WO2012014887A1 - 硬組織再生材料及び硬組織再生方法 - Google Patents

硬組織再生材料及び硬組織再生方法 Download PDF

Info

Publication number
WO2012014887A1
WO2012014887A1 PCT/JP2011/066955 JP2011066955W WO2012014887A1 WO 2012014887 A1 WO2012014887 A1 WO 2012014887A1 JP 2011066955 W JP2011066955 W JP 2011066955W WO 2012014887 A1 WO2012014887 A1 WO 2012014887A1
Authority
WO
WIPO (PCT)
Prior art keywords
hard tissue
tissue regeneration
film
regeneration material
apatite
Prior art date
Application number
PCT/JP2011/066955
Other languages
English (en)
French (fr)
Inventor
本津 茂樹
西川 博昭
正暢 楠
一志 吉川
一世 山本
Original Assignee
学校法人近畿大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 学校法人近畿大学 filed Critical 学校法人近畿大学
Priority to CN201180037483.7A priority Critical patent/CN103298496B/zh
Priority to JP2012526513A priority patent/JP5918135B2/ja
Priority to KR1020137003256A priority patent/KR101875979B1/ko
Publication of WO2012014887A1 publication Critical patent/WO2012014887A1/ja
Priority to US13/752,633 priority patent/US9205030B2/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/02Inorganic materials
    • A61L27/10Ceramics or glasses
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/02Inorganic materials
    • A61L27/12Phosphorus-containing materials, e.g. apatite
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61CDENTISTRY; APPARATUS OR METHODS FOR ORAL OR DENTAL HYGIENE
    • A61C19/00Dental auxiliary appliances
    • A61C19/06Implements for therapeutic treatment
    • A61C19/063Medicament applicators for teeth or gums, e.g. treatment with fluorides
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61CDENTISTRY; APPARATUS OR METHODS FOR ORAL OR DENTAL HYGIENE
    • A61C5/00Filling or capping teeth
    • A61C5/50Implements for filling root canals; Methods or instruments for medication of tooth nerve channels
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K6/00Preparations for dentistry
    • A61K6/80Preparations for artificial teeth, for filling teeth or for capping teeth
    • A61K6/802Preparations for artificial teeth, for filling teeth or for capping teeth comprising ceramics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K6/00Preparations for dentistry
    • A61K6/80Preparations for artificial teeth, for filling teeth or for capping teeth
    • A61K6/831Preparations for artificial teeth, for filling teeth or for capping teeth comprising non-metallic elements or compounds thereof, e.g. carbon
    • A61K6/838Phosphorus compounds, e.g. apatite
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K6/00Preparations for dentistry
    • A61K6/80Preparations for artificial teeth, for filling teeth or for capping teeth
    • A61K6/849Preparations for artificial teeth, for filling teeth or for capping teeth comprising inorganic cements
    • A61K6/864Phosphate cements
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/02Inorganic materials
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61QSPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
    • A61Q11/00Preparations for care of the teeth, of the oral cavity or of dentures; Dentifrices, e.g. toothpastes; Mouth rinses
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2430/00Materials or treatment for tissue regeneration
    • A61L2430/02Materials or treatment for tissue regeneration for reconstruction of bones; weight-bearing implants
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2430/00Materials or treatment for tissue regeneration
    • A61L2430/12Materials or treatment for tissue regeneration for dental implants or prostheses

Definitions

  • the present invention relates to a hard tissue regeneration material excellent in hard tissue regeneration ability, protection and aesthetics, and a hard tissue regeneration method using the same.
  • Tissue repair using bone filling material is performed on bone defects such as long bones, tibias, and skulls.
  • the material for the bone grafting material is required to have excellent biocompatibility and osteoconductivity.
  • calcium phosphate ceramics such as hydroxyapatite (hereinafter abbreviated as HAp) are often used.
  • HAp hydroxyapatite
  • a binder such as gelatin is used (for example, see Patent Document 1).
  • a dental adhesive film in which HAp is dispersed in a water-soluble or swelling support material that adheres to teeth, and a coating agent containing HAp are applied to the tooth surface.
  • a coating agent containing HAp are applied to the tooth surface.
  • an HAp crystal is grown on the tooth surface by irradiating an electromagnetic wave (see, for example, Patent Document 3).
  • Patent Documents 1 and 2 have a problem that it is difficult to fix to hard tissues because gelatin and the like are not sufficiently fixed. Further, the method of Patent Document 3 has a problem that it cannot be easily performed because a coating agent irradiation device is required.
  • conventional hard tissue regeneration materials are mainly intended for hard tissue repair such as hard tissue defects, and in the case of bones and periodontal tissues, such as tooth buds, tissues around the teeth (alveolar bone, periodontal ligament, cement) Quality, gingiva) could not be regenerated.
  • the present invention provides a hard tissue regeneration material that is excellent in hard tissue re-performance, promotes remineralization of tooth enamel extremely effectively, and also has excellent protection and aesthetics, and a hard tissue regeneration method using the same.
  • the task is to do.
  • the present invention is as follows.
  • the biocompatible ceramic film is formed on a base material including a portion that can be removed in an environment where the shape of the biocompatible ceramic film can be maintained.
  • a biocompatible ceramic film obtained by removing a film-formed base material in the environment, and has flexibility and flexibility.
  • the hard tissue regeneration material may be a laminate of a plurality of biocompatible ceramic films.
  • the biocompatible ceramic film of the hard tissue regeneration material is any one of apatite films selected from the group consisting of HAp, fluorinated apatite (hereinafter abbreviated as FAp), carbonate apatite, and element-substituted apatite. It may be.
  • MCPM primary calcium phosphate
  • DCPD dicalcium phosphate
  • ⁇ -TCP and ⁇ -TCP tribasic calcium phosphate
  • Apatite precursor containing Ca 2+ and PO 4 3 ⁇ such as tetracalcium phosphate (hereinafter abbreviated as TTCP), calcium octaphosphate (hereinafter abbreviated as OCP), and the like.
  • the hard tissue regeneration material is preferably a dental treatment material, a dental aesthetic material, a dental restoration / preservation material, or a bone filler.
  • the hard tissue regeneration material of the present invention is fixed almost irreversibly only by contacting.
  • the color is also transparent to white.
  • the material is also safe HAp. Therefore, it can be used not only as a medical / dental material but also as a dental cosmetic material for aesthetic purposes.
  • by applying the hard tissue regenerating material of the present invention to the tooth surface immediately after whitening it is possible to prevent the color from returning and to restore and preserve the tooth.
  • the hard tissue regeneration method of the present invention is a method in which the hard tissue regeneration material is attached or wound around a hard tissue defect site.
  • a plurality of hard tissue regeneration materials may be attached or wound around the hard tissue defect site.
  • a hard tissue regeneration material in which the apatite precursor such as ⁇ -TCP is laminated may be used.
  • the hard tissue regeneration material of the present invention has flexibility and softness, even if it is a bone tissue defect portion that is not flat, the hard tissue regeneration material can be pasted or wound around the surface.
  • the hard tissue regenerating material of the present invention can be fixed almost irreversibly without requiring a special device or the like only by contacting the bone tissue defect portion.
  • the hard tissue regeneration material of the present invention is transparent to white.
  • the material of the hard tissue regeneration material of the present invention is safe HAp and the like. Therefore, it can be used not only as a medical material but also as a dental cosmetic material for aesthetics.
  • FIG. 1 is a diagram schematically showing a method of using the hard tissue regeneration material of the present invention for tooth enamel regeneration.
  • FIG. 2 is a photograph in which the adhesion state of the HAp film to the enamel was confirmed using an optical microscope after 90 days.
  • FIG. 3 is a photograph in which the adhesion state of the HAp film to the dentin was confirmed using an optical microscope after 90 days.
  • FIG. 4 is a photograph in which the adhesion state of the HAp film to the enamel was confirmed using a scanning electron microscope after 90 days.
  • FIG. 5 is a photograph in which the adhesion state of the HAp film to the dentin was confirmed using a scanning electron microscope after 90 days.
  • FIG. 6 is an external optical photograph of the crystallized BAp film.
  • FIG. 7 is an X-ray diffraction (hereinafter abbreviated as XRD) pattern of the crystallized BAp film.
  • FIG. 8 is an external optical photograph of the crystallized FAp film.
  • FIG. 9A shows the XRD pattern of the crystallized FAp film.
  • FIG. 9B shows the result of energy dispersive X-ray analysis (EDX) of the crystallized FAp film.
  • FIG. 9C shows the result of analyzing and comparing the crystallized FAp film and the crystallized HAp film by Fourier transform infrared spectroscopic analysis.
  • FIG. 10 is a diagram schematically showing a method of applying a hard tissue regenerating material having different properties to the hard tissue in an overlapping manner.
  • FIG. 10 is a diagram schematically showing a method of applying a hard tissue regenerating material having different properties to the hard tissue in an overlapping manner.
  • FIG. 11 is an XRD pattern of each hard tissue regeneration material of FIG.
  • FIG. 12 is a diagram showing a result of examining, by a tensile test, the effect that the hard tissue regenerative material of FIG. 10 has on the sticking strength of the hard tissue regenerated material on the enamel.
  • FIG. 13 is an XRD pattern showing the results of investigating the influence of the presence or absence of ⁇ -TCP lamination on the adhesion time of the hard tissue regeneration material to the enamel.
  • FIG. 14 is a diagram showing the results of a tensile test examining the effect of the presence or absence of ⁇ -TCP lamination on the adhesion strength of hard tissue regeneration material to enamel.
  • FIG. 12 is a diagram showing a result of examining, by a tensile test, the effect that the hard tissue regenerative material of FIG. 10 has on the sticking strength of the hard tissue regenerated material on the enamel.
  • FIG. 13 is an XRD pattern showing the results of investigating the influence of the presence or absence of
  • FIG. 15 is a photomicrograph showing the result of a scratch test in the case of using a hard tissue regeneration material in which an ⁇ -TCP thin film is laminated.
  • FIG. 16 is a photomicrograph showing the results of a scratch test in the case of using a hard tissue regeneration material not laminated with an ⁇ -TCP thin film.
  • Hard tissue regeneration material The hard tissue regeneration material of this invention can be manufactured by a method substantially similar to the manufacturing method described in Patent Document 4, for example. Specifically, the hard tissue regeneration material can be manufactured by a manufacturing method including a plurality of steps such as a film formation step and a removal step (dissolution step). Therefore, these details will be described below.
  • the film-forming process is a process of forming a biocompatible ceramic film on a substrate including a portion that can be removed in an environment where the shape of the biocompatible ceramic film can be maintained.
  • Base material The base material used for this process includes, for example, a material made of a material including a part that dissolves in a solvent that does not dissolve the biocompatible ceramic film as described in Patent Document 4.
  • water-soluble inorganic salts such as alkali metal halides such as sodium chloride and potassium chloride and amorphous magnesium oxide, water-soluble organic salts such as water-soluble inorganic salts and amino acids such as glycine, or organic solvents Resin that dissolves in water, molded materials such as wax, and aromatic materials such as naphthalene.
  • resins, dental waxes and the like are preferable because they can easily produce a large biocompatible ceramic film and are inexpensive.
  • biocompatible ceramics such as a resin that decomposes by ultraviolet irradiation or heating, a material that sublimes by heating such as phosphorus or iodine, a material that melts and burns by heating such as wax, etc. Any material can be used as long as it is made of a material that can be removed in an environment where the shape of the film can be maintained.
  • the shape of the substrate is not particularly limited, and may be any shape that matches the shape of the hard tissue remanufactured material to be manufactured, such as a plate shape, a hemispherical shape, and a cylindrical shape. Among these, a crown shape, a bridge shape, or the like according to the shape of the dental crown to be treated is preferable.
  • the base material may be composed of a plurality of different materials instead of a single material.
  • the substrate includes not only a material that dissolves in a solvent that does not dissolve biocompatible ceramics, but also a portion made of a material that dissolves in a solvent, and a portion made of a material that does not dissolve in a solvent such as a glass plate or a steel plate. Substrates may also be used.
  • a hard tissue regeneration material having through holes is produced Can do.
  • a hard tissue regenerative material that has a through hole at a position close to the defect site, and impregnating the through hole with a drug, etc., and applying it, the repair of the hard tissue surface and the treatment around the hard tissue are performed in parallel You can do it.
  • Such a substrate is formed on a glass plate or steel plate that does not dissolve in a solvent, on a laser ablation method, a sputtering method, an ion beam deposition method, an electron beam deposition method, a vacuum deposition method, a molecular beam epitaxy method, a chemical vapor deposition method, and the like. It can be manufactured by coating a material that dissolves in a solvent by using a phase growth method or the like, spraying a liquid in which a material that dissolves in a solvent is dissolved, and then drying.
  • Biocompatible ceramics are apatite, its raw materials, and a mixture containing it.
  • apatite is a group of minerals having a composition of M 10 (ZO n ) 6 X 2 , where M in the formula means, for example, Ca, Na, Mg, Ba, K, Zn, Al, ZO n represents, for example, PO 4 , SO 4 , CO 3 , and X represents, for example, OH, F, O, CO 3 .
  • the apatite may be, for example, HAp, FAp, carbonate apatite, and element-substituted apatite.
  • HAp having high biocompatibility and FAp excellent in acid resistance and suitable for dental use are more preferable.
  • apatite raw material include apatite precursors containing Ca 2+ and PO 4 3- , such as MCPM, DCPD, ⁇ -TCP, ⁇ -TCP, TTCP, and OCP.
  • the mixture containing apatite include biological apatite (hereinafter abbreviated as BAp) collected from bones such as cattle.
  • Film formation Film formation is performed using a known film formation apparatus such as a laser ablation method, such as sputtering, ion beam evaporation, electron beam evaporation, vacuum evaporation, molecular beam epitaxy, and chemical vapor deposition. Any film forming method can be used without limitation. Among these, the laser ablation method is preferable because a homogeneous film can be obtained efficiently.
  • a laser ablation method such as sputtering, ion beam evaporation, electron beam evaporation, vacuum evaporation, molecular beam epitaxy, and chemical vapor deposition.
  • Any film forming method can be used without limitation.
  • the laser ablation method is preferable because a homogeneous film can be obtained efficiently.
  • the laser ablation method is performed by the following procedure, for example.
  • the base material is put into a laser ablation apparatus, exhausted, and a steam-containing gas or a carbon dioxide-containing gas is introduced into the apparatus.
  • the target is irradiated with a laser beam generated from a laser light source including a laser generator such as an ArF excimer laser generator, a mirror, and a lens.
  • a laser generator such as an ArF excimer laser generator, a mirror, and a lens.
  • the biocompatible ceramic constituting the target is decomposed to release atoms, ions, clusters, and the like, and the target side of the substrate is covered with the biocompatible ceramic film.
  • the water vapor-containing gas includes water vapor, oxygen-water vapor mixed gas, argon-water vapor mixed gas, helium-water vapor mixed gas, nitrogen-water vapor mixed gas, air-water vapor mixed gas, etc.
  • the carbon dioxide-containing gas includes carbon dioxide. Gas, oxygen-water vapor / carbon dioxide mixed gas, argon / water vapor / carbon dioxide mixed gas, helium / water vapor / carbon dioxide mixed gas, nitrogen / water vapor / carbon dioxide mixed gas, air / water vapor / carbon dioxide mixed gas, etc. Or they can be used in combination.
  • the thickness of the biocompatible ceramic film is 1 to 100 ⁇ m, preferably 4 to 50 ⁇ m, so that the biocompatible ceramic film has flexibility and flexibility and maintains a certain strength.
  • various conditions for forming a biocompatible ceramic film by laser ablation or the like such as the substrate temperature and the gas pressure of the atmospheric gas, are considered in consideration of the configuration and characteristics of the laser ablation apparatus and the like. It is necessary to prepare so as to be within the thickness range of the affinity transparent film.
  • the removal step the base material is removed from the base material on which the biocompatible ceramic film is formed in an environment where the shape of the biocompatible ceramic film can be maintained, thereby obtaining the biocompatible ceramic film. It is a process. Specifically, as described in Patent Document 4, a method of immersing a substrate on which a biocompatible ceramic film is formed in a solvent can be exemplified.
  • the solvent used in this case is an aqueous solvent, an organic solvent, a polar solvent, an insoluble solvent, as long as it is a liquid that does not dissolve the biocompatible ceramic film and dissolves at least the portion of the substrate that contacts the biocompatible ceramic film.
  • the solvent can be used without any particular limitation. In the case of an aqueous solvent, pure water, a cell culture buffer, a cell culture liquid medium, and the like are more preferable. In the case of an organic solvent, acetone, hexane, alcohols and the like that are volatile and do not remain on the biological ceramic film are preferable.
  • the dissolution time, solvent temperature, etc. may be arbitrarily adjusted according to the material and thickness of the substrate. Moreover, you may combine a some solvent according to the material of a base material.
  • the base material when using a base material made of a material that decomposes, sublimates, melts, or burns by ultraviolet irradiation or heating, the base material is removed using a known apparatus such as an ultraviolet lamp or a heating furnace.
  • a known apparatus such as an ultraviolet lamp or a heating furnace.
  • the wavelength and intensity of the ultraviolet rays to be irradiated, the temperature and the atmosphere during heating, and the like can be set according to the material of the substrate within a range in which the shape of the biocompatible ceramic film can be maintained.
  • the biocompatible ceramic film may be dried (drying process) or heat treated (heat treated process).
  • the drying step is a step in which the biocompatible ceramic film isolated from the base material is taken out of the solvent by tweezers or the like and then naturally dried or device-dried when the base material is dissolved. Thereby, deformation and breakage of the obtained hard tissue regeneration material can be prevented.
  • the hard tissue regeneration material obtained as described above may be used as it is or after being cut into a specific shape. By cutting into a specific shape, it can be more closely compensated for a hard tissue defect site.
  • hard tissue regeneration materials manufactured from HAp, FAp, carbonate apatite, and element-substituted apatite have the property of adsorbing biologically relevant molecules. Therefore, various growth differentiation factors TGF- ⁇ (transforming growth factor), BMP (bone morphogenetic protein), IGF-1 (insulin-like growth factor 1), PDGF (platelet-derived growth factor), bFGF (fibroblast growth factor) Etc. can be adsorbed to the hard tissue regeneration material. And it becomes possible to reproduce
  • TGF- ⁇ transforming growth factor
  • BMP bone morphogenetic protein
  • IGF-1 insulin-like growth factor 1
  • PDGF platelet-derived growth factor
  • bFGF fibroblast growth factor
  • the hard tissue regeneration material obtained in the above step is transparent.
  • This hard tissue regenerative material is (1) heat-treated at a temperature of 350 ° C. or higher to increase the crystallinity of the film to increase the irregularities on the film surface and diffuse the light. (2) Hydrothermally heat the film to the film surface. (3) The surface of the film is coated with apatite nanoparticles to increase the unevenness of the surface, and the light is diffusely reflected. (4) A white paint is applied to the film. It can be processed into white by attaching a film on the top to make a sandwich type. Thereby, it can be set as the hard tissue reproduction
  • the hard tissue regeneration material may be manufactured by forming a film by changing the target and stacking different types of biocompatible ceramic films.
  • an apatite precursor containing Ca 2+ and PO 4 3 ⁇ for example, MCPM, by a known method such as powder deposition, simulated body fluid method, alternating immersion method, molecular precursor method on the surface of the biocompatible ceramic film.
  • DCPD, ⁇ -TCP, ⁇ -TCP, TTCP, OCP, etc. may be laminated on the biocompatible ceramic film. These can improve different properties, such as both strength and adhesion to hard tissue.
  • FIG. 1 is a diagram schematically showing a method of using the hard tissue regeneration material of the present invention for tooth enamel regeneration. As shown in FIG. 1, the hard tissue regeneration material of the present invention can be fixed by simply sticking it to a hard tissue defect site.
  • the hard tissue regeneration material of the present invention may have a plurality of holes or a plurality of layers. Thereby, the patch used at the time of sticking becomes easy to penetrate, and even when the defect site is deep, it can be sufficiently compensated.
  • the same type of hard tissue regenerating material may be stacked or a plurality of types of hard tissue regenerating material may be stacked. For example, it is possible to achieve both adhesion and strength by superimposing materials having low crystallinity close to amorphous, low crystallinity, and high crystallinity from the side close to the hard tissue.
  • the following method can be used.
  • Adhesion using a demineralization / remineralization mode Hard tissue regeneration material is applied to dentin using a solution containing weakly acidic Ca 2+ and PO 4 3 ⁇ such as artificial saliva or aqueous calcium phosphate solution. Adhesion causes temporary decalcification at the interface between the hard tissue regenerative material and the tooth, and then returns Ca 2+ and PO 4 3- that are supersaturated in a neutral or alkaline environment to the tooth. Then, remineralization may occur and the apatite film and the tooth substance may be fixed. Since only inorganic substances such as apatite and calcium phosphate are used, there is less concern about allergies when using drugs or polymer materials, and the invasion can be reduced.
  • a hard tissue regeneration material and a dental substance may be fixed by applying a polymer-based dental adhesion system currently used in dental treatment.
  • the tooth bonding system can complete the bonding in one step and in a short time.
  • the hard tissue regenerating material of the present invention is a dental treatment material, dental aesthetic material, dental treatment capable of repairing, protecting, preventing tooth decay, strengthening teeth, whitening action, treating hypersensitivity, etc. It can be used as a restoration / preservation material or a medical material for treating bone defects or fractures.
  • Hard tissue regenerated material performance test A hard tissue regenerated material according to the present invention was manufactured and examined for its adhesion to the tooth. Details thereof will be described below.
  • PLD laser ablation
  • the substrate temperature was 300 ° C.
  • the atmosphere gas used was an oxygen-water vapor mixed gas
  • the gas pressure of the mixed gas was 0.8 mTorr.
  • a cell yard pellet (Pentax, stoichiometric composition HAp) was used as a target as a raw material of the film.
  • the NaCl substrate was dissolved in pure water, and a transparent and flexible HAp film having a size of 10 mm ⁇ 10 mm and a film thickness of 12 ⁇ m was recovered. Thereafter, heat treatment was performed in an oxygen-water vapor atmosphere at 400 ° C. for 10 hours to crystallize the HAp film.
  • enamel and dentin samples were embedded in the resin, then longitudinally cut through the center of the HAp film anchored portion with a low-speed diamond saw, processed by the usual method, and the interface of the anchored portion was observed using a scanning electron microscope. confirmed.
  • the extracted human teeth were used in the experiments after obtaining approval from the Osaka Dental University ethics committee.
  • FIG. 2 (1) is a photograph confirming the state of adhesion of the HAp film to the enamel using an optical microscope after 90 days.
  • (a) shows the part where the HAp film is not fixed
  • (b) shows the part where the HAp film is fixed. From this figure, polishing marks could be observed in the portion where the HAp film was not fixed, and polishing marks could not be observed in the portion where the HAp film was fixed. From this, it was found that enamel can be repaired and protected by using the hard tissue regeneration material of the present invention.
  • Fig. 3 (1) is a photograph confirming the state of adhesion of the HAp film to the dentin using an optical microscope after 90 days.
  • (a) shows the part where the HAp film is not fixed
  • (b) shows the part where the HAp film is fixed. From this figure, cracks etc. were not observed in the part where the HAp film was not fixed, and cracks and part of the film were removed in the part where the HAp film was fixed, but most of the film was It was firmly fixed.
  • This crack is caused by the drying treatment of the sample during observation with an electron microscope because the dentin contains 30% organic matter and moisture. From this, it was found that the dentin can be repaired and protected by using the hard tissue regeneration material of the present invention.
  • FIG. 4 is a photograph in which the adhering state of the HAp film to the enamel was confirmed using a scanning electron microscope after 90 days. As shown in the dimension bar in the figure, FIG. 4 (a) is a photograph with weak enlargement (1,500 times), and (b) is a photograph with strong enlargement (5,000 times). From FIG. 4A, an image in which an unstructured film having a thickness of about 10 ⁇ m was fixed on the enamel surface could be observed. Further, from FIG. 4 (b), which is a strong enlargement, a portion fixed in accordance with the unevenness of the enamel surface was also observed.
  • FIG. 5 is a photograph in which the state of fixation of the HAp film to the dentin was confirmed using a scanning electron microscope after 90 days.
  • FIG. 5 (a) is a photograph with weak enlargement (1,500 times)
  • (b) is a photograph with strong enlargement (5,000 times). From FIG. 5 (a), it was possible to observe an image in which an unstructured film having a thickness of about 10 ⁇ m was adhered to the dentin surface as in the case of enamel. Further, from FIG. 5 (b), which was strongly enlarged, a portion where the dentinal tubule on the surface of the dentin was fixed in a closed shape was also observed.
  • both the enamel and the dentin can be regenerated by applying the hard tissue regeneration material of the present invention to the surface of the enamel and dentin.
  • the substrate temperature was room temperature, the atmosphere gas used was an oxygen-water vapor mixed gas, and the gas pressure of the mixed gas was 0.8 mTorr.
  • the same PLD apparatus as that used in Example 1 was used.
  • FIG. 6 is a photograph of the appearance of the obtained crystallized BAp film.
  • FIG. 7 is a diagram showing an XRD pattern of the obtained crystallized BAp film.
  • the broad peak around 20 ° of XRD is the peak of the amorphous SiO 2 fixing plate on which the film was fixed at the time of measurement. From FIG. 6, it was confirmed that the obtained crystallized BAp film was whitened. Further, from the XRD peak of XRD in FIG. 7, it was confirmed that the BAp film was crystallized. From this, it was found that whitening can be achieved by crystallization of the BAp film.
  • the substrate temperature was 300 ° C.
  • the atmosphere gas used was an oxygen-water vapor mixed gas
  • the gas pressure of the mixed gas was 0.8 mTorr.
  • the same PLD apparatus as that used in Example 1 was used.
  • the NaCl substrate was dissolved in pure water, and a transparent and flexible FAp film having a size of 10 ⁇ 10 mm and a film thickness of 4 ⁇ m was recovered. Thereafter, heat treatment was performed in air at 450 ° C. for 10 hours to crystallize the FAp film. A photograph of the appearance of the obtained crystallized FAp film is shown in FIG. From this figure, it was confirmed that a hard tissue regeneration material comprising a transparent crystallized FAp film was successfully obtained.
  • Example 2 Hard tissue regeneration material
  • a HAp film was produced by the PLD method. This HAp film was left as it was without (a) heat treatment, (b) heat treated at 350 ° C. for 2 hours in an oxygen-water vapor atmosphere, and (c) heat treated at 350 ° C. for 10 hours in an oxygen-water vapor atmosphere.
  • FIG. 13A is a diagram showing a change in XDR pattern of a hard tissue regeneration material laminated with ⁇ -TCP
  • FIG. 13B is a diagram showing a change in the XDR pattern of a hard tissue regeneration material not laminated with ⁇ -TCP.
  • the XDR pattern of the hard tissue regeneration material laminated with ⁇ -TCP shows that the peak of calcium phosphate hydrate, which is the precursor of apatite, decreases one day after being applied to the enamel, and the enamel It was confirmed that it was equal to the quality XDR pattern.
  • the XDR pattern of the hard tissue regeneration material not laminated with ⁇ -TCP is apatite precursor in addition to the enamel XDR pattern even after 1 day after being applied to the enamel. A peak was observed, confirming that it did not coincide with the enamel peak.
  • FIG. 15 (a) shows only enamel
  • FIG. 15 (b) shows one day after using a hard tissue regeneration material with an ⁇ -TCP thin film
  • FIG. 15 (c) shows an ⁇ -TCP thin film. It is a result of a scratch test after 3 days when using a hard tissue regeneration material.
  • FIG. 16 (a) shows the scratch after 3 days of the hard tissue regeneration material not laminated with ⁇ -TCP
  • FIG. 16 (b) shows the scratch after 10 days when the hard tissue regeneration material not laminated with -TCP is used. It is a result of a test.
  • the hard tissue regeneration material of the present invention can adhere to the enamel without special treatment and protect the tooth substance if liquid such as saliva is present. Thereby, remineralization of enamel can be promoted by applying a hard tissue regeneration material directly to the teeth of patients with initial caries or hypersensitivity, and fundamental treatment can be performed. Compared with conventional treatment methods such as hypersensitivity, there is no need to scrape the enamel of the dental matrix, and the treatment period can be shortened with minimal invasiveness. Furthermore, the burden on the patient can be greatly reduced because the regeneration of the self tissue is promoted rather than the treatment with the drug.
  • the hard tissue regeneration material of the present invention is transparent or white. Therefore, a whitening effect can also be expected. Furthermore, the hard tissue regeneration material of the present invention also has a protective action on the tooth surface.
  • the hard tissue regeneration material of the present invention is effective as a dental treatment material, a dental aesthetic material, and a dental restoration / preservation material. Furthermore, since it can also adhere to enamel and dentin, it can be effectively used as a bone filling material for treating bone defects or a medical treatment material for treating fractures.

Abstract

 硬組織再生能に優れ、歯牙エナメル質の再石灰化を極めて効果的に促進し、しかも保護性・審美性にも優れる硬組織再生材料及び硬組織再生方法を提供する。この発明の硬組織再生材料は、例えば、生体親和性セラミックス膜が成膜された基材を、前記生体親和性セラミックスを溶解せず、前記基材の少なくとも一部を溶解する溶媒に浸漬して基材を溶解又は分離して得られる生体親和性セラミックス膜であり、可撓性及び柔軟性を備えている。また、この発明の硬組織再生方法は、この発明の硬組織再生材料を硬組織欠損部位に貼付け又は巻きつける方法である。

Description

硬組織再生材料及び硬組織再生方法
 この発明は、硬組織の再生能、保護性、審美性に優れる硬組織再生材料及びこれを使用する硬組織再生方法に関する。
 長管骨、頚骨、頭蓋骨などの骨欠損部に対して、骨補填材を使用した組織修復が行われている。骨補填材の材質としては、優れた生体親和性及び骨伝導能を有していることが要求される。このような材質として、ハイドロキシアパタイト(以下、HApと省略する。)などのリン酸カルシウム系セラミックスなどがよく使用されている。ただ、これらのセラミックスをバルク状塊状形成物として使用すると、中心部での感染確率が高くなるという問題があった。このため、ゼラチンなどのバインダが使用されている(例えば、特許文献1を参照。)。
 また、虫歯菌が歯牙表面に付着し、歯垢を形成することから、う蝕が始まる虫歯菌が、歯垢中で食物を代謝することにより産生される酸が歯の表面直下からカルシウムやリンを溶かし出すことで、歯牙エナメル質を脱灰して初期う蝕状態を形成する。再石灰化を促進する物質として、HApなどのリン酸カルシウム系セラミックスなどが知られている。ただ、HApなどは、水に難溶性であり、歯牙への接着性が悪く、塗布などの手段では、十分な効果が得られなかった。
 このため、例えば、歯に接着する水溶性又は膨潤性の支持物質に、HApなどを分散させた歯科用接着フィルム(例えば、特許文献2を参照。)やHApを含むコーティング剤を歯牙表面に塗布したものに、電磁波を照射して、歯牙の表面にHAp結晶を成長させる(例えば、特許文献3を参照。)ことが行われている。
 しかし、特許文献1、2に記載のフィルムでは、ゼラチンなどの固着力が十分でないため、硬組織に定着しにくいという問題があった。また、特許文献3の方法では、コーティング剤照射装置が必要であるため、実施が簡易にできないという問題があった。
 さらに、従来からある硬組織再生材料は、硬組織の欠損等の硬組織修復が主な目的であり、骨・歯周組織、例えば歯芽の場合は歯周囲組織(歯槽骨、歯根膜、セメント質、歯肉)の再生はできなかった。
 加えて、歯を白く見せるため、歯を過酸化水素や過酸化尿素等の漂白薬によって漂白するホワイトニングが行われている。しかし、過酸化水素や過酸化尿素等の漂白薬によってホワイトニングされた歯の表面は、短時間のうちにペリクルやプラークで覆われてしまうため、色の後戻りが早期に生じるという問題があった。
 一方、発明者らは、可撓性及び柔軟性を備え、皮膚などの組織移植や細胞観察などに使用可能な生体親和性セラミックス膜を既に開発している(特許文献4を参照。)。
特表2003-517326号公報 特表2004-536032号公報 特開平10-337296号公報 国際特許公開2007-108373号公報
 この発明は、硬組織再性能に優れ、歯牙エナメル質の再石灰化を極めて効果的に促進し、しかも保護性・審美性にも優れる硬組織再生材料及びこれを使用する硬組織再生方法を提供することを課題とする。
 発明者らは、この硬組織再生材料を歯欠損部や骨組織欠損部に接触させるだけで、ほぼ不可逆に接着し、骨組織欠損部を保護するとともに、硬組織再性能に優れることを見出し、この発明を完成した。すなわち、この発明は以下のとおりである。
 この発明の硬組織再生材料は、生体親和性セラミックス膜を、生体親和性セラミックス膜の形状が維持できる環境下において除去可能な部分を含む基材上に成膜したのち、生体親和性セラミックス膜が成膜された基材を前記環境下で除去して得られる生体親和性セラミックス膜であって、可撓性及び柔軟性を備えているものである。
 硬組織再生材料は、生体親和性セラミックス膜を複数積層したものであってもよい。また、前記硬組織再生材料の生体親和性セラミックス膜が、HAp、フッ素化アパタイト(以下、FApと省略する。)、炭酸アパタイト、及び元素置換アパタイトからなる群れより選択される何れかのアパタイトの膜であってもよい。
 さらに、硬組織再生材料に第一リン酸カルシウム(以下、MCPMと省略する。)、第二リン酸カルシウム(以下、DCPDと省略する。)、第三リン酸カルシウム(以下、α-TCP、β-TCPと省略する。)、リン酸4カルシウム(以下、TTCPと省略する。)、オクタリン酸カルシウム(以下、OCPと省略する。)等のCa2+とPO4 3-を含むアパタイト前駆体を積層してもよい。
 前記硬組織再生材料が、歯科治療材、歯科審美材、歯科修復・保存材又は骨充填材であると好ましい。上記したようにこの発明の硬組織再生材料は、接触させるだけで、ほぼ不可逆に固着する。また、その色も、透明~白色である。また、その材料も安全なHApなどである。したがって、医療用・歯科用材料のみならず、審美性のための歯科化粧材としても使用できる。特に、この発明の硬組織再生材をホワイトニング直後に歯の表面に貼付けることにより、色の後戻りを防ぐとともに歯を修復・保存できる。
 この発明の硬組織再生方法は、前記硬組織再生材料を硬組織欠損部位に貼付け又は巻き付ける方法である。なお、複数の硬組織再生材料を硬組織欠損部位に貼付け又は巻き付けてもよい。また、α-TCPなど前記のアパタイト前駆体を積層した硬組織再生材料を使用してもよい。
 この発明の硬組織再生材料は、可撓性及び柔軟性を備えるので、平面状でない骨組織欠損部であっても、その表面に追従して硬組織再生材料を貼付け又は巻き付けられる。また、この発明の硬組織再生材料は、骨組織欠損部へ接触させるだけで、特別な装置などを必要とすることなく、ほぼ不可逆に固着させることができる。
 また、この発明の硬組織再生材料は、透明~白色である。この発明の硬組織再生材料の材料は、安全なHApなどである。したがって、医療用材料のみならず、審美性のための歯科化粧材としても使用できる。
図1は、この発明の硬組織再生材料を歯牙のエナメル質再生のために使用する方法を模式的に示した図である。 図2は、90日後、光学顕微鏡を用いてHAp膜のエナメル質への固着状況を確認した写真である。 図3は、90日後、光学顕微鏡を用いてHAp膜の象牙質への固着状況を確認した写真である。 図4は、90日後、走査型電子顕微鏡を用いてHAp膜のエナメル質への固着状況を確認した写真である。 図5は、90日後、走査型電子顕微鏡を用いてHAp膜の象牙質への固着状況を確認した写真である。 図6は、結晶化BAp膜の外観光学写真である。 図7は、結晶化BAp膜のX線回折(以下、XRDと省略する。)パターンである。 図8は、結晶化FAp膜の外観光学写真である。 図9(a)は、結晶化FAp膜のXRDパターンである。また、図9(b)は、結晶化FAp膜をエネルギー分散型X線分析(EDX)した結果である。さらに、図9(c)結晶化FAp膜と結晶化HAp膜とをフーリエ変換型赤外分光分析で分析・比較した結果である。 図10は、異なる性質の硬組織再生材料を、硬組織に重ねて貼付ける方法を模式的に示す図である。 図11は、図10の各硬組織再生材料のXRDパターンである。 図12は、図10の各硬組織再生材料を重ねて貼付けることが、硬組織再生材料のエナメル質への固着強度に与える影響を、引張試験により調べた結果を示す図である。 図13は、α-TCPの積層の有無が、硬組織再生材料のエナメル質への固着時間に与える影響を調べた結果を示すXRDパターンである。 図14は、α-TCPの積層の有無が、硬組織再生材料のエナメル質への固着強度に与える影響を、引張試験により調べた結果を示す図である。 図15は、α-TCP薄膜を積層した硬組織再生材料を使用した場合の引っ掻き試験の結果を示す顕微鏡写真である。 図16は、α-TCP薄膜を積層していない硬組織再生材料を使用した場合の引っ掻き試験の結果を示す顕微鏡写真である。
1.硬組織再生材料
 この発明の硬組織再生材料は、例えば、特許文献4に記載の製造方法とほぼ同様の方法により製造することができる。具体的には、硬組織再生材料は、成膜工程、除去工程(溶解工程)などの複数の工程を含む製造方法により製造できる。そこで、これらの詳細について以下に説明する。
(1)成膜工程
 成膜工程は、生体親和性セラミックス膜を、生体親和性セラミックス膜の形状が維持できる環境下において除去可能な部分を含む基材上に、成膜する工程である。
 1)基材
 この工程に使用する基材は、例えば、特許文献4に記載されているような、生体親和性セラミックス膜を溶解しない溶媒に溶解する部分を含む材料からなるものが挙げられる。具体的には、塩化ナトリウム、塩化カリウム等のハロゲン化アルカリ金属や非晶質酸化マグネシウムなどの水溶性無機塩、水溶性無機塩やグリシンをはじめとするアミノ酸結晶等の水溶性有機物、又は有機溶媒に溶解する樹脂、ワックスなどの素材を成形したもの、ナフタレンなどの芳香族系材料が挙げられる。これらの中でも、大きい生体親和性セラミックス膜を製造しやすいこと、安価であることから、樹脂、歯科用ワックス等が好ましい。
 この他にも、基材として、例えば、紫外線の照射や加熱によって分解する樹脂、リンやヨウ素のように加熱により昇華する材料、ロウのように加熱により融解、燃焼する材料など、生体親和性セラミックス膜の形状が維持できる環境下で除去可能な材料からなるものであれば、特に限定することなく使用できる。
 なお、基材の形状は、特に限定されることなく、板状、半球状や筒状など、製造する硬組織再製材料の形状に合わせた任意の形状でよい。中でも、治療される歯冠の形状に合わせたクラウン形状、ブリッジ形状などが好ましい。
 また、基材は、単一の材料ではなく異なる複数の材料から構成されていてもよい。例えば、基材が生体親和性セラミックスを溶解しない溶媒に溶解する素材のみではなく、溶媒に溶解する材料からなる部分と、例えば、ガラス板や鋼板等の溶媒に溶解しない材料からなる部分とを備えた基材であってもよい。
 溶媒に溶解しない材料を一部使用した基材を使用することによって、生体親和性透明セラミックス膜を製造するたびに基材を全て作り直す必要がなくなり、硬組織再生材料をより安価に製作することができる。
 また、溶媒に溶解しない材料からなる板の上面に、溶媒に溶解する材料からなる突起物を一定のパターンで設けた基材を使用すれば、貫通孔の開いた硬組織再生材料を製造することができる。例えば、欠損部位に近い位置に貫通孔を有する硬組織再生材料を製造し、貫通孔に薬剤などを含浸させてから貼付けることにより、硬組織表面の修復と硬組織の周囲の治療とが並行して行える。
 このような基材は、溶媒に溶解しないガラス板や鋼板等の上に、レーザーアブレーション法、スパッタリング法、イオンビーム蒸着法、電子ビーム蒸着法、真空蒸着法、分子線エピタクシー法、化学的気相成長法などを用いて溶媒に溶解する材料を被覆すること、溶媒に溶解する材料を溶かした液体をスプレーなどによって噴霧したのち乾燥させること等によって製造することができる。
 2)生体親和性セラミックス
 生体親和性セラミックスは、アパタイト、その原材料及びそれを含む混合物のことである。ここで、アパタイトとはM10(ZOn6X2の組成を持った鉱物群であり、式中のMは、例えばCa、Na、Mg、Ba、K、Zn、Alを意味し、ZOnは例えばPO4、SO4、CO3を意味し、Xは例えばOH、F、O、CO3を意味する。アパタイトは、例えばHAp、FAp、炭酸アパタイト、及び元素置換アパタイトであればよい。中でも、生体親和性の高いHApや耐酸性に優れ歯科用途に向いているFApがより好ましい。また、アパタイトの原料(前駆体)としては、Ca2+とPO4 3-を含むアパタイト前駆体、例えば、MCPM、DCPD、α-TCP、β-TCP、TTCP、OCPを例示することができ、アパタイトを含む混合物としては牛等の骨から採取した生体アパタイト(以下、BApと省略する。)を例示することができる。
 3)成膜
 成膜は、レーザーアブレーション法、例えばスパッタリング法、イオンビーム蒸着法、電子ビーム蒸着法、真空蒸着法、分子線エピタクシー法、化学的気相成長法等の公知の成膜装置を使用する成膜方法であれば限定なく使用できる。中でも、効率よく均質な膜が得られることから、レーザーアブレーション法が好ましい。
 レーザーアブレーション法は、例えば次のような手順で行なう。まず、上記基材をレーザーアブレーション装置に入れ、排気し、水蒸気含有ガス又は炭酸ガス含有ガスを装置内に導入する。つぎに、ArFエキシマレーザー発生装置等のレーザー発生装置、ミラー、レンズ等からなるレーザー光源から発生したレーザー光線をターゲットに照射する。これによって、ターゲットを構成する生体親和性セラミックスが分解して原子、イオン、クラスター等が放出され、基材のターゲット側を生体親和性セラミックス膜によって被覆する。
 ここで、ターゲットとしては、生体親和性セラミックスの粉末を金型で加工成形したものを使用する。また、水蒸気含有ガスとしては、水蒸気、酸素-水蒸気混合ガス、アルゴン-水蒸気混合ガス、ヘリウム-水蒸気混合ガス、窒素-水蒸気混合ガス、空気-水蒸気混合ガス等が、炭酸ガス含有ガスとしては、炭酸ガス、酸素-水蒸気・炭酸ガス混合ガス、アルゴン-水蒸気・炭酸ガス混合ガス、ヘリウム-水蒸気・炭酸ガス混合ガス、窒素-水蒸気・炭酸ガス混合ガス、空気-水蒸気・炭酸ガス混合ガス等を単独で又は組み合わせて使用できる。
 なお、生体親和性セラミックス膜が可撓性及び柔軟性を有し、かつ、一定の強度を維持するため、生体親和性セラミックス膜の厚さは、1~100μm、好ましくは4~50μmである。そのため、レーザーアブレーション法等により、生体親和性セラミックス膜を成膜する際の各種条件、例えば基材温度や雰囲気ガスのガス圧等は、レーザーアブレーション装置等の構成や特性を考慮して、前記生体親和性透明膜の厚さの範囲に収まるように調製する必要がある。
(2)除去工程
 除去工程は、生体親和性セラミックス膜の形状が維持できる環境下で、生体親和性セラミックス膜が成膜された基材から基材を除去して、生体親和性セラミックス膜を得る工程である。具体的には、特許文献4に記載のように、生体親和性セラミックス膜が成膜された基材を溶媒に浸漬する方法が例示できる。
 この際に使用する溶媒としては、生体親和性セラミックス膜を溶解せず、少なくとも基材の生体親和性セラミックス膜と接する部分を溶解する液体であれば、水系溶媒、有機溶媒、極性溶媒、非性溶媒など特に限定することなく使用できる。水系溶媒の場合には、純水、細胞培養用緩衝液、細胞培養用液体培地等がより好ましい。また、有機溶媒の場合は、揮発性で生体セラミックス膜に残らないアセトン、ヘキサン、アルコール類等が好ましい。なお、溶解時間や溶媒の温度などは基材の材質や厚さなどに応じて任意に調節すればよい。また、基材の材質に応じて複数の溶媒を組み合わせてもよい。
 また、紫外線照射や加熱によって分解、昇華、融解、燃焼などする材料からなる基材を使用する場合には、紫外線ランプ、加熱炉など公知の装置を使用して、基材を除去する。なお、照射する紫外線の波長や強度、加熱する際の温度や雰囲気等は、生体親和性セラミックス膜の形状が維持できる範囲内で、基材の材質に応じて設定することができる。
 なお、基材を除去したのち、生体親和性セラミックス膜は、乾燥(乾燥工程)してもよく、熱処理(熱処理工程)してもよい。
(3)乾燥工程
 乾燥工程は、基材が溶解することによって、基材からから単離した生体親和性セラミックス膜を、ピンセット等により溶媒から取り出して、自然乾燥又は装置乾燥する工程である。これにより、得られた硬組織再生材料の変形や破損を防ぐことができる。
(4)熱処理工程
 成膜が完了したのち、又は膜の乾燥後に、300~1200℃の高温の水蒸気含有ガス又は炭酸含有ガス中で熱処理する熱処理工程を追加して、生体親和性セラミックス膜をより結晶化すると、より緻密な硬組織再生材料を得ることができる。
 上記のようにして得られた硬組織再生材料は、そのままの形状でも、また特定の形状にカットして使用してもよい。特定の形状にカットすることで、硬組織欠損部位により密に補填することができる。
 また、HAp、FAp、炭酸アパタイト、及び元素置換アパタイトから製造した硬組織再生材料は、生体関連分子を吸着する性質を有する。そのため、各種成長分化因子TGF-β(トランスフォーミング成長因子)、BMP(骨形成タンパク質)、IGF-1(インスリン様成長因子1)、PDGF(血小板由来成長因子)、bFGF(線維芽細胞増殖因子)等の因子を硬組織再生材料に吸着させることができる。そして、こられの各種因子を吸着させた硬組織再生材料を歯牙に貼付することにより、骨、歯の周囲組織を再生することも可能になる。
 さらに、前記工程で得られた硬組織再生材料は透明である。この硬組織再生材料を、(1)350℃以上の温度で熱処理して膜の結晶性を高めて膜表面の凹凸を大きくし、光を乱反射させる、(2)膜を水熱処理して膜表面の凹凸を大きくし、光を乱反射させる、(3)膜の表面をアパタイトのナノ粒子で被覆し表面の凹凸を大きくし、光を乱反射させる、(4)膜に白色塗料を塗布し、さらにその上部に膜を貼付けサンドイッチ型にするなどにより、白色に加工することができる。これにより、審美性に優れた硬組織再生材料とすることができる。
 加えて、ターゲットを換えて成膜し、異なる種類の生体親和性セラミックス膜を重ねて硬組織再生材料を製造してもよい。また、生体親和性セラミックス膜の表面にパウダーデポジション、擬似体液法、交互浸漬法、分子プレカーサー法などの公知の方法によって、Ca2+とPO4 3-を含むアパタイト前駆体、例えば、MCPM、DCPD、α-TCP、β-TCP、TTCP、OCP等を、生体親和性セラミックス膜に積層してもよい。これらによって、異なる性質、例えば、強度と硬組織への接着性の両方を向上できる。
2.接着方法
 この発明の硬組織再生材料は、硬組織欠損部位に貼付け又は巻きつけると、当該部位に強固に接着する。ほぼ不可逆に接着するので、接着剤等がなくても接着できる。図1は、この発明の硬組織再生材料を歯牙のエナメル質再生のために使用する方法を模式的に示した図である。図1に示すように、この発明の硬組織再生材料を硬組織欠損部位に貼付するだけで、固着させることができる。
 これは、硬組織再生材料のHApなどと歯質などの表面が接した場合、分子間力による引力が働き、固着しやすい状態になることが原因であると考えられる。なお、コラーゲンなどの有機質や水分が多く含まれると、この発明の硬組織再生材料は固着しにくく、また固着した後も乾燥による収縮でこの発明の硬組織再生材料に応力が発生し、ひび割れや一部脱離が起こる。そのため、固着に際しては、歯質(エナメル質、象牙質ともに)などの表面に存在する有機物を研磨などで除去する、又は水分量を制御すればよい。
 なお、この発明の硬組織再生材料は、複数の穴が開いていてもよいし、複数重ねて使用してもよい。これにより、貼付時に使用する貼付液が浸透しやすくなり、欠損部位が深い場合などであっても、十分に補填することができる。硬組織再生材料を複数重ねて使用する場合は、同一種類の硬組織再生材料を重ねてもよく、複数種の硬組織再生材料を重ねてもよい。例えば、結晶性が低く非晶質に近いもの、結晶性が低いもの、結晶性が高いものを硬組織に近い側から重ねることにより、固着性と強度とを両立させることができる。
 また、硬組織再生材料と硬組織とをさらに強固に固着させるため、例えば、以下の方法が使用できる。
(1)脱灰・再石灰化様式を使用する固着
 硬組織再生材料を人工唾液や、第一リン酸カルシウム水溶液のように弱酸性のCa2+とPO4 3-を含む溶液を用いて歯質に付着することによって、硬組織再生材料と歯質の界面に一時的な脱灰を起こしたのち、中性若しくはアルカリ性の環境下で過飽和になったCa2+とPO4 3-を歯質に戻して再石灰化を起こし、アパタイト膜と歯質を固着してもよい。アパタイトやリン酸カルシウムなどの無機質しか使用しないので、薬剤や高分子材料などを使用した場合のようなアレルギーの心配が少なく、侵襲を少なくすることができる。
(2)高分子材料を使用した接着
 現在、歯科治療で用いられている高分子による歯質接着システムを応用し、硬組織再生材料と歯質を固着してもよい。歯質接着システムはワンステップでしかも短時間で接着を完了させることができる。
(3)レーザーによるアパタイト溶融を使用する融着
 現在、歯科治療において使用されている歯質削除用のレーザーの出力をコントロールし、HApを溶融し、アパタイト膜と歯質を融着してもよい。アパタイトやリン酸カルシウムなどの無機質しか使用しないことから薬剤や高分子材料などを使用した場合と異なり、アレルギーの心配を少なくできる。
 この発明の硬組織再生材を使用すれば、エナメル質のみならず、象牙質を含む硬組織の再生をすることができる。そのため、この発明の硬組織再生材は、歯表面の微細な凹凸の修復、保護、虫歯予防、歯質強化、美白作用、知覚過敏症の治療などが可能な歯科治療材、歯科審美材、歯科修復・保存材や、骨の欠損や骨折などを治療する医科材料として使用できる。
 以下、実施例によりこの発明を説明するが、この発明は係る実施例により如何なる意味においても限定されるものではない。
1.硬組織再生材料の性能試験
 この発明に係る硬組織再生材料を製造し、歯質への固着状態などについて調べた。その詳細について以下に説明する。
(1)硬組織再生材料の製造
 レーザーアブレーション(以下、PLDと省略する。)法により、NaCl単結晶からなる基材上にHAp膜を成膜した。具体的には、塩化ナトリウム結晶(10mm×10mm×2.5mm)をPLD装置(近畿大学生物理工学部本津研究室設計、誠南工業株式会社製造)の試料把持装置に把持させ、ArFエキシマレーザー(λ=193nm、パルス幅=20ns)を使用するPLDを18時間行って、厚さ約10μmのHAp膜を成膜した。
 なお、基材温度は300℃、使用した雰囲気ガスは酸素‐水蒸気の混合ガス、混合ガスのガス圧は0.8mTorrであった。また、膜の原材料となるターゲットには、セルヤードペレット(ペンタックス製、化学量論組成HAp)を使用した。
 つぎに、NaCl基板を純水中で溶解し、寸法10mm×10mm、膜厚12μmの透明で可撓性のあるHAp膜を回収した。その後、400℃で10時間、酸素-水蒸気雰囲気下で熱処理し、HAp膜を結晶化した。
(2)エナメル質再石灰化能の評価実験
 抜去ヒト歯を歯根歯冠境界部で切断し、歯冠部をエナメル質、象牙質をそれぞれ露出させたのち、耐水研磨紙#600まで研磨したものを、実験に供した。図2(2)、図3(2)に示すように、エナメル質、象牙質各試料中央部に、寸法5mm×5mmに裁断したHAp膜を静置し、人工唾液(サリベート帝人ファーマ製)を噴霧した。その後人工唾液を3日ごとに噴霧し、90日間経過観察を行った(n=3)。90日後、光学顕微鏡を用いてHAp膜の歯質への固着状況を確認した。またエナメル質、象牙質試料をそれぞれレジン包埋したのちロースピードダイヤモンドソーにてHAp膜固着部中央を通るように縦断し、通法により処理したのち、走査型電子顕微鏡を用いて固着部界面を確認した。なお、抜去ヒト歯については、大阪歯科大学医の倫理委員会の承認を得た後に実験に使用した。
(3)光学顕微鏡による固着状態の観察結果
 図2(1)は、90日後、光学顕微鏡を使用してHAp膜のエナメル質への固着状況を確認した写真である。図中、(a)はHAp膜が固着していない部分を、(b)はHAp膜が固着している部分を示す。この図から、HAp膜が固着していない部分には、研磨痕が観察でき、HAp膜が固着している部分では研磨痕が観察できなかった。このことから、この発明の硬組織再生材料を使用すれば、エナメル質を修復・保護できることが分かった。
 図3(1)は、90日後、光学顕微鏡を使用したHAp膜の象牙質への固着状況を確認した写真である。図中、(a)はHAp膜が固着していない部分を、(b)はHAp膜が固着している部分を示す。この図から、HAp膜が固着していない部分には、ひび割れ等は観察できず、HAp膜が固着している部分ではひび割れや一部の膜の脱落が見られたが、膜の大部分はしっかりと固着していた。このひび割れは象牙質が30%の有機物と水分を含むために、電子顕微鏡観察時の試料の乾燥処理により生じたものである。このことから、この発明の硬組織再生材料を使用すれば、象牙質を修復・保護できることが分かった。
(4)走査型電子顕微鏡による固着状態の観察結果
 図4は、90日後、走査型電子顕微鏡を用いてHAp膜のエナメル質への固着状況を確認した写真である。図中の寸法バーに示すように、図4(a)は、弱拡大(1,500倍)、(b)は強拡大(5,000倍)した写真である。図4(a)から、エナメル質表面に厚さ約10μmの無構造な膜が固着している像が観察できた。また、強拡大の図4(b)から、エナメル質表面の凹凸に合わせて固着している部分も認められた。
 図5は、90日後、走査型電子顕微鏡を用いてHAp膜の象牙質への固着状況を確認した写真である。図中の寸法バーに示すように、図5(a)は、弱拡大(1,500倍)、(b)は強拡大(5,000倍)した写真である。図5(a)から、象牙質表面にもエナメル質と同様に厚さ約10μmの無構造な膜が固着している像が観察できた。また、強拡大の図5(b)から、象牙質表面の象牙細管をふさぐ形で固着している部分も認められた。
 この実施例から、この発明の硬組織再生材料をエナメル質、象牙質の表面に貼付すれば、エナメル質、象牙質の何れも再生できることが分かった。
2.BAp膜の白色化
 BApからなる膜を製造したのち、これを熱処理することよって、BAp膜が白色化することを調べた。その詳細を以下に示す。
(1)BAp膜の製造
 BAp粉末(株式会社エクセラ製)をプレス成型してバルクターゲットとした。このターゲットにArFエキシマレーザー(λ=193nm、パルス幅=20ns)を6時間照射し、PLD法によりNaCl基板(10×10×3mm)上に、厚さ4μmのBAp膜を成膜した。そののち、純水に浸してNaCl基板のみを溶解し、寸法10mm×10mm、膜厚4μmの透明で可撓性のあるBAp膜を回収した。
 なお、基材温度は室温、使用した雰囲気ガスは酸素-水蒸気の混合ガス、混合ガスのガス圧は0.8mTorrであった。また、PLD装置は実施例1と同じものを使用した。
(2)熱処理
 この膜を炭酸ガス中、350℃まで15時間で加熱する条件でポストアニールして結晶化した。図6は、得られた結晶化BAp膜の外観の写真である。図7は、得られた結晶化BAp膜のXRDパターンを示す図である。図7において、XRDの20°付近のブロードなピークは測定時に膜を固定した非晶質SiO2固定板のピークである。図6から、得られた結晶化BAp膜は白色化できていることが認められた。また、図7のXRDの●のピークから、BAp膜が結晶化していることが認められた。このことから、BAp膜の結晶化により白色化できることが分かった。
3.FAp膜の製造
 FApはHApに比べて安定であり、耐酸性が向上することが知られている。そこで、FAp膜を製造し、その性質を調べた。
(1)硬組織再生材料の製造
 FApの粉末(太平化学産業株式会社製)をプレス成型してバルクターゲットとした。このターゲットにArFエキシマレーザー(λ=193nm、パルス幅=20ns)を8時間照射し、PLD法によりNaCl基板(10×10×3mm)上に、FAp膜を4μm堆積させた。
 なお、基材温度は300℃、使用した雰囲気ガスは酸素-水蒸気の混合ガス、混合ガスのガス圧は0.8mTorrであった。また、PLD装置は実施例1と同じものを使用した。
 つぎに、NaCl基板を純水中で溶解し、寸法10×10mm、膜厚4μmの透明で可撓性のあるFAp膜を回収した。その後、450℃で10時間、大気中で熱処理し、FAp膜を結晶化した。得られた結晶化FAp膜の外観の写真を図8に示す。この図から、透明な結晶化FAp膜からなる硬組織再生材料を得ることに成功したことが確認できた。
(2)FAp硬組織再生材料の評価
 結晶化FAp膜のXDRを2θ/θ法によるXDRにより測定した。その結果を図9(a)に示す。この図から結晶化FAp膜が結晶化していることが分かった。また、結晶化FAp膜をエネルギー分散型X線分析(EDX)で分析した。その結果を図9(b)に示す。この図から、FAp膜中にフッ素の存在が確認できた。さらに、結晶化FAp膜とHAp膜とをフーリエ変換型赤外分光分析(FT‐IR)で分析し、分析結果を比較した。その結果を図9(c)に示す。この図から、HAp膜と比較するとFAp膜では、水酸基のピークが低下しており、FAp膜ではHAp膜の水酸基がフッ素に置換していることが分かった。以上のことよりFAp膜が得られたことが確認できた。
4.硬組織再生材料を重ねて貼付けることの効果の確認
 異なる性質の硬組織再生材料を、硬組織に重ねて貼付けることが固着強度の向上に与える効果について調べた。具体的には次のようにして調べた。まず、図10に示すように、歯質Tに貼付けられる順に、(a)結晶性が低くて非晶質に近く、溶解しやすい膜、(b)結晶性の低い膜、(c)結晶性が高く溶解しにくい膜、の3種類の硬組織再生材料を製造した。つぎに、製造した硬組織再生材料の結晶性と、これらを歯質に重ねて貼付けることが固着強度に与える影響について調べた。
(1)硬組織再生材料
 実施例1と同様にして、PLD法によりHAp膜を製造した。このHAp膜を、それぞれ(a)熱処理せずにそのまま放置、(b)酸素-水蒸気雰囲気下、350℃で2時間熱処理、(c)酸素-水蒸気雰囲気下、350℃で10時間熱処理した。
(2)結晶性の分析
 硬組織再生材料(a)~(c)の2θ/θ法によるXDRパターンを測定した。その結果を図11(a)~(c)に示す。これらの図から、熱処理の違いによって、硬組織再生材料(a)~(c)の結晶性が変わることが分かった。
(3)引張試験
 結晶性の異なる膜の重ねて貼付けることが、硬組織再生材料と歯質との間の固着強度に与える影響を調べた。具体的には、実施例1と同様にして、硬組織再生材料をエナメル質に貼付け、貼付けてから72時間後に硬組織再生材料とエナメル質との間の固着強度を測定して比較検討した。その結果を図12に示す。この図から、重ねて貼付けることによって、硬組織再生材料の歯質に対する固着強度が向上することが分かった。
5.積層による効果の確認
 硬組織再生材料の表面にアパタイト前駆体であるα-TCPを積層することが、硬組織再生材料とエナメル質との固着時間や固着強度にどのような影響を与えるかについて調べた。
(1)α-TCPを積層した硬組織再生材料の製造
 α-TCPの粉末(太平化学産業株式会社製)をプレス成型してバルクターゲットとした。このバルクターゲットにArFエキシマレーザー(λ=193nm、パルス幅=20ns)を1時間照射し、実施例1と同様にして製造した硬組織再生材料上に、PLD法によって厚さ300nmのα-TCP薄膜を積層した。なお、基材温度は室温、使用した雰囲気ガスは酸素ガス、ガスのガス圧は0.8mTorrであった。また、PLD装置は実施例1と同じものを使用した。さらに、比較のため、α-TCPを積層していない硬組織再生材料を別途用意した。
(2)X線による固着性能の比較
 アパタイト前駆体であるα-TCPを積層した硬組織再生材料とα-TCPを積層していない硬組織再生材料とを、実施例1と同様にエナメル質を露出させた抜去ヒト歯にそれぞれ静置したのち、pH5.5の第一リン酸カルシウム水溶液を使用して貼付けた。貼付けてから、1日ごとに人工唾液を塗布した。また、10分後と1日後に、2θ/θ法によるXDRパターンを測定した。その結果を図13に示す。なお、図13(a)はα-TCPを積層した硬組織再生材料のXDRパターンの変化を示す図であり、(b)はα-TCPを積層していない硬組織再生材料のXDRパターンの変化を示す図である。
 図13(a)から、α-TCPを積層した硬組織再生材料のXDRパターンは、エナメル質に貼付けてから1日後には、アパタイトの前駆体であるリン酸カルシウム水和物のピークが低下し、エナメル質のXDRパターンと等しくなっていることが確認できた。一方、図13(b)から、α-TCPを積層していない硬組織再生材料のXDRパターンは、エナメル質に貼付けてから1日過ぎても、エナメル質のXDRパターン以外にアパタイトの前駆体のピークが見られ、エナメル質のピークと一致しないことが確認できた。なお、図示はしていないものの、α-TCPを積層していない硬組織再生材料のXDRパターンがエナメル質のXDRパターンと等しくなるには、約1週間かかることも別途確認できた。以上の結果から、硬組織再生材料にアパタイトの前駆体であるα-TCP膜を積層することによって、硬組織再生材料とエナメル質との固着時間が短縮できることが分かった。
(3)引張試験
 アパタイトの前駆体であるα-TCP薄膜の有無が、硬組織再生材料と歯質との間の固着強度に与える影響を調べた。具体的には、(2)と同様に、硬組織再生材料をエナメル質に貼付け、貼付けてから72時間後に硬組織再生材料とエナメル質との間の固着強度を測定して比較検討した。その結果を図14に示す。この図から、硬組織再生材料にα-TCP薄膜を設けることによって、硬組織再生材料の歯質に対する固着強度が向上することが分かった。
(4)引っ掻き試験
 アパタイトの前駆体であるα-TCP薄膜の有無が、硬組織再生材料と歯質との間の固着特性に与える影響を調べた。具体的には、(2)と同様に、硬組織再生材料をエナメル質に貼付けてからα-TCPを積層した硬組織再生材料では1日後と3日後に、α-TCPを積層していない硬組織再生材料では3日後と10日後に、スクラッチ試験機により引っ掻き試験を行って、その引っ掻き粉から硬組織再生材料とエナメル質との間の固着状況を観察し、比較検討した。その結果を図15、図16に示す。
 なお、図15(a)はエナメル質のみの場合、同(b)はα-TCP薄膜を積層した硬組織再生材料を使用した場合の1日後、同(c)はα-TCP薄膜を積層した硬組織再生材料を使用した場合の3日後、の引っ掻き試験の結果である。また、図16(a)はα-TCPを積層していない硬組織再生材料の3日後、同(b)は-TCPを積層していない硬組織再生材料を使用した場合の10日後、の引っ掻き試験の結果である。
 図15の(b)、(c)から、α-TCPを積層した硬組織再生材料を使用した場合、1日目の引っ掻きから引っ掻き粉は硬組織再生材料とエナメル質の境界が分からないように均一となり、硬組織再生材料とエナメル質とが一体化していることが確認できた。
 一方、図16(a)から、3日後には硬組織再生材料とエナメル質との境界部分(矢印で示す。)では、硬組織再生材料がエナメル質から剥離してできる剥離粉が見られ、硬組織再生材料とエナメル質とが一体化していないことが確認できた。また、同図(b)から、10日後には、引っ掻き粉は硬組織再生材料とエナメル質との境界が分からないように均一となり、硬組織再生材料とエナメル質とが一体化していることが確認できた。
 これらの結果から、硬組織再生材料にα-TCP薄膜を設けることによって、硬組織再生材料とエナメル質との一体化が1日程度で行わることが分かった。
 この発明の硬組織再生材料は、唾液などの液体が存在すれば特殊な処理なしでエナメル質と固着し、歯質を保護することができる。これにより、初期齲蝕や知覚過敏症患者の患歯に、直接硬組織再生材料を貼付することによりエナメル質の再石灰化を促し、根本的治療を行うことができる。これまでの知覚過敏症などの治療法に比べ、歯母体のエナメル質を削るなどの必要がなく低侵襲で治療期間の短縮化が期待できる。さらに、薬物による治療ではなく自己組織の再生を促すことから患者の負担を大幅に軽減することができる。また、この発明の硬組織再生材料は、透明ないし白色である。したがって、美白効果も期待できる。さらに、この発明の硬組織再生材料は、歯の表面の保護作用も有する。このように、この発明の硬組織再生材料は、歯科治療材、歯科審美材、歯科修復・保存材として有効である。さらに、エナメル質、象牙質にも固着できることから、骨の欠損を治療する骨充填材や骨折などを治療する医科治療材としての使用も有効である。

Claims (10)

  1.  生体親和性セラミックス膜を、生体親和性セラミックス膜の形状が維持できる環境下において除去可能な部分を含む基材上に成膜したのち、生体親和性セラミックス膜が成膜された基材を前記環境下で除去して得られる生体親和性セラミックス膜であって、可撓性及び柔軟性を備えている硬組織再生材料。
  2.  複数の生体親和性セラミックス膜を積層してなる請求項1に記載の硬組織再生材料。
  3.  アパタイト前駆体を生体親和性セラミックス膜の表面に積層してなる請求項1に記載の硬組織再生材料。
  4.  アパタイト前駆体が、第一リン酸カルシウム、第二リン酸カルシウム、第三リン酸カルシウム、リン酸4カルシウム、オクタリン酸カルシウムの何れかである請求項3に記載の硬組織再生材料。
  5.  生体親和性セラミックス膜が、ハイドロキシアパタイト、フッ素化アパタイト、炭酸アパタイト、及び元素置換アパタイトからなる群れより選択されるアパタイトの膜である請求項1に記載の硬組織再生材料。
  6.  硬組織再生材料が、歯科治療材、歯科審美材、歯科修復・保存材又は骨充填材である請求項1に記載の硬組織再生材料。
  7.  請求項1に記載の硬組織再生材料を、硬組織欠損部位に貼付け又は巻きつける硬組織再生方法。
  8.  複数の硬組織再生材料を硬組織欠損部位に重ねて貼付け又は巻きつける請求項7に記載の硬組織再生方法。
  9.  硬組織再生材料が、アパタイト前駆体を表面に積層してなる硬組織再生材料である請求項7に記載の硬組織再生方法。
  10.  アパタイト前駆体が、第一リン酸カルシウム、第二リン酸カルシウム、第三リン酸カルシウム、リン酸4カルシウム、オクタリン酸カルシウムの何れかである請求項9に記載の硬組織再生方法。
PCT/JP2011/066955 2010-07-30 2011-07-26 硬組織再生材料及び硬組織再生方法 WO2012014887A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201180037483.7A CN103298496B (zh) 2010-07-30 2011-07-26 硬组织再生材料以及硬组织再生方法
JP2012526513A JP5918135B2 (ja) 2010-07-30 2011-07-26 硬組織再生材料及びその製造方法
KR1020137003256A KR101875979B1 (ko) 2010-07-30 2011-07-26 경조직 재생 재료 및 경조직 재생 방법
US13/752,633 US9205030B2 (en) 2010-07-30 2013-01-29 Hard tissue regeneration material and hard tissue regeneration method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010171358 2010-07-30
JP2010-171358 2010-07-30

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/752,633 Continuation US9205030B2 (en) 2010-07-30 2013-01-29 Hard tissue regeneration material and hard tissue regeneration method

Publications (1)

Publication Number Publication Date
WO2012014887A1 true WO2012014887A1 (ja) 2012-02-02

Family

ID=45530094

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/066955 WO2012014887A1 (ja) 2010-07-30 2011-07-26 硬組織再生材料及び硬組織再生方法

Country Status (5)

Country Link
US (1) US9205030B2 (ja)
JP (1) JP5918135B2 (ja)
KR (1) KR101875979B1 (ja)
CN (1) CN103298496B (ja)
WO (1) WO2012014887A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015059261A (ja) * 2013-09-20 2015-03-30 学校法人近畿大学 薄膜形成装置およびこの薄膜形成装置を用いたアパタイト薄膜形成方法
JP2016044131A (ja) * 2014-08-20 2016-04-04 学校法人近畿大学 歯科治療用シート
JP2018082832A (ja) * 2016-11-22 2018-05-31 サンスター株式会社 生体親和性シートを歯に接着する方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115939263A (zh) * 2023-03-09 2023-04-07 浙江晶科能源有限公司 太阳能电池制备方法、太阳能电池及光伏组件

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06319794A (ja) * 1990-09-10 1994-11-22 Synthes Ag 骨再生膜
WO2007108373A1 (ja) * 2006-03-17 2007-09-27 Kinki University 生体親和性透明シート、その製造方法、及び細胞シート
JP2009061109A (ja) * 2007-09-06 2009-03-26 Yahashi Kogyo Kk 骨再生誘導膜、およびその製造方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6017118A (ja) * 1983-07-06 1985-01-29 Mitsubishi Mining & Cement Co Ltd リン酸カルシウム質フアイバ−
US5242706A (en) * 1991-07-31 1993-09-07 The United States Of America As Represented By The Secretary Of The Navy Laser-deposited biocompatible films and methods and apparatuses for producing same
FR2688139B1 (fr) * 1992-03-06 1995-06-23 Zimmer Sa Nouveau revetement pour systeme prothetique.
US8491936B2 (en) * 2005-03-16 2013-07-23 North Carolina State University Functionally graded biocompatible coating and coated implant
US20100256758A1 (en) * 2009-04-02 2010-10-07 Synvasive Technology, Inc. Monolithic orthopedic implant with an articular finished surface

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06319794A (ja) * 1990-09-10 1994-11-22 Synthes Ag 骨再生膜
WO2007108373A1 (ja) * 2006-03-17 2007-09-27 Kinki University 生体親和性透明シート、その製造方法、及び細胞シート
JP2009061109A (ja) * 2007-09-06 2009-03-26 Yahashi Kogyo Kk 骨再生誘導膜、およびその製造方法

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
MANAMI TODA ET AL.: "Fabrication of a Novel Bioceramic Membrane for Guided Bone Regeneration", JOURNAL OF THE CERAMIC SOCIETY OF JAPAN, vol. 114, no. 10, 2006, pages 799 - 801 *
SHIGEKI HONTSU ET AL.: "Dental application of flexible apatite sheet", FUNCTION & MATERIALS, vol. 31, no. 5, 5 April 2011 (2011-04-05), pages 63 - 68 *
SHIGEKI HONTSU ET AL.: "Flexible Apatite Sheet o Mochiita Enamel-shitsu no Kaishu Hozon", DAI 32 KAI THE ANNUAL MEETING OF THE JAPANESE SOCIETY FOR BIOMATERIALS YOKOSHU, 29 November 2010 (2010-11-29), pages 64 *
YOSHIYA HASHIMOTO ET AL.: "Hito Kan'yokei Kansaibo to Hydroxyapatite Sheet o Kumiawaseta Shinki Kotsu Saisei Yudo Membrane no Kaihatsu", DAI 7 KAI JAPANESE ASSOCIATION OF REGENERATIVE DENTISTRY GAKUJUTSU TAIKAI, JOURNAL OF THE JAPANESE ASSOCIATION OF REGENERATIVE DENTISTRY, vol. 7, no. 1, 2009, pages 82 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015059261A (ja) * 2013-09-20 2015-03-30 学校法人近畿大学 薄膜形成装置およびこの薄膜形成装置を用いたアパタイト薄膜形成方法
JP2016044131A (ja) * 2014-08-20 2016-04-04 学校法人近畿大学 歯科治療用シート
JP2018082832A (ja) * 2016-11-22 2018-05-31 サンスター株式会社 生体親和性シートを歯に接着する方法

Also Published As

Publication number Publication date
JP5918135B2 (ja) 2016-05-18
KR101875979B1 (ko) 2018-07-06
CN103298496A (zh) 2013-09-11
KR20130095256A (ko) 2013-08-27
US9205030B2 (en) 2015-12-08
CN103298496B (zh) 2016-03-16
JPWO2012014887A1 (ja) 2013-09-12
US20130236856A1 (en) 2013-09-12

Similar Documents

Publication Publication Date Title
Park et al. The effect of ultraviolet-C irradiation via a bactericidal ultraviolet sterilizer on an anodized titanium implant: a study in rabbits.
Efflandt et al. Interaction between bioactive glasses and human dentin
US20040210309A1 (en) Osteophilic implants
CZ239598A3 (cs) Bioaktivní skelná kompozice a způsob ošetření používající tuto kompozici
JP5918135B2 (ja) 硬組織再生材料及びその製造方法
JP6154806B2 (ja) セラミック材料から作られた本体
PT678300E (pt) Material para a substituicao de ossos e processo para a sua producao
WO2009156226A2 (en) A silk membrane for bone graft material and a method for manufacture thereof
Mouhyi et al. Re‐establishment of the atomic composition and the oxide structure of contaminated titanium surfaces by means of carbon dioxide laser and hydrogen peroxide: an in vitro study
US7883689B2 (en) Induced remineralisation of human tooth enamel
US20210138120A1 (en) Amorphous Silicon Oxide, Amorphous Silicon Oxynitride, and Amorphous Silicon Nitride Thin Films and Uses Thereof
JP6026517B2 (ja) 歯槽骨の再生方法および歯槽骨の再生に使用されるカルシウム含有微粒子の製造方法
Castillo-Dalí et al. In vivo comparative model of oxygen plasma and nanocomposite particles on PLGA membranes for guided bone regeneration processes to be applied in pre-prosthetic surgery: a pilot study
EP2937104A1 (en) Resorbable membrane for guided bone regeneration
KR101682778B1 (ko) 뼈·조직 재생 유도용 멤브레인 및 그 제조 방법
Yoshida et al. Quantitative analysis of apatite formation on titanium and zirconia in a simulated body fluid solution using the quartz crystal microbalance method
Hontsu et al. Ultra-thin hydroxyapatite sheets for dental applications
Nguyen et al. The effect of two-step surface modification for Ti-Ta-Mo-Zr alloys on bone regeneration: An evaluation using calvarial defect on rat model
JP6850495B2 (ja) 歯科治療用複合シート
Balamurugan et al. Characterization and in vivo evaluation of sol–gel derived hydroxyapatite coatings on Ti6Al4V substrates
US20150119469A1 (en) Formulations and kit for biometric deposition of apatite on teeth
Ibrahim et al. Biomimetic enamel remineralization using chitosan hydrogel (an in vitro study)
US20110153029A1 (en) Bioresorbable and flexible membranes exhibiting asymmetric osteoconductive behavior in both faces
Hontsu et al. Regeneration of tooth enamel by flexible hydroxyapatite sheet
Umehara et al. Development of a novel bioactive titanium membrane with alkali treatment for bone regeneration

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180037483.7

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11812476

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2012526513

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20137003256

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 11812476

Country of ref document: EP

Kind code of ref document: A1