WO2012014657A1 - Method for producing metal patterns - Google Patents

Method for producing metal patterns Download PDF

Info

Publication number
WO2012014657A1
WO2012014657A1 PCT/JP2011/065671 JP2011065671W WO2012014657A1 WO 2012014657 A1 WO2012014657 A1 WO 2012014657A1 JP 2011065671 W JP2011065671 W JP 2011065671W WO 2012014657 A1 WO2012014657 A1 WO 2012014657A1
Authority
WO
WIPO (PCT)
Prior art keywords
anchor layer
electroless plating
metal
catalyst
metal pattern
Prior art date
Application number
PCT/JP2011/065671
Other languages
French (fr)
Japanese (ja)
Inventor
鈴木 眞一
智史 森
仲島 厚志
Original Assignee
コニカミノルタIj株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コニカミノルタIj株式会社 filed Critical コニカミノルタIj株式会社
Publication of WO2012014657A1 publication Critical patent/WO2012014657A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/10Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern
    • H05K3/18Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern using precipitation techniques to apply the conductive material
    • H05K3/181Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern using precipitation techniques to apply the conductive material by electroless plating
    • H05K3/182Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern using precipitation techniques to apply the conductive material by electroless plating characterised by the patterning method
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2203/00Indexing scheme relating to apparatus or processes for manufacturing printed circuits covered by H05K3/00
    • H05K2203/07Treatments involving liquids, e.g. plating, rinsing
    • H05K2203/0703Plating
    • H05K2203/0709Catalytic ink or adhesive for electroless plating
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2203/00Indexing scheme relating to apparatus or processes for manufacturing printed circuits covered by H05K3/00
    • H05K2203/07Treatments involving liquids, e.g. plating, rinsing
    • H05K2203/0756Uses of liquids, e.g. rinsing, coating, dissolving
    • H05K2203/0769Dissolving insulating materials, e.g. coatings, not used for developing resist after exposure

Definitions

  • the present invention relates to a metal pattern manufacturing method for forming a metal pattern having excellent adhesion to a substrate.
  • a method for forming a metal pattern used in a circuit a method using a resist material has been performed. That is, after applying a resist material on a metal thin film and exposing a required pattern to light, unnecessary resist is removed by development, the exposed metal thin film is removed by etching, and the remaining resist portion is peeled off. Thus, a metal thin film forming method for forming a metal pattern has been widely used.
  • This metal pattern formation method uses the characteristic that the melting point is lowered by minimizing the particle size of the metal nanoparticles, and forms a circuit by performing a firing process at a relatively low temperature of about 200 to 300 ° C. It is a method to do. Although this technology certainly has the advantages of reducing man-hours and improving the utilization efficiency of raw materials, it is difficult to completely fuse metal particles together. In the process, there remains a problem that there are severe restrictions on the set temperature and other conditions.
  • a metal pattern forming method utilizing electroless plating technology has been proposed as a means for forming and depositing metal under mild conditions.
  • a method is disclosed in which a metal is formed by electroless plating after forming a circuit pattern with an ink containing a catalyst capable of forming a metal pattern by electroless plating (for example, Patent Document 1, (Refer nonpatent literature 1.).
  • a catalyst (precursor) is contained in an ink, and the ink is printed on a substrate to form a pattern. Thereafter, activation treatment and electroless plating are performed to form a metal pattern on the catalyst pattern.
  • Patent Documents 2 and 3 a method of forming an ink absorption layer made of polymer particles on a substrate and applying a catalyst ink on the ink absorption layer is disclosed (for example, see Patent Documents 2 and 3). Since the method disclosed in Patent Document 2 has a polymer layer, the adhesion is somewhat improved, but it is still not sufficient, and the ink absorption layer itself made of polymer particles has a high hygroscopicity, The reflow resistance (high temperature resistance) after storage for a long time in a humid environment was inferior. In addition, the method disclosed in Patent Document 3 is a method of forming a polymer water dispersion layer and then fusing it with heat to improve the hygroscopicity. At present, high humidity environment characteristics cannot be obtained.
  • the present invention has been made in view of the above problems, and its purpose is to have high adhesion to the substrate of the formed metal pattern, excellent heat resistance after storage in a high humidity environment (moisture absorption reflow resistance), and nothing. It is providing the manufacturing method of the metal pattern excellent in the electroplating property.
  • a method for producing a metal pattern comprising: a step of swelling or dissolving; and 3) a step of performing an electroless plating process.
  • a method for producing a metal pattern in which the formed metal pattern has high adhesion to the substrate, is excellent in heat resistance (moisture reflow resistance) after being stored in a high humidity environment, and is excellent in electroless plating properties. can do.
  • the substrate applied to form the metal pattern is formed of a material that has no absorbability for ink (liquid) such as insulating resin, glass or ceramic.
  • ink liquid
  • the substrate applied to form the metal pattern is formed of a material that has no absorbability for ink (liquid) such as insulating resin, glass or ceramic.
  • the present inventor has found that 1) a step of forming an anchor layer containing a polymer on the substrate, and 2) an electroless plating catalyst or precursor thereof on the anchor layer. And a step of swelling or dissolving the anchor layer, and 3) a step of performing an electroless plating process. It has been found that a metal pattern manufacturing method having high adhesion to a substrate of a metal pattern, excellent heat resistance (moisture reflow resistance) after storage in a high humidity environment, and excellent electroless plating properties can be realized. It is up to the present invention.
  • an anchor layer containing a polymer resin is formed on a substrate, and an ink (hereinafter simply referred to as “catalyst ink”) containing a catalyst or a precursor thereof for dissolving or swelling the anchor layer and a solvent is applied.
  • a catalyst ink hereinafter simply referred to as “catalyst ink”
  • the catalyst ink to be applied to the anchor layer mainly composed of a polymer resin formed on the substrate has a property of dissolving or swelling the anchor layer component, it is applied to the anchor layer.
  • the applied catalyst ink quickly penetrates into the anchor layer after application.
  • electroless plating treatment in the case where the ink contains a catalyst precursor, electroless plating treatment after activation treatment
  • not only the surface region of the anchor layer but also the catalyst ink A metal part is also formed in the penetrated interior.
  • the polymer component constituting the anchor layer and the metal are in a hybrid form, so that the metal is in a “rooted state” inside the anchor layer and high adhesion can be obtained.
  • the anchor layer swells or dissolves with the catalyst ink
  • the polymer is formed (cured) over the anchor layer surface and the inside of the anchor layer into which the catalyst ink has penetrated, and the hydrophobizing effect is expressed.
  • the anchor layer is transformed into a material that hardly absorbs moisture.
  • moisture absorption reflow property (which evaluates whether the metal part swells when exposed to high temperature after being stored in a high humidity environment) is important.
  • the high temperature in the hygroscopic reflow evaluation is assumed to be solder adhesion, and is usually 200 ° C. or higher, and is about 230 ° C. to 260 ° C. in recent lead-free.
  • the water absorption (hygroscopicity) of the base (or substrate) of the metal pattern is high, the hygroscopic reflow property is lowered.
  • the substrate has water absorption (hygroscopicity)
  • the moisture becomes water vapor (gas) when exposed to high temperature, and the bubble pattern swells on the surface of the metal film formed on the top (blister) ) Will occur.
  • film formation and hydrophobization are performed by permeation of the catalyst ink, so that the moisture absorption reflow characteristics are excellent.
  • the substrate on which the metal pattern is formed is not particularly limited as long as it has insulating properties.
  • the substrate on which the metal pattern is formed is not particularly limited as long as it has insulating properties.
  • a highly rigid material such as glass or ceramics, PET (polyethylene terephthalate)
  • PET polyethylene terephthalate
  • a polyimide film made of a resin such as polyimide.
  • the substrate used in the present invention may be subjected to a surface modification treatment such as a hydrophilic treatment on the surface from the viewpoint of improving adhesion or installing an anchor layer.
  • a surface modification treatment such as a hydrophilic treatment on the surface from the viewpoint of improving adhesion or installing an anchor layer.
  • Specific examples include plasma treatment, corona discharge treatment, UV irradiation treatment, silane coupling agent treatment, and the like.
  • Anchor layer containing polymer One feature of the present invention is that it includes a step of forming an anchor layer having a polymer (hereinafter also referred to as a polymer layer) on a substrate.
  • the polymer applicable to the present invention is not particularly limited, but polycarbonate, polyacrylonitrile, polystyrene, polyacrylic acid, polymethacrylic acid, polyacrylic ester, polyvinyl chloride, polyvinylidene chloride, polyvinyl acetate, polyester , Polyamides, polyethers, polyurethanes, epoxy resins, phenol resins, and the like, and copolymers thereof.
  • the properties required for these polymers to be applied include 1) good adhesion between the substrate and the polymer of the anchor layer, and 2) adsorption of the electroless plating catalyst or its precursor in the ink and the polymer of the anchor layer. It is preferable to select from polymers having these characteristics.
  • the polymer of the anchor layer has a functional group that interacts with the substrate, and specifically includes a carboxyl group, an amino group, a hydroxyl group, and the like.
  • the functional group that can be adsorbed (coordinated) to the catalyst or its precursor in the ink include a carboxyl group, a hydroxyl group, a sulfonic acid group, an amino group, a cyano group, and an amide group.
  • the type and polymer characteristics such as molecular weight, functional group type, Tg, additive type and amount are appropriately selected so that the polymer constituting the anchor layer has a function of swelling or dissolving in the ink. It is preferable to do.
  • the film thickness of the anchor layer according to the present invention is preferably 0.05 to 10 ⁇ m, more preferably 0.1 to 5 ⁇ m. If the film thickness is 0.05 ⁇ m or more, the adhesion to the substrate is sufficient, and if it is 10 ⁇ m or less, it is possible to prevent a decrease in adhesion due to cohesive failure of the polymer in the anchor layer.
  • polymer fine particles (latex) As the polymer used in the step of forming the anchor layer, it is more preferable to use polymer fine particles (latex) as the polymer used in the step of forming the anchor layer.
  • polymer fine particles (latex) that can be used in the present invention include polycarbonate, polyacrylonitrile, polystyrene, polyacrylic acid, polymethacrylic acid, polyacrylic ester, polyvinyl chloride, polyvinylidene chloride, polyvinyl acetate, polyester, Examples thereof include polymer fine particles (latex) composed of polyamide, polyether, polyurethane, epoxy resin, phenol resin, and the like.
  • the average particle size of the polymer fine particles is preferably 0.01 ⁇ m to 20 ⁇ m, more preferably 0.1 ⁇ m to 5 ⁇ m.
  • the coating liquid for forming the anchor layer according to the present invention may contain additives such as a solvent and a surfactant in addition to the polymer component.
  • the anchor layer according to the present invention can be formed by applying a polymer solution or a dispersion of polymer fine particles (latex), appropriately selecting from known coating methods, and coating and drying on a substrate.
  • the coating method include a roll coating method, a rod bar coating method, an air knife coating method, a spray coating method, and a dip method.
  • the ink (hereinafter also referred to as catalyst ink) used in the method for producing a metal pattern of the present invention has an electroless plating catalyst or a precursor thereof and a solvent.
  • the catalyst ink according to the present invention has a function of swelling or dissolving the anchor layer when applied onto a substrate having the anchor layer.
  • Swelling or dissolution as used in the present invention means that when the formed anchor layer is immersed in the catalyst ink, taken out and dried, there is no change in the mass of the anchor layer after immersion, but volume increase or cloudiness may be observed. Swelling is defined as dissolution when the mass of the anchor layer decreases after immersion. Therefore, as a criterion for determining whether the catalyst ink swells or dissolves the anchor layer, the anchor layer is immersed in the ink at 25 ° C. for 3 minutes, and the mass change before and after the immersion, the volume change, and visual observation (presence of cloudiness) are determined. Judge based.
  • the catalyst ink according to the present invention contains an electroless plating catalyst or a precursor thereof.
  • the electroless plating catalyst according to the present invention itself becomes a reactive core and forms a metal phase.
  • Specific examples include metals such as palladium, silver, copper, nickel, aluminum, and iron.
  • the catalyst precursor according to the present invention means a compound before being modified into an electroless plating catalyst, and can be a catalyst by an activation treatment step.
  • it is a metal salt compound that becomes a zero-valent metal upon activation, and includes palladium metal salts, silver metal salts, copper metal salts, nickel metal salts, aluminum metal salts, iron metal salts, and the like.
  • palladium metal salts are preferred.
  • the palladium metal salt may be a palladium metal complex complexed with a complexing agent.
  • Examples of the palladium metal salt applicable to the present invention include palladium fluoride, palladium chloride, palladium bromide, palladium iodide, palladium nitrate, palladium sulfate, palladium acetate, palladium acetoacetate, palladium trifluoroacetate, palladium hydroxide. , Palladium oxide, palladium sulfide and the like.
  • the palladium metal salt applicable to the present invention is preferably a compound that is soluble in the ink solvent and insoluble in water, and specifically, palladium acetate, palladium acetoacetate, and the like are preferable.
  • the content of the palladium metal salt in the catalyst ink is preferably 0.01% by mass or more and 1.0% by mass or less. If the concentration of the palladium metal salt is 0.01% by mass or more, the necessary activity of the electroless plating reaction as the next step can be obtained, and if it is 1.0% by mass or less, the palladium metal in the ink is obtained. This is preferable in that the stability of the salt can be maintained.
  • the catalyst ink according to the present invention preferably contains a complexing agent.
  • a complexing agent it is considered that the lipophilicity of the metal or metal salt is improved, and the electroless plating or its precursor is more easily penetrated by the polymer layer.
  • the complexing agent applicable to the present invention include compounds capable of forming a complex such as the palladium metal salt.
  • Such compounds include organic acids having a carboxyl group, and examples thereof include oxalic acid, malonic acid, succinic acid, adipic acid, maleic acid, tartaric acid, and citric acid.
  • Other compounds are preferably amine compounds or nitrogen-containing heterocyclic compounds.
  • the amine compound here is a compound in which one or more hydrogen atoms of ammonia or ammonia are substituted with a hydrocarbon residue.
  • An amine compound or a nitrogen-containing heterocyclic compound retains an unshared electron pair on a nitrogen atom, has a high complex-forming ability with respect to a metal, and is particularly easily complexed with a palladium ion.
  • nitrogen-containing heterocyclic compound include pyridine, bipyridine, phenanthroline and the like.
  • the catalyst ink containing the solvent swells or dissolves the anchor layer composed of the polymer. Therefore, the solvent to be applied is preferably one having a function of swelling or dissolving the anchor layer. .
  • Solvents that can be used include, for example, alcohols (eg, methanol, ethanol, propanol, isopropanol, butanol, isobutanol, secondary butanol, tertiary butanol, etc.), polyhydric alcohols (eg, ethylene glycol, diethylene glycol, triethanol).
  • alcohols eg, methanol, ethanol, propanol, isopropanol, butanol, isobutanol, secondary butanol, tertiary butanol, etc.
  • polyhydric alcohols eg, ethylene glycol, diethylene glycol, triethanol.
  • Ethylene glycol polyethylene glycol, propylene glycol, dipropylene glycol, polypropylene glycol, butylene glycol, hexanediol, pentanediol, glycerin, hexanetriol, thiodiglycol, etc.), polyhydric alcohol monoethers (for example, ethylene glycol monomethyl ether, Ethylene glycol monoethyl ether, ethylene glycol monobutyl ether, diethylene glycol Monomethyl ether, diethylene glycol monoethyl ether, diethylene glycol monobutyl ether, propylene glycol monomethyl ether, propylene glycol monoethyl ether, propylene glycol monobutyl ether, dipropylene glycol monomethyl ether, dichloropyrene glycol monoethyl ether, dipropylene glycol monobutyl ether, triethylene Glycol monomethyl ether, triethylene glycol monoethyl ether, tri
  • solvents examples include acetone, methyl ethyl ketone, toluene, benzene, cyclohexane, cyclohexanone, tetradecane, ethyl acetate, butyl acetate, ⁇ -butyl lactone, butyl lactate, ethylene carbonate, and propylene carbonate.
  • Preferred solvents for swelling or dissolving the anchor layer according to the present invention and from the viewpoint of stability in the catalyst ink are the polyhydric alcohols described above, in which all alcohol terminals are etherified or esterified. More preferably, the above polyhydric alcohol in which all alcohol terminals are etherified or esterified is contained in the catalyst ink in an amount of 50% by mass or more.
  • the catalyst ink according to the present invention may contain various conventionally known additives in other metal pattern forming inks, if necessary.
  • additives for example, optical brighteners, antifoaming agents, lubricants, preservatives, thickeners, antistatic agents, matting agents, water-soluble polyvalent metal salts, acid-bases, pH adjusters such as buffer solutions, antioxidants, A surface tension adjusting agent, a non-resistance adjusting agent, a rust inhibitor, an inorganic pigment, etc. can be mentioned.
  • ⁇ Metallic pattern manufacturing method As a method for producing a metal pattern using the catalyst ink of the present invention, mainly, (1) forming an anchor layer containing a polymer; (2) A step of applying a catalyst ink on the anchor layer to swell or dissolve the anchor layer, (3) Surface treatment step for modifying the catalyst ink surface or anchor layer surface (4) When the catalyst ink contains a catalyst precursor, an activation treatment step for converting (reducing) the catalyst precursor into a catalyst, (5) An electroless plating process for generating metal with an electroless plating solution, (6) In the electroplating step, the step of increasing the thickness of the metal pattern portion, Through this, a metal pattern is formed. At this time, the formation of the metal pattern may be a method of forming a pattern only on a necessary portion, or a method of forming a metal pattern on the entire anchor layer.
  • FIG. 1 is a manufacturing flowchart for forming a metal pattern on the entire surface of the anchor layer
  • FIG. 2 is a manufacturing flowchart for forming a metal pattern only in a necessary region.
  • Anchor layer forming step In (1) of FIG. 1 and (1) of FIG. 2, in the anchor layer forming step, the anchor layer coating liquid is applied and dried on the substrate 1 using the coater 3 as described above, and the anchor layer 2 is formed. Form on the entire surface.
  • Catalyst ink application step As a step of applying the catalyst ink, in FIG. 1B, the catalyst ink 4 is applied to the entire surface of the anchor layer 2 using the coater 5. On the other hand, in (2) of FIG. 2, the coater 5A (for example, an ink jet recording head) is used on the anchor layer 2 to apply the catalyst ink 4 so as to form separate regions.
  • the coater 5A for example, an ink jet recording head
  • a printing method can be used. Specific examples include screen printing, letterpress printing, gravure printing, offset printing, dispenser printing, and ink jet printing.
  • the application method is not limited to the above printing method, as long as the catalyst ink can be applied to the anchor layer, and wet coating methods such as roll coating, reverse coating, wire bar coating, and dip coating can also be applied. is there.
  • the catalyst ink 4 applied on the anchor layer 2 by the above method penetrates into the anchor layer 2 and swells or dissolves the anchor layer, as shown in FIG. 1 (3) and FIG. 2 (3). Region 6 is formed.
  • the amount of the catalyst ink applied is selected in consideration of the concentration of the electroless plating catalyst in the ink or the precursor concentration, the boiling point of the solvent, the drying property, and the electroless plating property.
  • the specific amount of catalyst ink applied is preferably 0.5 ml / m 2 to 50 ml / m 2 , more preferably 2.0 ml / m 2 to 30 ml / m 2 . If the applied amount is 0.5 ml / m 2 or more, the electroless plating property (metal forming property) is sufficient, and if it is 50 ml / m 2 or less, the uniformity and drying property of the catalyst ink is ensured. Can do.
  • a drying step After applying the catalyst ink, it is preferable to provide a drying step.
  • a drying method a heating method, an air blowing method and the like are preferable from the viewpoint of time reduction and process simplification.
  • the anchor layer is It is preferable to perform surface modification.
  • the affinity of the anchor layer 2 or the application region 6 of the catalyst ink 4 to the plating solution or the activation solution can be improved, and the surface wettability can be further improved.
  • the surface-modified catalyst ink region 7 is shown in FIG. 1 (4) or FIG. 2 (4).
  • the film-forming region 6 containing the catalyst ink becomes hydrophobic.
  • the plating treatment solution or the activation treatment solution is usually an aqueous solution, the wettability with respect to the plating treatment solution or the activation treatment solution used in the subsequent process is lowered, and the plating property may be slightly lowered. Therefore, by applying a hydrophilic surface treatment to the film forming region 6, the affinity of the film forming region to the plating treatment solution or the activation treatment solution can be improved, and a metal pattern with higher adhesion can be formed. can do.
  • the surface treatment is effective. Specifically, a treatment in which the contact angle with water is reduced by 20% or more before and after the surface treatment step is preferable.
  • the surface treatment method there are a method of treating with a solution containing a cation, nonion, or anionic surfactant, and a method of improving wettability with respect to the plating solution by a surface hydrophilization treatment step such as plasma, corona, flame, or UV irradiation. .
  • a surfactant is preferable because it is simple and highly effective.
  • a metal salt compound When a metal salt compound is used as a precursor of the electroless plating catalyst, it is a step of reacting with a zero-valent metal by a reduction reaction, and this activation treatment step can become an electroless plating catalyst. .
  • an activation treatment step it is necessary to select an appropriate method depending on the type of catalyst, and examples thereof include application of acid, heating, and application of a reducing agent.
  • a reducing agent a boron-based compound is preferable, and specifically, sodium borohydride, trimethylamine borane, dimethylamine borane (DMAB) and the like are preferable.
  • a reduction method an activation treatment can be performed by immersing a substrate provided with a catalyst ink in a solution of a reducing agent.
  • it is a step of forming a metal by an electroless plating reaction at a portion of the anchor layer provided with a catalyst ink by immersing in an electroless plating solution (bath).
  • the electroless plating solution mainly contains 1) metal ions, 2) complexing agent for electroless plating solution, and 3) reducing agent.
  • the metal formed by electroless plating include gold, silver, copper, palladium, nickel, and alloys thereof, and copper, nickel, and alloys thereof are preferable from the viewpoint of adhesion and conductivity.
  • a metal ion used for an electroless plating bath a metal ion corresponding to the above metal is contained.
  • the complexing agent and reducing agent for the electroless plating solution are also selected to be suitable for metal ions.
  • the complexing agent examples include ethylenediaminetetraacetic acid (hereinafter abbreviated as EDTA), Rochelle salt, D-mannitol, D-sorbitol, dulcitol, iminodiacetic acid, trans-1,2-cyclohexanediaminetetraacetic acid, and the like. Of these, EDTA is preferred.
  • the reducing agent examples include formaldehyde, potassium tetrahydroborate, dimethylamine borane, glyoxylic acid, sodium hypophosphite, etc. Among them, formaldehyde is preferable.
  • the metal formation speed and film thickness can be controlled by controlling the temperature, pH, immersion time, and metal ion concentration of the plating bath.
  • Electroplating process Finally, as shown in (7) of FIG. 1 and (7) of FIG. 2, for the purpose of forming a plating layer (conductive film) 11 by increasing the thickness of the metal film 10 formed by the electroless plating process. After the electroless plating process, an electroplating process is further performed.
  • the electroplating can be performed using the formed metal film 10 as an electrode by the electroless plating process.
  • the electroplating can be performed using the formed metal film 10 as an electrode by the electroless plating process.
  • the conductive film 11 can be formed to a thickness according to the purpose, and the conductive film 11 thus formed is suitable for application to various applications that require high conductivity. is there.
  • a conventionally known method can be used as a method of electroplating applicable to the present invention.
  • the metal used for electroplating in the electroplating step include copper, chromium, lead, nickel, gold, silver, tin, and zinc. From the viewpoint of conductivity, copper, gold, and silver are preferable, and copper Is more preferable.
  • the film thickness of the electrically conductive film 11 obtained by electroplating it can set suitably according to a use, and it forms by adjusting the metal concentration contained in a plating bath, immersion time, or current density.
  • the film thickness of the conductive film 11 can be controlled.
  • the film thickness when used for general electric wiring or the like is preferably 0.3 ⁇ m or more, and more preferably 3 ⁇ m or more.
  • the metal pattern 1 was produced according to the following metal pattern formation process.
  • Anchor layer formation step 1 Anchor layer formation step 2: Catalyst ink application step 3: Surface treatment step 4: Activation step 5: Electroless plating step 6: Electroplating step (1: Anchor layer formation step) After the surface of a polyimide film (Toray Film Processing Co., Ltd., Kapton 100EN film thickness 50 ⁇ m) is subjected to oxygen plasma treatment, the following polymer 1 is applied and dried by a rod bar method, and an anchor layer having a dry film thickness of 0.5 ⁇ m 1 was formed.
  • a polyimide film Toray Film Processing Co., Ltd., Kapton 100EN film thickness 50 ⁇ m
  • Electroless plating catalyst precursor 0.05% by mass of palladium acetate 70% by mass of ethylene glycol diacetate ter-Butyl alcohol 30% by mass ⁇ Application of catalyst ink 1>
  • the prepared catalyst ink 1 was applied on the substrate on which the anchor layer 1 was formed using a wire bar under the condition of 5 ml / m 2 to give a solid pattern of 10 cm ⁇ 10 cm on the anchor layer 1. .
  • the surface treatment method 1 was performed on the sample 1 on which the anchor layer 1 and the catalyst ink 1 were applied to the substrate according to the following method.
  • ⁇ Surface treatment method 1> The sample 1 was immersed in a surfactant aqueous solution containing 0.5% by mass of a surfactant (polyoxyethylene nonylphenyl ether) and having a pH adjusted to about 12 at 60 ° C. for 5 minutes to perform surface treatment. And sample 1A was produced. This surface treatment method is referred to as “surface treatment method 1”.
  • the electroless plating treatment was performed by immersing the sample 1A subjected to 5: activation treatment in the following electroless copper plating solution (50 ° C.) adjusted to pH 13.0 with sodium hydroxide, about 0.2 ⁇ m. A copper plating layer having a thickness of 5 mm was formed.
  • the electroless copper plating solution has a copper concentration of 2.5 mass%, a formalin concentration of 1.0 mass%, and an ethylenediaminetetraacetic acid (EDTA) concentration of 2.5 mass%.
  • EDTA ethylenediaminetetraacetic acid
  • the sample 1A subjected to the above electroless plating treatment is immersed in an electroplating bath having the following composition, a copper plate is used as an anode, and electroplating is performed at a current density of 1.5 A / dm 2 to form a copper film of about 15 ⁇ m.
  • the metal pattern 1 was produced.
  • metal patterns 2 to 15 In the formation of the metal pattern 1, the composition of the anchor layer (detailed in Table 1), the type of catalyst ink (detailed in Table 2), application method and application amount (ml / m 2 ), surface treatment method (4: Surface treatment step) Metal patterns 2 to 15 were produced in the same manner except that the presence or absence of the activation treatment was changed to the combinations shown in Table 3.
  • Table 1 shows the composition of each anchor layer including the anchor layer 1 used to form the metal pattern 1.
  • polymer number 3 is iER807 manufactured by Japan Epoxy Resin Co., Ltd.
  • polymer number 4 is aqueous dispersion 1 described in the examples of JP-A-2009-280904.
  • No. 5 is a thermoplastic resin fine particle (styrene-butadiene latex) described in Examples of Japanese Patent Application Laid-Open No. 2010-16219.
  • Table 2 shows the composition of each catalyst ink including the catalyst ink 1 used for forming the metal pattern 1.
  • ⁇ Surface treatment method 3 Corona discharge treatment> Under an air atmosphere, the distance between the anchor layer surface and the electrode was 1 mm, and the treatment power was 20 W ⁇ min / m 2 .
  • Adhesion strength is 10 N / cm or more
  • B Adhesion strength is 6 N / cm or more and less than 10 N / cm
  • Adhesion strength is 2 N / cm or more and less than 6 N / cm
  • X Adhesion strength Is less than 2 N / cm
  • Condition 1 The temperature was raised to 200 ° C. in 30 seconds and held at that temperature for 30 seconds.
  • Condition 2 The temperature was raised to 230 ° C. in 30 seconds and held for 30 seconds.
  • Condition 3 In 30 seconds. The sample was heated to a peak temperature of 260 ° C. and held at that temperature for 30 seconds. The surface of each sample subjected to the treatment under the above conditions 1 to 3 was visually observed, and moisture absorption reflow resistance was evaluated according to the following criteria.
  • A The formation of a 0.2 ⁇ m copper film is less than 10 minutes.
  • The formation of a 0.2 ⁇ m copper film is 10 minutes or more and less than 20 minutes.
  • The formation of a 0.2 ⁇ m copper film is as follows. 20 minutes or more and less than 40 minutes ⁇ : The formation of a 0.2 ⁇ m copper film is 40 minutes or more.
  • the metal pattern produced by the production method defined in the present invention is superior to the comparative example in adhesion to the substrate, moisture absorption reflow resistance and plating suitability. I understand.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Chemically Coating (AREA)
  • Manufacturing Of Printed Wiring (AREA)

Abstract

The present invention provides a method for producing metal patterns having: high adhesiveness to a substrate on which the metal patterns are formed; excellent heat resistance (resistance to moisture absorption reflow) after being stored in high-humidity environment; and excellent electroless plating properties. The method for producing metal patterns is characterized by having, on a substrate, 1) a step in which a polymer-containing anchor layer is formed, 2) a step in which an ink, which contains an electroless plating catalyst or a precursor thereof and a solvent, is applied to the top of the anchor layer, and the anchor layer is made to swell or is dissolved, and 3) a step in which electroless plating treatment is conducted.

Description

金属パターンの製造方法Metal pattern manufacturing method
 本発明は、基板に対する密着性に優れた金属パターンを形成する金属パターンの製造方法に関するものである。 The present invention relates to a metal pattern manufacturing method for forming a metal pattern having excellent adhesion to a substrate.
 従来、回路に用いる金属パターンの形成方法としては、レジスト材料を用いた方法により行われてきた。すなわち、金属薄膜上にレジスト材料を塗布し、必要なパターンを光露光した後、現像により不要なレジストを除去し、むき出しとなった金属薄膜をエッチングにより除去し、さらに残存するレジスト部分を剥離することで金属パターンを形成する金属薄膜形成方法が広く用いられてきた。 Conventionally, as a method for forming a metal pattern used in a circuit, a method using a resist material has been performed. That is, after applying a resist material on a metal thin film and exposing a required pattern to light, unnecessary resist is removed by development, the exposed metal thin film is removed by etching, and the remaining resist portion is peeled off. Thus, a metal thin film forming method for forming a metal pattern has been widely used.
 しかしながら、この方法では、形成工程が多岐にわたり、多くの時間を要すること、また不要なレジスト、金属薄膜を除去することなど、生産時間、およびエネルギーや原材料使用効率の点からロスが多く、経済性の高い金属パターンの製造方法への改善が要求されていた。 However, with this method, the formation process is diversified, requiring a lot of time, and removing unnecessary resist and metal thin films has many losses in terms of production time, energy and raw material usage efficiency, and is economical. There is a demand for an improvement to a method for manufacturing a metal pattern having a high height.
 近年、平均粒径が100nm以下の、いわゆる金属ナノ粒子を含有するインクを、スクリーン印刷法やインクジェット印刷法などを用いて金属パターンを直接描画する金属パターンの形成方法に注目が集まっている。 In recent years, attention has been focused on a metal pattern forming method in which a metal pattern is directly drawn using a screen printing method, an ink jet printing method, or the like using an ink containing a so-called metal nanoparticle having an average particle size of 100 nm or less.
 この金属パターンの形成方法は、金属ナノ粒子の粒径を極小にすることにより、融点が低下する特性を利用し、200~300℃程度の比較的低温度で焼成処理を施して、回路を形成する方法である。この技術では、確かに工数の低減、原材料の利用効率向上などの利点は備えているものの、金属粒子同士を完全に融合させることが難しく、焼成後の金属パターンにおいて、電気抵抗を下げるための後処理において、設定温度やその他の条件等で厳しい制約がある、という課題が残っていた。 This metal pattern formation method uses the characteristic that the melting point is lowered by minimizing the particle size of the metal nanoparticles, and forms a circuit by performing a firing process at a relatively low temperature of about 200 to 300 ° C. It is a method to do. Although this technology certainly has the advantages of reducing man-hours and improving the utilization efficiency of raw materials, it is difficult to completely fuse metal particles together. In the process, there remains a problem that there are severe restrictions on the set temperature and other conditions.
 金属ナノ粒子を用いないで、金属塩を使用してインク中で金属イオンの形態にし、加熱下で還元性を有する還元剤を含有する溶液を用いて導電パターンを形成する方法が知られている。しかしながら、金属塩に配位して安定化させるための錯化剤が十分な性能を有していないため、金属塩の還元反応が進行しやすくなり、還元剤を含む溶液の保存性が乏しいものになっていた。 There is known a method of forming a conductive pattern using a solution containing a reducing agent having a reducing property under heating by using a metal salt in a form of metal ions in an ink without using metal nanoparticles. . However, since the complexing agent for coordinating and stabilizing the metal salt does not have sufficient performance, the reduction reaction of the metal salt is likely to proceed and the storage stability of the solution containing the reducing agent is poor. It was.
 一方、金属を穏和な条件で生成析出させる手段として、無電解めっき技術を活用した金属パターンの形成方法も提案されている。例えば、無電解めっきにより金属パターンの形成が可能となる触媒を含有したインクで、回路パターンを形成した後、無電解めっき処理で金属を形成させる方法が開示されている(例えば、特許文献1、非特許文献1参照。)。 On the other hand, a metal pattern forming method utilizing electroless plating technology has been proposed as a means for forming and depositing metal under mild conditions. For example, a method is disclosed in which a metal is formed by electroless plating after forming a circuit pattern with an ink containing a catalyst capable of forming a metal pattern by electroless plating (for example, Patent Document 1, (Refer nonpatent literature 1.).
 上記の方法では、触媒(前駆体)をインクに含有させて、そのインクを基板に印字させてパターン形成を行う。その後、活性化処理、無電解めっきを施して、触媒パターン上に金属パターンを形成させる方法である。 In the above method, a catalyst (precursor) is contained in an ink, and the ink is printed on a substrate to form a pattern. Thereafter, activation treatment and electroless plating are performed to form a metal pattern on the catalyst pattern.
 しかしながら、上記開示されている方法では、液体の吸収能を全く持たない基板上に、直接インク液滴を付与した後、無電解めっきの金属膜を形成させる方法であるため、基板と金属膜との密着性は不十分なものであった。 However, in the above-disclosed method, since an ink droplet is directly applied onto a substrate that does not have any liquid absorption capability, an electroless plating metal film is formed. The adhesiveness of was insufficient.
 一方、基板上にポリマー粒子からなるインク吸収層を形成し、該インク吸収層上に触媒インクを付与する方法が開示されている(例えば、特許文献2、3参照。)。特許文献2に開示されている方法は、ポリマー層を有しているため、密着性は多少向上するものの未だ十分ではなく、また、ポリマー粒子からなるインク吸収層自体の吸湿性が高いため、高湿環境下で長期にわたり保存した後のリフロー耐性(高温度耐性)が劣るものであった。また、特許文献3に開示されている方法では、ポリマー水分散体層を形成した後、熱により融着させて吸湿性の改善をさせる方法であるが、ポリマーの熱融着層では、十分な高湿環境特性を得ることができないのが現状である。 On the other hand, a method of forming an ink absorption layer made of polymer particles on a substrate and applying a catalyst ink on the ink absorption layer is disclosed (for example, see Patent Documents 2 and 3). Since the method disclosed in Patent Document 2 has a polymer layer, the adhesion is somewhat improved, but it is still not sufficient, and the ink absorption layer itself made of polymer particles has a high hygroscopicity, The reflow resistance (high temperature resistance) after storage for a long time in a humid environment was inferior. In addition, the method disclosed in Patent Document 3 is a method of forming a polymer water dispersion layer and then fusing it with heat to improve the hygroscopicity. At present, high humidity environment characteristics cannot be obtained.
特開平7-131135号公報JP-A-7-131135 特開2010-16219号公報JP 2010-16219 A 特開2009-280904号公報JP 2009-280904 A
 本発明は、上記課題に鑑みなされたものであり、その目的は、形成した金属パターンの基板に対する密着性が高く、高湿環境で保管した後の耐熱性(吸湿リフロー耐性)に優れ、かつ無電解めっき性に優れた金属パターンの製造方法を提供することにある。 The present invention has been made in view of the above problems, and its purpose is to have high adhesion to the substrate of the formed metal pattern, excellent heat resistance after storage in a high humidity environment (moisture absorption reflow resistance), and nothing. It is providing the manufacturing method of the metal pattern excellent in the electroplating property.
 本発明の上記目的は、以下の構成により達成される。 The above object of the present invention is achieved by the following configuration.
 1.基板上に、1)ポリマーを含有するアンカー層を形成する工程と、2)前記アンカー層上に無電解めっきの触媒またはその前駆体と、溶媒とを含有するインクを付与し、前記アンカー層を膨潤あるいは溶解する工程と、及び3)無電解めっき処理を行う工程とを有することを特徴とする金属パターンの製造方法。 1. On the substrate, 1) a step of forming an anchor layer containing a polymer, 2) an ink containing an electroless plating catalyst or a precursor thereof, and a solvent is applied on the anchor layer, and the anchor layer is formed. A method for producing a metal pattern, comprising: a step of swelling or dissolving; and 3) a step of performing an electroless plating process.
 2.前記無電解めっきの触媒またはその前駆体が、前記溶媒に対する溶解度が0.01質量%以上であり、かつ水に対する溶解度が1.0質量%以下であることを特徴とする前記1に記載の金属パターンの製造方法。 2. 2. The metal according to 1, wherein the electroless plating catalyst or a precursor thereof has a solubility in the solvent of 0.01% by mass or more and a solubility in water of 1.0% by mass or less. Pattern manufacturing method.
 3.前記無電解めっきの触媒またはその前駆体が、パラジウム金属塩であることを特徴とする前記1または2に記載の金属パターンの製造方法。 3. 3. The method for producing a metal pattern according to 1 or 2, wherein the electroless plating catalyst or a precursor thereof is a palladium metal salt.
 4.前記パラジウム金属塩が、酢酸パラジウムまたはアセト酢酸パラジウムであることを特徴とする前記3に記載の金属パターンの製造方法。 4. 4. The method for producing a metal pattern according to 3 above, wherein the palladium metal salt is palladium acetate or palladium acetoacetate.
 5.2)前記インクを前記アンカー層に付与し、前記アンカー層を膨潤あるいは溶解する工程と、3)前記無電解めっき処理を行う工程の間に、前記アンカー層に表面処理を施す工程を有することを特徴とする前記1から4のいずれか1項に記載の金属パターンの製造方法。 5.2) A step of applying a surface treatment to the anchor layer between the step of applying the ink to the anchor layer and swelling or dissolving the anchor layer, and 3) the step of performing the electroless plating treatment. 5. The method for producing a metal pattern according to any one of 1 to 4, characterized in that:
 6.前記アンカー層を、ポリマー微粒子を含有する溶液によって形成することを特徴とする前記1から5のいずれか1項に記載の金属パターンの製造方法。 6. 6. The method for producing a metal pattern according to any one of 1 to 5, wherein the anchor layer is formed by a solution containing polymer fine particles.
 本発明により、形成した金属パターンの基板に対する密着性が高く、高湿環境に保管した後の耐熱性(吸湿リフロー耐性)に優れ、かつ無電解めっき性にも優れた金属パターンの製造方法を提供することができる。 According to the present invention, there is provided a method for producing a metal pattern in which the formed metal pattern has high adhesion to the substrate, is excellent in heat resistance (moisture reflow resistance) after being stored in a high humidity environment, and is excellent in electroless plating properties. can do.
アンカー層全面に金属パターンを形成する製造フロー図である。It is a manufacturing flowchart which forms a metal pattern in the anchor layer whole surface. 必要な領域にのみ金属パターンを形成する製造フロー図である。It is a manufacturing flowchart which forms a metal pattern only in a required area | region.
 以下、本発明を実施するための形態について詳細に説明する。 Hereinafter, embodiments for carrying out the present invention will be described in detail.
 従来の金属パターンを形成方法では、金属パターンを形成するのに適用する基板としては、絶縁性のある樹脂、ガラスあるいはセラミックなどのインク(液体)に対して吸収性を全く持たない材料で形成されたものであり、この様な基板へ無電解めっきの触媒を含有したインクを付与(印刷や塗布)させ、基板上に金属を形成させても十分な密着性を得ることができなかった。これは、基板の上に金属パターンの形成させる場合、両者間で相互作用する機能がほとんどないため、密着性も低いものしか得られないためである。 In the conventional method of forming a metal pattern, the substrate applied to form the metal pattern is formed of a material that has no absorbability for ink (liquid) such as insulating resin, glass or ceramic. Thus, even when an ink containing an electroless plating catalyst was applied (printed or applied) to such a substrate to form a metal on the substrate, sufficient adhesion could not be obtained. This is because when the metal pattern is formed on the substrate, since there is almost no function of interaction between the two, only the one having low adhesion can be obtained.
 本発明者は、上記課題に鑑み鋭意検討を行った結果、基板上に、1)ポリマーを含有するアンカー層を形成する工程と、2)前記アンカー層上に無電解めっきの触媒またはその前駆体と、溶媒とを含有するインクを付与し、前記アンカー層を膨潤あるいは溶解する工程と、及び3)無電解めっき処理を行う工程とを有することを特徴とする金属パターンの製造方法により、形成した金属パターンの基板に対する密着性が高く、高湿環境に保管した後の耐熱性(吸湿リフロー耐性)に優れ、かつ無電解めっき性にも優れた金属パターンの製造方法を実現することができることを見出し、本発明に至った次第である。 As a result of intensive studies in view of the above problems, the present inventor has found that 1) a step of forming an anchor layer containing a polymer on the substrate, and 2) an electroless plating catalyst or precursor thereof on the anchor layer. And a step of swelling or dissolving the anchor layer, and 3) a step of performing an electroless plating process. It has been found that a metal pattern manufacturing method having high adhesion to a substrate of a metal pattern, excellent heat resistance (moisture reflow resistance) after storage in a high humidity environment, and excellent electroless plating properties can be realized. It is up to the present invention.
 すなわち、基板上にポリマー樹脂を含むアンカー層を形成し、アンカー層を溶解あるいは膨潤させる触媒またはその前駆体と、溶媒とを含有するインク(以下、単に「触媒インク」ともいう)を付与してから、無電解めっきにて金属形成することにより、本願発明の目的効果を達成することができることを見いだした。 That is, an anchor layer containing a polymer resin is formed on a substrate, and an ink (hereinafter simply referred to as “catalyst ink”) containing a catalyst or a precursor thereof for dissolving or swelling the anchor layer and a solvent is applied. Thus, it has been found that the object effect of the present invention can be achieved by forming a metal by electroless plating.
 更に詳しくは、本発明においては、基板上に形成したポリマー樹脂を主成分とするアンカー層に対し、付与する触媒インクはアンカー層成分を溶解あるいは膨潤の性質を備えているため、アンカー層に付与した触媒インクは、付与後、速やかにアンカー層内部に浸透する。次いで、無電解めっき処理(インクが触媒前駆体を含有している場合には、活性化処理を施してから無電解めっき処理)を行うことにより、アンカー層の表面領域だけではなく、触媒インクが浸透した内部にも金属部が形成される。 More specifically, in the present invention, since the catalyst ink to be applied to the anchor layer mainly composed of a polymer resin formed on the substrate has a property of dissolving or swelling the anchor layer component, it is applied to the anchor layer. The applied catalyst ink quickly penetrates into the anchor layer after application. Next, by performing electroless plating treatment (in the case where the ink contains a catalyst precursor, electroless plating treatment after activation treatment), not only the surface region of the anchor layer but also the catalyst ink A metal part is also formed in the penetrated interior.
 アンカー層内部では、いわばアンカー層を構成するポリマー成分と金属とがハイブリット状となり、金属がアンカー層内部に「根を生やした状態」となり、高い密着力を得られるものと推察している。 In the anchor layer, it is presumed that the polymer component constituting the anchor layer and the metal are in a hybrid form, so that the metal is in a “rooted state” inside the anchor layer and high adhesion can be obtained.
 従って、基板にアンカー層を設けても、触媒インクを付与したとき、アンカー層が膨潤あるいは溶解が起こらない場合は、十分な密着性を得ることができないことになる。 Therefore, even when an anchor layer is provided on the substrate, sufficient adhesion cannot be obtained if the anchor layer does not swell or dissolve when the catalyst ink is applied.
 加えて、アンカー層が、触媒インクにより膨潤あるいは溶解すると、そのアンカー層表面と、触媒インクが浸透したアンカー層内部にわたり、ポリマーが造膜(硬膜)し、疎水化効果が発現されることになり、アンカー層が吸湿しにくいものに変質される。 In addition, when the anchor layer swells or dissolves with the catalyst ink, the polymer is formed (cured) over the anchor layer surface and the inside of the anchor layer into which the catalyst ink has penetrated, and the hydrophobizing effect is expressed. As a result, the anchor layer is transformed into a material that hardly absorbs moisture.
 一方、金属パターンが形成された基板の特性として、吸湿リフロー性(高湿環境で保存したあと、高温に晒されて金属部の膨れが起こるかを評価するもの)が重要である。吸湿リフロー性評価における高温とは、はんだ付着を想定しているので、通常200℃以上、近年の鉛フリーでは230℃~260℃位となる。金属パターンの下地(あるいは基板)の吸水性(吸湿性)が高いと、この吸湿リフロー性が低下する。これは、下地が吸水性(吸湿性)を有していると、高温に晒された際に水分が水蒸気(気体)となり、上部に形成された金属膜の表面に泡模様の膨れる現象(ブリスター)が発生してしまう。本発明に係るアンカー層においては、触媒インクの浸透により、造膜及び疎水化が行われるため、吸湿リフロー特性に優れたものになる。 On the other hand, as a characteristic of the substrate on which the metal pattern is formed, moisture absorption reflow property (which evaluates whether the metal part swells when exposed to high temperature after being stored in a high humidity environment) is important. The high temperature in the hygroscopic reflow evaluation is assumed to be solder adhesion, and is usually 200 ° C. or higher, and is about 230 ° C. to 260 ° C. in recent lead-free. When the water absorption (hygroscopicity) of the base (or substrate) of the metal pattern is high, the hygroscopic reflow property is lowered. This is because when the substrate has water absorption (hygroscopicity), the moisture becomes water vapor (gas) when exposed to high temperature, and the bubble pattern swells on the surface of the metal film formed on the top (blister) ) Will occur. In the anchor layer according to the present invention, film formation and hydrophobization are performed by permeation of the catalyst ink, so that the moisture absorption reflow characteristics are excellent.
 以下、本発明の金属パターンの製造方法の詳細について説明する。 Hereinafter, details of the metal pattern manufacturing method of the present invention will be described.
 《金属パターン形成に係る構成要素》
 〔基板〕
 本発明の金属パターンの製造方法において、金属パターンを形成する基板としては、絶縁性を備えたものであれば特に制限はなく、例えば、ガラスやセラミックス等の剛性の強いものから、PET(ポリエチレンテレフタレート)やポリイミドなどの樹脂から構成されるフィルム状のものが挙げられる。
《Components related to metal pattern formation》
〔substrate〕
In the method for producing a metal pattern of the present invention, the substrate on which the metal pattern is formed is not particularly limited as long as it has insulating properties. For example, from a highly rigid material such as glass or ceramics, PET (polyethylene terephthalate) ) And a polyimide film made of a resin such as polyimide.
 本発明において用いられる基板としては、密着性改良やアンカー層の設置等の観点から、表面に親水化処理等の表面改質処理を施しても良い。具体的には、プラズマ処理、コロナ放電処理、UV照射処理のほか、シランカップリング剤処理などが挙げられる。 The substrate used in the present invention may be subjected to a surface modification treatment such as a hydrophilic treatment on the surface from the viewpoint of improving adhesion or installing an anchor layer. Specific examples include plasma treatment, corona discharge treatment, UV irradiation treatment, silane coupling agent treatment, and the like.
 〔ポリマーを含むアンカー層〕
 本発明においては、基板上に、ポリマーを有するアンカー層(以下、ポリマー層ともいう)を形成する工程を有することを特徴の1つとする。
[Anchor layer containing polymer]
One feature of the present invention is that it includes a step of forming an anchor layer having a polymer (hereinafter also referred to as a polymer layer) on a substrate.
 本発明に適用可能なポリマーとしては、特に制限はないが、ポリカーボネート、ポリアクリロニトリル、ポリスチレン、ポリアクリル酸、ポリメタアクリル酸、ポリアクリル酸エステル、ポリ塩化ビニル、ポリ塩化ビニリデン、ポリ酢酸ビニル、ポリエステル、ポリアミド、ポリエーテル、ポリウレタン、エポキシ樹脂、フェノール樹脂等や、これらの共重合体を挙げることができる。 The polymer applicable to the present invention is not particularly limited, but polycarbonate, polyacrylonitrile, polystyrene, polyacrylic acid, polymethacrylic acid, polyacrylic ester, polyvinyl chloride, polyvinylidene chloride, polyvinyl acetate, polyester , Polyamides, polyethers, polyurethanes, epoxy resins, phenol resins, and the like, and copolymers thereof.
 これら適用するポリマーに求められる特性としては、1)基板とアンカー層のポリマーとの密着性が良好であること、2)インク中の無電解めっきの触媒あるいはその前駆体とアンカー層のポリマーが吸着性(配位性)を有すること、等が挙げられ、これらの特性を備えたポリマーから選択することが好ましい。 The properties required for these polymers to be applied include 1) good adhesion between the substrate and the polymer of the anchor layer, and 2) adsorption of the electroless plating catalyst or its precursor in the ink and the polymer of the anchor layer. It is preferable to select from polymers having these characteristics.
 基板とアンカー層の密着性を良好にするには、アンカー層のポリマーが基板と相互作用する官能基を有するのが好ましく、具体的には、カルボシキル基、アミノ基、水酸基などが挙げられる。また、インク中の触媒あるいはその前駆体に対し吸着(配位性)可能な官能基としては、カルボキシル基、水酸基、スルホン酸基、アミノ基、シアノ基、アミド基などが挙げられる。 In order to improve the adhesion between the substrate and the anchor layer, it is preferable that the polymer of the anchor layer has a functional group that interacts with the substrate, and specifically includes a carboxyl group, an amino group, a hydroxyl group, and the like. In addition, examples of the functional group that can be adsorbed (coordinated) to the catalyst or its precursor in the ink include a carboxyl group, a hydroxyl group, a sulfonic acid group, an amino group, a cyano group, and an amide group.
 また、本発明では、アンカー層を構成するポリマーが、インクに膨潤あるいは溶解する機能を有するように、種類やポリマー特性である分子量、官能基の種類、Tg、添加剤種類と量などを適宜選択することが好ましい。 In the present invention, the type and polymer characteristics such as molecular weight, functional group type, Tg, additive type and amount are appropriately selected so that the polymer constituting the anchor layer has a function of swelling or dissolving in the ink. It is preferable to do.
 本発明に係るアンカー層の膜厚としては、0.05~10μmが好ましく、0.1~5μmがより好ましい。膜厚が0.05μm以上であれば、基板との密着性が十分となり、10μm以下であれば、アンカー層におけるポリマーの凝集破壊による密着性低下を防止することができる。 The film thickness of the anchor layer according to the present invention is preferably 0.05 to 10 μm, more preferably 0.1 to 5 μm. If the film thickness is 0.05 μm or more, the adhesion to the substrate is sufficient, and if it is 10 μm or less, it is possible to prevent a decrease in adhesion due to cohesive failure of the polymer in the anchor layer.
 本発明では、アンカー層を形成する工程に用いるポリマーとして、ポリマー微粒子(ラテックス)を用いることがより好ましい。アンカー層の形成にポリマー微粒子を用いることにより、触媒インクと接触する面積が大きくなり、ポリマー中に無電解めっきの触媒又は前駆体がより浸透しやすくなる。本発明で用いることのできるポリマー微粒子(ラテックス)としては、ポリカーボネート、ポリアクリロニトリル、ポリスチレン、ポリアクリル酸、ポリメタアクリル酸、ポリアクリル酸エステル、ポリ塩化ビニル、ポリ塩化ビニリデン、ポリ酢酸ビニル、ポリエステル、ポリアミド、ポリエーテル、ポリウレタン、エポキシ樹脂、フェノール樹脂等から構成されるポリマー微粒子(ラテックス)を挙げることができる。ポリマー微粒子の平均粒径としては、0.01μm~20μmが好ましく、さらに好ましくは0.1μm~5μmである。 In the present invention, it is more preferable to use polymer fine particles (latex) as the polymer used in the step of forming the anchor layer. By using polymer fine particles for forming the anchor layer, the area in contact with the catalyst ink is increased, and the electroless plating catalyst or precursor is more easily penetrated into the polymer. Polymer fine particles (latex) that can be used in the present invention include polycarbonate, polyacrylonitrile, polystyrene, polyacrylic acid, polymethacrylic acid, polyacrylic ester, polyvinyl chloride, polyvinylidene chloride, polyvinyl acetate, polyester, Examples thereof include polymer fine particles (latex) composed of polyamide, polyether, polyurethane, epoxy resin, phenol resin, and the like. The average particle size of the polymer fine particles is preferably 0.01 μm to 20 μm, more preferably 0.1 μm to 5 μm.
 本発明に係るアンカー層には、ポリマーの他に必要に応じて、各種添加剤を添加しても良い。また、本発明に係るアンカー層を形成する塗布液には、ポリマー成分の他、溶媒、界面活性剤等の添加剤を含有しても良い。 In addition to the polymer, various additives may be added to the anchor layer according to the present invention as necessary. Further, the coating liquid for forming the anchor layer according to the present invention may contain additives such as a solvent and a surfactant in addition to the polymer component.
 本発明に係るアンカー層は、ポリマー溶液あるいはポリマー微粒子(ラテックス)の分散液を用い、公知の塗布方式から適宜選択して、基板上に塗布、乾燥して形成することができる。塗布方式としては、例えば、ロールコーティング法、ロッドバーコーティング法、エアナイフコーティング法、スプレーコーティング法、ディップ法などを挙げることができる。 The anchor layer according to the present invention can be formed by applying a polymer solution or a dispersion of polymer fine particles (latex), appropriately selecting from known coating methods, and coating and drying on a substrate. Examples of the coating method include a roll coating method, a rod bar coating method, an air knife coating method, a spray coating method, and a dip method.
 〔触媒インク〕
 本発明の金属パターンの製造方法に用いるインク(以下、触媒インクともいう)は、無電解めっきの触媒あるいはその前駆体と、溶媒を有している。
[Catalyst ink]
The ink (hereinafter also referred to as catalyst ink) used in the method for producing a metal pattern of the present invention has an electroless plating catalyst or a precursor thereof and a solvent.
 本発明に係る触媒インクは、アンカー層を有する基板上に付与したとき、アンカー層を膨潤あるいは溶解させる機能を有している。 The catalyst ink according to the present invention has a function of swelling or dissolving the anchor layer when applied onto a substrate having the anchor layer.
 本発明でいう膨潤あるいは溶解とは、造膜したアンカー層を触媒インクに浸漬し、取り出して乾燥させたとき、浸漬後にアンカー層の質量変化はないが、体積増加や白濁が認められた場合が膨潤であり、浸漬後にアンカー層の質量が減少した場合が溶解と定義する。従って、触媒インクがアンカー層を膨潤あるいは溶解するかの判断基準としては、アンカー層をインクに25℃で3分間浸漬させ、浸漬前後での質量変化、体積変化、目視観察(白濁の有無)をもとに判定する。 Swelling or dissolution as used in the present invention means that when the formed anchor layer is immersed in the catalyst ink, taken out and dried, there is no change in the mass of the anchor layer after immersion, but volume increase or cloudiness may be observed. Swelling is defined as dissolution when the mass of the anchor layer decreases after immersion. Therefore, as a criterion for determining whether the catalyst ink swells or dissolves the anchor layer, the anchor layer is immersed in the ink at 25 ° C. for 3 minutes, and the mass change before and after the immersion, the volume change, and visual observation (presence of cloudiness) are determined. Judge based.
 (無電解めっきの触媒及びその前駆体)
 本発明に係る触媒インクは、無電解めっきの触媒またはその前駆体を含有している。
(Electroless plating catalyst and its precursor)
The catalyst ink according to the present invention contains an electroless plating catalyst or a precursor thereof.
 本発明に係る無電解めっきの触媒とは、無電解めっき処理工程において、それ自体が反応活性核となり金属相を形成するものである。具体的には、パラジウム、銀、銅、ニッケル、アルミニウム、鉄などの金属が挙げられる。 In the electroless plating process, the electroless plating catalyst according to the present invention itself becomes a reactive core and forms a metal phase. Specific examples include metals such as palladium, silver, copper, nickel, aluminum, and iron.
 また、本発明に係る触媒の前駆体とは、無電解めっきの触媒に変性する前の化合物を意味し、活性化処理工程により、触媒になり得るものである。具体的には、金属塩化合物であり、活性化処理にて0価金属になるもので、パラジウム金属塩、銀金属塩、銅金属塩、ニッケル金属塩、アルミニウム金属塩、鉄金属塩などがある。中でもパラジウム金属塩が好ましい。また、パラジウム金属塩が、錯化剤と錯体形成したパラジウム金属錯体でもよい。 The catalyst precursor according to the present invention means a compound before being modified into an electroless plating catalyst, and can be a catalyst by an activation treatment step. Specifically, it is a metal salt compound that becomes a zero-valent metal upon activation, and includes palladium metal salts, silver metal salts, copper metal salts, nickel metal salts, aluminum metal salts, iron metal salts, and the like. . Of these, palladium metal salts are preferred. Further, the palladium metal salt may be a palladium metal complex complexed with a complexing agent.
 本発明に適用可能なパラジウム金属塩としては、例えば、フッ化パラジウム、塩化パラジウム、臭化パラジウム、ヨウ化パラジウム、硝酸パラジウム、硫酸パラジウム、酢酸パラジウム、アセト酢酸パラジウム、トリフルオロ酢酸パラジウム、水酸化パラジウム、酸化パラジウム、硫化パラジウム等が挙げられる。 Examples of the palladium metal salt applicable to the present invention include palladium fluoride, palladium chloride, palladium bromide, palladium iodide, palladium nitrate, palladium sulfate, palladium acetate, palladium acetoacetate, palladium trifluoroacetate, palladium hydroxide. , Palladium oxide, palladium sulfide and the like.
 本発明に適用可能なパラジウム金属塩としては、インク溶媒に対し可溶性で、水に対しては不溶性である化合物が好ましく、具体的には、酢酸パラジウム、アセト酢酸パラジウムなどが好ましい。 The palladium metal salt applicable to the present invention is preferably a compound that is soluble in the ink solvent and insoluble in water, and specifically, palladium acetate, palladium acetoacetate, and the like are preferable.
 触媒インク中におけるパラジウム金属塩の含有量としては、0.01質量%以上、1.0質量%以下が好ましい。パラジウム金属塩の濃度が0.01質量%以上であれば、次工程である無電解めっき反応の必要な活性度を得ることができ、1.0質量%以下であれば、インク中のパラジウム金属塩の安定性を維持することができる点で好ましい。 The content of the palladium metal salt in the catalyst ink is preferably 0.01% by mass or more and 1.0% by mass or less. If the concentration of the palladium metal salt is 0.01% by mass or more, the necessary activity of the electroless plating reaction as the next step can be obtained, and if it is 1.0% by mass or less, the palladium metal in the ink is obtained. This is preferable in that the stability of the salt can be maintained.
 (錯化剤)
 本発明に係る触媒インクには、錯化剤を含有させることが好ましい。錯化剤を含有させることによって金属または金属塩の親油性が向上し、無電解めっき又はその前駆体がポリマー層により浸透しやすくなると考えられる。本発明に適用可能な錯化剤としては、上記パラジウム金属塩などの錯体形成可能な化合物が挙げられる。この様な化合物はカルボシキ基を有する有機酸があり、例えば、シュウ酸、マロン酸、こはく酸、アジピン酸、マレイン酸、酒石酸、クエン酸などが挙げられる。
(Complexing agent)
The catalyst ink according to the present invention preferably contains a complexing agent. By including a complexing agent, it is considered that the lipophilicity of the metal or metal salt is improved, and the electroless plating or its precursor is more easily penetrated by the polymer layer. Examples of the complexing agent applicable to the present invention include compounds capable of forming a complex such as the palladium metal salt. Such compounds include organic acids having a carboxyl group, and examples thereof include oxalic acid, malonic acid, succinic acid, adipic acid, maleic acid, tartaric acid, and citric acid.
 その他の化合物としては、アミン化合物または含窒素複素環式化合物であることが好ましい。ここでいうアミン化合物とはアンモニアまたはアンモニアの水素原子の1個またはそれ以上が炭化水素残基で置換された化合物である。アミン化合物または含窒素複素環化合物は、窒素原子上に非共有電子対を保持しており、金属に対する高い錯形成能を有しており、特にパラジウムイオンと錯形成しやすい。本発明で用いることのできるアミン化合物としては、アンモニア、メチルアミン、ジメチルアミン、トリメチルアミン、エチルアミン、ジエチルアミン、トリエチルアミン、プロピルアミン、ジプロピルアミン、トリプロピルアミン、ブチルアミン、ジブチルアミン、トリブチルアミン、ピリジン、2-アミノピリジン、3-アミノピリジン、4-アミノピリジン、エチレンジアミン、エタノールアミン、トリエタノールアミン、エチレンジアミンテトラ酢酸等の直鎖アミン化合物、環状アミン化合物が挙げられる。含窒素複素環式化合物としては、例えば、ピリジン、ビピリジン、フェナントロリンなどが挙げられる。 Other compounds are preferably amine compounds or nitrogen-containing heterocyclic compounds. The amine compound here is a compound in which one or more hydrogen atoms of ammonia or ammonia are substituted with a hydrocarbon residue. An amine compound or a nitrogen-containing heterocyclic compound retains an unshared electron pair on a nitrogen atom, has a high complex-forming ability with respect to a metal, and is particularly easily complexed with a palladium ion. Examples of amine compounds that can be used in the present invention include ammonia, methylamine, dimethylamine, trimethylamine, ethylamine, diethylamine, triethylamine, propylamine, dipropylamine, tripropylamine, butylamine, dibutylamine, tributylamine, pyridine, -Linear amine compounds such as aminopyridine, 3-aminopyridine, 4-aminopyridine, ethylenediamine, ethanolamine, triethanolamine, ethylenediaminetetraacetic acid, and cyclic amine compounds. Examples of the nitrogen-containing heterocyclic compound include pyridine, bipyridine, phenanthroline and the like.
 (溶媒)
 本発明の金属パターンの製造方法では、溶媒を含有した触媒インクがポリマーで構成されたアンカー層を膨潤あるいは溶解させるので、適用する溶媒としては、アンカー層を膨潤あるいは溶解させる機能を有するものが好ましい。
(solvent)
In the method for producing a metal pattern of the present invention, the catalyst ink containing the solvent swells or dissolves the anchor layer composed of the polymer. Therefore, the solvent to be applied is preferably one having a function of swelling or dissolving the anchor layer. .
 用いることのできる溶媒としては、例えば、アルコール類(例えば、メタノール、エタノール、プロパノール、イソプロパノール、ブタノール、イソブタノール、セカンダリーブタノール、ターシャリーブタノール等)、多価アルコール類(例えば、エチレングリコール、ジエチレングリコール、トリエチレングリコール、ポリエチレングリコール、プロピレングリコール、ジプロピレングリコール、ポリプロピレングリコール、ブチレングリコール、ヘキサンジオール、ペンタンジオール、グリセリン、ヘキサントリオール、チオジグリコール等)、多価アルコールモノエーテル類(例えば、エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、エチレングリコールモノブチルエーテル、ジエチレングリコールモノメチルエーテル、ジエチレングリコールモノエチルエーテル、ジエチレングリコールモノブチルエーテル、プロピレングリコールモノメチルエーテル、プロピレングリコールモノエチルエーテル、プロピレングリコールモノブチルエーテル、ジプロピレングリコールモノメチルエーテル、ジロピレングリコールモノエチルエーテル、ジプロピレングリコールモノブチルエーテル、トリエチレングリコールモノメチルエーテル、トリエチレングリコールモノエチルエーテル、トリエチレングリコールモノブチルエーテル、エチレングリコールモノフェニルエーテル、プロピレングリコールモノフェニルエーテル等)、多価アルコールでアルコール端末が全てエーテル化あるいはエステル化されているもの(例えば、エチレングリコールジメチルエーテル、エチレングリコールジエチルエーテル、エチレングリコールジブチルエーテル、ジエチレングリコールジメチルエーテル、ジエチレングリコールジエチルエーテル、ジエチレングリコールジブチルエーテル、ジプロピレングリコールジメチルエーテル、トリエチレングリコールジメチルエーテル、エチレングリコールモノメチルエーテルアセテート、エチレングリコールモノエチルエーテルアセテート、エチレングリコールモノブチルエーテルアセテート、ジエチレングリコールモノエチルエーテルアセテート、ジエチレングリコールモノブチルエーテルアセテート、プロピレングリコールモノメチルエーテルアセテート、ジプロピレングリコールモノメチルエーテルアセテート、エチレングリコールジアセテート、ジエチレングリコールジアセテート、プロピレングリコールジアセテート、トリエチレングリコールジアセテート等)、アミン類(例えば、エタノールアミン、ジエタノールアミン、トリエタノールアミン、N-メチルジエタノールアミン、N-エチルジエタノールアミン、モルホリン、N-エチルモルホリン、エチレンジアミン、ジエチレンジアミン、トリエチレンテトラミン、テトラエチレンペンタミン、ポリエチレンイミン、ペンタメチルジエチレントリアミン、テトラメチルプロピレンジアミン等)、アミド類(例えば、ホルムアミド、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド等)、複素環類(例えば、2-ピロリドン、N-メチル-2-ピロリドン、シクロヘキシルピロリドン、2-オキサゾリドン、1,3-ジメチル-2-イミダゾリジノン等)、スルホキシド類(例えば、ジメチルスルホキシド等)等が挙げられる。 Solvents that can be used include, for example, alcohols (eg, methanol, ethanol, propanol, isopropanol, butanol, isobutanol, secondary butanol, tertiary butanol, etc.), polyhydric alcohols (eg, ethylene glycol, diethylene glycol, triethanol). Ethylene glycol, polyethylene glycol, propylene glycol, dipropylene glycol, polypropylene glycol, butylene glycol, hexanediol, pentanediol, glycerin, hexanetriol, thiodiglycol, etc.), polyhydric alcohol monoethers (for example, ethylene glycol monomethyl ether, Ethylene glycol monoethyl ether, ethylene glycol monobutyl ether, diethylene glycol Monomethyl ether, diethylene glycol monoethyl ether, diethylene glycol monobutyl ether, propylene glycol monomethyl ether, propylene glycol monoethyl ether, propylene glycol monobutyl ether, dipropylene glycol monomethyl ether, dichloropyrene glycol monoethyl ether, dipropylene glycol monobutyl ether, triethylene Glycol monomethyl ether, triethylene glycol monoethyl ether, triethylene glycol monobutyl ether, ethylene glycol monophenyl ether, propylene glycol monophenyl ether, etc.), polyhydric alcohols whose alcohol terminals are all etherified or esterified (for example, ,ethylene glycol Methyl ether, ethylene glycol diethyl ether, ethylene glycol dibutyl ether, diethylene glycol dimethyl ether, diethylene glycol diethyl ether, diethylene glycol dibutyl ether, dipropylene glycol dimethyl ether, triethylene glycol dimethyl ether, ethylene glycol monomethyl ether acetate, ethylene glycol monoethyl ether acetate, ethylene glycol mono Butyl ether acetate, diethylene glycol monoethyl ether acetate, diethylene glycol monobutyl ether acetate, propylene glycol monomethyl ether acetate, dipropylene glycol monomethyl ether acetate, ethylene glycol diacetate, diethyl Lenglycol diacetate, propylene glycol diacetate, triethylene glycol diacetate, etc.), amines (eg, ethanolamine, diethanolamine, triethanolamine, N-methyldiethanolamine, N-ethyldiethanolamine, morpholine, N-ethylmorpholine, ethylenediamine) Diethylenediamine, triethylenetetramine, tetraethylenepentamine, polyethyleneimine, pentamethyldiethylenetriamine, tetramethylpropylenediamine, etc.), amides (eg, formamide, N, N-dimethylformamide, N, N-dimethylacetamide, etc.), Heterocycles (eg 2-pyrrolidone, N-methyl-2-pyrrolidone, cyclohexyl pyrrolidone, 2-oxazolidone, 1,3-di Chill-2-imidazolidinone, etc.), sulfoxides (e.g., dimethyl sulfoxide etc.) and the like.
 その他の溶媒としては、例えば、アセトン、メチルエチルケトン、トルエン、ベンゼン、シクロヘキサン、シクロヘキサノン、テトラデカン、酢酸エチル、酢酸ブチル、γ-ブチルラクトン、乳酸ブチル、炭酸エチレン、炭酸プロピレンなどが挙げられる。 Examples of other solvents include acetone, methyl ethyl ketone, toluene, benzene, cyclohexane, cyclohexanone, tetradecane, ethyl acetate, butyl acetate, γ-butyl lactone, butyl lactate, ethylene carbonate, and propylene carbonate.
 本発明に係るアンカー層を膨潤あるいは溶解させ、かつ触媒インク中での安定性の観点から好ましい溶媒としては、上述の多価アルコール類で、アルコール端末が全てエーテル化あるいはエステル化されているものであり、さらに好ましくは、上述の多価アルコールで、アルコール端末が全てエーテル化あるいはエステル化されているものが、触媒インク中に50質量%以上含有させた場合である。 Preferred solvents for swelling or dissolving the anchor layer according to the present invention and from the viewpoint of stability in the catalyst ink are the polyhydric alcohols described above, in which all alcohol terminals are etherified or esterified. More preferably, the above polyhydric alcohol in which all alcohol terminals are etherified or esterified is contained in the catalyst ink in an amount of 50% by mass or more.
 (その他の各種添加剤)
 本発明に係る触媒インクには、必要に応じて、その他の金属パターン形成用インクで従来公知の各種添加剤を含有することができる。例えば、蛍光増白剤、消泡剤、潤滑剤、防腐剤、増粘剤、帯電防止剤、マット剤、水溶性多価金属塩、酸塩基、緩衝液等のpH調整剤、酸化防止剤、表面張力調整剤、非抵抗調整剤、防錆剤、無機顔料等を挙げることができる。
(Other various additives)
The catalyst ink according to the present invention may contain various conventionally known additives in other metal pattern forming inks, if necessary. For example, optical brighteners, antifoaming agents, lubricants, preservatives, thickeners, antistatic agents, matting agents, water-soluble polyvalent metal salts, acid-bases, pH adjusters such as buffer solutions, antioxidants, A surface tension adjusting agent, a non-resistance adjusting agent, a rust inhibitor, an inorganic pigment, etc. can be mentioned.
 《金属パターンの製造方法》
 本発明の触媒インクを用いた金属パターンの製造方法としては、主には、
 (1)ポリマーを含有するアンカー層を形成する工程、
 (2)アンカー層上に触媒インクを付与し、アンカー層を膨潤あるいは溶解する工程、
 (3)触媒インク表面あるいはアンカー層表面を改質する表面処理工程
 (4)触媒インクが触媒前駆体を含有する場合、触媒前駆体を触媒に変換(還元)させる活性化処理工程、
 (5)無電解めっき液にて、金属を生成させる無電解めっき処理工程、
 (6)電気めっき工程にて、金属パターン部の膜厚を厚くさせる工程、
 を経て金属パターンが形成される。この際、金属パターンの形成は、必要な部分のみにパターン状に形成する方法であっても、アンカー層全面に金属パターンを形成する方法であっても良い。
《Metallic pattern manufacturing method》
As a method for producing a metal pattern using the catalyst ink of the present invention, mainly,
(1) forming an anchor layer containing a polymer;
(2) A step of applying a catalyst ink on the anchor layer to swell or dissolve the anchor layer,
(3) Surface treatment step for modifying the catalyst ink surface or anchor layer surface (4) When the catalyst ink contains a catalyst precursor, an activation treatment step for converting (reducing) the catalyst precursor into a catalyst,
(5) An electroless plating process for generating metal with an electroless plating solution,
(6) In the electroplating step, the step of increasing the thickness of the metal pattern portion,
Through this, a metal pattern is formed. At this time, the formation of the metal pattern may be a method of forming a pattern only on a necessary portion, or a method of forming a metal pattern on the entire anchor layer.
 以下、図を用いて、本発明の金属パターンの製造方法フローを説明する。 Hereinafter, the manufacturing method flow of the metal pattern of the present invention will be described with reference to the drawings.
 図1は、アンカー層全面に金属パターンを形成する製造フロー図であり、図2は、必要な領域にのみ金属パターンを形成する製造フロー図である。 FIG. 1 is a manufacturing flowchart for forming a metal pattern on the entire surface of the anchor layer, and FIG. 2 is a manufacturing flowchart for forming a metal pattern only in a necessary region.
 〔1:アンカー層の形成工程〕
 図1の(1)、図2の(1)において、アンカー層形成工程では、前述のように、基板1上にコーター3を用い、アンカー層塗布液を塗布、乾燥して、アンカー層2を全面に形成する。
[1: Anchor layer forming step]
In (1) of FIG. 1 and (1) of FIG. 2, in the anchor layer forming step, the anchor layer coating liquid is applied and dried on the substrate 1 using the coater 3 as described above, and the anchor layer 2 is formed. Form on the entire surface.
 〔2:触媒インクの付与工程〕
 触媒インクを付与する工程として、図1の(2)では、アンカー層2上の全面に、コーター5を用い触媒インク4を付与する。一方、図2の(2)では、アンカー層2上に、コーター5A(例えば、インクジェット記録ヘッド等)を用い、触媒インク4を、それぞれ分離した領域を形成するように付与する。
[2: Catalyst ink application step]
As a step of applying the catalyst ink, in FIG. 1B, the catalyst ink 4 is applied to the entire surface of the anchor layer 2 using the coater 5. On the other hand, in (2) of FIG. 2, the coater 5A (for example, an ink jet recording head) is used on the anchor layer 2 to apply the catalyst ink 4 so as to form separate regions.
 本発明に係る触媒インクの付与方法としては、印刷方式を用いることができ、具体的には、スクリーン印刷、凸版印刷、グラビア印刷、オフセット印刷、ディスペンサー印刷、インクジェット印刷などが挙げられる。付与方法としては、触媒インクをアンカー層に付与できればよいので、上記印刷方式のみには限定されず、ロール塗布、リバース塗布、ワイヤーバー塗布、ディップ塗布等の湿式塗布方式を適用することも可能である。 As a method for applying the catalyst ink according to the present invention, a printing method can be used. Specific examples include screen printing, letterpress printing, gravure printing, offset printing, dispenser printing, and ink jet printing. The application method is not limited to the above printing method, as long as the catalyst ink can be applied to the anchor layer, and wet coating methods such as roll coating, reverse coating, wire bar coating, and dip coating can also be applied. is there.
 上記の方法によりアンカー層2上に付与された触媒インク4は、図1の(3)、図2の(3)に示すように、アンカー層2内部に浸透し、アンカー層を膨潤または溶解する領域6を形成する。 The catalyst ink 4 applied on the anchor layer 2 by the above method penetrates into the anchor layer 2 and swells or dissolves the anchor layer, as shown in FIG. 1 (3) and FIG. 2 (3). Region 6 is formed.
 触媒インクの付与量としては、インク中の無電解めっきの触媒あるはその前駆体の濃度や溶媒の沸点、乾燥性、無電解めっき性を考慮して選定される。具体的な触媒インクの付与量としては、0.5ml/m~50ml/mが好ましく、さらに好ましくは2.0ml/m~30ml/mである。付与量が0.5ml/m以上であれば、無電解めっき性(金属形成性)が十分であり、50ml/m以下であれば、触媒インク付与の均一性や乾燥性を確保することができる。 The amount of the catalyst ink applied is selected in consideration of the concentration of the electroless plating catalyst in the ink or the precursor concentration, the boiling point of the solvent, the drying property, and the electroless plating property. The specific amount of catalyst ink applied is preferably 0.5 ml / m 2 to 50 ml / m 2 , more preferably 2.0 ml / m 2 to 30 ml / m 2 . If the applied amount is 0.5 ml / m 2 or more, the electroless plating property (metal forming property) is sufficient, and if it is 50 ml / m 2 or less, the uniformity and drying property of the catalyst ink is ensured. Can do.
 触媒インクを付与したあとは、乾燥工程を設けることが好ましく、乾燥させる方法としては、加熱方式、送風方式などが時間短縮や工程簡略化の観点で好ましい。 After applying the catalyst ink, it is preferable to provide a drying step. As a drying method, a heating method, an air blowing method and the like are preferable from the viewpoint of time reduction and process simplification.
 〔3:表面処理工程〕
 必要に応じて、図1の(4)、図2の(4)に示すように、無電解めっき処理工程(触媒前駆体の場合は、活性化工程)を行う前に、アンカー層に対して表面改質を施すことが好ましい。表面処理を行うことにより、アンカー層2あるいは触媒インク4の付与領域6のめっき液あるいは活性化液に対する親和性を向上させ、表面濡れ性をより向上させることができ好ましい。表面改質された触媒インク領域7は、図1(4)、あるいは図2(4)に示されている。
[3: Surface treatment process]
If necessary, as shown in (4) of FIG. 1 and (4) of FIG. 2, before the electroless plating treatment step (in the case of a catalyst precursor, the activation step), the anchor layer is It is preferable to perform surface modification. By performing the surface treatment, the affinity of the anchor layer 2 or the application region 6 of the catalyst ink 4 to the plating solution or the activation solution can be improved, and the surface wettability can be further improved. The surface-modified catalyst ink region 7 is shown in FIG. 1 (4) or FIG. 2 (4).
 アンカー層2に触媒インク4を付与させ、アンカー層2を膨潤あるいは溶解させると、触媒インクを含有する造膜領域6は疎水性化することになる。この結果、めっき処理液あるいは活性化処理液は通常水溶液なので、後工程で用いるめっき処理液や活性化処理液への濡れ性が低下し、めっき性がやや低下してしまうことがある。従って、造膜領域6に対して親水化の表面処理を施すことにより、造膜領域のめっき処理液あるいは活性化処理液に対する親和性を向上させることができ、より密着性の高い金属パターンを形成することができる。 When the catalyst ink 4 is applied to the anchor layer 2 and the anchor layer 2 is swollen or dissolved, the film-forming region 6 containing the catalyst ink becomes hydrophobic. As a result, since the plating treatment solution or the activation treatment solution is usually an aqueous solution, the wettability with respect to the plating treatment solution or the activation treatment solution used in the subsequent process is lowered, and the plating property may be slightly lowered. Therefore, by applying a hydrophilic surface treatment to the film forming region 6, the affinity of the film forming region to the plating treatment solution or the activation treatment solution can be improved, and a metal pattern with higher adhesion can be formed. can do.
 表面処理工程の前後で、アンカー層2の水に対する接触角が低下していれば、表面処理としては有効である。具体的には、表面処理工程の前後で水に対する接触角が20%以上減少する処理が好ましい。表面処理の方法としては、カチオン・ノニオン・アニオンの界面活性剤を含む液により処理する方法、プラズマ・コロナ・フレーム・UV照射といった表面親水化処理工程によりめっき液に対する濡れ性を改善する方法がある。中でも、界面活性剤による液処理は、簡便でかつ効果も高い点から好ましい。 If the contact angle of the anchor layer 2 with respect to water is reduced before and after the surface treatment step, the surface treatment is effective. Specifically, a treatment in which the contact angle with water is reduced by 20% or more before and after the surface treatment step is preferable. As the surface treatment method, there are a method of treating with a solution containing a cation, nonion, or anionic surfactant, and a method of improving wettability with respect to the plating solution by a surface hydrophilization treatment step such as plasma, corona, flame, or UV irradiation. . Among these, liquid treatment with a surfactant is preferable because it is simple and highly effective.
 〔4:活性化処理工程〕
 次いで、図1の(5)、図2の(5)に示すように、触媒インク4が触媒前駆体を含有している場合には、触媒前駆体を無電解めっきが可能な触媒8に変換する活性化処理を施す。すなわち、触媒インク4が無電解めっき触媒の前駆体を含有している場合には、それを無電解めっきの触媒に変性させるため、活性化処理工程を、無電解めっき処理工程の前に行う。
[4: Activation treatment process]
Next, as shown in FIG. 1 (5) and FIG. 2 (5), when the catalyst ink 4 contains a catalyst precursor, the catalyst precursor is converted into a catalyst 8 capable of electroless plating. An activation process is performed. That is, when the catalyst ink 4 contains a precursor of an electroless plating catalyst, the activation treatment step is performed before the electroless plating treatment step in order to denature it into an electroless plating catalyst.
 無電解めっき触媒の前駆体として、金属塩化合物を用いた場合には、還元反応により、0価金属に反応させる工程であり、この活性化処理工程により、無電解めっき触媒になり得るものである。 When a metal salt compound is used as a precursor of the electroless plating catalyst, it is a step of reacting with a zero-valent metal by a reduction reaction, and this activation treatment step can become an electroless plating catalyst. .
 活性化処理工程は、触媒の種類によって適正な方法を選択する必要があり、酸の付与、加熱、還元剤の付与等が挙げられる。好ましい還元剤としては、ホウ素系化合物が好ましく、具体的には、水素化ホウ素ナトリウム、トリメチルアミンボラン、ジメチルアミンボラン(DMAB)などが好ましい。還元方法としては、還元剤の溶液に触媒インクを付与した基板を浸漬させ、活性化処理を行うことができる。 In the activation treatment step, it is necessary to select an appropriate method depending on the type of catalyst, and examples thereof include application of acid, heating, and application of a reducing agent. As a preferable reducing agent, a boron-based compound is preferable, and specifically, sodium borohydride, trimethylamine borane, dimethylamine borane (DMAB) and the like are preferable. As a reduction method, an activation treatment can be performed by immersing a substrate provided with a catalyst ink in a solution of a reducing agent.
 〔5:無電解めっき処理工程〕
 次いで、図1の(6)、図2の(6)に示すように、触媒8に対し無電解めっき処理を施し、アンカー層内の金属部9、金属膜10を形成する。
[5: Electroless plating process]
Next, as shown in (6) of FIG. 1 and (6) of FIG. 2, the electroless plating process is performed on the catalyst 8 to form the metal portion 9 and the metal film 10 in the anchor layer.
 本発明に係る無電解めっき処理について説明する。 The electroless plating process according to the present invention will be described.
 通常は、無電解めっき液(浴)に浸漬することにより、触媒インク付与されたアンカー層の部分で、無電解めっき反応により金属形成する工程である。 Usually, it is a step of forming a metal by an electroless plating reaction at a portion of the anchor layer provided with a catalyst ink by immersing in an electroless plating solution (bath).
 無電解めっき液としては、1)金属イオン、2)無電解めっき液用錯化剤、3)還元剤が主に含有される。無電解めっきで形成される金属としては、例えば、金、銀、銅、パラジウム、ニッケルおよびそれらの合金などが挙げられるが、密着性と導電性の観点から銅とニッケルおよびそれらの合金が好ましい。無電解めっき浴に使用される金属イオンとしても、上記金属に対応した金属イオンを含有させる。無電解めっき液用錯化剤および還元剤も金属イオンに適したものが選択される。錯化剤としては、例えば、エチレンジアミンテトラ酢酸(以下、EDTAと略記する)、ロシェル塩、D-マンニトール、D-ソルビトール、ズルシトール、イミノ二酢酸、trans-1,2-シクロヘキサンジアミン四酢酸などが挙げられ、その中でもEDTAが好ましい。還元剤としては、例えば、ホルムアルデヒド、テトラヒドロホウ酸カリウム、ジメチルアミンボラン、グリオキシル酸、次亜リン酸ナトリウムなどが挙げられ、その中でもホルムアルデヒドが好ましい。 The electroless plating solution mainly contains 1) metal ions, 2) complexing agent for electroless plating solution, and 3) reducing agent. Examples of the metal formed by electroless plating include gold, silver, copper, palladium, nickel, and alloys thereof, and copper, nickel, and alloys thereof are preferable from the viewpoint of adhesion and conductivity. Also as a metal ion used for an electroless plating bath, a metal ion corresponding to the above metal is contained. The complexing agent and reducing agent for the electroless plating solution are also selected to be suitable for metal ions. Examples of the complexing agent include ethylenediaminetetraacetic acid (hereinafter abbreviated as EDTA), Rochelle salt, D-mannitol, D-sorbitol, dulcitol, iminodiacetic acid, trans-1,2-cyclohexanediaminetetraacetic acid, and the like. Of these, EDTA is preferred. Examples of the reducing agent include formaldehyde, potassium tetrahydroborate, dimethylamine borane, glyoxylic acid, sodium hypophosphite, etc. Among them, formaldehyde is preferable.
 上記無電解めっき工程は、めっき浴の温度、pH、浸漬時間、金属イオン濃度を制御することで、金属形成の速度や膜厚を制御することができる。 In the electroless plating step, the metal formation speed and film thickness can be controlled by controlling the temperature, pH, immersion time, and metal ion concentration of the plating bath.
 〔6:電気めっき工程〕
 最後に、図1の(7)、図2の(7)に示すように、無電解めっき処理で形成した金属膜10の膜厚を厚くしてメッキ層(導電膜)11を形成する目的で、無電解めっき処理を行った後、さらに電気めっき処理を行う。
[6: Electroplating process]
Finally, as shown in (7) of FIG. 1 and (7) of FIG. 2, for the purpose of forming a plating layer (conductive film) 11 by increasing the thickness of the metal film 10 formed by the electroless plating process. After the electroless plating process, an electroplating process is further performed.
 電気めっき工程では、5項の無電解めっき処理の後、この無電解めっき処理工程により、形成された金属膜10を電極とし、さらに電気メッキを行うことができる。これにより、基材との密着性に優れた金属膜10をベースとして、そこに新たに任意の厚みをもつ導電膜11(メッキ層11)を容易に形成することができる。この工程を設けることにより、導電膜11を目的に応じた厚みに形成することができ、この様に形成した導電膜11を、高い導電性が要求される種々の用途に適用するのに好適である。 In the electroplating process, after the electroless plating process of item 5, the electroplating can be performed using the formed metal film 10 as an electrode by the electroless plating process. Thereby, it is possible to easily form a conductive film 11 (plating layer 11) having an arbitrary thickness on the basis of the metal film 10 having excellent adhesion to the substrate. By providing this step, the conductive film 11 can be formed to a thickness according to the purpose, and the conductive film 11 thus formed is suitable for application to various applications that require high conductivity. is there.
 本発明に適用可能な電気メッキの方法としては、従来公知の方法を用いることができる。電気めっき工程の電気メッキに用いられる金属としては、例えば、銅、クロム、鉛、ニッケル、金、銀、すず、亜鉛などが挙げられ、導電性の観点から、銅、金、銀が好ましく、銅がより好ましい。 As a method of electroplating applicable to the present invention, a conventionally known method can be used. Examples of the metal used for electroplating in the electroplating step include copper, chromium, lead, nickel, gold, silver, tin, and zinc. From the viewpoint of conductivity, copper, gold, and silver are preferable, and copper Is more preferable.
 電気メッキにより得られる導電膜11の膜厚については、用途に応じて適宜設定することができ、メッキ浴中に含まれる金属濃度、浸漬時間、或いは、電流密度などを調整することで、形成する導電膜11の膜厚をコントロールすることができる。なお、一般的な電気配線などに用いる場合の膜厚は、導電性の観点から、0.3μm以上であることが好ましく、3μm以上であることがより好ましい。 About the film thickness of the electrically conductive film 11 obtained by electroplating, it can set suitably according to a use, and it forms by adjusting the metal concentration contained in a plating bath, immersion time, or current density. The film thickness of the conductive film 11 can be controlled. In addition, from the viewpoint of conductivity, the film thickness when used for general electric wiring or the like is preferably 0.3 μm or more, and more preferably 3 μm or more.
 以下、実施例を挙げて本発明を具体的に説明するが、本発明はこれらに限定されるものではない。なお、実施例において「部」あるいは「%」の表示を用いるが、特に断りがない限り「質量部」あるいは「質量%」を表す。 Hereinafter, the present invention will be specifically described with reference to examples, but the present invention is not limited thereto. In addition, although the display of "part" or "%" is used in an Example, unless otherwise indicated, "part by mass" or "mass%" is represented.
 《金属パターンの作製》
 〔金属パターン1の作製〕
 下記の金属パターンの形成工程に従って、金属パターン1を作製した。
<Production of metal pattern>
[Production of Metal Pattern 1]
The metal pattern 1 was produced according to the following metal pattern formation process.
 (金属パターンの形成工程)
 1:アンカー層の形成工程
 2:触媒インクの付与工程
 3:表面処理工程
 4:活性化工程
 5:無電解めっき工程
 6:電気めっき工程
 (1:アンカー層の形成工程)
 ポリイミドフィルム(東レフィルム加工社製、カプトン100EN 膜厚50μm)の表面を酸素プラズマ処理した後、下記のポリマー1を用いて、ロッドバー方式で塗布、乾燥し、乾燥膜厚が0.5μmのアンカー層1を形成した。
(Metal pattern formation process)
1: Anchor layer formation step 2: Catalyst ink application step 3: Surface treatment step 4: Activation step 5: Electroless plating step 6: Electroplating step (1: Anchor layer formation step)
After the surface of a polyimide film (Toray Film Processing Co., Ltd., Kapton 100EN film thickness 50 μm) is subjected to oxygen plasma treatment, the following polymer 1 is applied and dried by a rod bar method, and an anchor layer having a dry film thickness of 0.5 μm 1 was formed.
 〈ポリマー1〉
 形態、組成:ソープフリー水系ラテックス、アクリル酸エステル共重合体、主なモノマー=ブチルアクリレート
 特性値:酸価=7.0mgKOH/g、Tg=-54℃、平均粒径=0.3~0.4μm
 (2:触媒インクの付与工程)
 〈触媒インク1の調製〉
 下記の各添加剤を混合して、触媒インク1を調製した。
<Polymer 1>
Form, composition: soap-free aqueous latex, acrylic acid ester copolymer, main monomer = butyl acrylate Characteristic values: acid value = 7.0 mgKOH / g, Tg = −54 ° C., average particle size = 0.3-0. 4μm
(2: Catalyst ink application step)
<Preparation of catalyst ink 1>
Catalyst ink 1 was prepared by mixing the following additives.
 無電解めっきの触媒前駆体:酢酸パラジウム      0.05質量%
 エチレングリコールジアセテート             70質量%
 ter-ブチルアルコール                30質量%
 〈触媒インク1の付与〉
 上記調製した触媒インク1を、ワイヤーバーを用いて、前記アンカー層1を形成した基板上に、5ml/mの条件で塗布し、アンカー層1上に10cm×10cmのベタ状パターンを付与した。
Electroless plating catalyst precursor: 0.05% by mass of palladium acetate
70% by mass of ethylene glycol diacetate
ter-Butyl alcohol 30% by mass
<Application of catalyst ink 1>
The prepared catalyst ink 1 was applied on the substrate on which the anchor layer 1 was formed using a wire bar under the condition of 5 ml / m 2 to give a solid pattern of 10 cm × 10 cm on the anchor layer 1. .
 〈触媒インクによるアンカー層の膨潤または溶解の確認〉
 上記形成とは別に、基材上にアンカー層1を有する試料を、上記触媒インク1に25℃で、3分間浸漬してアンカー層の観察を行った。次いで、浸漬前後でのアンカー層1の体積変化、質量変化及アンカー層の変質を評価し、触媒インク1に浸漬した後、アンカー層の触媒インク1に増加や白濁が認められた場合を「膨潤」と判定し、浸漬後にアンカー層の質量が減少した場合に「溶解」と判断した。また、体積変化、質量変化及び白濁を生じ無かった場合を「変化なし」とした。
<Confirmation of swelling or dissolution of anchor layer by catalyst ink>
Separately from the above formation, a sample having the anchor layer 1 on the substrate was immersed in the catalyst ink 1 at 25 ° C. for 3 minutes to observe the anchor layer. Next, the volume change, mass change and anchor layer alteration of the anchor layer 1 before and after immersion were evaluated, and after immersion in the catalyst ink 1, an increase or white turbidity was observed in the catalyst ink 1 of the anchor layer. ”And“ dissolved ”when the mass of the anchor layer decreased after immersion. Moreover, the case where no volume change, mass change and white turbidity occurred was defined as “no change”.
 上記方法に従って、アンカー層1に対する触媒インク1の特性を確認した結果、「膨潤」であった。 As a result of confirming the characteristics of the catalyst ink 1 with respect to the anchor layer 1 according to the above method, it was “swelled”.
 (3:表面処理工程)
 基材にアンカー層1及び触媒インク1の付与を行った試料1に対し、下記の方法に従って、表面処理方法1を施した。
(3: Surface treatment process)
The surface treatment method 1 was performed on the sample 1 on which the anchor layer 1 and the catalyst ink 1 were applied to the substrate according to the following method.
 〈表面処理方法1〉
 界面活性剤(ポリオキシエチレンノニルフェニルエーテル)を0.5質量%含有し、pHを約12に調整した界面活性剤水溶液に、上記試料1を60℃で、5分間浸漬させて、表面処理を施して試料1Aを作製した。この表面処理方法を表面処理方法1と称す。
<Surface treatment method 1>
The sample 1 was immersed in a surfactant aqueous solution containing 0.5% by mass of a surfactant (polyoxyethylene nonylphenyl ether) and having a pH adjusted to about 12 at 60 ° C. for 5 minutes to perform surface treatment. And sample 1A was produced. This surface treatment method is referred to as “surface treatment method 1”.
 上記表面処理を施した試料1Aと、未処理の試料1の水に対する接触角を測定した結果、表面処理により接触角が20%以上低下していることを確認した。 As a result of measuring the contact angle with respect to water of the sample 1A subjected to the surface treatment and the untreated sample 1, it was confirmed that the contact angle was reduced by 20% or more by the surface treatment.
 (4:活性化工程)
 次いで、表面処理を施した試料1Aを、下記の活性化液に35℃で10分間浸漬して、活性化処理を施した。
(4: Activation process)
Next, the sample 1A subjected to the surface treatment was immersed in the following activation liquid at 35 ° C. for 10 minutes to perform the activation treatment.
 〈活性化液〉
 アルカップMRD2-A(上村工業社製)          18ml
 アルカップMRD2-C(上村工業社製)          60ml
 純水で1000mlに仕上げた。
<Activation liquid>
Alcup MRD2-A (Uemura Kogyo Co., Ltd.) 18ml
Alcup MRD2-C (manufactured by Uemura Kogyo Co., Ltd.) 60ml
Finished to 1000 ml with pure water.
 (5:無電解めっき工程)
 水酸化ナトリウムによりpHを13.0に調整した下記の無電解銅めっき溶液(50℃)に、5:活性化処理を施した試料1Aを浸漬して無電解めっき処理を行い、約0.2μmの膜厚の銅メッキ層を形成した。
(5: Electroless plating process)
The electroless plating treatment was performed by immersing the sample 1A subjected to 5: activation treatment in the following electroless copper plating solution (50 ° C.) adjusted to pH 13.0 with sodium hydroxide, about 0.2 μm. A copper plating layer having a thickness of 5 mm was formed.
 〈無電解銅めっき溶液〉
 メルプレートCU-5100A(メルテックス社製)     60ml
 メルプレートCU-5100B(メルテックス社製)     55ml
 メルプレートCU-5100C(メルテックス社製)     20ml
 メルプレートCU-5100M(メルテックス社製)     40ml
 純水で1000mlに仕上げた。
<Electroless copper plating solution>
Melplate CU-5100A (Meltex) 60ml
Melplate CU-5100B (Meltex) 55ml
Melplate CU-5100C (Meltex) 20ml
Melplate CU-5100M (Meltex) 40ml
Finished to 1000 ml with pure water.
 上記無電解銅めっき溶液は、銅濃度として2.5質量%、ホルマリン濃度が1.0質量%、エチレンジアミンテトラ酢酸(EDTA)濃度が2.5質量%である。 The electroless copper plating solution has a copper concentration of 2.5 mass%, a formalin concentration of 1.0 mass%, and an ethylenediaminetetraacetic acid (EDTA) concentration of 2.5 mass%.
 (6:電気めっき工程)
 上記無電解めっき処理を施した試料1Aを、下記の組成からなる電気めっき浴に浸漬し、陽極として銅板を用い、電流密度1.5A/dmで電気めっきを行い、約15μmの銅膜を形成して、金属パターン1を作製した。
(6: Electroplating process)
The sample 1A subjected to the above electroless plating treatment is immersed in an electroplating bath having the following composition, a copper plate is used as an anode, and electroplating is performed at a current density of 1.5 A / dm 2 to form a copper film of about 15 μm. Thus, the metal pattern 1 was produced.
 〈電気めっき浴の調製〉
 硫酸銅五水塩                        60g
 硫酸                           190g
 塩素イオン                        50mg
 カッパーグリームPCM(メルテックス社製)         5ml
 純水で1000mlに仕上げた。
<Preparation of electroplating bath>
Copper sulfate pentahydrate 60g
190g of sulfuric acid
Chloride ion 50mg
Copper Gream PCM (Meltex) 5ml
Finished to 1000 ml with pure water.
 〔金属パターン2~15の作製〕
 上記金属パターン1の形成において、アンカー層の組成(表1に詳細を記載)、触媒インクの種類(表2に詳細を記載)と、付与方法及び付与量(ml/m)、表面処理方法(4:表面処理工程)、活性化処理の有無を、表3に記載の組み合わせに変更した以外は同様にして、金属パターン2~15を作製した。
[Production of metal patterns 2 to 15]
In the formation of the metal pattern 1, the composition of the anchor layer (detailed in Table 1), the type of catalyst ink (detailed in Table 2), application method and application amount (ml / m 2 ), surface treatment method (4: Surface treatment step) Metal patterns 2 to 15 were produced in the same manner except that the presence or absence of the activation treatment was changed to the combinations shown in Table 3.
 (アンカー層1~5の詳細)
 表1に、金属パターン1の形成に用いたアンカー層1を含め、各アンカー層の組成を示す。
(Details of anchor layers 1-5)
Table 1 shows the composition of each anchor layer including the anchor layer 1 used to form the metal pattern 1.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 なお、表1に記載の各ポリマーにおいて、ポリマー番号3はジャパンエポキシレジン社製のiER807であり、ポリマー番号4は特開2009-280904号公報の実施例に記載の水分散物1であり、ポリマー番号5は特開2010-16219号公報の実施例に記載の熱可塑性樹脂微粒子(スチレン-ブタジエン系ラテックス)である。 In each polymer shown in Table 1, polymer number 3 is iER807 manufactured by Japan Epoxy Resin Co., Ltd., and polymer number 4 is aqueous dispersion 1 described in the examples of JP-A-2009-280904. No. 5 is a thermoplastic resin fine particle (styrene-butadiene latex) described in Examples of Japanese Patent Application Laid-Open No. 2010-16219.
 (触媒インク1~6の詳細)
 表2に、金属パターン1の形成に用いた触媒インク1を含め、各触媒インクの組成を示す。
(Details of catalyst inks 1 to 6)
Table 2 shows the composition of each catalyst ink including the catalyst ink 1 used for forming the metal pattern 1.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 なお、表2に略称で記載した添加剤の詳細は、以下の通りである。 The details of the additives described in abbreviations in Table 2 are as follows.
 〈触媒〉
 Ag:銀ナノ粒子(平均粒径:50nm)
 〈溶媒〉
 EGDAc:エチレングリコールジアセテート
 DEGDEA:ジエチレングリコールジエチルエーテル
 DEGBE:ジエチレングリコールモノブチルエーテル
 t-BuOH:ter-ブチルアルコール
 EG:エチレングリコール
 Gly:グリセリン
 (表面処理方法)
 〈表面処理方法2:プラズマ処理〉
 酸素雰囲気下、周波数10MHzで、直流電圧を300V印加し、プラズマ放電処理を行った。照射条件としては、電力(W)は100w、処理時間(秒)は120秒で、表面改質を行った。
<catalyst>
Ag: Silver nanoparticles (average particle size: 50 nm)
<solvent>
EGDAc: ethylene glycol diacetate DEGDEA: diethylene glycol diethyl ether DEGBE: diethylene glycol monobutyl ether t-BuOH: ter-butyl alcohol EG: ethylene glycol Gly: glycerin (surface treatment method)
<Surface treatment method 2: Plasma treatment>
Under an oxygen atmosphere, a plasma discharge treatment was performed by applying a DC voltage of 300 V at a frequency of 10 MHz. As irradiation conditions, power (W) was 100 w, treatment time (seconds) was 120 seconds, and surface modification was performed.
 〈表面処理方法3:コロナ放電処理〉
 空気雰囲気下で、アンカー層表面と電極との間隔を1mmとし、処理電力を20W・min/mで処理した。
<Surface treatment method 3: Corona discharge treatment>
Under an air atmosphere, the distance between the anchor layer surface and the electrode was 1 mm, and the treatment power was 20 W · min / m 2 .
 《金属パターンの評価》
 上記形成した金属パターンについて、下記の各評価を行った。
<Evaluation of metal pattern>
Each of the following evaluations was performed on the formed metal pattern.
 〔密着性の評価〕
 形成した15μm銅膜と基板との密着強度を、JIS C6481に準拠した方法で、90度ピール強度試験により測定し、下記の基準に従って密着性を評価した。
[Evaluation of adhesion]
The adhesion strength between the formed 15 μm copper film and the substrate was measured by a 90 ° peel strength test by a method based on JIS C6481, and the adhesion was evaluated according to the following criteria.
 ◎:密着強度が、10N/cm以上である
 ○:密着強度が、6N/cm以上、10N/cm未満である
 △:密着強度が、2N/cm以上、6N/cm未満である
 ×:密着強度が、2N/cm未満である
 〔吸湿リフロー耐性の評価〕
 各金属パターンを形成した基板を、85℃、85%RHの環境下で168時間保存して吸湿させた。次いで、各サンプルを室温から160℃まで3分間で昇温させたあと、以下の3つの条件で昇温させ、金属表面の変化(気泡の発生)を観察した。
A: Adhesion strength is 10 N / cm or more B: Adhesion strength is 6 N / cm or more and less than 10 N / cm Δ: Adhesion strength is 2 N / cm or more and less than 6 N / cm X: Adhesion strength Is less than 2 N / cm [Evaluation of moisture absorption reflow resistance]
The substrate on which each metal pattern was formed was stored in an environment of 85 ° C. and 85% RH for 168 hours to absorb moisture. Next, each sample was heated from room temperature to 160 ° C. over 3 minutes, and then heated under the following three conditions to observe changes in the metal surface (generation of bubbles).
 条件1:30秒でピーク温度200℃まで昇温し、その温度で30秒保持した
 条件2:30秒でピーク温度230℃まで昇温し、その温度で30秒保持した
 条件3:30秒でピーク温度260℃まで昇温し、その温度で30秒保持した
 上記条件1~3の処理を行った各サンプルの表面を目視観察し、下記の基準に従って、吸湿リフロー耐性を評価した。
Condition 1: The temperature was raised to 200 ° C. in 30 seconds and held at that temperature for 30 seconds. Condition 2: The temperature was raised to 230 ° C. in 30 seconds and held for 30 seconds. Condition 3: In 30 seconds. The sample was heated to a peak temperature of 260 ° C. and held at that temperature for 30 seconds. The surface of each sample subjected to the treatment under the above conditions 1 to 3 was visually observed, and moisture absorption reflow resistance was evaluated according to the following criteria.
 ◎:条件1~3の全ての条件で、気泡の発生は認められなかった
 ○:条件3で気泡の発生は認められたが、条件1、2では認められなかった
 △:条件2、3で気泡の発生は認められたが、条件1では見られなかった
 ×:条件1~3の全ての条件で、気泡の発生が認められた
 〔めっき適性の評価〕
 各金属パターンの作製において、7:無電解めっき工程において、無電解めっきで形成される銅膜厚が0.2μmに成長するまでの時間を計測し、下記の基準に従って、めっき適性を評価した。
A: Generation of bubbles was not observed under all conditions 1 to 3. B: Generation of bubbles was observed under condition 3, but not observed under conditions 1 and 2. Δ: Conditions 2 and 3 Generation of bubbles was observed, but not observed under condition 1. ×: Generation of bubbles was observed under all conditions 1 to 3 [Evaluation of plating suitability]
In preparation of each metal pattern, in the 7: electroless plating step, the time until the copper film thickness formed by electroless plating grew to 0.2 μm was measured, and the suitability for plating was evaluated according to the following criteria.
 ◎:0.2μmの銅膜の形成が、10分未満である
 ○:0.2μmの銅膜の形成が、10分以上、20分未満である
 △:0.2μmの銅膜の形成が、20分以上、40分未満である
 ×:0.2μmの銅膜の形成が、40分以上である
 以上により得られた結果を、表3に示す。
A: The formation of a 0.2 μm copper film is less than 10 minutes. ○: The formation of a 0.2 μm copper film is 10 minutes or more and less than 20 minutes. Δ: The formation of a 0.2 μm copper film is as follows. 20 minutes or more and less than 40 minutes ×: The formation of a 0.2 μm copper film is 40 minutes or more.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 表3に記載の結果より明らかなように、本発明で規定する製造方法で作製した金属パターンは、比較例に対し、基材との密着性、吸湿リフロー耐性及びめっき適性に優れていることが分かる。 As is clear from the results shown in Table 3, the metal pattern produced by the production method defined in the present invention is superior to the comparative example in adhesion to the substrate, moisture absorption reflow resistance and plating suitability. I understand.
 1 基板
 2 アンカー層
 3、5、5A コーター
 4 触媒インク
 6 アンカー層を膨潤または溶解する領域
 7 表面改質された触媒インク領域
 8 触媒
 9 金属部
 10 金属膜
 11 メッキ層(導電膜)
DESCRIPTION OF SYMBOLS 1 Substrate 2 Anchor layer 3, 5, 5A Coater 4 Catalyst ink 6 Area where anchor layer is swollen or dissolved 7 Surface-modified catalyst ink area 8 Catalyst 9 Metal part 10 Metal film 11 Plating layer (conductive film)

Claims (6)

  1.  基板上に、1)ポリマーを含有するアンカー層を形成する工程と、2)前記アンカー層上に無電解めっきの触媒またはその前駆体と、溶媒とを含有するインクを付与し、前記アンカー層を膨潤あるいは溶解する工程と、及び3)無電解めっき処理を行う工程とを有することを特徴とする金属パターンの製造方法。 On the substrate, 1) a step of forming an anchor layer containing a polymer, 2) an ink containing an electroless plating catalyst or a precursor thereof, and a solvent is applied on the anchor layer, and the anchor layer is formed. A method for producing a metal pattern, comprising: a step of swelling or dissolving; and 3) a step of performing an electroless plating process.
  2.  前記無電解めっきの触媒またはその前駆体が、前記溶媒に対する溶解度が0.01質量%以上であり、かつ水に対する溶解度が1.0質量%以下であることを特徴とする請求項1に記載の金属パターンの製造方法。 The electroless plating catalyst or a precursor thereof has a solubility in the solvent of 0.01% by mass or more and a solubility in water of 1.0% by mass or less. A method for producing a metal pattern.
  3.  前記無電解めっきの触媒またはその前駆体が、パラジウム金属塩であることを特徴とする請求項1または2に記載の金属パターンの製造方法。 3. The method for producing a metal pattern according to claim 1, wherein the electroless plating catalyst or a precursor thereof is a palladium metal salt.
  4.  前記パラジウム金属塩が、酢酸パラジウムまたはアセト酢酸パラジウムであることを特徴とする請求項3に記載の金属パターンの製造方法。 The method for producing a metal pattern according to claim 3, wherein the palladium metal salt is palladium acetate or palladium acetoacetate.
  5.  2)前記インクを前記アンカー層に付与し、前記アンカー層を膨潤あるいは溶解する工程と、3)前記無電解めっき処理を行う工程の間に、前記アンカー層に表面処理を施す工程を有することを特徴とする請求項1から4のいずれか1項に記載の金属パターンの製造方法。 2) A step of applying a surface treatment to the anchor layer between the step of applying the ink to the anchor layer and swelling or dissolving the anchor layer, and 3) the step of performing the electroless plating treatment. The method for producing a metal pattern according to any one of claims 1 to 4, characterized in that:
  6.  前記アンカー層を、ポリマー微粒子を含有する溶液によって形成することを特徴とする請求項1から5のいずれか1項に記載の金属パターンの製造方法。 The method for producing a metal pattern according to any one of claims 1 to 5, wherein the anchor layer is formed of a solution containing polymer fine particles.
PCT/JP2011/065671 2010-07-28 2011-07-08 Method for producing metal patterns WO2012014657A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010168961 2010-07-28
JP2010-168961 2010-07-28

Publications (1)

Publication Number Publication Date
WO2012014657A1 true WO2012014657A1 (en) 2012-02-02

Family

ID=45529875

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/065671 WO2012014657A1 (en) 2010-07-28 2011-07-08 Method for producing metal patterns

Country Status (1)

Country Link
WO (1) WO2012014657A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6323390A (en) * 1986-07-16 1988-01-30 日本曹達株式会社 Manufacture of printed wiring board
JP2003145709A (en) * 2001-11-15 2003-05-21 Sumitomo Osaka Cement Co Ltd Screen printing machine and screen printing method
JP2010010548A (en) * 2008-06-30 2010-01-14 Konica Minolta Holdings Inc Ink acceptable base material, and method of manufacturing conductive pattern using the same
JP2010016219A (en) * 2008-07-04 2010-01-21 Konica Minolta Ij Technologies Inc Metallic pattern forming method and metallic pattern

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6323390A (en) * 1986-07-16 1988-01-30 日本曹達株式会社 Manufacture of printed wiring board
JP2003145709A (en) * 2001-11-15 2003-05-21 Sumitomo Osaka Cement Co Ltd Screen printing machine and screen printing method
JP2010010548A (en) * 2008-06-30 2010-01-14 Konica Minolta Holdings Inc Ink acceptable base material, and method of manufacturing conductive pattern using the same
JP2010016219A (en) * 2008-07-04 2010-01-21 Konica Minolta Ij Technologies Inc Metallic pattern forming method and metallic pattern

Similar Documents

Publication Publication Date Title
US7739789B2 (en) Method for forming surface graft, conductive film and metal patterns
US7713862B2 (en) Printed wiring board and method for manufacturing the same
CA2426648C (en) Plating method of metal film on the surface of polymer
KR101398821B1 (en) Method of manufacturing metal nano-particle, conductive ink composition having the metal nano-particle and method of forming conductive pattern using the same
EP3315302B1 (en) Laminated body, molded article, electroconductive pattern, electronic circuit, and electromagnetic shield
JPS6081893A (en) Method of electrolessly plating copper selectively on surface of nonconductive substrate
JP2010084196A (en) Method of forming metal film
JP6982383B2 (en) A pretreatment liquid for electroless plating used at the same time as the reduction treatment, and a method for manufacturing a printed wiring board.
TW200906986A (en) Process for forming a metal pattern on a substrate
JP2002335067A (en) Swelling solvent composition for texturing resin material and desmearing and removing resin material
JP2016528388A (en) Formation of conductive images using high-speed electroless plating
US8440263B2 (en) Forming method of metallic pattern and metallic pattern
WO2012014657A1 (en) Method for producing metal patterns
JP5298670B2 (en) Metal pattern forming method and metal pattern
JP5445474B2 (en) Metal pattern manufacturing method
JP5418497B2 (en) Metal pattern forming method and metal pattern
JP5418336B2 (en) Metal pattern forming method and metal pattern formed using the same
TW201238750A (en) Method for manufacturing laminate having patterned metal layer and composition for forming plating layer
US20120009385A1 (en) Resin complex and laminate
JP5051754B2 (en) Conductive layer forming composition, conductive layer forming method, and circuit board manufacturing method
JP5500090B2 (en) Metal pattern manufacturing method
WO2012014658A1 (en) Method for producing metal pattern
JP2012209392A (en) Manufacturing method of laminate having patterned metal film and composition for forming plated layer
US20180208792A1 (en) Film coating and film coating compositions for surface modification and metallization
WO2011033819A1 (en) Method for forming polymer layer

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11812249

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11812249

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP