WO2012015086A1 - 원심 필터 - Google Patents

원심 필터 Download PDF

Info

Publication number
WO2012015086A1
WO2012015086A1 PCT/KR2010/005012 KR2010005012W WO2012015086A1 WO 2012015086 A1 WO2012015086 A1 WO 2012015086A1 KR 2010005012 W KR2010005012 W KR 2010005012W WO 2012015086 A1 WO2012015086 A1 WO 2012015086A1
Authority
WO
WIPO (PCT)
Prior art keywords
fluid
centrifugal filter
spindle tube
rotor structure
centrifugal
Prior art date
Application number
PCT/KR2010/005012
Other languages
English (en)
French (fr)
Inventor
김용근
공건수
도덕희
Original Assignee
신흥정공(주)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 신흥정공(주) filed Critical 신흥정공(주)
Priority to US13/500,713 priority Critical patent/US8931645B2/en
Priority to CN2010800394639A priority patent/CN102481584B/zh
Publication of WO2012015086A1 publication Critical patent/WO2012015086A1/ko

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B04CENTRIFUGAL APPARATUS OR MACHINES FOR CARRYING-OUT PHYSICAL OR CHEMICAL PROCESSES
    • B04BCENTRIFUGES
    • B04B9/00Drives specially designed for centrifuges; Arrangement or disposition of transmission gearing; Suspending or balancing rotary bowls
    • B04B9/06Fluid drive
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B04CENTRIFUGAL APPARATUS OR MACHINES FOR CARRYING-OUT PHYSICAL OR CHEMICAL PROCESSES
    • B04BCENTRIFUGES
    • B04B5/00Other centrifuges
    • B04B5/005Centrifugal separators or filters for fluid circulation systems, e.g. for lubricant oil circulation systems
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B04CENTRIFUGAL APPARATUS OR MACHINES FOR CARRYING-OUT PHYSICAL OR CHEMICAL PROCESSES
    • B04BCENTRIFUGES
    • B04B11/00Feeding, charging, or discharging bowls
    • B04B11/06Arrangement of distributors or collectors in centrifuges
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01MLUBRICATING OF MACHINES OR ENGINES IN GENERAL; LUBRICATING INTERNAL COMBUSTION ENGINES; CRANKCASE VENTILATING
    • F01M1/00Pressure lubrication
    • F01M1/10Lubricating systems characterised by the provision therein of lubricant venting or purifying means, e.g. of filters
    • F01M2001/1028Lubricating systems characterised by the provision therein of lubricant venting or purifying means, e.g. of filters characterised by the type of purification
    • F01M2001/1035Lubricating systems characterised by the provision therein of lubricant venting or purifying means, e.g. of filters characterised by the type of purification comprising centrifugal filters

Definitions

  • the present invention relates to a centrifugal filter.
  • the fluid ejected from the spindle tube located in the center of the centrifugal filter to the inside of the rotor structure can reach the filtration paper provided on the inner wall surface of the rotor structure over a large area.
  • the present invention relates to a centrifugal filter that improves the separation efficiency of impurities by improving the structure of the jet port provided in the spindle tube.
  • centrifugal filter refers to a filter that separates impurities in a fluid by using centrifugal force.
  • Various centrifugal filters are used.
  • the ability to filter impurities contained in fluids is an important factor in determining the performance and life of an engine or a fluid machine.In the case of an engine or a fluid machine, if the impurities contained in the fluid are not sufficiently filtered, the engine or It will cause damage to the fluid machine and cause huge damage.
  • FIG. 1 shows a cross-sectional view of a conventional centrifugal filter.
  • Conventional centrifugal filter has a shaft (10) formed inside the flow path through which the fluid flows, and the filtration paper 21 for filtering the impurities to generate centrifugal force by rotating around the shaft (10) on the inner wall surface
  • Spinner tube having a rotor structure 20 and the rotor structure 20 rotates about the shaft 10 and receives fluid through the shaft 10 to eject the fluid into the rotor structure 20.
  • (30) and the inner space of the rotor structure 20 to separate the upper and lower impurity foreign matter separated from the fluid by the centrifugal force is accumulated in the upper space (S1), the filtered fluid flows into the lower space (S2) It is composed of a separator 40 to be discharged through the nozzle 50 provided at the lower end of the rotor structure (20).
  • the fluid flowing through the shaft 10 is injected into the rotor structure 20 through the nozzle holes 31 formed in the spindle tube 30, and the rotor structure 20 Due to the centrifugal force generated by the rotation, impurities in the fluid are separated while being loaded on the wall surface or the separator of the rotor structure 20, and the filtered fluid is introduced into the lower space S2 of the rotor through the disk 40. It is sprayed through the nozzle 50.
  • the nozzle holes formed in the spindle tube are formed by simply drilling holes on the circumference of the spindle tube so that the fluid ejected through the nozzle holes is not sufficiently dispersed in the rotor structure. Since it reaches the filtration paper provided on the wall, the fluid is concentrated on a specific portion of the filtration paper, as well as the separation efficiency of impurities by the paper, as well as has a problem that the paper is easily damaged.
  • the present invention has been made in view of the above problems, and an object of the present invention is to allow the fluid ejected into the rotor structure through the spindle tube to reach the filtration paper over a large area with sufficient dispersion of impurities. It is to provide a centrifugal filter with improved separation efficiency.
  • Another object of the present invention is to provide a centrifugal filter having a rectangular outlet for easily discharging the fluid remaining in the rotor structure when the centrifugal filter is stopped.
  • the centrifugal filter of the present invention to achieve the object as described above and to perform the problem for removing the conventional defects, and the shaft is formed therein, the flow path in which the fluid is introduced, and rotates about the axis to generate a centrifugal force for filtration
  • a rotor structure including paper on an inner wall surface, a spindle tube that rotates about an axis together with the rotor structure, and ejects the fluid flowing through the shaft into the rotor structure, and separates the inner space of the rotor structure into upper and lower parts and in and out
  • the centrifugal filter having a separation membrane so that impurities separated from the fluid by the centrifugal force is accumulated in the upper space, and the filtered fluid flows to the lower space to be discharged through a nozzle provided at the lower end of the rotor structure
  • the spindle tube Fluid spreading from the rotor structure into the rotor structure A spreading means for forming the ejected in a rectangular shape is characterized in that provided in
  • the diffusion means is mounted to the spindle tube to eject the fluid flowing from the spindle tube into the interior of the rotor structure, a plurality of outlets having a rectangular structure so that the fluid ejected into the rotor structure is widely spread on the circumference It may be configured as a nozzle cap.
  • the ejection opening may be formed to be inclined in a direction opposite to the rotation direction of the rotor structure for effective diffusion of the fluid, and may be formed to be inclined upwardly.
  • the ejection opening extending in the rectangular structure is preferably extended in the vertical direction, the inner surface is formed with a plurality of projections for dispersing the fluid.
  • the diffusion means is formed on the circumference of the spindle tube, it may be composed of a plurality of ejection openings having a rectangular structure to diffuse the fluid ejected from the spindle tube.
  • the ejection opening may be formed to be inclined in a direction opposite to the rotation direction of the rotor structure for effective diffusion of the fluid, and may be formed to be inclined upwardly.
  • the ejection opening extending in the rectangular structure preferably extends in the vertical direction, and a plurality of protrusions are formed on the inner surface to disperse the fluid.
  • the diffusion means are arranged adjacent to each other in one of the vertical direction, the horizontal direction or the diagonal direction to form a plurality of ejection air groups consisting of a plurality of ejection holes for ejecting the fluid in a rectangular structure formed on the circumference of the spindle tube It may consist of.
  • the ejection holes are formed to be inclined in the direction opposite to the rotation direction of the spindle tube.
  • the diffusion means is mounted to the spindle tube to eject the fluid flowing from the spindle tube into the interior of the rotor structure, and is disposed adjacent to each other in any one of the vertical direction, horizontal direction or diagonal direction to eject the fluid in a rectangular structure. It may be composed of a nozzle cap having a plurality of blower air group consisting of a plurality of blower holes on the circumference.
  • the ejection holes are formed to be inclined in the direction opposite to the rotation direction of the spindle tube.
  • the separator is formed with a discharge port for discharging the fluid remaining in the upper space to the lower space when the centrifugal filter is stopped.
  • the upper end of the separation membrane may be configured to be completely open structure so that the filtered fluid flows into the lower space by flowing over.
  • the fluid injected into the rotor reaches the filtration paper over a larger area than the conventional centrifugal filter, it is possible to improve the separation efficiency of impurities.
  • FIG. 1 is a cross-sectional view of a conventional centrifugal filter
  • FIG. 2 is a cross-sectional view of a centrifugal filter according to a preferred embodiment of the present invention
  • FIG. 3 is a perspective view showing an example of the diffusion means according to the invention.
  • FIG. 4 is a cross-sectional view showing a state in which the nozzle cap shown in Figure 3 is coupled to the spindle tube
  • FIG. 5 is a front view showing the structure of the rectangular jet port extending in the vertical direction
  • FIG. 6 is a front view showing the structure of a rectangular spout extending in the horizontal direction
  • FIG. 7 is a front view showing the structure of a rectangular jet opening extending in a diagonal direction
  • FIG. 8 is a plan view of a nozzle cap having a spout formed inclined in a direction opposite to the rotation direction of the nozzle cap;
  • FIG. 9 is a cross-sectional view of the nozzle cap showing the cross-sectional structure of the jet port
  • FIG. 10 is a side view showing a structure in which protrusions are formed on an inner surface of a jet hole according to the present invention.
  • FIG. 11 is a perspective view showing another structure of the diffusion means according to the present invention.
  • FIG. 12 is a plan view of a spindle tube having a spout formed obliquely in a direction opposite to the direction of rotation of the spindle tube;
  • FIG. 13 is a cross-sectional view of the spindle tube showing the cross-sectional structure of the jet port;
  • FIG. 14 is a side view showing a structure in which protrusions are formed on an inner surface of a jet hole according to the present invention.
  • FIG. 15 is a perspective view showing another structure of the diffusion means according to the present invention.
  • 16 is a plan view of a spindle tube having a spout formed inclined in a direction opposite to the direction of rotation of the spindle tube;
  • FIG. 17 is a perspective view showing another structure of the diffusion means according to the present invention.
  • FIG. 18 is a cross-sectional view showing a state in which the nozzle cap shown in Figure 17 is coupled to the spindle tube,
  • 19 is a plan view of a nozzle cap having blow holes formed to be inclined in a direction opposite to the rotational direction of the nozzle cap;
  • FIG. 20 is a perspective view showing the structure of a separator according to the present invention.
  • 21 is a perspective view showing another structure of the separator according to the present invention.
  • FIG. 2 shows a cross-sectional view of a centrifugal filter in accordance with a preferred embodiment of the present invention.
  • the rotor structure 120 rotates due to reaction force generated in the process in which the impurity-filtered fluid is discharged through the nozzle 150 after being introduced into the rotor structure 120 to remove impurities in the fluid.
  • the centrifugal filter of the present invention is based on a known centrifugal filter that separates the fluid ejected from the spindle tube 130 into the rotor structure 120 into the rotor structure 120 while forming a rectangular ejection shape. It is to be diffused to improve the separation efficiency of impurities.
  • the known centrifugal filter includes a shaft 110 having a flow path through which fluid flows, and a filtration paper 1221 for rotating centrifugal force around the shaft 110 to filter out impurities in the fluid.
  • Rotor structure 120 provided on the inner wall surface, the spindle rotates about the shaft 110 together with the rotor structure 120 and ejects the fluid flowing through the shaft 110 into the rotor structure 120
  • the inner space of the tube 130 and the rotor structure 120 is separated into upper and lower parts and inner and outer parts so that impurities separated from the fluid by centrifugal force are accumulated in the upper space S1, and the filtered fluid is lower space S2.
  • It is configured to include a separator 140 to be discharged through the nozzle 150 provided in the lower end of the rotor structure 120 by flowing to.
  • the centrifugal filter of the present invention based on the above known centrifugal filter has a diffusion means for forming a jet shape of the fluid in a rectangular shape so that the fluid ejected from the spindle tube 130 into the rotor structure 120 is widely spread. It is configured to be provided in the spindle tube (130).
  • Figure 3 is a perspective view showing an example of the diffusion means according to the invention
  • Figure 4 is a cross-sectional view showing a state in which the nozzle cap shown in Figure 3 is coupled to the spindle tube
  • Figure 5 is a structure of a rectangular spout extending in the vertical direction
  • 6 is a front view illustrating the structure of the rectangular spout extending in the horizontal direction
  • FIG. 7 is a front view illustrating the structure of the rectangular spout extending in the diagonal direction.
  • the diffusion means is mounted to the spindle tube 130 to eject the fluid flowing from the spindle tube 130 into the rotor structure 120, the fluid ejected into the rotor structure 120 has a rectangular ejection shape It may be composed of a nozzle cap 160 having a plurality of spouts 161 having a rectangular structure on the circumference so as to be widely spread.
  • the spindle tube 130 is formed with a plurality of flow holes 134 for flowing the fluid flowing through the shaft 110 to the nozzle cap 160, the nozzle cap 160 covers the flow holes 134
  • the fluid discharged through the flow hole 134 is installed so as to diffuse in the circumferential direction through the space formed between the spindle tube 130 and the nozzle cap 160 through the ejection openings 161 formed in the nozzle cap 160. Squirt.
  • the nozzle cap 160 may be configured to have an integral structure with the spindle tube 130, but in this case, since the nozzle cap 160 and the flow hole 134 have a lot of difficulty in processing, the nozzle cap 160 and It is preferable to make the spindle tube 130 separately and then combine it.
  • the nozzle cap 160 is formed in an annular structure so that the spindle tube 130 can be inserted into and coupled to the center portion.
  • the spindle tube 130 is bound by interference fit so that the nozzle cap 160 can rotate together, or, if necessary, the nozzle cap 160 by welding. And the spindle tube 130 to bind.
  • the ejection opening 161 formed in the nozzle cap 160 may be formed in a rectangular structure extending in any one of a vertical direction, a horizontal direction, or a diagonal direction. Since the cap 160 is rotated about the vertical axis 110, it is preferable that the ejection opening 161 is formed to extend in the vertical direction for effective diffusion of the fluid.
  • FIG. 8 shows a plan view of the nozzle cap having a spout formed obliquely in a direction opposite to the rotational direction of the nozzle cap.
  • the jet port 161 formed in the nozzle cap 160 is formed to be inclined in a direction opposite to the rotational direction of the nozzle cap 160 for effective diffusion of the fluid.
  • FIG. 9 is a sectional view of the nozzle cap showing the cross-sectional structure of the jet port.
  • the upper end portion 161a of the jet port 161 formed in the nozzle cap 160 is formed to be inclined upward. This is to allow the fluid ejected from the nozzle cap 160 to also diffuse upward of the nozzle cap 160 so that the fluid is also ejected to the filtration paper 1221 located above the installation height of the nozzle cap 160.
  • the nozzle cap 160 since the nozzle cap 160 is located slightly above the center portion of the inside of the rotor structure 120, the nozzle cap 160 has a structure in which the upper end portion of the jet port 161 has a structure extending in the horizontal direction The fluid ejected from the 160 does not reach the filtration paper 1221 positioned above the nozzle cap 160, thereby reducing the utilization area of the filtration paper 1221.
  • the upper end portion 161a of the jet port 161 is inclined upward so that the fluid jetted through the jet port 161 may be jetted to the upper part of the nozzle cap 160, thereby filtering paper.
  • the utilization area of 1221 can be widened to extend the service life of the filtration paper 1221 and to increase the filtration efficiency of impurities.
  • FIG. 10 is a side view showing a structure in which protrusions are formed on the inner surface of the jet port according to the present invention.
  • the plurality of protrusions 1611 are further formed on the inner surface of the ejection opening 161, the fluid is scattered by interfering with the protrusion 1611 in the process of ejecting the fluid through the ejection opening 161. It can be increased even more.
  • FIG. 11 is a perspective view showing another structure of the diffusion means according to the invention
  • Figure 12 is a plan view of the spindle tube having a spout formed inclined in the opposite direction to the rotational direction of the spindle tube
  • Figure 13 is a cross-sectional structure of the spout 14 is a side view showing a structure in which protrusions are formed on the inner surface of the ejection opening according to the present invention.
  • the diffuser is configured in a simpler manner by directly forming the rectangular spouts 131 in the spindle tube 130.
  • the plurality of rectangular spouts 131 on the circumference of the spindle tube 130 can be configured to form a diffusion means by maintaining a constant distance from each other, the spouts 131 are the spouts 161 described above Likewise, it may be formed in a rectangular structure extending in one of the vertical direction, the horizontal direction, or the diagonal direction.
  • the ejection openings 131 are formed to be inclined in a direction opposite to the rotational direction of the spindle tube 130 for effective diffusion of the fluid ejected through the ejection openings 131.
  • the upper end portion 131a of the ejection openings 131 is formed to be inclined upwardly so that the fluid ejected through the ejection opening 131 can be diffused to the upper portion, and by further forming a plurality of protrusions 1311 on the inner surface It is possible to increase the diffusion effect of the fluid.
  • FIG. 15 is a perspective view showing another structure of the diffusion means according to the present invention
  • Figure 16 shows a plan view of the spindle tube having a spout formed inclined in the opposite direction to the rotation direction of the spindle tube.
  • the diffusion means are arranged adjacent to each other side by side adjacent to each other to maintain a constant interval on the circumference of the spindle tube 130 is a plurality of blow holes 133 consisting of a plurality of blow holes 131 for blowing the fluid in a rectangular structure It may be configured to be formed to.
  • a plurality of ejection holes 132 are arranged in one of a vertical direction, a horizontal direction, or a diagonal direction to form a diffusion means.
  • the spindle tube 130 rotates about the vertical axis 110, it is preferable to arrange the plurality of ejection holes 132 in the vertical direction for effective diffusion of the fluid. .
  • the ejection openings 132 are formed to be inclined in a direction opposite to the rotational direction of the spindle tube 130 for effective diffusion of the fluid ejected through the ejection holes 132.
  • FIG. 17 is a perspective view showing another structure of the diffusion means according to the invention
  • Figure 18 is a cross-sectional view showing a state in which the nozzle cap shown in Figure 17 is coupled to the spindle tube
  • Figure 19 is opposite to the rotation direction of the nozzle cap
  • the top view of the nozzle cap with the blower holes formed in the inclination direction is shown.
  • the diffusion means are arranged adjacent to each other side by side and the nozzle cap 160 having a plurality of ejection holes group 163 formed on the circumference of the spindle tube ( 130 may be installed in the.
  • the spindle tube 130 is formed with a plurality of flow holes 134 for flowing the fluid flowing through the shaft 110 to the nozzle cap 160, the nozzle cap 160 covers the flow holes 134
  • the fluid discharged through the flow hole 134 is installed so as to diffuse in the circumferential direction through a space formed between the spindle tube 130 and the nozzle cap 160 to discharge the ejection holes 162 formed in the nozzle cap 160. Squirt through.
  • the nozzle cap 160 may be configured to be coupled to the spindle tube 130 through interference fit or to be coupled to the spindle tube 130 by welding to rotate together with the spindle tube 130.
  • a plurality of ejection holes 162 are arranged in one of a vertical direction, a horizontal direction, or a diagonal direction to form a diffusion means. As described above, since the spindle tube 130 rotates about the vertical axis 110, it is preferable to arrange the plurality of ejection holes 162 in the vertical direction for effective diffusion of the fluid.
  • the ejection holes 162 are formed to be inclined in a direction opposite to the rotation direction of the nozzle cap 160 for effective diffusion of the fluid ejected through the ejection holes 162.
  • FIG. 20 is a perspective view showing the structure of the separator according to the present invention.
  • a discharge port 143 is further formed in the separator 140 according to the present invention.
  • the outlet 143 prevents contamination of the remaining fluid by discharging the remaining fluid in the upper space S1, and maintains the amount of fluid remaining in the filter during the maintenance work of the centrifugal filter. It is reduced to increase the convenience of work.
  • the separator 140 is formed to have an inclined portion 141 formed to be inclined in order to separate the inner space of the rotor structure 120 up and down and to promote deposition of impurities, and to extend vertically upward from the inclined portion 141. It consists of a vertical extension portion 142 for separating the interior of the structure 120 in and out, the outlet 143 is formed in the boundary region of the inclined portion 141 and the vertical extension portion 142 to the upper space (S1) The fluid remaining in the phase is discharged to the lower space S2.
  • reference numeral 144 denotes an inlet hole through which the filtered fluid is introduced, and the fluid flowing through the inlet hole flows to the lower space S2.
  • FIG. 21 is a perspective view showing another structure of the separator according to the present invention.
  • the vertical extension portion (not having the inlet hole 144 formed at the upper end of the vertical extension portion 142) 142 may be formed in a fully open structure, in which case the filtered fluid flows through the upper end of the vertical extension part 142 to the lower space (S2).
  • Fluid flowing into the spindle tube 130 through the shaft 110 flows into the nozzle cap 160 through the flow holes 134 formed in the spindle tube 130.
  • the fluid flowing into the nozzle cap 160 is ejected into the rotor structure 120 through the rectangular spouts 161 formed in the nozzle cap 160.
  • the ejection openings 161 have a long structure extending in the vertical direction, and the fluid ejected through the ejection openings 161 has a rectangular structure extending in the vertical direction.
  • the rotational inertia and the centrifugal force are added to diffuse the large area.
  • the fluid diffused as described above is evenly dispersed by the filtration paper 1221 installed on the inner wall surface of the rotor structure 120, thereby improving the separation efficiency of impurities, and compared to the conventional filtration paper 1221. It is possible to increase the service life of the filtration paper 1221 by widening the utilization area.
  • Table [1] below shows the conventional centrifugal filter having the structure as shown in FIG. 1 and the centrifugal filter according to the present invention having the diffusion means shown in FIG. The pressure and flow rate were measured. Finally, the filtration paper was separated and the weight of the filtered impurities was measured to compare the filtration efficiency of the impurities.
  • the amount of impurities filtered in the conventional centrifugal filter is 597.97 g
  • the amount of impurities filtered in the centrifugal filter according to the present invention is 810.55 g, which is about 35.55%. can confirm.

Landscapes

  • Centrifugal Separators (AREA)

Abstract

본 발명은 원심 필터에 관한 것으로, 그 목적은 스핀들튜브를 통하여 로터구조체의 내부로 분출되는 유체가 충분히 분산되어진 채로 넓은 면적에 걸쳐 페이퍼에 도달할 수 있도록 함으로써 불순물의 분리효율을 향상시킨 원심 필터를 제공함에 있다. 이를 위한 본 발명은 유체의 유입이 이루어지는 유로가 내부에 형성된 축과, 상기 축을 중심으로 회전하여 원심력을 발생시키며 여과용 페이퍼를 내벽면에 구비하는 로터구조체와, 상기 로터구조체와 함께 축을 중심으로 회전하며 축을 통해 유입되는 유체를 로터구조체의 내부로 분출하는 스핀들튜브와, 상기 로터구조체의 내부 공간을 상하부 및 내외로 분리하여 원심력에 의하여 유체로부터 분리된 불순물은 상부공간에 쌓여지도록 하고, 여과된 유체는 하부공간으로 유동시켜 로터구조체의 하단부에 마련된 노즐을 통해 배출되도록 하는 분리막을 구비하는 원심 필터에 있어서, 상기 스핀들튜브로부터 로터구조체의 내부로 분출되는 유체가 넓게 확산되도록 유체의 분출형상을 장방형으로 형성하는 확산수단이 스핀들튜브에 구비된 것으로 이루어진 원심 필터에 관한 것을 기술적 요지로 한다.

Description

원심 필터
본 발명은 원심 필터에 관한 것으로, 특히 원심 필터의 중앙부에 위치한 스핀들튜브로부터 로터구조체의 내부로 분출되는 유체가 충분히 분산되어진 채로 넓은 면적에 걸쳐 로터구조체의 내벽면에 구비된 여과용 페이퍼에 도달할 수 있도록 스핀들튜브에 마련된 분출구의 구조를 개선하여 불순물의 분리효율을 향상시킨 원심 필터에 관한 것이다.
일반적으로 원심 필터(Centrifugal filter)라 함은 원심력을 이용하여 유체 내의 불순물을 분리시키는 방식의 필터를 말하는 것으로, 다양한 방식의 원심 필터들이 사용되고 있다.
한편 유체 내에 포함되는 불순물의 여과 능력은, 엔진 또는 유체 기계의 성능 및 수명을 결정하는데 중요한 요인으로 작용하게 되며, 엔진이나 유체 기계의 경우 유체에 포함된 불순물을 충분하게 여과시키지 못할 경우, 엔진이나 유체 기계의 손상을 초래하여 막대한 손해를 유발하게 된다.
도 1은 종래 원심 필터의 단면도를 도시하고 있다.
종래의 원심 필터는 유체의 유입이 이루어지는 유로가 내부에 형성된 축(10)과, 상기 축(10)을 중심으로 회전하여 원심력을 발생시키며 불순물을 걸러내기 위한 여과용 페이퍼(21)를 내벽면에 구비하는 로터구조체(20)와, 상기 로터구조체(20)와 함께 축(10)을 중심으로 회전하며 축(10)을 통해 유체를 공급받아 로터구조체(20)의 내부로 유체를 분출하는 스핀들튜브(30)와, 상기 로터구조체(20)의 내부 공간을 상하부로 분리하여 원심력에 의하여 유체로부터 분리된 불순 이물질이 상부공간(S1)에 쌓여지도록 하고, 여과된 유체는 하부공간(S2)으로 유동시켜 로터구조체(20)의 하단부에 마련된 노즐(50)을 통해 배출되도록 하는 분리막(40)으로 구성되어 있다.
상기와 같은 종래의 원심 필터는 축(10)을 통해 유입되는 유체가 스핀들튜브(30)에 형성된 노즐공(31)들을 통하여 로터구조체(20)의 내부로 분사되어지며, 로터구조체(20)의 회전으로 인해 발생되는 원심력에 의하여 유체 내의 불순물이 로터구조체(20)의 벽면이나 분리막 상에 적재된 채로 분리되어 지며, 여과된 유체는 디스크(40)를 통하여 로터의 하부공간(S2)으로 유입되어 노즐(50)을 통해 분사되어진다.
그러나 상기와 같은 종래의 원심 필터의 경우, 스핀들튜브에 형성된 노즐공들은 스핀들튜브의 원주상에 단순히 구멍을 천공한 것에 의해 형성되어 노즐공들을 통해 분출되는 유체는 충분히 분산되지 못한 채 로터구조체의 내벽면에 구비된 여과용 페이퍼에 도달하게 되므로, 여과용 페이퍼의 특정부분에 유체가 집중되어 페이퍼에 의한 불순물의 분리효율이 떨어지는 것은 물론이고 페이퍼가 쉽게 손상되는 문제점을 가지고 있다.
본 발명은 상기와 같은 문제점을 고려하여 이루어진 것으로, 본 발명의 목적은 스핀들튜브를 통하여 로터구조체의 내부로 분출되는 유체가 충분히 분산되어진 채로 넓은 면적에 걸쳐 여과용 페이퍼에 도달할 수 있도록 함으로써 불순물의 분리효율을 향상시킨 원심 필터를 제공함에 있다.
본 발명의 다른 목적은 원심 필터의 정지시 로터구조체 내에 잔류한 유체의 배출이 용이한 장방형 배출구를 갖는 원심 필터를 제공함에 있다.
상기한 바와 같은 목적을 달성하고 종래의 결점을 제거하기 위한 과제를 수행하는 본 발명의 원심 필터는 유체의 유입이 이루어지는 유로가 내부에 형성된 축과, 상기 축을 중심으로 회전하여 원심력을 발생시키며 여과용 페이퍼를 내벽면에 구비하는 로터구조체와, 상기 로터구조체와 함께 축을 중심으로 회전하며 축을 통해 유입되는 유체를 로터구조체의 내부로 분출하는 스핀들튜브와, 상기 로터구조체의 내부 공간을 상하부 및 내외로 분리하여 원심력에 의하여 유체로부터 분리된 불순물은 상부공간에 쌓여지도록 하고, 여과된 유체는 하부공간으로 유동시켜 로터구조체의 하단부에 마련된 노즐을 통해 배출되도록 하는 분리막을 구비하는 원심 필터에 있어서, 상기 스핀들튜브로부터 로터구조체의 내부로 분출되는 유체가 넓게 확산되도록 유체의 분출형상을 장방형으로 형성하는 확산수단이 스핀들튜브에 구비된 것을 특징으로 한다.
한편 상기 확산수단은 스핀들튜브에 장착되어 스핀들튜브로부터 유입되는 유체를 로터구조체의 내부로 분출하되, 로터구조체의 내부로 분출되는 유체가 넓게 확산되도록 장방형의 구조를 갖는 다수개의 분출구들을 원주 상에 구비하는 노즐캡으로 구성될 수 있다.
이때 상기 분출구는 유체의 효과적인 확산을 위하여 로터구조체의 회전방향과는 반대방향으로 경사지게 형성될 수 있으며, 또 상단부가 상방향으로 경사지게 형성될 수 있다.
또한 장방형의 구조로 연장되는 분출구는 수직방향으로 연장되는 것이 바람직하며, 내측면에는 유체를 분산시키기 위한 다수개의 돌기들이 형성된다.
한편 상기 확산수단은 스핀들튜브의 원주 상에 형성되며, 스핀들튜브로부터 분출되는 유체가 확산되도록 장방형의 구조를 갖는 다수개의 분출구들로 구성될 수 있다.
이때 상기 분출구는 유체의 효과적인 확산을 위하여 로터구조체의 회전방향과는 반대방향으로 경사지게 형성될 수 있으며, 또 상단부가 상방향으로 경사지게 형성될 수 있다.
또한 장방형의 구조로 연장되는 분출구는 수직방향으로 연장되는 것이 바람직하며, 또 내측면에는 유체를 분산시키기 위한 다수개의 돌기들이 형성된다.
한편 상기 확산수단은 수직방향 또는 수평방향 또는 대각방향 중 어느 한 방향으로 상호 인접하게 배치되어 유체를 장방형의 구조로 분출시키는 다수개의 분출공들로 이루어진 다수개의 분출공군들이 스핀들튜브의 원주 상에 형성된 것으로 이루어질 수 있다.
이때 상기 분출공들은 스핀들튜브의 회전방향과 반대방향으로 경사지게 형성된다.
한편 상기 확산수단은 스핀들튜브에 장착되어 스핀들튜브로부터 유입되는 유체를 로터구조체의 내부로 분출하되, 수직방향 또는 수평방향 또는 대각방향 중 어느 한 방향으로 상호 인접하게 배치되어 유체를 장방형의 구조로 분출시키는 다수개의 분출공들로 이루어진 다수개의 분출공군들을 원주 상에 구비하는 노즐캡으로 구성될 수 있다.
이때 상기 분출공들은 스핀들튜브의 회전방향과 반대방향으로 경사지게 형성된다.
한편 상기 분리막에는 원심 필터의 정지시 상부공간에 잔류한 유체를 하부공간으로 배출시키기 위한 배출구가 형성된다.
한편 상기 분리막의 상단부는 완전히 개방된 구조로 형성되어 여과된 유체가 월류하여 하부공간으로 유입되도록 구성될 수 있다.
상기와 같은 특징을 갖는 본 발명에 의하면, 로터의 내부로 분사되는 유체가 종래의 원심 필터에 비하여 보다 넓은 면적에 걸쳐 여과용 페이퍼에 도달하게 됨으로써, 불순물의 분리효율을 향상시킬 수 있게 되었다.
또한 페이퍼의 특정부분에만 유체가 집중되는 것을 방지하고, 페이퍼의 보다 많은 부분을 불순물의 여과에 활용할 수 있도록 됨으로써, 불순물의 분리효율은 높이면서도 페이퍼의 사용수명을 연장시킬 수 있게 되었다.
도 1 은 종래 원심 필터의 단면도,
도 2 는 본 발명의 바람직한 실시예에 따른 원심 필터의 단면도,
도 3 은 본 발명에 따른 확산수단의 일예를 나타낸 사시도,
도 4 는 도 3에 도시된 노즐캡이 스핀들튜브에 결합된 상태를 나타낸 단면도,
도 5 는 수직방향으로 연장된 장방형 분출구의 구조를 나타낸 정면도,
도 6 은 수평방향으로 연장된 장방형 분출구의 구조를 나타낸 정면도,
도 7 은 대각방향으로 연장된 장방형 분출구의 구조를 나타낸 정면도,
도 8 은 노즐캡의 회전방향과 반대방향으로 경사지게 형성된 분출구를 구비하는 노즐캡의 평면도,
도 9 는 분출구의 단면구조를 나타낸 노즐캡의 단면도,
도 10 은 본 발명에 따른 분출구의 내측면에 돌기들이 형성된 구조를 나타낸 측면도,
도 11 은 본 발명에 따른 확산수단의 또 다른 구조를 나타낸 사시도,
도 12 는 스핀들튜브의 회전방향과 반대방향으로 경사지게 형성된 분출구를 구비하는 스핀들튜브의 평면도,
도 13 은 분출구의 단면구조를 나타낸 스핀들튜브의 단면도,
도 14 는 본 발명에 따른 분출구의 내측면에 돌기들이 형성된 구조를 나타낸 측면도,
도 15 는 본 발명에 따른 확산수단의 또 다른 구조를 나타낸 사시도,
도 16 은 스핀들튜브의 회전방향과 반대방향으로 경사지게 형성된 분출구를 구비하는 스핀들튜브의 평면도,
도 17 은 본 발명에 따른 확산수단의 또 다른 구조를 나타낸 사시도,
도 18 은 도 17에 도시된 노즐캡이 스핀들튜브에 결합된 상태를 나타낸 단면도,
도 19 는 노즐캡의 회전방향과 반대방향으로 경사지게 형성된 분출공들을 구비하는 노즐캡의 평면도,
도 20 은 본 발명에 따른 분리막의 구조를 나타낸 사시도,
도 21 은 본 발명에 따른 분리막의 또 다른 구조를 나타낸 사시도.
<도면의 주요 부분에 대한 부호의 설명>
(110) : 축 (120) : 로터구조체
(1221) : 여과용 페이퍼 (130) : 스핀들튜브
(131) : 분출구 (1311) : 돌기
(132) : 분출공 (133) : 분출공군
(140) : 분리막 (143) : 배출구
(150) : 노즐 (160) : 노즐캡
(161) : 분출구 (1611) : 돌기
(162) : 분출공 (163) : 분출공군
이하, 본 발명의 바람직한 실시예를 첨부된 도면과 연계하여 상세히 설명하면 다음과 같다. 본 발명을 설명함에 있어서, 관련된 공지기능 혹은 구성에 대한 구체적인 설명이 본 발명의 요지를 불필요하게 흐릴 수 있다고 판단되는 경우 그 상세한 설명은 생략한다.
도 2는 본 발명의 바람직한 실시예에 따른 원심 필터의 단면도를 도시하고 있다. 본 발명의 원심 필터는 로터구조체(120)의 내부로 유입되어진 후 불순물이 여과된 유체가 노즐(150)을 통해 배출되는 과정에서 발생되는 반력에 의하여 로터구조체(120)가 회전하면서 유체 내의 불순물을 분리시키는 공지의 원심 필터를 바탕으로 하며, 본 발명의 원심 필터는 스핀들튜브(130)로부터 로터구조체(120)의 내부로 분출되는 유체가 장방형의 분출형상을 형성하면서 로터구조체(120)의 내부로 확산되도록 하여 불순물의 분리효율을 향상시킨 것이다.
한편 공지의 원심 필터는 유체의 유입이 이루어지는 유로가 내부에 형성된 축(110)과, 상기 축(110)을 중심으로 회전하여 원심력을 발생시키며 유체 내의 불순물을 걸러내기 위한 여과용 페이퍼(1221)를 내벽면에 구비하는 로터구조체(120)와, 상기 로터구조체(120)와 함께 축(110)을 중심으로 회전하며 축(110)을 통해 유입되는 유체를 로터구조체(120)의 내부로 분출하는 스핀들튜브(130)와, 상기 로터구조체(120)의 내부 공간을 상하부 및 내외부로 분리하여 원심력에 의하여 유체로부터 분리된 불순물은 상부공간(S1)에 쌓여지도록 하고, 여과된 유체는 하부공간(S2)으로 유동시켜 로터구조체(120)의 하단부에 마련된 노즐(150)을 통해 배출되도록 하는 분리막(140)을 구비하는 것으로 구성되어 있다.
상기와 같은 공지의 원심 필터를 바탕으로 하는 본 발명의 원심 필터는 스핀들튜브(130)로부터 로터구조체(120)의 내부로 분출되는 유체가 넓게 확산되도록 유체의 분출형상을 장방형으로 형성하는 확산수단이 스핀들튜브(130)에 구비된 것으로 구성된다.
도 3은 본 발명에 따른 확산수단의 일예를 나타낸 사시도를, 도 4는 도 3에 도시된 노즐캡이 스핀들튜브에 결합된 상태를 나타낸 단면도를, 도 5는 수직방향으로 연장된 장방형 분출구의 구조를 나타낸 정면도를, 도 6은 수평방향으로 연장된 장방형 분출구의 구조를 나타낸 정면도를, 도 7은 대각방향으로 연장된 장방형 분출구의 구조를 나타낸 정면도를 도시하고 있다.
상기 확산수단은 스핀들튜브(130)에 장착되어 스핀들튜브(130)로부터 유입되는 유체를 로터구조체(120)의 내부로 분출하되, 로터구조체(120)의 내부로 분출되는 유체가 장방형의 분출형상을 가지며 넓게 확산될 수 있도록 장방형의 구조를 갖는 다수개의 분출구(161)들을 원주 상에 구비하는 노즐캡(160)으로 구성될 수 있다. 이때 스핀들튜브(130)에는 축(110)을 통해 유입되는 유체를 노즐캡(160)으로 유동시키는 위한 다수개의 유동홀(134)들이 형성되며, 노즐캡(160)은 유동홀(134)들을 커버하도록 설치되어 유동홀(134)을 통해 배출되는 유체는 스핀들튜브(130)와 노즐캡(160)의 사이에 형성된 공간을 통해 원주방향으로 확산되면서 노즐캡(160)에 형성된 분출구(161)들을 통해 분출된다.
한편 상기 노즐캡(160)은 스핀들튜브(130)와 일체형의 구조를 갖도록 구성될 수도 있으나, 이 경우 분출구(161)나 유동홀(134)의 가공에 많은 어려움이 따르기 때문에 노즐캡(160)과 스핀들튜브(130)를 따로 제작한 후 결합시키는 것이 바람직하다. 이를 위하여 노즐캡(160)은 중앙부로 스핀들튜브(130)가 삽입되어 결합될 수 있도록 환형(環形) 구조로 이루어진다. 물론 스핀들튜브(130)의 회전시 노즐캡(160)이 함께 회전할 수 있도록 노즐캡(160)과 스핀들튜브(130)를 억지끼움을 통해 결속시키거나, 필요하다면 용접에 의해 노즐캡(160)과 스핀들튜브(130)를 결속시키게 된다.
한편 상기 노즐캡(160)에 형성된 분출구(161)는 도 5 내지 도 7에 도시된 바와 같이, 수직방향 또는 수평방향 또는 대각방향 중 어느 하나의 방향으로 연장되는 장방형 구조로 형성될 수 있으나, 노즐캡(160)이 수직한 축(110)을 중심으로 회전하게 되므로, 유체의 효과적인 확산을 위해서는 상기 분출구(161)가 수직방향으로 연장되는 구조로 형성되는 것이 바람직하다.
도 8은 노즐캡의 회전방향과 반대방향으로 경사지게 형성된 분출구를 구비하는 노즐캡의 평면도를 도시하고 있다. 상기 노즐캡(160)에 형성된 분출구(161)는 유체의 효과적인 확산을 위하여 노즐캡(160)의 회전방향과 반대방향으로 경사지게 형성된다.
도 9는 분출구의 단면구조를 나타낸 노즐캡의 단면도를 도시하고 있다.
상기 노즐캡(160)에 형성된 분출구(161)의 상단부(161a)는 상부를 향하여 경사지게 형성되는 것이 바람직하다. 이는 노즐캡(160)으로부터 분출되는 유체가 노즐캡(160)의 위쪽으로도 확산되도록 하여 노즐캡(160)의 설치높이 보다 위쪽에 있는 여과용 페이퍼(1221)에도 유체가 분출되도록 하기 위한 것이다.
즉, 도 2에서 보이는 바와 같이, 노즐캡(160)은 로터구조체(120)의 내부에서 대략 중앙부 조금 위쪽에 위치하게 되므로, 분출구(161)의 상단부가 수평방향으로 연장된 구조를 갖는 다면 노즐캡(160)으로부터 분출되는 유체는 노즐캡(160)의 위쪽에 위치한 여과용 페이퍼(1221)에는 도달하지 못하게 되므로 여과용 페이퍼(1221)의 활용면적이 감소하게 된다.
따라서 도 9에 도시된 바와 같이 분출구(161)의 상단부(161a)를 상향 경사지게 형성함으로써 분출구(161)를 통해 분출되는 유체가 노즐캡(160)의 상부로도 분출될 수 있도록 함으로써, 여과용 페이퍼(1221)의 활용면적을 넓혀 여과용 페이퍼(1221)의 사용수명을 연장시키고, 더불어 불순물의 여과효율도 높일 수 있게 된다.
도 10은 본 발명에 따른 분출구의 내측면에 돌기들이 형성된 구조를 나타낸 측면도를 도시하고 있다. 상기 분출구(161)의 내측면에 다수개의 돌기(1611)들을 더 형성하게 되면, 분출구(161)를 통해 유체가 분출되는 과정에서 유체가 돌기(1611)에 간섭되어 흩어지게 되므로 유체의 확산효과를 더욱 높일 수 있게 된다.
도 11은 본 발명에 따른 확산수단의 또 다른 구조를 나타낸 사시도를, 도 12는 스핀들튜브의 회전방향과 반대방향으로 경사지게 형성된 분출구를 구비하는 스핀들튜브의 평면도를, 도 13은 분출구의 단면구조를 나타낸 스핀들튜브의 단면도를, 도 14는 본 발명에 따른 분출구의 내측면에 돌기들이 형성된 구조를 나타낸 측면도를 도시하고 있다.
상기와 같이 장방형의 분출구(161)를 갖는 노즐캡(160)을 스핀들튜브(130)에 설치하지 않고, 스핀들튜브(130)에 장방형 분출구(131)들을 직접 형성함으로써 보다 단순한 방식으로 확산수단을 구성할 수도 있다. 보다 상세하게는, 스핀들튜브(130)의 원주 상에 다수개의 장방형 분출구(131)들이 상호 일정한 간격을 유지하도록 형성함으로써 확산수단을 구성할 수 있으며, 분출구(131)들은 앞서 설명된 분출구(161)와 마찬가지로 수직방향 또는 수평방향 또는 대각방향 중 어느 한 방향으로 연장되는 장방형의 구조로 형성될 수 있다. 또한 상기 분출구(131)들을 통하여 분출되는 유체의 효과적인 확산을 위하여 분출구(131)들은 스핀들튜브(130)의 회전방향과 반대방향으로 경사지게 형성된다.
또한 상기 분출구(131)들의 상단부(131a)는 상부를 향하여 경사지게 형성되어 분출구(131)를 통해 분출되는 유체가 상부로 확산될 수 있도록 구성되며, 내측면에 다수개의 돌기(1311)들을 더 형성함으로써 유체의 확산효과를 증가시킬 수 있게 된다.
도 15는 본 발명에 따른 확산수단의 또 다른 구조를 나타낸 사시도를, 도 16은 스핀들튜브의 회전방향과 반대방향으로 경사지게 형성된 분출구를 구비하는 스핀들튜브의 평면도를 도시하고 있다. 상기 확산수단은 나란히 상호 인접하게 배치되어 유체를 장방형의 구조로 분출시키는 다수개의 분출공(131)들로 이루어진 다수개의 분출공군(133)들이 스핀들튜브(130)의 원주 상에 상호 일정한 간격을 유지하도록 형성된 것으로 구성될 수 있다. 이와 같이 다수개의 분출공(132)들을 이용하여 분출공군(133)을 구성함에 있어서, 수직방향 또는 수평방향 또는 대각방향 중 어느 하나의 방향으로 다수개의 분출공(132)들을 나열시켜 확산수단을 구성할 수 있으나, 앞서 설명된 바와 같이, 스핀들튜브(130)가 수직한 축(110)을 중심으로 회전하게 되므로 유체의 효과적인 확산을 위해서는 다수개의 분출공(132)들을 수직방향으로 나열시키는 것이 바람직하다.
또한 상기 분출공(132)들을 통하여 분출되는 유체의 효과적인 확산을 위하여 분출구(132)들은 스핀들튜브(130)의 회전방향과 반대방향으로 경사지게 형성된다.
도 17은 본 발명에 따른 확산수단의 또 다른 구조를 나타낸 사시도를, 도 18은 도 17에 도시된 노즐캡이 스핀들튜브에 결합된 상태를 나타낸 단면도를, 도 19는 노즐캡의 회전방향과 반대방향으로 경사지게 형성된 분출공들을 구비하는 노즐캡의 평면도를 도시하고 있다.
상기 확산수단은 나란히 상호 인접하게 배치되어 유체를 장방형의 구조로 분출시키는 다수개의 분출공(162)들로 이루어진 다수개의 분출공군(163)들을 원주 상에 구비하는 노즐캡(160)이 스핀들튜브(130)에 설치된 것으로 구성될 수 있다. 이때 스핀들튜브(130)에는 축(110)을 통해 유입되는 유체를 노즐캡(160)으로 유동시키기 위한 다수개의 유동홀(134)들이 형성되며, 노즐캡(160)은 유동홀(134)들을 커버하도록 설치되어 유동홀(134)을 통해 배출되는 유체는 스핀들튜브(130)와 노즐캡(160)의 사이에 형성된 공간을 통해 원주방향으로 확산되면서 노즐캡(160)에 형성된 분출공(162)들을 통해 분출된다.
이러한 노즐캡(160)은 스핀들튜브(130)와 억지끼움을 통해 결속되거나, 용접에 의해 스핀들튜브(130)와 결속되어 스핀들튜브(130)와 함께 회전하도록 구성될 수 있다. 또한 다수개의 분출공(162)들을 이용하여 분출공군(163)을 구성함에 있어서, 수직방향 또는 수평방향 또는 대각방향 중 어느 하나의 방향으로 다수개의 분출공(162)들을 나열시켜 확산수단을 구성할 수 있으나, 앞서 설명된 바와 같이, 스핀들튜브(130)가 수직한 축(110)을 중심으로 회전하게 되므로 유체의 효과적인 확산을 위해서는 다수개의 분출공(162)들을 수직방향으로 나열시키는 것이 바람직하다.
또한 상기 분출공(162)들을 통하여 분출되는 유체의 효과적인 확산을 위하여 분출공(162)들은 노즐캡(160)의 회전방향과 반대방향으로 경사지게 형성된다.
도 20은 본 발명에 따른 분리막의 구조를 나타낸 사시도를 도시하고 있다.본 발명에 따른 분리막(140)에는 배출구(143)가 더 형성되어 있다. 상기 배출구(143)는 원심 필터의 작동이 멈춘 경우, 상부공간(S1)에 남아 있는 유체를 배출시킴으로써 남아 있는 유체의 오염을 방지하고, 원심 필터의 유지보수 작업시 필터 내에 남아 있는 유체의 양을 감소시켜 작업의 편의성을 높이도록 한 것이다.
한편 분리막(140)은 로터구조체(120)의 내부공간을 상하로 분리하고 불순물이 퇴적을 촉진시키기 위하여 경사지게 형성된 경사부(141)와, 상기 경사부(141)로부터 수직 상방으로 연장되게 형성되어 로터구조체(120)의 내부를 내외로 분리하는 수직연장부(142)로 구성되며, 상기 배출구(143)는 경사부(141)와 수직연장부(142)의 경계영역에 형성되어 상부공간(S1) 상에 잔류한 유체를 하부공간(S2)으로 배출하게 된다.
도면 중 미설명부호 144는 불순물이 여과된 유체가 유입되는 유입홀로써, 유입홀을 통해 유입되는 유체는 하부공간(S2)으로 유동하게 된다.
도 21은 본 발명에 따른 분리막의 또 다른 구조를 나타낸 사시도를 도시하고 있다. 상술한 바와 같이 경사부(141)와 수직연장부(142)로 이루어진 분리막(140)을 형성함에 있어서, 수직연장부(142)의 상단부에 유입홀(144)을 형성하지 않고, 수직연장부(142)의 상단부가 완전히 개방된 구조로 형성할 수 있으며, 이 경우 여과된 유체는 수직연장부(142)의 상단부를 월류하여 하부공간(S2)으로 유입되어 진다.
도 3에 도시된 확산수단을 구비하는 원심 필터에서 불순물의 여과가 이루어지는 과정을 설명하도록 한다. 축(110)을 통해 스핀들튜브(130)로 유입되는 유체는 스핀들튜브(130)에 형성된 유동홀(134)들을 통하여 노즐캡(160)으로 유입된다. 이처럼 노즐캡(160)으로 유입되는 유체는 노즐캡(160)에 형성된 장방형의 분출구(161)들을 통하여 로터구조체(120)의 내부로 분출된다.
한편 상기 분출구(161)들은 수직방향으로 길게 연장된 구조를 가지며, 이러한 구조의 분출구(161)들을 통해 분출되는 유체는 수직방향으로 길게 연장된 장방형의 구조를 띄게 되며, 이러한 분출형상을 갖는 유체에는 회전관성과 원심력이 더해짐으로써 넓은 면적으로 확산되어지게 된다. 상기와 같이 확산되는 유체는 로터구조체(120)의 내벽면에 설치된 여과용 페이퍼(1221)로 고르게 분산되어짐으로써, 불순물의 분리효율을 향상시킬 수 있게 되며, 종래에 비해 여과용 페이퍼(1221)의 활용 면적을 넓혀 여과용 페이퍼(1221)의 사용수명을 증가시킬 수 있게 된다.
아래의 표[1]은 도1에 도시된 것과 같은 구조를 갖는 종래의 원심 필터와, 도 3에 도시된 확산수단을 갖는 본 발명에 따른 원심 필터를 일정시간 구동시키면서 시간대별 온도와 회전속도 및 압력 그리고 유동률을 측정한 것으로, 최종적으로 여과용 페이퍼를 분리하여 여과된 불순물의 무게를 측정함으로써 불순물의 여과효율을 비교실험한 데이터이다.
표 1
Figure PCTKR2010005012-appb-T000001
상기 표[1]에서 확인할 수 있는 바와 같이, 종래의 원심 필터에서 여과된 불순물의 양은 597.97g이고, 본 발명에 따른 원심 필터에서 여과된 불순물의 양은 810.55g으로, 약 35.55% 정도의 성능이 향상됨을 확인할 수 있다.
본 발명은 상술한 특정의 바람직한 실시 예에 한정되지 아니하며, 청구범위에서 청구하는 본 발명의 요지를 벗어남이 없이 당해 발명이 속하는 기술분야에서 통상의 지식을 가진 자라면 누구든지 다양한 변형실시가 가능한 것은 물론이고, 그와 같은 변경은 청구범위 기재의 범위 내에 있게 된다.

Claims (18)

  1. 유체의 유입이 이루어지는 유로가 내부에 형성된 축(110)과, 상기 축(110)을 중심으로 회전하여 원심력을 발생시키며 여과용 페이퍼(1221)를 내벽면에 구비하는 로터구조체(120)와, 상기 로터구조체(120)와 함께 축(110)을 중심으로 회전하며 축(110)을 통해 유입되는 유체를 로터구조체(120)의 내부로 분출하는 스핀들튜브(130)와, 상기 로터구조체(120)의 내부 공간을 상하부 및 내외로 분리하여 원심력에 의하여 유체로부터 분리된 불순물은 상부공간(S1)에 쌓여지도록 하고, 여과된 유체는 하부공간(S2)으로 유동시켜 로터구조체(120)의 하단부에 마련된 노즐(150)을 통해 배출되도록 하는 분리막(140)을 구비하는 원심 필터에 있어서,
    상기 스핀들튜브(130)로부터 로터구조체(120)의 내부로 분출되는 유체가 넓게 확산되도록 유체의 분출형상을 장방형으로 형성하는 확산수단이 스핀들튜브(130)에 구비된 것을 특징으로 하는 원심 필터.
  2. 제 1 항에 있어서, 상기 확산수단은,
    상기 스핀들튜브(130)에 장착되어 스핀들튜브(130)로부터 유입되는 유체를 로터구조체(120)의 내부로 분출하되, 로터구조체(120)의 내부로 분출되는 유체가 넓게 확산되도록 장방형의 구조를 갖는 다수개의 분출구(161)들을 원주 상에 구비하는 노즐캡(160)으로 구성된 것을 특징으로 하는 원심 필터.
  3. 제 2 항에 있어서,
    상기 분출구(161)는 노즐캡(160)의 회전방향과는 반대방향으로 경사지게 형성된 것을 특징으로 원심 필터.
  4. 제 2 항에 있어서,
    상기 분출구(161)의 상단부(161a)는 상방향으로 경사지게 형성된 것을 특징으로 하는 원심 필터.
  5. 제 2 항에 있어서,
    상기 분출구(161)는 노즐캡(160)의 회전방향과는 반대방향으로 경사지게 형성됨과 더불어 상단부(161a)가 상방향으로 경사지게 형성된 것을 특징으로 하는 원심 필터.
  6. 제 3 항 내지 제 5 항 중 어느 한 항에 있어서,
    상기 분출구(161)는 수직방향으로 연장된 장방형의 구조로 형성된 것을 특징으로 하는 원심 필터.
  7. 제 3 항 내지 제 5 항 중 어느 한 항에 있어서,
    상기 분출구(161)의 내측면에는 유체를 분산시키기 위한 다수개의 돌기(1611)들이 형성된 것을 특징으로 하는 원심 필터.
  8. 제 1 항에 있어서, 상기 확산수단은,
    상기 스핀들튜브(130)의 원주 상에 형성되며, 스핀들튜브(130)로부터 분출되는 유체가 확산되도록 장방형의 구조를 갖는 다수개의 분출구(131)들로 구성된 것을 특징으로 하는 원심 필터.
  9. 제 8 항에 있어서,
    상기 분출구(131)는 스핀들튜브(130)의 회전방향과는 반대방향으로 경사지게 형성된 것을 특징으로 원심 필터.
  10. 제 8 항에 있어서,
    상기 분출구(131)의 상단부(131a)는 상방향으로 경사지게 형성된 것을 특징으로 하는 원심 필터.
  11. 제 8 항에 있어서,
    상기 분출구(131)는 스핀들튜브(130)의 회전방향과는 반대방향으로 경사지게 형성됨과 더불어 상단부가 상방향으로 경사지게 형성된 것을 특징으로 하는 원심 필터.
  12. 제 9 항 내지 제 11 항 중 어느 한 항에 있어서,
    상기 분출구(131)는 수직방향으로 연장된 장방형의 구조로 형성된 것을 특징으로 하는 원심 필터.
  13. 제 9 항 내지 제 11 항 중 어느 한 항에 있어서,
    상기 분출구(131)의 내측면에는 유체를 분산시키기 위한 다수개의 돌기(1311)들이 형성된 것을 특징으로 하는 원심 필터.
  14. 제 1 항에 있어서,
    상기 확산수단은 수직방향 또는 수평방향 또는 대각방향 중 어느 한 방향으로 상호 인접하게 배치되어 유체를 장방형의 구조로 분출시키는 다수개의 분출공(132)들로 이루어진 다수개의 분출공군(133)들이 스핀들튜브(130)의 원주 상에 형성된 것으로 이루어진 것을 특징으로 하는 원심 필터.
  15. 제 14 항에 있어서,
    상기 분출공(132)들은 스핀들튜브(130)의 회전방향과 반대방향으로 경사지게 형성된 것을 특징으로 하는 원심 필터.
  16. 제 1 항에 있어서,
    상기 확산수단은 스핀들튜브(130)에 장착되어 스핀들튜브(130)로부터 유입되는 유체를 로터구조체(120)의 내부로 분출하되, 수직방향 또는 수평방향 또는 대각방향 중 어느 한 방향으로 상호 인접하게 배치되어 유체를 장방형의 구조로 분출시키는 다수개의 분출공(162)들로 이루어진 다수개의 분출공군(163)들을 원주 상에 구비하는 노즐캡(160)으로 구성된 것을 특징으로 하는 원심 필터.
  17. 제 16 항에 있어서,
    상기 분출공(162)들은 스핀들튜브(130)의 회전방향과 반대방향으로 경사지게 형성된 것을 특징으로 하는 원심 필터.
  18. 제 1 항에 있어서,
    상기 분리막(140)에는 원심 필터의 정지시 상부공간(S1)에 잔류한 유체를 하부공간(S2)으로 배출시키기 위한 배출구(143)가 형성된 것을 특징으로 하는 원심 필터.
PCT/KR2010/005012 2010-07-27 2010-07-30 원심 필터 WO2012015086A1 (ko)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US13/500,713 US8931645B2 (en) 2010-07-27 2010-07-30 Centrifugal filter
CN2010800394639A CN102481584B (zh) 2010-07-27 2010-07-30 离心过滤器

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020100072497A KR101003524B1 (ko) 2010-07-27 2010-07-27 원심 필터
KR10-2010-0072497 2010-07-27

Publications (1)

Publication Number Publication Date
WO2012015086A1 true WO2012015086A1 (ko) 2012-02-02

Family

ID=43513287

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2010/005012 WO2012015086A1 (ko) 2010-07-27 2010-07-30 원심 필터

Country Status (4)

Country Link
US (1) US8931645B2 (ko)
KR (1) KR101003524B1 (ko)
CN (1) CN102481584B (ko)
WO (1) WO2012015086A1 (ko)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103657247A (zh) * 2013-12-04 2014-03-26 高云芝 一种改良离心过滤设备
RU2654297C1 (ru) * 2017-04-04 2018-05-17 Российская Федерация, от имени которой выступает Министерство промышленности и торговли Российской Федерации (Минпромторг России) Центробежный фильтр масла
CN111589591A (zh) * 2020-06-08 2020-08-28 长江师范学院 一种离心式切削废屑分离机
CN114272668A (zh) * 2020-06-08 2022-04-05 长江师范学院 一种机床加工废屑分离设备进料结构

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101430151B1 (ko) * 2012-05-30 2014-08-18 (주)한영기공 액체 여과를 위한 원심 분리기의 로터 커버
KR101287153B1 (ko) * 2013-01-15 2013-07-17 신흥정공(주) 원심 오일 클리너
KR101287156B1 (ko) * 2013-04-15 2013-07-17 김용근 원심식 순환 청정기 시스템
DE102013218027A1 (de) * 2013-09-10 2015-03-12 Mahle International Gmbh Fluidfilter für ein Kraftfahrzeug
KR101470837B1 (ko) 2014-04-08 2014-12-10 신흥정공(주) 수분배출구조를 갖는 원심분리기 및 이를 이용한 퓨리파이어 시스템
KR101480923B1 (ko) * 2014-04-18 2015-01-13 신흥정공(주) 하이브리드형 원심분리기
KR101519058B1 (ko) 2014-11-18 2015-05-13 신흥정공(주) 원심필터용 커버
KR101519070B1 (ko) * 2014-12-02 2015-05-13 신흥정공(주) 수분제거 기능을 갖는 원심분리기
KR101606049B1 (ko) * 2015-07-29 2016-03-24 신흥정공(주) 입체필터를 포함하는 원심필터
CN106669270A (zh) * 2015-11-07 2017-05-17 衡阳智源农业科技有限公司 一种茶油离心滤油机
CN107442297B (zh) * 2017-09-22 2019-10-18 文安县富华包装制品有限公司 一种用于胶印机的润版液纯度检测用离心装置
KR20200000527A (ko) 2018-06-25 2020-01-03 신흥정공(주) 원심필터를 이용한 액체 여과시스템
KR102551108B1 (ko) * 2022-11-16 2023-07-04 신흥정공(주) 연마성 슬러지 분리장치

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4997556A (en) * 1988-12-26 1991-03-05 Mitsubishi Oil Co., Ltd. Oil filter I
JPH08177447A (ja) * 1994-12-22 1996-07-09 Komatsu Ltd 遠心分離フィルタ
KR100213155B1 (ko) * 1994-06-29 1999-08-02 정몽규 자동차용 오일필터
US6017300A (en) * 1998-08-19 2000-01-25 Fleetguard, Inc. High performance soot removing centrifuge with impulse turbine
KR20030031215A (ko) * 2001-10-12 2003-04-21 현대자동차주식회사 자동차의 원심력을 이용한 오일필터 시스템
KR20070043695A (ko) * 2004-03-17 2007-04-25 헹스트 게엠베하 운트 코. 카게 내연 기관의 윤활유 정화용 임펄스 원심분리기

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2913119A (en) * 1955-05-24 1959-11-17 Western States Machine Co Slurry loader for centrifugal machines
CN2930866Y (zh) * 2006-08-17 2007-08-08 黎光裔 自转式液体离心过滤器
CN201094939Y (zh) * 2007-09-18 2008-08-06 江苏牡丹离心机制造有限公司 一种过滤式离心机中的增压装置
CN201493178U (zh) * 2009-09-03 2010-06-02 高震宇 具有静止泵的油液离心机

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4997556A (en) * 1988-12-26 1991-03-05 Mitsubishi Oil Co., Ltd. Oil filter I
KR100213155B1 (ko) * 1994-06-29 1999-08-02 정몽규 자동차용 오일필터
JPH08177447A (ja) * 1994-12-22 1996-07-09 Komatsu Ltd 遠心分離フィルタ
US6017300A (en) * 1998-08-19 2000-01-25 Fleetguard, Inc. High performance soot removing centrifuge with impulse turbine
KR20030031215A (ko) * 2001-10-12 2003-04-21 현대자동차주식회사 자동차의 원심력을 이용한 오일필터 시스템
KR20070043695A (ko) * 2004-03-17 2007-04-25 헹스트 게엠베하 운트 코. 카게 내연 기관의 윤활유 정화용 임펄스 원심분리기

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103657247A (zh) * 2013-12-04 2014-03-26 高云芝 一种改良离心过滤设备
RU2654297C1 (ru) * 2017-04-04 2018-05-17 Российская Федерация, от имени которой выступает Министерство промышленности и торговли Российской Федерации (Минпромторг России) Центробежный фильтр масла
CN111589591A (zh) * 2020-06-08 2020-08-28 长江师范学院 一种离心式切削废屑分离机
CN111589591B (zh) * 2020-06-08 2022-02-01 长江师范学院 一种离心式切削废屑分离机
CN114272668A (zh) * 2020-06-08 2022-04-05 长江师范学院 一种机床加工废屑分离设备进料结构

Also Published As

Publication number Publication date
CN102481584B (zh) 2013-07-03
CN102481584A (zh) 2012-05-30
US8931645B2 (en) 2015-01-13
US20130193058A1 (en) 2013-08-01
KR101003524B1 (ko) 2010-12-30

Similar Documents

Publication Publication Date Title
WO2012015086A1 (ko) 원심 필터
WO2010147320A2 (ko) 제진 먼지 제거 기능을 가지는 진공청소기의 집진장치
WO2016117892A1 (en) Dust collector for vacuum cleaner
WO2020138929A1 (en) Dust container and cleaner including
WO2016099040A1 (en) Dust collector for vacuum cleaner
WO2010110533A2 (ko) 싸이클론 집진장치
WO2013172553A1 (ko) 합성수지 원료의 분진제거장치
WO2016114580A1 (en) Dust collector for vacuum cleaner
WO2017010624A1 (ko) 오일 미스트 집진기
WO2013180414A1 (ko) 오일미스트 집진기
WO2016080592A1 (ko) 원심필터용 커버
WO2019107677A1 (ko) 정전분무 싸이클론 공기청정기
WO2011025130A2 (ko) 진공청소기의 습식집진장치
WO2010126222A2 (ko) 진공청소기의 습식분리형 집진장치
WO2020242074A1 (ko) 습식 집진 유닛 및 이를 이용하는 습식 집진 장치
WO2017018784A1 (ko) 분진 적체 방지 백필터 여과집진장치
WO2014058141A1 (ko) 집진 장치
WO2011025137A2 (ko) 진공청소기의 습식집진장치
CN108720726A (zh) 一种干湿两用型旋风分离组件及吸尘器
WO2015156445A1 (ko) 수분배출구조를 갖는 원심분리기 및 이를 이용한 퓨리파이어 시스템
WO2022092773A1 (ko) 사각 형태 스크러버 성능 향상을 위한 가스 분산 장치
AU2020432829B2 (en) Cleaner
WO2021103688A1 (zh) 吸尘器及分离机构
WO2021235587A1 (ko) 필터백 보호 에어커튼 생성 모듈을 포함하는 여과집진기 분진 재비산 방지 장치 및 이를 구비하는 여과집진기
CN204201987U (zh) 一种涡式旋风滤油件及使用该滤油件的吸油烟机

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080039463.9

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10855358

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 13500713

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10855358

Country of ref document: EP

Kind code of ref document: A1