WO2012017535A1 - Semiconductor device - Google Patents

Semiconductor device Download PDF

Info

Publication number
WO2012017535A1
WO2012017535A1 PCT/JP2010/063259 JP2010063259W WO2012017535A1 WO 2012017535 A1 WO2012017535 A1 WO 2012017535A1 JP 2010063259 W JP2010063259 W JP 2010063259W WO 2012017535 A1 WO2012017535 A1 WO 2012017535A1
Authority
WO
WIPO (PCT)
Prior art keywords
source
drain
driver
gate
transistor
Prior art date
Application number
PCT/JP2010/063259
Other languages
French (fr)
Japanese (ja)
Inventor
新居 浩二
塚本 康正
Original Assignee
ルネサスエレクトロニクス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ルネサスエレクトロニクス株式会社 filed Critical ルネサスエレクトロニクス株式会社
Priority to JP2012527505A priority Critical patent/JP5433788B2/en
Priority to PCT/JP2010/063259 priority patent/WO2012017535A1/en
Publication of WO2012017535A1 publication Critical patent/WO2012017535A1/en

Links

Images

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/21Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements
    • G11C11/34Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices
    • G11C11/40Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices using transistors
    • G11C11/41Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices using transistors forming static cells with positive feedback, i.e. cells not needing refreshing or charge regeneration, e.g. bistable multivibrator or Schmitt trigger
    • G11C11/412Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices using transistors forming static cells with positive feedback, i.e. cells not needing refreshing or charge regeneration, e.g. bistable multivibrator or Schmitt trigger using field-effect transistors only
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B10/00Static random access memory [SRAM] devices
    • H10B10/12Static random access memory [SRAM] devices comprising a MOSFET load element

Definitions

  • the present invention relates to a semiconductor device, and more particularly to a semiconductor device including an SRAM.
  • SoC System on Chip
  • SRAM Static Random Access Memory
  • the miniaturization of SRAM has been attempted due to the demand for mounting a large-capacity SRAM in SoC. This miniaturization increases the variation in the characteristics of the SRAM. Then, the increase in the variation reduces the operation margin of the SRAM.
  • the threshold voltage variation includes local variation and global variation. Local variations are caused by the fluctuation of impurities in the transistor. Global variations are variations in processing dimensions due to microfabrication. For example, the gate length or gate width of a transistor occurs in the same direction throughout the chip. In order to reduce local variation and global variation, a layout structure with good symmetry and less bending is effective.
  • Non-Patent Document 1 proposes an SRAM memory cell having a layout shape with good gate and diffusion layer symmetry and little bending. Since the SRAM memory cell of Non-Patent Document 1 has good symmetry, it is expected to reduce local variations caused by mask displacement. In addition, microfabrication is easy because of less bending. Therefore, reduction of global variation is expected.
  • Non-Patent Documents 2 and 3 propose SRAM memory cells in which a halo region is formed in order to adjust the threshold voltage. The SRAM memory cells of Non-Patent Documents 2 and 3 are expected to improve both the read and write operation margins.
  • Non-Patent Document 3 since left and right asymmetrical MOSs (Metal Oxide Semiconductors) are separately configured, there is a problem that the amount of impurity implantation varies and local variation increases. In addition, the current directions of the left and right access transistors, driver transistors, and load transistors are reversed. Therefore, there is a problem that the variation in cell characteristics becomes large.
  • MOSs Metal Oxide Semiconductors
  • the present invention has been made in view of the above problems, and an object of the present invention is to provide a semiconductor device having improved cell characteristics by reducing variations in SRAM.
  • a semiconductor device is a semiconductor device having at least two static random access memory cells arranged adjacent to each other in a planar layout, and each of the at least two static random access memory cells includes: A first driver transistor having a first driver gate; a first load transistor having a first load gate and electrically connected to the first driver transistor at a first storage node; and a second driver gate having a second driver gate.
  • a driver transistor; a second load transistor having a second load gate and electrically connected to the second driver transistor at a second storage node; and a first bit line and a second bit line for inputting / outputting data A first access gate and a pair of first source / drain One of the pair of first sources / drains is electrically connected to the first storage node, and the other of the pair of first sources / drains is electrically connected to the first bit line.
  • each of the first and second access gates, the first and second driver gates, and the first and second load gates extends in the same direction.
  • the first direction from one of the pair of first sources / drains to the other and the second direction from one of the pair of second sources / drains to the other are the same.
  • the first directions of the at least two static random access memory cells are the same as each other, and the second directions are the same as each other.
  • cell characteristics can be improved by reducing the variation in SRAM.
  • FIG. 3 is a schematic plan view showing an example of an arrangement relationship of the semiconductor device including the SRAM according to the first embodiment of the present invention.
  • FIG. 2 is a schematic plan view showing the configuration of the SRAM memory cell in the dotted frame shown in FIG. 1 in the first embodiment of the present invention. 2 is a diagram showing an equivalent circuit of the SRAM memory cell in the first embodiment of the present invention.
  • FIG. FIG. 3 is a plan view showing an arrangement pattern of SRAM memory cells in the first embodiment of the present invention.
  • FIG. 5 is a schematic sectional view taken along line VV in FIG. 4.
  • FIG. 5 is a schematic sectional view taken along line VI-VI in FIG. 4.
  • FIG. 5 is a partially enlarged cross-sectional view showing an access transistor along the line VV in FIG. 4.
  • FIG. 5 is a schematic sectional view taken along line VV in FIG. 4.
  • FIG. 3 is a schematic plan view showing all layers of the multilayer line structure of the SRAM memory cell in the first embodiment of the present invention.
  • FIG. 3 is a schematic plan view showing a lower layer of the SRAM memory cell in the first embodiment of the present invention.
  • FIG. 3 is a schematic plan view showing the upper layer of the SRAM memory cell in the first embodiment of the present invention. It is a figure which shows the equivalent circuit matched with the planar layout of the SRAM cell in Embodiment 1 of this invention.
  • FIG. 9 is a schematic plan view showing all layers of the multilayer line structure of the SRAM memory cell adjacent to the SRAM cell shown in FIG. 8 in the first embodiment of the present invention.
  • FIG. 3 is a schematic plan view showing all layers of the multilayer line structure of the SRAM memory cell adjacent to the SRAM cell shown in FIG. 8 in the first embodiment of the present invention.
  • FIG. 5 is a schematic cross-sectional view showing a first step of the method of manufacturing a semiconductor device in the first embodiment of the present invention, which is a schematic cross-sectional view along line VV in FIG. 4 and a line VI-VI in FIG. It is a schematic sectional drawing (B) in alignment with. It is a schematic plan view which shows the 1st process of the manufacturing method of the semiconductor device in Embodiment 1 of this invention. It is a schematic plan view which shows the 2nd process of the manufacturing method of the semiconductor device in Embodiment 1 of this invention.
  • FIG. 5 is a schematic cross-sectional view showing a third step of the method of manufacturing a semiconductor device in the first embodiment of the present invention, which is a schematic cross-sectional view along line VV in FIG.
  • FIG. 6 is a schematic cross-sectional view showing a fifth step of the method of manufacturing a semiconductor device in the first embodiment of the present invention, which is a schematic cross-sectional view along line VV in FIG. 4 and a VI-VI line in FIG. It is a schematic sectional drawing (B) in alignment with. It is a schematic plan view which shows the 6th process of the manufacturing method of the semiconductor device in Embodiment 1 of this invention.
  • FIG. 6 is a schematic cross-sectional view showing a fifth step of the method of manufacturing a semiconductor device in the first embodiment of the present invention, which is a schematic cross-sectional view along line VV in FIG. 4 and a VI-VI line in FIG. It is a schematic sectional drawing (B) in alignment with. It is a schematic plan view which shows the 6th process of the manufacturing method of the semiconductor device in Embodiment 1 of this invention.
  • FIG. 6 is a schematic cross-sectional view showing a fifth step of the method of manufacturing a semiconductor device in the first embodiment of the
  • FIG. 8 is a schematic cross-sectional view showing a seventh step of the method of manufacturing a semiconductor device in the first embodiment of the present invention, which is a schematic cross-sectional view along line VV in FIG. 4 and a VI-VI line in FIG. It is a schematic sectional drawing (B) in alignment with. It is a schematic plan view which shows the 8th process of the manufacturing method of the semiconductor device in Embodiment 1 of this invention.
  • FIG. 9 is a schematic cross-sectional view showing a ninth step of the method of manufacturing a semiconductor device in the first embodiment of the present invention, which is a schematic cross-sectional view along line VV in FIG. 4 and a line VI-VI in FIG. It is a schematic sectional drawing (B) in alignment with.
  • FIG. 9 is a schematic cross-sectional view showing a ninth step of the method of manufacturing a semiconductor device in the first embodiment of the present invention, which is a schematic cross-sectional view along line VV in FIG. 4 and a line VI-VI in FIG.
  • FIG. 10 is a schematic cross-sectional view showing a tenth step of the method of manufacturing a semiconductor device in the first embodiment of the present invention, which is a schematic cross-sectional view along line VV in FIG. 4 and a VI-VI line in FIG. It is a schematic sectional drawing (B) in alignment with.
  • FIG. 6 is a schematic cross-sectional view showing an eleventh step of the method for manufacturing a semiconductor device in the first embodiment of the present invention, which is a schematic cross-sectional view along line VV in FIG. 4 and a line VI-VI in FIG. It is a schematic sectional drawing (B) in alignment with.
  • FIG. 10 is a schematic cross-sectional view showing a tenth step of the method of manufacturing a semiconductor device in the first embodiment of the present invention, which is a schematic cross-sectional view along line VV in FIG. 4 and a VI-VI line in FIG. It is a schematic sectional drawing (B) in alignment with.
  • FIG. 10 is a schematic cross-section
  • FIG. 15 is a schematic cross-sectional view showing a twelfth step of the method of manufacturing a semiconductor device in the first embodiment of the present invention, which is a schematic cross-sectional view along line VV in FIG. 4 and a VI-VI line in FIG. It is a schematic sectional drawing (B) in alignment with.
  • FIG. 3 is a plan view showing an arrangement of SRAM memory cells in the SRAM cell array of the semiconductor device in the first embodiment of the present invention.
  • FIG. 3 is a plan view schematically showing the arrangement pattern of SRAM memory cells and the direction of current in the semiconductor device in the first embodiment of the present invention.
  • FIG. 10 is a schematic plan view showing a lower layer of an SRAM memory cell according to a modified example in the first embodiment of the present invention.
  • FIG. 30 is a schematic cross-sectional view taken along line XXX-XXX in FIG. 29.
  • FIG. 30 is a schematic sectional view taken along line XXXI-XXXI in FIG. 29. It is a schematic plan view which shows the arrangement pattern of the SRAM memory cell of the semiconductor device in a comparative example.
  • FIG. 38 is a schematic sectional view taken along line XXXVIII-XXXVIII in FIG. FIG.
  • FIG. 38 is a schematic sectional view taken along line XXXIX-XXXIX in FIG. 37.
  • FIG. 38 is a partial enlarged cross-sectional view showing an access transistor along the line XXXVIII-XXXVIII in FIG. 37.
  • 41 is a graph showing an impurity concentration profile in a halo region of the access transistor of FIG. 40.
  • 38 is a schematic cross-sectional view showing a first step of the method of manufacturing a semiconductor device in the fourth embodiment of the present invention, and is a schematic cross-sectional view (A) taken along line XXXVIII-XXXVIII in FIG. 37 and a line XXIX-XXIX in FIG.
  • FIG. 37 is a schematic cross-sectional view showing a step before the third step of the method for manufacturing a semiconductor device in the fourth embodiment of the present invention, which is a schematic cross-sectional view along the line XXXVIII-XXXVIII in FIG. 37;
  • FIG. 6 is a schematic cross-sectional view (B) along the line XXXIX-XXXIX.
  • FIG. 37 is a schematic cross sectional view showing a step after the third step of the method for manufacturing a semiconductor device in the fourth embodiment of the present invention, which is a schematic cross sectional view (A) taken along line XXXVIII-XXXVIII in FIG.
  • FIG. 6 is a schematic cross-sectional view (B) along the line XXXIX-XXXIX.
  • 38 is a schematic cross-sectional view showing a fourth step of the method of manufacturing a semiconductor device in the fourth embodiment of the present invention, which is a schematic cross-sectional view (A) along the line XXXVIII-XXXVIII in FIG. 37 and a line XXIX-XXXIX in FIG.
  • FIG. 38 is a schematic cross-sectional view showing a step before the sixth step of the method for manufacturing a semiconductor device in the fourth embodiment of the present invention, which is a schematic cross-sectional view along the line XXXVIII-XXXVIII in FIG.
  • FIG. 6 is a schematic cross-sectional view (B) along the line XXXIX-XXXIX. It is a schematic plan view which shows the 7th process of the manufacturing method of the semiconductor device in Embodiment 4 of this invention.
  • FIG. 37 is a schematic cross-sectional view showing a step before the seventh step of the method for manufacturing a semiconductor device in the fourth embodiment of the present invention, which is a schematic cross-sectional view along the line XXXVIII-XXXVIII in FIG. 37;
  • FIG. 6 is a schematic cross-sectional view (B) along the line XXXIX-XXXIX. It is a schematic plan view which shows the 8th process of the manufacturing method of the semiconductor device in Embodiment 4 of this invention.
  • 37 is a schematic cross-sectional view showing a step before the ninth step of the method for manufacturing a semiconductor device in the fourth embodiment of the present invention, which is a schematic cross-sectional view along the line XXXVIII-XXXVIII in FIG.
  • FIG. 6 is a schematic cross-sectional view (B) along the line XXXIX-XXXIX.
  • 37 is a schematic cross sectional view showing a step before the tenth step of the method for manufacturing a semiconductor device in the fourth embodiment of the present invention, which is a schematic cross sectional view (A) along the line XXXVIII-XXXVIII in FIG. 37;
  • FIG. 6 is a schematic cross-sectional view (B) along the line XXXIX-XXXIX.
  • FIG. 37 is a schematic cross-sectional view showing a step before an eleventh step of the method for manufacturing a semiconductor device in the fourth embodiment of the present invention, which is a schematic cross-sectional view along the line XXXVIII-XXXVIII in FIG. 37;
  • FIG. 6 is a schematic cross-sectional view (B) along the line XXXIX-XXXIX.
  • FIG. 38 is a schematic cross-sectional view showing a step before the twelfth step of the method for manufacturing a semiconductor device in the fourth embodiment of the present invention, which is a schematic cross-sectional view along the line XXXVIII-XXXVIII in FIG.
  • FIG. 6 is a schematic cross-sectional view (B) along the line XXXIX-XXXIX. It is the schematic which shows the electric current which flows into the access transistor in Embodiment 4 of this invention. It is a graph which shows the current characteristic with respect to the gate voltage in the access transistor in Embodiment 4 of this invention. It is a schematic plan view which shows the lower layer of the SRAM memory cell in Embodiment 5 of this invention. It is a schematic plan view which shows 1 process of the manufacturing method of the semiconductor device in Embodiment 5 of this invention. It is a schematic plan view which shows all the layers of the multilayer line structure of the SRAM memory cell in Embodiment 6 of this invention.
  • FIG. 62 is a schematic sectional view taken along line LXII-LXII in FIG. 61. It is a schematic plan view which shows the upper layer of the SRAM memory cell in Embodiment 6 of this invention. It is a figure which shows the equivalent circuit matched with the planar layout of the SRAM cell in Embodiment 6 of this invention. It is a schematic plan view which shows the lower layer of the SRAM memory cell of the modification in Embodiment 6 of this invention.
  • the semiconductor device SCD mainly includes an SRAM unit SR, a logic circuit LC, and an IO (Input / Output) area IO.
  • a micro control unit an analog-digital converter, a digital-analog converter, a bus controller, etc., each of which is connected to a plurality of logic circuits LC that realize specific functions, and some of the logic circuits LC temporarily store data.
  • the SRAM unit SR for storing is mounted on one chip.
  • An IO region IO is formed so as to surround the logic circuit LC and the SRAM portion SR.
  • SRAM section SR includes SRAM cell array MA having a plurality of memory cells arranged in a matrix, X decoder XD, Y decoder YD, sense amplifier SA, write driver WD, and main control circuit MC. Has mainly.
  • the SRAM memory cell includes a flip-flop obtained by cross-coupling two inverters, and a first access transistor NA1 and a second access transistor NA2.
  • the flip-flop is provided with a first storage node SN1 and a second storage node SN2 that are cross-coupled.
  • the first access transistor NA1 and the second access transistor NA2 are connected between the first storage node SN1 and the second storage node SN2, the first bit line BL, and the second bit line / BL.
  • the first bit line BL is in the positive phase
  • the second bit line / BL is in the reverse phase.
  • the gates of the first access transistor NA1 and the second access transistor NA2 are connected to the word line WL.
  • the first driver transistor ND1 and the third driver transistor ND3 are connected in parallel between the first storage node SN1 and the ground wiring (ground potential) VSS.
  • a second driver transistor ND2 and a fourth driver transistor ND4 are connected in parallel between the second storage node SN2 and the ground wiring VSS.
  • the first load transistor PL1 is connected between the first storage node SN1 and the power supply wiring VDD.
  • the first load transistor PL1 is connected in series to each of the first driver transistor ND1 and the third driver transistor ND3.
  • a second load transistor PL2 is connected between the second storage node SN2 and the power supply wiring VDD.
  • the second load transistor PL2 is connected in series to each of the second driver transistor ND2 and the fourth driver transistor ND4.
  • the gates of the first driver transistor ND1 and the third driver transistor, the gate of the first load transistor PL1, and the second storage node SN2 are electrically connected to each other. Further, the gates of the second driver transistor ND2 and the fourth driver transistor ND4, the gate of the second load transistor PL2, and the first storage node SN1 are electrically connected to each other.
  • the load transistors PL1 and PL2 are P-channel insulated gate field effect transistors, and the access transistors NA1 and NA2 and the drive transistors ND1 to ND4 are N-channel insulated gate field effect transistors.
  • the SRAM memory cell includes four driver transistors. That is, although the case where the SRAM memory cell includes four driver transistors has been described above, it is sufficient that two driver transistors are provided. That is, although the case where the third driver transistor ND4 and the fourth driver transistor ND4 are provided in addition to the first driver transistor ND1 and the second driver transistor ND3 has been described, the third driver transistor ND3 and the fourth driver transistor ND4 are provided. It does not have to be.
  • FIG. 4 is a schematic plan view showing a planar layout of the transistors constituting the SRAM memory cell of the SRAM cell array and the contacts connected to the transistors.
  • the first metal wiring electrically connected to the contact
  • the second metal wiring electrically connected to the first metal wiring through a via hole
  • the second metal wiring electrically connected through the via hole.
  • a third metal wiring is also shown.
  • each of the areas surrounded by a dotted line constitutes one SRAM memory cell.
  • One SRAM memory cell is arranged so that a part of the active region, contact, and metal wiring of another adjacent SRAM memory cell enter.
  • the SRAM memory cell MC1 will be described as a representative example.
  • the SRAM memory cell MC1 includes the first and second access transistors NA1 and NA2, the first to fourth driver transistors ND1 to ND4, and the first and second load transistors PL1 and PL2. .
  • the SRAM memory cell MC2 is arranged adjacent to the SRAM memory cell MC1 in the direction in which the first bit line BL and the second bit line / BL extend across the SRAM memory cell MC1.
  • the first to fourth driver transistors ND1 to ND4 and the first and second load transistors PL1 and PL2 respectively include the SRAM memory cell MC1 and the SRAM memory cell MC2 in the planar layout.
  • element formation regions FRN and FRP that are electrically isolated from each other are defined by forming an element isolation region IR.
  • the element formation region FRN is formed in an NMIS (N channel type Metal Insulator Semiconductor) region RN.
  • first and second access transistors NA1 and NA2 and first to fourth driver transistors ND1 to ND4 are formed as n-channel MIS transistors.
  • the element formation region FRP is formed in a PMIS (P channel type Metal Insulator Semiconductor) region RP.
  • first and second load transistors PL1 and PL2 are formed as p-channel type MIS transistors.
  • the first access transistor NA1 has a first access gate AG1 and a pair of first source / drain SD1.
  • One of the pair of first source / drain SD1 is electrically connected to the first storage node SN1, and the other of the pair of first source / drain SD1 is electrically connected to the first bit line BL.
  • the second access transistor NA2 has a second access gate AG2 and a pair of second source / drain SD2.
  • One of the pair of second source / drain SD2 is electrically connected to the second storage node SN2, and the other of the pair of second source / drain SD2 is electrically connected to the second bit line / BL. .
  • the first driver transistor ND1 has a first driver gate DG1 and a pair of third source / drain SD3.
  • One of the pair of third source / drain SD3 is electrically connected to the first storage node SN1, and the other of the pair of third source / drain SD3 is electrically connected to the ground wiring VSS.
  • the second driver transistor ND2 has a second driver gate DG2 and a pair of fourth source / drain SD4.
  • One of the pair of fourth source / drain SD4 is electrically connected to the second storage node SN2, and the other of the pair of fourth source / drain SD4 is electrically connected to the ground wiring VSS.
  • the third driver transistor ND3 has a third driver gate DG3 and a pair of fifth source / drain SD5.
  • One of the pair of fifth source / drain SD5 is electrically connected to the first storage node SN1, and the other of the pair of fifth source / drain SD5 is electrically connected to the ground wiring VSS.
  • the fourth driver transistor ND4 has a fourth driver gate DG4 and a pair of sixth source / drain SD6.
  • One of the pair of sixth source / drain SD6 is electrically connected to the second storage node SN2, and the other of the pair of sixth source / drain SD6 is electrically connected to the ground wiring VSS.
  • the first load transistor PL1 has a first load gate LG1 and a pair of source / drain.
  • the first load transistor PL1 is electrically connected to the first driver transistor ND1 at the first storage node SN1.
  • the second load transistor PL2 has a first load gate LG2 and a pair of source / drain.
  • the second load transistor PL2 is electrically connected to the second driver transistor ND2 at the second storage node SN2.
  • the third driver gate DG3 of the third driver transistor ND3 and the fourth driver gate DG4 of the fourth driver transistor ND4 are formed so as to cross the element formation region FRN.
  • the first load gate LG1 of the first load transistor PL1 and the second load gate LG2 of the second load transistor PL2 are formed so as to cross the element formation region FRP.
  • each of the first access gate AG1 and the second access gate AG2 is formed to extend in the same direction.
  • the first driver gate DG1, the second driver gate DG2, the third driver gate DG3, the fourth driver gate DG4, the first load gate LG1, and the second load gate LG2 are formed to extend in the same direction. Yes.
  • the first direction D1 from one of the pair of first source / drain SD1 to the other and the second direction D2 from one of the pair of second source / drain SD2 to the other are the same. is there.
  • the first directions D1 of the SRAM memory cell MC1 and the SRAM memory cell MC2 are the same direction, and the second directions D2 are the same direction.
  • the third direction D3 from one of the pair of third source / drain SD3 toward the other is opposite to the fifth direction D5 from one of the pair of fifth source / drain SD5 toward the other. is there. Further, the fourth direction D4 from one of the pair of fourth source / drain SD4 to the other is opposite to the sixth direction D6 from one of the pair of sixth source / drain SD6 to the other.
  • the fifth direction D5 from one of the pair of fifth source / drain SD5 to the other and the sixth direction D6 from one of the pair of sixth source / drain SD6 to the other are the same. is there. Further, the fifth directions D5 of the SRAM memory cell MC1 and the SRAM memory cell MC2 are the same as each other, and the sixth directions D6 are the same as each other.
  • a pair of source / drain simply means an impurity region that forms a pair of conduction terminals of a field effect transistor (an N-type impurity region for an N-channel transistor, a P-type for a P-channel transistor)
  • the impurity regions of the pair of impurity regions do not necessarily mean that each of the pair of impurity regions becomes either a source terminal or a drain terminal.
  • FIG. 5 is orthogonal to the extending direction of the first access gate AG1 so as to pass through the first access transistor NA1 of the SRAM memory cell MC1 and the contact C21 of the SRAM memory cell MC2 adjacent to the SRAM memory cell MC1 in FIG.
  • FIG. 5 is a schematic cross-sectional view along a cross-sectional line VV.
  • An extension region ER, a first source / drain SD1, and a metal silicide film SCL are formed in a portion of the element formation region FRN located on the opposite side of the first access gate AG1 from the side where the dummy gate DU is located. ing.
  • the first source / drain SD1, the metal silicide film SCL, and the element isolation region IR are formed in the element formation region FRN located on the opposite side of the dummy gate DU from the side where the first access gate AG1 is located. Has been.
  • a stress liner film SL such as a silicon nitride film is formed so as to cover the first access gate AG1 and the dummy gate DU.
  • An interlayer insulating film IL1 such as a silicon oxide film (eg, TEOS (Tetra Ethyl Ortho Silicate) film) is formed so as to cover the stress liner film SL.
  • a plug PG1 penetrating the interlayer insulating film IL1 and the stress liner film SL and electrically connected to the metal silicide film SCL is formed.
  • the plug PG1 includes a barrier metal film BA1 such as a TiN film and a tungsten film TL1.
  • the plugs PG1 connected to the metal silicide film SCL constitute the contacts C1, C2, and C21 shown in FIG.
  • An etching stopper film ES1 such as a silicon nitride film is formed on the interlayer insulating film IL1 so as to cover the plug PG1.
  • An interlayer insulating film IL2 such as a silicon oxide film is formed on the etching stopper film ES1.
  • a copper wiring CW1 that penetrates through the interlayer insulating film IL2 and the etching stopper film ES1 and is electrically connected to the plug PG1 is formed.
  • the copper wiring CW1 includes a barrier metal film BA2 such as a TaN film and a copper film CL1. Copper wirings CW1 connected to the plugs PG1 respectively constitute first metal wirings M1, M2, and M14 shown in FIG.
  • An interlayer insulating film IL3 such as a silicon oxide film is formed on the interlayer insulating film IL2 so as to cover the copper wiring CW1.
  • a plug PG2 penetrating through the interlayer insulating film IL3 and electrically connected to the copper wiring CW1 is formed.
  • the plug PG2 includes a barrier metal film BA3 such as a TiN film and a tungsten film TL2.
  • the plugs PG2 connected to the copper wiring CW1 respectively constitute the via holes V1 and V11 shown in FIG.
  • a copper wiring CW2 electrically connected to the plug PG2 is formed on the interlayer insulating film IL3 so as to cover the plug PG2.
  • the copper wiring CW2 includes a barrier metal film BA4 such as a TaN film and a copper film CL2.
  • the copper wiring CW2 connected to the plug PG2 constitutes the second metal wiring M21 shown in FIG.
  • An interlayer insulating film IL4 such as a silicon oxide film is formed so as to cover the copper wiring CW2.
  • An etching stopper film ES2 such as a silicon nitride film is formed on the interlayer insulating film IL4.
  • an interlayer insulating film IL5 such as a silicon oxide film is formed.
  • Copper wiring CW3 is formed through interlayer insulating film IL5 and etching stopper film ES2.
  • the copper wiring CW3 includes a barrier metal film BA5 such as a TaN film and a copper film CL3. Copper interconnection CW3 constitutes third metal interconnection M31 shown in FIG.
  • FIG. 6 is a schematic sectional view taken along a sectional line VI-VI orthogonal to the extending direction of the first driver gate DG1 so as to pass through the first driver transistor ND1 and the third driver transistor ND3 of the SRAM memory cell MC1 in FIG. It is.
  • the extension region ER, the third source / drain SD3, and the metal silicide film SCL are formed in the element formation region FRN located on the opposite side of the first driver gate DG1 from the side where the third driver gate DG3 is located. Is formed.
  • An extension region ER, a third source / drain SD3, a fifth source / drain SD5, and a metal silicide film SCL are formed in a portion of the element formation region FRN located between the first driver gate DG1 and the third driver gate DG3. Has been.
  • the extension region ER, the fifth source / drain SD5, and the metal silicide film SCL are formed in the element formation region FRN located on the opposite side of the third driver gate DG3 from the side where the first driver gate DG1 is located. Is formed.
  • a stress liner film SL such as a silicon nitride film is formed so as to cover the first driver gate DG1 and the third driver gate DG3.
  • An interlayer insulating film IL1 such as a silicon oxide film (for example, a TEOS film) is formed so as to cover the stress liner film SL.
  • a plug PG1 penetrating through the interlayer insulating film IL1 and the stress liner film SL and electrically connected to the metal silicide film SCL is formed.
  • the plug PG1 includes a barrier metal film BA1 such as a TiN film and a tungsten film TL1.
  • the plugs PG1 connected to the metal silicide film SCL respectively constitute contacts C5, C6, C7 shown in FIG.
  • An etching stopper film ES1 such as a silicon nitride film is formed on the interlayer insulating film IL1 so as to cover the plug PG1.
  • An interlayer insulating film IL2 such as a silicon oxide film is formed on the etching stopper film ES1.
  • a copper wiring CW1 that penetrates through the interlayer insulating film IL2 and the etching stopper film ES1 and is electrically connected to the plug PG1 is formed.
  • the copper wiring CW1 includes a barrier metal film BA2 such as a TaN film and a copper film CL1.
  • the copper wirings CW1 connected to the plugs PG1 respectively constitute the first metal wirings M1, M4, M5 shown in FIG.
  • An interlayer insulating film IL3 such as a silicon oxide film is formed on the interlayer insulating film IL2 so as to cover the copper wiring CW1.
  • a plug PG2 penetrating through the interlayer insulating film IL3 and electrically connected to the copper wiring CW1 is formed.
  • the plug PG2 includes a barrier metal film BA3 such as a TiN film and a tungsten film TL2.
  • the plugs PG2 connected to the copper wiring CW1 respectively constitute via holes V3 and V4 shown in FIG.
  • a copper wiring CW2 electrically connected to the plug PG2 is formed on the interlayer insulating film IL3 so as to cover the plug PG2.
  • the copper wiring CW2 includes a barrier metal film BA4 such as a TaN film and a copper film CL2.
  • the copper wiring CW2 connected to the plug PG2 constitutes the second metal wiring M22 shown in FIG.
  • An interlayer insulating film IL4 such as a silicon oxide film is formed so as to cover the copper wiring CW2.
  • An etching stopper film ES2 such as a silicon nitride film is formed on the interlayer insulating film IL4.
  • an interlayer insulating film IL5 such as a silicon oxide film is formed.
  • Copper wiring CW3 is formed through interlayer insulating film IL5 and etching stopper film ES2.
  • the copper wiring CW3 includes a barrier metal film BA5 such as a TaN film and a copper film CL3. Copper interconnection CW3 constitutes third metal interconnection M31 shown in FIG.
  • FIG. 7 shows a cross-sectional structure along a cross-sectional line corresponding to the VV line shown in FIG.
  • the first access transistor NA1 will be described as an example of the access transistor structure, but the second access transistor NA2 has the same structure.
  • the first access gate AG1 of the first access transistor NA1 formed so as to cross the element formation region FRN is respectively formed on an interface layer (Inter Layer) SF such as SiON.
  • An interface layer (Inter Layer) SF such as SiON.
  • a high-k film HK having a predetermined dielectric constant such as La-containing HfO 2 and HfSiON, a metal film ML having a predetermined work function such as TiN, and a polysilicon (polycrystalline silicon) film PS are formed in a stacked manner;
  • a metal silicide film SCL such as nickel silicide is further formed on the surface of the polysilicon film PS.
  • offset spacers OS such as a silicon nitride film are formed.
  • a sidewall spacer SW made of a silicon oxide film SO and a silicon nitride film SNI is formed.
  • the extension region ER, the source / drain SD1, and the metal silicide film SCL are formed in the element forming region in the direction orthogonal to the direction in which the first access gate AG1 extends (gate length direction).
  • FIG. 8 is a schematic plan view showing the connection relationship between each transistor of the SRAM memory cell and the third metal wiring.
  • FIG. 9 is a schematic plan view showing a connection structure between each transistor and the first metal wiring.
  • FIG. 10 is a plan view showing a connection structure between the second metal wiring and the third metal wiring.
  • FIG. 11 is a diagram showing an equivalent circuit of the SRAM memory cell shown in accordance with the planar layout of FIG.
  • FIG. 12 is a schematic plan view showing a planar layout of the SRAM memory cell adjacent to the SRAM memory cell shown in FIG. 8 to 10 show a multilayer wiring structure for one SRAM memory cell.
  • the multilayer wiring structure on the adjacent SRAM memory cell is shown in FIG. 8, as shown in FIG. Except for the transistors, the wiring pattern is formed in line symmetry (mirror symmetry) with respect to a virtual boundary line VL (see FIG. 4) between the adjacent SRAM memory cells. Therefore, the SRAM memory cell MC1 will be mainly described.
  • one of the first source / drain SD1 of the first access transistor NA1 is connected via the contact C1 (plug PG1), the first metal wiring M1 (copper wiring CW1) and the contact C5.
  • One of the third source / drain SD3 of the first driver transistor ND1 and one of the fifth source / drain SD5 of the third driver transistor ND3 are electrically connected.
  • One of the first source / drain SD1 of the first access transistor NA1 is connected to one of the SD of the first load transistor PL1 and the second of the second load transistor PL2 via the contact C1, the first metal wiring M1, and the contact C9.
  • the second load gate LG2, the second driver gate DG2 of the second driver transistor ND2, and the fourth driver gate DG4 of the fourth driver transistor ND4 are electrically connected.
  • the other of the first source / drain SD1 of the first access transistor NA1 is the second metal wiring as the bit line BL via the contact C2 (plug PG1), the first metal wiring M2 (copper wiring CW1) and the via hole V1. It is electrically connected to M21.
  • the first access gate AG1 of the first access transistor NA1 is connected to the third metal wiring M31 as the word line WL through the contact C4, the first metal wiring M3, the via hole V2, the second metal wiring M26, and the via hole V21. Electrically connected.
  • the dummy gate DU is electrically connected to the third metal wiring M31 as the word line WL through the contact C3, the first metal wiring M3, the via hole V2, the second metal wiring M26, and the via hole V21.
  • the other of the third source / drain SD3 of the first driver transistor ND1 is electrically connected to a second metal wiring M22 as a ground wiring VSS to which a ground potential is applied via the contact C6, the first metal wiring M1 and the via hole V3. It is connected to the.
  • the other of the fifth source / drain SD5 of the third driver transistor ND1 is electrically connected to the second metal wiring M22 as the ground wiring VSS to which the ground potential is applied through the contact C7, the first metal wiring M5 and the via hole V4. It is connected to the.
  • the other of the source / drain SD of the first load transistor PL1 is electrically connected to the second metal wiring M23 as the power supply wiring VDD through the contact C8, the first metal wiring M6, and the via hole V5.
  • the transistor ND4 is electrically connected to one of the sixth source / drain SD6.
  • One of the second source / drain SD2 of the second access transistor NA2 is connected to one of the SD of the second load transistor PL2 and the first of the first load transistor PL1 via the contact C11, the first metal wiring M8, and the contact C18.
  • the first load gate LG1, the first driver gate DG3 of the first driver transistor ND3, and the third driver gate DG3 of the third driver transistor ND3 are electrically connected.
  • the other of the second source / drain SD2 of the second access transistor NA2 is electrically connected to the second metal wiring M24 as the bit line / BL via the contact C12, the first metal wiring M9 and the via hole V6. Yes.
  • the second access gate AG2 of the second access transistor NA2 is connected to the third metal wiring M31 as the word line WL through the contact C14, the first metal wiring M10, the via hole V10, the second metal wiring M27, and the via hole V22. Electrically connected.
  • the dummy gate DU is electrically connected to the third metal wiring M31 as the word line WL through the contact C13, the first metal wiring M10, the via hole V22, the second metal wiring M27, and the via hole V22.
  • the other of the fourth source / drain SD4 of the second driver transistor ND2 is electrically connected to the second metal wiring M25 as the ground wiring VSS to which the ground potential is applied through the contact C16, the first metal wiring M11, and the via hole V7. It is connected to the.
  • the other of the sixth source / drain SD6 of the fourth driver transistor ND4 is electrically connected to the second metal wiring M25 as the ground wiring VSS to which the ground potential is applied through the contact C17, the first metal wiring M12, and the via hole V8. It is connected to the.
  • the other of the source / drain SD of the second load transistor PL2 is electrically connected to the second metal wiring M23 as the power supply wiring VDD through the contact C19, the first metal wiring M13, and the via hole V9.
  • the common word line WL is connected to the contacts C1 and C11 in the SRAM memory cell MC1.
  • a ground wiring VSS is connected to the contacts C6, C7, C16, and C17.
  • a power supply wiring VDD is connected to the contacts C8 and C19.
  • Bit lines BL and / BL are connected to contacts C2 and C12, respectively.
  • Contacts C1 and C5 constitute storage node SN1, and contacts C11 and C15 constitute storage node SN2.
  • the contact C21 is electrically connected to the bit line BL via the first metal wiring M14 and the via hole V11.
  • each figure (A) is a cross section taken along a cross-sectional line corresponding to the VV line shown in FIG.
  • Each structure (B) shows a cross-sectional structure along a cross-sectional line corresponding to the VI-VI line shown in FIG.
  • element formation regions FRN and FRP that are electrically isolated from each other by forming element isolation region IR on the main surface of semiconductor substrate SS are provided. It is prescribed.
  • the element formation regions FRN and FRP are formed so as to straddle regions that become SRAM memory cells adjacent to each other.
  • a p-well PW is formed in the element formation region FRN.
  • a high-k film HK having a predetermined dielectric constant, a metal film ML having a predetermined work function, and a polysilicon film PS are stacked on the surface of the semiconductor substrate SS with an interface layer SF interposed therebetween.
  • a gate structure G to be the first access gate AG1 and the dummy gate DU and a gate structure G to be the first driver gate DG1 and the third driver gate DG3 are formed.
  • the gate structure G is formed so as to straddle a region to be an SRAM memory cell adjacent to each other.
  • a silicon nitride film (not shown) is formed on the semiconductor substrate SS so as to cover the gate structure G.
  • the silicon nitride film is anisotropically etched to form offset spacers OS on both side surfaces of the gate structure G.
  • a resist mask RM1 that exposes NMIS region RN and covers PMIS region RP is formed.
  • the resist mask RM1 exposes the gate structure G to be the first access gate AG1, the gate structure G to be the first driver gate DG1, and the gate structure G to be the third driver gate DG3 through one opening, and the second
  • the gate structure G to be the access gate AG2, the gate structure G to be the second driver gate DG2, and the gate structure G to be the fourth driver gate DG4 are formed in a pattern exposed through one opening. That is, each opening of the resist mask RM1 is continuously formed so as to straddle the adjacent SRAM memory cell MC1 and SRAM memory cell MC2.
  • resist mask RM1 as an implantation mask, for example, phosphorus or arsenic is implanted into semiconductor substrate SS from a direction perpendicular to the main surface of semiconductor substrate SS.
  • an extension region ER is formed from the exposed surface of the p-well PW to a predetermined depth (extension implantation).
  • the resist mask RM1 is removed.
  • a resist mask RM2 that covers NMIS region RN and exposes PMIS region RP is formed.
  • the resist mask RM2 as an implantation mask, for example, boron is implanted into the semiconductor substrate SS from a direction perpendicular to the main surface of the semiconductor substrate SS, thereby forming an extension region (not shown). Thereafter, the resist mask RM2 is removed.
  • a silicon oxide film and a silicon nitride film are sequentially formed so as to cover the gate structure G (first access gate AG1, dummy gate DU, first driver gate DG1, third driver gate DG3, etc.). It is formed.
  • anisotropic etching is performed on the silicon oxide film and the silicon nitride film to form the silicon oxide film SO on both side surfaces of the gate structure G. Sidewall spacers SW made of the silicon nitride film SNI are formed.
  • a resist mask RM3 that exposes NMIS region RN and covers PMIS region RP is formed.
  • phosphorus or arsenic is perpendicular to the main surface of semiconductor substrate SS using resist mask RM3 (FIG. 19) and sidewall spacer SW as an implantation mask.
  • the first source / drain SD1, the third source / drain SD3, and the fifth source / drain SD5 are formed from the exposed surface of the p-well PW to a predetermined depth. Thereafter, the resist mask RM3 is removed.
  • a resist mask RM4 that covers NMIS region RN and exposes PMIS region RP is formed.
  • boron is implanted into the semiconductor substrate SS from a direction perpendicular to the main surface of the semiconductor substrate SS, thereby exposing the surface of the exposed element formation region FRP.
  • a source / drain (not shown) is formed from a predetermined depth to a predetermined depth. Thereafter, the resist mask RM4 is removed.
  • a predetermined annealing process is performed to thermally diffuse the implanted impurities, thereby providing a first source / drain SD1 and a third source / drain SD3.
  • the fifth source / drain SD5 and the extension region ER are activated.
  • the first source / drain SD1, the third source / drain SD3, the fifth source / drain SD5, and the extension region ER expand in the horizontal direction and the vertical (depth) direction due to the thermal diffusion of the impurities. Become.
  • the exposed first source / drain SD1, third source / drain SD3, fifth source / drain SD5, first access gate are exposed by the salicide process.
  • a metal silicide film SCL such as nickel silicide is formed on the surface of the polysilicon film PS of the AG1, dummy gate DU, first driver gate DG1, and third driver gate DG3.
  • a silicon nitride film or the like is formed so as to cover first access gate AG1, dummy gate DU, first driver gate DG1 and third driver gate DG3.
  • a stress liner film SL is formed.
  • An interlayer insulating film IL1 such as a silicon oxide film (for example, a TEOS film) is formed so as to cover the stress liner film SL.
  • contact hole CH exposing metal silicide film SCL is formed.
  • a barrier metal film BA1 such as titanium nitride (TiN) is formed so as to cover the inner wall of the contact hole CH, and further, the tungsten film is filled on the barrier metal film BA1.
  • TL1 is formed.
  • CMP Chemical Mechanical Polishing
  • the barrier metal film and the tungsten film located on the upper surface of the interlayer insulating film IL1 are removed, and FIGS. As shown in B), a plug PG1 including a barrier metal film BA1 and a tungsten film TL1 is formed in the contact hole CH.
  • an etching stopper film ES1 such as a silicon nitride film is formed so as to cover the plug PG1.
  • An interlayer insulating film IL2 such as a silicon oxide film is formed on the etching stopper film ES1.
  • a groove exposing the surface of the plug PG1 is formed.
  • a barrier metal film BA2 such as tantalum nitride (TaN) is formed so as to cover the inner wall of the groove, and further, a copper film CL1 is formed on the barrier metal film BA2 so as to fill the groove. Is done.
  • an interlayer insulating film IL3 such as a silicon oxide film is formed on the interlayer insulating film IL2 so as to cover the copper wiring CW1.
  • Via holes V1, V3, V4, and V11 are formed in the interlayer insulating film IL3 by a method similar to the method of forming the plug PG1.
  • an interlayer insulating film (not shown) is formed so as to cover the via holes V1, V3, V4, and V11.
  • a copper wiring CW2 is formed in the interlayer insulating film by a method similar to the method of forming the copper wiring CW1.
  • the copper wiring CW2 corresponds to the second metal wirings M21 and M22.
  • an interlayer insulating film IL4 is formed so as to cover the copper wiring CW2.
  • a via hole (not shown) is formed in the interlayer insulating film IL4 by a method similar to the method of forming the plug PG1.
  • an etching stopper film ES2 such as a silicon nitride film is formed so as to cover this via hole (not shown).
  • An interlayer insulating film IL5 such as a silicon oxide film is formed on the etching stopper film ES2.
  • a copper wiring CW3 is formed in the interlayer insulating film IL5 by the same method as the method of forming the copper wiring CW1. Copper wiring CW3 corresponds to third metal wiring M31. Thus, the main part of the SRAM memory cell is formed.
  • the SRAM memory cell MC1 will be described as an example. Both the first bit line BL and the second bit line / BL are precharged to H level. In the read operation, current flows from the first bit line BL and the second bit line / BL at the H level to the first storage node SN1 and the second storage node SN2, respectively.
  • the first storage node SN1 of the SRAM memory cell is 0V and the second storage node SN2 is 1V.
  • the word line WL changes from the L level (0V) to the H level (1V) and the read operation starts, the first access transistor NA1 is in the ON state, and the first driver transistor ND1 and the third driver transistor ND3 are also in the ON state. Therefore, a current flows from the first bit line BL precharged to the H level (1V) in advance to the first storage node SN1. As a result, the potential of the first bit line BL is slightly lowered from 1V.
  • the second access transistor NA2 is in the ON state, but the second driver transistor ND2 and the fourth driver transistor ND4 are in the OFF state. No current flows through the node SN2. Therefore, the second storage node SN2 holds the precharged H level (1V).
  • the potentials of the first storage node SN1 and the second storage node SN2 are opposite to those described above, and the first bit line BL
  • the current flowing from the first storage node SN1 to the first storage node SN1 and the current flowing from the second bit line / BL to the second storage node SN2 are also reversed.
  • the direction of the current flowing through the first access transistor NA1 is the direction from the first bit line BL toward the first storage node SN1.
  • the direction of the current flowing through the second access transistor NA2 is the direction from the second bit line / BL toward the second storage node SN2.
  • the direction of current flowing through first access transistor NA1 is electrically connected to first storage node SN1 from the other one of first source / drain SD1 electrically connected to first bit line BL.
  • the direction is toward one of the first source / drain SD1.
  • the direction of the current flowing through the second access transistor NA2 is such that the second source / drain SD2 electrically connected to the second storage node SN2 from the other of the second source / drain SD2 electrically connected to the second bit line / BL.
  • the direction is toward one of the drains SD2.
  • SRAM memory cell MC1 having the layout shown in FIG. 8 is “Fodd” and SRAM memory cell MC2 having the layout shown in FIG.
  • Fodd and Feven SRAM memory cells MC1 and MC2 are alternately arranged.
  • a plurality of identical Fodds are arranged in odd columns, and a plurality of identical Fevens are arranged in even columns.
  • SRAM memory cells MC1 and MC2 of M rows and N columns are arranged in the SRAM cell array MA.
  • the direction of the 1 bit line BL and the second bit line / BL) toward the impurity region is the same direction.
  • the SRAM memory cells MC1 and MC2 adjacent to each other have the same current direction in each of the first access transistor NA1 and the second access transistor NA2. For this reason, the mismatch characteristic resulting from a cell layout can be reduced.
  • the gate in the method of manufacturing an SRAM memory cell, as a result of the gate being etched, if the gate is bent in the planar layout, the gate may be formed in a round shape along the bend. In this case, the gate rounds on the diffusion layer, which may cause variations in the threshold voltage of the transistor. For this reason, as shown in the modification of the present embodiment, the gates may be electrically connected by the local interconnector LIC without bending the gates. Hereinafter, the modification is demonstrated.
  • FIG. 29 is a schematic plan view showing a connection structure between each transistor and the first metal wiring.
  • G is electrically connected to the local interconnector LIC.
  • the gate structure G that constitutes the first driver gate DG1 and the gate structure G that constitutes the third driver gate are element formation regions FRN,
  • the FRP is electrically connected by a local interconnector LIC.
  • the gate structure G constituting the second driver gate DG2 of the second driver transistor ND2 and the gate structure G constituting the fourth driver gate DG4 of the fourth driver transistor ND4 are electrically connected by the local interconnector LIC. . That is, in the direction in which the second driver gate DG2 and the fourth driver gate DG4 extend, the gate structure G that constitutes the second driver gate DG2 and the gate structure G that constitutes the fourth driver gate DG4 form the element formation region FRN. , FRP are electrically connected by a local interconnector LIC.
  • the local interconnector LIC is formed on the element isolation region IR.
  • a local interconnector LIC is formed so as to cover each metal silicide film SCL between the gate structure G constituting the first driver gate DG1 and the gate structure G constituting the third driver gate DG3 of the third driver transistor ND3. Yes.
  • Interlayer insulating film IL1 is formed to cover local interconnector LIC.
  • the local interconnector LIC can be manufactured as follows. First, the interlayer insulating film IL1 is formed up to the height of the local interconnector LIC so as to cover the gate structure G. Subsequently, the grooves for forming the local interconnector LIC are etched. Further, for example, a tungsten film is formed so as to fill the groove. Next, a chemical mechanical polishing process is performed to remove a portion of the tungsten film located on the upper surface of the interlayer insulating film IL1. Thereby, a local interconnector LIC is formed. Thereafter, the method for manufacturing the semiconductor device SCD of the present embodiment is applied by forming the interlayer insulating film IL1.
  • the gate structures G are electrically connected by the local interconnector LIC, the gates can be formed linearly without being bent. Therefore, it is possible to suppress the gate from rounding on the diffusion layer. For this reason, the occurrence of variations in the threshold voltage of the transistor due to the round of the gate can be suppressed.
  • the gate since the gate is formed in a straight line, lithography becomes easy, so that the gate can be easily formed. Therefore, the precision of microfabrication can be improved.
  • each region surrounded by a dotted line forms one SRAM memory cell.
  • the transistors and contacts of each SRAM memory cell are arranged in line symmetry (mirror target) with the adjacent SRAM memory cell.
  • SRAM memory cell MC1 typically includes access transistors T1, T2, driver transistors T3, T4, and load transistors T5, T6.
  • Access gates AG1 and AG2 of access transistors T1 and T2, driver gates DG1 and DG2 of driver transistors T3 and T4, and load gates LG1 and LG2 of load transistors T5 and T6 all extend in the same direction. Is formed.
  • a current flows in the direction of arrow A from one of the source / drain electrically connected to the first bit line BL toward the other of the source / drain electrically connected to the first storage node SN1.
  • a current flows in the direction of arrow A from one of the source / drain electrically connected to second bit line / BL to the other of the source / drain electrically connected to second storage node SN2.
  • Flowing The direction of the current flowing through the access transistors T1 and T2 is opposite. For this reason, the mismatch characteristics due to the cell layout become large, and there is a risk that the variation in cell characteristics becomes large.
  • the direction of the current flowing through the access transistors T1 and T2 is reversed as in the SRAM memory cell MC1.
  • the directions of currents of access transistors T1 and T2 arranged in adjacent directions are opposite to each other. For this reason, mismatch due to the cell layout between adjacent cells also increases, and there is a risk that variations in cell characteristics will increase.
  • the second direction D2 from the one side of the source / drain SD2 to the other side is the same.
  • the first directions D1 of the SRAM memory cell MC1 and the SRAM memory cell MC2 are the same direction, and the second directions D2 are the same direction.
  • the current directions of the first access transistor NA1 and the second access transistor NA2 can be made the same direction. For this reason, mismatch characteristics due to cell layout can be reduced, and variations in cell characteristics can be reduced. Therefore, the operation margin can be expanded.
  • each of the first access gate AG1 and the second access gate AG2, the first driver gate DG1, the second driver gate DG2, the first load gate LG1, and the second load gate LG2 extends in the same direction. It is formed as follows. Therefore, impurity implantation can be performed in two steps (two directions) when forming the source / drain. That is, impurities for forming the source / drain can be implanted from two directions in which the source and drain are arranged with respect to the gate. Thereby, local variations due to impurity fluctuations can be reduced.
  • the gates are formed in the same direction, it is possible to reduce that the source / drain is not sufficiently formed due to mask displacement. Therefore, local variations due to mask displacement can be reduced. Further, since the gates are formed in the same direction, fine processing can be facilitated. Therefore, global variation resulting from microfabrication can be reduced.
  • impurities can be implanted in order to form a source / drain using a linear resist mask covering the first driver transistor ND1 and the second driver transistor ND2.
  • Impurity implantation can be performed to form the source / drain using a linear resist mask covering the first load transistor PL1 and the second load transistor PL2.
  • the SRAM memory cell MC1 and the SRAM memory cell MC2 can share a part of the first load transistor PL1 and the second load transistor PL2. Therefore, the SRAM cell array MA can be reduced. Therefore, the SRAM portion SR can be reduced.
  • the first driver gate DG1 and the second driver gate DG2, and the third driver gate DG3 and the fourth driver gate DG4 extend in the same direction. It is formed as follows.
  • the 1 access transistor NA1 and the second access transistor NA2 are arranged outside the first driver transistor ND1 and the second driver transistor ND2. Therefore, the third driver transistor ND3 and the fourth driver transistor ND4 can be provided in the direction in which the first bit line BL and the second bit line / BL extend. Thereby, the current of the driver transistor can be increased.
  • the ⁇ ratio is expressed as a current ratio of the driver transistor to the access transistor (however, the source-to-gate voltage and the source-to-drain voltage are the same between the access transistor and the driver transistor). If the ⁇ ratio increases, an improvement of SNM (Static Noise Margin) is expected.
  • SNM is an index that indicates a margin when the SRAM memory cell operates by a voltage.
  • the semiconductor device according to the second embodiment of the present invention is mainly different from the semiconductor device according to the first embodiment in that the threshold voltage of the access transistor is different from the threshold voltage of the driver transistor. .
  • the first access transistor NA1 is formed to have a different threshold voltage from the first driver transistor ND1 and the third driver transistor ND3.
  • the second access transistor NA2 is formed to have a different threshold voltage than the second driver transistor ND2 and the fourth driver transistor ND4.
  • the channel impurity concentrations of the first access transistor NA1 and the second access transistor NA2 are different from the channel impurity concentrations of the first driver transistor ND1, the second driver transistor ND2, the third driver transistor ND3, and the fourth driver transistor ND4.
  • the first and second access transistors NA1 and NA2 and the first to fourth driver transistors ND1 to ND4 are formed to have different threshold voltages.
  • the first and second access transistors NA1, NA2 and the first to fourth driver transistors ND1 to ND4 are channel doped. Thereafter, a resist mask in which the first and second access transistors NA1, NA2 are opened is formed, and channel doping of the first and second access transistors NA1, NA2 is further performed.
  • the channel impurity concentrations of the first and second access transistors NA1 and NA2 are set to be different from the channel impurity concentrations of the first to fourth driver transistors ND1 to ND4.
  • the first access transistor NA1 may be formed to have a threshold voltage (Hvth) higher than the threshold voltage (Lvth) of the first driver transistor ND1 and the third driver transistor ND3.
  • the second access transistor NA2 may be formed to have a threshold voltage (Hvth) higher than the threshold voltage (Lvth) of the second driver transistor ND2 and the fourth driver transistor ND4.
  • the channel impurity concentration of the first access transistor NA1 is higher than the channel impurity concentration of the first driver transistor ND1 and the third driver transistor ND3. Further, the channel impurity concentration of the second access transistor NA2 is higher than the channel impurity concentrations of the second driver transistor ND2 and the fourth driver transistor ND4.
  • the first access transistor NA1 and the second access transistor NA2 have threshold voltages higher than the threshold voltages of the first driver transistor ND1 and the second driver transistor ND2. It is provided to have. Therefore, the ⁇ ratio can be increased. Thereby, a read margin of the SRAM memory cell can be ensured.
  • the semiconductor device according to the third embodiment of the present invention is mainly different from the semiconductor device according to the first embodiment in that the gate width of the access transistor is larger than the gate width of the driver transistor.
  • the width of first access gate AG1 of first access transistor NA1 is the width WA1 of first driver gate DG1 of first driver transistor ND1 and the width of third driver gate DG3 of third driver transistor ND3. It is provided to be larger than WA3.
  • the width of the second access gate AG2 of the second access transistor NA2 is larger than the width WA2 of the second driver gate DG2 of the second driver transistor ND2 and the width WA4 of the fourth driver gate DG4 of the fourth driver transistor ND4. Is provided.
  • the first access transistor is determined by the width of the diffusion layer forming the third source / drain SD3 of the first driver transistor ND1 and the fifth source / drain SD5 of the third driver transistor ND3.
  • the width of the first access gate AG1 is made larger than the width WA1 of the first driver gate DG1 and the width WA3 of the third driver gate DG3.
  • the diffusion for forming the second source / drain SD2 of the second access transistor NA2 from the width of the diffusion layer for forming the fourth source / drain SD4 of the second driver transistor ND2 and the sixth source / drain SD6 of the fourth driver transistor ND4.
  • the gate width of the second access gate AG2 is formed larger than the width WA2 of the second driver gate DG2 and the width WA4 of the third driver gate DG4.
  • the width of the first access gate AG1 of the first access transistor NA1 is equal to the width WA1 of the first driver gate DG1 of the first driver transistor ND1 and the third width of the third driver transistor ND3.
  • the width of the second access gate AG2 of the second access transistor NA2 is set to be larger than the width WA3 of the driver gate DG3.
  • the fourth driver gate DG4 of ND4 is provided to be larger than the width WA4.
  • the third driver transistor ND3 and the fourth driver transistor ND4 are provided in addition to the first driver transistor ND1 and the second driver transistor ND2, the currents of the first driver transistor ND1 and the third driver transistor ND3 increase, The currents of the two driver transistor ND2 and the fourth driver transistor ND4 are also increased. Therefore, ⁇ ratio becomes large. Therefore, even if the first access gate AG1 is provided to be larger than the width WA1 of the first driver gate DG1 and the width WA3 of the third driver gate DG3, the third driver transistor ND3 is not provided. Therefore, the ⁇ ratio can be maintained in a large state.
  • the fourth driver transistor ND4 is not provided.
  • the ⁇ ratio can be maintained in a large state. Thereby, a read margin of the SRAM memory cell can be ensured.
  • the width WA1 of the first driver gate DG1 to the width WA4 of the fourth driver gate DG4 can be made smaller than the width of the first access gate AG1 and the width of the second access gate AG2, the area of the SRAM memory cell can be reduced. can do.
  • the semiconductor device according to the fourth embodiment of the present invention is mainly different from the semiconductor device according to the first embodiment in that an asymmetric halo region is provided.
  • first halo regions HR1 to HR1 are connected to first and second access transistors NA1 and NA2 and first to fourth driver transistors ND1 to ND4, respectively.
  • a twelfth halo region HR12 is formed.
  • the first halo region HR1 to the twelfth halo region HR12 are formed as p-type impurity regions.
  • halo regions formed in first and second load transistors PL1 and PL2 described later are formed as n-type impurity regions.
  • the first access transistor NA1 is adjacent to the other of the first source / drain SD1, and has a first halo region HR1 having a second conductivity type impurity different from the first conductivity type impurity of the first source / drain SD1, A second halo region HR2 having a second conductivity type impurity having an impurity concentration higher than that of the first halo region HR1 is adjacent to one of the first source / drain SD1.
  • the second access transistor NA2 is adjacent to the other of the second source / drain SD2, and has a third halo region HR3 having a second conductivity type impurity different from the first conductivity type impurity of the second source / drain SD2.
  • a fourth halo region HR4 having an impurity of a second conductivity type having an impurity concentration higher than the impurity concentration of the third halo region HR3 is adjacent to one of the second source / drain SD2.
  • the first driver transistor ND1 is adjacent to the other of the third source / drain SD3 and has a fifth halo region HR5 having a second conductivity type impurity different from the first conductivity type impurity of the third source / drain SD3, A sixth halo region HR6 having a second conductivity type impurity having an impurity concentration higher than that of the fifth halo region HR5 is adjacent to one of the third source / drain SD3.
  • the second driver transistor ND2 is adjacent to the other of the fourth source / drain SD4 and has a seventh halo region HR7 having a second conductivity type impurity different from the first conductivity type impurity of the fourth source / drain SD4,
  • An eighth halo region HR8 having an impurity of a second conductivity type having an impurity concentration higher than that of the seventh halo region HR7 is adjacent to one of the fourth source / drain SD4.
  • the third driver transistor ND3 is adjacent to one of the fifth source / drain SD5 and has a ninth halo region HR9 having a second conductivity type impurity different from the first conductivity type impurity of the fifth source / drain SD5, A tenth halo region HR10 having a second conductivity type impurity having an impurity concentration higher than that of the ninth halo region HR9 is adjacent to the other of the fifth source / drain SD5.
  • the fourth driver transistor ND4 is adjacent to one of the sixth source / drain SD6 and has an eleventh halo region HR11 having a second conductivity type impurity different from the first conductivity type impurity of the sixth source / drain SD6,
  • a twelfth halo region HR12 having a second conductivity type impurity having an impurity concentration higher than that of the eleventh halo region HR11 is adjacent to the other of the sixth source / drain SD6.
  • the first to twelfth halo regions HR1 to HR12 are formed by 2 Step Halo Impla (two-way halo implantation).
  • 2Step Halo Impla a thin Halo Impla (halo implantation) is performed from one direction, and a deep Halo Impla (halo implantation) is performed from the other direction opposite to the one direction.
  • the asymmetric halo region HR is provided.
  • the impurity concentration of the second halo region HR2 and the fourth halo region HR4 is higher than the impurity concentration of the first halo region HR1 and the third halo region HR3 connected to the first bit line BL and the second bit line / BL. Is also set high.
  • the side connected to the first storage node SN1 and the second storage node SN2 The impurity concentration of the sixth halo region HR6 and the eighth halo region HR8 is greater than the impurity concentration of the fifth halo region HR5 and the sixth halo region HR6 on the side connected to the first bit line BL and the second bit line / BL. Is also set high.
  • the ninth halo region HR9 to the twelfth halo region HR12 formed respectively, the tenth halo region HR10, twelfth on the side connected to the ground wiring VSS.
  • the impurity concentration of the halo region HR12 is set higher than the impurity concentration of the ninth halo region HR9 and the eleventh halo region HR11 on the side connected to the first storage node SN1 and the second storage node SN2.
  • a deep halo region DHI is formed in the second halo region HR2, the fourth halo region HR4, the sixth halo region HR6, the eighth halo region HR8, the tenth halo region HR10, and the twelfth halo region HR12.
  • FIG. 38 is a schematic cross sectional view taken along a cross sectional line XXXVIII-XXXVIII orthogonal to the extending direction of the first access gate AG1 so as to pass through the first access transistor NA1 of the SRAM memory cell MC1 in FIG.
  • the element formation region FRN located on the side opposite to the side where the dummy gate DU is located with respect to the first access gate AG1 includes the first halo region HR1, the extension region ER, the first source / drain SD1, and the metal A silicide film SCL is formed.
  • First halo region HR1 is formed to reach a region immediately below first access gate AG1.
  • Second halo region HR2 is formed to reach a region immediately below second access gate AG2.
  • a stress liner film SL such as a silicon nitride film is formed so as to cover the first access gate AG1.
  • An interlayer insulating film IL1 such as a silicon oxide film (for example, a TEOS film) is formed so as to cover the stress liner film SL.
  • a plug PG1 penetrating through the interlayer insulating film IL1 and the stress liner film SL and electrically connected to the metal silicide film SCL is formed.
  • the plug PG1 includes a barrier metal film BA1 such as a TiN film and a tungsten film TL1.
  • the plugs PG1 connected to the metal silicide film SCL respectively constitute contacts C1 and C2 shown in FIG.
  • An etching stopper film ES1 such as a silicon nitride film is formed on the interlayer insulating film IL1 so as to cover the plug PG1.
  • An interlayer insulating film IL2 such as a silicon oxide film is formed on the etching stopper film ES1.
  • a copper wiring CW1 that penetrates through the interlayer insulating film IL2 and the etching stopper film ES1 and is electrically connected to the plug PG1 is formed.
  • the copper wiring CW1 includes a barrier metal film BA2 such as a TaN film and a copper film CL1.
  • the copper wiring CW1 connected to the plug PG1 constitutes the first metal wirings M1 and M2 shown in FIG.
  • 39 is a schematic sectional view taken along a sectional line XXXIX-XXXIX orthogonal to the extending direction of the first driver gate DG1 so as to pass through the first driver transistor ND1 and the third driver transistor ND3 of the SRAM memory cell MC1 in FIG. It is.
  • the element formation region FRN located on the opposite side of the first driver gate DG1 from the side where the third driver gate DG3 is located includes a fifth halo region HR5, an extension region ER, and a third source / drain SD3.
  • a metal silicide film SCL is formed.
  • the fifth halo region HR5 is formed so as to reach a region immediately below the first driver gate DG1.
  • the element formation region FRN located between the first driver gate DG1 and the third driver gate DG3 includes a sixth halo region HR6, a ninth halo region HR9, an extension region ER, a third source / drain SD3, 5 source / drain SD5 and metal silicide film SCL are formed.
  • the sixth halo region HR6 is formed so as to reach a region immediately below the first driver gate DG1.
  • the ninth halo region HR9 is formed so as to reach a region immediately below the third driver gate DG3.
  • the element formation region FRN located on the opposite side of the third driver gate DG3 from the side where the first driver gate DG1 is located includes a tenth halo region HR10, an extension region ER, and a fifth source / drain SD5. Further, a metal silicide film SCL is formed. The tenth halo region HR10 is formed so as to reach a region immediately below the third driver gate DG3.
  • a stress liner film SL such as a silicon nitride film is formed so as to cover the first driver gate DG1 and the third driver gate DG3.
  • An interlayer insulating film IL1 such as a silicon oxide film (for example, a TEOS film) is formed so as to cover the stress liner film SL.
  • a plug PG1 penetrating through the interlayer insulating film IL1 and the stress liner film SL and electrically connected to the metal silicide film SCL is formed.
  • the plug PG1 includes a barrier metal film BA1 such as a TiN film and a tungsten film TL1.
  • the plugs PG1 connected to the metal silicide film SCL respectively constitute contacts C5, C6, C7 shown in FIG.
  • An etching stopper film ES1 such as a silicon nitride film is formed on the interlayer insulating film IL1 so as to cover the plug PG1.
  • An interlayer insulating film IL2 such as a silicon oxide film is formed on the etching stopper film ES1.
  • a copper wiring CW1 that penetrates through the interlayer insulating film IL2 and the etching stopper film ES1 and is electrically connected to the plug PG1 is formed.
  • the copper wiring CW1 includes a barrier metal film BA2 such as a TaN film and a copper film CL1.
  • the copper wirings CW1 connected to the plugs PG1 respectively constitute first metal wirings M1, M4, M5 shown in FIG. Each halo region other than the above is formed so as to reach a region immediately below each gate.
  • FIG. 40 shows a cross-sectional structure taken along a cross-sectional line corresponding to the line XXXVIII-XXXVIII shown in FIG.
  • the first access transistor NA1 will be described as an example of the access transistor structure, but the second access transistor NA2 has the same structure.
  • first access gate AG1 of first access transistor NA1 formed so as to cross element formation region FRN contains La on interface layer SF such as SiON.
  • a high-k film HK having a predetermined dielectric constant, such as HfO 2 or HfSiON, or a metal film ML having a predetermined work function, such as TiN, and a polysilicon film PS are formed in a stacked manner.
  • a metal silicide film SCL such as nickel silicide is formed.
  • An offset spacer OS such as a silicon nitride film is formed on both side surfaces of the first access gate AG1.
  • a sidewall spacer SW made of a silicon oxide film SO and a silicon nitride film SNI is formed.
  • the element formation region in a direction (gate length direction) orthogonal to the direction in which the first access gate AG1 extends includes a first halo region HR1, a second halo region HR2, an extension region ER, and a first source / drain SD1.
  • a metal silicide film SCL is formed.
  • the first halo region HR1 and the second halo region HR2 are in regions adjacent to the mutually opposing portions of the pair of sources or drains, respectively, and the first access from the region immediately below the sidewall spacer SW. It is formed so as to reach a region immediately below gate AG1.
  • the impurity concentration of the halo region HR is on the order of 1 ⁇ 10 18 / cm 3 to 1 ⁇ 10 19 / cm 3 , but in the semiconductor device SCD, the impurity concentration of the second halo region HR2 is the impurity concentration of the first halo region HR1. It is set higher than the concentration.
  • FIG. 41 shows the impurity concentration profile of the halo region HR.
  • the horizontal axis indicates the depth (arrows F1, F2) from the surface portion of the semiconductor substrate SS at the lower end of the side surface of the first access gate AG1, and the vertical axis indicates the impurity concentration of the P-type impurity.
  • the impurity concentration of the second halo region HR2 is the impurity concentration of the first halo region HR1 in the surface portion of the semiconductor substrate SS at the lower end of the side surface of the first access gate AG1. Higher than.
  • the peak (maximum value) of the impurity concentration first appears at predetermined depths f1 and f2 from the surface, respectively, and the peak of the impurity concentration of the second halo region HR2 is also higher than the peak of the impurity concentration of the first halo region HR1.
  • the second halo region HR2 about 6 ⁇ 10 18 / cm 3
  • the first halo regions HR1 is about 5 ⁇ 10 18 / cm 3.
  • the impurity concentration of the extension region ER of the SRAM memory cell MC1 is 5 ⁇ 10 20 / cm 3 to 1 ⁇ 10 21 / cm 3
  • the impurity concentration of the source or drain is about 5 ⁇ 10 21 / cm 3 .
  • the impurity concentrations of the 2 halo region HR2 and the fourth halo region HR4 are higher than the impurity concentrations of the first halo region HR1 and the third halo region HR3 on the side connected to the first bit line BL and the second bit line / BL.
  • a semiconductor device includes a logic circuit in addition to an SRAM circuit.
  • a method for forming an access transistor and a driver transistor of an SRAM memory cell will be mainly described. 42, FIG. 44 to FIG. 46, FIG. 48, FIG. 50, and FIG. 52 to FIG. 55 referred to hereinafter, each figure (A) is taken along the sectional line corresponding to the line XXXVIII-XXXVIII shown in FIG. A cross-sectional structure is shown, and each figure (B) shows a cross-sectional structure along a cross-sectional line corresponding to the XXXIX-XXXIX line shown in FIG.
  • element formation regions FRN and FRP that are electrically isolated from each other are defined.
  • a p-well PW is formed in the element formation region FRN.
  • a high-k film HK having a predetermined dielectric constant and a predetermined work function are provided on the surface of the semiconductor substrate SS with an interface layer SF interposed therebetween.
  • the gate structure G to be the first access gate AG1 and the respective gate structures G to be the first driver gate DG1 and the third driver gate DG3 are formed in such a manner that the metal film ML and the polysilicon film PS are stacked.
  • a silicon nitride film (not shown) is formed on the semiconductor substrate SS so as to cover the gate structure G.
  • the silicon nitride film is anisotropically etched to form offset spacers OS on both side surfaces of the gate structure G.
  • a resist mask RM11 serving as an implantation mask for forming each halo region HR is formed.
  • the resist mask RM11 is patterned to expose the NMIS region RN and cover the PMIS region RP.
  • the resist mask RM11 exposes each gate structure G to be the first access gate AG1, the first driver gate DG1, and the third driver gate DG3 through one opening, and the second access gate AG2, the second driver gate DG2,
  • Each gate structure G to be a 4-driver gate DG4 is formed in a pattern that is exposed through one opening. That is, the individual openings of the resist mask RM11 are continuously formed so as to straddle the adjacent SRAM memory cell MC1 and SRAM memory cell MC2.
  • resist mask RM11 as an implantation mask, for example, boron is substantially perpendicular to the direction in which gate structure G extends from the main surface of semiconductor substrate SS.
  • about 7 degrees
  • boron is used from one side opposite to the direction substantially perpendicular to the direction in which the gate structure G extends from the other side.
  • about 7 degrees
  • a p-type impurity region PIR is formed in the exposed p-well PW.
  • boron is implanted with the same implantation amount and the same implantation energy in the implantation in the step shown in FIGS. 44A and 44B and the implantation in the step shown in FIGS. 45A and 45B.
  • the injection amount and the injection energy may be different injection amounts and different injection energies.
  • FIGS. 46A and 46B using the same resist mask RM11 as an implantation mask, for example, phosphorus or arsenic is implanted into semiconductor substrate SS from a direction perpendicular to the main surface of semiconductor substrate SS. As a result, an extension region ER is formed from the exposed surface of the p-well PW to a predetermined depth (extension implantation). Thereafter, the resist mask RM11 is removed.
  • the extension implantation step shown in FIG. 46 is performed after the mask formation step shown in FIG. 43 and before the halo implantation step shown in FIGS. 44 (A) and (B) and FIGS. 45 (A) and (B). Also good.
  • a resist mask RM12 that covers NMIS region RN and exposes PMIS region RP is formed.
  • phosphorus or arsenic is introduced into the semiconductor substrate SS from the direction perpendicular to the main surface of the semiconductor substrate SS using the resist mask RM12 as an implantation mask.
  • a halo region (not shown) is formed in the element formation region FRP.
  • using the resist mask RM12 as an implantation mask for example, boron is implanted into the semiconductor substrate SS from a direction perpendicular to the main surface of the semiconductor substrate SS, thereby forming an extension region (not shown). Thereafter, the resist mask RM12 is removed.
  • a silicon oxide film and a silicon nitride film are sequentially formed so as to cover the gate structure G (first access gate AG1, dummy gate DU, first driver gate DG1, third driver gate DG3, etc.). It is formed.
  • the silicon oxide film and the silicon nitride film are subjected to anisotropic etching, so that the silicon oxide film SO is formed on both side surfaces of the gate structure G. Sidewall spacers SW made of the silicon nitride film SNI are formed.
  • a resist mask RM13 that exposes NMIS region RN and covers PMIS region RP is formed.
  • the resist mask RM13 is formed using the same photomask as the resist mask RM11.
  • phosphorus or arsenic is perpendicular to the main surface of semiconductor substrate SS using resist mask RM13 (FIG. 49) and sidewall spacer SW as an implantation mask.
  • the first source / drain SD1, the third source / drain SD3, and the fifth source / drain SD5 are formed from the exposed surface of the p-well PW to a predetermined depth. Thereafter, the resist mask RM13 is removed.
  • a resist mask RM14 that covers NMIS region RN and exposes PMIS region RP is formed.
  • the sidewall spacer SW, etc. as an implantation mask, for example, boron is implanted into the semiconductor substrate SS from a direction perpendicular to the main surface of the semiconductor substrate SS, thereby exposing the surface of the exposed element formation region FRP.
  • a source / drain (not shown) is formed from a predetermined depth to a predetermined depth. Thereafter, the resist mask RM14 is removed.
  • a predetermined annealing process is performed to thermally diffuse the implanted impurities, thereby providing a first source / drain SD1 and a third source / drain SD3.
  • Fifth source / drain SD5, extension region ER, first halo region HR1, second halo region HR2, fifth halo region HR5, sixth halo region HR6, ninth halo region HR9, and tenth halo region HR10 are activated. Is done.
  • the impurities are thermally diffused, so that the first source / drain SD1, the third source / drain SD3, the fifth source / drain SD5, the extension region ER, the first halo region HR1, the second halo region HR2, the fifth halo.
  • the region HR5, the sixth halo region HR6, the ninth halo region HR9, and the tenth halo region HR10 extend in the horizontal direction and the vertical (depth) direction.
  • the exposed first source / drain SD1, third source / drain SD3, fifth source / drain SD5, first access gate are exposed by the salicide process.
  • a metal silicide film SCL such as nickel silicide is formed on the surface of the polysilicon film PS of the AG1, the first driver gate DG1, and the third driver gate DG3.
  • a stress liner film SL such as a silicon nitride film so as to cover first access gate AG1, first driver gate DG1, and third driver gate DG3.
  • An interlayer insulating film IL1 such as a silicon oxide film (for example, a TEOS film) is formed so as to cover the stress liner film SL.
  • the interlayer insulating film IL1 is anisotropically etched to form a contact hole CH that exposes the metal silicide film SCL.
  • a barrier metal film BA1 such as titanium nitride (TiN) is formed so as to cover the inner wall of the contact hole CH, and further, the tungsten film is filled on the barrier metal film BA1.
  • TL1 is formed.
  • the barrier metal film and the tungsten film located on the upper surface of the interlayer insulating film IL1 are removed, as shown in FIGS. 55A and 55B.
  • CMP chemical mechanical polishing
  • the first access transistor NA1 is adjacent to the first halo region HR1 adjacent to the other of the first source / drain SD1 and one of the first source / drain SD1, A second halo region HR2 having an impurity concentration higher than that of the halo region HR1.
  • the second access transistor NA2 has a third halo region HR3 adjacent to the other of the second source / drain SD2 and an impurity concentration higher than the impurity concentration of the third halo region HR3 adjacent to one of the second source / drain SD2.
  • a fourth halo region HR4 is adjacent to the first halo region HR1 adjacent to the other of the first source / drain SD1 and one of the first source / drain SD1.
  • the impurity concentration of the second halo region HR2 in the first access transistor NA1 is set higher than the impurity concentration of the first halo region HR1, and the impurity concentration of the fourth halo region HR4 in the second access transistor NA2.
  • the improvement of the operation margin by the asymmetric halo region HR will be described.
  • the first access transistor NA1 will be typically described, but the same applies to the second access transistor NA2.
  • the first halo region HR1 having a relatively low impurity concentration is formed from one of the first source / drain SD1 located on the side where the second halo region HR2 having a relatively high impurity concentration is formed.
  • the current flowing toward the other of the first source / drain SD1 located on the other side is defined as a current IF, and the current flowing in the opposite direction is defined as a current IS.
  • the threshold voltage of the first access transistor NA1 when current flows from one of the first source / drain SD1 on the second halo region HR2 side to the first source / drain SD1 on the first halo region HR1 side is: From the threshold voltage of the first access transistor NA1 when current flows from the other first source / drain SD1 on the opposite first halo region HR1 side to one of the first source / drain SD1 on the second halo region HR2 side. Also lower.
  • the second halo region HR2 having a relatively high impurity concentration is formed on the first storage node SN1 side, and the first halo region HR1 having a relatively low impurity concentration is formed on the first bit line BL side.
  • the current from the first bit line BL to the first storage node SN1 can be easily suppressed during reading, and the current from the first storage node SN1 to the first bit line BL can be easily increased during writing.
  • the ⁇ ratio is expressed by the current ratio of the access transistor to the load transistor (the source-to-gate voltage and the source-to-drain voltage are the same between the access transistor and the load transistor).
  • the ⁇ ratio can be increased without deteriorating the ⁇ ratio, and the ⁇ ratio can be increased without deteriorating the ⁇ ratio.
  • both the ⁇ ratio and the ⁇ ratio can be increased. As a result, the read margin and the write margin can be expanded.
  • Each is formed to extend in the same direction. Therefore, when forming the halo region HR, the halo implantation can be performed in two steps (two directions). Thereby, local variations due to impurity fluctuations can be reduced.
  • each of the first driver transistor ND1, the second driver transistor ND2, the first load transistor PL1, and the second load transistor PL2 in the SRAM memory cell MC1 and the SRAM memory cell MC2 is a plane. They are arranged in line symmetry (mirror symmetry) in the layout.
  • halo implantation is performed to form halo region HR using linear resist masks RM11 and RM12 covering first driver transistor ND1 and second driver transistor ND2. be able to. Further, halo implantation can be performed to form the halo region HR using a linear resist mask covering the first load transistor PL1 and the second load transistor PL2. For this reason, local variations due to impurity fluctuations can be reduced.
  • extension region ER and the halo region HR can be formed with the same resist masks RM11 and RM12. Further, the resist masks RM11 and RM12 for forming the extension region ER and the halo region HR and the resist masks RM13 and RM14 for forming the source / drain can be formed with the same Impla mask (photomask). For this reason, production cost can be reduced.
  • an opening that is sufficiently larger than between adjacent gates is formed as an opening (a blank pattern).
  • the third direction D3 from one of the pair of third source / drain SD1 to the other and the one of the pair of fifth source / drain SD5 from one to the other.
  • the fifth direction D5 is opposite
  • the fourth direction D4 is directed from one of the pair of fourth source / drains SD4 to the other
  • the one direction is directed from one of the pair of sixth source / drains SD6 to the other.
  • the sixth direction D6 is opposite.
  • a fifth direction D5 extending from one of the pair of fifth source / drain SD5 to the other and a sixth direction D6 extending from one of the pair of sixth source / drain SD6 to the other are provided.
  • the fifth directions D5 of the SRAM memory cell MC1 and the SRAM memory cell MC2 are the same direction
  • the sixth directions D6 are the same direction.
  • the first driver transistor ND1 and the third driver transistor ND3 are opposite to each other, and the second driver transistor ND2 and the fourth driver transistor
  • the direction of the transistor ND4 is opposite to that of the transistor ND4. Therefore, the influence of the asymmetric halo region is canceled by the first driver transistor ND1 and the third driver transistor ND3. Further, the influence of the asymmetric halo region is canceled by the second driver transistor ND2 and the fourth driver transistor ND4. For this reason, the first driver transistor ND1 and the third driver transistor ND3, and the second driver transistor ND2 and the fourth driver transistor ND4 ensure a balance between the left and right inverter characteristics of the cell. Therefore, cell characteristics can be improved.
  • the semiconductor device according to the fifth embodiment of the present invention is mainly different from the semiconductor device according to the first embodiment in that the threshold voltage of the driver transistor is higher than the threshold voltage of the access transistor. Yes.
  • first access transistor NA1 and second access transistor NA2 are formed with asymmetric halo regions, and dark halo regions DHI are formed respectively.
  • the first driver transistor ND1 and the third driver transistor ND3 are formed to have a higher threshold voltage (Hvth) than the first access transistor NA1.
  • the second driver transistor ND2 and the fourth driver transistor ND4 are formed to have a higher threshold voltage (Hvth) than the second access transistor NA2.
  • halo implantation for forming the halo region HR is performed in the first and second access transistors NA1 and NA2 and the first to fourth driver transistors ND1 to ND4. Thereafter, referring to FIG. 59, a resist mask RM21 is formed so as to open first to fourth driver transistors ND1 to ND4. Bidirectional halo implantation is performed using resist mask RM21 as an implantation mask.
  • the concentration of the halo region is increased in the region immediately below the driver gates DG1 to DG4 of the first driver transistor ND1 to the fourth driver transistor ND4. Therefore, the threshold voltages of the first to fourth driver transistors ND1 to ND4 are higher than the threshold voltages of the first and second access transistors NA1 and NA2.
  • the first driver transistor ND1 and the second driver transistor ND2 have threshold voltages higher than the threshold voltages of the first access transistor NA1 and the second access transistor NA2. Is provided. Therefore, the leakage current of the first driver transistor ND1 and the second driver transistor ND2 can be reduced. Thereby, variation in cell characteristics can be reduced. In addition, power consumption can be reduced.
  • the active region that forms the access transistor is electrically connected to the upper layer and the lower layer of the ground wiring, with the point that the active region continuously extends between the plurality of SRAM memory cells. Mainly different in that shunts are formed.
  • FIG. 60 is a schematic plan view showing a connection relationship between each transistor of the SRAM memory cell and the third metal wiring.
  • FIG. 61 is a schematic plan view showing a connection structure between each transistor and the first metal wiring.
  • FIG. 62 is a schematic cross sectional view taken along a cross sectional line LXII-LXII orthogonal to the extending direction of the first access gate AG1 so as to pass through the first access transistor NA1 of the SRAM memory cell MC1 and the dummy transistor DNM in FIG. is there.
  • FIG. 63 is a plan view showing a connection structure between the second metal wiring and the third metal wiring.
  • FIG. 64 is a diagram showing an equivalent circuit of the SRAM memory cell shown in conformity with the planar layout of FIG. Referring to FIGS.
  • first bit line BL and second bit line / BL extend across SRAM memory cell MC1.
  • SRAM memory cell MC1 and SRAM memory cell MC2 are arranged adjacent to each other in the direction in which first bit line BL and second bit line / BL extend.
  • the active regions AR forming the first source / drain SD1 of the first access transistor NA1 and the second source / drain SD2 of the second access transistor NA2 of the SRAM memory cell MC1 and the SRAM memory cell MC2 (not shown) are continuous. And extending across the SRAM memory cell MC1 and the SRAM memory cell MC2 (not shown).
  • the dummy gate DU of the dummy transistor DNM formed on the first access transistor NA1 side is electrically connected to the word line WL via the contact C3, the first metal wiring M15, the via hole V12, the second metal wiring M28, and the via hole V23. It is connected.
  • the dummy gate DU formed on the second access transistor NA2 side is electrically connected to the word line WL via the contact C13, the first metal wiring M16, the via hole V13, the second metal wiring M29, and the via hole V24. .
  • ground electricity is always applied to dummy gate DU of dummy transistor DNM. Therefore, the dummy transistor DNM is always off. Therefore, no current flows through the dummy transistor DNM.
  • the SRAM memory cell MC1 will be typically described, but the same applies to the SRAM memory cell MC2.
  • the ground wiring (lower layer wiring) VSS which is the second metal wiring, is formed along the first bit line BL in the planar layout.
  • the ground wiring (upper layer wiring) VSS which is the third metal wiring, is disposed on the ground wiring (lower layer wiring) VSS.
  • the ground wiring (upper layer wiring) VSS is formed to extend in a direction crossing the ground wiring (lower layer wiring) VSS in plan view.
  • the ground wiring (lower layer wiring) VSS and the installation wiring (upper layer wiring) VSS are electrically connected by a via hole V25 that is a shunt.
  • the ground wiring (lower layer wiring) VSS and the installation wiring (upper layer wiring) VSS are electrically connected by a via hole V26 that is a shunt.
  • the dummy transistor DNM formed on the first access transistor NA1 side is electrically connected to the first bit line BL
  • the dummy transistor DNM formed on the second access transistor NA2 side is It is electrically connected to the 2-bit line / BL.
  • the local interconnector LIC can be applied to the semiconductor device SCD of the present embodiment as in the first embodiment.
  • the structure and manufacturing method of the local interconnector LIC are the same as those in the first embodiment.
  • the semiconductor device SCD of the present embodiment in the planar layout, the SRAM in which the first bit line BL and the second bit line / BL are arranged adjacent to each other in the direction extending across the SRAM memory cell MC1.
  • the active regions AR forming the first source / drain SD1 and the second source / drain SD of the first access transistor NA1 and the second access transistor NA2 of the memory cell MC1 and the SRAM memory cell MC2 extend continuously, and the SRAM memory It is provided so as to cross the cell MC1 and the SRAM memory cell MC2.
  • the active region AR is formed so as to extend continuously, it is possible to reduce variations in the finished dimensions due to mask displacement or the like for forming the active region AR. Further, since the active region AR is formed in a rectangular shape, lithography is facilitated from the viewpoint of RDR (Restrained Design Rule). Therefore, fine processing becomes easy. Thereby, global variation can be reduced.
  • RDR relaxed Design Rule
  • the active region AR is formed so as to extend continuously, the on-current (Ion) is improved by the stress applied to the active region AR. Therefore, the cell current increases. As a result, the operation speed can be improved.
  • each of the SRAM memory cell MC1 and the SRAM memory cell MC2 is located on the ground wiring (lower layer wiring) VSS and the ground wiring (lower layer wiring) VSS and is viewed in plan view.
  • 1 includes a ground wiring (upper layer wiring) VSS extending in a direction intersecting with the ground wiring (lower layer wiring) VSS.
  • the ground wiring (lower layer wiring) VSS and the ground wiring (upper layer wiring) VSS are electrically connected.
  • ground wiring (lower layer wiring) VSS and the ground wiring (upper layer wiring) VSS are electrically connected by a shunt, the ground wiring VSS is formed in a mesh shape. Therefore, IR drop can be reduced.
  • the present invention can be applied particularly advantageously to a semiconductor device including an SRAM.

Abstract

Provided is a semiconductor device (SCD) that has first and second access gates (AG1, AG2), first and second driver gates (DG1, DG2), and first and second load gates (LG1, LG2), all extending in the same direction in a planar layout. A first direction (D1) from one of a pair of first source/drains (SD1) towards the other and a second direction (D2) from one of a pair of second source/drains (SD2) towards the other are the same in the planar layout. The first directions (D1) for each of at least two SRAM memory cells (MC1, MC2) are the same direction and the second directions (D2) for each are also the same direction. As a result, a semiconductor device (SCD) with improved cell characteristics can be achieved by the reduction in SRAM variation.

Description

半導体装置Semiconductor device
 本発明は半導体装置に関し、特に、SRAMを備えた半導体装置に関するものである。 The present invention relates to a semiconductor device, and more particularly to a semiconductor device including an SRAM.
 複数のロジック回路およびメモリセルなどが1つのチップに搭載されたSoC(System on Chip)と称される半導体装置が用いられている。この半導体装置では、メモリセルとしてたとえばSRAM(Static Random Access Memory;スタティックランダムアクセスメモリ)が用いられている。 A semiconductor device called SoC (System on Chip) in which a plurality of logic circuits and memory cells are mounted on one chip is used. In this semiconductor device, for example, an SRAM (Static Random Access Memory) is used as a memory cell.
 SoCへの大容量のSRAMの搭載が求められていることなどによってSRAMの微細化が図られている。この微細化によってSRAMの特性のばらつきは増大する。そして、このばらつきの増大によってSRAMの動作マージンは低下する。このばらつきの1つとして、SRAMを構成するトランジスタのしきい値電圧のばらつきがある。このしきい値電圧のばらつきには、ローカルばらつきとグローバルばらつきとがある。ローカルばらつきはトランジスタの不純物のゆらぎによって発生する。グローバルばらつきは微細加工による加工寸法のばらつきであり、たとえばチップ全体でトランジスタのゲート長またはゲート幅が同じ方向に発生する。ローカルばらつきおよびグローバルばらつきを低減するためには、対称性がよく、屈曲の少ないレイアウト構造が効果的である。 The miniaturization of SRAM has been attempted due to the demand for mounting a large-capacity SRAM in SoC. This miniaturization increases the variation in the characteristics of the SRAM. Then, the increase in the variation reduces the operation margin of the SRAM. As one of the variations, there is a variation in threshold voltages of transistors constituting the SRAM. The threshold voltage variation includes local variation and global variation. Local variations are caused by the fluctuation of impurities in the transistor. Global variations are variations in processing dimensions due to microfabrication. For example, the gate length or gate width of a transistor occurs in the same direction throughout the chip. In order to reduce local variation and global variation, a layout structure with good symmetry and less bending is effective.
 たとえば、非特許文献1にはゲートおよび拡散層の対称性がよく、屈曲の少ないレイアウト形状を有するSRAMメモリセルが提案されている。非特許文献1のSRAMメモリセルでは、対称性がよいためマスクずれに起因したローカルばらつきの低減が期待される。また屈曲が少ないため微細加工が容易である。そのためグローバルばらつきの低減が期待される。また、非特許文献2および3にはしきい値電圧を調整するためにハロ(Halo)領域が形成されたSRAMメモリセルが提案されている。非特許文献2および3のSRAMメモリセルでは読み出しと書き込みの双方の動作マージンの向上が期待される。 For example, Non-Patent Document 1 proposes an SRAM memory cell having a layout shape with good gate and diffusion layer symmetry and little bending. Since the SRAM memory cell of Non-Patent Document 1 has good symmetry, it is expected to reduce local variations caused by mask displacement. In addition, microfabrication is easy because of less bending. Therefore, reduction of global variation is expected. Non-Patent Documents 2 and 3 propose SRAM memory cells in which a halo region is formed in order to adjust the threshold voltage. The SRAM memory cells of Non-Patent Documents 2 and 3 are expected to improve both the read and write operation margins.
 非特許文献1のSRAMメモリセルでは、2つのアクセストランジスタではそれぞれのソース/ドレインが互いに反対の向きに配置されているため、電流の向きが逆になる。そのため、セルレイアウト起因のミスマッチ特性が大きくなるため、セル特性のばらつきが大きくなるというおそれがある。 In the SRAM memory cell of Non-Patent Document 1, since the source / drains of the two access transistors are arranged in opposite directions, the directions of the currents are reversed. For this reason, the mismatch characteristics due to the cell layout become large, and there is a risk that the variation in cell characteristics becomes large.
 また、非特許文献2のSRAMメモリセルでは、アクセストランジスタとドライバトランジスタとでゲートの向きが直交しているため、マスクずれに起因したローカルばらつきが大きくなるというおそれがある。またゲートの向きが異なるため微細加工が容易でない。そのためグローバルばらつきが大きくなるというおそれがある。 Further, in the SRAM memory cell of Non-Patent Document 2, since the gate directions of the access transistor and the driver transistor are orthogonal to each other, there is a risk that local variation due to mask displacement increases. Further, since the direction of the gate is different, fine processing is not easy. For this reason, there is a risk that global variation becomes large.
 また、非特許文献3のSRAMメモリセルでは、左右の非対称MOS(Metal Oxide Semiconductor)を別々に構成するため、不純物注入量がばらついてローカルばらつきが大きくなるという問題がある。また左右のアクセストランジスタ、ドライバトランジスタ、ロードトランジスタの電流の向きは逆になる。そのためセル特性のばらつきが大きくなるという問題がある。 In the SRAM memory cell of Non-Patent Document 3, since left and right asymmetrical MOSs (Metal Oxide Semiconductors) are separately configured, there is a problem that the amount of impurity implantation varies and local variation increases. In addition, the current directions of the left and right access transistors, driver transistors, and load transistors are reversed. Therefore, there is a problem that the variation in cell characteristics becomes large.
 本発明は、上記の課題を鑑みてなされたものであり、その目的は、SRAMのばらつきを低減させることによりセル特性を向上させた半導体装置を提供することである。 The present invention has been made in view of the above problems, and an object of the present invention is to provide a semiconductor device having improved cell characteristics by reducing variations in SRAM.
 本発明の一実施例の半導体装置は、平面レイアウトにおいて互いに隣接して配置された少なくとも2つのスタティックランダムアクセスメモリセルを有する半導体装置であって、少なくとも2つのスタティックランダムアクセスメモリセルのそれぞれは、第1ドライバゲートを有する第1ドライバトランジスタと、第1ロードゲートを有し、かつ第1ドライバトランジスタに第1記憶ノードで電気的に接続された第1ロードトランジスタと、第2ドライバゲートを有する第2ドライバトランジスタと、第2ロードゲートを有し、かつ第2ドライバトランジスタに第2記憶ノードで電気的に接続された第2ロードトランジスタと、データの入出力を行う第1ビット線および第2ビット線と、第1アクセスゲートおよび1対の第1ソース/ドレインを有し、第1記憶ノードに1対の第1ソース/ドレインの一方が電気的に接続され、かつ第1ビット線に1対の第1ソース/ドレインの他方が電気的に接続された第1アクセストランジスタと、第2アクセスゲートおよび1対の第2ソース/ドレインを有し、第2記憶ノードに1対の第2ソース/ドレインの一方が電気的に接続され、かつ第2ビット線に1対の第2ソース/ドレインの他方が電気的に接続された第2アクセストランジスタと、を備えている。平面レイアウトにおいて、第1および第2アクセスゲート、第1および第2ドライバゲートおよび第1および第2ロードゲートの各々が同一方向に延在している。平面レイアウトにおいて、1対の第1ソース/ドレインの一方から他方に向かう第1の方向と、1対の第2ソース/ドレインの一方から他方に向かう第2の方向とが同じである。少なくとも2つのスタティックランダムアクセスメモリセルのそれぞれの第1の方向同士が互いに同じ方向であり、かつ第2の方向同士が互いに同じ方向である。 A semiconductor device according to an embodiment of the present invention is a semiconductor device having at least two static random access memory cells arranged adjacent to each other in a planar layout, and each of the at least two static random access memory cells includes: A first driver transistor having a first driver gate; a first load transistor having a first load gate and electrically connected to the first driver transistor at a first storage node; and a second driver gate having a second driver gate. A driver transistor; a second load transistor having a second load gate and electrically connected to the second driver transistor at a second storage node; and a first bit line and a second bit line for inputting / outputting data A first access gate and a pair of first source / drain One of the pair of first sources / drains is electrically connected to the first storage node, and the other of the pair of first sources / drains is electrically connected to the first bit line. A first access transistor; a second access gate; and a pair of second sources / drains, one of the pair of second sources / drains being electrically connected to the second storage node, and a second bit line And a second access transistor in which the other of the pair of second source / drain is electrically connected. In the planar layout, each of the first and second access gates, the first and second driver gates, and the first and second load gates extends in the same direction. In the planar layout, the first direction from one of the pair of first sources / drains to the other and the second direction from one of the pair of second sources / drains to the other are the same. The first directions of the at least two static random access memory cells are the same as each other, and the second directions are the same as each other.
 本発明の一実施例の半導体装置によれば、SRAMのばらつきを低減させることによりセル特性を向上させることができる。 According to the semiconductor device of one embodiment of the present invention, cell characteristics can be improved by reducing the variation in SRAM.
本発明の実施の形態1におけるSRAMを備えた半導体装置の配置関係の一例を示す概略平面図である。FIG. 3 is a schematic plan view showing an example of an arrangement relationship of the semiconductor device including the SRAM according to the first embodiment of the present invention. 本発明の実施の形態1における図1に示す点線枠内のSRAMメモリセルの構成を示す概略平面図である。FIG. 2 is a schematic plan view showing the configuration of the SRAM memory cell in the dotted frame shown in FIG. 1 in the first embodiment of the present invention. 本発明の実施の形態1におけるSRAMメモリセルの等価回路を示す図である。2 is a diagram showing an equivalent circuit of the SRAM memory cell in the first embodiment of the present invention. FIG. 本発明の実施の形態1におけるSRAMメモリセルの配置パターンを示す平面図である。FIG. 3 is a plan view showing an arrangement pattern of SRAM memory cells in the first embodiment of the present invention. 図4のV-V線に沿う概略断面図である。FIG. 5 is a schematic sectional view taken along line VV in FIG. 4. 図4のVI-VI線に沿う概略断面図である。FIG. 5 is a schematic sectional view taken along line VI-VI in FIG. 4. 図4のV-V線に沿うアクセストランジスタを示す部分拡大断面図である。FIG. 5 is a partially enlarged cross-sectional view showing an access transistor along the line VV in FIG. 4. 本発明の実施の形態1におけるSRAMメモリセルの多層線構造の全層を示す概略平面図である。FIG. 3 is a schematic plan view showing all layers of the multilayer line structure of the SRAM memory cell in the first embodiment of the present invention. 本発明の実施の形態1におけるSRAMメモリセルの下層を示す概略平面図である。FIG. 3 is a schematic plan view showing a lower layer of the SRAM memory cell in the first embodiment of the present invention. 本発明の実施の形態1におけるSRAMメモリセルの上層を示す概略平面図である。FIG. 3 is a schematic plan view showing the upper layer of the SRAM memory cell in the first embodiment of the present invention. 本発明の実施の形態1におけるSRAMセルの平面レイアウトにあわせた等価回路を示す図である。It is a figure which shows the equivalent circuit matched with the planar layout of the SRAM cell in Embodiment 1 of this invention. 本発明の実施の形態1における図8に示すSRAMセルに隣接するSRAMメモリセルの多層線構造の全層を示す概略平面図である。FIG. 9 is a schematic plan view showing all layers of the multilayer line structure of the SRAM memory cell adjacent to the SRAM cell shown in FIG. 8 in the first embodiment of the present invention. 本発明の実施の形態1における半導体装置の製造方法の第1工程を示す概略断面図であって、図4のV-V線に沿う概略断面図(A)と、図4のVI-VI線に沿う概略断面図(B)である。FIG. 5 is a schematic cross-sectional view showing a first step of the method of manufacturing a semiconductor device in the first embodiment of the present invention, which is a schematic cross-sectional view along line VV in FIG. 4 and a line VI-VI in FIG. It is a schematic sectional drawing (B) in alignment with. 本発明の実施の形態1における半導体装置の製造方法の第1工程を示す概略平面図である。It is a schematic plan view which shows the 1st process of the manufacturing method of the semiconductor device in Embodiment 1 of this invention. 本発明の実施の形態1における半導体装置の製造方法の第2工程を示す概略平面図である。It is a schematic plan view which shows the 2nd process of the manufacturing method of the semiconductor device in Embodiment 1 of this invention. 本発明の実施の形態1における半導体装置の製造方法の第3工程を示す概略断面図であって、図4のV-V線に沿う概略断面図(A)と、図4のVI-VI線に沿う概略断面図(B)である。FIG. 5 is a schematic cross-sectional view showing a third step of the method of manufacturing a semiconductor device in the first embodiment of the present invention, which is a schematic cross-sectional view along line VV in FIG. 4 and a line VI-VI in FIG. It is a schematic sectional drawing (B) in alignment with. 本発明の実施の形態1における半導体装置の製造方法の第4工程を示す概略平面図である。It is a schematic plan view which shows the 4th process of the manufacturing method of the semiconductor device in Embodiment 1 of this invention. 本発明の実施の形態1における半導体装置の製造方法の第5工程を示す概略断面図であって、図4のV-V線に沿う概略断面図(A)と、図4のVI-VI線に沿う概略断面図(B)である。FIG. 6 is a schematic cross-sectional view showing a fifth step of the method of manufacturing a semiconductor device in the first embodiment of the present invention, which is a schematic cross-sectional view along line VV in FIG. 4 and a VI-VI line in FIG. It is a schematic sectional drawing (B) in alignment with. 本発明の実施の形態1における半導体装置の製造方法の第6工程を示す概略平面図である。It is a schematic plan view which shows the 6th process of the manufacturing method of the semiconductor device in Embodiment 1 of this invention. 本発明の実施の形態1における半導体装置の製造方法の第7工程を示す概略断面図であって、図4のV-V線に沿う概略断面図(A)と、図4のVI-VI線に沿う概略断面図(B)である。FIG. 8 is a schematic cross-sectional view showing a seventh step of the method of manufacturing a semiconductor device in the first embodiment of the present invention, which is a schematic cross-sectional view along line VV in FIG. 4 and a VI-VI line in FIG. It is a schematic sectional drawing (B) in alignment with. 本発明の実施の形態1における半導体装置の製造方法の第8工程を示す概略平面図である。It is a schematic plan view which shows the 8th process of the manufacturing method of the semiconductor device in Embodiment 1 of this invention. 本発明の実施の形態1における半導体装置の製造方法の第9工程を示す概略断面図であって、図4のV-V線に沿う概略断面図(A)と、図4のVI-VI線に沿う概略断面図(B)である。FIG. 9 is a schematic cross-sectional view showing a ninth step of the method of manufacturing a semiconductor device in the first embodiment of the present invention, which is a schematic cross-sectional view along line VV in FIG. 4 and a line VI-VI in FIG. It is a schematic sectional drawing (B) in alignment with. 本発明の実施の形態1における半導体装置の製造方法の第10工程を示す概略断面図であって、図4のV-V線に沿う概略断面図(A)と、図4のVI-VI線に沿う概略断面図(B)である。FIG. 10 is a schematic cross-sectional view showing a tenth step of the method of manufacturing a semiconductor device in the first embodiment of the present invention, which is a schematic cross-sectional view along line VV in FIG. 4 and a VI-VI line in FIG. It is a schematic sectional drawing (B) in alignment with. 本発明の実施の形態1における半導体装置の製造方法の第11工程を示す概略断面図であって、図4のV-V線に沿う概略断面図(A)と、図4のVI-VI線に沿う概略断面図(B)である。FIG. 6 is a schematic cross-sectional view showing an eleventh step of the method for manufacturing a semiconductor device in the first embodiment of the present invention, which is a schematic cross-sectional view along line VV in FIG. 4 and a line VI-VI in FIG. It is a schematic sectional drawing (B) in alignment with. 本発明の実施の形態1における半導体装置の製造方法の第12工程を示す概略断面図であって、図4のV-V線に沿う概略断面図(A)と、図4のVI-VI線に沿う概略断面図(B)である。FIG. 15 is a schematic cross-sectional view showing a twelfth step of the method of manufacturing a semiconductor device in the first embodiment of the present invention, which is a schematic cross-sectional view along line VV in FIG. 4 and a VI-VI line in FIG. It is a schematic sectional drawing (B) in alignment with. 本発明の実施の形態1における半導体装置のSRAMセルアレイのSRAMメモリセルの配置を示す平面図である。FIG. 3 is a plan view showing an arrangement of SRAM memory cells in the SRAM cell array of the semiconductor device in the first embodiment of the present invention. 本発明の実施の形態1における半導体装置のSRAMメモリセルの配置パターンおよび電流の向きを模式的に示す平面図である。FIG. 3 is a plan view schematically showing the arrangement pattern of SRAM memory cells and the direction of current in the semiconductor device in the first embodiment of the present invention. 本発明の実施の形態1における半導体装置のSRAMメモリセルの下層を示す概略平面図であって、ゲートがラウンド状に形成された場合を示す図である。It is a schematic plan view which shows the lower layer of the SRAM memory cell of the semiconductor device in Embodiment 1 of this invention, Comprising: It is a figure which shows the case where a gate is formed in round shape. 本発明の実施の形態1における変形例のSRAMメモリセルの下層を示す概略平面図である。FIG. 10 is a schematic plan view showing a lower layer of an SRAM memory cell according to a modified example in the first embodiment of the present invention. 図29のXXX-XXX線に沿う概略断面図である。FIG. 30 is a schematic cross-sectional view taken along line XXX-XXX in FIG. 29. 図29のXXXI-XXXI線に沿う概略断面図である。FIG. 30 is a schematic sectional view taken along line XXXI-XXXI in FIG. 29. 比較例における半導体装置のSRAMメモリセルの配置パターンを示す概略平面図である。It is a schematic plan view which shows the arrangement pattern of the SRAM memory cell of the semiconductor device in a comparative example. 比較例におけるSRAMメモリセルの等価回路を示す図である。It is a figure which shows the equivalent circuit of the SRAM memory cell in a comparative example. 比較例における半導体装置のSRAMメモリセルの配置パターンおよび電流の向きを模式的に示す平面図である。It is a top view which shows typically the arrangement pattern and direction of an electric current of the SRAM memory cell of the semiconductor device in a comparative example. 本発明の実施の形態2における半導体装置のSRAMメモリセルの下層を示す概略平面図である。It is a schematic plan view which shows the lower layer of the SRAM memory cell of the semiconductor device in Embodiment 2 of this invention. 本発明の実施の形態3における半導体装置のSRAMメモリセルの多層線構造の全層を示す概略平面図である。It is a schematic plan view which shows all the layers of the multilayer line structure of the SRAM memory cell of the semiconductor device in Embodiment 3 of this invention. 本発明の実施の形態4における半導体装置のSRAMメモリセルの下層を示す概略平面図である。It is a schematic plan view which shows the lower layer of the SRAM memory cell of the semiconductor device in Embodiment 4 of this invention. 図37のXXXVIII-XXXVIII線に沿う概略断面図である。FIG. 38 is a schematic sectional view taken along line XXXVIII-XXXVIII in FIG. 図37のXXXIX-XXXIX線に沿う概略断面図である。FIG. 38 is a schematic sectional view taken along line XXXIX-XXXIX in FIG. 37. 図37のXXXVIII-XXXVIII線に沿うアクセストランジスタを示す部分拡大断面図である。FIG. 38 is a partial enlarged cross-sectional view showing an access transistor along the line XXXVIII-XXXVIII in FIG. 37. 図40のアクセストランジスタのハロ領域の不純物濃度プロファイルを示すグラフである。41 is a graph showing an impurity concentration profile in a halo region of the access transistor of FIG. 40. 本発明の実施の形態4における半導体装置の製造方法の第1工程を示す概略断面図であって、図37のXXXVIII-XXXVIII線に沿う概略断面図(A)と、図37のXXXIX-XXXIX線に沿う概略断面図(B)である。38 is a schematic cross-sectional view showing a first step of the method of manufacturing a semiconductor device in the fourth embodiment of the present invention, and is a schematic cross-sectional view (A) taken along line XXXVIII-XXXVIII in FIG. 37 and a line XXXIX-XXXIX in FIG. It is a schematic sectional drawing (B) in alignment with. 本発明の実施の形態4における半導体装置の製造方法の第2工程を示す概略平面図である。It is a schematic plan view which shows the 2nd process of the manufacturing method of the semiconductor device in Embodiment 4 of this invention. 本発明の実施の形態4における半導体装置の製造方法の第3工程の前の工程を示す概略断面図であって、図37のXXXVIII-XXXVIII線に沿う概略断面図(A)と、図37のXXXIX-XXXIX線に沿う概略断面図(B)である。37 is a schematic cross-sectional view showing a step before the third step of the method for manufacturing a semiconductor device in the fourth embodiment of the present invention, which is a schematic cross-sectional view along the line XXXVIII-XXXVIII in FIG. 37; FIG. 6 is a schematic cross-sectional view (B) along the line XXXIX-XXXIX. 本発明の実施の形態4における半導体装置の製造方法の第3工程の後の工程を示す概略断面図であって、図37のXXXVIII-XXXVIII線に沿う概略断面図(A)と、図37のXXXIX-XXXIX線に沿う概略断面図(B)である。37 is a schematic cross sectional view showing a step after the third step of the method for manufacturing a semiconductor device in the fourth embodiment of the present invention, which is a schematic cross sectional view (A) taken along line XXXVIII-XXXVIII in FIG. FIG. 6 is a schematic cross-sectional view (B) along the line XXXIX-XXXIX. 本発明の実施の形態4における半導体装置の製造方法の第4工程を示す概略断面図であって、図37のXXXVIII-XXXVIII線に沿う概略断面図(A)と、図37のXXXIX-XXXIX線に沿う概略断面図(B)である。38 is a schematic cross-sectional view showing a fourth step of the method of manufacturing a semiconductor device in the fourth embodiment of the present invention, which is a schematic cross-sectional view (A) along the line XXXVIII-XXXVIII in FIG. 37 and a line XXXIX-XXXIX in FIG. It is a schematic sectional drawing (B) in alignment with. 本発明の実施の形態4における半導体装置の製造方法の第5工程を示す概略平面図である。It is a schematic plan view which shows the 5th process of the manufacturing method of the semiconductor device in Embodiment 4 of this invention. 本発明の実施の形態4における半導体装置の製造方法の第6工程の前の工程を示す概略断面図であって、図37のXXXVIII-XXXVIII線に沿う概略断面図(A)と、図37のXXXIX-XXXIX線に沿う概略断面図(B)である。FIG. 38 is a schematic cross-sectional view showing a step before the sixth step of the method for manufacturing a semiconductor device in the fourth embodiment of the present invention, which is a schematic cross-sectional view along the line XXXVIII-XXXVIII in FIG. FIG. 6 is a schematic cross-sectional view (B) along the line XXXIX-XXXIX. 本発明の実施の形態4における半導体装置の製造方法の第7工程を示す概略平面図である。It is a schematic plan view which shows the 7th process of the manufacturing method of the semiconductor device in Embodiment 4 of this invention. 本発明の実施の形態4における半導体装置の製造方法の第7工程の前の工程を示す概略断面図であって、図37のXXXVIII-XXXVIII線に沿う概略断面図(A)と、図37のXXXIX-XXXIX線に沿う概略断面図(B)である。37 is a schematic cross-sectional view showing a step before the seventh step of the method for manufacturing a semiconductor device in the fourth embodiment of the present invention, which is a schematic cross-sectional view along the line XXXVIII-XXXVIII in FIG. 37; FIG. 6 is a schematic cross-sectional view (B) along the line XXXIX-XXXIX. 本発明の実施の形態4における半導体装置の製造方法の第8工程を示す概略平面図である。It is a schematic plan view which shows the 8th process of the manufacturing method of the semiconductor device in Embodiment 4 of this invention. 本発明の実施の形態4における半導体装置の製造方法の第9工程の前の工程を示す概略断面図であって、図37のXXXVIII-XXXVIII線に沿う概略断面図(A)と、図37のXXXIX-XXXIX線に沿う概略断面図(B)である。37 is a schematic cross-sectional view showing a step before the ninth step of the method for manufacturing a semiconductor device in the fourth embodiment of the present invention, which is a schematic cross-sectional view along the line XXXVIII-XXXVIII in FIG. 37; FIG. 6 is a schematic cross-sectional view (B) along the line XXXIX-XXXIX. 本発明の実施の形態4における半導体装置の製造方法の第10工程の前の工程を示す概略断面図であって、図37のXXXVIII-XXXVIII線に沿う概略断面図(A)と、図37のXXXIX-XXXIX線に沿う概略断面図(B)である。37 is a schematic cross sectional view showing a step before the tenth step of the method for manufacturing a semiconductor device in the fourth embodiment of the present invention, which is a schematic cross sectional view (A) along the line XXXVIII-XXXVIII in FIG. 37; FIG. 6 is a schematic cross-sectional view (B) along the line XXXIX-XXXIX. 本発明の実施の形態4における半導体装置の製造方法の第11工程の前の工程を示す概略断面図であって、図37のXXXVIII-XXXVIII線に沿う概略断面図(A)と、図37のXXXIX-XXXIX線に沿う概略断面図(B)である。37 is a schematic cross-sectional view showing a step before an eleventh step of the method for manufacturing a semiconductor device in the fourth embodiment of the present invention, which is a schematic cross-sectional view along the line XXXVIII-XXXVIII in FIG. 37; FIG. 6 is a schematic cross-sectional view (B) along the line XXXIX-XXXIX. 本発明の実施の形態4における半導体装置の製造方法の第12工程の前の工程を示す概略断面図であって、図37のXXXVIII-XXXVIII線に沿う概略断面図(A)と、図37のXXXIX-XXXIX線に沿う概略断面図(B)である。FIG. 38 is a schematic cross-sectional view showing a step before the twelfth step of the method for manufacturing a semiconductor device in the fourth embodiment of the present invention, which is a schematic cross-sectional view along the line XXXVIII-XXXVIII in FIG. FIG. 6 is a schematic cross-sectional view (B) along the line XXXIX-XXXIX. 本発明の実施の形態4におけるアクセストランジスタに流れる電流を示す概略図である。It is the schematic which shows the electric current which flows into the access transistor in Embodiment 4 of this invention. 本発明の実施の形態4におけるアクセストランジスタにおけるゲート電圧に対する電流特性を示すグラフである。It is a graph which shows the current characteristic with respect to the gate voltage in the access transistor in Embodiment 4 of this invention. 本発明の実施の形態5におけるSRAMメモリセルの下層を示す概略平面図である。It is a schematic plan view which shows the lower layer of the SRAM memory cell in Embodiment 5 of this invention. 本発明の実施の形態5における半導体装置の製造方法の一工程を示す概略平面図である。It is a schematic plan view which shows 1 process of the manufacturing method of the semiconductor device in Embodiment 5 of this invention. 本発明の実施の形態6におけるSRAMメモリセルの多層線構造の全層を示す概略平面図である。It is a schematic plan view which shows all the layers of the multilayer line structure of the SRAM memory cell in Embodiment 6 of this invention. 本発明の実施の形態6におけるSRAMメモリセルの下層を示す概略平面図である。It is a schematic plan view which shows the lower layer of the SRAM memory cell in Embodiment 6 of this invention. 図61のLXII-LXII線に沿う概略断面図である。FIG. 62 is a schematic sectional view taken along line LXII-LXII in FIG. 61. 本発明の実施の形態6におけるSRAMメモリセルの上層を示す概略平面図である。It is a schematic plan view which shows the upper layer of the SRAM memory cell in Embodiment 6 of this invention. 本発明の実施の形態6におけるSRAMセルの平面レイアウトにあわせた等価回路を示す図である。It is a figure which shows the equivalent circuit matched with the planar layout of the SRAM cell in Embodiment 6 of this invention. 本発明の実施の形態6における変形例のSRAMメモリセルの下層を示す概略平面図である。It is a schematic plan view which shows the lower layer of the SRAM memory cell of the modification in Embodiment 6 of this invention.
 以下、本発明の実施の形態について図に基づいて説明する。
 (実施の形態1)
 最初に本発明の実施の形態1の半導体装置の構成について説明する。まず、SRAMを組み込んだSoCと称される半導体装置の一例について説明する。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
(Embodiment 1)
First, the configuration of the semiconductor device according to the first embodiment of the present invention will be described. First, an example of a semiconductor device called SoC incorporating an SRAM will be described.
 図1を参照して、半導体装置SCDは、SRAM部SRと、ロジック回路LCと、IO(Input/Output)領域IOとを主に有している。半導体装置SCDでは、マイクロコントロールユニット、アナログデジタル変換器、デジタルアナログ変換器、バスコントローラなど、それぞれ特定の機能を実現する複数のロジック回路LC、そのロジック回路LCのいくつかに接続されてデータを一時記憶するSRAM部SRが1つのチップに搭載されている。ロジック回路LCおよびSRAM部SRを取り囲むように、IO領域IOが形成されている。 Referring to FIG. 1, the semiconductor device SCD mainly includes an SRAM unit SR, a logic circuit LC, and an IO (Input / Output) area IO. In the semiconductor device SCD, a micro control unit, an analog-digital converter, a digital-analog converter, a bus controller, etc., each of which is connected to a plurality of logic circuits LC that realize specific functions, and some of the logic circuits LC temporarily store data. The SRAM unit SR for storing is mounted on one chip. An IO region IO is formed so as to surround the logic circuit LC and the SRAM portion SR.
 図2を参照して、SRAM部SRは、行列状に配置された複数のメモリセルを有したSRAMセルアレイMA、XデコーダXD、YデコーダYD、センスアンプSA、ライトドライバWDおよび主制御回路MCを主に有している。 Referring to FIG. 2, SRAM section SR includes SRAM cell array MA having a plurality of memory cells arranged in a matrix, X decoder XD, Y decoder YD, sense amplifier SA, write driver WD, and main control circuit MC. Has mainly.
 次に、SRAMメモリセルの等価回路について説明する。図3を参照して、SRAMメモリセルは、2つのインバータをクロスカップリングさせたフリップフロップと、第1アクセストランジスタNA1および第2アクセストランジスタNA2とにより構成されている。フリップフロップには、クロスカップリングさせた第1記憶ノードSN1と第2記憶ノードSN2とが設けられている。 Next, an equivalent circuit of the SRAM memory cell will be described. Referring to FIG. 3, the SRAM memory cell includes a flip-flop obtained by cross-coupling two inverters, and a first access transistor NA1 and a second access transistor NA2. The flip-flop is provided with a first storage node SN1 and a second storage node SN2 that are cross-coupled.
 第1アクセストランジスタNA1と第2アクセストランジスタNA2とは、第1記憶ノードSN1および第2記憶ノードSN2と第1ビット線BLおよび第2ビット線/BLとの間に接続されている。第1ビット線BLが正相の場合には第2ビット線/BLが逆相となる。第1アクセストランジスタNA1および第2アクセストランジスタNA2のゲートは、ワード線WLに接続されている。 The first access transistor NA1 and the second access transistor NA2 are connected between the first storage node SN1 and the second storage node SN2, the first bit line BL, and the second bit line / BL. When the first bit line BL is in the positive phase, the second bit line / BL is in the reverse phase. The gates of the first access transistor NA1 and the second access transistor NA2 are connected to the word line WL.
 フリップフロップでは、第1記憶ノードSN1と接地配線(接地電位)VSSとの間に第1ドライバトランジスタND1および第3ドライバトランジスタND3が並列に接続されている。第2記憶ノードSN2と接地配線VSSとの間に第2ドライバトランジスタND2および第4ドライバトランジスタND4が並列に接続されている。 In the flip-flop, the first driver transistor ND1 and the third driver transistor ND3 are connected in parallel between the first storage node SN1 and the ground wiring (ground potential) VSS. A second driver transistor ND2 and a fourth driver transistor ND4 are connected in parallel between the second storage node SN2 and the ground wiring VSS.
 また、第1記憶ノードSN1と電源配線VDDとの間に第1ロードトランジスタPL1が接続されている。第1ロードトランジスタPL1は第1ドライバトランジスタND1および第3ドライバトランジスタND3の各々に直列に接続されている。第2記憶ノードSN2と電源配線VDDとの間に第2ロードトランジスタPL2が接続されている。第2ロードトランジスタPL2は第2ドライバトランジスタND2および第4ドライバトランジスタND4の各々に直列に接続されている。第3ドライバトランジスタND3および第4ドライバトランジスタND4を備えることによりドライバトランジスタの電流を増大することができる。 Further, the first load transistor PL1 is connected between the first storage node SN1 and the power supply wiring VDD. The first load transistor PL1 is connected in series to each of the first driver transistor ND1 and the third driver transistor ND3. A second load transistor PL2 is connected between the second storage node SN2 and the power supply wiring VDD. The second load transistor PL2 is connected in series to each of the second driver transistor ND2 and the fourth driver transistor ND4. By providing the third driver transistor ND3 and the fourth driver transistor ND4, the current of the driver transistor can be increased.
 第1ドライバトランジスタND1および第3ドライバトランジスタの各ゲート、第1ロードトランジスタPL1のゲート、第2記憶ノードSN2が互いに電気的に接続されている。また、第2ドライバトランジスタND2および第4ドライバトランジスタND4の各ゲート、第2ロードトランジスタPL2のゲート、第1記憶ノードSN1が互いに電気的に接続されている。ロードトランジスタPL1,PL2はPチャネル型絶縁ゲート電界効果トランジスタで構成され、アクセストランジスタNA1,NA2及びドライブトランジスタND1乃至ND4はNチャネル型絶縁ゲート電界効果トランジスタで構成される。 The gates of the first driver transistor ND1 and the third driver transistor, the gate of the first load transistor PL1, and the second storage node SN2 are electrically connected to each other. Further, the gates of the second driver transistor ND2 and the fourth driver transistor ND4, the gate of the second load transistor PL2, and the first storage node SN1 are electrically connected to each other. The load transistors PL1 and PL2 are P-channel insulated gate field effect transistors, and the access transistors NA1 and NA2 and the drive transistors ND1 to ND4 are N-channel insulated gate field effect transistors.
 なお、上記ではSRAMメモリセルがドライバトランジスタを4つ備えている場合について説明したが、ドライバトランジスタは2つ備えていればよい。つまり第1ドライバトランジスタND1および第2ドライバトランジスタND3に加えて、第3ドライバトランジスタND4および第4ドライバトランジスタND4を備えている場合について説明したが、第3ドライバトランジスタND3および第4ドライバトランジスタND4は備えていなくてもよい。 In addition, although the case where the SRAM memory cell includes four driver transistors has been described above, it is sufficient that two driver transistors are provided. That is, although the case where the third driver transistor ND4 and the fourth driver transistor ND4 are provided in addition to the first driver transistor ND1 and the second driver transistor ND3 has been described, the third driver transistor ND3 and the fourth driver transistor ND4 are provided. It does not have to be.
 次に、SRAMメモリセルの構造について説明する。図4は、SRAMセルアレイのSRAMメモリセルを構成するトランジスタおよびそのトランジスタに接続するコンタクトなどの平面レイアウトを示す概略平面図である。図4では、コンタクトに電気的に接続される第1金属配線と、第1金属配線にヴィアホールで電気的に接続される第2金属配線と、第2金属配線にヴィアホールで電気的に接続される第3金属配線も示されている。 Next, the structure of the SRAM memory cell will be described. FIG. 4 is a schematic plan view showing a planar layout of the transistors constituting the SRAM memory cell of the SRAM cell array and the contacts connected to the transistors. In FIG. 4, the first metal wiring electrically connected to the contact, the second metal wiring electrically connected to the first metal wiring through a via hole, and the second metal wiring electrically connected through the via hole. A third metal wiring is also shown.
 図4を参照して、点線で囲まれる領域のそれぞれが一つのSRAMメモリセルを構成する。一つのSRAMメモリセルには、隣接する他のSRAMメモリセルの活性領域、コンタクトおよび金属配線の一部が入り込むように配置されている。代表的にSRAMメモリセルMC1を中心に説明する。SRAMメモリセルMC1は、上述したように第1および第2アクセストランジスタNA1,NA2と、第1~第4ドライバトランジスタND1~ND4と、第1および第2ロードトランジスタPL1,PL2とを有している。 Referring to FIG. 4, each of the areas surrounded by a dotted line constitutes one SRAM memory cell. One SRAM memory cell is arranged so that a part of the active region, contact, and metal wiring of another adjacent SRAM memory cell enter. The SRAM memory cell MC1 will be described as a representative example. As described above, the SRAM memory cell MC1 includes the first and second access transistors NA1 and NA2, the first to fourth driver transistors ND1 to ND4, and the first and second load transistors PL1 and PL2. .
 平面レイアウトにおいて、第1ビット線BLおよび第2ビット線/BLがSRAMメモリセルMC1を横断して延在する方向において、SRAMメモリセルMC1と隣接してSRAMメモリセルMC2は配置されている。SRAMメモリセルMC1とSRAMメモリセルMC2とにおいて、第1~第4ドライバトランジスタND1~ND4、第1および第2ロードトランジスタPL1,PL2のそれぞれは、平面レイアウトにおいてSRAMメモリセルMC1とSRAMメモリセルMC2との間の仮想の境界線VLに対して線対称(鏡面対称)に配置されている。 In the planar layout, the SRAM memory cell MC2 is arranged adjacent to the SRAM memory cell MC1 in the direction in which the first bit line BL and the second bit line / BL extend across the SRAM memory cell MC1. In the SRAM memory cell MC1 and the SRAM memory cell MC2, the first to fourth driver transistors ND1 to ND4 and the first and second load transistors PL1 and PL2 respectively include the SRAM memory cell MC1 and the SRAM memory cell MC2 in the planar layout. Are arranged in line symmetry (mirror symmetry) with respect to a virtual boundary line VL.
 半導体基板SSの主表面では、素子分離領域IRを形成することによって、互いに電気的に分離された素子形成領域FRN,FRPが規定されている。素子形成領域FRNはNMIS(N channel type Metal Insulator Semiconductor)領域RNに形成されている。素子形成領域FRNには、nチャネル型のMISトランジスタとして、第1および第2アクセストランジスタNA1,NA2と、第1~第4ドライバトランジスタND1~ND4とが形成されている。 On the main surface of the semiconductor substrate SS, element formation regions FRN and FRP that are electrically isolated from each other are defined by forming an element isolation region IR. The element formation region FRN is formed in an NMIS (N channel type Metal Insulator Semiconductor) region RN. In the element formation region FRN, first and second access transistors NA1 and NA2 and first to fourth driver transistors ND1 to ND4 are formed as n-channel MIS transistors.
 素子形成領域FRPはPMIS(P channel type Metal Insulator Semiconductor)領域RPに形成されている。素子形成領域FRPには、pチャネル型のMISトランジスタとして第1および第2ロードトランジスタPL1,PL2が形成されている。 The element formation region FRP is formed in a PMIS (P channel type Metal Insulator Semiconductor) region RP. In the element formation region FRP, first and second load transistors PL1 and PL2 are formed as p-channel type MIS transistors.
 第1アクセストランジスタNA1は、第1アクセスゲートAG1および1対の第1ソース/ドレインSD1を有している。第1記憶ノードSN1に1対の第1ソース/ドレインSD1の一方が電気的に接続され、第1ビット線BLに1対の第1ソース/ドレインSD1の他方が電気的に接続されている。第2アクセストランジスタNA2は、第2アクセスゲートAG2および1対の第2ソース/ドレインSD2を有している。第2記憶ノードSN2に1対の第2ソース/ドレインSD2の一方が電気的に接続され、第2ビット線/BLに1対の第2ソース/ドレインSD2の他方が電気的に接続されている。 The first access transistor NA1 has a first access gate AG1 and a pair of first source / drain SD1. One of the pair of first source / drain SD1 is electrically connected to the first storage node SN1, and the other of the pair of first source / drain SD1 is electrically connected to the first bit line BL. The second access transistor NA2 has a second access gate AG2 and a pair of second source / drain SD2. One of the pair of second source / drain SD2 is electrically connected to the second storage node SN2, and the other of the pair of second source / drain SD2 is electrically connected to the second bit line / BL. .
 第1ドライバトランジスタND1は、第1ドライバゲートDG1および1対の第3ソース/ドレインSD3を有している。第1記憶ノードSN1に1対の第3ソース/ドレインSD3の一方が電気的に接続され、接地配線VSSに1対の第3ソース/ドレインSD3の他方が電気的に接続されている。第2ドライバトランジスタND2は、第2ドライバゲートDG2および1対の第4ソース/ドレインSD4を有している。第2記憶ノードSN2に1対の第4ソース/ドレインSD4の一方が電気的に接続され、接地配線VSSに1対の第4ソース/ドレインSD4の他方が電気的に接続されている。 The first driver transistor ND1 has a first driver gate DG1 and a pair of third source / drain SD3. One of the pair of third source / drain SD3 is electrically connected to the first storage node SN1, and the other of the pair of third source / drain SD3 is electrically connected to the ground wiring VSS. The second driver transistor ND2 has a second driver gate DG2 and a pair of fourth source / drain SD4. One of the pair of fourth source / drain SD4 is electrically connected to the second storage node SN2, and the other of the pair of fourth source / drain SD4 is electrically connected to the ground wiring VSS.
 第3ドライバトランジスタND3は、第3ドライバゲートDG3および1対の第5ソース/ドレインSD5を有している。第1記憶ノードSN1に1対の第5ソース/ドレインSD5の一方が電気的に接続され、接地配線VSSに1対の第5ソース/ドレインSD5の他方が電気的に接続されている。第4ドライバトランジスタND4は、第4ドライバゲートDG4および1対の第6ソース/ドレインSD6を有している。第2記憶ノードSN2に1対の第6ソース/ドレインSD6の一方が電気的に接続され、接地配線VSSに1対の第6ソース/ドレインSD6の他方が電気的に接続されている。 The third driver transistor ND3 has a third driver gate DG3 and a pair of fifth source / drain SD5. One of the pair of fifth source / drain SD5 is electrically connected to the first storage node SN1, and the other of the pair of fifth source / drain SD5 is electrically connected to the ground wiring VSS. The fourth driver transistor ND4 has a fourth driver gate DG4 and a pair of sixth source / drain SD6. One of the pair of sixth source / drain SD6 is electrically connected to the second storage node SN2, and the other of the pair of sixth source / drain SD6 is electrically connected to the ground wiring VSS.
 第1ロードトランジスタPL1は、第1ロードゲートLG1および1対のソース/ドレインを有している。第1ロードトランジスタPL1は、第1ドライバトランジスタND1に第1記憶ノードSN1で電気的に接続されている。第2ロードトランジスタPL2は、第1ロードゲートLG2および1対のソース/ドレインを有している。第2ロードトランジスタPL2は、第2ドライバトランジスタND2に第2記憶ノードSN2で電気的に接続されている。 The first load transistor PL1 has a first load gate LG1 and a pair of source / drain. The first load transistor PL1 is electrically connected to the first driver transistor ND1 at the first storage node SN1. The second load transistor PL2 has a first load gate LG2 and a pair of source / drain. The second load transistor PL2 is electrically connected to the second driver transistor ND2 at the second storage node SN2.
 第1アクセストランジスタNA1の第1アクセスゲートAG1と、第2アクセストランジスタNA2の第2アクセスゲートAG2と、第1ドライバトランジスタND1の第1ドライバゲートDG1と、第2ドライバトランジスタND2の第2ドライバゲートDG2と、第3ドライバトランジスタND3の第3ドライバゲートDG3と、第4ドライバトランジスタND4の第4ドライバゲートDG4は、素子形成領域FRNを横切るように形成されている。第1ロードトランジスタPL1の第1ロードゲートLG1と、第2ロードトランジスタPL2の第2ロードゲートLG2は、素子形成領域FRPを横切るように形成されている。 The first access gate AG1 of the first access transistor NA1, the second access gate AG2 of the second access transistor NA2, the first driver gate DG1 of the first driver transistor ND1, and the second driver gate DG2 of the second driver transistor ND2. The third driver gate DG3 of the third driver transistor ND3 and the fourth driver gate DG4 of the fourth driver transistor ND4 are formed so as to cross the element formation region FRN. The first load gate LG1 of the first load transistor PL1 and the second load gate LG2 of the second load transistor PL2 are formed so as to cross the element formation region FRP.
 平面レイアウトにおいて、第1アクセスゲートAG1および第2アクセスゲートAG2の各々は同一方向に延在するように形成されている。また第1ドライバゲートDG1、第2ドライバゲートDG2、第3ドライバゲートDG3および第4ドライバゲートDG4、第1ロードゲートLG1および第2ロードゲートLG2の各々は同一方向に延在するように形成されている。 In the planar layout, each of the first access gate AG1 and the second access gate AG2 is formed to extend in the same direction. The first driver gate DG1, the second driver gate DG2, the third driver gate DG3, the fourth driver gate DG4, the first load gate LG1, and the second load gate LG2 are formed to extend in the same direction. Yes.
 平面レイアウトにおいて、1対の第1ソース/ドレインSD1の一方から他方に向かう第1の方向D1と、1対の第2ソース/ドレインSD2の一方から他方に向かう第2の方向D2とが同じである。またSRAMメモリセルMC1およびSRAMメモリセルMC2のそれぞれの第1の方向D1同士が互いに同じ方向であり、第2の方向D2同士が互いに同じ方向である。 In the planar layout, the first direction D1 from one of the pair of first source / drain SD1 to the other and the second direction D2 from one of the pair of second source / drain SD2 to the other are the same. is there. The first directions D1 of the SRAM memory cell MC1 and the SRAM memory cell MC2 are the same direction, and the second directions D2 are the same direction.
 平面レイアウトにおいて、1対の第3ソース/ドレインSD3の一方から他方に向かう第3の方向D3と、1対の第5ソース/ドレインSD5の一方から他方に向かう第5の方向D5とが反対である。また、1対の第4ソース/ドレインSD4の一方から他方に向かう第4の方向D4と、1対の第6ソース/ドレインSD6の一方から他方に向かう第6の方向D6とが反対である。 In the planar layout, the third direction D3 from one of the pair of third source / drain SD3 toward the other is opposite to the fifth direction D5 from one of the pair of fifth source / drain SD5 toward the other. is there. Further, the fourth direction D4 from one of the pair of fourth source / drain SD4 to the other is opposite to the sixth direction D6 from one of the pair of sixth source / drain SD6 to the other.
 平面レイアウトにおいて、1対の第5ソース/ドレインSD5の一方から他方に向かう第5の方向D5と、1対の第6ソース/ドレインSD6の一方から他方に向かう第6の方向D6とが同じである。またSRAMメモリセルMC1およびSRAMメモリセルMC2のそれぞれの、第5の方向D5同士が互いに同じ方向であり、かつ第6の方向D6同士が互いに同じ方向である。なお「1対のソース/ドレイン」とは、単に、電界効果トランジスタの1対の導通端子を形成する不純物領域(Nチャネル型トランジスタであればN型不純物領域、Pチャネル型トランジスタであればP型の不純物領域)と同じ意味であり、1対の不純物領域の各々がソース端子及びドレイン端子のいずれにもなることを必ずしも意味しない。 In the planar layout, the fifth direction D5 from one of the pair of fifth source / drain SD5 to the other and the sixth direction D6 from one of the pair of sixth source / drain SD6 to the other are the same. is there. Further, the fifth directions D5 of the SRAM memory cell MC1 and the SRAM memory cell MC2 are the same as each other, and the sixth directions D6 are the same as each other. Note that “a pair of source / drain” simply means an impurity region that forms a pair of conduction terminals of a field effect transistor (an N-type impurity region for an N-channel transistor, a P-type for a P-channel transistor) The impurity regions of the pair of impurity regions do not necessarily mean that each of the pair of impurity regions becomes either a source terminal or a drain terminal.
 図5は、図4においてSRAMメモリセルMC1の第1アクセストランジスタNA1と、SRAMメモリセルMC1に隣接するSRAMメモリセルMC2のコンタクトC21とを通るように第1アクセスゲートAG1の延在方向に直交する断面線V-Vに沿う概略断面図である。 5 is orthogonal to the extending direction of the first access gate AG1 so as to pass through the first access transistor NA1 of the SRAM memory cell MC1 and the contact C21 of the SRAM memory cell MC2 adjacent to the SRAM memory cell MC1 in FIG. FIG. 5 is a schematic cross-sectional view along a cross-sectional line VV.
 第1アクセスゲートAG1に対して、ダミーゲートDUが位置する側とは反対側に位置する素子形成領域FRNの部分には、エクステンション領域ER、第1ソース/ドレインSD1および金属シリサイド膜SCLが形成されている。 An extension region ER, a first source / drain SD1, and a metal silicide film SCL are formed in a portion of the element formation region FRN located on the opposite side of the first access gate AG1 from the side where the dummy gate DU is located. ing.
 第1アクセスゲートAG1とダミーゲートDUとの間に位置する素子形成領域FRNの部分には、第1ソース/ドレインSD1、金属シリサイド膜SCLおよび素子分離領域IRが形成されている。ダミーゲートDUに対して、第1アクセスゲートAG1が位置する側とは反対側に位置する素子形成領域FRNの部分には、SRAMメモリセルMC2の第1ソース/ドレインSD1および金属シリサイド膜SCLが形成されている。 In the element forming region FRN located between the first access gate AG1 and the dummy gate DU, the first source / drain SD1, the metal silicide film SCL, and the element isolation region IR are formed. The first source / drain SD1 and the metal silicide film SCL of the SRAM memory cell MC2 are formed in the element formation region FRN located on the opposite side of the dummy gate DU from the side where the first access gate AG1 is located. Has been.
 第1アクセスゲートAG1およびダミーゲートDUを覆うように、シリコン窒化膜などのストレスライナー膜SLが形成されている。そのストレスライナー膜SLを覆うように、シリコン酸化膜(たとえばTEOS(Tetra Ethyl Ortho Silicate)膜)などの層間絶縁膜IL1が形成されている。 A stress liner film SL such as a silicon nitride film is formed so as to cover the first access gate AG1 and the dummy gate DU. An interlayer insulating film IL1 such as a silicon oxide film (eg, TEOS (Tetra Ethyl Ortho Silicate) film) is formed so as to cover the stress liner film SL.
 層間絶縁膜IL1およびストレスライナー膜SLを貫通して金属シリサイド膜SCLに電気的に接続されるプラグPG1が形成されている。プラグPG1は、TiN膜などのバリア金属膜BA1とタングステン膜TL1とを含んでいる。金属シリサイド膜SCLにそれぞれ接続するプラグPG1は、図4に示すコンタクトC1,C2,C21をそれぞれ構成する。 A plug PG1 penetrating the interlayer insulating film IL1 and the stress liner film SL and electrically connected to the metal silicide film SCL is formed. The plug PG1 includes a barrier metal film BA1 such as a TiN film and a tungsten film TL1. The plugs PG1 connected to the metal silicide film SCL constitute the contacts C1, C2, and C21 shown in FIG.
 プラグPG1を覆うように、層間絶縁膜IL1上にシリコン窒化膜などのエッチングストッパ膜ES1が形成されている。そのエッチングストッパ膜ES1上にシリコン酸化膜などの層間絶縁膜IL2が形成されている。層間絶縁膜IL2およびエッチングストッパ膜ES1を貫通してプラグPG1に電気的に接続される銅配線CW1が形成されている。銅配線CW1はTaN膜などのバリア金属膜BA2と銅膜CL1とを含んでいる。プラグPG1にそれぞれ接続する銅配線CW1は、図4に示す第1金属配線M1,M2,M14をそれぞれ構成する。 An etching stopper film ES1 such as a silicon nitride film is formed on the interlayer insulating film IL1 so as to cover the plug PG1. An interlayer insulating film IL2 such as a silicon oxide film is formed on the etching stopper film ES1. A copper wiring CW1 that penetrates through the interlayer insulating film IL2 and the etching stopper film ES1 and is electrically connected to the plug PG1 is formed. The copper wiring CW1 includes a barrier metal film BA2 such as a TaN film and a copper film CL1. Copper wirings CW1 connected to the plugs PG1 respectively constitute first metal wirings M1, M2, and M14 shown in FIG.
 銅配線CW1を覆うように、層間絶縁膜IL2上にシリコン酸化膜などの層間絶縁膜IL3が形成されている。層間絶縁膜IL3を貫通して銅配線CW1に電気的に接続されるプラグPG2が形成されている。プラグPG2は、TiN膜などのバリア金属膜BA3とタングステン膜TL2とを含んでいる。銅配線CW1にそれぞれ接続するプラグPG2は、図4に示すヴィアホールV1,V11をそれぞれ構成する。 An interlayer insulating film IL3 such as a silicon oxide film is formed on the interlayer insulating film IL2 so as to cover the copper wiring CW1. A plug PG2 penetrating through the interlayer insulating film IL3 and electrically connected to the copper wiring CW1 is formed. The plug PG2 includes a barrier metal film BA3 such as a TiN film and a tungsten film TL2. The plugs PG2 connected to the copper wiring CW1 respectively constitute the via holes V1 and V11 shown in FIG.
 プラグPG2を覆うように、層間絶縁膜IL3上にプラグPG2に電気的に接続される銅配線CW2が形成されている。銅配線CW2は、TaN膜などのバリア金属膜BA4と銅膜CL2とを含んでいる。プラグPG2にそれぞれ接続する銅配線CW2は、図4に示す第2金属配線M21を構成する。 A copper wiring CW2 electrically connected to the plug PG2 is formed on the interlayer insulating film IL3 so as to cover the plug PG2. The copper wiring CW2 includes a barrier metal film BA4 such as a TaN film and a copper film CL2. The copper wiring CW2 connected to the plug PG2 constitutes the second metal wiring M21 shown in FIG.
 銅配線CW2を覆うように、シリコン酸化膜などの層間絶縁膜IL4が形成されている。層間絶縁膜IL4上にシリコン窒化膜などのエッチングストッパ膜ES2が形成されている。そのエッチングストッパ膜ES2上にシリコン酸化膜などの層間絶縁膜IL5が形成されている。層間絶縁膜IL5およびエッチングストッパ膜ES2を貫通して銅配線CW3が形成されている。銅配線CW3はTaN膜などのバリア金属膜BA5と銅膜CL3とを含んでいる。銅配線CW3は、図4に示す第3金属配線M31を構成する。 An interlayer insulating film IL4 such as a silicon oxide film is formed so as to cover the copper wiring CW2. An etching stopper film ES2 such as a silicon nitride film is formed on the interlayer insulating film IL4. On the etching stopper film ES2, an interlayer insulating film IL5 such as a silicon oxide film is formed. Copper wiring CW3 is formed through interlayer insulating film IL5 and etching stopper film ES2. The copper wiring CW3 includes a barrier metal film BA5 such as a TaN film and a copper film CL3. Copper interconnection CW3 constitutes third metal interconnection M31 shown in FIG.
 図6は、図4においてSRAMメモリセルMC1の第1ドライバトランジスタND1と第3ドライバトランジスタND3とを通るように第1ドライバゲートDG1の延在方向に直交する断面線VI-VIに沿う概略断面図である。 FIG. 6 is a schematic sectional view taken along a sectional line VI-VI orthogonal to the extending direction of the first driver gate DG1 so as to pass through the first driver transistor ND1 and the third driver transistor ND3 of the SRAM memory cell MC1 in FIG. It is.
 第1ドライバゲートDG1に対して、第3ドライバゲートDG3が位置する側とは反対側に位置する素子形成領域FRNの部分には、エクステンション領域ER、第3ソース/ドレインSD3および金属シリサイド膜SCLが形成されている。 The extension region ER, the third source / drain SD3, and the metal silicide film SCL are formed in the element formation region FRN located on the opposite side of the first driver gate DG1 from the side where the third driver gate DG3 is located. Is formed.
 第1ドライバゲートDG1と第3ドライバゲートDG3との間に位置する素子形成領域FRNの部分には、エクステンション領域ER、第3ソース/ドレインSD3、第5ソース/ドレインSD5および金属シリサイド膜SCLが形成されている。 An extension region ER, a third source / drain SD3, a fifth source / drain SD5, and a metal silicide film SCL are formed in a portion of the element formation region FRN located between the first driver gate DG1 and the third driver gate DG3. Has been.
 第3ドライバゲートDG3に対して、第1ドライバゲートDG1が位置する側とは反対側に位置する素子形成領域FRNの部分には、エクステンション領域ER、第5ソース/ドレインSD5および金属シリサイド膜SCLが形成されている。 The extension region ER, the fifth source / drain SD5, and the metal silicide film SCL are formed in the element formation region FRN located on the opposite side of the third driver gate DG3 from the side where the first driver gate DG1 is located. Is formed.
 第1ドライバゲートDG1および第3ドライバゲートDG3を覆うように、シリコン窒化膜などのストレスライナー膜SLが形成されている。そのストレスライナー膜SLを覆うように、シリコン酸化膜(たとえばTEOS膜)などの層間絶縁膜IL1が形成されている。層間絶縁膜IL1およびストレスライナー膜SLを貫通して金属シリサイド膜SCLに電気的に接続されるプラグPG1が形成されている。プラグPG1は、TiN膜などのバリア金属膜BA1とタングステン膜TL1とを含んでいる。金属シリサイド膜SCLにそれぞれ接続するプラグPG1は、図4に示すコンタクトC5,C6,C7をそれぞれ構成する。 A stress liner film SL such as a silicon nitride film is formed so as to cover the first driver gate DG1 and the third driver gate DG3. An interlayer insulating film IL1 such as a silicon oxide film (for example, a TEOS film) is formed so as to cover the stress liner film SL. A plug PG1 penetrating through the interlayer insulating film IL1 and the stress liner film SL and electrically connected to the metal silicide film SCL is formed. The plug PG1 includes a barrier metal film BA1 such as a TiN film and a tungsten film TL1. The plugs PG1 connected to the metal silicide film SCL respectively constitute contacts C5, C6, C7 shown in FIG.
 プラグPG1を覆うように、層間絶縁膜IL1上にシリコン窒化膜などのエッチングストッパ膜ES1が形成されている。そのエッチングストッパ膜ES1上にシリコン酸化膜などの層間絶縁膜IL2が形成されている。層間絶縁膜IL2およびエッチングストッパ膜ES1を貫通してプラグPG1に電気的に接続される銅配線CW1が形成されている。銅配線CW1はTaN膜などのバリア金属膜BA2と銅膜CL1とを含んでいる。プラグPG1にそれぞれ接続する銅配線CW1は、図4に示す第1金属配線M1,M4,M5をそれぞれ構成する。 An etching stopper film ES1 such as a silicon nitride film is formed on the interlayer insulating film IL1 so as to cover the plug PG1. An interlayer insulating film IL2 such as a silicon oxide film is formed on the etching stopper film ES1. A copper wiring CW1 that penetrates through the interlayer insulating film IL2 and the etching stopper film ES1 and is electrically connected to the plug PG1 is formed. The copper wiring CW1 includes a barrier metal film BA2 such as a TaN film and a copper film CL1. The copper wirings CW1 connected to the plugs PG1 respectively constitute the first metal wirings M1, M4, M5 shown in FIG.
 銅配線CW1を覆うように、層間絶縁膜IL2上にシリコン酸化膜などの層間絶縁膜IL3が形成されている。層間絶縁膜IL3を貫通して銅配線CW1に電気的に接続されるプラグPG2が形成されている。プラグPG2は、TiN膜などのバリア金属膜BA3とタングステン膜TL2とを含んでいる。銅配線CW1にそれぞれ接続するプラグPG2は、図4に示すヴィアホールV3,V4をそれぞれ構成する。 An interlayer insulating film IL3 such as a silicon oxide film is formed on the interlayer insulating film IL2 so as to cover the copper wiring CW1. A plug PG2 penetrating through the interlayer insulating film IL3 and electrically connected to the copper wiring CW1 is formed. The plug PG2 includes a barrier metal film BA3 such as a TiN film and a tungsten film TL2. The plugs PG2 connected to the copper wiring CW1 respectively constitute via holes V3 and V4 shown in FIG.
 プラグPG2を覆うように、層間絶縁膜IL3上にプラグPG2に電気的に接続される銅配線CW2が形成されている。銅配線CW2は、TaN膜などのバリア金属膜BA4と銅膜CL2とを含んでいる。プラグPG2にそれぞれ接続する銅配線CW2は、図4に示す第2金属配線M22を構成する。 A copper wiring CW2 electrically connected to the plug PG2 is formed on the interlayer insulating film IL3 so as to cover the plug PG2. The copper wiring CW2 includes a barrier metal film BA4 such as a TaN film and a copper film CL2. The copper wiring CW2 connected to the plug PG2 constitutes the second metal wiring M22 shown in FIG.
 銅配線CW2を覆うように、シリコン酸化膜などの層間絶縁膜IL4が形成されている。層間絶縁膜IL4上にシリコン窒化膜などのエッチングストッパ膜ES2が形成されている。そのエッチングストッパ膜ES2上にシリコン酸化膜などの層間絶縁膜IL5が形成されている。層間絶縁膜IL5およびエッチングストッパ膜ES2を貫通して銅配線CW3が形成されている。銅配線CW3はTaN膜などのバリア金属膜BA5と銅膜CL3とを含んでいる。銅配線CW3は、図4に示す第3金属配線M31を構成する。 An interlayer insulating film IL4 such as a silicon oxide film is formed so as to cover the copper wiring CW2. An etching stopper film ES2 such as a silicon nitride film is formed on the interlayer insulating film IL4. On the etching stopper film ES2, an interlayer insulating film IL5 such as a silicon oxide film is formed. Copper wiring CW3 is formed through interlayer insulating film IL5 and etching stopper film ES2. The copper wiring CW3 includes a barrier metal film BA5 such as a TaN film and a copper film CL3. Copper interconnection CW3 constitutes third metal interconnection M31 shown in FIG.
 次に、アクセストランジスタの構造について詳しく説明する。なお、図7は、図4に示すV-V線に対応する断面線に沿った断面構造を示す。またアクセストランジスタの構造として第1アクセストランジスタNA1を例に説明するが、第2アクセストランジスタNA2も同様の構造を有している。 Next, the structure of the access transistor will be described in detail. FIG. 7 shows a cross-sectional structure along a cross-sectional line corresponding to the VV line shown in FIG. The first access transistor NA1 will be described as an example of the access transistor structure, but the second access transistor NA2 has the same structure.
 図7を参照して、素子形成領域FRN(図4参照)を横切るように形成された第1アクセストランジスタNA1の第1アクセスゲートAG1は、SiONなどの界面層(Inter Layer)SF上に、それぞれLaを含有したHfO2、HfSiONなど所定の誘電率を有するHigh-k膜HK、TiNなど所定の仕事関数を有する金属膜MLおよびポリシリコン(多結晶シリコン)膜PSを積層させる態様で形成され、ポリシリコン膜PSの表面にはさらにニッケルシリサイドなどの金属シリサイド膜SCLが形成されている。第1アクセスゲートAG1の両側面上には、たとえばシリコン窒化膜などのオフセットスペーサOSが形成されている。そのオフセットスペーサOSの上には、シリコン酸化膜SOとシリコン窒化膜SNIからなるサイドウォールスペーサSWが形成されている。 Referring to FIG. 7, the first access gate AG1 of the first access transistor NA1 formed so as to cross the element formation region FRN (see FIG. 4) is respectively formed on an interface layer (Inter Layer) SF such as SiON. A high-k film HK having a predetermined dielectric constant such as La-containing HfO 2 and HfSiON, a metal film ML having a predetermined work function such as TiN, and a polysilicon (polycrystalline silicon) film PS are formed in a stacked manner; A metal silicide film SCL such as nickel silicide is further formed on the surface of the polysilicon film PS. On both side surfaces of first access gate AG1, offset spacers OS such as a silicon nitride film are formed. On the offset spacer OS, a sidewall spacer SW made of a silicon oxide film SO and a silicon nitride film SNI is formed.
 第1アクセスゲートAG1が延在する方向と直交する方向(ゲート長方向)の素子形成領域の部分には、エクステンション領域ER、ソース/ドレインSD1および金属シリサイド膜SCLが形成されている。 The extension region ER, the source / drain SD1, and the metal silicide film SCL are formed in the element forming region in the direction orthogonal to the direction in which the first access gate AG1 extends (gate length direction).
 次に、各トランジスタを電気的に接続する多層配線構造について説明する。図8は、SRAMメモリセルの各トランジスタと第3金属配線との接続関係を示す概略平面図である。図9は、各トランジスタと第1金属配線との接続構造を示す概略平面図である。図10は、第2の金属配線と第3の金属配線との接続構造を示す平面図である。図11は、図8の平面レイアウトにあわせて示したSRAMメモリセルの等価回路を示す図である。 Next, a multilayer wiring structure for electrically connecting the transistors will be described. FIG. 8 is a schematic plan view showing the connection relationship between each transistor of the SRAM memory cell and the third metal wiring. FIG. 9 is a schematic plan view showing a connection structure between each transistor and the first metal wiring. FIG. 10 is a plan view showing a connection structure between the second metal wiring and the third metal wiring. FIG. 11 is a diagram showing an equivalent circuit of the SRAM memory cell shown in accordance with the planar layout of FIG.
 図12は、図8に示すSRAMメモリセルと隣接するSRAMメモリセルの平面レイアウトを示す概略平面図である。図8~図10は、1つのSRAMメモリセルに対する多層配線構造を示すが、その隣接するSRAMメモリセル上の多層配線構造は、図12に示すように図8と第1アクセストランジスタおよび第2アクセストランジスタを除き、その隣接するSRAMメモリセル間の仮想の境界線VL(図4参照)に対して線対称(鏡面対称)に配線パターンが形成されるので、SRAMメモリセルMC1について主に説明する。 FIG. 12 is a schematic plan view showing a planar layout of the SRAM memory cell adjacent to the SRAM memory cell shown in FIG. 8 to 10 show a multilayer wiring structure for one SRAM memory cell. The multilayer wiring structure on the adjacent SRAM memory cell is shown in FIG. 8, as shown in FIG. Except for the transistors, the wiring pattern is formed in line symmetry (mirror symmetry) with respect to a virtual boundary line VL (see FIG. 4) between the adjacent SRAM memory cells. Therefore, the SRAM memory cell MC1 will be mainly described.
 図8~図10を参照して、第1アクセストランジスタNA1の第1ソース/ドレインSD1の一方は、コンタクトC1(プラグPG1)、第1金属配線M1(銅配線CW1)およびコンタクトC5を介して、第1ドライバトランジスタND1の第3ソース/ドレインSD3の一方と、第3ドライバトランジスタND3の第5ソース/ドレインSD5の一方とに電気的に接続されている。 8 to 10, one of the first source / drain SD1 of the first access transistor NA1 is connected via the contact C1 (plug PG1), the first metal wiring M1 (copper wiring CW1) and the contact C5. One of the third source / drain SD3 of the first driver transistor ND1 and one of the fifth source / drain SD5 of the third driver transistor ND3 are electrically connected.
 また第1アクセストランジスタNA1の第1ソース/ドレインSD1の一方は、コンタクトC1、第1金属配線M1、コンタクトC9を介して、第1ロードトランジスタPL1のSDの一方と、第2ロードトランジスタPL2の第2ロードゲートLG2と、第2ドライバトランジスタND2の第2ドライバゲートDG2と、第4ドライバトランジスタND4の第4ドライバゲートDG4とに電気的に接続されている。
 第1アクセストランジスタNA1の第1ソース/ドレインSD1の他方は、コンタクトC2(プラグPG1)、第1金属配線M2(銅配線CW1)およびヴィアホールV1を介して、ビット線BLとしての第2金属配線M21に電気的に接続されている。
One of the first source / drain SD1 of the first access transistor NA1 is connected to one of the SD of the first load transistor PL1 and the second of the second load transistor PL2 via the contact C1, the first metal wiring M1, and the contact C9. The second load gate LG2, the second driver gate DG2 of the second driver transistor ND2, and the fourth driver gate DG4 of the fourth driver transistor ND4 are electrically connected.
The other of the first source / drain SD1 of the first access transistor NA1 is the second metal wiring as the bit line BL via the contact C2 (plug PG1), the first metal wiring M2 (copper wiring CW1) and the via hole V1. It is electrically connected to M21.
 第1アクセストランジスタNA1の第1アクセスゲートAG1は、コンタクトC4、第1金属配線M3、ヴィアホールV2、第2金属配線M26およびヴィアホールV21を介して、ワード線WLとしての第3金属配線M31に電気的に接続されている。ダミーゲートDUは、コンタクトC3、第1金属配線M3、ヴィアホールV2、第2金属配線M26およびヴィアホールV21を介して、ワード線WLとしての第3金属配線M31に電気的に接続されている。 The first access gate AG1 of the first access transistor NA1 is connected to the third metal wiring M31 as the word line WL through the contact C4, the first metal wiring M3, the via hole V2, the second metal wiring M26, and the via hole V21. Electrically connected. The dummy gate DU is electrically connected to the third metal wiring M31 as the word line WL through the contact C3, the first metal wiring M3, the via hole V2, the second metal wiring M26, and the via hole V21.
 第1ドライバトランジスタND1の第3ソース/ドレインSD3の他方は、コンタクトC6、第1金属配線M1およびヴィアホールV3を介して、接地電位が与えられる接地配線VSSとしての第2金属配線M22に電気的に接続されている。第3ドライバトランジスタND1の第5ソース/ドレインSD5の他方は、コンタクトC7、第1金属配線M5およびヴィアホールV4を介して、接地電位が与えられる接地配線VSSとしての第2金属配線M22に電気的に接続されている。 The other of the third source / drain SD3 of the first driver transistor ND1 is electrically connected to a second metal wiring M22 as a ground wiring VSS to which a ground potential is applied via the contact C6, the first metal wiring M1 and the via hole V3. It is connected to the. The other of the fifth source / drain SD5 of the third driver transistor ND1 is electrically connected to the second metal wiring M22 as the ground wiring VSS to which the ground potential is applied through the contact C7, the first metal wiring M5 and the via hole V4. It is connected to the.
 第1ロードトランジスタPL1のソース/ドレインSDの他方は、コンタクトC8、第1金属配線M6およびヴィアホールV5を介して、電源配線VDDとしての第2金属配線M23に電気的に接続されている。 The other of the source / drain SD of the first load transistor PL1 is electrically connected to the second metal wiring M23 as the power supply wiring VDD through the contact C8, the first metal wiring M6, and the via hole V5.
 第2アクセストランジスタNA2の第1ソース/ドレインSD2の一方は、コンタクトC11、第1金属配線M8およびコンタクトC15を介して、第2ドライバトランジスタND2の第4ソース/ドレインSD4の一方と、第4ドライバトランジスタND4の第6ソース/ドレインSD6の一方とに電気的に接続されている。 One of the first source / drain SD2 of the second access transistor NA2 and one of the fourth source / drain SD4 of the second driver transistor ND2 and the fourth driver via the contact C11, the first metal wiring M8 and the contact C15. The transistor ND4 is electrically connected to one of the sixth source / drain SD6.
 また第2アクセストランジスタNA2の第2ソース/ドレインSD2の一方は、コンタクトC11、第1金属配線M8、コンタクトC18を介して、第2ロードトランジスタPL2のSDの一方と、第1ロードトランジスタPL1の第1ロードゲートLG1と、第1ドライバトランジスタND3の第1ドライバゲートDG3と、第3ドライバトランジスタND3の第3ドライバゲートDG3とに電気的に接続されている。
 第2アクセストランジスタNA2の第2ソース/ドレインSD2の他方は、コンタクトC12、第1金属配線M9およびヴィアホールV6を介して、ビット線/BLとしての第2金属配線M24に電気的に接続されている。
One of the second source / drain SD2 of the second access transistor NA2 is connected to one of the SD of the second load transistor PL2 and the first of the first load transistor PL1 via the contact C11, the first metal wiring M8, and the contact C18. The first load gate LG1, the first driver gate DG3 of the first driver transistor ND3, and the third driver gate DG3 of the third driver transistor ND3 are electrically connected.
The other of the second source / drain SD2 of the second access transistor NA2 is electrically connected to the second metal wiring M24 as the bit line / BL via the contact C12, the first metal wiring M9 and the via hole V6. Yes.
 第2アクセストランジスタNA2の第2アクセスゲートAG2は、コンタクトC14、第1金属配線M10、ヴィアホールV10、第2金属配線M27およびヴィアホールV22を介して、ワード線WLとしての第3金属配線M31に電気的に接続されている。ダミーゲートDUは、コンタクトC13、第1金属配線M10、ヴィアホールV22、第2金属配線M27およびヴィアホールV22を介して、ワード線WLとしての第3金属配線M31に電気的に接続されている。 The second access gate AG2 of the second access transistor NA2 is connected to the third metal wiring M31 as the word line WL through the contact C14, the first metal wiring M10, the via hole V10, the second metal wiring M27, and the via hole V22. Electrically connected. The dummy gate DU is electrically connected to the third metal wiring M31 as the word line WL through the contact C13, the first metal wiring M10, the via hole V22, the second metal wiring M27, and the via hole V22.
 第2ドライバトランジスタND2の第4ソース/ドレインSD4の他方は、コンタクトC16、第1金属配線M11およびヴィアホールV7を介して、接地電位が与えられる接地配線VSSとしての第2金属配線M25に電気的に接続されている。第4ドライバトランジスタND4の第6ソース/ドレインSD6の他方は、コンタクトC17、第1金属配線M12およびヴィアホールV8を介して、接地電位が与えられる接地配線VSSとしての第2金属配線M25に電気的に接続されている。 The other of the fourth source / drain SD4 of the second driver transistor ND2 is electrically connected to the second metal wiring M25 as the ground wiring VSS to which the ground potential is applied through the contact C16, the first metal wiring M11, and the via hole V7. It is connected to the. The other of the sixth source / drain SD6 of the fourth driver transistor ND4 is electrically connected to the second metal wiring M25 as the ground wiring VSS to which the ground potential is applied through the contact C17, the first metal wiring M12, and the via hole V8. It is connected to the.
 第2ロードトランジスタPL2のソース/ドレインSDの他方は、コンタクトC19、第1金属配線M13およびヴィアホールV9を介して、電源配線VDDとしての第2金属配線M23に電気的に接続されている。 The other of the source / drain SD of the second load transistor PL2 is electrically connected to the second metal wiring M23 as the power supply wiring VDD through the contact C19, the first metal wiring M13, and the via hole V9.
 したがって、図4に示すように、SRAMメモリセルMC1においてコンタクトC1,C11には共通のワード線WLが接続される。コンタクトC6,C7,C16,C17には接地配線VSSが接続される。コンタクトC8,C19には電源配線VDDが接続される。コンタクトC2,C12にはそれぞれビット線BL、/BLが接続される。コンタクトC1,C5が記憶ノードSN1を構成し、コンタクトC11、C15が記憶ノードSN2を構成する。 Therefore, as shown in FIG. 4, the common word line WL is connected to the contacts C1 and C11 in the SRAM memory cell MC1. A ground wiring VSS is connected to the contacts C6, C7, C16, and C17. A power supply wiring VDD is connected to the contacts C8 and C19. Bit lines BL and / BL are connected to contacts C2 and C12, respectively. Contacts C1 and C5 constitute storage node SN1, and contacts C11 and C15 constitute storage node SN2.
 また、SRAMメモリセルMC1に隣接するSRAMメモリセルMC2において、コンタクトC21は、第1金属配線M14、ヴィアホールV11を介してビット線BLに電気的に接続されている。 In the SRAM memory cell MC2 adjacent to the SRAM memory cell MC1, the contact C21 is electrically connected to the bit line BL via the first metal wiring M14 and the via hole V11.
 次に、上述した半導体装置の製造方法について説明する。半導体装置には、SRAM回路の他にロジック回路なども含まれるが、ここでは、SRAMメモリセルのアクセストランジスタおよびドライバトランジスタを形成する方法を中心に説明する。なお、以降に参照する図13、図16、図18、図20、図22、図23~25では、各図(A)は図4に示すV-V線に対応する断面線に沿った断面構造を示し、各図(B)は図4に示すVI-VI線に対応する断面線に沿った断面構造を示している。 Next, a method for manufacturing the semiconductor device described above will be described. The semiconductor device includes a logic circuit in addition to the SRAM circuit. Here, a method for forming the access transistor and the driver transistor of the SRAM memory cell will be mainly described. In FIG. 13, FIG. 16, FIG. 18, FIG. 20, FIG. 22, and FIG. 23 to FIG. 25 referred to hereinafter, each figure (A) is a cross section taken along a cross-sectional line corresponding to the VV line shown in FIG. Each structure (B) shows a cross-sectional structure along a cross-sectional line corresponding to the VI-VI line shown in FIG.
 まず、図13(A)および(B)、図14を参照して、半導体基板SSの主表面に素子分離領域IRを形成することによって、互いに電気的に分離される素子形成領域FRN,FRPが規定される。素子形成領域FRN,FRPは、互いに隣接するSRAMメモリセルとなる領域を跨ぐように形成される。規定される次に、素子形成領域FRNにpウェルPWが形成される。 First, referring to FIGS. 13A, 13B, and 14, element formation regions FRN and FRP that are electrically isolated from each other by forming element isolation region IR on the main surface of semiconductor substrate SS are provided. It is prescribed. The element formation regions FRN and FRP are formed so as to straddle regions that become SRAM memory cells adjacent to each other. Next, a p-well PW is formed in the element formation region FRN.
 次に、半導体基板SSの表面上に、界面層SFを介在させて、所定の誘電率を有するHigh-k膜HK、所定の仕事関数を有する金属膜MLおよびポリシリコン膜PSを積層させる態様で、第1アクセスゲートAG1、ダミーゲートDUとなるゲート構造Gと、第1ドライバゲートDG1、第3ドライバゲートDG3となる各々のゲート構造Gが形成される。ゲート構造Gは、互いに隣り合うSRAMメモリセルとなる領域を跨ぐように形成される。次に、ゲート構造Gを覆うように半導体基板SS上に、たとえばシリコン窒化膜(図示せず)が形成される。次に、そのシリコン窒化膜に異方性エッチングを施すことにより、ゲート構造Gの両側面にオフセットスペーサOSが形成される。 Next, a high-k film HK having a predetermined dielectric constant, a metal film ML having a predetermined work function, and a polysilicon film PS are stacked on the surface of the semiconductor substrate SS with an interface layer SF interposed therebetween. A gate structure G to be the first access gate AG1 and the dummy gate DU and a gate structure G to be the first driver gate DG1 and the third driver gate DG3 are formed. The gate structure G is formed so as to straddle a region to be an SRAM memory cell adjacent to each other. Next, for example, a silicon nitride film (not shown) is formed on the semiconductor substrate SS so as to cover the gate structure G. Next, the silicon nitride film is anisotropically etched to form offset spacers OS on both side surfaces of the gate structure G.
 次に、図15を参照して、所定の写真製版処理を施すことにより、NMIS領域RNを露出し、PMIS領域RPを覆うレジストマスクRM1が形成される。レジストマスクRM1は、第1アクセスゲートAG1となるゲート構造Gと、第1ドライバゲートDG1となるゲート構造Gと、第3ドライバゲートDG3となるゲート構造Gとを1つの開口で露出し、第2アクセスゲートAG2となるゲート構造Gと、第2ドライバゲートDG2となるゲート構造Gと、第4ドライバゲートDG4となるゲート構造Gとを1つの開口で露出するパターンに形成される。すなわちレジストマスクRM1の個々の開口部は、隣接するSRAMメモリセルMC1とSRAMメモリセルMC2とを跨ぐように連続的に形成される。 Next, referring to FIG. 15, by performing a predetermined photoengraving process, a resist mask RM1 that exposes NMIS region RN and covers PMIS region RP is formed. The resist mask RM1 exposes the gate structure G to be the first access gate AG1, the gate structure G to be the first driver gate DG1, and the gate structure G to be the third driver gate DG3 through one opening, and the second The gate structure G to be the access gate AG2, the gate structure G to be the second driver gate DG2, and the gate structure G to be the fourth driver gate DG4 are formed in a pattern exposed through one opening. That is, each opening of the resist mask RM1 is continuously formed so as to straddle the adjacent SRAM memory cell MC1 and SRAM memory cell MC2.
 次に、図16(A)および(B)を参照して、レジストマスクRM1を注入マスクとして、たとえば、リンまたは砒素を、半導体基板SSの主表面に垂直な方向から半導体基板SS内に注入することにより、露出したpウェルPWの表面から所定の深さにわたりエクステンション領域ERが形成される(エクステンション注入)。その後、レジストマスクRM1が除去される。 Next, referring to FIGS. 16A and 16B, using resist mask RM1 as an implantation mask, for example, phosphorus or arsenic is implanted into semiconductor substrate SS from a direction perpendicular to the main surface of semiconductor substrate SS. Thus, an extension region ER is formed from the exposed surface of the p-well PW to a predetermined depth (extension implantation). Thereafter, the resist mask RM1 is removed.
 次に、図17を参照して、NMIS領域RNを覆い、PMIS領域RPを露出するレジストマスクRM2が形成される。次に、レジストマスクRM2を注入マスクとして、たとえばボロンを、半導体基板SSの主表面に垂直な方向から半導体基板SS内に注入することにより、エクステンション領域(図示せず)が形成される。その後、レジストマスクRM2が除去される。 Next, referring to FIG. 17, a resist mask RM2 that covers NMIS region RN and exposes PMIS region RP is formed. Next, using the resist mask RM2 as an implantation mask, for example, boron is implanted into the semiconductor substrate SS from a direction perpendicular to the main surface of the semiconductor substrate SS, thereby forming an extension region (not shown). Thereafter, the resist mask RM2 is removed.
 次に、ゲート構造G(第1アクセスゲートAG1、ダミーゲートDU、第1ドライバゲートDG1、第3ドライバゲートDG3など)を覆うように、たとえばシリコン酸化膜とシリコン窒化膜(図示せず)が順次形成される。次に、図18(A)および(B)を参照して、そのシリコン酸化膜とシリコン窒化膜とに異方性エッチングを施すことにより、ゲート構造Gの両側面上に、シリコン酸化膜SOとシリコン窒化膜SNIとからなるサイドウォールスペーサSWが形成される。 Next, for example, a silicon oxide film and a silicon nitride film (not shown) are sequentially formed so as to cover the gate structure G (first access gate AG1, dummy gate DU, first driver gate DG1, third driver gate DG3, etc.). It is formed. Next, referring to FIGS. 18A and 18B, anisotropic etching is performed on the silicon oxide film and the silicon nitride film to form the silicon oxide film SO on both side surfaces of the gate structure G. Sidewall spacers SW made of the silicon nitride film SNI are formed.
 次に、図19を参照して、NMIS領域RNを露出し、PMIS領域RPを覆うレジストマスクRM3が形成される。次に、図20(A)および(B)を参照して、レジストマスクRM3(図19)およびサイドウォールスペーサSWなどを注入マスクとして、たとえばリンまたは砒素を、半導体基板SSの主表面に垂直な方向から半導体基板SS内に注入することにより、露出したpウェルPWの表面から所定の深さにわたり第1ソース/ドレインSD1、第3ソース/ドレインSD3、第5ソース/ドレインSD5が形成される。その後、レジストマスクRM3が除去される。 Next, referring to FIG. 19, a resist mask RM3 that exposes NMIS region RN and covers PMIS region RP is formed. Next, referring to FIGS. 20A and 20B, for example, phosphorus or arsenic is perpendicular to the main surface of semiconductor substrate SS using resist mask RM3 (FIG. 19) and sidewall spacer SW as an implantation mask. By injecting into the semiconductor substrate SS from the direction, the first source / drain SD1, the third source / drain SD3, and the fifth source / drain SD5 are formed from the exposed surface of the p-well PW to a predetermined depth. Thereafter, the resist mask RM3 is removed.
 次に、図21を参照して、NMIS領域RNを覆い、PMIS領域RPを露出するレジストマスクRM4が形成される。次に、レジストマスクRM4およびサイドウォールスペーサSWなどを注入マスクとして、たとえばボロンを、半導体基板SSの主表面に垂直な方向から半導体基板SS内に注入することにより、露出した素子形成領域FRPの表面から所定の深さにわたりソース/ドレイン(図示せず)が形成される。その後、レジストマスクRM4が除去される。 Next, referring to FIG. 21, a resist mask RM4 that covers NMIS region RN and exposes PMIS region RP is formed. Next, using the resist mask RM4 and the sidewall spacer SW as an implantation mask, for example, boron is implanted into the semiconductor substrate SS from a direction perpendicular to the main surface of the semiconductor substrate SS, thereby exposing the surface of the exposed element formation region FRP. A source / drain (not shown) is formed from a predetermined depth to a predetermined depth. Thereafter, the resist mask RM4 is removed.
 次に、図22(A)および(B)を参照して、所定のアニール処理を施すことにより、注入された不純物を熱拡散させることによって、第1ソース/ドレインSD1、第3ソース/ドレインSD3、第5ソース/ドレインSD5およびエクステンション領域ERが活性化される。このとき、不純物が熱拡散することで、第1ソース/ドレインSD1、第3ソース/ドレインSD3、第5ソース/ドレインSD5およびエクステンション領域ERは、横方向と縦(深さ)方向に広がることになる。 Next, referring to FIGS. 22A and 22B, a predetermined annealing process is performed to thermally diffuse the implanted impurities, thereby providing a first source / drain SD1 and a third source / drain SD3. The fifth source / drain SD5 and the extension region ER are activated. At this time, the first source / drain SD1, the third source / drain SD3, the fifth source / drain SD5, and the extension region ER expand in the horizontal direction and the vertical (depth) direction due to the thermal diffusion of the impurities. Become.
 次に、図23(A)および(B)を参照して、サリサイドプロセスにより、露出している第1ソース/ドレインSD1、第3ソース/ドレインSD3、第5ソース/ドレインSD5、第1アクセスゲートAG1、ダミーゲートDU、第1ドライバゲートDG1、第3ドライバゲートDG3のポリシリコン膜PSの表面に、たとえばニッケルシリサイドなどの金属シリサイド膜SCLが形成される。次に、図24(A)および(B)を参照して、第1アクセスゲートAG1、ダミーゲートDU、第1ドライバゲートDG1および第3ドライバゲートDG3を覆うように、たとえば、シリコン窒化膜などのストレスライナー膜SLが形成される。そのストレスライナー膜SLを覆うように、シリコン酸化膜(たとえばTEOS膜)などの層間絶縁膜IL1が形成される。 Next, referring to FIGS. 23A and 23B, the exposed first source / drain SD1, third source / drain SD3, fifth source / drain SD5, first access gate are exposed by the salicide process. A metal silicide film SCL such as nickel silicide is formed on the surface of the polysilicon film PS of the AG1, dummy gate DU, first driver gate DG1, and third driver gate DG3. Next, referring to FIGS. 24A and 24B, for example, a silicon nitride film or the like is formed so as to cover first access gate AG1, dummy gate DU, first driver gate DG1 and third driver gate DG3. A stress liner film SL is formed. An interlayer insulating film IL1 such as a silicon oxide film (for example, a TEOS film) is formed so as to cover the stress liner film SL.
 次に、図25(A)および(B)を参照して、層間絶縁膜IL1に異方性エッチングを施すことにより、金属シリサイド膜SCLを露出するコンタクトホールCHが形成される。次に、コンタクトホールCHの内壁を覆うように、チタンナイトライド(TiN)などのバリア金属膜BA1が形成され、さらに、そのバリア金属膜BA1の上にコンタクトホールCH内を充填するようにタングステン膜TL1が形成される。次に、化学的機械研磨処理(CMP:Chemical Mechanical Polishing)を施すことにより、層間絶縁膜IL1の上面上に位置するバリア金属膜およびタングステン膜の部分が除去されて、図25(A)および(B)に示すように、コンタクトホールCH内に、バリア金属膜BA1とタングステン膜TL1を含むプラグPG1が形成される。 Next, referring to FIGS. 25A and 25B, by performing anisotropic etching on interlayer insulating film IL1, contact hole CH exposing metal silicide film SCL is formed. Next, a barrier metal film BA1 such as titanium nitride (TiN) is formed so as to cover the inner wall of the contact hole CH, and further, the tungsten film is filled on the barrier metal film BA1. TL1 is formed. Next, by performing a chemical mechanical polishing process (CMP: Chemical Mechanical Polishing), the barrier metal film and the tungsten film located on the upper surface of the interlayer insulating film IL1 are removed, and FIGS. As shown in B), a plug PG1 including a barrier metal film BA1 and a tungsten film TL1 is formed in the contact hole CH.
 次に、図5および図6に示すように、プラグPG1を覆うように、シリコン窒化膜などのエッチングストッパ膜ES1が形成される。そのエッチングストッパ膜ES1上に、シリコン酸化膜などの層間絶縁膜IL2が形成される。次に、プラグPG1の表面を露出する溝が形成される。次に、溝の内壁を覆うように、たとえばタンタルナイトライド(TaN)などのバリア金属膜BA2が形成され、さらに、そのバリア金属膜BA2の上に溝内を充填するように銅膜CL1が形成される。次に、化学的機械研磨処理を施すことにより、層間絶縁膜IL2の上面上に位置するバリア金属膜および銅膜の部分が除去されて、溝内に、バリア金属膜BA2と銅膜CL1を含む銅配線CW1が形成される。銅配線CW1は第1金属配線に対応する。 Next, as shown in FIGS. 5 and 6, an etching stopper film ES1 such as a silicon nitride film is formed so as to cover the plug PG1. An interlayer insulating film IL2 such as a silicon oxide film is formed on the etching stopper film ES1. Next, a groove exposing the surface of the plug PG1 is formed. Next, a barrier metal film BA2 such as tantalum nitride (TaN) is formed so as to cover the inner wall of the groove, and further, a copper film CL1 is formed on the barrier metal film BA2 so as to fill the groove. Is done. Next, a portion of the barrier metal film and the copper film located on the upper surface of the interlayer insulating film IL2 is removed by performing chemical mechanical polishing, and the barrier metal film BA2 and the copper film CL1 are included in the trench. Copper wiring CW1 is formed. Copper wiring CW1 corresponds to the first metal wiring.
 この後、銅配線CW1を覆うように層間絶縁膜IL2上にシリコン酸化膜などの層間絶縁膜IL3が形成される。その層間絶縁膜IL3に、プラグPG1を形成する方法と同様の方法によりヴィアホールV1、V3、V4、V11が形成される。次に、ヴィアホールV1、V3、V4、V11を覆うように層間絶縁膜(図示せず)が形成される。その層間絶縁膜に、銅配線CW1を形成する方法と同様の方法により、銅配線CW2が形成される。銅配線CW2は第2金属配線M21,M22に対応する。 Thereafter, an interlayer insulating film IL3 such as a silicon oxide film is formed on the interlayer insulating film IL2 so as to cover the copper wiring CW1. Via holes V1, V3, V4, and V11 are formed in the interlayer insulating film IL3 by a method similar to the method of forming the plug PG1. Next, an interlayer insulating film (not shown) is formed so as to cover the via holes V1, V3, V4, and V11. A copper wiring CW2 is formed in the interlayer insulating film by a method similar to the method of forming the copper wiring CW1. The copper wiring CW2 corresponds to the second metal wirings M21 and M22.
 次に、銅配線CW2を覆うように層間絶縁膜IL4が形成される。その層間絶縁膜IL4に、プラグPG1を形成する方法と同様の方法によりヴィアホール(図示せず)が形成される。次に、このヴィアホール(図示せず)を覆うようにシリコン窒化膜などのエッチングストッパ膜ES2が形成される。そのエッチングストッパ膜ES2上に、シリコン酸化膜などの層間絶縁膜IL5が形成される。その層間絶縁膜IL5に、銅配線CW1を形成する方法と同様の方法により、銅配線CW3が形成される。銅配線CW3は第3金属配線M31に対応する。こうしてSRAMメモリセルの主要部分が形成される。 Next, an interlayer insulating film IL4 is formed so as to cover the copper wiring CW2. A via hole (not shown) is formed in the interlayer insulating film IL4 by a method similar to the method of forming the plug PG1. Next, an etching stopper film ES2 such as a silicon nitride film is formed so as to cover this via hole (not shown). An interlayer insulating film IL5 such as a silicon oxide film is formed on the etching stopper film ES2. A copper wiring CW3 is formed in the interlayer insulating film IL5 by the same method as the method of forming the copper wiring CW1. Copper wiring CW3 corresponds to third metal wiring M31. Thus, the main part of the SRAM memory cell is formed.
 次に、SRAMメモリセルの動作について説明する。図3を参照して、SRAMメモリセルMC1を例として説明する。第1ビット線BL、第2ビット線/BLはともにHレベルにプリチャージされる。読み出し動作の際には、Hレベルの第1ビット線BLおよび第2ビット線/BLから第1記憶ノードSN1および第2記憶ノードSN2にそれぞれ電流が流れる。 Next, the operation of the SRAM memory cell will be described. With reference to FIG. 3, the SRAM memory cell MC1 will be described as an example. Both the first bit line BL and the second bit line / BL are precharged to H level. In the read operation, current flows from the first bit line BL and the second bit line / BL at the H level to the first storage node SN1 and the second storage node SN2, respectively.
 たとえば、仮に標準電源電圧を1Vとすると、保持データが0の場合は、SRAMメモリセルの第1記憶ノードSN1が0Vであり、第2記憶ノードSN2は1Vである。ワード線WLがLレベル(0V)からHレベル(1V)となって読み出し動作が始まると、第1アクセストランジスタNA1はON状態であり、第1ドライバトランジスタND1および第3ドライバトランジスタND3もON状態であるため、あらかじめHレベル(1V)にプリチャージされた第1ビット線BLから第1記憶ノードSN1に電流が流れる。これにより第1ビット線BLの電位が1Vからわずかに下がる。 For example, assuming that the standard power supply voltage is 1V, when the retained data is 0, the first storage node SN1 of the SRAM memory cell is 0V and the second storage node SN2 is 1V. When the word line WL changes from the L level (0V) to the H level (1V) and the read operation starts, the first access transistor NA1 is in the ON state, and the first driver transistor ND1 and the third driver transistor ND3 are also in the ON state. Therefore, a current flows from the first bit line BL precharged to the H level (1V) in advance to the first storage node SN1. As a result, the potential of the first bit line BL is slightly lowered from 1V.
 一方、第2ビット線/BLでは、第2アクセストランジスタNA2はON状態であるが、第2ドライバトランジスタND2および第4ドライバトランジスタND4はOFF状態であるため、第2ビット線/BLから第2記憶ノードSN2には電流が流れない。したがって、第2記憶ノードSN2はプリチャージされたHレベル(1V)を保持する。 On the other hand, in the second bit line / BL, the second access transistor NA2 is in the ON state, but the second driver transistor ND2 and the fourth driver transistor ND4 are in the OFF state. No current flows through the node SN2. Therefore, the second storage node SN2 holds the precharged H level (1V).
 この結果、第1ビット線BLと第2ビット線/BLに電位差が生じる。このわずかな電位差を第1ビット線BLおよび第2ビット線/BL(相補ビット線)に接続された図示しないセンスアンプで増幅して出力する。これにより、所望のSRAMメモリセルMC1の保持データが読み出される。上記では保持データとして0(0データ)を読み出す場合について説明したが、1データを読み出す場合には第1記憶ノードSN1と第2記憶ノードSN2の電位が上記と逆になり、第1ビット線BLから第1記憶ノードSN1に流れる電流と第2ビット線/BLから第2記憶ノードSN2に流れる電流も逆になる。 As a result, a potential difference is generated between the first bit line BL and the second bit line / BL. This slight potential difference is amplified and output by a sense amplifier (not shown) connected to the first bit line BL and the second bit line / BL (complementary bit line). As a result, the data held in the desired SRAM memory cell MC1 is read. The case where 0 (0 data) is read as retained data has been described above. However, when 1 data is read, the potentials of the first storage node SN1 and the second storage node SN2 are opposite to those described above, and the first bit line BL The current flowing from the first storage node SN1 to the first storage node SN1 and the current flowing from the second bit line / BL to the second storage node SN2 are also reversed.
 読み出し動作の際、第1アクセストランジスタNA1に流れる電流の向きは第1ビット線BLから第1記憶ノードSN1に向かう方向となる。第2アクセストランジスタNA2に流れる電流の向きは第2ビット線/BLから第2記憶ノードSN2に向かう方向となる。 During the read operation, the direction of the current flowing through the first access transistor NA1 is the direction from the first bit line BL toward the first storage node SN1. The direction of the current flowing through the second access transistor NA2 is the direction from the second bit line / BL toward the second storage node SN2.
 図4を参照して、第1アクセストランジスタNA1に流れる電流の向きは、第1ビット線BLに電気的に接続された第1ソース/ドレインSD1の他方から第1記憶ノードSN1に電気的に接続された第1ソース/ドレインSD1の一方に向かう方向となる。第2アクセストランジスタNA2に流れる電流の向きは、第2ビット線/BLに電気的に接続された第2ソース/ドレインSD2の他方から第2記憶ノードSN2に電気的に接続された第2ソース/ドレインSD2の一方に向かう方向となる。 Referring to FIG. 4, the direction of current flowing through first access transistor NA1 is electrically connected to first storage node SN1 from the other one of first source / drain SD1 electrically connected to first bit line BL. The direction is toward one of the first source / drain SD1. The direction of the current flowing through the second access transistor NA2 is such that the second source / drain SD2 electrically connected to the second storage node SN2 from the other of the second source / drain SD2 electrically connected to the second bit line / BL. The direction is toward one of the drains SD2.
 第1アクセストランジスタNA1および第2アクセストランジスタNA2の電流の向きは同じ方向であり、第1アクセストランジスタNA1および第2アクセストランジスタNA2の電流の向きが揃っているため、セル特性の対称性を向上することができる。このため、動作マージンを拡大することができる。 Since the current directions of the first access transistor NA1 and the second access transistor NA2 are the same and the current directions of the first access transistor NA1 and the second access transistor NA2 are aligned, the symmetry of the cell characteristics is improved. be able to. For this reason, an operation margin can be expanded.
 図26を参照して、図8に示すレイアウトを有するSRAMメモリセルMC1を“Fodd”とし、図12に示すレイアウトを有するSRAMメモリセルMC2を“Feven”とした場合、SRAMセルアレイMAにおいて、図中縦方向にはFodd、FevenのSRAMメモリセルMC1,MC2が交互に配置されている。また、図中横方向には、奇数列では同一のFoddが複数個配置されており、偶数列では同一のFevenが複数個配置されている。このようにして、M行N列(Mは行の数およびNは列の数を示す)のSRAMメモリセルMC1,MC2がSRAMセルアレイMA内に配置されている。SRAMメモリセルMC1,MC2において、1対のアクセストランジスタ(第1アクセストランジスタNA1,第2アクセストランジスタNA2)のストレージノード(第1記憶ノードSN1,第2記憶ノードSN2)の不純物領域からビット線(第1ビット線BL,第2ビット線/BL)の不純物領域への方向は同じ方向である。 Referring to FIG. 26, when SRAM memory cell MC1 having the layout shown in FIG. 8 is “Fodd” and SRAM memory cell MC2 having the layout shown in FIG. In the vertical direction, Fodd and Feven SRAM memory cells MC1 and MC2 are alternately arranged. Further, in the horizontal direction in the figure, a plurality of identical Fodds are arranged in odd columns, and a plurality of identical Fevens are arranged in even columns. In this way, SRAM memory cells MC1 and MC2 of M rows and N columns (M indicates the number of rows and N indicates the number of columns) are arranged in the SRAM cell array MA. In the SRAM memory cells MC1 and MC2, the bit line (first storage node SN1, first storage node SN2) from the impurity region of the storage node (first storage transistor NA1, second access transistor NA2) of the pair of access transistors (first access transistor NA1, second access transistor NA2). The direction of the 1 bit line BL and the second bit line / BL) toward the impurity region is the same direction.
 図27を参照して、互いに隣接するSRAMメモリセルMC1,MC2では各々の第1アクセストランジスタNA1と第2アクセストランジスタNA2の電流の向きは同じである。このため、セルレイアウトに起因するミスマッチ特性を低減することができる。 Referring to FIG. 27, the SRAM memory cells MC1 and MC2 adjacent to each other have the same current direction in each of the first access transistor NA1 and the second access transistor NA2. For this reason, the mismatch characteristic resulting from a cell layout can be reduced.
 また、図28を参照して、SRAMメモリセルの製造方法において、ゲートがエッチングされた結果、平面レイアウトにおいてゲートが屈曲しているとゲートが屈曲に沿ってラウンド状に形成されることがある。この場合、ゲートが拡散層上でラウンドすることにより、トランジスタのしきい値電圧などのばらつきが発生するおそれがある。このため、本実施の形態の変形例に示すように、ゲートを屈曲させずにローカルインタコネクタLICによってゲート間が電気的に接続されていてもよい。以下、その変形例について説明する。 Referring to FIG. 28, in the method of manufacturing an SRAM memory cell, as a result of the gate being etched, if the gate is bent in the planar layout, the gate may be formed in a round shape along the bend. In this case, the gate rounds on the diffusion layer, which may cause variations in the threshold voltage of the transistor. For this reason, as shown in the modification of the present embodiment, the gates may be electrically connected by the local interconnector LIC without bending the gates. Hereinafter, the modification is demonstrated.
 図29は、各トランジスタと第1金属配線との接続構造を示す概略平面図である。図29を参照して、本実施の形態の変形例では、第1ドライバトランジスタND1の第1ドライバゲートDG1を構成するゲート構造Gと第3ドライバトランジスタND3の第3ドライバゲートDG3を構成するゲート構造GとがローカルインタコネクタLICで電気的に接続されている。つまり、第1ドライバゲートDG1と第3ドライバゲートDG3とが延在する方向において、第1ドライバゲートDG1を構成するゲート構造Gと第3ドライバゲートを構成するゲート構造Gとが素子形成領域FRN,FRPの間でローカルインタコネクタLICで電気的に接続されている。 FIG. 29 is a schematic plan view showing a connection structure between each transistor and the first metal wiring. Referring to FIG. 29, in the modification of the present embodiment, the gate structure G constituting the first driver gate DG1 of the first driver transistor ND1 and the gate structure constituting the third driver gate DG3 of the third driver transistor ND3. G is electrically connected to the local interconnector LIC. In other words, in the direction in which the first driver gate DG1 and the third driver gate DG3 extend, the gate structure G that constitutes the first driver gate DG1 and the gate structure G that constitutes the third driver gate are element formation regions FRN, The FRP is electrically connected by a local interconnector LIC.
 また第2ドライバトランジスタND2の第2ドライバゲートDG2を構成するゲート構造Gと第4ドライバトランジスタND4の第4ドライバゲートDG4を構成するゲート構造GとがローカルインタコネクタLICで電気的に接続されている。つまり、第2ドライバゲートDG2と第4ドライバゲートDG4とが延在する方向において、第2ドライバゲートDG2を構成するゲート構造Gと第4ドライバゲートDG4を構成するゲート構造Gとが素子形成領域FRN,FRPの間でローカルインタコネクタLICで電気的に接続されている。 Further, the gate structure G constituting the second driver gate DG2 of the second driver transistor ND2 and the gate structure G constituting the fourth driver gate DG4 of the fourth driver transistor ND4 are electrically connected by the local interconnector LIC. . That is, in the direction in which the second driver gate DG2 and the fourth driver gate DG4 extend, the gate structure G that constitutes the second driver gate DG2 and the gate structure G that constitutes the fourth driver gate DG4 form the element formation region FRN. , FRP are electrically connected by a local interconnector LIC.
 図30および図31を参照して、ローカルインタコネクタLICは素子分離領域IR上に形成されている。第1ドライバゲートDG1を構成するゲート構造Gと第3ドライバトランジスタND3の第3ドライバゲートDG3を構成するゲート構造Gの間に各々の金属シリサイド膜SCLを覆うようにローカルインタコネクタLICが形成されている。ローカルインタコネクタLICを覆うように層間絶縁膜IL1が形成されている。 Referring to FIGS. 30 and 31, the local interconnector LIC is formed on the element isolation region IR. A local interconnector LIC is formed so as to cover each metal silicide film SCL between the gate structure G constituting the first driver gate DG1 and the gate structure G constituting the third driver gate DG3 of the third driver transistor ND3. Yes. Interlayer insulating film IL1 is formed to cover local interconnector LIC.
 ローカルインタコネクタLICは次のように製造することができる。まずゲート構造Gを覆うように層間絶縁膜IL1がローカルインタコネクタLICの高さまで形成される。続いてローカルインタコネクタLICを形成するための溝がエッチングされる。さらにその溝を充填するようにたとえばタングステン膜が形成される。次に化学的機械研磨処理を施すことにより層間絶縁膜IL1の上面上に位置するタングステン膜の部分が除去される。これによりローカルインタコネクタLICが形成される。この後、層間絶縁膜IL1を形成することにより上記の本実施の形態の半導体装置SCDの製造方法が適用される。 The local interconnector LIC can be manufactured as follows. First, the interlayer insulating film IL1 is formed up to the height of the local interconnector LIC so as to cover the gate structure G. Subsequently, the grooves for forming the local interconnector LIC are etched. Further, for example, a tungsten film is formed so as to fill the groove. Next, a chemical mechanical polishing process is performed to remove a portion of the tungsten film located on the upper surface of the interlayer insulating film IL1. Thereby, a local interconnector LIC is formed. Thereafter, the method for manufacturing the semiconductor device SCD of the present embodiment is applied by forming the interlayer insulating film IL1.
 この変形例では、ローカルインタコネクタLICによってゲート構造G間を電気的に接続するため、ゲートを屈曲させずに直線状に形成することができる。そのため、ゲートが拡散層上でラウンドすることを抑制することができる。このため、ゲートのラウンドによるトランジスタのしきい値電圧などのばらつきの発生を抑制することができる。また、ゲートが直線状に形成されるためリソグラフィが容易になることからゲートを容易に形成することができる。そのため微細加工の精度を向上することができる。 In this modification, since the gate structures G are electrically connected by the local interconnector LIC, the gates can be formed linearly without being bent. Therefore, it is possible to suppress the gate from rounding on the diffusion layer. For this reason, the occurrence of variations in the threshold voltage of the transistor due to the round of the gate can be suppressed. In addition, since the gate is formed in a straight line, lithography becomes easy, so that the gate can be easily formed. Therefore, the precision of microfabrication can be improved.
 次に本実施の形態の半導体装置の作用効果について比較例と対比して説明する。
 まず図32および図33を参照して比較例について説明する。図32を参照して、点線で囲まれる領域のそれぞれが一つのSRAMメモリセルを構成する。各SRAMメモリセルのトランジスタおよびコンタクトは、その隣接するSRAMメモリセルと線対称(鏡面対象)に配置されている。図32および図33を参照して、代表的にSRAMメモリセルMC1は、アクセストランジスタT1,T2と、ドライバトランジスタT3,T4と、ロードトランジスタT5,T6とを有している。
Next, the effect of the semiconductor device of this embodiment will be described in comparison with a comparative example.
First, a comparative example will be described with reference to FIGS. 32 and 33. Referring to FIG. 32, each region surrounded by a dotted line forms one SRAM memory cell. The transistors and contacts of each SRAM memory cell are arranged in line symmetry (mirror target) with the adjacent SRAM memory cell. Referring to FIGS. 32 and 33, SRAM memory cell MC1 typically includes access transistors T1, T2, driver transistors T3, T4, and load transistors T5, T6.
 アクセストランジスタT1,T2のアクセスゲートAG1,AG2と、ドライバトランジスタT3,T4のドライバゲートDG1,DG2と、ロードトランジスタT5,T6のロードゲートLG1,LG2とは、いずれも同一方向に延在するように形成されている。 Access gates AG1 and AG2 of access transistors T1 and T2, driver gates DG1 and DG2 of driver transistors T3 and T4, and load gates LG1 and LG2 of load transistors T5 and T6 all extend in the same direction. Is formed.
 アクセストランジスタT1では第1ビット線BLに電気的に接続されたソース/ドレインの一方から第1記憶ノードSN1に電気的に接続されたソース/ドレインの他方に向かって矢印A方向に電流が流れる。またアクセストランジスタT2では第2ビット線/BLに電気的に接続されたソース/ドレインの一方から第2記憶ノードSN2に電気的に接続されたソース/ドレインの他方に向かって矢印A方向に電流が流れる。アクセストランジスタT1,T2に流れる電流の向きは逆方向になる。そのため、セルレイアウト起因のミスマッチ特性が大きくなるため、セル特性のばらつきが大きくなるというおそれがある。 In the access transistor T1, a current flows in the direction of arrow A from one of the source / drain electrically connected to the first bit line BL toward the other of the source / drain electrically connected to the first storage node SN1. In access transistor T2, a current flows in the direction of arrow A from one of the source / drain electrically connected to second bit line / BL to the other of the source / drain electrically connected to second storage node SN2. Flowing. The direction of the current flowing through the access transistors T1 and T2 is opposite. For this reason, the mismatch characteristics due to the cell layout become large, and there is a risk that the variation in cell characteristics becomes large.
 SRAMメモリセルMC1に隣接するSRAMメモリセルMC2でもSRAMメモリセルMC1と同様にアクセストランジスタT1,T2に流れる電流の向きは逆方向になる。さらに、図32および図34を参照して、SRAMメモリセルMC1とSRAMメモリセルMC2とでは、隣接する方向に配置された互いのアクセストランジスタT1,T2の電流の向きが逆方向になる。そのため、隣接するセル間のセルレイアウト起因のミスマッチも大きくなるため、セル特性のばらつきが大きくなるというおそれがある。 In the SRAM memory cell MC2 adjacent to the SRAM memory cell MC1, the direction of the current flowing through the access transistors T1 and T2 is reversed as in the SRAM memory cell MC1. Further, referring to FIGS. 32 and 34, in SRAM memory cell MC1 and SRAM memory cell MC2, the directions of currents of access transistors T1 and T2 arranged in adjacent directions are opposite to each other. For this reason, mismatch due to the cell layout between adjacent cells also increases, and there is a risk that variations in cell characteristics will increase.
 図4に示すように、本実施の形態の半導体装置SCDによれば、平面レイアウトにおいて、1対の第1ソース/ドレインSD1の一方から他方に向かう第1の方向D1と、1対の第2ソース/ドレインSD2の一方から他方に向かう第2の方向D2とが同じである。そして、SRAMメモリセルMC1およびSRAMメモリセルMC2のそれぞれの第1の方向D1同士が互いに同じ方向であり、第2の方向D2同士が互いに同じ方向である。 As shown in FIG. 4, according to the semiconductor device SCD of the present embodiment, in the planar layout, the first direction D1 from one of the pair of first source / drain SD1 to the other and the pair of second sources. The second direction D2 from the one side of the source / drain SD2 to the other side is the same. The first directions D1 of the SRAM memory cell MC1 and the SRAM memory cell MC2 are the same direction, and the second directions D2 are the same direction.
 そのため、第1アクセストランジスタNA1および第2アクセストランジスタNA2の電流の向きを同じ方向にすることができる。このため、セルレイアウト起因のミスマッチ特性を低減することができ、セル特性のばらつきを低減させることができる。したがって、動作マージンを拡大することができる。 Therefore, the current directions of the first access transistor NA1 and the second access transistor NA2 can be made the same direction. For this reason, mismatch characteristics due to cell layout can be reduced, and variations in cell characteristics can be reduced. Therefore, the operation margin can be expanded.
 また、SRAMメモリセルMC1およびSRAMメモリセルMC2のそれぞれの第1アクセストランジスタNA1および第2アクセストランジスタNA2の電流の向きを同じ方向にすることができる。そのため、隣接するセル間のセルレイアウト起因のミスマッチも低減することができる。このため、複数セルのセル特性のばらつきを低減させることができる。したがって、動作マージンをさらに拡大することができる。
 また、平面レイアウトにおいて、第1アクセスゲートAG1および第2アクセスゲートAG2、第1ドライバゲートDG1、第2ドライバゲートDG2、第1ロードゲートLG1および第2ロードゲートLG2の各々は同一方向に延在するように形成されている。そのため、ソース/ドレインを形成する際に、不純物注入を2ステップ化(2方向)することができる。つまり、ゲートに対してソースおよびドレインが配置された2方向からソース/ドレインを形成するための不純物を注入することができる。これにより、不純物ゆらぎ起因のローカルばらつきを低減することができる。
Further, the current directions of the first access transistor NA1 and the second access transistor NA2 of the SRAM memory cell MC1 and the SRAM memory cell MC2 can be made the same direction. Therefore, mismatch due to cell layout between adjacent cells can also be reduced. For this reason, the dispersion | variation in the cell characteristic of several cells can be reduced. Therefore, the operation margin can be further expanded.
In the planar layout, each of the first access gate AG1 and the second access gate AG2, the first driver gate DG1, the second driver gate DG2, the first load gate LG1, and the second load gate LG2 extends in the same direction. It is formed as follows. Therefore, impurity implantation can be performed in two steps (two directions) when forming the source / drain. That is, impurities for forming the source / drain can be implanted from two directions in which the source and drain are arranged with respect to the gate. Thereby, local variations due to impurity fluctuations can be reduced.
 また、ゲートが同一方向に形成されているため、マスクずれに起因してソース/ドレインが十分に形成されないことを低減することができる。そのため、マスクずれに起因するローカルばらつきを低減することができる。また、ゲートが同一方向に形成されているため、微細加工を容易にすることができる。そのため、微細加工に起因するグローバルばらつきを低減することができる。 In addition, since the gates are formed in the same direction, it is possible to reduce that the source / drain is not sufficiently formed due to mask displacement. Therefore, local variations due to mask displacement can be reduced. Further, since the gates are formed in the same direction, fine processing can be facilitated. Therefore, global variation resulting from microfabrication can be reduced.
 本実施の形態の半導体装置SCDによれば、SRAMメモリセルMC1とSRAMメモリセルMC2とにおいて、第1ドライバトランジスタND1、第2ドライバトランジスタND2、第1ロードトランジスタPL1、第2ロードトランジスタPL2のそれぞれは、平面レイアウトにおいて線対称(鏡面対称)に配置されている。 According to the semiconductor device SCD of the present embodiment, each of the first driver transistor ND1, the second driver transistor ND2, the first load transistor PL1, and the second load transistor PL2 in the SRAM memory cell MC1 and the SRAM memory cell MC2. In the planar layout, they are arranged in line symmetry (mirror symmetry).
 そのため、SRAMメモリセルMC1とSRAMメモリセルMC2とにおいて、第1ドライバトランジスタND1と第2ドライバトランジスタND2とを覆う直線状のレジストマスクを用いてソース/ドレインを形成するために不純物注入することができる。また第1ロードトランジスタPL1と第2ロードトランジスタPL2とを覆う直線状のレジストマスクを用いてソース/ドレインを形成するために不純注入することができる。 Therefore, in the SRAM memory cell MC1 and the SRAM memory cell MC2, impurities can be implanted in order to form a source / drain using a linear resist mask covering the first driver transistor ND1 and the second driver transistor ND2. . Impurity implantation can be performed to form the source / drain using a linear resist mask covering the first load transistor PL1 and the second load transistor PL2.
 このため、不純物ゆらぎ起因のローカルばらつきを低減することができる。また、SRAMメモリセルMC1とSRAMメモリセルMC2とで第1ロードトランジスタPL1と第2ロードトランジスタPL2との一部を共有することができる。そのため、SRAMセルアレイMAを小さくすることができる。したがって、SRAM部SRを小さくすることができる。 Therefore, local variations due to impurity fluctuations can be reduced. In addition, the SRAM memory cell MC1 and the SRAM memory cell MC2 can share a part of the first load transistor PL1 and the second load transistor PL2. Therefore, the SRAM cell array MA can be reduced. Therefore, the SRAM portion SR can be reduced.
 本実施の形態の半導体装置SCDによれば、平面レイアウトにおいて、第1ドライバゲートDG1および第2ドライバゲートDG2と、第3ドライバゲートDG3および第4ドライバゲートDG4との各々は同一方向に延在するように形成されている。 According to the semiconductor device SCD of the present embodiment, in the planar layout, the first driver gate DG1 and the second driver gate DG2, and the third driver gate DG3 and the fourth driver gate DG4 extend in the same direction. It is formed as follows.
 第1アクセスゲートAG1、第2アクセスゲートAG2、第1ドライバゲートDG1、第2ドライバゲートDG2、第3ドライバゲートDG3、第4ドライバゲートDG4の各々の延在する方向を同一方向にするため、第1アクセストランジスタNA1および第2アクセストランジスタNA2が第1ドライバトランジスタND1および第2ドライバトランジスタND2の外側に配置されている。このため、第1ビット線BLおよび第2ビット線/BLが延在する方向に第3ドライバトランジスタND3および第4ドライバトランジスタND4を設けることができる。これによりドライバトランジスタの電流を増大することができる。 In order to make the extending directions of the first access gate AG1, the second access gate AG2, the first driver gate DG1, the second driver gate DG2, the third driver gate DG3, and the fourth driver gate DG4 the same direction, The 1 access transistor NA1 and the second access transistor NA2 are arranged outside the first driver transistor ND1 and the second driver transistor ND2. Therefore, the third driver transistor ND3 and the fourth driver transistor ND4 can be provided in the direction in which the first bit line BL and the second bit line / BL extend. Thereby, the current of the driver transistor can be increased.
 また、一般的に、SRAMメモリセルの読み出しマージンを確保するためにはβ比を高くすることが望ましい。β比はアクセストランジスタに対するドライバトランジスタの電流比(ただし、アクセストランジスタとドライバトランジスタとの間でソース対ゲート電圧およびソース対ドレイン電圧はともに同一)で表される。β比が大きくなれば、SNM(Static Noise Margin)の改善が期待される。SNMは、SRAMメモリセルが動作する際の余裕度を電圧で示す指標である。 In general, it is desirable to increase the β ratio in order to ensure the read margin of the SRAM memory cell. The β ratio is expressed as a current ratio of the driver transistor to the access transistor (however, the source-to-gate voltage and the source-to-drain voltage are the same between the access transistor and the driver transistor). If the β ratio increases, an improvement of SNM (Static Noise Margin) is expected. The SNM is an index that indicates a margin when the SRAM memory cell operates by a voltage.
 本実施の形態の半導体装置SCDでは、第1ドライバトランジスタND1および第2ドライバトランジスタND2の電流に加えて、第3ドライバトランジスタND3および第4ドライバトランジスタND4の電流が流れる。このため、ドライバトランジスタの電流を増大することができる。そのため、β比を大きくすることができる。これにより、SRAMメモリセルの読み出しマージンを確保することができる。 In the semiconductor device SCD of the present embodiment, currents of the third driver transistor ND3 and the fourth driver transistor ND4 flow in addition to the currents of the first driver transistor ND1 and the second driver transistor ND2. For this reason, the current of the driver transistor can be increased. Therefore, the β ratio can be increased. Thereby, a read margin of the SRAM memory cell can be ensured.
 (実施の形態2)
 本発明の実施の形態2の半導体装置では、実施の形態1の半導体装置と比較して、アクセストランジスタのしきい値電圧がドライバトランジスタのしきい値電圧と異なっている点で主に異なっている。
(Embodiment 2)
The semiconductor device according to the second embodiment of the present invention is mainly different from the semiconductor device according to the first embodiment in that the threshold voltage of the access transistor is different from the threshold voltage of the driver transistor. .
 図35を参照して、第1アクセストランジスタNA1は、第1ドライバトランジスタND1および第3ドライバトランジスタND3としきい値電圧が異なるよう形成されている。また第2アクセストランジスタNA2は、第2ドライバトランジスタND2および第4ドライバトランジスタND4よりしきい値電圧が異なるよう形成されている。 Referring to FIG. 35, the first access transistor NA1 is formed to have a different threshold voltage from the first driver transistor ND1 and the third driver transistor ND3. The second access transistor NA2 is formed to have a different threshold voltage than the second driver transistor ND2 and the fourth driver transistor ND4.
 第1アクセストランジスタNA1および第2アクセストランジスタNA2のチャネル不純物濃度と、第1ドライバトランジスタND1、第2ドライバトランジスタND2、第3ドライバトランジスタND3および第4ドライバトランジスタND4のチャネル不純物濃度とが異なることによって、第1および第2アクセストランジスタNA1,NA2と第1~第4ドライバトランジスタND1~ND4のしきい値電圧が異なるように形成されている。 The channel impurity concentrations of the first access transistor NA1 and the second access transistor NA2 are different from the channel impurity concentrations of the first driver transistor ND1, the second driver transistor ND2, the third driver transistor ND3, and the fourth driver transistor ND4. The first and second access transistors NA1 and NA2 and the first to fourth driver transistors ND1 to ND4 are formed to have different threshold voltages.
 本実施の形態の半導体装置SCDの製造方法において、第1および第2アクセストランジスタNA1,NA2、第1~第4ドライバトランジスタND1~ND4のチャネルドープが行われる。その後、第1および第2アクセストランジスタNA1,NA2が開口されたレジストマスクが形成され、さらに第1および第2アクセストランジスタNA1,NA2のチャネルドープが行われる。これにより、第1および第2アクセストランジスタNA1,NA2のチャネル不純物濃度は、第1~第4ドライバトランジスタND1~ND4のチャネル不純物濃度と異なるように設定される。 In the method of manufacturing the semiconductor device SCD of the present embodiment, the first and second access transistors NA1, NA2 and the first to fourth driver transistors ND1 to ND4 are channel doped. Thereafter, a resist mask in which the first and second access transistors NA1, NA2 are opened is formed, and channel doping of the first and second access transistors NA1, NA2 is further performed. Thus, the channel impurity concentrations of the first and second access transistors NA1 and NA2 are set to be different from the channel impurity concentrations of the first to fourth driver transistors ND1 to ND4.
 また、第1アクセストランジスタNA1は、第1ドライバトランジスタND1および第3ドライバトランジスタND3のしきい値電圧(Lvth)より高いしきい値電圧(Hvth)を有するよう形成されていてもよい。また第2アクセストランジスタNA2は、第2ドライバトランジスタND2および第4ドライバトランジスタND4のしきい値電圧(Lvth)より高いしきい値電圧(Hvth)を有するよう形成されていてもよい。 The first access transistor NA1 may be formed to have a threshold voltage (Hvth) higher than the threshold voltage (Lvth) of the first driver transistor ND1 and the third driver transistor ND3. The second access transistor NA2 may be formed to have a threshold voltage (Hvth) higher than the threshold voltage (Lvth) of the second driver transistor ND2 and the fourth driver transistor ND4.
 この場合、第1アクセストランジスタNA1のチャネル不純物濃度が第1ドライバトランジスタND1および第3ドライバトランジスタND3のチャネル不純物濃度より高くなっている。また、第2アクセストランジスタNA2のチャネル不純物濃度が第2ドライバトランジスタND2および第4ドライバトランジスタND4のチャネル不純物濃度より高くなっている。 In this case, the channel impurity concentration of the first access transistor NA1 is higher than the channel impurity concentration of the first driver transistor ND1 and the third driver transistor ND3. Further, the channel impurity concentration of the second access transistor NA2 is higher than the channel impurity concentrations of the second driver transistor ND2 and the fourth driver transistor ND4.
 なお、本実施の形態のこれ以外の構成および製造方法は、上述した実施の形態1の構成および製造方法と同様であるため同一の要素については同一の符号を付し、その説明を繰り返さない。 In addition, since the structure and manufacturing method of this embodiment other than this are the same as the structure and manufacturing method of Embodiment 1 mentioned above, the same code | symbol is attached | subjected about the same element and the description is not repeated.
 本実施の形態の半導体装置SCDによれば、第1アクセストランジスタNA1および第2アクセストランジスタNA2は、第1ドライバトランジスタND1および第2ドライバトランジスタND2のしきい値電圧と異なるしきい値電圧を有するように設けられている。そのため、β比を変更することができる。したがって、β比を大きくすることによって、SRAMメモリセルの読み出しマージンを確保することが可能である。 According to the semiconductor device SCD of the present embodiment, the first access transistor NA1 and the second access transistor NA2 have threshold voltages different from the threshold voltages of the first driver transistor ND1 and the second driver transistor ND2. Is provided. Therefore, the β ratio can be changed. Therefore, it is possible to secure a read margin of the SRAM memory cell by increasing the β ratio.
 また、本実施の形態の半導体装置SCDによれば、第1アクセストランジスタNA1および第2アクセストランジスタNA2は、第1ドライバトランジスタND1および第2ドライバトランジスタND2のしきい値電圧より高いしきい値電圧を有するように設けられている。そのため、β比を大きくすることができる。これにより、SRAMメモリセルの読み出しマージンを確保することができる。 Further, according to the semiconductor device SCD of the present embodiment, the first access transistor NA1 and the second access transistor NA2 have threshold voltages higher than the threshold voltages of the first driver transistor ND1 and the second driver transistor ND2. It is provided to have. Therefore, the β ratio can be increased. Thereby, a read margin of the SRAM memory cell can be ensured.
 (実施の形態3)
 本発明の実施の形態3の半導体装置では、実施の形態1の半導体装置と比較して、アクセストランジスタのゲート幅がドライバトランジスタのゲート幅より大きい点で主に異なっている。
(Embodiment 3)
The semiconductor device according to the third embodiment of the present invention is mainly different from the semiconductor device according to the first embodiment in that the gate width of the access transistor is larger than the gate width of the driver transistor.
 図36を参照して、第1アクセストランジスタNA1の第1アクセスゲートAG1の幅は、第1ドライバトランジスタND1の第1ドライバゲートDG1の幅WA1および第3ドライバトランジスタND3の第3ドライバゲートDG3の幅WA3より大きくなるように設けられている。また第2アクセストランジスタNA2の第2アクセスゲートAG2の幅は、第2ドライバトランジスタND2の第2ドライバゲートDG2の幅WA2および第4ドライバトランジスタND4の第4ドライバゲートDG4の幅WA4より大きくなるように設けられている。 Referring to FIG. 36, the width of first access gate AG1 of first access transistor NA1 is the width WA1 of first driver gate DG1 of first driver transistor ND1 and the width of third driver gate DG3 of third driver transistor ND3. It is provided to be larger than WA3. The width of the second access gate AG2 of the second access transistor NA2 is larger than the width WA2 of the second driver gate DG2 of the second driver transistor ND2 and the width WA4 of the fourth driver gate DG4 of the fourth driver transistor ND4. Is provided.
 本実施の形態の半導体装置SCDの製造方法において、第1ドライバトランジスタND1の第3ソース/ドレインSD3および第3ドライバトランジスタND3の第5ソース/ドレインSD5を形成する拡散層の幅より第1アクセストランジスタNA1の第1ソース/ドレインSD1を形成する拡散層の幅を大きくすることで、第1アクセスゲートAG1の幅が第1ドライバゲートDG1の幅WA1および第3ドライバゲートDG3の幅WA3より大きく形成される。また第2ドライバトランジスタND2の第4ソース/ドレインSD4および第4ドライバトランジスタND4の第6ソース/ドレインSD6を形成する拡散層の幅より第2アクセストランジスタNA2の第2ソース/ドレインSD2を形成する拡散層の幅を大きくすることで、第2アクセスゲートAG2のゲート幅が第2ドライバゲートDG2の幅WA2および第3ドライバゲートDG4の幅WA4より大きく形成される。 In the method of manufacturing the semiconductor device SCD of the present embodiment, the first access transistor is determined by the width of the diffusion layer forming the third source / drain SD3 of the first driver transistor ND1 and the fifth source / drain SD5 of the third driver transistor ND3. By increasing the width of the diffusion layer forming the first source / drain SD1 of NA1, the width of the first access gate AG1 is made larger than the width WA1 of the first driver gate DG1 and the width WA3 of the third driver gate DG3. The Further, the diffusion for forming the second source / drain SD2 of the second access transistor NA2 from the width of the diffusion layer for forming the fourth source / drain SD4 of the second driver transistor ND2 and the sixth source / drain SD6 of the fourth driver transistor ND4. By increasing the layer width, the gate width of the second access gate AG2 is formed larger than the width WA2 of the second driver gate DG2 and the width WA4 of the third driver gate DG4.
 なお、本実施の形態のこれ以外の構成および製造方法は、上述した実施の形態1の構成および製造方法と同様であるため同一の要素については同一の符号を付し、その説明を繰り返さない。 In addition, since the structure and manufacturing method of this embodiment other than this are the same as the structure and manufacturing method of Embodiment 1 mentioned above, the same code | symbol is attached | subjected about the same element and the description is not repeated.
 本実施の形態の半導体装置SCDによれば、第1アクセストランジスタNA1の第1アクセスゲートAG1の幅は、第1ドライバトランジスタND1の第1ドライバゲートDG1の幅WA1および第3ドライバトランジスタND3の第3ドライバゲートDG3の幅WA3より大きくなるように設けられており、第2アクセストランジスタNA2の第2アクセスゲートAG2の幅は、第2ドライバトランジスタND2の第2ドライバゲートDG2の幅WA2および第4ドライバトランジスタND4の第4ドライバゲートDG4の幅WA4より大きくなるように設けられている。 According to the semiconductor device SCD of the present embodiment, the width of the first access gate AG1 of the first access transistor NA1 is equal to the width WA1 of the first driver gate DG1 of the first driver transistor ND1 and the third width of the third driver transistor ND3. The width of the second access gate AG2 of the second access transistor NA2 is set to be larger than the width WA3 of the driver gate DG3. The width WA2 of the second driver gate DG2 of the second driver transistor ND2 and the fourth driver transistor The fourth driver gate DG4 of ND4 is provided to be larger than the width WA4.
 第1ドライバトランジスタND1および第2ドライバトランジスタND2に加えて第3ドライバトランジスタND3および第4ドライバトランジスタND4が設けられているため、第1ドライバトランジスタND1および第3ドライバトランジスタND3の電流が大きくなり、第2ドライバトランジスタND2および第4ドライバトランジスタND4の電流も大きくなる。そのためβ比が大きくなる。したがって、第1アクセスゲートAG1の幅が第1ドライバゲートDG1の幅WA1および第3ドライバゲートDG3の幅WA3より大きくなるように設けられても第3ドライバトランジスタND3が設けられていない場合に比較してβ比を大きい状態で維持することができる。 Since the third driver transistor ND3 and the fourth driver transistor ND4 are provided in addition to the first driver transistor ND1 and the second driver transistor ND2, the currents of the first driver transistor ND1 and the third driver transistor ND3 increase, The currents of the two driver transistor ND2 and the fourth driver transistor ND4 are also increased. Therefore, β ratio becomes large. Therefore, even if the first access gate AG1 is provided to be larger than the width WA1 of the first driver gate DG1 and the width WA3 of the third driver gate DG3, the third driver transistor ND3 is not provided. Therefore, the β ratio can be maintained in a large state.
 同様に、第2アクセスゲートAG2の幅が第2ドライバゲートDG2の幅WA2および第4ドライバゲートDG4の幅WA4より大きくなるように設けられても第4ドライバトランジスタND4が設けられていない場合に比較してβ比を大きい状態で維持することができる。これにより、SRAMメモリセルの読み出しマージンを確保することができる。 Similarly, even when the second access gate AG2 is provided to be larger than the width WA2 of the second driver gate DG2 and the width WA4 of the fourth driver gate DG4, the fourth driver transistor ND4 is not provided. Thus, the β ratio can be maintained in a large state. Thereby, a read margin of the SRAM memory cell can be ensured.
 また、第1ドライバゲートDG1の幅WA1~第4ドライバゲートDG4の幅WA4が第1アクセスゲートAG1の幅および第2アクセスゲートAG2の幅より小さくすることができるので、SRAMメモリセルの面積を小さくすることができる。 Since the width WA1 of the first driver gate DG1 to the width WA4 of the fourth driver gate DG4 can be made smaller than the width of the first access gate AG1 and the width of the second access gate AG2, the area of the SRAM memory cell can be reduced. can do.
 (実施の形態4)
 本発明の実施の形態4の半導体装置では、実施の形態1の半導体装置と比較して、非対称ハロ(Halo)領域が設けられている点で主に異なっている。
(Embodiment 4)
The semiconductor device according to the fourth embodiment of the present invention is mainly different from the semiconductor device according to the first embodiment in that an asymmetric halo region is provided.
 図37を参照して、半導体装置SCDの複数のSRAMメモリセルのそれぞれにおいて、第1および第2アクセストランジスタNA1,NA2、第1~第4ドライバトランジスタND1~ND4のそれぞれに第1ハロ領域HR1~第12ハロ領域HR12が形成されている。第1ハロ領域HR1~第12ハロ領域HR12はp型の不純物領域として形成されている。一方、後述する第1および第2ロードトランジスタPL1,PL2に形成されるハロ領域はn型の不純物領域として形成されている。 Referring to FIG. 37, in each of the plurality of SRAM memory cells of semiconductor device SCD, first halo regions HR1 to HR1 are connected to first and second access transistors NA1 and NA2 and first to fourth driver transistors ND1 to ND4, respectively. A twelfth halo region HR12 is formed. The first halo region HR1 to the twelfth halo region HR12 are formed as p-type impurity regions. On the other hand, halo regions formed in first and second load transistors PL1 and PL2 described later are formed as n-type impurity regions.
 第1アクセストランジスタNA1は、第1ソース/ドレインSD1の他方に隣接し、第1ソース/ドレインSD1の第1導電型の不純物とは異なる第2導電型の不純物を有する第1ハロ領域HR1と、第1ソース/ドレインSD1の一方に隣接し、第1ハロ領域HR1の不純物濃度より高い不純物濃度の第2導電型の不純物を有する第2ハロ領域HR2とを有している。 The first access transistor NA1 is adjacent to the other of the first source / drain SD1, and has a first halo region HR1 having a second conductivity type impurity different from the first conductivity type impurity of the first source / drain SD1, A second halo region HR2 having a second conductivity type impurity having an impurity concentration higher than that of the first halo region HR1 is adjacent to one of the first source / drain SD1.
 第2アクセストランジスタNA2は、第2ソース/ドレインSD2の他方に隣接し、第2ソース/ドレインSD2の第1導電型の不純物とは異なる第2導電型の不純物を有する第3ハロ領域HR3と、第2ソース/ドレインSD2の一方に隣接し、第3ハロ領域HR3の不純物濃度より高い不純物濃度の第2導電型の不純物を有する第4ハロ領域HR4とを有している。 The second access transistor NA2 is adjacent to the other of the second source / drain SD2, and has a third halo region HR3 having a second conductivity type impurity different from the first conductivity type impurity of the second source / drain SD2. A fourth halo region HR4 having an impurity of a second conductivity type having an impurity concentration higher than the impurity concentration of the third halo region HR3 is adjacent to one of the second source / drain SD2.
 第1ドライバトランジスタND1は、第3ソース/ドレインSD3の他方に隣接し、第3ソース/ドレインSD3の第1導電型の不純物とは異なる第2導電型の不純物を有する第5ハロ領域HR5と、第3ソース/ドレインSD3の一方に隣接し、第5ハロ領域HR5の不純物濃度より高い不純物濃度の第2導電型の不純物を有する第6ハロ領域HR6とを有している。 The first driver transistor ND1 is adjacent to the other of the third source / drain SD3 and has a fifth halo region HR5 having a second conductivity type impurity different from the first conductivity type impurity of the third source / drain SD3, A sixth halo region HR6 having a second conductivity type impurity having an impurity concentration higher than that of the fifth halo region HR5 is adjacent to one of the third source / drain SD3.
 第2ドライバトランジスタND2は、第4ソース/ドレインSD4の他方に隣接し、第4ソース/ドレインSD4の第1導電型の不純物とは異なる第2導電型の不純物を有する第7ハロ領域HR7と、第4ソース/ドレインSD4の一方に隣接し、第7ハロ領域HR7の不純物濃度より高い不純物濃度の第2導電型の不純物を有する第8ハロ領域HR8とを有している。 The second driver transistor ND2 is adjacent to the other of the fourth source / drain SD4 and has a seventh halo region HR7 having a second conductivity type impurity different from the first conductivity type impurity of the fourth source / drain SD4, An eighth halo region HR8 having an impurity of a second conductivity type having an impurity concentration higher than that of the seventh halo region HR7 is adjacent to one of the fourth source / drain SD4.
 第3ドライバトランジスタND3は、第5ソース/ドレインSD5の一方に隣接し、第5ソース/ドレインSD5の第1導電型の不純物とは異なる第2導電型の不純物を有する第9ハロ領域HR9と、第5ソース/ドレインSD5の他方に隣接し、第9ハロ領域HR9の不純物濃度より高い不純物濃度の第2導電型の不純物を有する第10ハロ領域HR10とを有している。 The third driver transistor ND3 is adjacent to one of the fifth source / drain SD5 and has a ninth halo region HR9 having a second conductivity type impurity different from the first conductivity type impurity of the fifth source / drain SD5, A tenth halo region HR10 having a second conductivity type impurity having an impurity concentration higher than that of the ninth halo region HR9 is adjacent to the other of the fifth source / drain SD5.
 第4ドライバトランジスタND4は、第6ソース/ドレインSD6の一方に隣接し、第6ソース/ドレインSD6の第1導電型の不純物とは異なる第2導電型の不純物を有する第11ハロ領域HR11と、第6ソース/ドレインSD6の他方に隣接し、第11ハロ領域HR11の不純物濃度より高い不純物濃度の第2導電型の不純物を有する第12ハロ領域HR12とを有している。 The fourth driver transistor ND4 is adjacent to one of the sixth source / drain SD6 and has an eleventh halo region HR11 having a second conductivity type impurity different from the first conductivity type impurity of the sixth source / drain SD6, A twelfth halo region HR12 having a second conductivity type impurity having an impurity concentration higher than that of the eleventh halo region HR11 is adjacent to the other of the sixth source / drain SD6.
 後述するように第1~第12ハロ領域HR1~HR12は、2Step Halo Impla(2方向ハロ注入)によって形成される。2Step Halo Implaでは、一方向から薄いHalo Impla(ハロ注入)が行われ、一方向と反対の他方向から濃いHalo Impla(ハロ注入)が行われる。これにより、非対称ハロ領域HRが設けられる。 As will be described later, the first to twelfth halo regions HR1 to HR12 are formed by 2 Step Halo Impla (two-way halo implantation). In 2Step Halo Impla, a thin Halo Impla (halo implantation) is performed from one direction, and a deep Halo Impla (halo implantation) is performed from the other direction opposite to the one direction. Thereby, the asymmetric halo region HR is provided.
 第1アクセストランジスタNA1および第2アクセストランジスタNA2では、それぞれに形成される第1ハロ領域HR1~第4ハロ領域HR4のうち、第1記憶ノードSN1および第2記憶ノードSN2に接続されている側の第2ハロ領域HR2,第4ハロ領域HR4の不純物濃度が、第1ビット線BLおよび第2ビット線/BLに接続されている側の第1ハロ領域HR1,第3ハロ領域HR3の不純物濃度よりも高く設定されている。 In the first access transistor NA1 and the second access transistor NA2, of the first halo region HR1 to the fourth halo region HR4 formed respectively, the side connected to the first storage node SN1 and the second storage node SN2 The impurity concentration of the second halo region HR2 and the fourth halo region HR4 is higher than the impurity concentration of the first halo region HR1 and the third halo region HR3 connected to the first bit line BL and the second bit line / BL. Is also set high.
 第1ドライバトランジスタND1および第2ドライバトランジスタND2では、それぞれに形成される第5ハロ領域HR5~第8ハロ領域HR8のうち、第1記憶ノードSN1および第2記憶ノードSN2に接続されている側の第6ハロ領域HR6,第8ハロ領域HR8の不純物濃度が、第1ビット線BLおよび第2ビット線/BLに接続されている側の第5ハロ領域HR5,第6ハロ領域HR6の不純物濃度よりも高く設定されている。 In the first driver transistor ND1 and the second driver transistor ND2, of the fifth halo region HR5 to the eighth halo region HR8 formed respectively, the side connected to the first storage node SN1 and the second storage node SN2 The impurity concentration of the sixth halo region HR6 and the eighth halo region HR8 is greater than the impurity concentration of the fifth halo region HR5 and the sixth halo region HR6 on the side connected to the first bit line BL and the second bit line / BL. Is also set high.
 第3ドライバトランジスタND3および第4ドライバトランジスタND4では、それぞれに形成される第9ハロ領域HR9~第12ハロ領域HR12のうち、接地配線VSSに接続されている側の第10ハロ領域HR10,第12ハロ領域HR12の不純物濃度が、第1記憶ノードSN1および第2記憶ノードSN2に接続されている側の第9ハロ領域HR9,第11ハロ領域HR11の不純物濃度よりも高く設定されている。これにより、第2ハロ領域HR2,第4ハロ領域HR4,第6ハロ領域HR6,第8ハロ領域HR8,第10ハロ領域HR10,第12ハロ領域HR12では濃いハロ領域DHIが形成されている。 In the third driver transistor ND3 and the fourth driver transistor ND4, of the ninth halo region HR9 to the twelfth halo region HR12 formed respectively, the tenth halo region HR10, twelfth on the side connected to the ground wiring VSS. The impurity concentration of the halo region HR12 is set higher than the impurity concentration of the ninth halo region HR9 and the eleventh halo region HR11 on the side connected to the first storage node SN1 and the second storage node SN2. Thus, a deep halo region DHI is formed in the second halo region HR2, the fourth halo region HR4, the sixth halo region HR6, the eighth halo region HR8, the tenth halo region HR10, and the twelfth halo region HR12.
 図38は、図37においてSRAMメモリセルMC1の第1アクセストランジスタNA1を通るように第1アクセスゲートAG1の延在方向に直交する断面線XXXVIII-XXXVIIIに沿う概略断面図である。 FIG. 38 is a schematic cross sectional view taken along a cross sectional line XXXVIII-XXXVIII orthogonal to the extending direction of the first access gate AG1 so as to pass through the first access transistor NA1 of the SRAM memory cell MC1 in FIG.
 第1アクセスゲートAG1に対して、ダミーゲートDUが位置する側とは反対側に位置する素子形成領域FRNの部分には、第1ハロ領域HR1、エクステンション領域ER、第1ソース/ドレインSD1および金属シリサイド膜SCLが形成されている。第1ハロ領域HR1は、第1アクセスゲートAG1の直下の領域に達するように形成されている。 The element formation region FRN located on the side opposite to the side where the dummy gate DU is located with respect to the first access gate AG1 includes the first halo region HR1, the extension region ER, the first source / drain SD1, and the metal A silicide film SCL is formed. First halo region HR1 is formed to reach a region immediately below first access gate AG1.
 第1アクセスゲートAG1とダミーゲートDUとの間に位置する素子形成領域FRNの部分には、第2ハロ領域HR2、エクステンション領域ER、第1ソース/ドレインSD1、金属シリサイド膜SCLが形成されている。第2ハロ領域HR2は、第2アクセスゲートAG2の直下の領域に達するように形成されている。 In the element formation region FRN located between the first access gate AG1 and the dummy gate DU, a second halo region HR2, an extension region ER, a first source / drain SD1, and a metal silicide film SCL are formed. . Second halo region HR2 is formed to reach a region immediately below second access gate AG2.
 第1アクセスゲートAG1を覆うように、シリコン窒化膜などのストレスライナー膜SLが形成されている。そのストレスライナー膜SLを覆うように、シリコン酸化膜(たとえばTEOS膜)などの層間絶縁膜IL1が形成されている。層間絶縁膜IL1およびストレスライナー膜SLを貫通して金属シリサイド膜SCLに電気的に接続されるプラグPG1が形成されている。プラグPG1は、TiN膜などのバリア金属膜BA1とタングステン膜TL1とを含んでいる。金属シリサイド膜SCLにそれぞれ接続するプラグPG1は、図37に示すコンタクトC1,C2をそれぞれ構成する。 A stress liner film SL such as a silicon nitride film is formed so as to cover the first access gate AG1. An interlayer insulating film IL1 such as a silicon oxide film (for example, a TEOS film) is formed so as to cover the stress liner film SL. A plug PG1 penetrating through the interlayer insulating film IL1 and the stress liner film SL and electrically connected to the metal silicide film SCL is formed. The plug PG1 includes a barrier metal film BA1 such as a TiN film and a tungsten film TL1. The plugs PG1 connected to the metal silicide film SCL respectively constitute contacts C1 and C2 shown in FIG.
 プラグPG1を覆うように、層間絶縁膜IL1上にシリコン窒化膜などのエッチングストッパ膜ES1が形成されている。そのエッチングストッパ膜ES1上にシリコン酸化膜などの層間絶縁膜IL2が形成されている。層間絶縁膜IL2およびエッチングストッパ膜ES1を貫通してプラグPG1に電気的に接続される銅配線CW1が形成されている。銅配線CW1はTaN膜などのバリア金属膜BA2と銅膜CL1とを含んでいる。プラグPG1にそれぞれ接続する銅配線CW1は、図37に示す第1金属配線M1,M2をそれぞれ構成する。 An etching stopper film ES1 such as a silicon nitride film is formed on the interlayer insulating film IL1 so as to cover the plug PG1. An interlayer insulating film IL2 such as a silicon oxide film is formed on the etching stopper film ES1. A copper wiring CW1 that penetrates through the interlayer insulating film IL2 and the etching stopper film ES1 and is electrically connected to the plug PG1 is formed. The copper wiring CW1 includes a barrier metal film BA2 such as a TaN film and a copper film CL1. The copper wiring CW1 connected to the plug PG1 constitutes the first metal wirings M1 and M2 shown in FIG.
 図39は、図37においてSRAMメモリセルMC1の第1ドライバトランジスタND1と第3ドライバトランジスタND3とを通るように第1ドライバゲートDG1の延在方向に直交する断面線XXXIX-XXXIXに沿う概略断面図である。 39 is a schematic sectional view taken along a sectional line XXXIX-XXXIX orthogonal to the extending direction of the first driver gate DG1 so as to pass through the first driver transistor ND1 and the third driver transistor ND3 of the SRAM memory cell MC1 in FIG. It is.
 第1ドライバゲートDG1に対して、第3ドライバゲートDG3が位置する側とは反対側に位置する素子形成領域FRNの部分には、第5ハロ領域HR5、エクステンション領域ER、第3ソース/ドレインSD3および金属シリサイド膜SCLが形成されている。第5ハロ領域HR5は、第1ドライバゲートDG1の直下の領域に達するように形成されている。 The element formation region FRN located on the opposite side of the first driver gate DG1 from the side where the third driver gate DG3 is located includes a fifth halo region HR5, an extension region ER, and a third source / drain SD3. In addition, a metal silicide film SCL is formed. The fifth halo region HR5 is formed so as to reach a region immediately below the first driver gate DG1.
 第1ドライバゲートDG1と第3ドライバゲートDG3との間に位置する素子形成領域FRNの部分には、第6ハロ領域HR6、第9ハロ領域HR9、エクステンション領域ER、第3ソース/ドレインSD3、第5ソース/ドレインSD5および金属シリサイド膜SCLが形成されている。第6ハロ領域HR6は、第1ドライバゲートDG1の直下の領域に達するように形成されている。第9ハロ領域HR9は、第3ドライバゲートDG3の直下の領域に達するように形成されている。 The element formation region FRN located between the first driver gate DG1 and the third driver gate DG3 includes a sixth halo region HR6, a ninth halo region HR9, an extension region ER, a third source / drain SD3, 5 source / drain SD5 and metal silicide film SCL are formed. The sixth halo region HR6 is formed so as to reach a region immediately below the first driver gate DG1. The ninth halo region HR9 is formed so as to reach a region immediately below the third driver gate DG3.
 第3ドライバゲートDG3に対して、第1ドライバゲートDG1が位置する側とは反対側に位置する素子形成領域FRNの部分には、第10ハロ領域HR10、エクステンション領域ER、第5ソース/ドレインSD5および金属シリサイド膜SCLが形成されている。第10ハロ領域HR10は、第3ドライバゲートDG3の直下の領域に達するように形成されている。 The element formation region FRN located on the opposite side of the third driver gate DG3 from the side where the first driver gate DG1 is located includes a tenth halo region HR10, an extension region ER, and a fifth source / drain SD5. Further, a metal silicide film SCL is formed. The tenth halo region HR10 is formed so as to reach a region immediately below the third driver gate DG3.
 第1ドライバゲートDG1および第3ドライバゲートDG3を覆うように、シリコン窒化膜などのストレスライナー膜SLが形成されている。そのストレスライナー膜SLを覆うように、シリコン酸化膜(たとえばTEOS膜)などの層間絶縁膜IL1が形成されている。層間絶縁膜IL1およびストレスライナー膜SLを貫通して金属シリサイド膜SCLに電気的に接続されるプラグPG1が形成されている。プラグPG1は、TiN膜などのバリア金属膜BA1とタングステン膜TL1とを含んでいる。金属シリサイド膜SCLにそれぞれ接続するプラグPG1は、図37に示すコンタクトC5,C6,C7をそれぞれ構成する。 A stress liner film SL such as a silicon nitride film is formed so as to cover the first driver gate DG1 and the third driver gate DG3. An interlayer insulating film IL1 such as a silicon oxide film (for example, a TEOS film) is formed so as to cover the stress liner film SL. A plug PG1 penetrating through the interlayer insulating film IL1 and the stress liner film SL and electrically connected to the metal silicide film SCL is formed. The plug PG1 includes a barrier metal film BA1 such as a TiN film and a tungsten film TL1. The plugs PG1 connected to the metal silicide film SCL respectively constitute contacts C5, C6, C7 shown in FIG.
 プラグPG1を覆うように、層間絶縁膜IL1上にシリコン窒化膜などのエッチングストッパ膜ES1が形成されている。そのエッチングストッパ膜ES1上にシリコン酸化膜などの層間絶縁膜IL2が形成されている。層間絶縁膜IL2およびエッチングストッパ膜ES1を貫通してプラグPG1に電気的に接続される銅配線CW1が形成されている。銅配線CW1はTaN膜などのバリア金属膜BA2と銅膜CL1とを含んでいる。プラグPG1にそれぞれ接続する銅配線CW1は、図37に示す第1金属配線M1,M4,M5をそれぞれ構成する。なお、上記以外の各ハロ領域は各ゲートの直下の領域に達するように形成されている。 An etching stopper film ES1 such as a silicon nitride film is formed on the interlayer insulating film IL1 so as to cover the plug PG1. An interlayer insulating film IL2 such as a silicon oxide film is formed on the etching stopper film ES1. A copper wiring CW1 that penetrates through the interlayer insulating film IL2 and the etching stopper film ES1 and is electrically connected to the plug PG1 is formed. The copper wiring CW1 includes a barrier metal film BA2 such as a TaN film and a copper film CL1. The copper wirings CW1 connected to the plugs PG1 respectively constitute first metal wirings M1, M4, M5 shown in FIG. Each halo region other than the above is formed so as to reach a region immediately below each gate.
 次に、アクセストランジスタの構造について詳しく説明する。なお、図40は、図37に示すXXXVIII-XXXVIII線に対応する断面線に沿った断面構造を示す。またアクセストランジスタの構造として第1アクセストランジスタNA1を例に説明するが、第2アクセストランジスタNA2も同様の構造を有している。 Next, the structure of the access transistor will be described in detail. 40 shows a cross-sectional structure taken along a cross-sectional line corresponding to the line XXXVIII-XXXVIII shown in FIG. The first access transistor NA1 will be described as an example of the access transistor structure, but the second access transistor NA2 has the same structure.
 図40を参照して、素子形成領域FRN(図4参照)を横切るように形成された第1アクセストランジスタNA1の第1アクセスゲートAG1は、SiONなどの界面層SF上に、それぞれLaを含有したHfO2、HfSiONなど所定の誘電率を有するHigh-k膜HK、TiNなど所定の仕事関数を有する金属膜MLおよびポリシリコン膜PSを積層させる態様で形成され、ポリシリコン膜PSの表面にはさらにニッケルシリサイドなどの金属シリサイド膜SCLが形成されている。 Referring to FIG. 40, first access gate AG1 of first access transistor NA1 formed so as to cross element formation region FRN (see FIG. 4) contains La on interface layer SF such as SiON. A high-k film HK having a predetermined dielectric constant, such as HfO 2 or HfSiON, or a metal film ML having a predetermined work function, such as TiN, and a polysilicon film PS are formed in a stacked manner. A metal silicide film SCL such as nickel silicide is formed.
 第1アクセスゲートAG1の両側面上には、たとえばシリコン窒化膜などのオフセットスペーサOSが形成されている。そのオフセットスペーサOSの上には、シリコン酸化膜SOとシリコン窒化膜SNIからなるサイドウォールスペーサSWが形成されている。 An offset spacer OS such as a silicon nitride film is formed on both side surfaces of the first access gate AG1. Over the offset spacer OS, a sidewall spacer SW made of a silicon oxide film SO and a silicon nitride film SNI is formed.
 第1アクセスゲートAG1が延在する方向と直交する方向(ゲート長方向)の素子形成領域の部分には、第1ハロ領域HR1、第2ハロ領域HR2、エクステンション領域ER、第1ソース/ドレインSD1および金属シリサイド膜SCLが形成されている。 The element formation region in a direction (gate length direction) orthogonal to the direction in which the first access gate AG1 extends includes a first halo region HR1, a second halo region HR2, an extension region ER, and a first source / drain SD1. In addition, a metal silicide film SCL is formed.
 第1ハロ領域HR1および第2ハロ領域HR2は、図40に示すように、一対のソースまたはドレインの互いに対向する部分にそれぞれ隣接した領域にあり、サイドウォールスペーサSWの直下の領域から第1アクセスゲートAG1の直下の領域に達するように形成されている。ハロ領域HRの不純物濃度は1×1018/cm3~1×1019/cm3のオーダであるが、半導体装置SCDでは、第2ハロ領域HR2の不純物濃度は、第1ハロ領域HR1の不純物濃度よりも高く設定されている。 As shown in FIG. 40, the first halo region HR1 and the second halo region HR2 are in regions adjacent to the mutually opposing portions of the pair of sources or drains, respectively, and the first access from the region immediately below the sidewall spacer SW. It is formed so as to reach a region immediately below gate AG1. The impurity concentration of the halo region HR is on the order of 1 × 10 18 / cm 3 to 1 × 10 19 / cm 3 , but in the semiconductor device SCD, the impurity concentration of the second halo region HR2 is the impurity concentration of the first halo region HR1. It is set higher than the concentration.
 ハロ領域HRの不純物濃度プロファイルを図41に示す。横軸は、第1アクセスゲートAG1の側面下端部の半導体基板SSの表面の部分からの深さ(矢印F1,F2)を示し、縦軸はP型不純物の不純物濃度を示す。第1ハロ領域HR1および第2ハロ領域HR2では、第1アクセスゲートAG1の側面下端部の半導体基板SSの表面の部分において、第2ハロ領域HR2の不純物濃度は、第1ハロ領域HR1の不純物濃度よりも高い。 FIG. 41 shows the impurity concentration profile of the halo region HR. The horizontal axis indicates the depth (arrows F1, F2) from the surface portion of the semiconductor substrate SS at the lower end of the side surface of the first access gate AG1, and the vertical axis indicates the impurity concentration of the P-type impurity. In the first halo region HR1 and the second halo region HR2, the impurity concentration of the second halo region HR2 is the impurity concentration of the first halo region HR1 in the surface portion of the semiconductor substrate SS at the lower end of the side surface of the first access gate AG1. Higher than.
 また、それぞれ表面から所定の深さf1、f2において不純物濃度のピーク(極大値)が最初に現れ、第2ハロ領域HR2の不純物濃度のピークも、第1ハロ領域HR1の不純物濃度のピークよりも高く、第2ハロ領域HR2では約6×1018/cm3であり、第1ハロ領域HR1では約5×1018/cm3である。SRAMメモリセルMC1のエクステンション領域ERの不純物濃度は5×1020/cm3~1×1021/cm3であり、ソースまたはドレインの不純物濃度は約5×1021/cm3である。 In addition, the peak (maximum value) of the impurity concentration first appears at predetermined depths f1 and f2 from the surface, respectively, and the peak of the impurity concentration of the second halo region HR2 is also higher than the peak of the impurity concentration of the first halo region HR1. high, the second halo region HR2 about 6 × 10 18 / cm 3, the first halo regions HR1 is about 5 × 10 18 / cm 3. The impurity concentration of the extension region ER of the SRAM memory cell MC1 is 5 × 10 20 / cm 3 to 1 × 10 21 / cm 3 , and the impurity concentration of the source or drain is about 5 × 10 21 / cm 3 .
 後述するように、半導体装置SCDでは、第1アクセストランジスタNA1および第2アクセストランジスタNA2の1対のハロ領域HRのうち、第1記憶ノードSN1および第2記憶ノードSN2に接続されている側の第2ハロ領域HR2および第4ハロ領域HR4の不純物濃度が、第1ビット線BLおよび第2ビット線/BLに接続されている側の第1ハロ領域HR1および第3ハロ領域HR3の不純物濃度よりも高く設定されていることで、読み出しマージンおよび書き込みマージンを確保することができる。 As will be described later, in the semiconductor device SCD, the first of the pair of halo regions HR of the first access transistor NA1 and the second access transistor NA2 on the side connected to the first storage node SN1 and the second storage node SN2. The impurity concentrations of the 2 halo region HR2 and the fourth halo region HR4 are higher than the impurity concentrations of the first halo region HR1 and the third halo region HR3 on the side connected to the first bit line BL and the second bit line / BL. By setting it high, a read margin and a write margin can be secured.
 次に、半導体装置の製造方法について説明する。半導体装置には、SRAM回路の他にロジック回路なども含まれるが、ここでは、SRAMメモリセルのアクセストランジスタおよびドライバトランジスタを形成する方法を中心に説明する。なお、以降に参照する図42、図44~図46、図48、図50、図52~図55では、各図(A)は図37に示すXXXVIII-XXXVIII線に対応する断面線に沿った断面構造を示し、各図(B)は図37に示すXXXIX-XXXIX線に対応する断面線に沿った断面構造を示している。 Next, a method for manufacturing a semiconductor device will be described. A semiconductor device includes a logic circuit in addition to an SRAM circuit. Here, a method for forming an access transistor and a driver transistor of an SRAM memory cell will be mainly described. 42, FIG. 44 to FIG. 46, FIG. 48, FIG. 50, and FIG. 52 to FIG. 55 referred to hereinafter, each figure (A) is taken along the sectional line corresponding to the line XXXVIII-XXXVIII shown in FIG. A cross-sectional structure is shown, and each figure (B) shows a cross-sectional structure along a cross-sectional line corresponding to the XXXIX-XXXIX line shown in FIG.
 まず、半導体基板SSの主表面に素子分離領域IRを形成することによって、互いに電気的に分離される素子形成領域FRN,FRPが規定される。次に、素子形成領域FRNにpウェルPWが形成される。 First, by forming an element isolation region IR on the main surface of the semiconductor substrate SS, element formation regions FRN and FRP that are electrically isolated from each other are defined. Next, a p-well PW is formed in the element formation region FRN.
 次に、図42(A)および(B)を参照して、半導体基板SSの表面上に、界面層SFを介在させて、所定の誘電率を有するHigh-k膜HK、所定の仕事関数を有する金属膜MLおよびポリシリコン膜PSを積層させる態様で、第1アクセスゲートAG1となるゲート構造Gと、第1ドライバゲートDG1、第3ドライバゲートDG3となる各々のゲート構造Gが形成される。次に、ゲート構造Gを覆うように半導体基板SS上に、たとえばシリコン窒化膜(図示せず)が形成される。次に、そのシリコン窒化膜に異方性エッチングを施すことにより、ゲート構造Gの両側面にオフセットスペーサOSが形成される。 Next, referring to FIGS. 42A and 42B, a high-k film HK having a predetermined dielectric constant and a predetermined work function are provided on the surface of the semiconductor substrate SS with an interface layer SF interposed therebetween. The gate structure G to be the first access gate AG1 and the respective gate structures G to be the first driver gate DG1 and the third driver gate DG3 are formed in such a manner that the metal film ML and the polysilicon film PS are stacked. Next, for example, a silicon nitride film (not shown) is formed on the semiconductor substrate SS so as to cover the gate structure G. Next, the silicon nitride film is anisotropically etched to form offset spacers OS on both side surfaces of the gate structure G.
 次に、図43を参照して、所定の写真製版処理を施すことにより、各ハロ領域HRを形成するための注入マスクとなるレジストマスクRM11が形成される。レジストマスクRM11はNMIS領域RNを露出し、PMIS領域RPを覆うようにパターン形成される。レジストマスクRM11は、第1アクセスゲートAG1、第1ドライバゲートDG1、第3ドライバゲートDG3となる各々のゲート構造Gを1つの開口で露出し、第2アクセスゲートAG2、第2ドライバゲートDG2、第4ドライバゲートDG4となる各々のゲート構造Gを1つの開口で露出するパターンに形成される。すなわちレジストマスクRM11の個々の開口部は、隣接するSRAMメモリセルMC1とSRAMメモリセルMC2とを跨ぐように連続的に形成される。 Next, referring to FIG. 43, by performing a predetermined photoengraving process, a resist mask RM11 serving as an implantation mask for forming each halo region HR is formed. The resist mask RM11 is patterned to expose the NMIS region RN and cover the PMIS region RP. The resist mask RM11 exposes each gate structure G to be the first access gate AG1, the first driver gate DG1, and the third driver gate DG3 through one opening, and the second access gate AG2, the second driver gate DG2, Each gate structure G to be a 4-driver gate DG4 is formed in a pattern that is exposed through one opening. That is, the individual openings of the resist mask RM11 are continuously formed so as to straddle the adjacent SRAM memory cell MC1 and SRAM memory cell MC2.
 次に、図44(A)および(B)を参照して、レジストマスクRM11を注入マスクとして、たとえばボロンを、ゲート構造Gが延在する方向と略直交する一方から、半導体基板SSの主表面に垂直な方向に対し斜め(θ=約7度)に注入することにより、露出しpウェルPWにp型不純物領域PIRが形成される。 Next, referring to FIGS. 44A and 44B, using resist mask RM11 as an implantation mask, for example, boron is substantially perpendicular to the direction in which gate structure G extends from the main surface of semiconductor substrate SS. By implanting at an angle (θ = about 7 degrees) with respect to the direction perpendicular to, a p-type impurity region PIR is formed in the exposed p-well PW.
 次に、図45(A)および(B)を参照して、同じレジストマスクRM11を注入マスクとして、たとえばボロンを、ゲート構造Gが延在する方向と略直交する一方と逆方向の他方から、半導体基板SSの主表面に垂直な方向に対し斜め(θ=約7度)に注入することにより、露出したpウェルPWにp型不純物領域PIRが形成される。なお、図44(A)および(B)に示す工程の注入と図45(A)および(B)に示す工程の注入では、同じ注入量および同じ注入エネルギーをもってボロンが注入される。また、注入量および注入エネルギーとしては、異なる注入量および異なる注入エネルギーにしてもよい。 Next, with reference to FIGS. 45A and 45B, using the same resist mask RM11 as an implantation mask, for example, boron is used from one side opposite to the direction substantially perpendicular to the direction in which the gate structure G extends from the other side. By implanting obliquely (θ = about 7 degrees) with respect to the direction perpendicular to the main surface of the semiconductor substrate SS, a p-type impurity region PIR is formed in the exposed p-well PW. Note that boron is implanted with the same implantation amount and the same implantation energy in the implantation in the step shown in FIGS. 44A and 44B and the implantation in the step shown in FIGS. 45A and 45B. Further, the injection amount and the injection energy may be different injection amounts and different injection energies.
 次に、図46(A)および(B)を参照して、同じレジストマスクRM11を注入マスクとして、たとえば、リンまたは砒素を、半導体基板SSの主表面に垂直な方向から半導体基板SS内に注入することにより、露出したpウェルPWの表面から所定の深さにわたりエクステンション領域ERが形成される(エクステンション注入)。その後、レジストマスクRM11が除去される。なお、図46に示すエクステンション注入工程は、図43に示すマスク形成工程後、図44(A)および(B),図45(A)および(B)に示すハロ注入工程よりも前に行ってもよい。 Next, referring to FIGS. 46A and 46B, using the same resist mask RM11 as an implantation mask, for example, phosphorus or arsenic is implanted into semiconductor substrate SS from a direction perpendicular to the main surface of semiconductor substrate SS. As a result, an extension region ER is formed from the exposed surface of the p-well PW to a predetermined depth (extension implantation). Thereafter, the resist mask RM11 is removed. The extension implantation step shown in FIG. 46 is performed after the mask formation step shown in FIG. 43 and before the halo implantation step shown in FIGS. 44 (A) and (B) and FIGS. 45 (A) and (B). Also good.
 次に、図47を参照して、NMIS領域RNを覆い、PMIS領域RPを露出するレジストマスクRM12が形成される。次に、素子形成領域FRNにハロ領域HRを形成する工程と同様にして、レジストマスクRM12を注入マスクとして、たとえばリンまたは砒素を、半導体基板SSの主表面に垂直な方向から半導体基板SS内に注入することにより、素子形成領域FRPにハロ領域(図示せず)が形成される。次に、レジストマスクRM12を注入マスクとして、たとえばボロンを、半導体基板SSの主表面に垂直な方向から半導体基板SS内に注入することにより、エクステンション領域(図示せず)が形成される。その後、レジストマスクRM12が除去される。 47, a resist mask RM12 that covers NMIS region RN and exposes PMIS region RP is formed. Next, in the same manner as the step of forming the halo region HR in the element formation region FRN, for example, phosphorus or arsenic is introduced into the semiconductor substrate SS from the direction perpendicular to the main surface of the semiconductor substrate SS using the resist mask RM12 as an implantation mask. By implantation, a halo region (not shown) is formed in the element formation region FRP. Next, using the resist mask RM12 as an implantation mask, for example, boron is implanted into the semiconductor substrate SS from a direction perpendicular to the main surface of the semiconductor substrate SS, thereby forming an extension region (not shown). Thereafter, the resist mask RM12 is removed.
 次に、ゲート構造G(第1アクセスゲートAG1、ダミーゲートDU、第1ドライバゲートDG1、第3ドライバゲートDG3など)を覆うように、たとえばシリコン酸化膜とシリコン窒化膜(図示せず)が順次形成される。次に、図48(A)および(B)を参照して、そのシリコン酸化膜とシリコン窒化膜とに異方性エッチングを施すことにより、ゲート構造Gの両側面上に、シリコン酸化膜SOとシリコン窒化膜SNIとからなるサイドウォールスペーサSWが形成される。 Next, for example, a silicon oxide film and a silicon nitride film (not shown) are sequentially formed so as to cover the gate structure G (first access gate AG1, dummy gate DU, first driver gate DG1, third driver gate DG3, etc.). It is formed. Next, referring to FIGS. 48A and 48B, the silicon oxide film and the silicon nitride film are subjected to anisotropic etching, so that the silicon oxide film SO is formed on both side surfaces of the gate structure G. Sidewall spacers SW made of the silicon nitride film SNI are formed.
 次に、図49を参照して、NMIS領域RNを露出し、PMIS領域RPを覆うレジストマスクRM13が形成される。レジストマスクRM13はレジストマスクRM11と同じフォトマスクによって形成される。次に、図50(A)および(B)を参照して、レジストマスクRM13(図49)およびサイドウォールスペーサSWなどを注入マスクとして、たとえばリンまたは砒素を、半導体基板SSの主表面に垂直な方向から半導体基板SS内に注入することにより、露出したpウェルPWの表面から所定の深さにわたり第1ソース/ドレインSD1、第3ソース/ドレインSD3、第5ソース/ドレインSD5が形成される。その後、レジストマスクRM13が除去される。 Next, referring to FIG. 49, a resist mask RM13 that exposes NMIS region RN and covers PMIS region RP is formed. The resist mask RM13 is formed using the same photomask as the resist mask RM11. Next, referring to FIGS. 50A and 50B, for example, phosphorus or arsenic is perpendicular to the main surface of semiconductor substrate SS using resist mask RM13 (FIG. 49) and sidewall spacer SW as an implantation mask. By injecting into the semiconductor substrate SS from the direction, the first source / drain SD1, the third source / drain SD3, and the fifth source / drain SD5 are formed from the exposed surface of the p-well PW to a predetermined depth. Thereafter, the resist mask RM13 is removed.
 次に、図51を参照して、NMIS領域RNを覆い、PMIS領域RPを露出するレジストマスクRM14が形成される。次に、レジストマスクRM14およびサイドウォールスペーサSWなどを注入マスクとして、たとえばボロンを、半導体基板SSの主表面に垂直な方向から半導体基板SS内に注入することにより、露出した素子形成領域FRPの表面から所定の深さにわたりソース/ドレイン(図示せず)が形成される。その後、レジストマスクRM14が除去される。 Next, referring to FIG. 51, a resist mask RM14 that covers NMIS region RN and exposes PMIS region RP is formed. Next, using the resist mask RM14, the sidewall spacer SW, etc. as an implantation mask, for example, boron is implanted into the semiconductor substrate SS from a direction perpendicular to the main surface of the semiconductor substrate SS, thereby exposing the surface of the exposed element formation region FRP. A source / drain (not shown) is formed from a predetermined depth to a predetermined depth. Thereafter, the resist mask RM14 is removed.
 次に、図52(A)および(B)を参照して、所定のアニール処理を施すことにより、注入された不純物を熱拡散させることによって、第1ソース/ドレインSD1、第3ソース/ドレインSD3、第5ソース/ドレインSD5、エクステンション領域ER、第1ハロ領域HR1、第2ハロ領域HR2、第5ハロ領域HR5、第6ハロ領域HR6、第9ハロ領域HR9、第10ハロ領域HR10が活性化される。 Next, referring to FIGS. 52A and 52B, a predetermined annealing process is performed to thermally diffuse the implanted impurities, thereby providing a first source / drain SD1 and a third source / drain SD3. , Fifth source / drain SD5, extension region ER, first halo region HR1, second halo region HR2, fifth halo region HR5, sixth halo region HR6, ninth halo region HR9, and tenth halo region HR10 are activated. Is done.
 このとき、不純物が熱拡散することで、第1ソース/ドレインSD1、第3ソース/ドレインSD3、第5ソース/ドレインSD5、エクステンション領域ER第1ハロ領域HR1、第2ハロ領域HR2、第5ハロ領域HR5、第6ハロ領域HR6、第9ハロ領域HR9、第10ハロ領域HR10は、横方向と縦(深さ)方向に広がることになる。 At this time, the impurities are thermally diffused, so that the first source / drain SD1, the third source / drain SD3, the fifth source / drain SD5, the extension region ER, the first halo region HR1, the second halo region HR2, the fifth halo. The region HR5, the sixth halo region HR6, the ninth halo region HR9, and the tenth halo region HR10 extend in the horizontal direction and the vertical (depth) direction.
 次に、図53(A)および(B)を参照して、サリサイドプロセスにより、露出している第1ソース/ドレインSD1、第3ソース/ドレインSD3、第5ソース/ドレインSD5、第1アクセスゲートAG1、第1ドライバゲートDG1、第3ドライバゲートDG3のポリシリコン膜PSの表面に、たとえばニッケルシリサイドなどの金属シリサイド膜SCLが形成される。 Next, referring to FIGS. 53A and 53B, the exposed first source / drain SD1, third source / drain SD3, fifth source / drain SD5, first access gate are exposed by the salicide process. A metal silicide film SCL such as nickel silicide is formed on the surface of the polysilicon film PS of the AG1, the first driver gate DG1, and the third driver gate DG3.
 次に、図54(A)および(B)を参照して、第1アクセスゲートAG1、第1ドライバゲートDG1および第3ドライバゲートDG3を覆うように、たとえば、シリコン窒化膜などのストレスライナー膜SLが形成される。そのストレスライナー膜SLを覆うように、シリコン酸化膜(たとえばTEOS膜)などの層間絶縁膜IL1が形成される。 Next, referring to FIGS. 54A and 54B, for example, a stress liner film SL such as a silicon nitride film so as to cover first access gate AG1, first driver gate DG1, and third driver gate DG3. Is formed. An interlayer insulating film IL1 such as a silicon oxide film (for example, a TEOS film) is formed so as to cover the stress liner film SL.
 次に、図55(A)および(B)を参照して、層間絶縁膜IL1に異方性エッチングを施すことにより、金属シリサイド膜SCLを露出するコンタクトホールCHが形成される。次に、コンタクトホールCHの内壁を覆うように、チタンナイトライド(TiN)などのバリア金属膜BA1が形成され、さらに、そのバリア金属膜BA1の上にコンタクトホールCH内を充填するようにタングステン膜TL1が形成される。 Next, referring to FIGS. 55A and 55B, the interlayer insulating film IL1 is anisotropically etched to form a contact hole CH that exposes the metal silicide film SCL. Next, a barrier metal film BA1 such as titanium nitride (TiN) is formed so as to cover the inner wall of the contact hole CH, and further, the tungsten film is filled on the barrier metal film BA1. TL1 is formed.
 次に、化学的機械研磨処理(CMP)を施すことにより、層間絶縁膜IL1の上面上に位置するバリア金属膜およびタングステン膜の部分が除去されて、図55(A)および(B)に示すように、コンタクトホールCH内に、バリア金属膜BA1とタングステン膜TL1を含むプラグPG1が形成される。 Next, by performing chemical mechanical polishing (CMP), the barrier metal film and the tungsten film located on the upper surface of the interlayer insulating film IL1 are removed, as shown in FIGS. 55A and 55B. Thus, the plug PG1 including the barrier metal film BA1 and the tungsten film TL1 is formed in the contact hole CH.
 なお、本実施の形態のこれ以外の構成および製造方法は、上述した実施の形態1の構成および製造方法と同様であるため同一の要素については同一の符号を付し、その説明を繰り返さない。 In addition, since the structure and manufacturing method of this embodiment other than this are the same as the structure and manufacturing method of Embodiment 1 mentioned above, the same code | symbol is attached | subjected about the same element and the description is not repeated.
 次に本実施の形態の半導体装置の作用効果について説明する。
 本実施の形態の半導体装置SCDによれば、第1アクセストランジスタNA1は第1ソース/ドレインSD1の他方に隣接する第1ハロ領域HR1と、第1ソース/ドレインSD1の一方に隣接し、第1ハロ領域HR1の不純物濃度より高い不純物濃度を有する第2ハロ領域HR2とを含んでいる。また第2アクセストランジスタNA2は第2ソース/ドレインSD2の他方に隣接する第3ハロ領域HR3と、第2ソース/ドレインSD2の一方に隣接し、第3ハロ領域HR3の不純物濃度より高い不純物濃度を有する第4ハロ領域HR4とを含んでいる。
Next, functions and effects of the semiconductor device of this embodiment will be described.
According to the semiconductor device SCD of the present embodiment, the first access transistor NA1 is adjacent to the first halo region HR1 adjacent to the other of the first source / drain SD1 and one of the first source / drain SD1, A second halo region HR2 having an impurity concentration higher than that of the halo region HR1. The second access transistor NA2 has a third halo region HR3 adjacent to the other of the second source / drain SD2 and an impurity concentration higher than the impurity concentration of the third halo region HR3 adjacent to one of the second source / drain SD2. And a fourth halo region HR4.
 読出しマージンおよび書込みマージンの双方を確保する手段として、電流の流れる向きにより電流特性が異なるという非対称な性質をもつトランジスタをアクセストランジスタに用いることが有効である。半導体装置SCDでは、第1アクセストランジスタNA1において第2ハロ領域HR2の不純物濃度が第1ハロ領域HR1の不純物濃度よりも高く設定されており、第2アクセストランジスタNA2において第4ハロ領域HR4の不純物濃度が第3ハロ領域HR3の不純物濃度よりも高く設定されている。つまり、第1アクセストランジスタNA1および第2アクセストランジスタNA2は非対称ハロ領域HRを有している。 As a means for ensuring both the read margin and the write margin, it is effective to use a transistor having an asymmetric property that the current characteristic varies depending on the direction of current flow as the access transistor. In the semiconductor device SCD, the impurity concentration of the second halo region HR2 in the first access transistor NA1 is set higher than the impurity concentration of the first halo region HR1, and the impurity concentration of the fourth halo region HR4 in the second access transistor NA2. Is set higher than the impurity concentration of the third halo region HR3. That is, the first access transistor NA1 and the second access transistor NA2 have the asymmetric halo region HR.
 図56を参照して、非対称ハロ領域HRによる動作マージンの向上について説明する。代表的に第1アクセストランジスタNA1について説明するが、第2アクセストランジスタNA2についても同様である。第1アクセストランジスタNA1において、相対的に不純物濃度が高い第2ハロ領域HR2が形成された側に位置する第1ソース/ドレインSD1の一方から相対的に不純物濃度が低い第1ハロ領域HR1が形成された側に位置する第1ソース/ドレインSD1の他方に向かって流れる電流を電流IFとし、その逆方向に向かって流れる電流を電流ISとする。 Referring to FIG. 56, the improvement of the operation margin by the asymmetric halo region HR will be described. The first access transistor NA1 will be typically described, but the same applies to the second access transistor NA2. In the first access transistor NA1, the first halo region HR1 having a relatively low impurity concentration is formed from one of the first source / drain SD1 located on the side where the second halo region HR2 having a relatively high impurity concentration is formed. The current flowing toward the other of the first source / drain SD1 located on the other side is defined as a current IF, and the current flowing in the opposite direction is defined as a current IS.
 図57を参照して、同一のソース対ドレイン電圧における、電流IF,ISとソース対ゲート電圧Vgsとの関係を説明する。すなわち、第2ハロ領域HR2側の第1ソース/ドレインSD1の一方から第1ハロ領域HR1側の第1ソース/ドレインSD1に電流が流れる際の第1アクセストランジスタNA1のしきい値電圧は、その逆の第1ハロ領域HR1側の第1ソース/ドレインSD1の他方から第2ハロ領域HR2側の第1ソース/ドレインSD1の一方に電流が流れる際の第1アクセストランジスタNA1のしきい値電圧よりも低くなる。 With reference to FIG. 57, the relationship between the currents IF and IS and the source-to-gate voltage Vgs at the same source-to-drain voltage will be described. That is, the threshold voltage of the first access transistor NA1 when current flows from one of the first source / drain SD1 on the second halo region HR2 side to the first source / drain SD1 on the first halo region HR1 side is: From the threshold voltage of the first access transistor NA1 when current flows from the other first source / drain SD1 on the opposite first halo region HR1 side to one of the first source / drain SD1 on the second halo region HR2 side. Also lower.
 このことから、不純物濃度が相対的に高い第2ハロ領域HR2を第1記憶ノードSN1側に形成し、不純物濃度が相対的に低い第1ハロ領域HR1を第1ビット線BL側に形成することで、読出し時において第1ビット線BLから第1記憶ノードSN1への電流を抑えやすく、かつ、書き込み時には第1記憶ノードSN1から第1ビット線BLへの電流を増加させやすくすることができる。 Therefore, the second halo region HR2 having a relatively high impurity concentration is formed on the first storage node SN1 side, and the first halo region HR1 having a relatively low impurity concentration is formed on the first bit line BL side. Thus, the current from the first bit line BL to the first storage node SN1 can be easily suppressed during reading, and the current from the first storage node SN1 to the first bit line BL can be easily increased during writing.
 SRAMメモリセルの読み出しマージンを確保するためにはβ比を高くすることが望ましく、書き込みマージンを高くするためにはγ比を高くすることが望ましい。γ比はロードトランジスタに対するアクセストランジスタの電流比(アクセストランジスタとロードトランジスタとの間で、ソース対ゲート電圧およびソース対ドレイン電圧はともに同一)で表される。 It is desirable to increase the β ratio in order to ensure the read margin of the SRAM memory cell, and it is desirable to increase the γ ratio in order to increase the write margin. The γ ratio is expressed by the current ratio of the access transistor to the load transistor (the source-to-gate voltage and the source-to-drain voltage are the same between the access transistor and the load transistor).
 本実施の形態では、β比を劣化させることなくγ比を高くすることができ、また、γ比を劣化させることなくβ比を高くすることができる。あるいは、β比とγ比の双方を高くすることができる。その結果、読み出しマージンと書き込みマージンを拡大することができる。 In the present embodiment, the γ ratio can be increased without deteriorating the β ratio, and the β ratio can be increased without deteriorating the γ ratio. Alternatively, both the β ratio and the γ ratio can be increased. As a result, the read margin and the write margin can be expanded.
 本実施の形態の半導体装置SCDでは、平面レイアウトにおいて、第1アクセスゲートAG1および第2アクセスゲートAG2、第1ドライバゲートDG1、第2ドライバゲートDG2、第1ロードゲートLG1および第2ロードゲートLG2の各々は同一方向に延在するように形成されている。そのため、ハロ領域HRを形成する際に、ハロ注入を2ステップ化(2方向)することができる。これにより、不純物ゆらぎ起因のローカルばらつきを低減することができる。 In the semiconductor device SCD of the present embodiment, the first access gate AG1 and the second access gate AG2, the first driver gate DG1, the second driver gate DG2, the first load gate LG1 and the second load gate LG2 in the planar layout. Each is formed to extend in the same direction. Therefore, when forming the halo region HR, the halo implantation can be performed in two steps (two directions). Thereby, local variations due to impurity fluctuations can be reduced.
 また、ゲートが同一方向に形成されているため、マスクずれに起因してハロ領域HRが十分に形成されないことを低減することができる。そのため、マスクずれに起因するローカルばらつきを低減することができる。 In addition, since the gates are formed in the same direction, it is possible to reduce that the halo regions HR are not sufficiently formed due to mask displacement. Therefore, local variations due to mask displacement can be reduced.
 本実施の形態の半導体装置SCDでは、SRAMメモリセルMC1とSRAMメモリセルMC2とにおいて、第1ドライバトランジスタND1、第2ドライバトランジスタND2、第1ロードトランジスタPL1、第2ロードトランジスタPL2のそれぞれは、平面レイアウトにおいて線対称(鏡面対称)に配置されている。 In the semiconductor device SCD of the present embodiment, each of the first driver transistor ND1, the second driver transistor ND2, the first load transistor PL1, and the second load transistor PL2 in the SRAM memory cell MC1 and the SRAM memory cell MC2 is a plane. They are arranged in line symmetry (mirror symmetry) in the layout.
 そのため、SRAMメモリセルMC1とSRAMメモリセルMC2とにおいて、第1ドライバトランジスタND1と第2ドライバトランジスタND2とを覆う直線状のレジストマスクRM11,RM12を用いてハロ領域HRを形成するためにハロ注入することができる。また第1ロードトランジスタPL1と第2ロードトランジスタPL2とを覆う直線状のレジストマスクを用いてハロ領域HRを形成するためにハロ注入することができる。このため、不純物ゆらぎ起因のローカルばらつきを低減することができる。 Therefore, in SRAM memory cell MC1 and SRAM memory cell MC2, halo implantation is performed to form halo region HR using linear resist masks RM11 and RM12 covering first driver transistor ND1 and second driver transistor ND2. be able to. Further, halo implantation can be performed to form the halo region HR using a linear resist mask covering the first load transistor PL1 and the second load transistor PL2. For this reason, local variations due to impurity fluctuations can be reduced.
 また、エクステンション領域ERとハロ領域HRとを同じレジストマスクRM11,RM12で形成することができる。さらにエクステンション領域ERとハロ領域HRとを形成するレジストマスクRM11,RM12とソース/ドレインを形成するレジストマスクRM13,RM14とを同じImplaマスク(フォトマスク)で形成することができる。このため、生産コストを低減することができる。 Further, the extension region ER and the halo region HR can be formed with the same resist masks RM11 and RM12. Further, the resist masks RM11 and RM12 for forming the extension region ER and the halo region HR and the resist masks RM13 and RM14 for forming the source / drain can be formed with the same Impla mask (photomask). For this reason, production cost can be reduced.
 また、ハロ注入に用いられるレジストマスクRM11,RM12では、開口部(抜きのパターン)として隣接するゲート間に比べて十分に大きい開口部が形成される。これにより、半導体基板SSの主表面に対して斜めにハロ注入してもレジストマスクRM11,RM12によってハロ注入が遮断されることが抑制される。このため、ハロ領域HRを確実に形成することができる。 Also, in the resist masks RM11 and RM12 used for the halo implantation, an opening that is sufficiently larger than between adjacent gates is formed as an opening (a blank pattern). Thereby, even if the halo implantation is performed obliquely with respect to the main surface of the semiconductor substrate SS, the halo implantation is prevented from being blocked by the resist masks RM11 and RM12. For this reason, the halo region HR can be reliably formed.
 本実施の形態の半導体装置SCDでは、平面レイアウトにおいて、1対の第3ソース/ドレインSD1の一方から他方に向かう第3の方向D3と、1対の第5ソース/ドレインSD5の一方から他方に向かう第5の方向D5とが反対であり、かつ1対の第4ソース/ドレインSD4の一方から他方に向かう第4の方向D4と、1対の第6ソース/ドレインSD6の一方から他方に向かう第6の方向D6とが反対である。そして、平面レイアウトにおいて、1対の第5ソース/ドレインSD5の一方から他方に向かう第5の方向D5と、1対の第6ソース/ドレインSD6の一方から他方に向かう第6の方向D6とが同じである。そしてSRAMメモリセルMC1およびSRAMメモリセルMC2のそれぞれの第5の方向D5同士が互いに同じ方向であり、かつ第6の方向D6同士が互いに同じ方向である。 In the semiconductor device SCD of the present embodiment, in the planar layout, the third direction D3 from one of the pair of third source / drain SD1 to the other and the one of the pair of fifth source / drain SD5 from one to the other. The fifth direction D5 is opposite, and the fourth direction D4 is directed from one of the pair of fourth source / drains SD4 to the other, and the one direction is directed from one of the pair of sixth source / drains SD6 to the other. The sixth direction D6 is opposite. In the planar layout, a fifth direction D5 extending from one of the pair of fifth source / drain SD5 to the other and a sixth direction D6 extending from one of the pair of sixth source / drain SD6 to the other are provided. The same. The fifth directions D5 of the SRAM memory cell MC1 and the SRAM memory cell MC2 are the same direction, and the sixth directions D6 are the same direction.
 第1ドライバトランジスタND1~第4ドライバトランジスタND4に非対称ハロ領域が形成されるが、第1ドライバトランジスタND1と第3ドライバトランジスタND3とは互いに向きが反対であり、第2ドライバトランジスタND2と第4ドライバトランジスタND4とは互いに向きが反対である。そのため、第1ドライバトランジスタND1と第3ドライバトランジスタND3とで非対称ハロ領域の影響がキャンセルされる。また第2ドライバトランジスタND2と第4ドライバトランジスタND4とで非対称ハロ領域の影響がキャンセルされる。このため、第1ドライバトランジスタND1および第3ドライバトランジスタND3と、第2ドライバトランジスタND2および第4ドライバトランジスタND4とによって、セルの左右インバータ特性はバランスが確保される。したがって、セル特性を向上させることができる。 Although an asymmetric halo region is formed in the first driver transistor ND1 to the fourth driver transistor ND4, the first driver transistor ND1 and the third driver transistor ND3 are opposite to each other, and the second driver transistor ND2 and the fourth driver transistor The direction of the transistor ND4 is opposite to that of the transistor ND4. Therefore, the influence of the asymmetric halo region is canceled by the first driver transistor ND1 and the third driver transistor ND3. Further, the influence of the asymmetric halo region is canceled by the second driver transistor ND2 and the fourth driver transistor ND4. For this reason, the first driver transistor ND1 and the third driver transistor ND3, and the second driver transistor ND2 and the fourth driver transistor ND4 ensure a balance between the left and right inverter characteristics of the cell. Therefore, cell characteristics can be improved.
 (実施の形態5)
 本発明の実施の形態5の半導体装置では、実施の形態1の半導体装置と比較して、ドライバトランジスタのしきい値電圧がアクセストランジスタのしきい値電圧より高くなっている点で主に異なっている。
(Embodiment 5)
The semiconductor device according to the fifth embodiment of the present invention is mainly different from the semiconductor device according to the first embodiment in that the threshold voltage of the driver transistor is higher than the threshold voltage of the access transistor. Yes.
 図58を参照して、第1アクセストランジスタNA1および第2アクセストランジスタNA2は非対称ハロ領域が形成されており、それぞれ濃いハロ領域DHIが形成されている。第1ドライバトランジスタND1および第3ドライバトランジスタND3は、第1アクセストランジスタNA1より高いしきい値電圧(Hvth)を有するように形成されている。第2ドライバトランジスタND2および第4ドライバトランジスタND4は第2アクセストランジスタNA2より高いしきい値電圧(Hvth)を有するように形成されている。 Referring to FIG. 58, first access transistor NA1 and second access transistor NA2 are formed with asymmetric halo regions, and dark halo regions DHI are formed respectively. The first driver transistor ND1 and the third driver transistor ND3 are formed to have a higher threshold voltage (Hvth) than the first access transistor NA1. The second driver transistor ND2 and the fourth driver transistor ND4 are formed to have a higher threshold voltage (Hvth) than the second access transistor NA2.
 本実施の形態の半導体装置SCDの製造方法において、第1,第2アクセストランジスタNA1,NA2、第1~第4ドライバトランジスタND1~ND4にハロ領域HRを形成するためのハロ注入が行われる。その後、図59を参照して、第1~第4ドライバトランジスタND1~ND4を開口するようにレジストマスクRM21が形成される。レジストマスクRM21を注入マスクとして、2方向ハロ注入が行われる。 In the method of manufacturing the semiconductor device SCD of the present embodiment, halo implantation for forming the halo region HR is performed in the first and second access transistors NA1 and NA2 and the first to fourth driver transistors ND1 to ND4. Thereafter, referring to FIG. 59, a resist mask RM21 is formed so as to open first to fourth driver transistors ND1 to ND4. Bidirectional halo implantation is performed using resist mask RM21 as an implantation mask.
 これにより、第1ドライバトランジスタND1~第4ドライバトランジスタND4の各々のドライバゲートDG1~DG4の直下の領域においてハロ領域の濃度が高くなる。そのため、第1~第4ドライバトランジスタND1~ND4のしきい値電圧が第1および第2アクセストランジスタNA1,NA2のしきい値電圧より高くなる。 Thereby, the concentration of the halo region is increased in the region immediately below the driver gates DG1 to DG4 of the first driver transistor ND1 to the fourth driver transistor ND4. Therefore, the threshold voltages of the first to fourth driver transistors ND1 to ND4 are higher than the threshold voltages of the first and second access transistors NA1 and NA2.
 なお、本実施の形態のこれ以外の構成および製造方法は、上述した実施の形態1の構成および製造方法と同様であるため同一の要素については同一の符号を付し、その説明を繰り返さない。 In addition, since the structure and manufacturing method of this embodiment other than this are the same as the structure and manufacturing method of Embodiment 1 mentioned above, the same code | symbol is attached | subjected about the same element and the description is not repeated.
 本実施の形態の半導体装置SCDによれば第1ドライバトランジスタND1および第2ドライバトランジスタND2は、第1アクセストランジスタNA1および第2アクセストランジスタNA2のしきい値電圧より高いしきい値電圧を有するように設けられている。そのため、第1ドライバトランジスタND1および第2ドライバトランジスタND2のリーク電流を低減することができる。これにより、セル特性のばらつきを低減させることができる。また、消費電力を低減することができる。 According to the semiconductor device SCD of the present embodiment, the first driver transistor ND1 and the second driver transistor ND2 have threshold voltages higher than the threshold voltages of the first access transistor NA1 and the second access transistor NA2. Is provided. Therefore, the leakage current of the first driver transistor ND1 and the second driver transistor ND2 can be reduced. Thereby, variation in cell characteristics can be reduced. In addition, power consumption can be reduced.
 (実施の形態6)
 本発明の実施の形態6の半導体装置では、アクセストランジスタを形成する活性領域が複数のSRAMメモリセル間も連続して延伸している点と、接地配線の上層と下層とを電気的に接続するシャントが形成されている点で主に異なっている。
(Embodiment 6)
In the semiconductor device according to the sixth embodiment of the present invention, the active region that forms the access transistor is electrically connected to the upper layer and the lower layer of the ground wiring, with the point that the active region continuously extends between the plurality of SRAM memory cells. Mainly different in that shunts are formed.
 図60は、SRAMメモリセルの各トランジスタと第3金属配線との接続関係を示す概略平面図である。図61は、各トランジスタと第1金属配線との接続構造を示す概略平面図である。図62は、図61においてSRAMメモリセルMC1の第1アクセストランジスタNA1と、ダミートランジスタDNMとを通るように第1アクセスゲートAG1の延在方向に直交する断面線LXII-LXIIに沿う概略断面図である。図63は、第2の金属配線と第3の金属配線との接続構造を示す平面図である。図64は、図60の平面レイアウトにあわせて示したSRAMメモリセルの等価回路を示す図である。
 図60および図61を参照して、平面レイアウトにおいて、第1ビット線BLおよび第2ビット線/BLはSRAMメモリセルMC1を横断して延在している。SRAMメモリセルMC1と図示しないSRAMメモリセルMC2とは、第1ビット線BLおよび第2ビット線/BLが延在する方向に互いに隣接して配置されている。
FIG. 60 is a schematic plan view showing a connection relationship between each transistor of the SRAM memory cell and the third metal wiring. FIG. 61 is a schematic plan view showing a connection structure between each transistor and the first metal wiring. FIG. 62 is a schematic cross sectional view taken along a cross sectional line LXII-LXII orthogonal to the extending direction of the first access gate AG1 so as to pass through the first access transistor NA1 of the SRAM memory cell MC1 and the dummy transistor DNM in FIG. is there. FIG. 63 is a plan view showing a connection structure between the second metal wiring and the third metal wiring. FIG. 64 is a diagram showing an equivalent circuit of the SRAM memory cell shown in conformity with the planar layout of FIG.
Referring to FIGS. 60 and 61, in the planar layout, first bit line BL and second bit line / BL extend across SRAM memory cell MC1. SRAM memory cell MC1 and SRAM memory cell MC2 (not shown) are arranged adjacent to each other in the direction in which first bit line BL and second bit line / BL extend.
 SRAMメモリセルMC1およびSRAMメモリセルMC2(図示せず)の第1アクセストランジスタNA1の第1ソース/ドレインSD1および第2アクセストランジスタNA2の第2ソース/ドレインSD2を形成する活性領域ARは、連続して延びて、SRAMメモリセルMC1とSRAMメモリセルMC2(図示せず)とを横断するように設けられている。 The active regions AR forming the first source / drain SD1 of the first access transistor NA1 and the second source / drain SD2 of the second access transistor NA2 of the SRAM memory cell MC1 and the SRAM memory cell MC2 (not shown) are continuous. And extending across the SRAM memory cell MC1 and the SRAM memory cell MC2 (not shown).
 第1アクセストランジスタNA1側に形成されたダミートランジスタDNMのダミーゲートDUはコンタクトC3、第1金属配線M15、ヴィアホールV12、第2金属配線M28、ヴィアホールV23を介してワード線WLに電気的に接続されている。第2アクセストランジスタNA2側に形成されたダミーゲートDUはコンタクトC13、第1金属配線M16、ヴィアホールV13、第2金属配線M29、ヴィアホールV24を介してワード線WLに電気的に接続されている。 The dummy gate DU of the dummy transistor DNM formed on the first access transistor NA1 side is electrically connected to the word line WL via the contact C3, the first metal wiring M15, the via hole V12, the second metal wiring M28, and the via hole V23. It is connected. The dummy gate DU formed on the second access transistor NA2 side is electrically connected to the word line WL via the contact C13, the first metal wiring M16, the via hole V13, the second metal wiring M29, and the via hole V24. .
 図62を参照して、ダミートランジスタDNMのダミーゲートDUに常時接地電気が印加されている。そのため、ダミートランジスタDNMは、常時オフとなる。したがって、ダミートランジスタDNMには電流が流れない。 Referring to FIG. 62, ground electricity is always applied to dummy gate DU of dummy transistor DNM. Therefore, the dummy transistor DNM is always off. Therefore, no current flows through the dummy transistor DNM.
 図60および図63を参照して、代表的にSRAMメモリセルMC1について説明するが、SRAMメモリセルMC2についても同様である。SRAMメモリセルMC1において、第2金属配線である接地配線(下層配線)VSSが平面レイアウトにおいて第1ビット線BLに沿うように形成されている。第3金属配線である接地配線(上層配線)VSSが接地配線(下層配線)VSSの上に配置されている。接地配線(上層配線)VSSは平面視において接地配線(下層配線)VSSと交差する方向に延びるように形成されている。 Referring to FIG. 60 and FIG. 63, the SRAM memory cell MC1 will be typically described, but the same applies to the SRAM memory cell MC2. In the SRAM memory cell MC1, the ground wiring (lower layer wiring) VSS, which is the second metal wiring, is formed along the first bit line BL in the planar layout. The ground wiring (upper layer wiring) VSS, which is the third metal wiring, is disposed on the ground wiring (lower layer wiring) VSS. The ground wiring (upper layer wiring) VSS is formed to extend in a direction crossing the ground wiring (lower layer wiring) VSS in plan view.
 第3ドライバトランジスタND3の上において、接地配線(下層配線)VSSと設置配線(上層配線)VSSとがシャントであるヴィアホールV25によって電気的に接続されている。第4ドライバトランジスタND4の上において、接地配線(下層配線)VSSと設置配線(上層配線)VSSとがシャントであるヴィアホールV26によって電気的に接続されている。 On the third driver transistor ND3, the ground wiring (lower layer wiring) VSS and the installation wiring (upper layer wiring) VSS are electrically connected by a via hole V25 that is a shunt. On the fourth driver transistor ND4, the ground wiring (lower layer wiring) VSS and the installation wiring (upper layer wiring) VSS are electrically connected by a via hole V26 that is a shunt.
 図64に示すように、第1アクセストランジスタNA1側に形成されたダミートランジスタDNMは第1ビット線BLに電気的に接続されており、第2アクセストランジスタNA2側に形成されたダミートランジスタDNMは第2ビット線/BLに電気的に接続されている。 As shown in FIG. 64, the dummy transistor DNM formed on the first access transistor NA1 side is electrically connected to the first bit line BL, and the dummy transistor DNM formed on the second access transistor NA2 side is It is electrically connected to the 2-bit line / BL.
 図65に示すように、本実施の形態の半導体装置SCDにおいても実施の形態1と同様にローカルインタコネクタLICを適用することができる。この場合、ローカルインタコネクタLICの構造および製造方法は実施の形態1と同様である。 As shown in FIG. 65, the local interconnector LIC can be applied to the semiconductor device SCD of the present embodiment as in the first embodiment. In this case, the structure and manufacturing method of the local interconnector LIC are the same as those in the first embodiment.
 なお、本実施の形態のこれ以外の構成および製造方法は、上述した実施の形態1の構成および製造方法と同様であるため同一の要素については同一の符号を付し、その説明を繰り返さない。 In addition, since the structure and manufacturing method of this embodiment other than this are the same as the structure and manufacturing method of Embodiment 1 mentioned above, the same code | symbol is attached | subjected about the same element and the description is not repeated.
 本実施の形態の半導体装置SCDによれば、平面レイアウトにおいて、第1ビット線BLおよび第2ビット線/BLがSRAMメモリセルMC1を横断して延在する方向に互いに隣接して配置されたSRAMメモリセルMC1およびSRAMメモリセルMC2の第1アクセストランジスタNA1および第2アクセストランジスタNA2の第1ソース/ドレインSD1および第2ソース/ドレインSDを形成する活性領域ARは、連続して延びて、SRAMメモリセルMC1およびSRAMメモリセルMC2を横断するように設けられている。 According to the semiconductor device SCD of the present embodiment, in the planar layout, the SRAM in which the first bit line BL and the second bit line / BL are arranged adjacent to each other in the direction extending across the SRAM memory cell MC1. The active regions AR forming the first source / drain SD1 and the second source / drain SD of the first access transistor NA1 and the second access transistor NA2 of the memory cell MC1 and the SRAM memory cell MC2 extend continuously, and the SRAM memory It is provided so as to cross the cell MC1 and the SRAM memory cell MC2.
 活性領域ARが連続して延びるように形成されているため、活性領域ARを形成するためのマスクずれなどによる仕上がり寸法のばらつきを小さくすることができる。また活性領域ARが長方形に形成されるため、RDR(Restridted Design Rule)の観点よりリソグラフィが容易になる。そのため微細加工が容易になる。これにより、グローバルばらつきを低減することができる。 Since the active region AR is formed so as to extend continuously, it is possible to reduce variations in the finished dimensions due to mask displacement or the like for forming the active region AR. Further, since the active region AR is formed in a rectangular shape, lithography is facilitated from the viewpoint of RDR (Restrained Design Rule). Therefore, fine processing becomes easy. Thereby, global variation can be reduced.
 また活性領域ARが連続して延びるように形成されているため、活性領域ARにかかるストレスによってオン電流(Ion)が向上する。そのため、セル電流が増加する。これにより動作速度を向上することができる。 Further, since the active region AR is formed so as to extend continuously, the on-current (Ion) is improved by the stress applied to the active region AR. Therefore, the cell current increases. As a result, the operation speed can be improved.
 本実施の形態の半導体装置SCDによれば、SRAMメモリセルMC1およびSRAMメモリセルMC2のそれぞれは、接地配線(下層配線)VSSと、接地配線(下層配線)VSSの上に位置し、かつ平面視において接地配線(下層配線)VSSと交差する方向に延びる接地配線(上層配線)VSSとを含んでいる。接地配線(下層配線)VSSと接地配線(上層配線)VSSとが電気的に接続されている。 According to the semiconductor device SCD of the present embodiment, each of the SRAM memory cell MC1 and the SRAM memory cell MC2 is located on the ground wiring (lower layer wiring) VSS and the ground wiring (lower layer wiring) VSS and is viewed in plan view. 1 includes a ground wiring (upper layer wiring) VSS extending in a direction intersecting with the ground wiring (lower layer wiring) VSS. The ground wiring (lower layer wiring) VSS and the ground wiring (upper layer wiring) VSS are electrically connected.
 接地配線(下層配線)VSSと接地配線(上層配線)VSSとがシャントで電気的に接続されているため、接地配線VSSがメッシュ状に形成される。そのため、IRドロップを低減することができる。 Since the ground wiring (lower layer wiring) VSS and the ground wiring (upper layer wiring) VSS are electrically connected by a shunt, the ground wiring VSS is formed in a mesh shape. Therefore, IR drop can be reduced.
 上記の各実施の形態は、適時組み合わせることができる。
 今回開示された実施の形態はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は上記した説明ではなくて請求の範囲によって示され、請求の範囲と均等の意味および範囲内でのすべての変更が含まれることを意図される。
The above embodiments can be combined in a timely manner.
The embodiment disclosed this time should be considered as illustrative in all points and not restrictive. The scope of the present invention is defined by the terms of the claims, rather than the description above, and is intended to include any modifications within the scope and meaning equivalent to the terms of the claims.
 本発明は、SRAMを備えた半導体装置に特に有利に適用され得る。 The present invention can be applied particularly advantageously to a semiconductor device including an SRAM.
 AG1 第1アクセスゲート、AG2 第2アクセスゲート、AR 活性領域、BA1~BA5 バリア金属膜、BL 第1ビット線、/BL 第2ビット線、C1~C21 コンタクト、CH コンタクトホール、CL1~CL3 銅膜、CW1~CW3 銅配線D1~D6 第1の方向~第6の方向、DG1~DG4 第1ドライバゲート~第4ドライバゲート、DHI 濃いハロ領域、DNM ダミートランジスタ、DU ダミーゲート、ER エクステンション領域、ES1,ES2 エッチングストッパ膜、FRN,FRP 素子形成領域、G ゲート構造、HK High-k膜、HR ハロ領域、HR1~HR12 第1ハロ領域~第12ハロ領域、IF,IS 電流、IL1~IL5 層間絶縁膜、IO IO領域、IR 素子分離領域、LC ロジック回路、LG1,LG2 ロードゲート、LIC ローカルインタコネクタ、M1~M32 金属配線、MA SRAMセルアレイ、MC 主制御回路、MC1,MC2 SRAMメモリセル、ML 金属膜、NA1 第1アクセストランジスタ、NA2 第2アクセストランジスタ、ND1~ND4 第1ドライバトランジスタ~第4ドライバトランジスタ、OSオフセットスペーサ、PG1,PG2 プラグ、PIR 型不純物領域、PL1 第1ロードトランジスタ、PL2 第2ロードトランジスタ、PS ポリシリコン膜、PW pウェル、R12~RM21 レジストマスク、RN NMIS領域、RP PMIS領域、SD1~SD6 第1ソース/ドレイン~第6ソース/ドレイン、SA センスアンプ、SCL 金属シリサイド膜、SCD 半導体装置、SF 界面層、SL ストレスライナー膜、SN1 第1記憶ノード、SN2 第2記憶ノード、SNI シリコン窒化膜、SO シリコン酸化膜、SR SRAM部 、SS 半導体基板、SW サイドウォールスペーサ、T1,T2 アクセストランジスタ、T3,T4 ドライバトランジスタ、T5,T6 ロードトランジスタ、TL1,TL2 タングステン膜、V1~V24 ヴィアホール、VDD 電源配線、Vgs ソース対ゲート電圧、VL 境界線、VSS 接地配線(接地電位)、WA1~WA4 ゲート幅、WD ライトドライバ、WL ワード線、XD Xデコーダ、YD Yデコーダ。 AG1 first access gate, AG2 second access gate, AR active region, BA1 to BA5 barrier metal film, BL first bit line, / BL second bit line, C1 to C21 contact, CH contact hole, CL1 to CL3 copper film , CW1 to CW3, copper wiring D1 to D6, first direction to sixth direction, DG1 to DG4, first driver gate to fourth driver gate, DHI dark halo region, DNM dummy transistor, DU dummy gate, ER extension region, ES1 , ES2 etching stopper film, FRN, FRP element formation region, G gate structure, HK High-k film, HR halo region, HR1-HR12, 1st halo region to 12th halo region, IF, IS current, IL1-IL5 interlayer insulation Membrane, IO IO area, IR Element isolation region, LC logic circuit, LG1, LG2 load gate, LIC local interconnector, M1 to M32 metal wiring, MA SRAM cell array, MC main control circuit, MC1, MC2 SRAM memory cell, ML metal film, NA1 first access transistor , NA2 second access transistor, ND1 to ND4, first driver transistor to fourth driver transistor, OS offset spacer, PG1, PG2 plug, PIR type impurity region, PL1 first load transistor, PL2 second load transistor, PS polysilicon film , PW p well, R12 to RM21 resist mask, RN NMIS region, RP PMIS region, SD1 to SD6 1st source / drain to 6th source / drain, SA SAMP, SCL metal silicide film, SCD semiconductor device, SF interface layer, SL stress liner film, SN1, first storage node, SN2, second storage node, SNI silicon nitride film, SO silicon oxide film, SR SRAM section, SS semiconductor substrate, SW sidewall spacer, T1, T2 access transistor, T3, T4 driver transistor, T5, T6 load transistor, TL1, TL2 tungsten film, V1 to V24 via hole, VDD power supply wiring, Vgs source-to-gate voltage, VL boundary line, VSS Ground wiring (ground potential), WA1 to WA4 gate width, WD write driver, WL word line, XD X decoder, YD Y decoder.

Claims (11)

  1.  平面レイアウトにおいて互いに隣接して配置された少なくとも2つのスタティックランダムアクセスメモリセル(MC1,MC2)を有する半導体装置SCDであって、
     前記少なくとも2つのスタティックランダムアクセスメモリセル(MC1,MC2)のそれぞれは、
     第1ドライバゲート(DG1)を有する第1ドライバトランジスタ(ND1)と、
     第1ロードゲート(LG1)を有し、かつ前記第1ドライバトランジスタ(ND1)に第1記憶ノード(SN1)で電気的に接続された第1ロードトランジスタ(PL1)と、
     第2ドライバゲート(DG2)を有する第2ドライバトランジスタ(ND2)と、
     第2ロードゲート(LG2)を有し、かつ前記第2ドライバトランジスタ(ND2)に第2記憶ノード(SN2)で電気的に接続された第2ロードトランジスタ(PL2)と、
     データの入出力を行う第1ビット線(BL)および第2ビット線(/BL)と、
     第1アクセスゲート(AG1)および1対の第1ソース/ドレイン(SD1)を有し、前記第1記憶ノード(SN1)に前記1対の第1ソース/ドレイン(SD1)の一方が電気的に接続され、かつ前記第1ビット線(B/L)に前記1対の第1ソース/ドレイン(SD1)の他方が電気的に接続された第1アクセストランジスタ(NA1)と、
     第2アクセスゲート(AG2)および1対の第2ソース/ドレイン(SD2)を有し、前記第2記憶ノード(SN2)に前記1対の第2ソース/ドレイン(SD2)の一方が電気的に接続され、かつ前記第2ビット線(/BL)に前記1対の第2ソース/ドレイン(SD2)の他方が電気的に接続された第2アクセストランジスタ(NA2)と、を備え、
     前記平面レイアウトにおいて、前記第1および第2アクセスゲート(AG1,AG2)、前記第1および第2ドライバゲート(DG1,DG2)および前記第1および第2ロードゲート(LG1,LG2)の各々が同一方向に延在しており、
     前記平面レイアウトにおいて、前記1対の第1ソース/ドレイン(SD1)の一方から他方に向かう第1の方向(D1)と、前記1対の第2ソース/ドレイン(SD2)の一方から他方に向かう第2の方向(D2)とが同じであり、
     前記少なくとも2つのスタティックランダムアクセスメモリセル(MC1,MC2)のそれぞれの前記第1の方向(D1)同士が互いに同じ方向であり、かつ前記第2の方向(D2)同士が互いに同じ方向である、半導体装置(SCD)。
    A semiconductor device SCD having at least two static random access memory cells (MC1, MC2) arranged adjacent to each other in a planar layout,
    Each of the at least two static random access memory cells (MC1, MC2)
    A first driver transistor (ND1) having a first driver gate (DG1);
    A first load transistor (PL1) having a first load gate (LG1) and electrically connected to the first driver transistor (ND1) at a first storage node (SN1);
    A second driver transistor (ND2) having a second driver gate (DG2);
    A second load transistor (PL2) having a second load gate (LG2) and electrically connected to the second driver transistor (ND2) at a second storage node (SN2);
    A first bit line (BL) and a second bit line (/ BL) for inputting and outputting data;
    A first access gate (AG1) and a pair of first source / drain (SD1), and one of the pair of first source / drain (SD1) is electrically connected to the first storage node (SN1); A first access transistor (NA1) connected to the first bit line (B / L) and electrically connected to the other of the pair of first source / drain (SD1);
    A second access gate (AG2) and a pair of second source / drain (SD2) are provided, and one of the pair of second source / drain (SD2) is electrically connected to the second storage node (SN2). A second access transistor (NA2) connected to the second bit line (/ BL) and electrically connected to the other of the pair of second source / drain (SD2),
    In the planar layout, the first and second access gates (AG1, AG2), the first and second driver gates (DG1, DG2), and the first and second load gates (LG1, LG2) are the same. Extending in the direction,
    In the planar layout, a first direction (D1) from one of the pair of first source / drains (SD1) toward the other and a direction from one of the pair of second source / drain (SD2) to the other. The second direction (D2) is the same,
    The first directions (D1) of the at least two static random access memory cells (MC1, MC2) are the same direction, and the second directions (D2) are the same direction. Semiconductor device (SCD).
  2.  前記平面レイアウトにおいて、前記第1および第2ビット線(BL,/BL)が前記スタティックランダムアクセスメモリセル(MC1)を横断して延在する方向に互いに隣接して配置された2つの前記スタティックランダムアクセスメモリセル(MC1,MC2)の前記第1および第2ドライバトランジスタ(ND1,ND2)と、前記第1および第2ロードトランジスタ(PL1,PL2)とのそれぞれは、
     前記平面レイアウトにおいて線対称に配置されている、請求の範囲第1項に記載の半導体装置(SCD)。
    In the planar layout, the two static random lines arranged adjacent to each other in a direction in which the first and second bit lines (BL, / BL) extend across the static random access memory cell (MC1). Each of the first and second driver transistors (ND1, ND2) of the access memory cells (MC1, MC2) and the first and second load transistors (PL1, PL2) are:
    The semiconductor device (SCD) according to claim 1, wherein the semiconductor device (SCD) is arranged in line symmetry in the planar layout.
  3.  前記第1および第2アクセストランジスタ(NA1,NA2)は、前記第1および第2ドライバトランジスタ(ND1,ND2)のしきい値電圧と異なるしきい値電圧を有するように設けられている、請求の範囲第1項に記載の半導体装置(SCD)。 The first and second access transistors (NA1, NA2) are provided to have threshold voltages different from the threshold voltages of the first and second driver transistors (ND1, ND2). The semiconductor device (SCD) according to the first item in the range.
  4.  前記第1および第2アクセストランジスタ(NA1,NA2)は、前記第1および第2ドライバトランジスタ(ND1,ND2)のしきい値電圧より高いしきい値電圧を有するように設けられている、請求の範囲第1項に記載の半導体装置(SCD)。 The first and second access transistors (NA1, NA2) are provided to have a threshold voltage higher than a threshold voltage of the first and second driver transistors (ND1, ND2). The semiconductor device (SCD) according to the first item in the range.
  5.  前記第1アクセストランジスタ(NA1)は、前記第1ソース/ドレイン(SD1)の他方に隣接し、前記第1ソース/ドレイン(SD1)の第1導電型の不純物とは異なる第2導電型の不純物を有する第1ハロ領域(HR1)と、
     前記第1ソース/ドレイン(SD1)の一方に隣接し、前記第1ハロ領域(HR1)の不純物濃度より高い不純物濃度の前記第2導電型の不純物を有する第2ハロ領域(HR2)と、を含み、
     前記第2アクセストランジスタ(NA2)は、前記第2ソース/ドレイン(SD2)の他方に隣接し、前記第2ソース/ドレイン(SD2)の第1導電型の不純物とは異なる第2導電型の不純物を有する第3ハロ領域(HR3)と、
     前記第2ソース/ドレイン(SD2)の一方に隣接し、前記第3ハロ領域(HR3)の不純物濃度より高い不純物濃度の前記第2導電型の不純物を有する第4ハロ領域(HR4)と、を含んでいる、請求の範囲第1項に記載の半導体装置(SCD)。
    The first access transistor (NA1) is adjacent to the other of the first source / drain (SD1) and has a second conductivity type impurity different from the first conductivity type impurity of the first source / drain (SD1). A first halo region (HR1) having
    A second halo region (HR2) having an impurity of the second conductivity type having an impurity concentration higher than the impurity concentration of the first halo region (HR1) adjacent to one of the first source / drain (SD1); Including
    The second access transistor (NA2) is adjacent to the other of the second source / drain (SD2) and has a second conductivity type impurity different from the first conductivity type impurity of the second source / drain (SD2). A third halo region (HR3) having
    A fourth halo region (HR4) adjacent to one of the second source / drain (SD2) and having an impurity of the second conductivity type having an impurity concentration higher than that of the third halo region (HR3); The semiconductor device (SCD) according to claim 1, further comprising:
  6.  前記第1ドライバトランジスタ(ND1)は、1対の第3ソース/ドレイン(SD3)を有し、
     前記第1記憶ノード(S/N1)に前記1対の第3ソース/ドレイン(SD3)の一方が電気的に接続され、かつ接地配線(VSS)に前記1対の第3ソース/ドレイン(SD3)の他方が電気的に接続されており、
     前記第2ドライバトランジスタ(ND2)は、1対の第4ソース/ドレイン(SD4)を有し、
     前記第2記憶ノード(SN2)に前記1対の第4ソース/ドレイン(SD4)の一方が電気的に接続され、かつ接地配線(VSS)に前記1対の第4ソース/ドレイン(SD4)の他方が電気的に接続されており、かつ、
     第3ドライバゲート(ND3)および1対の第5ソース/ドレイン(SD5)を有し、前記第1記憶ノード(SN1)に前記1対の第5ソース/ドレイン(SD5)の一方が電気的に接続され、かつ接地配線(VSS)に前記1対の第5ソース/ドレイン(SD5)の他方が電気的に接続された第3ドライバトランジスタ(ND3)と、
     第4ドライバゲート(DG4)および1対の第6ソース/ドレイン(SD6)を有し、前記第2記憶ノード(SN2)に前記1対の第6ソース/ドレイン(SD6)の一方が電気的に接続され、かつ接地配線(VSS)に前記1対の第6ソース/ドレイン(SD6)の他方が電気的に接続された第4ドライバトランジスタ(ND4)と、をさらに備え、
     前記平面レイアウトにおいて、前記第1および第2ドライバゲート(DG1,DG2)と、前記第3および第4ドライバゲート(DG3,DG4)との各々が同一方向に延在しており、
     前記平面レイアウトにおいて、前記1対の第3ソース/ドレイン(SD3)の一方から他方に向かう第3の方向(D3)と、前記1対の第5ソース/ドレイン(SD5)の一方から他方に向かう第5の方向(D5)とが反対であり、かつ前記1対の第4ソース/ドレイン(SD4)の一方から他方に向かう第4の方向(D4)と、前記1対の第6ソース/ドレイン(SD6)の一方から他方に向かう第6の方向(D6)とが反対であり、
     前記平面レイアウトにおいて、前記1対の第5ソース/ドレイン(SD5)の一方から他方に向かう第5の方向(D5)と、前記1対の第6ソース/ドレイン(SD6)の一方から他方に向かう第6の方向(D6)とが同じであり、
     前記少なくとも2つのスタティックランダムアクセスメモリセル(MC1,MC2)のそれぞれの前記第5の方向(D5)同士が互いに同じ方向であり、かつ前記第6の方向(D6)同士が互いに同じ方向である、請求の範囲第1項に記載の半導体装置(SCD)。
    The first driver transistor (ND1) has a pair of third source / drain (SD3),
    One of the pair of third source / drain (SD3) is electrically connected to the first storage node (S / N1), and the pair of third source / drain (SD3) is connected to a ground wiring (VSS). ) Is electrically connected,
    The second driver transistor (ND2) has a pair of fourth source / drain (SD4),
    One of the pair of fourth source / drain (SD4) is electrically connected to the second storage node (SN2), and the pair of fourth source / drain (SD4) is connected to a ground wiring (VSS). The other is electrically connected, and
    A third driver gate (ND3) and a pair of fifth source / drain (SD5) are provided, and one of the pair of fifth source / drain (SD5) is electrically connected to the first storage node (SN1). A third driver transistor (ND3) connected and grounded (VSS) with the other of the pair of fifth source / drain (SD5) electrically connected;
    A fourth driver gate (DG4) and a pair of sixth source / drain (SD6) are provided, and one of the pair of sixth source / drain (SD6) is electrically connected to the second storage node (SN2). A fourth driver transistor (ND4) connected to the ground wiring (VSS) and electrically connected to the other of the pair of sixth source / drain (SD6);
    In the planar layout, each of the first and second driver gates (DG1, DG2) and the third and fourth driver gates (DG3, DG4) extends in the same direction,
    In the planar layout, a third direction (D3) from one of the pair of third source / drain (SD3) to the other and a first direction from one of the pair of fifth source / drain (SD5) to the other. A fourth direction (D4) that is opposite to the fifth direction (D5) and goes from one of the pair of fourth source / drains (SD4) to the other, and the pair of sixth source / drains The sixth direction (D6) from one side of (SD6) to the other is opposite,
    In the planar layout, a fifth direction (D5) from one of the pair of fifth source / drains (SD5) to the other and a direction from one to the other of the pair of sixth source / drains (SD6). The sixth direction (D6) is the same,
    The fifth directions (D5) of each of the at least two static random access memory cells (MC1, MC2) are the same direction, and the sixth directions (D6) are the same direction. The semiconductor device (SCD) according to claim 1.
  7.  前記第1アクセストランジスタ(NA1)の前記第1アクセスゲート(AG1)の幅は、前記第1ドライバトランジスタ(ND1)の前記第1ドライバゲート(DG1)の幅(WA1)および前記第3ドライバトランジスタ(ND3)の前記第3ドライバゲート(DG3)の幅(WA3)より大きくなるように設けられており、
     前記第2アクセストランジスタ(NA2)の前記第2アクセスゲート(AG2)の幅は、前記第2ドライバトランジスタ(ND2)の前記第2ドライバゲート(DG2)の幅WA2および前記第4ドライバトランジスタ(ND4)の前記第4ドライバゲート(DG4)の幅WA4より大きくなるように設けられている、請求の範囲第6項に記載の半導体装置(SCD)。
    The width of the first access gate (AG1) of the first access transistor (NA1) is equal to the width (WA1) of the first driver gate (DG1) of the first driver transistor (ND1) and the third driver transistor ( ND3) is provided to be larger than the width (WA3) of the third driver gate (DG3),
    The width of the second access gate (AG2) of the second access transistor (NA2) is equal to the width WA2 of the second driver gate (DG2) of the second driver transistor (ND2) and the fourth driver transistor (ND4). 7. The semiconductor device (SCD) according to claim 6, wherein the semiconductor device (SCD) is provided to be larger than a width WA4 of the fourth driver gate (DG4).
  8.  前記第1ドライバトランジスタ(ND1)は、前記第1ドライバゲート(DG1)の直下の領域において、
     前記第3ソース/ドレイン(SD3)の他方に隣接し、前記第3ソース/ドレイン(SD3)の第1導電型の不純物とは異なる第2導電型の不純物を有する第5ハロ領域(HR5)と、
     前記第3ソース/ドレイン(SD3)の一方に隣接し、前記第5ハロ領域(HR5)の不純物濃度より高い不純物濃度の前記第2導電型の不純物を有する第6ハロ領域(HR6)とを含み、
     前記第2ドライバトランジスタ(ND2)は、前記第2ドライバゲート(DG2)の直下の領域において、
     前記第4ソース/ドレイン(SD4)の他方に隣接し、前記第4ソース/ドレイン(SD4)の第1導電型の不純物とは異なる第2導電型の不純物を有する第7ハロ領域(HR7)と、
     前記第4ソース/ドレイン(SD4)の一方に隣接し、前記第7ハロ領域(HR7)の不純物濃度より高い不純物濃度の前記第2導電型の不純物を有する第8ハロ領域(HR8)とを含み、
     前記第3ドライバトランジスタ(ND3)は、前記第3ドライバゲート(DG3)の直下の領域において、
     前記第5ソース/ドレイン(SD5)の一方に隣接し、前記第5ソース/ドレイン(SD5)の第1導電型の不純物とは異なる第2導電型の不純物を有する第9ハロ領域(HR9)と、
     前記第5ソース/ドレイン(SD5)の他方に隣接し、前記第9ハロ領域(HR9)の不純物濃度より高い不純物濃度の前記第2導電型の不純物を有する第10ハロ領域(HR10)とを含み、
     前記第4ドライバトランジスタ(ND4)は、前記第4ドライバゲート(DG4)の直下の領域において、
     前記第6ソース/ドレイン(SD6)の一方に隣接し、前記第6ソース/ドレイン(SD6)の第1導電型の不純物とは異なる第2導電型の不純物を有する第11ハロ領域(HR11)と、
     前記第6ソース/ドレイン(SD6)の他方に隣接し、前記第11ハロ領域(HR11)の不純物濃度より高い不純物濃度の前記第2導電型の不純物を有する第12ハロ領域(HR12)とを含んでいる、請求の範囲第6項に記載の半導体装置(SCD)。
    The first driver transistor (ND1) is located in a region immediately below the first driver gate (DG1).
    A fifth halo region (HR5) adjacent to the other of the third source / drain (SD3) and having a second conductivity type impurity different from the first conductivity type impurity of the third source / drain (SD3); ,
    A sixth halo region (HR6) having an impurity of the second conductivity type having an impurity concentration higher than that of the fifth halo region (HR5), adjacent to one of the third source / drain (SD3). ,
    The second driver transistor (ND2) has a region immediately below the second driver gate (DG2).
    A seventh halo region (HR7) adjacent to the other of the fourth source / drain (SD4) and having a second conductivity type impurity different from the first conductivity type impurity of the fourth source / drain (SD4); ,
    An eighth halo region (HR8) adjacent to one of the fourth source / drain (SD4) and having an impurity of the second conductivity type having an impurity concentration higher than that of the seventh halo region (HR7). ,
    The third driver transistor (ND3) is in a region immediately below the third driver gate (DG3).
    A ninth halo region (HR9) adjacent to one of the fifth source / drain (SD5) and having a second conductivity type impurity different from the first conductivity type impurity of the fifth source / drain (SD5); ,
    A tenth halo region (HR10) having an impurity of the second conductivity type having an impurity concentration higher than that of the ninth halo region (HR9) adjacent to the other of the fifth source / drain (SD5). ,
    The fourth driver transistor (ND4) is located in a region immediately below the fourth driver gate (DG4).
    An eleventh halo region (HR11) adjacent to one of the sixth source / drain (SD6) and having a second conductivity type impurity different from the first conductivity type impurity of the sixth source / drain (SD6); ,
    And a twelfth halo region (HR12) having an impurity of the second conductivity type having an impurity concentration higher than that of the eleventh halo region (HR11) adjacent to the other of the sixth source / drain (SD6). A semiconductor device (SCD) according to claim 6.
  9.  前記第1および第2ドライバトランジスタ(ND1,ND2)は、前記第1および第2アクセストランジスタ(NA1,NA2)のしきい値電圧より高いしきい値電圧を有するように設けられている、請求の範囲第1項に記載の半導体装置(SCD)。 The first and second driver transistors (ND1, ND2) are provided to have a threshold voltage higher than that of the first and second access transistors (NA1, NA2). The semiconductor device (SCD) according to the first item in the range.
  10.  前記平面レイアウトにおいて、前記第1および前記第2ビット線(BL,/BL)が前記スタティックランダムアクセスメモリセル(MC1)を横断して延在する方向に互いに隣接して配置された2つの前記スタティックランダムアクセスメモリセル(MC1,MC2)の前記第1および第2アクセストランジスタ(NA1,NA2)の前記第1および第2ソース/ドレイン(SD1,SD2)を形成する活性領域は、連続して延びて、2つの前記スタティックランダムアクセスメモリセル(MC1,MC2)を横断するように設けられている、請求の範囲第1項に記載の半導体装置(SCD)。 In the planar layout, the two static lines are arranged adjacent to each other in a direction in which the first and second bit lines (BL, / BL) extend across the static random access memory cell (MC1). The active regions forming the first and second source / drains (SD1, SD2) of the first and second access transistors (NA1, NA2) of the random access memory cells (MC1, MC2) extend continuously. The semiconductor device (SCD) according to claim 1, wherein the semiconductor device (SCD) is provided so as to traverse the two static random access memory cells (MC1, MC2).
  11.  前記少なくとも2つのスタティックランダムアクセスメモリセル(MC1,MC2)のそれぞれは、
     下層配線(VSS)と、
     前記下層配線(VSS)の上に位置し、かつ平面視において前記下層配線(VSS)と交差する方向に延びる上層配線(VSS)とを含み、
     前記下層配線(VSS)と前記上層配線(VSS)とが電気的に接続されている、請求の範囲第1項に記載の半導体装置(SCD)。
    Each of the at least two static random access memory cells (MC1, MC2)
    Underlayer wiring (VSS),
    An upper layer wiring (VSS) located on the lower layer wiring (VSS) and extending in a direction intersecting with the lower layer wiring (VSS) in plan view,
    The semiconductor device (SCD) according to claim 1, wherein the lower layer wiring (VSS) and the upper layer wiring (VSS) are electrically connected.
PCT/JP2010/063259 2010-08-05 2010-08-05 Semiconductor device WO2012017535A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2012527505A JP5433788B2 (en) 2010-08-05 2010-08-05 Semiconductor device
PCT/JP2010/063259 WO2012017535A1 (en) 2010-08-05 2010-08-05 Semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2010/063259 WO2012017535A1 (en) 2010-08-05 2010-08-05 Semiconductor device

Publications (1)

Publication Number Publication Date
WO2012017535A1 true WO2012017535A1 (en) 2012-02-09

Family

ID=45559066

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/063259 WO2012017535A1 (en) 2010-08-05 2010-08-05 Semiconductor device

Country Status (2)

Country Link
JP (1) JP5433788B2 (en)
WO (1) WO2012017535A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5658822B2 (en) * 2011-07-29 2015-01-28 ルネサスエレクトロニクス株式会社 Semiconductor device and manufacturing method thereof
WO2019159739A1 (en) * 2018-02-15 2019-08-22 株式会社ソシオネクスト Semiconductor integrated circuit device
CN110391237A (en) * 2018-04-20 2019-10-29 台湾积体电路制造股份有限公司 Memory cell array and forming method thereof

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11111860A (en) * 1997-10-06 1999-04-23 Mitsubishi Electric Corp Semiconductor device
JP2002043441A (en) * 2000-05-16 2002-02-08 Mitsubishi Electric Corp Semiconductor memory
JP2004335535A (en) * 2003-04-30 2004-11-25 Renesas Technology Corp Semiconductor storage device
JP2008004664A (en) * 2006-06-21 2008-01-10 Matsushita Electric Ind Co Ltd Semiconductor device
JP2008177278A (en) * 2007-01-17 2008-07-31 Toshiba Corp Static semiconductor storage device
JP2008205168A (en) * 2007-02-20 2008-09-04 Fujitsu Ltd Semiconductor device and method of manufacturing the same

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3637299B2 (en) * 2001-10-05 2005-04-13 松下電器産業株式会社 Semiconductor memory device
JP2008004684A (en) * 2006-06-21 2008-01-10 Toshiba Corp Solid-state imaging device
WO2009095999A1 (en) * 2008-01-29 2009-08-06 Unisantis Electronics (Japan) Ltd. Semiconductor storage device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11111860A (en) * 1997-10-06 1999-04-23 Mitsubishi Electric Corp Semiconductor device
JP2002043441A (en) * 2000-05-16 2002-02-08 Mitsubishi Electric Corp Semiconductor memory
JP2004335535A (en) * 2003-04-30 2004-11-25 Renesas Technology Corp Semiconductor storage device
JP2008004664A (en) * 2006-06-21 2008-01-10 Matsushita Electric Ind Co Ltd Semiconductor device
JP2008177278A (en) * 2007-01-17 2008-07-31 Toshiba Corp Static semiconductor storage device
JP2008205168A (en) * 2007-02-20 2008-09-04 Fujitsu Ltd Semiconductor device and method of manufacturing the same

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5658822B2 (en) * 2011-07-29 2015-01-28 ルネサスエレクトロニクス株式会社 Semiconductor device and manufacturing method thereof
WO2019159739A1 (en) * 2018-02-15 2019-08-22 株式会社ソシオネクスト Semiconductor integrated circuit device
US11062765B2 (en) 2018-02-15 2021-07-13 Socionext Inc. Semiconductor integrated circuit device
CN110391237A (en) * 2018-04-20 2019-10-29 台湾积体电路制造股份有限公司 Memory cell array and forming method thereof
CN110391237B (en) * 2018-04-20 2022-02-18 台湾积体电路制造股份有限公司 Memory cell array and forming method thereof

Also Published As

Publication number Publication date
JP5433788B2 (en) 2014-03-05
JPWO2012017535A1 (en) 2013-09-19

Similar Documents

Publication Publication Date Title
US10096608B2 (en) Semiconductor device including memory cell array and power supply region
US8169030B2 (en) Semiconductor memory device and production method thereof
KR101547445B1 (en) Sram cells and arrays
JP5561823B2 (en) Semiconductor device manufacturing method and semiconductor device
JP5658822B2 (en) Semiconductor device and manufacturing method thereof
CN103915112A (en) Dual-Port SRAM Connection Structure
TW201338135A (en) Structure and method for a SRAM circuit
JP2007234804A (en) Semiconductor memory device
WO2016117288A1 (en) Semiconductor integrated circuit device
US10672770B2 (en) Semiconductor structure
CN111524889A (en) Static random access memory
JP5433788B2 (en) Semiconductor device
US10460794B1 (en) SRAM array
JP4466732B2 (en) Semiconductor memory device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10855625

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012527505

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10855625

Country of ref document: EP

Kind code of ref document: A1