20A~20Cから放射される騒音のうちのどの騒音と最も関連性が高いかを確認する。消音効果検出マイクロホン191で検出される音がファン20Aから放射される騒音と最も関連性が高い場合、消音効果検出マイクロホン191に対応する送風ファン情報はファン20Aを示す識別番号となる。同様に、消音効果検出マイクロホン192,193についても対応する送風ファン情報が決められ、予めメモリー132に記憶させておく。 The memory 132 stores air blower information. The blower fan information is information on the fan 20 that emits noise most relevant to the sound detected by the muffler effect detection microphones 191 to 193. These identification numbers are assigned to each silencing effect detection microphone. In the fifteenth embodiment, the identification number serving as the blower fan information is obtained as follows. For example, it is confirmed which sound detected by the muffler effect detection microphone 191 is most relevant to which of the noises radiated from the fans 20A to 20C. When the sound detected by the silencing effect detection microphone 191 is most relevant to the noise emitted from the fan 20A, the blower fan information corresponding to the silencing effect detection microphone 191 is an identification number indicating the fan 20A. Similarly, corresponding blowing fan information is determined for the silencing effect detection microphones 192 and 193 and stored in the memory 132 in advance.
 送風ファン情報の決定は、例えば次のように行うとよい。例えば製品出荷前、ファン20A~20Cを動作させた状態で、ファン20A~20Cから放射される騒音を正確に検出するマイクロホンにより検出する。そして、これらのマイクロホンで検出された音と、消音効果検出マイクロホン191で検出した音とのコヒーレンス値を測定する。その後、消音効果検出マイクロホン191検出値に対して最もコヒーレンス値の高かった検出値のマイクロホンを決定する。このマイクロホンが検出する騒音を放射しているファン20の識別番号が、消音効果検出マイクロホン191に対応する送風ファン情報となる。消音効果検出マイクロホン192,193に対応する送風ファン情報も同様に決定するとよい。 The determination of the blower fan information may be performed as follows, for example. For example, the noise detected from the fans 20A to 20C is detected by a microphone that accurately detects the fans 20A to 20C in a state in which the fans 20A to 20C are operated before product shipment. Then, the coherence value between the sound detected by these microphones and the sound detected by the mute effect detection microphone 191 is measured. Thereafter, the microphone of the detection value having the highest coherence value with respect to the detection value of the muffler effect detection microphone 191 is determined. The identification number of the fan 20 that emits noise detected by the microphone is the blower fan information corresponding to the silencing effect detection microphone 191. The blower fan information corresponding to the silencing effect detection microphones 192 and 193 may be determined in the same manner.
 また、送風ファン情報の決定は、例えば次のように行ってもよい。室内機100の送風ファン制御手段174等に、実施の形態10で示したようなコヒーレンス演算手段137を搭載しておく。そして、製品出荷後の運転時において、騒音検出マイクロホン161~163の検出値と消音効果検出マイクロホン191~193の検出値とのコヒーレンス値を測定する。そして、消音効果検出マイクロホン191~193それぞれについて最もコヒーレンス値の高かった騒音検出マイクロホンに距離の近いファン20の識別番号を送風ファン情報としてもよい。 Further, the determination of the blower fan information may be performed as follows, for example. Coherence calculation means 137 as shown in the tenth embodiment is mounted on the blower fan control means 174 of the indoor unit 100. Then, during operation after product shipment, the coherence value between the detection values of the noise detection microphones 161 to 163 and the detection values of the silencing effect detection microphones 191 to 193 is measured. The identification number of the fan 20 that is closest to the noise detection microphone having the highest coherence value for each of the mute effect detection microphones 191 to 193 may be used as the blower fan information.
 なお、送風ファン情報の決定の仕方は、上記の方法に限られるものではない。消音効果検出マイクロホン191~193にて検出した音と最も関連性の高い騒音を放射しているファンを特定できる方法であればよい。 Note that the method of determining the blower fan information is not limited to the above method. Any method can be used as long as it can identify the fan that emits the noise most closely related to the sound detected by the muffler effect detection microphones 191 to 193.
 消音量算出手段138で算出された消音量とメモリー132に記憶されている送風ファン情報は、ファン個別制御回転数決定手段134Cへ入力される。ファン個別制御回転数決定手段134Cは、これらの情報に基づき、ファン個別制御を行う際の各ファンの回転数を決定する。具体的には、消音量が大きい消音効果検出マイクロホンにて検出した音に関連性の高いファンの回転数を高くし、消音量が小さい消音効果検出マイクロホンにて検出した音に関連性の高いファンの回転数を低くするように、ファンの回転数を決定する。このとき、ファン個別制御をした場合に得られる風量が同回転数制御時と同じ風量となるように、ファン20A~20Cのそれぞれの回転数を決定するとよい。 The silence volume calculated by the silence volume calculation means 138 and the blower fan information stored in the memory 132 are input to the fan individual control rotation speed determination means 134C. Based on these pieces of information, the individual fan control rotation speed determination means 134C determines the rotation speed of each fan when performing individual fan control. Specifically, the fan that is highly relevant to the sound detected by the muffler effect detection microphone with a high mute volume is increased, and the fan that is highly relevant to the sound detected by the muffler effect detection microphone with a low muffler volume is set. The number of rotations of the fan is determined so as to reduce the number of rotations. At this time, the rotation speeds of the fans 20A to 20C may be determined so that the air volume obtained in the individual fan control is the same as that in the same rotation speed control.
 例えば、本実施の形態15に係る室内機100において、消音効果検出マイクロホン191で検出した音と最も関連性の高い騒音を放射しているファンがファン20Aであり、消音効果検出マイクロホン192で検出した音と最も関連性の高い騒音を放射しているファンがファン20Cであり、消音効果検出マイクロホン193で検出した音と最も関連性の高い騒音を放射しているファンがファン20Bであったとする。そして、消音効果検出マイクロホン191における消音量が-5dB、消音効果検出マイクロホン192における消音量が-5dB、及び消音効果検出マイクロホン193における消音量が-2dBであるとする。この場合、ファン個別制御回転数決定手段134Cは、ファン20A,20Cの回転数を高くし、ファン20Bの回転数を低くするように各ファンの回転数を決定する。風量と回転数は比例関係にあるため、例えば、図54のような構成の場合、ファン20Aとファン20Cの回転数を10%高くすると、ファン20Bの回転数を20%低くすることで同一風量となる。 For example, in the indoor unit 100 according to the fifteenth embodiment, the fan 20A that radiates noise most highly relevant to the sound detected by the muffler effect detection microphone 191 is the fan 20A, and is detected by the muffler effect detection microphone 192. It is assumed that the fan radiating the noise most relevant to the sound is the fan 20C, and the fan radiating the noise most relevant to the sound detected by the mute effect detection microphone 193 is the fan 20B. It is assumed that the muffled sound volume in the muffling effect detection microphone 191 is -5 dB, the muffled sound volume in the muffling effect detection microphone 192 is -5 dB, and the muffled sound volume in the muffling effect detection microphone 193 is -2 dB. In this case, the fan individual control rotation speed determination means 134C determines the rotation speed of each fan so as to increase the rotation speed of the fans 20A and 20C and decrease the rotation speed of the fan 20B. Since the air volume and the rotational speed are in a proportional relationship, for example, in the case of the configuration shown in FIG. 54, if the rotational speed of the fan 20A and the fan 20C is increased by 10%, the rotational speed of the fan 20B is decreased by 20%. It becomes.
 なお、上述したファン20A~20Cの回転数の決定方法は、あくまでも一例である。例えば、本実施の形態15に係る室内機100において、消音効果検出マイクロホン191で検出した音と最も関連性の高い騒音を放射しているファンがファン20Aであり、消音効果検出マイクロホン192で検出した音と最も関連性の高い騒音を放射しているファンがファン20Cであり、消音効果検出マイクロホン193で検出した音と最も関連性の高い騒音を放射しているファンがファン20Bであったとする。そして、消音効果検出マイクロホン191における消音量が-5dB、消音効果検出マイクロホン192における消音量が-3dB、及び消音効果検出マイクロホン193における消音量が-2dBであるとする。この場合、ファン20Aの回転数を高くし、ファン20Bの回転数を低くし、ファン20Cの回転数をそのままにするように、各ファンの回転数を決定してもよい。つまり、消音量が最も大きい消音効果検出マイクロホン191に関連性が高いファン20Aの回転数を高くし、消音量が最も小さい消音効果検出マイクロホン193に関連性が高いファン20Bの回転数を低くし、そのどちらでもないファン20Cの回転数はそのままにするように、各ファンの回転数を決定してもよい。 Note that the above-described method for determining the rotational speed of the fans 20A to 20C is merely an example. For example, in the indoor unit 100 according to the fifteenth embodiment, the fan 20A that radiates noise most highly relevant to the sound detected by the muffler effect detection microphone 191 is the fan 20A, and is detected by the muffler effect detection microphone 192. It is assumed that the fan radiating the noise most relevant to the sound is the fan 20C, and the fan radiating the noise most relevant to the sound detected by the mute effect detection microphone 193 is the fan 20B. Then, it is assumed that the muffled sound volume in the muffling effect detection microphone 191 is −5 dB, the muffled sound volume in the muffling effect detection microphone 192 is −3 dB, and the muffled sound volume in the muffling effect detection microphone 193 is −2 dB. In this case, the rotational speed of each fan may be determined such that the rotational speed of the fan 20A is increased, the rotational speed of the fan 20B is decreased, and the rotational speed of the fan 20C is left as it is. That is, the rotation speed of the fan 20A having high relevance to the muffler effect detection microphone 191 having the highest muffle volume is increased, and the rotation speed of the fan 20B having high relevance to the muffler effect detection microphone 193 having the lowest muffle volume is decreased. The rotation speed of each fan may be determined so that the rotation speed of the fan 20C which is neither of them is left as it is.
 リモコン280からファン個別制御を行う旨の運転情報信号(例えば静音モード等の信号)が入力された場合、SW135を切り替えることにより、同回転数制御の回転制御信号からファン個別制御における回転制御信号に切り替え、この回転制御信号を制御装置281からファン20A~20Cへ出力する。制御装置281から出力された回転制御信号はモータードライバー282A~282Cに入力され、回転制御信号に従った回転数にファン20A~20Cは制御される。 When an operation information signal for performing individual fan control (for example, a signal for the silent mode) is input from the remote controller 280, the rotation control signal for the same speed control is changed to the rotation control signal for the individual fan control by switching the SW 135. The rotation control signal is output from the control device 281 to the fans 20A to 20C. The rotation control signal output from the control device 281 is input to the motor drivers 282A to 282C, and the fans 20A to 20C are controlled to the number of rotations according to the rotation control signal.
 ここで上述したように、本実施の形態15に係る室内機100の場合、隣接するファンからのクロストークノイズ成分の大小により、消音効果検出マイクロホン193の近辺の領域に比べて、消音効果検出マイクロホン191,192の近辺の領域は量が大きくなる。一方、消音効果検出マイクロホン193の近辺の領域は、消音量が小さくなる。そこで、複数のファン20A~20Cを備えた本実施の形態15に係る室内機100においては、消音量が大きい消音効果検出マイクロホン191,192に関連性の高い騒音を放射しているファン20A,20Cの回転数を高くし、消音量が小さい消音効果検出マイクロホン193に関連性の高い騒音を放射しているファン20Bの回転数を低くしている。 As described above, in the case of the indoor unit 100 according to the fifteenth embodiment, the silencing effect detection microphone is compared with the region near the silencing effect detection microphone 193 due to the magnitude of the crosstalk noise component from the adjacent fan. The area near 191 and 192 has a large amount. On the other hand, in the area near the silencing effect detection microphone 193, the silencing volume is small. Therefore, in the indoor unit 100 according to the fifteenth embodiment provided with a plurality of fans 20A to 20C, the fans 20A and 20C that radiate highly relevant noise to the silencing effect detection microphones 191 and 192 having a large silencing level. , And the rotation speed of the fan 20B that emits highly relevant noise to the muffler effect detection microphone 193 with a low muffled sound volume is lowered.
 その結果、本実施の形態15に係る室内機100は、消音効果の高い領域はさらに消音効果が高くなり、消音効果の低い領域は騒音が小さくなるため、単数のファンを使用した室内機やファン個別制御を行わない室内機に比べ、吹出口3全体から放射される騒音を低減することができる。さらに、本実施の形態15に係る室内機100は、同回転数制御時と風量が一定となるように複数のファン20A~20Cの回転数を個別に制御することで、空力的な性能の劣化を抑制することができる。 As a result, in the indoor unit 100 according to the fifteenth embodiment, an area with a high silencing effect has a higher silencing effect, and an area with a low silencing effect has less noise. Compared with an indoor unit that does not perform individual control, noise radiated from the entire outlet 3 can be reduced. Furthermore, in the indoor unit 100 according to the fifteenth embodiment, aerodynamic performance is degraded by individually controlling the rotational speeds of the plurality of fans 20A to 20C so that the airflow is constant when the rotational speed control is performed. Can be suppressed.
 さらに、本実施の形態15に係る室内機100においても、実施の形態9の図42及び図43で示した室内機100と同様に、室内機100の風路を複数の領域に分割することにより、消音効果をさらに向上させることができる。 Furthermore, in the indoor unit 100 according to the fifteenth embodiment, as with the indoor unit 100 shown in FIGS. 42 and 43 of the ninth embodiment, the air path of the indoor unit 100 is divided into a plurality of regions. Further, the silencing effect can be further improved.
 つまり、仕切り板90,90aで室内機100の風路を複数の領域に分割することにより、ファン20A~20Cから放射される騒音をそれぞれの領域に分離することができ、消音機構Aはファン20Aから放射される騒音のみを低減し、消音機構Bはファン20Cから放射される騒音のみを低減し、消音機構Cはファン20Bから放射される騒音のみを低減することになる。このため、騒音検出マイクロホン161~163及び消音効果検出マイクロホン191~193が検出するクロストークノイズ成分(隣接する流路に設けられたファンから放射される騒音)が小さくなる。 That is, by dividing the air path of the indoor unit 100 into a plurality of regions by the partition plates 90 and 90a, the noise radiated from the fans 20A to 20C can be separated into the respective regions, and the silencing mechanism A is used in the fan 20A. Only the noise radiated from the fan 20C is reduced, the silencer mechanism B reduces only the noise radiated from the fan 20C, and the silencer mechanism C reduces only the noise radiated from the fan 20B. For this reason, the crosstalk noise components (noise radiated from the fans provided in the adjacent flow paths) detected by the noise detection microphones 161 to 163 and the silencing effect detection microphones 191 to 193 are reduced.
 さらに、風路をダクト構造に近づけることになるため、騒音を一次元で捉えられる。このため、室内機100内部を伝達する騒音の位相が均一となり、制御音を干渉させた際の位相誤差が小さくなるので、消音効果がより高くなる。したがって、本実施の形態15に係る室内機100においても、室内機100の風路を複数の領域に分割することにより、図54の構成に比べ、さらに騒音を低減することができる。一方、消音機構が設けられていないファンがある場合、そのファン20の回転数を低くすることで消音機構が設けられていない領域の騒音が小さくなり、同様の効果を得ることができる。また、図42及び図43では風路全域に仕切り板を挿入したが、例えば熱交換器50の上流側のみ又は熱交換器50の下流側のみといったように、風路の一部を仕切り板で区切るようにしてもよい。 Furthermore, noise can be captured in one dimension because the air path is closer to the duct structure. For this reason, the phase of the noise transmitted through the interior of the indoor unit 100 becomes uniform, and the phase error when the control sound interferes is reduced, so that the silencing effect is further enhanced. Therefore, also in the indoor unit 100 according to the fifteenth embodiment, by dividing the air path of the indoor unit 100 into a plurality of regions, noise can be further reduced compared to the configuration of FIG. On the other hand, when there is a fan that is not provided with a silencing mechanism, noise in an area where the silencing mechanism is not provided is reduced by lowering the rotation speed of the fan 20, and the same effect can be obtained. 42 and 43, a partition plate is inserted in the entire air path. However, a part of the air path is separated by a partition plate, for example, only on the upstream side of the heat exchanger 50 or only on the downstream side of the heat exchanger 50. You may make it delimit.
 なお、本実施の形態15では、消音効果検出マイクロホン191~193をファン20A~20Cの回転軸のほぼ延長線上に配置したが、制御スピーカー181~183の下流側であれば消音効果検出マイクロホン191~193の設置位置はどこでもよい。さらに、本実施の形態15では、騒音検出マイクロホン、制御スピーカー、消音効果検出マイクロホン及び信号処理装置をそれぞれ3個配置しているが、これに限るものではない。 In the fifteenth embodiment, the muffling effect detection microphones 191 to 193 are arranged almost on the extension line of the rotation axis of the fans 20A to 20C. The installation position of 193 may be anywhere. Furthermore, in the fifteenth embodiment, three noise detection microphones, control speakers, muffler effect detection microphones, and signal processing devices are arranged, but the present invention is not limited to this.
 また、本実施の形態15では、送風ファン制御手段174を制御装置281内のCPU131で構成したが、LSI(Large Scale Integration)やFPGA(Field Programmable Gate Array)等のハードウェアにより構成してもよい。さらに、送風ファン制御手段174の構成についても図55及び図56に示した構成に限るものではない。 In the fifteenth embodiment, the blower fan control means 174 is configured by the CPU 131 in the control device 281, but may be configured by hardware such as LSI (Large Scale Integration) or FPGA (Field Programmable Gate Array). . Further, the configuration of the blower fan control means 174 is not limited to the configuration shown in FIGS. 55 and 56.
 また、本実施の形態15では、送風ファン制御手段174は、消音量が大きい消音効果検出マイクロホンが検出する音と関連性の高い騒音を放射しているファンの回転数を高くし、かつ、消音量が小さい消音効果検出マイクロホンが検出する音と関連性の高い騒音を放射しているファンの回転数を低くするように構成したが、そのどちらか一方を行うように構成してもよい。 Further, in the fifteenth embodiment, the blower fan control means 174 increases the rotation speed of the fan that emits noise highly relevant to the sound detected by the muffler effect detection microphone having a high muffing volume, and mute the sound. Although the configuration is such that the number of rotations of the fan emitting noise that is highly relevant to the sound detected by the muffler effect detection microphone with a small amount is reduced, it may be configured to perform either one of them.
 また、本実施の形態15では、ファンの回転数を制御するパラメーターとして消音効果検出マイクロホン191~193における消音量を用いているが、ファンの回転数を制御するパラメーターとしてその他のものを用いても勿論よい。例えば、消音効果検出マイクロホン191~193のそれぞれで検出した音圧レベルの平均値を算出し、最も音圧レベルの平均値が大きい消音効果検出マイクロホンが検出する音と関連性の高い騒音を放射しているファンの回転数を低くしてもよい。また例えば、消音効果検出マイクロホン191~193のそれぞれで検出した音圧レベルの平均値を算出し、最も音圧レベルの平均値が小さい消音効果検出マイクロホンが検出する音と関連性の高い騒音を放射しているファンの回転数を高くしてもよい。これら両方を行うようにしても勿論よい。 In the fifteenth embodiment, the muffling volume in the muffler effect detection microphones 191 to 193 is used as a parameter for controlling the rotational speed of the fan. However, other parameters may be used as the parameter for controlling the rotational speed of the fan. Of course. For example, the average value of the sound pressure level detected by each of the muffler effect detection microphones 191 to 193 is calculated, and noise that is highly relevant to the sound detected by the muffler effect detection microphone having the largest average value of the sound pressure level is emitted. The number of rotations of the fan may be lowered. Further, for example, the average value of the sound pressure level detected by each of the muffler effect detection microphones 191 to 193 is calculated, and the noise that is highly relevant to the sound detected by the muffler effect detection microphone having the smallest average sound pressure level is radiated. The number of rotations of the fan being used may be increased. Of course, both may be performed.
 また、ファンの回転数を制御するパラメーターとして、騒音検出マイクロホン161と消音効果検出マイクロホン191、騒音検出マイクロホン162と消音効果検出マイクロホン192、騒音検出マイクロホン163と消音効果検出マイクロホン193とのコヒーレンス値を用いてもよい。例えば、最もコヒーレンス値が小さい消音効果検出マイクロホンが検出する音と関連性の高い騒音を放射しているファンの回転数を低くしてもよい。また例えば、最もコヒーレンス値が大きい消音効果検出マイクロホンが検出する音と関連性の高い騒音を放射しているファンの回転数を高くしてもよい。これら両方を行うようにしても勿論よい。 Further, as parameters for controlling the rotation speed of the fan, the noise detection microphone 161 and the silencing effect detection microphone 191, the noise detection microphone 162 and the silencing effect detection microphone 192, and the coherence values of the noise detection microphone 163 and the silencing effect detection microphone 193 are used. May be. For example, the rotational speed of a fan that emits noise highly relevant to the sound detected by the muffler effect detection microphone having the smallest coherence value may be reduced. Further, for example, the rotational speed of the fan that emits noise highly relevant to the sound detected by the muffler effect detection microphone having the largest coherence value may be increased. Of course, both may be performed.
 以上、本実施の形態15に係る室内機100においては、複数のファン20A~20Cを配置し、ファン20A~20Cの回転数を個別に制御する制御装置281(より詳しくは、送風ファン制御手段174)が設けられている。送風ファン制御手段174は、消音効果検出マイクロホン191~193における消音量のうち、消音量の大きい消音効果検出マイクロホンが検出する音と関連性の高い騒音を放射しているファンの回転数を高くするように制御し、消音量の小さい消音効果検出マイクロホンが検出する音と関連性の高い騒音を放射しているファンの回転数を低くするように回転数制御を行う。このため、消音量が大きい領域の回転数を高くすることでさらに消音効果が高くなり、消音量の小さい領域の回転数を低くすることでその領域の騒音が小さくなる。このため、同じ構成の消音機構にて単数のファンを使用した室内機、又はファン個別制御を行わない室内機に比べ、より騒音を低減することができる。 As described above, in the indoor unit 100 according to the fifteenth embodiment, the plurality of fans 20A to 20C are arranged, and the control device 281 for controlling the rotational speed of the fans 20A to 20C individually (more specifically, the blower fan control means 174). ) Is provided. The blower fan control means 174 increases the rotation speed of the fan that emits noise that is highly relevant to the sound detected by the muffler effect detection microphone having a high mute level among the mute levels of the muffler effect detection microphones 191 to 193. Thus, the rotational speed control is performed so as to reduce the rotational speed of the fan that emits noise having high relevance to the sound detected by the muffler effect detection microphone having a low muffled sound volume. For this reason, the noise reduction effect is further enhanced by increasing the number of rotations in a region where the volume level is low, and the noise in that region is reduced by reducing the number of rotations in a region where the level level is low. For this reason, noise can be further reduced as compared with an indoor unit that uses a single fan with a silencing mechanism having the same configuration, or an indoor unit that does not perform individual fan control.
 また、本実施の形態15にかかる室内機100においては、消音量が大きい消音効果検出マイクロホンが検出する音と関連性の高い騒音を放射しているファンを特定しているため、放射される音圧レベルが異なる複数のファン20A~20Cを用いた場合においても正確に回転数制御を行うことができる。 Further, in the indoor unit 100 according to the fifteenth embodiment, since the fan that emits noise that is highly relevant to the sound detected by the muffler effect detection microphone having a high muffled volume is specified, the emitted sound is Even when a plurality of fans 20A to 20C having different pressure levels are used, the rotational speed can be accurately controlled.
 さらに、送風ファン制御手段174は、吹出口3から放射される風量がファン個別制御をした場合と同回転数制御をした場合で同じとなるように、ファン20A~20Cのそれぞれの回転数を制御するため、空力性能を劣化させることなく騒音を低減することができる。 Further, the blower fan control means 174 controls the rotational speed of each of the fans 20A to 20C so that the amount of air radiated from the blowout port 3 is the same when the same rotational speed control is performed as when the individual fan control is performed. Therefore, noise can be reduced without deteriorating the aerodynamic performance.
 さらに、仕切り板90,90aで室内機100の風路を複数の領域に分割することにより、ファン20A~20Cから放射される騒音をそれぞれ分離することができ、消音機構Aはファン20Aから放射される騒音のみを低減し、消音機構Bはファン20Cから放射される騒音のみを低減し、消音機構Cはファン20Bから放射される騒音のみを低減することになる。このため、各領域において、隣接する領域に放射された騒音によるクロストークノイズ成分が小さくなる。 Furthermore, by dividing the air path of the indoor unit 100 into a plurality of regions by the partition plates 90 and 90a, the noise radiated from the fans 20A to 20C can be separated, respectively, and the silencing mechanism A is radiated from the fan 20A. The noise reduction mechanism B reduces only the noise emitted from the fan 20C, and the noise reduction mechanism C reduces only the noise emitted from the fan 20B. For this reason, in each area | region, the crosstalk noise component by the noise radiated | emitted to the adjacent area | region becomes small.
 さらに、仕切り板90,90aで室内機100の風路を複数の領域に分割することにより、風路をダクト構造に近づけることになるため、騒音を一次元で捉えられる。このため、室内機100内部を伝達する騒音の位相が均一となり、制御音を干渉させた際の位相誤差が小さくなるので、図54の構成に比べて、さらに高い騒音低減効果を得ることができる。一方、消音機構が設けられていない領域がある場合、消音機構が設けられていないファンの回転数を低くすることで、その領域の騒音が小さくなり、同様に消音効果を得ることができる。 Furthermore, by dividing the air passage of the indoor unit 100 into a plurality of regions by the partition plates 90 and 90a, the air passage is brought closer to the duct structure, so that noise can be captured in one dimension. For this reason, the phase of the noise transmitted through the interior of the indoor unit 100 becomes uniform, and the phase error when the control sound interferes is reduced, so that a higher noise reduction effect can be obtained compared to the configuration of FIG. . On the other hand, when there is a region where the silencing mechanism is not provided, by reducing the rotational speed of the fan not equipped with the silencing mechanism, the noise in that region is reduced, and a silencing effect can be obtained similarly.
実施の形態16.
 実施の形態15で示したファン個別制御(消音効果検出マイクロホンと関連性が高いファン20の情報を用いるファン個別制御)は、実施の形態15に係る消音機構とは異なる消音機構を備えた空気調和機においても実施可能である。なお、以下では、実施の形態12に係る室内機に実施の形態15で示したファン個別制御を採用した場合について説明する。また、本実施の形態16では、上述した実施の形態8~実施の形態15との相違点を中心に説明するものとし、実施の形態8~実施の形態15と同一部分には同一符号を付している。
Embodiment 16 FIG.
The individual fan control shown in the fifteenth embodiment (the individual fan control using information on the fan 20 that is highly relevant to the muffler effect detection microphone) is an air conditioner equipped with a silencing mechanism different from the silencing mechanism according to the fifteenth embodiment. It can also be implemented in the machine. Hereinafter, the case where the individual fan control shown in the fifteenth embodiment is adopted in the indoor unit according to the twelfth embodiment will be described. In the sixteenth embodiment, differences from the above-described eighth to fifteenth embodiments will be mainly described, and the same parts as those in the eighth to fifteenth embodiments are denoted by the same reference numerals. is doing.
 図57は、本発明の実施の形態16に係る室内機を示す正面図である。
 本実施の形態16に係る室内機100が実施の形態12の室内機100と異なる点は、送風ファン制御手段174の構成のみである。なお、送風ファン制御手段174の構成は、実施の形態15の図55に示した構成と全く同じである。
FIG. 57 is a front view showing an indoor unit according to Embodiment 16 of the present invention.
The difference between the indoor unit 100 according to the sixteenth embodiment and the indoor unit 100 according to the twelfth embodiment is only the configuration of the blower fan control means 174. The structure of the blower fan control means 174 is exactly the same as the structure shown in FIG. 55 of the fifteenth embodiment.
 次に、室内機100の動作について説明する。
 実施の形態12と同様、室内機100が動作すると、ファン20A~20Cの羽根車が回転し、ファン20A~20Cの上側から室内の空気が吸い込まれ、ファン20A~20C下側へと空気が送られることにより気流が発生する。これに伴い、ファン20A~20Cの吹出口近傍において運転音(騒音)が発生し、その音は下流側へと伝搬する。ファン20A~20Cにより送られた空気は、風路を通り、熱交換器50へと送られる。例えば、冷房運転の場合、熱交換器50には、室外機(図示せず)とつながっている配管から低温の冷媒が送られる。熱交換器50へと送られた空気は、熱交換器50を流れる冷媒に冷やされて冷気となり、そのまま吹出口3から室内へ放出される。
Next, the operation of the indoor unit 100 will be described.
As in the twelfth embodiment, when the indoor unit 100 operates, the impellers of the fans 20A to 20C rotate, the indoor air is sucked from the upper side of the fans 20A to 20C, and the air is sent to the lower side of the fans 20A to 20C. Airflow is generated. Along with this, a driving sound (noise) is generated in the vicinity of the air outlets of the fans 20A to 20C, and the sound propagates downstream. The air sent by the fans 20A to 20C passes through the air path and is sent to the heat exchanger 50. For example, in the case of cooling operation, low-temperature refrigerant is sent to the heat exchanger 50 from a pipe connected to an outdoor unit (not shown). The air sent to the heat exchanger 50 is cooled by the refrigerant flowing through the heat exchanger 50 to become cold air, and is directly discharged into the room from the outlet 3.
 また、消音機構D~Fの動作についても実施の形態12と全く同じであり、騒音・消音効果検出マイクロホン211~213で検出される騒音をゼロに近づけるように制御音を出力し、結果として騒音・消音効果検出マイクロホン211~213における騒音を抑制するよう動作する。 Also, the operation of the silencer mechanisms D to F is exactly the same as in the twelfth embodiment, and a control sound is output so that the noise detected by the noise / silence effect detection microphones 211 to 213 approaches zero, and as a result, the noise The noise reduction effect detection microphones 211 to 213 operate to suppress noise.
 本実施の形態16に係る室内機100の場合、騒音・消音効果検出マイクロホン213には、ファン20Bからの騒音の他に、隣接するファン20A,20Cから放射される騒音(クロストークノイズ成分)も入ってくる。一方、騒音・消音効果検出マイクロホン211,212にて検出されるクロストークノイズ成分は、騒音・消音効果検出マイクロホン213で検出されるクロストークノイズ成分と比べて小さくなる。騒音・消音効果検出マイクロホン211,212は、隣接するファンが1つのみ(ファン20B)だからである。このため、消音機構Fに比べて消音機構D、Eの消音効果が高くなる。 In the indoor unit 100 according to the sixteenth embodiment, in addition to the noise from the fan 20B, the noise (crosstalk noise component) radiated from the adjacent fans 20A and 20C is also included in the noise / silencing effect detection microphone 213. Come in. On the other hand, the crosstalk noise component detected by the noise / silence effect detection microphones 211 and 212 is smaller than the crosstalk noise component detected by the noise / silence effect detection microphone 213. This is because the noise / silencing effect detection microphones 211 and 212 have only one adjacent fan (fan 20B). For this reason, the silencing effect of the silencing mechanisms D and E is higher than that of the silencing mechanism F.
 ファン20A~20Cのファン個別制御は、実施の形態15で説明した内容とほとんど同様である。本実施の形態16のファン個別制御が実施の形態15で説明したファン個別と異なる点は、消音量算出手段138に入力されるS1~S3が騒音・消音効果検出マイクロホン211~213で検出した音圧レベルのデジタル値である点である。また、本実施の形態16のファン個別制御が実施の形態15で説明したファン個別制御と異なる点は、メモリー132に蓄積しておく送風ファン情報が、騒音・消音効果検出マイクロホン211~213で検出される音に対して最も関連性が高い騒音を放射するファン20の識別番号である点である。 The fan individual control of the fans 20A to 20C is almost the same as the contents described in the fifteenth embodiment. The individual fan control of the sixteenth embodiment is different from the individual fan described in the fifteenth embodiment in that the sounds detected by the noise / silence effect detecting microphones 211 to 213 in S1 to S3 input to the muffling volume calculation means 138 are as follows. This is a digital value of the pressure level. Also, the individual fan control of the sixteenth embodiment differs from the individual fan control described in the fifteenth embodiment, in that the fan information stored in the memory 132 is detected by the noise / silence effect detection microphones 211 to 213. This is the identification number of the fan 20 that emits the noise most relevant to the generated sound.
 このため、送風ファン制御手段174のファン個別制御回転数決定手段134Cは、消音量算出手段138で算出された消音量とメモリー132に記憶されている送風ファン情報に基づき、消音量が大きい騒音・消音効果検出マイクロホンにて検出した音に関連性の高いファンの回転数を高くし、消音量が小さい騒音・消音効果検出マイクロホンにて検出した音に関連性の高いファンの回転数を低くするようにファンの回転数を決定する。このとき、ファン個別制御をした場合に得られる風量が同回転数制御時と同じ風量となるように、ファン20A~20Cのそれぞれの回転数を決定するとよい。 For this reason, the fan individual control rotation speed determination means 134C of the blower fan control means 174 is based on the silence volume calculated by the silence volume calculation means 138 and the blower fan information stored in the memory 132. Increase the fan speed, which is highly related to the sound detected by the mute effect detection microphone, and decrease the fan speed, which is highly related to the sound detected by the noise / silence effect detection microphone, which has a low mute level. Determine the fan speed. At this time, the rotation speeds of the fans 20A to 20C may be determined so that the air volume obtained in the individual fan control is the same as that in the same rotation speed control.
 例えば、本実施の形態16に係る室内機100において、騒音・消音効果検出マイクロホン211で検出した音と最も関連性の高い騒音を放射しているファンがファン20Aであり、騒音・消音効果検出マイクロホン212で検出した音と最も関連性の高い騒音を放射しているファンがファン20Cであり、騒音・消音効果検出マイクロホン213で検出した音と最も関連性の高い騒音を放射しているファンがファン20Bであったとする。そして、騒音・消音効果検出マイクロホン211における消音量が-5dB、騒音・消音効果検出マイクロホン212における消音量が-5dB、及び騒音・消音効果検出マイクロホン213における消音量が-2dBであるとする。この場合、ファン個別制御回転数決定手段134Cは、ファン20A,20Cの回転数を高くし、ファン20Bの回転数を低くするように各ファンの回転数を決定する。風量と回転数は比例関係にあるため、例えば、図57のような構成の場合、ファン20Aとファン20Cの回転数を10%高くすると、ファン20Bの回転数を20%低くすることで同一風量となる。 For example, in the indoor unit 100 according to the sixteenth embodiment, the fan 20A is the fan that emits the noise most closely related to the sound detected by the noise / silence effect detection microphone 211, and the noise / silence effect detection microphone. The fan radiating the noise most closely related to the sound detected at 212 is the fan 20C, and the fan radiating the noise most relevant to the sound detected by the noise / silencing effect detection microphone 213 is the fan. Suppose that it was 20B. It is assumed that the noise reduction level in the noise / silence effect detection microphone 211 is −5 dB, the noise reduction level in the noise / silence effect detection microphone 212 is −5 dB, and the noise reduction level in the noise / silence effect detection microphone 213 is −2 dB. In this case, the fan individual control rotation speed determination means 134C determines the rotation speed of each fan so as to increase the rotation speed of the fans 20A and 20C and decrease the rotation speed of the fan 20B. Since the air volume and the rotational speed are in a proportional relationship, for example, in the case of the configuration shown in FIG. 57, if the rotational speed of the fan 20A and the fan 20C is increased by 10%, the rotational speed of the fan 20B is decreased by 20%. It becomes.
 なお、上述したファン20A~20Cの回転数の決定方法は、あくまでも一例である。本実施の形態16に係る室内機100において、騒音・消音効果検出マイクロホン211で検出した音と最も関連性の高い騒音を放射しているファンがファン20Aであり、騒音・消音効果検出マイクロホン212で検出した音と最も関連性の高い騒音を放射しているファンがファン20Cであり、騒音・消音効果検出マイクロホン213で検出した音と最も関連性の高い騒音を放射しているファンがファン20Bであったとする。そして、騒音・消音効果検出マイクロホン211における消音量が-5dB、騒音・消音効果検出マイクロホン212における消音量が-3dB、及び騒音・消音効果検出マイクロホン213における消音量が-2dBであるとする。この場合、ファン20Aの回転数を高くし、ファン20Bの回転数を低くし、ファン20Cの回転数をそのままにするように、各ファンの回転数を決定してもよい。つまり、消音量が最も大きい消音効果検出マイクロホン191に関連性が高いファン20Aの回転数を高くし、消音量が最も小さい消音効果検出マイクロホン193に関連性が高いファン20Bの回転数を低くし、そのどちらでもないファン20Cの回転数はそのままにするように、各ファンの回転数を決定してもよい。 Note that the above-described method for determining the rotational speed of the fans 20A to 20C is merely an example. In the indoor unit 100 according to the sixteenth embodiment, the fan 20A that radiates the noise most closely related to the sound detected by the noise / silence effect detection microphone 211 is the fan 20A, and the noise / silence effect detection microphone 212 is the fan. The fan radiating noise most relevant to the detected sound is the fan 20C, and the fan radiating noise most relevant to the sound detected by the noise / muffling effect detection microphone 213 is the fan 20B. Suppose there was. It is assumed that the noise reduction level in the noise / silence effect detection microphone 211 is −5 dB, the noise reduction level in the noise / silence effect detection microphone 212 is −3 dB, and the noise reduction level in the noise / silence effect detection microphone 213 is −2 dB. In this case, the rotational speed of each fan may be determined such that the rotational speed of the fan 20A is increased, the rotational speed of the fan 20B is decreased, and the rotational speed of the fan 20C is left as it is. That is, the rotation speed of the fan 20A having high relevance to the muffler effect detection microphone 191 having the highest muffle volume is increased, and the rotation speed of the fan 20B having high relevance to the muffler effect detection microphone 193 having the lowest muffle volume is decreased. The rotation speed of each fan may be determined so that the rotation speed of the fan 20C which is neither of them is left as it is.
 リモコン280からファン個別制御を行う旨の運転情報信号(例えば静音モード等の信号)が入力された場合、SW135を切り替えることにより、同回転数制御の回転制御信号からファン個別制御における回転制御信号に切り替え、この回転制御信号を制御装置281からファン20A~20Cへ出力する。制御装置281から出力された回転制御信号はモータードライバー282A~282Cに入力され、回転制御信号に従った回転数にファン20A~20Cは制御される。 When an operation information signal for performing individual fan control (for example, a signal for the silent mode) is input from the remote controller 280, the rotation control signal for the same speed control is changed to the rotation control signal for the individual fan control by switching the SW 135. The rotation control signal is output from the control device 281 to the fans 20A to 20C. The rotation control signal output from the control device 281 is input to the motor drivers 282A to 282C, and the fans 20A to 20C are controlled to the number of rotations according to the rotation control signal.
 ここで上述したように、本実施の形態16に係る室内機100の場合、隣接するファンからのクロストークノイズ成分の大小により、騒音・消音効果検出マイクロホン213の近辺の領域に比べて、騒音・消音効果検出マイクロホン211,212の近辺の領域は消音量が大きくなる。一方、騒音・消音効果検出マイクロホン213の近辺の領域は消音量が小さくなる。そこで、複数のファン20A~20Cを備えた本実施の形態16に係る室内機100においては、消音量が大きい消音効果検出マイクロホン191,192に関連性の高い騒音を放射しているファン20A,20Cの回転数を高くし、消音量が小さい消音効果検出マイクロホン193に関連性の高い騒音を放射しているファン20Bの回転数を低くしている。 As described above, in the case of the indoor unit 100 according to the sixteenth embodiment, the noise / noise reduction effect detection microphone 213 is compared with the noise / silence effect detection microphone 213 due to the magnitude of the crosstalk noise component from the adjacent fan. In the area near the silencing effect detection microphones 211 and 212, the silencing volume increases. On the other hand, in the area near the noise / silencing effect detection microphone 213, the silencing volume is small. Therefore, in the indoor unit 100 according to the sixteenth embodiment provided with a plurality of fans 20A to 20C, the fans 20A and 20C that radiate noise highly relevant to the muffler effect detection microphones 191 and 192 having a large muffled sound volume. , And the rotation speed of the fan 20B that emits highly relevant noise to the muffler effect detection microphone 193 with a low muffled sound volume is lowered.
 その結果、本実施の形態16に係る室内機100は、消音効果の高い領域はさらに消音効果が高くなり、消音効果の低い領域は騒音が小さくなるため、単数のファンを使用した室内機やファン個別制御を行わない室内機に比べ、吹出口3全体から放射される騒音を低減することができる。さらに、本実施の形態16に係る室内機100は、同回転数制御時と風量が一定となるように複数のファン20A~20Cの回転数を個別に制御することで、空力的な性能の劣化を抑制することができる。 As a result, the indoor unit 100 according to the sixteenth embodiment has a higher silencing effect in a region where the silencing effect is high, and noise is small in a region where the silencing effect is low. Therefore, the indoor unit or fan using a single fan Compared with an indoor unit that does not perform individual control, noise radiated from the entire outlet 3 can be reduced. Furthermore, the indoor unit 100 according to the sixteenth embodiment has aerodynamic performance degradation by individually controlling the rotational speeds of the plurality of fans 20A to 20C so that the airflow is constant when the rotational speed control is performed. Can be suppressed.
 さらに、本実施の形態16に係る室内機100においても、実施の形態12の図51及び図52で示した室内機100と同様に、室内機100の風路を複数の領域に分割することにより、消音効果をさらに向上させることができる。 Furthermore, in the indoor unit 100 according to the sixteenth embodiment as well, as with the indoor unit 100 shown in FIGS. 51 and 52 of the twelfth embodiment, the air path of the indoor unit 100 is divided into a plurality of regions. Further, the silencing effect can be further improved.
 つまり、仕切り板90,90aで室内機100の風路を複数の領域に分割することにより、ファン20A~20Cから放射される騒音をそれぞれの領域に分離することができ、消音機構Dはファン20Aから放射される騒音のみを低減し、消音機構Eはファン20Cから放射される騒音のみを低減し、消音機構Fはファン20Bから放射される騒音のみを低減することになる。このため、騒音・消音効果検出マイクロホン211~213が検出するクロストークノイズ成分(隣接する流路に設けられたファンから放射される騒音)が小さくなる。 That is, by dividing the air path of the indoor unit 100 into a plurality of regions by the partition plates 90 and 90a, the noise radiated from the fans 20A to 20C can be separated into the respective regions, and the silencing mechanism D is used in the fan 20A. Only the noise radiated from the fan 20C is reduced, the silencing mechanism E reduces only the noise radiated from the fan 20C, and the silencing mechanism F reduces only the noise radiated from the fan 20B. For this reason, the crosstalk noise component (noise radiated from the fan provided in the adjacent flow path) detected by the noise / silencing effect detection microphones 211 to 213 is reduced.
 さらに、風路をダクト構造に近づけることになるため、騒音を一次元で捉えられる。このため、室内機100内部を伝達する騒音の位相が均一となり、制御音を干渉させた際の位相誤差が小さくなるので、消音効果がより高くなる。したがって、本実施の形態16に係る室内機100においても、室内機100の風路を複数の領域に分割することにより、図57の構成に比べ、さらに騒音を低減することができる。一方、消音機構が設けられていないファンがある場合、そのファン20の回転数を低くすることで消音機構が設けられていない領域の騒音が小さくなり、同様の効果を得ることができる。また、図51及び図52では風路全域に仕切り板を挿入したが、例えば熱交換器50の上流側のみ又は熱交換器50の下流側のみといったように、風路の一部を仕切り板で区切るようにしてもよい。 Furthermore, noise can be captured in one dimension because the air path is closer to the duct structure. For this reason, the phase of the noise transmitted through the interior of the indoor unit 100 becomes uniform, and the phase error when the control sound interferes is reduced, so that the silencing effect is further enhanced. Therefore, also in the indoor unit 100 according to the sixteenth embodiment, by dividing the air path of the indoor unit 100 into a plurality of regions, noise can be further reduced compared to the configuration of FIG. On the other hand, when there is a fan that is not provided with a silencing mechanism, noise in an area where the silencing mechanism is not provided is reduced by lowering the rotation speed of the fan 20, and the same effect can be obtained. 51 and 52, the partition plate is inserted in the entire air path. However, a part of the air path is formed by the partition plate, for example, only on the upstream side of the heat exchanger 50 or only on the downstream side of the heat exchanger 50. You may make it delimit.
 なお、本実施の形態16では、騒音・消音効果検出マイクロホン211~213を制御スピーカー181~183の下流側に設置したが、制御スピーカー181~183の上流側に騒音・消音効果検出マイクロホン211~213を設置してもよい。さらに、本実施の形態16では、制御スピーカー、騒音・消音効果検出マイクロホン、信号処理装置をそれぞれ3個配置しているが、これに限るものではない。 In the sixteenth embodiment, the noise / silencing effect detection microphones 211 to 213 are installed on the downstream side of the control speakers 181 to 183, but the noise / silence effect detection microphones 211 to 213 are installed on the upstream side of the control speakers 181 to 183. May be installed. Furthermore, in the sixteenth embodiment, three control speakers, noise / muffling effect detection microphones, and three signal processing devices are arranged, but the present invention is not limited to this.
 また、本実施の形態16では、送風ファン制御手段174を制御装置281内のCPU131で構成しているが、LSI(Large Scale Integration)やFPGA(Field Programmable Gate Array)等のハードウェアにより構成してもよい。さらに、送風ファン制御手段174の構成についても図55に示した構成に限るものではない。 In the sixteenth embodiment, the blower fan control means 174 is configured by the CPU 131 in the control device 281, but is configured by hardware such as LSI (Large Scale Integration) or FPGA (Field Programmable Gate Array). Also good. Further, the configuration of the blower fan control means 174 is not limited to the configuration shown in FIG.
 また、本実施の形態16では、送風ファン制御手段174は、消音量が大きい消音効果検出マイクロホンが検出する音と関連性の高い騒音を放射しているファンの回転数を高くし、かつ、消音量が小さい騒音・消音効果検出マイクロホンが検出する音と関連性の高い騒音を放射しているファンの回転数を低くするように構成したが、そのどちらか一方を行うように構成してもよい。 Further, in the sixteenth embodiment, the blower fan control means 174 increases the rotation speed of the fan that emits noise highly relevant to the sound detected by the muffler effect detection microphone having a high muffing volume, and mute the sound. Although the configuration is such that the number of rotations of the fan that emits noise that is highly relevant to the sound detected by the microphone and the noise detected by the microphone is low, it may be configured to perform either one of them. .
 また、本実施の形態16では、ファンの回転数を制御するパラメーターとして騒音・消音効果検出マイクロホン211~213における消音量を用いているが、ファンの回転数を制御するパラメーターとしてその他のものを用いても勿論よい。例えば、騒音・消音効果検出マイクロホン211~213のそれぞれで検出した音圧レベルの平均値を算出し、最も音圧レベルの平均値が大きい騒音・消音効果検出マイクロホンが検出する音と関連性の高い騒音を放射しているファンの回転数を低くしてもよい。また例えば、騒音・消音効果検出マイクロホン211~213のそれぞれで検出した音圧レベルの平均値を算出し、最も音圧レベルの平均値が小さい騒音・消音効果検出マイクロホンが検出する音と関連性の高い騒音を放射しているファンの回転数を高くしてもよい。これら両方を行うようにしても勿論よい。 In the sixteenth embodiment, the noise reduction level in the noise / silencing effect detection microphones 211 to 213 is used as a parameter for controlling the rotational speed of the fan, but other parameters are used as parameters for controlling the rotational speed of the fan. Of course. For example, the average value of the sound pressure level detected by each of the noise / silence effect detection microphones 211 to 213 is calculated, and is highly relevant to the sound detected by the noise / silence effect detection microphone having the largest average sound pressure level. The rotational speed of the fan that emits noise may be lowered. In addition, for example, the average value of the sound pressure level detected by each of the noise / silence effect detection microphones 211 to 213 is calculated, and the average value of the sound pressure level is related to the sound detected by the noise / silence effect detection microphone. The rotational speed of the fan emitting high noise may be increased. Of course, both may be performed.
 以上、本実施の形態16に係る室内機100においては、複数のファン20A~20Cを配置し、ファン20A~20Cの回転数を個別に制御する制御装置281(より詳しくは、送風ファン制御手段174)が設けられている。送風ファン制御手段174は、騒音・消音効果検出マイクロホン211~213における消音量のうち、消音量の大きい騒音・消音効果検出マイクロホンが検出する音と関連性の高い騒音を放射しているファンの回転数を高くするように制御し、消音量の小さい騒音・消音効果検出マイクロホンが検出する音と関連性の高い騒音を放射しているファンの回転数を低くするように回転数制御を行う。このため、消音量が大きい領域はさらに消音効果が高くなり、消音量が小さい領域は騒音が小さくなる。このため、同じ構成の消音機構にて単数のファンを使用した室内機、又はファン個別制御を行わない室内機に比べ、より騒音を低減することができる。 As described above, in the indoor unit 100 according to the sixteenth embodiment, the plurality of fans 20A to 20C are arranged, and the control device 281 (more specifically, the blower fan control means 174) that individually controls the rotational speed of the fans 20A to 20C. ) Is provided. The blower fan control means 174 rotates the fan that emits noise that is highly relevant to the sound detected by the noise / silencing effect detection microphone having a high silencing level among the noise reduction levels of the noise / silencing effect detection microphones 211 to 213. The number of revolutions is controlled to be high, and the number of revolutions of the fan that emits noise that is highly relevant to the sound detected by the noise / noise-reduction effect detection microphone with low muffled sound volume is reduced. For this reason, the silencing effect is further enhanced in a region where the volume level is high, and noise is reduced in a region where the volume level is small. For this reason, noise can be further reduced as compared with an indoor unit that uses a single fan with a silencing mechanism having the same configuration, or an indoor unit that does not perform individual fan control.
 また、本実施の形態16にかかる室内機100においては、消音量が大きい騒音・消音効果検出マイクロホンが検出する音と関連性の高い騒音を放射しているファンを特定しているため、放射される音圧レベルが異なる複数のファン20A~20Cを用いた場合においても正確に回転数制御を行うことができる。 Further, in the indoor unit 100 according to the sixteenth embodiment, since the fan that emits noise that is highly relevant to the sound detected by the noise / noise-reduction effect detection microphone having a high noise reduction level is identified, the fan is radiated. Even when a plurality of fans 20A to 20C having different sound pressure levels are used, the rotational speed can be accurately controlled.
 さらに、送風ファン制御手段174は、吹出口3から放射される風量がファン個別制御をした場合と同回転数制御をした場合で同じとなるように、ファン20A~20Cのそれぞれの回転数を制御するため、空力性能を劣化させることなく騒音を低減することができる。 Further, the blower fan control means 174 controls the rotational speed of each of the fans 20A to 20C so that the amount of air radiated from the blowout port 3 is the same when the same rotational speed control is performed as when the individual fan control is performed. Therefore, noise can be reduced without deteriorating the aerodynamic performance.
 さらに、仕切り板90,90aで室内機100の風路を複数の領域に分割することにより、ファン20A~20Cから放射される騒音をそれぞれ分離することができ、消音機構Dはファン20Aから放射される騒音のみを低減し、消音機構Eはファン20Cから放射される騒音のみを低減し、消音機構Fはファン20Bから放射される騒音のみを低減することになる。このため、各領域において、隣接する領域に放射された騒音によるクロストークノイズ成分が小さくなる。 Furthermore, by dividing the air path of the indoor unit 100 into a plurality of regions by the partition plates 90 and 90a, the noise radiated from the fans 20A to 20C can be separated, respectively, and the silencing mechanism D is radiated from the fan 20A. The noise reduction mechanism E reduces only the noise emitted from the fan 20C, and the noise reduction mechanism F reduces only the noise emitted from the fan 20B. For this reason, in each area | region, the crosstalk noise component by the noise radiated | emitted to the adjacent area | region becomes small.
 さらに、仕切り板90,90aで室内機100の風路を複数の領域に分割することにより、風路をダクト構造に近づけることになるため、騒音を一次元で捉えられる。このため、室内機100内部を伝達する騒音の位相が均一となり、制御音を干渉させた際の位相誤差が小さくなるので、図57の構成に比べて、さらに高い騒音低減効果を得ることができる。一方、消音機構が設けられていない領域がある場合、消音機構が設けられていないファンの回転数を低くすることで、その領域の騒音が小さくなり、同様に消音効果を得ることができる。 Furthermore, by dividing the air passage of the indoor unit 100 into a plurality of regions by the partition plates 90 and 90a, the air passage is brought closer to the duct structure, so that noise can be captured in one dimension. For this reason, the phase of the noise transmitted through the interior of the indoor unit 100 becomes uniform, and the phase error when the control sound interferes is reduced, so that a higher noise reduction effect can be obtained compared to the configuration of FIG. . On the other hand, when there is a region where the silencing mechanism is not provided, by reducing the rotational speed of the fan not equipped with the silencing mechanism, the noise in that region is reduced, and a silencing effect can be obtained similarly.
 さらに、本実施の形態16では騒音検出マイクロホン161~163と消音効果検出マイクロホン191~193を騒音・消音効果検出マイクロホン211~213に集約しているため、マイクロホンの数を減らすことができ、部品点数を削減し、さらにコストを下げることができる。 Furthermore, in the sixteenth embodiment, since the noise detection microphones 161 to 163 and the silencing effect detection microphones 191 to 193 are integrated into the noise / silencing effect detection microphones 211 to 213, the number of microphones can be reduced and the number of parts can be reduced. Can be further reduced.
 1 ケーシング、1b 背面部、2 吸込口、3 吹出口、5 ベルマウス、5a 上部、5b 中央部、5c 下部、6 ノズル、10 フィルター、15 フィンガーガード、16 モーターステイ、17 固定部材、18 支持部材、20(20A~20C) ファン、20a 回転軸、21 ボス、25 羽根車、30 ファンモーター、50 熱交換器、50a 対称線、51 前面側熱交換器、55 背面側熱交換器、56 フィン、57 伝熱管、58 熱交換器固定金具、70 上下ベーン、90 仕切り板、90a 仕切り板、100 室内機、110 前面側ドレンパン、111 排水路、111a 舌部、115 背面側ドレンパン、116 接続口、117 ドレンホース、121 乗算器、122 加算器、123 遅延素子、124 乗算器、130 入力部、131 CPU、132 メモリー、133 同回転数決定手段、134(134A,134B,134C) ファン個別制御回転数決定手段、135 SW、136 平均化手段、137 コヒーレンス演算手段、138 消音量算出手段、139 制御前音圧レベル記憶手段、140 差分器、151 マイクアンプ、152 A/D変換器、153 重み付け手段、154 D/A変換器、155 アンプ、158,160 FIRフィルター、159 LMSアルゴリズム、161~163 騒音検出マイクロホン、171~174 送風ファン制御手段、181~183 制御スピーカー、191~193 消音効果検出マイクロホン、201~208 信号処理装置、211~213 騒音・消音効果検出マイクロホン、270 壁部材、280 リモコン、281 制御装置、282A~282C モータードライバー。 1 casing, 1b back surface, 2 inlet, 3 outlet, 5 bell mouth, 5a upper part, 5b central part, 5c lower part, 6 nozzle, 10 filter, 15 finger guard, 16 motor stay, 17 fixing member, 18 supporting member 20 (20A to 20C) fan, 20a rotating shaft, 21 boss, 25 impeller, 30 fan motor, 50 heat exchanger, 50a symmetry line, 51 front side heat exchanger, 55 back side heat exchanger, 56 fins, 57 heat transfer tube, 58 heat exchanger fixing bracket, 70 upper and lower vanes, 90 partition plate, 90a partition plate, 100 indoor unit, 110 front side drain pan, 111 drainage channel, 111a tongue, 115 back side drain pan, 116 connection port, 117 Drain hose, 121 multiplier, 122 adder, 1 3 delay element, 124 multiplier, 130 input unit, 131 CPU, 132 memory, 133 same rotation speed determination means, 134 (134A, 134B, 134C) fan individual control rotation speed determination means, 135 SW, 136 averaging means, 137 Coherence calculation means, 138 mute volume calculation means, 139 pre-control sound pressure level storage means, 140 differencer, 151 microphone amplifier, 152 A / D converter, 153 weighting means, 154 D / A converter, 155 amplifier, 158, 160 FIR filter, 159 LMS algorithm, 161 to 163, noise detection microphone, 171 to 174, blower fan control means, 181 to 183 control speaker, 191 to 193, silencing effect detection microphone, 201 to 208, signal processing device, 211 213 noise and silencing effect detection microphone, 270 wall member 280 remote 281 control unit, 282A ~ 282C motor driver.

Claims (34)

  1.  上部に吸込口が形成され、前面部下側に吹出口が形成されたケーシングと、
     前記ケーシング内の前記吸込口の下流側に並列に設けられた複数の送風ファンと、
     前記ケーシング内の前記ファンの下流側であって、前記吹出口の上流側に設けられ、前記ファンから吹き出された空気と冷媒とが熱交換する熱交換器と、
     前記ファンから放射される騒音を検出する騒音検出装置と、
     前記騒音を低減させる制御音を出力する制御音出力装置と、
     前記制御音による消音効果を検出する消音効果検出装置と、
     前記騒音検出装置及び前記消音効果検出装置の検出結果に基づき、前記制御音出力装置に前記制御音を出力させる制御音生成装置と、
     複数の前記ファンに対して個別に回転数制御を行う制御装置と、を備えた空気調和機であって、
     前記制御装置は、前記ファンから放射される騒音に対して前記制御音を干渉させたときの消音効果に基づき、複数の前記ファンの回転数を制御することを特徴とする空気調和機。
    A casing in which a suction port is formed in the upper part and a blower outlet is formed in the lower part of the front part,
    A plurality of blower fans provided in parallel on the downstream side of the suction port in the casing;
    A heat exchanger that is provided on the downstream side of the fan in the casing and upstream of the outlet, and exchanges heat between the air blown out of the fan and the refrigerant;
    A noise detection device for detecting noise radiated from the fan;
    A control sound output device for outputting a control sound for reducing the noise;
    A mute effect detecting device for detecting a mute effect by the control sound;
    A control sound generation device that outputs the control sound to the control sound output device based on detection results of the noise detection device and the silencing effect detection device;
    A controller that individually controls the rotational speed of the plurality of fans, and an air conditioner comprising:
    The said control apparatus controls the rotation speed of the said some fan based on the silencing effect when the said control sound is made to interfere with the noise radiated | emitted from the said fan, The air conditioner characterized by the above-mentioned.
  2.  前記制御装置は、前記消音効果検出装置で検出した消音効果に基づき、前記消音効果検出装置にて検出した音と前記ファンとの関連性に応じて、前記ファンの回転数を変化させることを特徴とする請求項1に記載の空気調和機。 The control device changes the number of rotations of the fan based on the silencing effect detected by the silencing effect detecting device, according to the relationship between the sound detected by the silencing effect detecting device and the fan. The air conditioner according to claim 1.
  3.  前記制御装置は、検出した消音効果が大きい前記消音効果検出装置にて検出された音と最も関連性の高い騒音を放射している前記ファンの回転数を高くする回転数制御、及び当該消音効果検出装置にて検出された音と最も関連性の低い騒音を放射している前記ファンの回転数を低くする回転数制御のうちの少なくとも一方の回転数制御を行うことを特徴とする請求項2に記載の空気調和機。 The control device includes a rotational speed control for increasing the rotational speed of the fan that emits noise having the highest relevance to the sound detected by the noise reduction effect detection device having a large detected noise reduction effect, and the noise reduction effect. 3. The rotational speed control of at least one of the rotational speed controls for reducing the rotational speed of the fan that emits noise having the least relevance to the sound detected by the detection device. Air conditioner as described in.
  4.  前記制御装置は、検出した消音効果が小さい前記消音効果検出装置にて検出された音と最も関連性の高い騒音を放射している前記ファンの回転数を低くする回転数制御を行うことを特徴とする請求項2又は請求項3に記載の空気調和機。 The control device performs a rotational speed control for reducing a rotational speed of the fan that emits noise having the highest relevance to the sound detected by the silencing effect detection device having a small detected silencing effect. The air conditioner according to claim 2 or 3.
  5.  複数の前記消音効果検出装置を備え、前記制御装置は、複数の前記消音効果検出装置が検出した音圧レベルに基づき、検出した音圧レベルが最も小さい前記消音効果検出装置にて検出された音と最も関連性の高い騒音を放射している前記ファンの回転数を高くする回転数制御、及び検出した音圧レベルが最も大きい前記消音効果検出装置にて検出された音と最も関連性の高い騒音を放射している前記ファンの回転数を低くする回転数制御のうちの少なくとも一方の回転数制御を行うことを特徴とする請求項2に記載の空気調和機。 A plurality of the silencing effect detection devices, wherein the control device detects sound detected by the silencing effect detection device having the smallest detected sound pressure level based on the sound pressure levels detected by the plurality of silencing effect detection devices; Rotational speed control that increases the rotational speed of the fan that emits the most relevant noise, and the sound that is most relevant to the sound detected by the silencing effect detection device with the highest detected sound pressure level The air conditioner according to claim 2, wherein at least one of the rotational speed controls for reducing the rotational speed of the fan that emits noise is controlled.
  6.  複数の前記騒音検出装置及び前記消音効果検出装置を備え、
     前記制御装置は、前記騒音検出装置の検出値と前記消音効果検出装置の検出値とのコヒーレンス値を算出し、コヒーレンス値が最も大きい前記消音効果検出装置にて検出された音と最も関連性の高い騒音を放射している前記ファンの回転数を高くする回転数制御、及びコヒーレンス値が最も小さい前記消音効果検出装置にて検出された音と最も関連性の高い騒音を放射している前記ファンの回転数を低くする回転数制御のうちの少なくとも一方の回転数制御を行うことを特徴とする請求項2に記載の空気調和機。
    Comprising a plurality of the noise detection devices and the silencing effect detection device,
    The control device calculates a coherence value between the detection value of the noise detection device and the detection value of the silencing effect detection device, and is most relevant to the sound detected by the silencing effect detection device having the largest coherence value. Rotational speed control for increasing the rotational speed of the fan that radiates high noise, and the fan that radiates the noise most closely related to the sound detected by the muffler effect detection device having the smallest coherence value The air conditioner according to claim 2, wherein at least one of the rotational speed controls for lowering the rotational speed is controlled.
  7.  前記制御装置は、前記消音効果検出装置に距離が近い前記ファンを記憶するメモリーを備え、前記メモリーに記憶された前記消音効果検出装置に距離が近い前記ファンの回転数を高くする回転数制御、及び前記メモリーに記憶された前記消音効果検出装置に距離が近い前記ファン以外の前記ファンの回転数を低くする回転数制御のうちの少なくとも一方の回転数制御を行うことを特徴とする請求項1又は請求項2に記載の空気調和機。 The control device includes a memory that stores the fan that is close to the silencing effect detection device, and a rotational speed control that increases the rotational speed of the fan that is close to the silencing effect detection device stored in the memory; And at least one of the rotational speed controls for lowering the rotational speeds of the fans other than the fan that is close to the silencing effect detection device stored in the memory. Or the air conditioner of Claim 2.
  8.  前記制御装置は、前記消音効果検出装置に距離が近い前記ファンを記憶するメモリーを備え、検出した音圧レベルが高い前記消音効果検出装置に距離が近い前記ファンの回転数を低くする回転数制御、及び検出した音圧レベルが低い前記消音効果検出装置に距離が近い前記ファンの回転数を高くする回転数制御のうちの少なくとも一方の回転数制御を行うことを特徴とする請求項1又は請求項2に記載の空気調和機。 The control device includes a memory for storing the fan close to the silencing effect detection device, and a rotational speed control for reducing the rotational speed of the fan close to the silencing effect detection device having a high detected sound pressure level. And at least one of the rotational speed controls for increasing the rotational speed of the fan that is close to the silencing effect detecting device having a low detected sound pressure level. Item 3. An air conditioner according to Item 2.
  9.  前記制御装置は、前記消音効果検出装置に距離が近い前記ファンを記憶するメモリーを備え、前記騒音検出装置の検出値と前記消音効果検出装置の検出値とのコヒーレンス値を算出し、コヒーレンス値が低い前記消音効果検出装置に距離が近い前記ファンの回転数を低くする回転数制御、及びコヒーレンス値が高い前記消音効果検出装置に距離が近い前記ファンの回転数を高くする回転数制御のうちの少なくとも一方の回転数制御を行うことを特徴とする請求項1又は請求項2に記載の空気調和機。 The control device includes a memory that stores the fan that is close to the silencing effect detection device, calculates a coherence value between the detection value of the noise detection device and the detection value of the silencing effect detection device, and the coherence value is A rotation speed control for decreasing the rotation speed of the fan close to the low silencing effect detection apparatus, and a rotation speed control for increasing the rotation speed of the fan close to the silencing effect detection apparatus having a high coherence value. The air conditioner according to claim 1 or 2, wherein at least one rotation speed control is performed.
  10.  前記ケーシング内を、仕切り板によって複数の領域に分割したことを特徴とする請求項1~請求項9のいずれか一項に記載の空気調和機。 The air conditioner according to any one of claims 1 to 9, wherein the casing is divided into a plurality of regions by a partition plate.
  11.  前記制御装置は、複数の前記ファンに対して個別に回転数制御する際、複数の前記領域のうちで前記消音効果検出装置が設けられていない前記領域に設けられた前記ファンの回転数を低くする回転数制御を行うことを特徴とする請求項10に記載の空気調和機。 When the control device individually controls the rotational speed of the plurality of fans, the control device reduces the rotational speed of the fan provided in the region where the muffler effect detection device is not provided among the plurality of regions. The air conditioner according to claim 10, wherein the rotational speed control is performed.
  12.  前記制御装置は、複数の前記ファンに対して個別に回転数制御する際、複数の前記領域のうちで前記消音効果検出装置が設けられている前記領域に設けられた前記ファンの回転数を高くする回転数制御を行うことを特徴とする請求項10又は請求項11に記載の空気調和機。 When the control device individually controls the rotational speed of the plurality of fans, the control device increases the rotational speed of the fan provided in the region where the silencing effect detecting device is provided among the plurality of regions. The air conditioner according to claim 10 or 11, wherein the rotational speed control is performed.
  13.  前記制御装置は、複数の前記ファンに対して個別に回転数制御する際、当該回転数制御を行う前の風量と同等の風量となるように、複数の前記ファンを個別に回転数制御することを特徴とする請求項1~請求項12のいずれか一項に記載の空気調和機。 The control device individually controls the rotational speeds of the plurality of fans so that the airflow is equal to the airflow before the rotational speed control is performed when the rotational speed is individually controlled for the plurality of fans. The air conditioner according to any one of claims 1 to 12, wherein:
  14.  上部に吸込口が形成され、前面部下側に吹出口が形成されたケーシングと、
    前記ケーシング内の前記吸込口の下流側に並列に設けられた複数の送風ファンと、
    前記ケーシング内の前記ファンの下流側であって、前記吹出口の上流側に設けられ、前記ファンから吹き出された空気と冷媒とが熱交換する熱交換器と、
     前記ファンから放射される騒音を低減させる制御音を出力する制御音出力装置と、
     前記騒音を検出するとともに、前記制御音の消音効果を検出する騒音・消音効果検出装置と、
     前記騒音・消音効果検出装置の検出結果に基づき、前記制御音出力装置に前記制御音を出力させる制御音生成装置と、
     複数の前記ファンに対して個別に回転数制御を行う制御装置と、
     を備えた空気調和機であって、
     前記制御装置は、前記ファンから放射される騒音に対して前記制御音を干渉させたときの消音効果に基づき、複数の前記ファンの回転数を制御することを特徴とする空気調和機。
    A casing in which a suction port is formed in the upper part and a blower outlet is formed in the lower part of the front part,
    A plurality of blower fans provided in parallel on the downstream side of the suction port in the casing;
    A heat exchanger that is provided on the downstream side of the fan in the casing and upstream of the outlet, and exchanges heat between the air blown out of the fan and the refrigerant;
    A control sound output device for outputting a control sound for reducing noise radiated from the fan;
    A noise / muffling effect detection device for detecting the noise and detecting a silencing effect of the control sound;
    Based on the detection result of the noise / muffling effect detection device, a control sound generation device that causes the control sound output device to output the control sound;
    A control device that individually controls the rotational speed of the plurality of fans;
    An air conditioner equipped with
    The said control apparatus controls the rotation speed of the said some fan based on the silencing effect when the said control sound is made to interfere with the noise radiated | emitted from the said fan, The air conditioner characterized by the above-mentioned.
  15.  前記制御装置は、前記騒音・消音効果検出装置で検出した消音効果に基づき、前記騒音・消音効果検出装置にて検出した音と前記ファンとの関連性に応じて、前記ファンの回転数を変化させることを特徴とする請求項14に記載の空気調和機。 The control device changes the rotational speed of the fan based on the relationship between the sound detected by the noise / silencing effect detection device and the fan based on the silencing effect detected by the noise / silencing effect detection device. The air conditioner according to claim 14, wherein the air conditioner is used.
  16.  前記制御装置は、検出した消音効果が大きい前記騒音・消音効果検出装置にて検出された音と最も関連性の高い騒音を放射している前記ファンの回転数を高くする回転数制御、及び当該騒音・消音効果検出装置にて検出された音と最も関連性の低い騒音を放射している前記ファンの回転数を低くする回転数制御のうちの少なくとも一方の回転数制御を行うことを特徴とする請求項15に記載の空気調和機。 The control device has a rotational speed control for increasing the rotational speed of the fan that emits noise having the highest relevance to the sound detected by the noise / silencing effect detection device having a large detected silencing effect, and Performing at least one rotational speed control among rotational speed controls for reducing the rotational speed of the fan that emits noise having the least relevance to the sound detected by the noise / silencing effect detecting device. The air conditioner according to claim 15.
  17.  前記制御装置は、検出した消音効果が小さい前記騒音・消音効果検出装置にて検出された音と最も関連性の高い騒音を放射している前記ファンの回転数を低くする回転数制御を行うことを特徴とする請求項15又は請求項16に記載の空気調和機。 The control device performs rotational speed control for reducing the rotational speed of the fan that emits noise having the highest relevance to the sound detected by the noise / silencing effect detection device having a small detected silencing effect. The air conditioner of Claim 15 or Claim 16 characterized by these.
  18.  複数の前記騒音・消音効果検出装置を備え、前記制御装置は、複数の前記騒音・消音効果検出装置が検出した音圧レベルに基づき、検出した音圧レベルが最も小さい前記騒音・消音効果検出装置にて検出された音と最も関連性の高い騒音を放射している前記ファンの回転数を高くする回転数制御、及び検出した音圧レベルが最も大きい前記騒音・消音効果検出装置にて検出された音と最も関連性の高い騒音を放射している前記ファンの回転数を低くする回転数制御のうちの少なくとも一方の回転数制御を行うことを特徴とする請求項15に記載の空気調和機。 A plurality of the noise / silencing effect detection devices, wherein the control device is based on the sound pressure level detected by the plurality of noise / silence effect detection devices, and has the smallest detected sound pressure level. Rotation speed control for increasing the rotation speed of the fan that radiates the noise most closely related to the sound detected by the sound, and the noise / silence effect detecting device having the highest detected sound pressure level. 16. The air conditioner according to claim 15, wherein at least one of the rotational speed controls for reducing the rotational speed of the fan that emits the noise most closely related to the noise is performed. .
  19.  前記制御装置は、前記騒音・消音効果検出装置に距離が近い前記ファンを記憶するメモリーを備え、前記メモリーに記憶された前記騒音・消音効果検出装置に距離が近い前記ファンの回転数を高くする回転数制御、及び前記メモリーに記憶された前記騒音・消音効果検出装置に距離が近い前記ファン以外の前記ファンの回転数を低くする回転数制御のうちの少なくとも一方の回転数制御を行うことを特徴とする請求項14又は請求項15に記載の空気調和機。 The control device includes a memory for storing the fan that is close to the noise / silence effect detection device, and increases the rotational speed of the fan that is close to the noise / silence effect detection device stored in the memory. Performing at least one rotational speed control among rotational speed control and rotational speed control for lowering the rotational speed of the fans other than the fan that is close to the noise / silencing effect detection device stored in the memory. The air conditioner according to claim 14 or 15, wherein the air conditioner is characterized.
  20.  前記制御装置は、前記騒音・消音効果検出装置に距離が近い前記ファンを記憶するメモリーを備え、検出した音圧レベルが高い前記騒音・消音効果検出装置に距離が近い前記ファンの回転数を低くする回転数制御、及び検出した音圧レベルが低い前記騒音・消音効果検出装置に距離が近い前記ファンの回転数を高くする回転数制御のうちの少なくとも一方の回転数制御を行うことを特徴とする請求項14又は請求項15に記載の空気調和機。 The control device includes a memory for storing the fan that is close to the noise / silence effect detection device, and reduces the rotational speed of the fan that is close to the noise / silence effect detection device having a high detected sound pressure level. At least one of the rotational speed control and the rotational speed control for increasing the rotational speed of the fan that is close to the noise / silence effect detecting device having a low detected sound pressure level. The air conditioner according to claim 14 or 15.
  21.  前記ケーシング内を、仕切り板によって複数の領域に分割したことを特徴とする請求項14~請求項20のいずれか一項に記載の空気調和機。 The air conditioner according to any one of claims 14 to 20, wherein the inside of the casing is divided into a plurality of regions by a partition plate.
  22.  前記制御装置は、複数の前記ファンに対して個別に回転数制御する際、複数の前記領域のうちで前記騒音・消音効果検出装置が設けられていない前記領域に設けられた前記ファンの回転数を低くする回転数制御を行うことを特徴とする請求項21に記載の空気調和機。 When the control device individually controls the number of rotations of the plurality of fans, the number of rotations of the fan provided in the region where the noise / silence effect detection device is not provided among the plurality of regions. The air conditioner according to claim 21, wherein the number of revolutions is controlled so as to lower the value.
  23.  前記制御装置は、複数の前記ファンに対して個別に回転数制御する際、複数の前記領域のうちで前記騒音・消音効果検出装置が設けられている前記領域に設けられた前記ファンの回転数を高くする回転数制御を行うことを特徴とする請求項21又は請求項22に記載の空気調和機。 When the control device individually controls the number of rotations of the plurality of fans, the number of rotations of the fan provided in the region where the noise / silence effect detection device is provided among the plurality of regions. The air conditioner according to claim 21 or 22, wherein the rotation speed control for increasing the frequency is performed.
  24.  前記制御装置は、複数の前記ファンに対して個別に回転数制御する際、当該回転数制御を行う前の風量と同等の風量となるように、複数の前記ファンを個別に回転数制御することを特徴とする請求項14~請求項23のいずれか一項に記載の空気調和機。 The control device individually controls the rotational speeds of the plurality of fans so that the airflow is equal to the airflow before the rotational speed control is performed when the rotational speed is individually controlled for the plurality of fans. The air conditioner according to any one of claims 14 to 23, wherein:
  25.  上部に吸込口が形成され、前面部下側に吹出口が形成されたケーシングと、
    前記ケーシング内の前記吸込口の下流側に並列に設けられた複数の送風ファンと、
     前記ケーシング内の前記ファンの下流側であって、前記吹出口の上流側に設けられ、前記ファンから吹き出された空気と冷媒とが熱交換する熱交換器と、
     前記ファンから放射される騒音を検出する騒音検出装置と、
     前記騒音を低減させる制御音を出力する制御音出力装置と、
     前記制御音による消音効果を検出する消音効果検出装置と、
     前記騒音検出装置及び前記消音効果検出装置の検出結果に基づき、前記制御音出力装置に前記制御音を出力させる制御音生成装置と、
     複数の前記ファンに対して個別に回転数制御を行う制御装置と、を備え、
     前記制御装置は、前記ケーシングの両端に配置された前記ファンの回転数を高くする回転数制御、及び前記ケーシングの両端に配置された前記ファン以外の前記ファンの回転数を低くする回転数制御のうちの少なくとも一方の回転数制御を行うことを特徴とする空気調和機。
    A casing in which a suction port is formed in the upper part and a blower outlet is formed in the lower part of the front part,
    A plurality of blower fans provided in parallel on the downstream side of the suction port in the casing;
    A heat exchanger that is provided on the downstream side of the fan in the casing and upstream of the outlet, and exchanges heat between the air blown out of the fan and the refrigerant;
    A noise detection device for detecting noise radiated from the fan;
    A control sound output device for outputting a control sound for reducing the noise;
    A mute effect detecting device for detecting a mute effect by the control sound;
    A control sound generation device that outputs the control sound to the control sound output device based on detection results of the noise detection device and the silencing effect detection device;
    A control device that individually controls the rotational speed of the plurality of fans,
    The control device includes a rotational speed control for increasing the rotational speed of the fan disposed at both ends of the casing, and a rotational speed control for decreasing the rotational speed of the fans other than the fan disposed at both ends of the casing. An air conditioner characterized by performing rotation speed control of at least one of them.
  26.  前記ケーシング内を、仕切り板によって複数の領域に分割したことを特徴とする請求項25に記載の空気調和機。 The air conditioner according to claim 25, wherein the inside of the casing is divided into a plurality of regions by a partition plate.
  27.  前記制御装置は、複数の前記ファンに対して個別に回転数制御する際、複数の前記領域のうちで前記消音効果検出装置が設けられていない前記領域に設けられた前記ファンの回転数を低くする回転数制御を行うことを特徴とする請求項26に記載の空気調和機。 When the control device individually controls the rotational speed of the plurality of fans, the control device reduces the rotational speed of the fan provided in the region where the muffler effect detection device is not provided among the plurality of regions. 27. The air conditioner according to claim 26, wherein the rotational speed control is performed.
  28.  前記制御装置は、複数の前記ファンに対して個別に回転数制御する際、複数の前記領域のうちで前記消音効果検出装置が設けられている前記領域に設けられた前記ファンの回転数を高くする回転数制御を行うことを特徴とする請求項26又は請求項27に記載の空気調和機。 When the control device individually controls the rotational speed of the plurality of fans, the control device increases the rotational speed of the fan provided in the region where the silencing effect detecting device is provided among the plurality of regions. The air conditioner according to claim 26 or 27, wherein the rotational speed control is performed.
  29.  前記制御装置は、複数の前記ファンに対して個別に回転数制御する際、当該回転数制御を行う前の風量と同等の風量となるように、複数の前記ファンを個別に回転数制御することを特徴とする請求項25~請求項28のいずれか一項に記載の空気調和機。 The control device individually controls the rotational speeds of the plurality of fans so that the airflow is equal to the airflow before the rotational speed control is performed when the rotational speed is individually controlled for the plurality of fans. The air conditioner according to any one of claims 25 to 28, wherein:
  30.  上部に吸込口が形成され、前面部下側に吹出口が形成されたケーシングと、
     前記ケーシング内の前記吸込口の下流側に並列に設けられた複数の送風ファンと、
     前記ケーシング内の前記ファンの下流側であって、前記吹出口の上流側に設けられ、前記ファンから吹き出された空気と冷媒とが熱交換する熱交換器と、
     前記ファンから放射される騒音を低減させる制御音を出力する制御音出力装置と、
     前記騒音を検出するとともに、前記制御音の消音効果を検出する騒音・消音効果検出装
    置と、
     前記騒音・消音効果検出装置の検出結果に基づき、前記制御音出力装置に前記制御音を出力させる制御音生成装置と、
     複数の前記ファンに対して個別に回転数制御を行う制御装置と、
     を備え、前記制御装置は、
     前記ケーシングの両端に配置された前記ファンの回転数を高くする回転数制御、及び前記ケーシングの両端に配置された前記ファン以外の前記ファンの回転数を低くする回転数制御のうちの少なくとも一方の回転数制御を行うことを特徴とする空気調和機。
    A casing in which a suction port is formed in the upper part and a blower outlet is formed in the lower part of the front part,
    A plurality of blower fans provided in parallel on the downstream side of the suction port in the casing;
    A heat exchanger that is provided on the downstream side of the fan in the casing and upstream of the outlet, and exchanges heat between the air blown out of the fan and the refrigerant;
    A control sound output device for outputting a control sound for reducing noise radiated from the fan;
    A noise / muffling effect detection device for detecting the noise and detecting a silencing effect of the control sound;
    Based on the detection result of the noise / muffling effect detection device, a control sound generation device that outputs the control sound to the control sound output device;
    A control device that individually controls the rotational speed of the plurality of fans;
    The control device comprises:
    At least one of a rotational speed control for increasing the rotational speed of the fan disposed at both ends of the casing and a rotational speed control for decreasing the rotational speed of the fans other than the fan disposed at both ends of the casing. An air conditioner characterized by performing rotation speed control.
  31.  前記ケーシング内を、仕切り板によって複数の領域に分割したことを特徴とする請求項30に記載の空気調和機。 The air conditioner according to claim 30, wherein the casing is divided into a plurality of regions by a partition plate.
  32.  前記制御装置は、複数の前記ファンに対して個別に回転数制御する際、複数の前記領域のうちで前記騒音・消音効果検出装置が設けられていない前記領域に設けられた前記ファンの回転数を低くする回転数制御を行うことを特徴とする請求項31に記載の空気調和機。 When the control device individually controls the number of rotations of the plurality of fans, the number of rotations of the fan provided in the region where the noise / silence effect detection device is not provided among the plurality of regions. 32. The air conditioner according to claim 31, wherein the rotational speed control is performed to lower the value.
  33.  前記制御装置は、複数の前記ファンに対して個別に回転数制御する際、複数の前記領域のうちで前記騒音・消音効果検出装置が設けられている前記領域に設けられた前記ファンの回転数を高くする回転数制御を行うことを特徴とする請求項31又は請求項32に記載の空気調和機。 When the control device individually controls the number of rotations of the plurality of fans, the number of rotations of the fan provided in the region where the noise / silence effect detection device is provided among the plurality of regions. The air conditioner according to claim 31 or claim 32, wherein the rotation speed control for increasing the frequency is performed.
  34.  前記制御装置は、複数の前記ファンに対して個別に回転数制御する際、当該回転数制御を行う前の風量と同等の風量となるように、複数の前記ファンを個別に回転数制御することを特徴とする請求項30~請求項33のいずれか一項に記載の空気調和機。 The control device individually controls the rotational speeds of the plurality of fans so that the airflow is equal to the airflow before the rotational speed control is performed when the rotational speed is individually controlled for the plurality of fans. The air conditioner according to any one of claims 30 to 33, wherein:
PCT/JP2011/002005 2010-08-04 2011-04-04 Air conditioner WO2012017575A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201180037968.6A CN103052851B (en) 2010-08-04 2011-04-04 Air conditioner
EP11814215.7A EP2602566A4 (en) 2010-08-04 2011-04-04 Air conditioner
JP2012527534A JP5430763B2 (en) 2010-08-04 2011-04-04 Air conditioner

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-175187 2010-08-04
JP2010175187 2010-08-04

Publications (1)

Publication Number Publication Date
WO2012017575A1 true WO2012017575A1 (en) 2012-02-09

Family

ID=45559101

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/002005 WO2012017575A1 (en) 2010-08-04 2011-04-04 Air conditioner

Country Status (4)

Country Link
EP (1) EP2602566A4 (en)
JP (1) JP5430763B2 (en)
CN (1) CN103052851B (en)
WO (1) WO2012017575A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10403261B1 (en) 2018-03-20 2019-09-03 Kabushiki Kaisha Toshiba Noise reduction apparatus
WO2019233068A1 (en) * 2018-06-06 2019-12-12 珠海格力电器股份有限公司 Method for reducing loudspeaker noise in process of remotely controlling air conditioner
CN113049287A (en) * 2021-04-06 2021-06-29 珠海格力智能装备有限公司 Air conditioner detection system and air conditioner detection method

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104344535B (en) * 2013-08-02 2017-01-25 广东美的制冷设备有限公司 Method and device for adaptively adjusting frequency of conditioner motor and air conditioner
CN105115112B (en) * 2015-09-18 2018-02-27 珠海格力电器股份有限公司 The control method and device of air-conditioner set
CN105241013A (en) * 2015-10-23 2016-01-13 青岛海尔空调器有限总公司 Control method and device for air conditioner and air conditioner
CN105674534B (en) * 2016-03-25 2018-09-14 海信(山东)空调有限公司 Air-conditioning active noise reducing device and noise-reduction method
JP6563120B2 (en) * 2016-04-25 2019-08-21 三菱電機株式会社 Air conditioner
JP6414197B2 (en) * 2016-12-28 2018-10-31 ダイキン工業株式会社 Axial fan and blower unit
CN107255342B (en) * 2017-06-15 2019-10-01 青岛海尔空调器有限总公司 A kind of control method of air conditioner indoor unit
CN108593271A (en) * 2018-03-26 2018-09-28 珠海格力电器股份有限公司 muffler measuring device
GB2582372B (en) * 2019-03-22 2021-08-18 Dyson Technology Ltd Noise control
CN112503716B (en) * 2020-12-11 2022-05-17 广东美的暖通设备有限公司 Air conditioning equipment and control method thereof, design method of water receiving container and storage medium
CN114413440B (en) * 2022-01-04 2023-07-04 宁波奥克斯电气股份有限公司 Air conditioner control method, air conditioner and storage medium

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62100475U (en) * 1985-12-13 1987-06-26
JPH04281125A (en) * 1991-02-07 1992-10-06 Mitsubishi Electric Corp Muffler and muffling
JPH051914A (en) * 1991-06-25 1993-01-08 Pioneer Electron Corp Compensating magnetized vector
JPH09264564A (en) * 1996-03-26 1997-10-07 Mitsubishi Heavy Ind Ltd Heat exchanger
JP2001116451A (en) * 1999-10-12 2001-04-27 Matsushita Seiko Co Ltd Bathroom dryer
JP2004053235A (en) * 2002-07-22 2004-02-19 Kiyoshi Yanagimachi Air conditioner
JP2004286294A (en) * 2003-03-20 2004-10-14 Toshiba Kyaria Kk Refrigerating machine
JP2004332973A (en) * 2003-05-01 2004-11-25 Hitachi Ltd Air conditioning system and air conditioning unit
JP2004340431A (en) * 2003-05-14 2004-12-02 Nakano Refrigerators Co Ltd Condensing unit, and showcase with built-in freezer
JP2007093068A (en) * 2005-09-28 2007-04-12 Sanyo Electric Co Ltd Heat exchanging device
WO2010089920A1 (en) * 2009-02-05 2010-08-12 三菱電機株式会社 Indoor unit for air conditioner, and air conditioner

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH051914U (en) * 1991-03-11 1993-01-14 三菱電機株式会社 Active control air conditioner
JP3072174B2 (en) * 1992-02-19 2000-07-31 株式会社日立製作所 Active silencer in three-dimensional space
JPH08146970A (en) * 1994-11-25 1996-06-07 Hitachi Ltd Electronic apparatus mounted with active silencer
JPH10197034A (en) * 1996-12-29 1998-07-31 Sanyo Electric Co Ltd Muffler of air conditioner
KR100445467B1 (en) * 2001-04-20 2004-08-21 주식회사 엘지이아이 Indoor unit for air conditioner
JP2005201565A (en) * 2004-01-16 2005-07-28 Toshiba Kyaria Kk Indoor unit of air conditioner
KR100714592B1 (en) * 2005-06-28 2007-05-07 엘지전자 주식회사 Inner-door unit of air-conditioner

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62100475U (en) * 1985-12-13 1987-06-26
JPH04281125A (en) * 1991-02-07 1992-10-06 Mitsubishi Electric Corp Muffler and muffling
JPH051914A (en) * 1991-06-25 1993-01-08 Pioneer Electron Corp Compensating magnetized vector
JPH09264564A (en) * 1996-03-26 1997-10-07 Mitsubishi Heavy Ind Ltd Heat exchanger
JP2001116451A (en) * 1999-10-12 2001-04-27 Matsushita Seiko Co Ltd Bathroom dryer
JP2004053235A (en) * 2002-07-22 2004-02-19 Kiyoshi Yanagimachi Air conditioner
JP2004286294A (en) * 2003-03-20 2004-10-14 Toshiba Kyaria Kk Refrigerating machine
JP2004332973A (en) * 2003-05-01 2004-11-25 Hitachi Ltd Air conditioning system and air conditioning unit
JP2004340431A (en) * 2003-05-14 2004-12-02 Nakano Refrigerators Co Ltd Condensing unit, and showcase with built-in freezer
JP2007093068A (en) * 2005-09-28 2007-04-12 Sanyo Electric Co Ltd Heat exchanging device
WO2010089920A1 (en) * 2009-02-05 2010-08-12 三菱電機株式会社 Indoor unit for air conditioner, and air conditioner

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2602566A4 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10403261B1 (en) 2018-03-20 2019-09-03 Kabushiki Kaisha Toshiba Noise reduction apparatus
WO2019233068A1 (en) * 2018-06-06 2019-12-12 珠海格力电器股份有限公司 Method for reducing loudspeaker noise in process of remotely controlling air conditioner
CN113049287A (en) * 2021-04-06 2021-06-29 珠海格力智能装备有限公司 Air conditioner detection system and air conditioner detection method

Also Published As

Publication number Publication date
JP5430763B2 (en) 2014-03-05
EP2602566A1 (en) 2013-06-12
CN103052851A (en) 2013-04-17
CN103052851B (en) 2015-09-09
JPWO2012017575A1 (en) 2013-09-19
EP2602566A4 (en) 2018-05-09

Similar Documents

Publication Publication Date Title
JP5430763B2 (en) Air conditioner
JP5409544B2 (en) Air conditioner indoor unit and air conditioner
JP5334928B2 (en) Air conditioner indoor unit and air conditioner
JP5606533B2 (en) Air conditioner indoor unit and air conditioner
JP5220068B2 (en) Air conditioner indoor unit and air conditioner
JP5474199B2 (en) Air conditioner indoor unit and air conditioner
US9982898B2 (en) Indoor unit of air conditioner and air conditioner including a heat exchanger on a downstream side of a blower
EP2518414A1 (en) Air conditioner
JP2011058773A (en) Air conditioner
WO2011158309A1 (en) Indoor unit for air conditioner, and air conditioner
JP5591334B2 (en) Air conditioner indoor unit and air conditioner
JP5474200B2 (en) Air conditioner indoor unit and air conditioner
JP5591335B2 (en) Air conditioner indoor unit and air conditioner
JP5591336B2 (en) Air conditioner indoor unit and air conditioner
JP5641808B2 (en) Air conditioner

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180037968.6

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11814215

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012527534

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2011814215

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE