WO2012014486A1 - Base station device and transmitting power control method - Google Patents

Base station device and transmitting power control method Download PDF

Info

Publication number
WO2012014486A1
WO2012014486A1 PCT/JP2011/004286 JP2011004286W WO2012014486A1 WO 2012014486 A1 WO2012014486 A1 WO 2012014486A1 JP 2011004286 W JP2011004286 W JP 2011004286W WO 2012014486 A1 WO2012014486 A1 WO 2012014486A1
Authority
WO
WIPO (PCT)
Prior art keywords
base station
station apparatus
transmission power
transmission
symbol
Prior art date
Application number
PCT/JP2011/004286
Other languages
French (fr)
Japanese (ja)
Inventor
継峰 李
将彦 南里
Original Assignee
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック株式会社 filed Critical パナソニック株式会社
Publication of WO2012014486A1 publication Critical patent/WO2012014486A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/54Allocation or scheduling criteria for wireless resources based on quality criteria
    • H04W72/541Allocation or scheduling criteria for wireless resources based on quality criteria using the level of interference
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/18Phase-modulated carrier systems, i.e. using phase-shift keying
    • H04L27/20Modulator circuits; Transmitter circuits
    • H04L27/2096Arrangements for directly or externally modulating an optical carrier
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0058Allocation criteria
    • H04L5/0073Allocation arrangements that take into account other cell interferences
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0014Three-dimensional division
    • H04L5/0023Time-frequency-space
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • the present invention relates to a base station apparatus and a transmission power control method, for example, when downlink control channel data of a base station apparatus forming a macro cell interferes with downlink data channel data transmitted from a small base station.
  • the present invention relates to a base station apparatus and a transmission power control method for mitigating interference with respect to a signal.
  • LTE Long Term Evolution
  • the LTE downlink modulation scheme employs an OFDM (Orthogonal Frequency Division) Multiplexing (OFDM) scheme, and the minimum unit of information symbols in the frequency domain is one subcarrier. Twelve subcarriers are called one resource block (hereinafter referred to as “RB”), and this is an allocation unit for each downlink channel.
  • RB resource block
  • a downlink channel is configured by repeatedly and continuously arranging a 1 RB frame format in a predetermined frequency region. Note that the number of RBs repeatedly and continuously arranged is determined by the scheduler of the base station apparatus according to the amount of transmission information to the mobile station or the downlink propagation path environment.
  • each channel When viewed in the time direction, the transmission allocation unit of each channel is called one subframe, and is composed of 14 OFDM symbols in normal CP (Cyclic Prefix). In Extended CP, it is composed of 12 OFDM symbols.
  • a control channel (CCH: Control Channel) (hereinafter referred to as “CCH”) is assigned to 1 to 3 OFDM symbols from the top.
  • a data channel, a synchronization channel, or a broadcast channel is assigned to the remaining OFDM symbols.
  • SCH common channel
  • the number of OFDM symbols to which CCH is assigned differs depending on the amount of control information required per subframe, and is determined by CFI (Control Format Indicator). Further, a reference signal (RS: Reference Signal) is intermittently assigned for each transmission antenna in the time domain and the frequency domain.
  • RS Reference Signal
  • small eNB small base station apparatus
  • the small eNB is mainly assumed to be installed in a home or a company, and the number of accommodated terminals is generally said to be several or at most about 100.
  • the cell formed by the small eNB is smaller than the cell formed by the conventional macro base station apparatus (hereinafter referred to as “MeNB”).
  • the conventional MeNB Since the conventional MeNB is installed after the communication carrier performs an appropriate station location design in advance, inter-cell interference does not become a problem. On the other hand, since a small eNB has low transmission power and can be installed at an arbitrary location by an end user, interference with the MeNB becomes a big problem. In particular, the communication to the existing MeNB should not be hindered. In particular, when interference is provided to the downlink control channel, not only downlink data communication of the MeNB but also serious troubles in broadcast information or uplink communication to a mobile station (hereinafter referred to as “MUE”) under the MeNB. .
  • MUE mobile station
  • Non-Patent Document 1 proposes a technique for puncturing a part of a control channel of MeNB. Further, in Non-Patent Document 2, the MeNB centrally schedules MUEs with low downlink propagation path loss in a specific subframe, thereby reducing the downlink transmission power of the subframe and reducing interference with a small eNB. Technology has been proposed.
  • Non-Patent Document 1 since the control channel is punctured, there is a problem that the reception performance of the control channel is lowered and resources of MeNB shared by many MUEs are tight.
  • Non-Patent Document 2 since downlink transmissions to MUEs with high downlink propagation loss are concentrated in a specific subframe, the downlink transmission power becomes high in that subframe, and the small eNB causes large interference. There is a problem of receiving.
  • An object of the present invention is to provide a base station apparatus that can suppress interference given to neighboring base station apparatuses while securing predetermined resources, and can prevent quality deterioration of control data of control channels of neighboring base station apparatuses And a transmission power control method.
  • a base station apparatus is a base station apparatus that forms a cell having a size different from that of a cell formed by a neighboring base station apparatus and communicates using an OFDM scheme that is the same communication scheme as the neighboring base station apparatus.
  • orthogonal frequency division multiplex processing on the data of a plurality of channels, control data distributed to a predetermined number of symbols from the beginning of the transmission period and a symbol behind the predetermined number of symbols for each predetermined transmission period
  • Orthogonal frequency division multiplexing means for generating an OFDM signal including transmitted data and transmission power of the transmission data at a transmission timing that overlaps a transmission timing of control data of the neighboring base station apparatus in the OFDM signal.
  • Transmission power control for performing control to reduce the transmission power of the transmission data at a transmission timing other than the timing Take the stage, a configuration and a transmitting means for transmitting the OFDM signal at a controlled transmit power by the transmit power control unit.
  • a cell having a size different from a cell formed by a neighboring base station apparatus is formed, and transmission is performed in a base station apparatus that communicates using an OFDM scheme that is the same communication scheme as the neighboring base station apparatus.
  • a power control method wherein control data distributed to a predetermined number of symbols from the beginning of the transmission period and the predetermined number of symbols for each predetermined transmission period by performing orthogonal frequency division multiplexing processing on data of a plurality of channels Generating an OFDM signal including transmission data distributed to symbols behind the transmission signal, and, in the OFDM signal, the transmission power of the transmission data at a transmission timing overlapping the transmission timing of the control data of the neighboring base station apparatus, Control to reduce the transmission power of the transmission data at a transmission timing other than the overlapping transmission timing. Cormorants and step, was to be equipped with.
  • the present invention it is possible to suppress interference given to neighboring base station apparatuses while securing predetermined resources, and to prevent quality deterioration of control data of control channels of neighboring base station apparatuses.
  • the figure which shows the control method of the transmission power in the base station apparatus which concerns on Embodiment 1 of this invention, and the periphery base station of a base station apparatus The figure which shows the other control method of the transmission power in the base station apparatus which concerns on Embodiment 1 of this invention, and the periphery base station of a base station apparatus
  • base station apparatus 100 may be either MeNB or small eNB.
  • the transmission timing of one of the MeNB and the small eNB is set in OFDM symbol units with respect to the transmission timing of the other so that the CCH symbol of the MeNB and the CCH symbol of the small eNB do not overlap on the time axis. Shift on the time axis.
  • the above-described shift amount of the OFDM symbol on the time axis is 3 OFDM symbols, but the present invention is not limited to this, and may be N (N is an arbitrary positive integer) OFDM symbol. .
  • FIG. 1 is a block diagram showing a configuration of base station apparatus 100 according to the present embodiment.
  • Base station apparatus 100 includes CCH modulation section 101, SCH modulation section 102, channel selection section 103, resource mapping section 104, IFFT section 105, transmission power control section 106, addition section 107, and transmission timing adjustment.
  • the unit 108, the RF unit 109, and the antenna 110 are mainly configured.
  • the CCH modulation unit 101 outputs a control channel symbol (hereinafter referred to as “CCH symbol”) obtained by modulating the input CCH control data (hereinafter referred to as “CCH data”) to the channel selection unit 103.
  • CCH symbol a control channel symbol obtained by modulating the input CCH control data (hereinafter referred to as “CCH data”) to the channel selection unit 103.
  • the CCH includes PDCCH (Physical Downlink Control Channel), PHICH (Physical Hybrid-ARQ Indicator Channel), and PCFICH (Physical Control Format Indicator Channel).
  • the SCH modulation unit 102 outputs a common channel symbol (hereinafter referred to as “SCH symbol”) obtained by modulating the input SCH data (hereinafter referred to as “SCH data”) to the channel selection unit 103.
  • the SCH includes PDSCH (Physical Downlink Shared Channel), P-SCH (Primary-Synchronization Channel), S-SCH (Secondary-Synchronization Channel), and PBCH (Physical Broadcast Channel).
  • the channel selection unit 103 selects the CCH symbol input from the CCH modulation unit 101 and the SCH symbol input from the SCH modulation unit 102 according to the input symbol number information for each subframe. Specifically, channel selection section 103 selects a CCH symbol when the symbol number of the input symbol number information is t0. Further, the channel selection unit 103 selects nothing when the symbol number of the input symbol number information is t1 to t2. Channel selection section 103 selects an SCH symbol corresponding to each symbol number when the symbol number of the input symbol number information is t3 to t13. Channel selection section 103 then outputs the selected CCH symbol and SCH symbol to resource mapping section 104. Note that the channel selection unit 103 outputs nothing to the resource mapping unit 104 when nothing is selected.
  • the resource mapping unit 104 arranges the CCH symbol or the SCH symbol input from the channel selection unit 103 on the frequency axis and outputs it to the IFFT unit 105.
  • IFFT section 105 Based on the input symbol number information, IFFT section 105 performs an inverse discrete Fourier transform process, which is an OFDM modulation process, on the CCH symbol or SCH symbol input from resource mapping section 104 to form an OFDM signal. Further, IFFT section 105 outputs the formed OFDM signal to transmission power control section 106.
  • the OFDM signal is composed of, for example, 14 OFDM symbols for each subframe. Each OFDM symbol is composed of, for example, 12 subcarriers in a resource block that is a predetermined frequency band.
  • the transmission power control unit 106 performs transmission power control of PDSCH symbols (data channel symbols) among the SCH symbols of the OFDM signal input from the IFFT unit 105 according to the input symbol number information. At this time, based on the input timing information, transmission power control section 106 performs control to reduce the transmission power of PDSCH symbols that overlap the transmission timing of CCH symbols of neighboring base stations by a predetermined amount. Then, transmission power control section 106 outputs the OFDM signal subjected to transmission power control to addition section 107. Detailed operation in the transmission power control unit 106 will be described later.
  • the addition unit 107 duplicates the latter half of the OFDM signal input from the transmission power control unit 106 as a CP, and places the duplicated CP at the beginning of the OFDM signal. Further, the adding unit 107 multiplies the CP-added OFDM signal by a window function in order to maintain continuity between adjacent symbols. Further, adding section 107 outputs the OFDM signal multiplied by the window function to transmission timing adjusting section 108.
  • the transmission timing adjustment unit 108 monitors the timing of the subframe with reference to the input timing information as necessary, and based on the monitoring result, the OFDM signal input from the addition unit 107 is temporally measured in OFDM symbol units. shift. Also, the transmission timing adjustment unit 108 outputs the OFDM signal shifted on the time axis to the RF unit 109. However, when the own station is one of the MeNB and the small eNB, the transmission timing adjustment unit 108 shifts the transmission timing in time in the other one of the neighboring base station, the MeNB and the small eNB. Outputs the OFDM signal input from the adding unit 107 to the RF unit 109 without shifting in time.
  • the RF unit 109 converts the frequency of the OFDM signal input from the transmission timing adjustment unit 108 from a baseband signal to a high frequency signal and outputs the converted signal to the antenna 110.
  • the antenna 110 transmits the high-frequency signal input from the RF unit 109 to the communication terminal device 200 described later.
  • FIG. 2 is a block diagram showing a configuration of communication terminal apparatus 200 according to the present embodiment.
  • the communication terminal device 200 includes an antenna 201, an RF unit 202, a reception timing adjustment unit 203, a CP removal unit 204, an FFT unit 205, an equalization unit 206, a resource demapping unit 207, and a channel selection unit 208. And synthesizer 209, CCH demodulator 210, and SCH demodulator 211.
  • the antenna 201 receives a high frequency signal from the base station apparatus 100 and outputs it to the RF unit 202.
  • the RF unit 202 converts the high-frequency signal input from the antenna 201 into a baseband signal and outputs the baseband signal to the reception timing adjustment unit 203.
  • the reception timing adjustment unit 203 refers to the input timing information when the OFDM signal received from either the base station apparatus 100 in communication or the small eNB is shifted in time.
  • the OFDM signal which is a baseband signal input from the RF unit, is shifted on the time axis based on the monitoring result. Specifically, reception timing adjustment section 203 returns to the timing before shifting on the time axis by transmission timing adjustment section 108 of base station apparatus 100.
  • Reception timing adjustment section 203 outputs the OFDM signal shifted in time to CP removal section 204.
  • the reception timing adjustment unit 203 receives the OFDM signal input from the RF unit 202 when the OFDM signal received from the base station apparatus 100 of either the MeNB or the small eNB in communication is not shifted on the time axis.
  • the signal is output to the CP removing unit 204 without shifting on the time axis.
  • CP removing section 204 removes the CP from the OFDM signal input from reception timing adjusting section 203 based on a predetermined symbol timing, and outputs the result to FFT section 205.
  • the FFT unit 205 subjects the OFDM signal input from the CP removal unit 204 to discrete Fourier transform, which is OFDM demodulation, and outputs the result to the equalization unit 206.
  • the equalization unit 206 extracts a reference signal from the OFDM signal input from the FFT unit 205. Further, the equalization unit 206 obtains a channel response of the propagation path using the extracted reference signal and a replica of the reference signal stored in advance, and obtains the channel estimation value from the obtained channel response of the propagation path. The equalization process is performed. Further, equalization section 206 outputs the OFDM signal after the equalization processing to resource demapping section 207.
  • EGC Equal Gain Combining
  • MMSE Minimum Mean Square Error
  • the resource demapping unit 207 extracts data necessary for the own station from the OFDM signal input from the equalization unit 206 based on the input symbol number information. Specifically, the resource demapping section 207 extracts the CCH symbol assigned to the own station when the symbol number of the symbol number information is t0 mapping the CCH symbol. Further, when the symbol number of the symbol number information is t3 to t13 mapping the SCH symbol, the resource demapping unit 207 identifies the resource to which the SCH symbol addressed to the own station is allocated from the CCH symbol extracted in advance. Then, only the SCH symbol from the resource is extracted. Resource demapping section 207 then outputs the extracted CCH symbol and SCH symbol to channel selection section 208.
  • channel selection section 208 Based on the symbol number information, channel selection section 208 outputs the CCH symbol of symbol number t0 input from resource demapping section 207 to combining section 209, and the SCHs of symbol numbers t3 to t13 input from resource demapping section 207. The symbol is output to SCH demodulating section 211.
  • the combining unit 209 combines the CCH symbols input from the channel selection unit 208 based on the symbol number information, and outputs the combined CCH symbols to the CCH demodulation unit 210.
  • various synthesis methods such as a simple synthesis method or a weighted synthesis method can be used as the synthesis method.
  • the CCH demodulator 210 demodulates the CCH symbol input from the combiner 209 and outputs it as CCH data.
  • the SCH demodulator 211 demodulates the SCH symbol input from the channel selector 208 and outputs it as SCH data. At this time, by performing error correction decoding on the demodulated SCH data by a decoding unit (not shown), it is possible to minimize the deterioration of the PDSCH symbol that has caused the quality deterioration due to the reduction of the transmission power in the base station apparatus 100. it can.
  • FIG. 3 is a diagram illustrating a transmission power control method in the base station apparatus 100 and base stations surrounding the base station apparatus 100.
  • downlink frame # 301 is transmitted from the MeNB, and downlink frame # 302 is transmitted from the small eNB.
  • the reference signal (RS) (shaded area in FIG. 3) is assigned intermittently.
  • the MeNB transmits the OFDM symbol without shifting in time.
  • the small eNB performs transmission by delaying by 3 OFDM (delay time T) by shifting the time by 3 OFDM symbols with respect to the transmission timing of the MeNB.
  • the SCH symbol # 320 of the symbol numbers t3 to t4 of the downlink frame # 301 transmitted from the MeNB overlaps with the CCH symbol # 321 of the symbol numbers t0 to t1 of the downlink frame # 302 transmitted from the small eNB on the time axis. .
  • transmission power control section 106 of MeNB performs PDSCH symbols (symbols in FIG. 3) in SCH symbols # 320 of symbol numbers t3 to t4 that overlap with CCH symbol # 321 on the time axis. Reduce the transmission power. Thereby, in this Embodiment, the quality degradation of the CCH symbol of the small eNB in the communication terminal device 200 can be suppressed.
  • the downlink transmission power control method described in the “Downlink ⁇ power allocation” section of 3GPP TS 36.213 5.2 is changed as follows.
  • the transmission power is reduced according to the equation (3) when the base station apparatus 100 is other than the 4-cell specific antenna.
  • FIG. 4 is a diagram illustrating another method of controlling the transmission power between the base station apparatus 100 and the base stations surrounding the base station apparatus 100.
  • the MeNB may reduce the transmission power of the symbol numbers t3 to t5 instead of reducing the transmission power of the symbol numbers t3 to t4.
  • FIG. 4 shows a reduction in transmission power of 3 OFDM symbols with the maximum number of OFDM symbols that can be allocated to CCH symbols regardless of the number of OFDM symbols to which CCH symbols are actually allocated. As a result, the transmission power control process can be simplified.
  • the transmission power of the PDSCH symbol at the transmission timing that overlaps the transmission timing of the CCH symbol of the neighboring base station apparatus is reduced, thereby preventing the quality deterioration of the CCH symbol of the neighboring base station apparatus. Can do. Further, according to the present embodiment, since CCH symbols are not punctured, predetermined resources can be secured. Further, according to the present embodiment, since PDSCH symbols with high transmission power are not concentrated on specific OFDM symbols, it is possible to suppress interference given to neighboring base station apparatuses.
  • the transmission power of the PDSCH symbol that overlaps the CCH symbol is reduced only in the transmission power control unit 106 of the MeNB.
  • the present invention is not limited to this, and the CCH only in the transmission power control unit 106 of the small eNB. You may reduce the transmission power of the PDSCH symbol which overlaps with a symbol.
  • FIG. 5 is a block diagram showing a configuration of base station apparatus 500 according to Embodiment 2 of the present invention.
  • Base station apparatus 500 includes CCH modulation section 101, SCH modulation section 102, channel selection section 103, resource mapping section 104, IFFT section 105, addition section 107, transmission timing adjustment section 108, and RF section 109. And an antenna 110 and a transmission power control unit 501.
  • the IFFT unit 105 performs an inverse discrete Fourier transform process, which is an OFDM modulation process, on the CCH symbol or SCH symbol input from the resource mapping unit 104 to form an OFDM signal. Further, IFFT section 105 outputs the formed OFDM signal to transmission power control section 501.
  • the transmission power control unit 501 performs transmission power control of PDSCH symbols among the SCH symbols of the OFDM signal input from the IFFT unit 105 according to the input symbol number information. At this time, based on the input timing information, transmission power control section 501 performs control to reduce the transmission power of PDSCH symbols that overlap the transmission timing of CCH symbols of neighboring base stations by a predetermined amount. Also, the transmission power control section 501 uses the number of OFDM symbols to reduce transmission power based on information (CFI) on the number of OFDM symbols to which CCH symbols are distributed in the peripheral base station apparatus included in the input peripheral base station information. Is adaptively changed. Then, transmission power control section 501 outputs the OFDM symbol subjected to transmission power control to adding section 107. The detailed operation in the transmission power control unit 501 will be described later.
  • CFI information
  • the addition unit 107 duplicates the latter half of the OFDM signal input from the transmission power control unit 501 as a CP, and places the duplicated CP at the beginning of the OFDM signal. Further, the adding unit 107 multiplies the CP-added OFDM signal by a window function in order to maintain continuity between adjacent symbols. Further, adding section 107 outputs the OFDM signal multiplied by the window function to transmission timing adjusting section 108.
  • FIG. 6 is a diagram illustrating a transmission power control method in the base station device 500 and base stations surrounding the base station device 500.
  • downlink frame # 601 is transmitted from the MeNB, and downlink frame # 602 is transmitted from the small eNB.
  • the MeNB transmits the OFDM symbol without shifting on the time axis.
  • the small eNB shifts by 3 OFDM symbols with respect to the transmission timing of the MeNB, thereby transmitting with a delay of 3 OFDM.
  • SCH symbol # 630 of symbol numbers t3 to t4 of subframe # 610 transmitted from MeNB overlaps with CCH symbol # 631 of symbol numbers t0 to t1 of subframe # 620 transmitted from the small eNB on the time axis. .
  • MeNB transmission power control section 501 uses PDSCH symbols (symbols in FIG. 6) in SCH symbols # 630 of symbol numbers t3 to t4 that overlap with CCH symbol # 631 on the time axis. Reduce the transmission power.
  • SCH symbol # 632 of symbol number t3 of subframe # 611 transmitted from the MeNB overlaps with CCH symbol # 633 of symbol number t0 of subframe # 621 transmitted from the small eNB on the time axis.
  • the transmission power control unit 501 of the MeNB can know the symbol number to which the CCH symbol is mapped in the small eNB from the neighboring base station information. Therefore, the transmission power control unit 501 of the MeNB reduces the transmission power of the PDSCH symbol (the symbol of the shaded portion in FIG. 6) in the SCH symbol # 632 of the symbol number t3 that overlaps the CCH symbol # 633 of the small eNB on the time axis. To do.
  • the method for controlling the transmission power in transmission power control section 501 of base station apparatus 500 is the same as the method for controlling the transmission power in transmission power control section 106 in the first embodiment, and the description thereof is omitted. To do.
  • the number of OFDM symbols for reducing transmission power is adaptively set according to the number of OFDM symbols to which the CCH symbols of the neighboring base station apparatuses are allocated. Change.
  • the transmission power of the PDSCH symbol that overlaps the CCH symbol is reduced only in the transmission power control unit 106 of the MeNB.
  • the present invention is not limited to this, and the CCH only in the transmission power control unit 106 of the small eNB. You may reduce the transmission power of the PDSCH symbol which overlaps with a symbol.
  • FIG. 7 is a diagram illustrating a transmission power control method in the base station apparatus according to Embodiment 3 of the present invention and neighboring base stations of the base station apparatus.
  • the base station apparatus has the same configuration as in FIG. 1, and the communication terminal apparatus has the same configuration as in FIG. Moreover, in the following description, it demonstrates using the code
  • the base station apparatus 100 is only the point that the transmission power control unit 106 always performs control to reduce the transmission power regardless of whether the own station is a MeNB or a small eNB. Different from 1.
  • downlink frame # 701 is transmitted from the MeNB, and downlink frame # 702 is transmitted from the small eNB.
  • the MeNB transmits the OFDM symbol without shifting on the time axis.
  • the small eNB transmits the signal with a delay of 3OFDM by shifting the transmission timing of the MeNB on the time axis by 3OFDM symbols.
  • SCH symbol # 730 of symbol numbers t3 to t4 of subframe # 710 transmitted from the MeNB overlaps with CCH symbol # 731 of symbol numbers t0 to t1 of subframe # 720 transmitted from the small eNB on the time axis. .
  • MeNB transmission power control section 106 uses PDSCH symbols (symbols in FIG. 7) in SCH symbols # 730 of symbol numbers t3 to t4 that overlap with CCH symbol # 731 on the time axis. Reduce the transmission power.
  • SCH symbol # 732 with symbol number t3 in subframe # 711 transmitted from the MeNB overlaps with CCH symbol # 733 with symbol number t0 in subframe # 721 transmitted from the small eNB on the time axis.
  • the transmission power control unit 106 of the MeNB reduces the transmission power of the PDSCH symbol (the symbol of the shaded portion in FIG. 7) in the SCH symbol # 732 of the symbol number t3 that overlaps the CCH symbol # 733 of the small eNB on the time axis. To do. Further, in this embodiment, in addition to SCH symbol # 732, the transmission power of the PDSCH symbol is also reduced in the SCH symbol of symbol number t4 in subframe # 711. In the case of FIG. 7, the transmission power of the PDSCH symbol does not have to be reduced in the SCH symbol of symbol number t4 in subframe # 711.
  • the transmission power control unit 106 of the small eNB transmits the transmission power of the PDSCH symbol (the symbol of the shaded portion in FIG. 7) in the SCH symbol # 734 of the symbol numbers t11 to t13 that overlaps the CCH symbol # 735 of the MeNB on the time axis. Reduce.
  • the method for controlling the transmission power in transmission power control section 501 of base station apparatus 500 is the same as the method for controlling the transmission power in transmission power control section 106 in the first embodiment, and the description thereof is omitted. To do.
  • the transmission power is reduced.
  • the present invention is not limited to this, and the PDSCH symbols addressed to communication terminal apparatuses having a low transmission power are sequentially selected, and the selected PDSCH symbols are converted to CCH. You may make it distribute to the OFDM symbol which overlaps with a symbol one by one.
  • the transmission timing is shifted on the time axis by 3 OFDM.
  • the present invention is not limited to this, and the control channel symbol of the MeNB and the control channel of the small eNB are timed. If mapping is performed so as not to overlap on the axis, there is no need to shift on the time axis.
  • the OFDM symbol shift amount on the time axis is 3 OFDM symbols.
  • N N is an arbitrary positive integer. It may be an OFDM symbol.
  • the base station apparatus and transmission power control method according to the present invention provide a downlink control channel when, for example, downlink control channel data of a base station apparatus forming a macro cell interferes with downlink data channel data transmitted from a small base station. It is suitable for mitigating interference with respect to.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Quality & Reliability (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

Disclosed is a base station device capable of suppressing interference applied to a peripheral base station device while maintaining a predetermined resource, and capable of preventing deterioration of control data quality of a control channel of the peripheral base station device. In the device, an IFFT unit (105) performs orthogonal frequency division multiplexing of control data and PDSCH data to generate an OFDM signal comprising control data allocated from the head of a sub-frame to N (N is an arbitrary positive integer) OFDM symbol, and PDSCH data allocated to OFDM symbols located rearward of the NOFDM symbol, with respect to each sub-frame. A transmitting power control unit (106) functions so that, in an OFDM signal, the PDSCH data transmitting power transmitted at the time overlapping the transmission time when the control data of the peripheral base station device is reduced compared to the PDSCH data transmitting power transmitted at the time other than the overlapping time.

Description

基地局装置及び送信電力制御方法Base station apparatus and transmission power control method
 本発明は、基地局装置及び送信電力制御方法に関し、例えばマクロセルを形成する基地局装置の下り制御チャネルのデータが、小型基地局から送信する下りデータチャネルのデータと干渉する場合において、下り制御チャネルに対する干渉を緩和する基地局装置及び送信電力制御方法に関する。 The present invention relates to a base station apparatus and a transmission power control method, for example, when downlink control channel data of a base station apparatus forming a macro cell interferes with downlink data channel data transmitted from a small base station. The present invention relates to a base station apparatus and a transmission power control method for mitigating interference with respect to a signal.
 移動体通信の通信規格の一つであるLTE(Long Term Evolution)は、従来の通信規格と比較して、周波数利用効率の向上及び低遅延を特徴とするものであり、将来の移動体通信ビジネスの発展を支える規格として期待されている。 LTE (Long Term Evolution), one of mobile communication standards, is characterized by improved frequency utilization efficiency and low delay compared to conventional communication standards. It is expected as a standard that supports the development of
 LTEの下り変調方式にはOFDM(Orthogonal Frequency Division Multiplexing)方式が採用されており、周波数領域における情報シンボルの最小単位は1サブキャリアとなる。12サブキャリアを1リソースブロック(Resource Block)(以下、「RB」と記載する)と呼び、これが各下りチャネルの割り当て単位となる。LTEでは、1RBのフレームフォーマットを所定の周波数領域で繰り返し連続して配置することで下りチャネルを構成する。なお、繰り返し連続して配置するRB数は、移動局への送信情報量または下り伝播路環境に応じて、基地局装置のスケジューラにより決定される。 The LTE downlink modulation scheme employs an OFDM (Orthogonal Frequency Division) Multiplexing (OFDM) scheme, and the minimum unit of information symbols in the frequency domain is one subcarrier. Twelve subcarriers are called one resource block (hereinafter referred to as “RB”), and this is an allocation unit for each downlink channel. In LTE, a downlink channel is configured by repeatedly and continuously arranging a 1 RB frame format in a predetermined frequency region. Note that the number of RBs repeatedly and continuously arranged is determined by the scheduler of the base station apparatus according to the amount of transmission information to the mobile station or the downlink propagation path environment.
 時間方向で見ると、各チャネルの送信割り当て単位を1サブフレームと呼び、normal CP(Cyclic Prefix)時は、14OFDMシンボルで構成される。なお、Extended CP時は、12OFDMシンボルで構成される。このうち、先頭から1~3OFDMシンボルに制御チャネル(CCH:Control Channel)(以下、「CCH」と記載する)が割り当てられる。残りのOFDMシンボルにデータチャネル、同期チャネルまたは報知チャネルが割り当てられる。以下の説明では、データチャネルと、同期チャネルと、報知チャネルとをまとめて共通チャネル(SCH:Shared Channel)(以下、「SCH」と記載する)として記載する。CCHが割り当てられるOFDMシンボル数は、サブフレーム当たりに必要な制御情報量によって異なり、CFI(Control Format Indicator)によって決まる。また、参照信号(RS:Reference Signal)は、送信アンテナ毎に時間領域及び周波数領域で間欠的に割り当てられる。 When viewed in the time direction, the transmission allocation unit of each channel is called one subframe, and is composed of 14 OFDM symbols in normal CP (Cyclic Prefix). In Extended CP, it is composed of 12 OFDM symbols. Among these, a control channel (CCH: Control Channel) (hereinafter referred to as “CCH”) is assigned to 1 to 3 OFDM symbols from the top. A data channel, a synchronization channel, or a broadcast channel is assigned to the remaining OFDM symbols. In the following description, the data channel, the synchronization channel, and the broadcast channel are collectively described as a common channel (SCH) (hereinafter referred to as “SCH”). The number of OFDM symbols to which CCH is assigned differs depending on the amount of control information required per subframe, and is determined by CFI (Control Format Indicator). Further, a reference signal (RS: Reference Signal) is intermittently assigned for each transmission antenna in the time domain and the frequency domain.
 また、近年、携帯電話の不感地帯をカバーするために、ピコセル(Pico cell)またはHome eNB(以下、「小型eNB」と記載する)と呼ばれる小型基地局装置の開発が行われている。小型eNBは主に宅内や、企業内に設置することを想定しており、収容端末数は、一般的には数個、多くても百個程度と言われる。また、小型eNBが形成するセルは、従来のマクロ基地局装置(以下、「MeNB」と記載する)が形成するセルよりも小さい。 In recent years, a small base station apparatus called a pico cell or a home eNB (hereinafter referred to as “small eNB”) has been developed in order to cover a dead zone of a mobile phone. The small eNB is mainly assumed to be installed in a home or a company, and the number of accommodated terminals is generally said to be several or at most about 100. The cell formed by the small eNB is smaller than the cell formed by the conventional macro base station apparatus (hereinafter referred to as “MeNB”).
 従来のMeNBは、事前に通信事業者が適切な置局設計を行って設置されるため、セル間干渉はさほど問題にならない。一方、小型eNBは、送信電力が小さい上、エンドユーザが任意の場所に設置可能なため、MeNBとの干渉が大きな問題となる。特に既存のMeNBへの通信に支障を与えることはあってはならない。とりわけ、下り制御チャネルへ干渉を与えると、MeNBの下りデータ通信のみならず、MeNB配下の移動局(以下、「MUE」と記載する)への報知情報または上り通信等にも重大な支障をきたす。 Since the conventional MeNB is installed after the communication carrier performs an appropriate station location design in advance, inter-cell interference does not become a problem. On the other hand, since a small eNB has low transmission power and can be installed at an arbitrary location by an end user, interference with the MeNB becomes a big problem. In particular, the communication to the existing MeNB should not be hindered. In particular, when interference is provided to the downlink control channel, not only downlink data communication of the MeNB but also serious troubles in broadcast information or uplink communication to a mobile station (hereinafter referred to as “MUE”) under the MeNB. .
 このような干渉を防ぐため、移動体通信規格の標準化団体である3GPP(3rd Generation Partnership Project)では、非特許文献1や非特許文献2に記載されるように、様々な技術提案がなされている。非特許文献1では、MeNBの制御チャネルの一部をパンクチャリングする技術が提案されている。また、非特許文献2では、MeNBが下り伝播路損失が少ないMUEを特定のサブフレームに集中的にスケジューリングすることで、当該サブフレームの下り送信電力を低く抑え、小型eNBへの干渉を低減する技術が提案されている。 In order to prevent such interference, 3GPP (3rd Generation Generation Partnership Project), which is a standardization body for mobile communication standards, has made various technical proposals as described in Non-Patent Document 1 and Non-Patent Document 2. . Non-Patent Document 1 proposes a technique for puncturing a part of a control channel of MeNB. Further, in Non-Patent Document 2, the MeNB centrally schedules MUEs with low downlink propagation path loss in a specific subframe, thereby reducing the downlink transmission power of the subframe and reducing interference with a small eNB. Technology has been proposed.
 しかしながら、非特許文献1においては、制御チャネルをパンクチャリングするので、制御チャネルの受信性能を低下させる上、多数のMUEで共有するMeNBのリソースが逼迫するという問題がある。 However, in Non-Patent Document 1, since the control channel is punctured, there is a problem that the reception performance of the control channel is lowered and resources of MeNB shared by many MUEs are tight.
 また、非特許文献2においては、下り伝播損失が高いMUEへの下り送信が特定のサブフレームに集中することになるため、そのサブフレームにおいては下り送信電力が高くなり、小型eNBは大きな干渉を受けるという問題がある。 Further, in Non-Patent Document 2, since downlink transmissions to MUEs with high downlink propagation loss are concentrated in a specific subframe, the downlink transmission power becomes high in that subframe, and the small eNB causes large interference. There is a problem of receiving.
 本発明の目的は、所定のリソースを確保しつつ、周辺基地局装置に与える干渉を抑制することができるとともに、周辺基地局装置の制御チャネルの制御データの品質劣化を防ぐことができる基地局装置及び送信電力制御方法を提供することである。 An object of the present invention is to provide a base station apparatus that can suppress interference given to neighboring base station apparatuses while securing predetermined resources, and can prevent quality deterioration of control data of control channels of neighboring base station apparatuses And a transmission power control method.
 本発明の基地局装置は、周辺基地局装置が形成するセルと異なる大きさのセルを形成するとともに、前記周辺基地局装置と同一の通信方式であるOFDM方式により通信する基地局装置であって、複数チャネルのデータを直交周波数分割多重処理することにより、所定の送信期間毎に、前記送信期間の先頭から所定数のシンボルに振り分けた制御データと、前記所定数のシンボルの後方のシンボルに振り分けた送信データとを含むOFDM信号を生成する直交周波数分割多重手段と、前記OFDM信号において、前記周辺基地局装置の制御データの送信タイミングと重なる送信タイミングの前記送信データの送信電力を、前記重なる送信タイミング以外の送信タイミングの前記送信データの送信電力よりも低減する制御を行う送信電力制御手段と、前記送信電力制御手段により制御された送信電力で前記OFDM信号を送信する送信手段と、を具備する構成を採る。 A base station apparatus according to the present invention is a base station apparatus that forms a cell having a size different from that of a cell formed by a neighboring base station apparatus and communicates using an OFDM scheme that is the same communication scheme as the neighboring base station apparatus. By performing orthogonal frequency division multiplex processing on the data of a plurality of channels, control data distributed to a predetermined number of symbols from the beginning of the transmission period and a symbol behind the predetermined number of symbols for each predetermined transmission period Orthogonal frequency division multiplexing means for generating an OFDM signal including transmitted data and transmission power of the transmission data at a transmission timing that overlaps a transmission timing of control data of the neighboring base station apparatus in the OFDM signal. Transmission power control for performing control to reduce the transmission power of the transmission data at a transmission timing other than the timing Take the stage, a configuration and a transmitting means for transmitting the OFDM signal at a controlled transmit power by the transmit power control unit.
 本発明の送信電力制御方法は、周辺基地局装置が形成するセルと異なる大きさのセルを形成するとともに、前記周辺基地局装置と同一の通信方式であるOFDM方式により通信する基地局装置における送信電力制御方法であって、複数チャネルのデータを直交周波数分割多重処理することにより、所定の送信期間毎に、前記送信期間の先頭から所定数のシンボルに振り分けた制御データと、前記所定数のシンボルの後方のシンボルに振り分けた送信データとを含むOFDM信号を生成するステップと、前記OFDM信号において、前記周辺基地局装置の制御データの送信タイミングと重なる送信タイミングの前記送信データの送信電力を、前記重なる送信タイミング以外の送信タイミングの前記送信データの送信電力よりも低減する制御を行うステップと、を具備するようにした。 According to the transmission power control method of the present invention, a cell having a size different from a cell formed by a neighboring base station apparatus is formed, and transmission is performed in a base station apparatus that communicates using an OFDM scheme that is the same communication scheme as the neighboring base station apparatus. A power control method, wherein control data distributed to a predetermined number of symbols from the beginning of the transmission period and the predetermined number of symbols for each predetermined transmission period by performing orthogonal frequency division multiplexing processing on data of a plurality of channels Generating an OFDM signal including transmission data distributed to symbols behind the transmission signal, and, in the OFDM signal, the transmission power of the transmission data at a transmission timing overlapping the transmission timing of the control data of the neighboring base station apparatus, Control to reduce the transmission power of the transmission data at a transmission timing other than the overlapping transmission timing. Cormorants and step, was to be equipped with.
 本発明によれば、所定のリソースを確保しつつ、周辺基地局装置に与える干渉を抑制することができるとともに、周辺基地局装置の制御チャネルの制御データの品質劣化を防ぐことができる。 According to the present invention, it is possible to suppress interference given to neighboring base station apparatuses while securing predetermined resources, and to prevent quality deterioration of control data of control channels of neighboring base station apparatuses.
本発明の実施の形態1に係る基地局装置の構成を示すブロック図The block diagram which shows the structure of the base station apparatus which concerns on Embodiment 1 of this invention. 本発明の実施の形態1における通信端末装置の構成を示すブロック図The block diagram which shows the structure of the communication terminal device in Embodiment 1 of this invention. 本発明の実施の形態1に係る基地局装置と基地局装置の周辺基地局とにおける送信電力の制御方法を示す図The figure which shows the control method of the transmission power in the base station apparatus which concerns on Embodiment 1 of this invention, and the periphery base station of a base station apparatus 本発明の実施の形態1に係る基地局装置と基地局装置の周辺基地局とにおける送信電力の他の制御方法を示す図The figure which shows the other control method of the transmission power in the base station apparatus which concerns on Embodiment 1 of this invention, and the periphery base station of a base station apparatus 本発明の実施の形態2に係る基地局装置の構成を示すブロック図The block diagram which shows the structure of the base station apparatus which concerns on Embodiment 2 of this invention. 本発明の実施の形態2に係る基地局装置と基地局装置の周辺基地局とにおける送信電力の制御方法を示す図The figure which shows the control method of the transmission power in the base station apparatus which concerns on Embodiment 2 of this invention, and the periphery base station of a base station apparatus 本発明の実施の形態3に係る基地局装置と基地局装置の周辺基地局とにおける送信電力の制御方法を示す図The figure which shows the control method of the transmission power in the base station apparatus which concerns on Embodiment 3 of this invention, and the periphery base station of a base station apparatus
 以下、本発明の実施の形態について、図面を参照して詳細に説明する。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
 (実施の形態1)
 以下に、本発明の実施の形態1に係る基地局装置100の構成について、図1を用いて詳細に説明する。また、MeNBと小型eNBは同一構成であるので、本実施の形態において、基地局装置100は、MeNBと小型eNBの何れであってもよい。ただし、MeNBのCCHシンボルと小型eNBのCCHシンボルとが時間軸上で重ならないように、MeNBと小型eNBの何れか一方の送信タイミングを、何れか他方の送信タイミングに対して、OFDMシンボル単位で時間軸上においてシフトする。また、本実施の形態において、時間軸上のOFDMシンボルの上記のシフト量は、3OFDMシンボルとするが、本発明はこれに限らず、N(Nは、任意の正の整数)OFDMシンボルでもよい。
(Embodiment 1)
Hereinafter, the configuration of base station apparatus 100 according to Embodiment 1 of the present invention will be described in detail with reference to FIG. Moreover, since MeNB and small eNB are the same structures, in this Embodiment, base station apparatus 100 may be either MeNB or small eNB. However, the transmission timing of one of the MeNB and the small eNB is set in OFDM symbol units with respect to the transmission timing of the other so that the CCH symbol of the MeNB and the CCH symbol of the small eNB do not overlap on the time axis. Shift on the time axis. In the present embodiment, the above-described shift amount of the OFDM symbol on the time axis is 3 OFDM symbols, but the present invention is not limited to this, and may be N (N is an arbitrary positive integer) OFDM symbol. .
 図1は、本実施の形態に係る基地局装置100の構成を示すブロック図である。 FIG. 1 is a block diagram showing a configuration of base station apparatus 100 according to the present embodiment.
 基地局装置100は、CCH変調部101と、SCH変調部102と、チャネル選択部103と、リソースマッピング部104と、IFFT部105と、送信電力制御部106と、付加部107と、送信タイミング調整部108と、RF部109と、アンテナ110とから主に構成される。 Base station apparatus 100 includes CCH modulation section 101, SCH modulation section 102, channel selection section 103, resource mapping section 104, IFFT section 105, transmission power control section 106, addition section 107, and transmission timing adjustment. The unit 108, the RF unit 109, and the antenna 110 are mainly configured.
 CCH変調部101は、入力したCCHの制御データ(以下、「CCHデータ」と記載する)を変調した制御チャネルシンボル(以下、「CCHシンボル」と記載する)をチャネル選択部103へ出力する。ここで、CCHは、PDCCH(Physical Downlink Control Channel)と、PHICH(Physical Hybrid-ARQ Indicator Channel)と、PCFICH(Physical Control Format Indicator Channel)とを含む。 The CCH modulation unit 101 outputs a control channel symbol (hereinafter referred to as “CCH symbol”) obtained by modulating the input CCH control data (hereinafter referred to as “CCH data”) to the channel selection unit 103. Here, the CCH includes PDCCH (Physical Downlink Control Channel), PHICH (Physical Hybrid-ARQ Indicator Channel), and PCFICH (Physical Control Format Indicator Channel).
 SCH変調部102は、入力したSCHのデータ(以下、「SCHデータ」と記載する)を変調した共通チャネルシンボル(以下、「SCHシンボル」)をチャネル選択部103へ出力する。ここで、SCHは、PDSCH(Physical Downlink Shared Channel)と、P-SCH(Primary-Synchronization Channel)と、S-SCH(Secondary-Synchronization Channel)と、PBCH(Physical Broadcast Channel)とを含む。 The SCH modulation unit 102 outputs a common channel symbol (hereinafter referred to as “SCH symbol”) obtained by modulating the input SCH data (hereinafter referred to as “SCH data”) to the channel selection unit 103. Here, the SCH includes PDSCH (Physical Downlink Shared Channel), P-SCH (Primary-Synchronization Channel), S-SCH (Secondary-Synchronization Channel), and PBCH (Physical Broadcast Channel).
 チャネル選択部103は、入力したサブフレーム毎のシンボル番号情報に応じて、CCH変調部101から入力したCCHシンボルを選択するとともに、SCH変調部102から入力したSCHシンボルを選択する。具体的には、チャネル選択部103は、入力したシンボル番号情報のシンボル番号がt0の場合にはCCHシンボルを選択する。また、チャネル選択部103は、入力したシンボル番号情報のシンボル番号がt1~t2の場合には何も選択しない。また、チャネル選択部103は、入力したシンボル番号情報のシンボル番号がt3~t13の場合には各シンボル番号に応じたSCHシンボルを選択する。そして、チャネル選択部103は、選択したCCHシンボル及びSCHシンボルをリソースマッピング部104へ出力する。なお、チャネル選択部103は、何も選択しない場合にはリソースマッピング部104へは何も出力しない。 The channel selection unit 103 selects the CCH symbol input from the CCH modulation unit 101 and the SCH symbol input from the SCH modulation unit 102 according to the input symbol number information for each subframe. Specifically, channel selection section 103 selects a CCH symbol when the symbol number of the input symbol number information is t0. Further, the channel selection unit 103 selects nothing when the symbol number of the input symbol number information is t1 to t2. Channel selection section 103 selects an SCH symbol corresponding to each symbol number when the symbol number of the input symbol number information is t3 to t13. Channel selection section 103 then outputs the selected CCH symbol and SCH symbol to resource mapping section 104. Note that the channel selection unit 103 outputs nothing to the resource mapping unit 104 when nothing is selected.
 リソースマッピング部104は、チャネル選択部103から入力したCCHシンボルまたはSCHシンボルを周波数軸上に配置してIFFT部105へ出力する。 The resource mapping unit 104 arranges the CCH symbol or the SCH symbol input from the channel selection unit 103 on the frequency axis and outputs it to the IFFT unit 105.
 IFFT部105は、入力したシンボル番号情報に基づいて、リソースマッピング部104から入力したCCHシンボルまたはSCHシンボルに対してOFDM変調処理である逆離散フーリエ変換処理を行ってOFDM信号を形成する。また、IFFT部105は、形成したOFDM信号を送信電力制御部106へ出力する。OFDM信号は、例えば、サブフレーム毎に14OFDMシンボルから構成される。また、各OFDMシンボルは、例えば、所定の周波数帯であるリソースブロックにおいて12サブキャリアから構成される。 Based on the input symbol number information, IFFT section 105 performs an inverse discrete Fourier transform process, which is an OFDM modulation process, on the CCH symbol or SCH symbol input from resource mapping section 104 to form an OFDM signal. Further, IFFT section 105 outputs the formed OFDM signal to transmission power control section 106. The OFDM signal is composed of, for example, 14 OFDM symbols for each subframe. Each OFDM symbol is composed of, for example, 12 subcarriers in a resource block that is a predetermined frequency band.
 送信電力制御部106は、入力したシンボル番号情報に従って、IFFT部105から入力したOFDM信号のSCHシンボルのうちのPDSCHシンボル(データチャネルシンボル)の送信電力制御を行う。この際、送信電力制御部106は、入力したタイミング情報に基づいて、周辺基地局のCCHシンボルの送信タイミングと重なるPDSCHシンボルの送信電力を、所定量だけ低減する制御を行う。そして、送信電力制御部106は、送信電力制御を行ったOFDM信号を付加部107へ出力する。なお、送信電力制御部106における詳細な動作については後述する。 The transmission power control unit 106 performs transmission power control of PDSCH symbols (data channel symbols) among the SCH symbols of the OFDM signal input from the IFFT unit 105 according to the input symbol number information. At this time, based on the input timing information, transmission power control section 106 performs control to reduce the transmission power of PDSCH symbols that overlap the transmission timing of CCH symbols of neighboring base stations by a predetermined amount. Then, transmission power control section 106 outputs the OFDM signal subjected to transmission power control to addition section 107. Detailed operation in the transmission power control unit 106 will be described later.
 付加部107は、送信電力制御部106から入力したOFDM信号の後半部をCPとして複製し、複製したCPをOFDM信号の先頭に配置する。また、付加部107は、CP付きOFDM信号に対して、隣接シンボル間の連続性を保持するために窓関数を乗じる。また、付加部107は、窓関数を乗じたOFDM信号を送信タイミング調整部108へ出力する。 The addition unit 107 duplicates the latter half of the OFDM signal input from the transmission power control unit 106 as a CP, and places the duplicated CP at the beginning of the OFDM signal. Further, the adding unit 107 multiplies the CP-added OFDM signal by a window function in order to maintain continuity between adjacent symbols. Further, adding section 107 outputs the OFDM signal multiplied by the window function to transmission timing adjusting section 108.
 送信タイミング調整部108は、必要に応じて、入力したタイミング情報を参照してサブフレームのタイミングを監視し、監視結果に基づいて、付加部107から入力したOFDM信号をOFDMシンボル単位で時間上においてシフトする。また、送信タイミング調整部108は、時間軸上でシフトしたOFDM信号をRF部109へ出力する。ただし、送信タイミング調整部108は、自局がMeNBと小型eNBの何れか一方である場合、周辺基地局であるMeNBと小型eNBの何れか他方において送信タイミングを時間上においてシフトしている場合には、付加部107から入力したOFDM信号を時間上においてシフトせずにRF部109へ出力する。 The transmission timing adjustment unit 108 monitors the timing of the subframe with reference to the input timing information as necessary, and based on the monitoring result, the OFDM signal input from the addition unit 107 is temporally measured in OFDM symbol units. shift. Also, the transmission timing adjustment unit 108 outputs the OFDM signal shifted on the time axis to the RF unit 109. However, when the own station is one of the MeNB and the small eNB, the transmission timing adjustment unit 108 shifts the transmission timing in time in the other one of the neighboring base station, the MeNB and the small eNB. Outputs the OFDM signal input from the adding unit 107 to the RF unit 109 without shifting in time.
 RF部109は、送信タイミング調整部108から入力したOFDM信号をベースバンド信号から高周波信号に周波数変換してアンテナ110へ出力する。 The RF unit 109 converts the frequency of the OFDM signal input from the transmission timing adjustment unit 108 from a baseband signal to a high frequency signal and outputs the converted signal to the antenna 110.
 アンテナ110は、RF部109から入力した高周波信号を後述する通信端末装置200へ送信する。 The antenna 110 transmits the high-frequency signal input from the RF unit 109 to the communication terminal device 200 described later.
 以上で、基地局装置100の構成の説明を終える。 This completes the description of the configuration of the base station apparatus 100.
 次に、本発明の実施の形態1における通信端末装置200の構成について、図2を用いて詳細に説明する。 Next, the configuration of communication terminal apparatus 200 according to Embodiment 1 of the present invention will be described in detail with reference to FIG.
 図2は、本実施の形態に係る通信端末装置200の構成を示すブロック図である。 FIG. 2 is a block diagram showing a configuration of communication terminal apparatus 200 according to the present embodiment.
 通信端末装置200は、アンテナ201と、RF部202と、受信タイミング調整部203と、CP除去部204と、FFT部205と、等化部206と、リソースデマッピング部207と、チャネル選択部208と、合成部209と、CCH復調部210と、SCH復調部211とから主に構成される。 The communication terminal device 200 includes an antenna 201, an RF unit 202, a reception timing adjustment unit 203, a CP removal unit 204, an FFT unit 205, an equalization unit 206, a resource demapping unit 207, and a channel selection unit 208. And synthesizer 209, CCH demodulator 210, and SCH demodulator 211.
 アンテナ201は、基地局装置100から高周波信号を受信してRF部202へ出力する。 The antenna 201 receives a high frequency signal from the base station apparatus 100 and outputs it to the RF unit 202.
 RF部202は、アンテナ201から入力した高周波信号をベースバンド信号に周波数変換して受信タイミング調整部203へ出力する。 The RF unit 202 converts the high-frequency signal input from the antenna 201 into a baseband signal and outputs the baseband signal to the reception timing adjustment unit 203.
 受信タイミング調整部203は、通信中のMeNBまたは小型eNBの何れか一方の基地局装置100から受信したOFDM信号が時間上でシフトされている場合には、入力したタイミング情報を参照してサブフレームのタイミングを監視し、監視結果に基づいて、RF部から入力したベースバンド信号であるOFDM信号を時間軸上においてシフトする。具体的には、受信タイミング調整部203は、基地局装置100の送信タイミング調整部108で時間軸上においてシフトする前のタイミングに戻す。また、受信タイミング調整部203は、時間上においてシフトしたOFDM信号をCP除去部204へ出力する。また、受信タイミング調整部203は、通信中のMeNBまたは小型eNBの何れか一方の基地局装置100から受信したOFDM信号が時間軸上でシフトしていない場合には、RF部202から入力したOFDM信号を時間軸上においてシフトせずにCP除去部204へ出力する。 The reception timing adjustment unit 203 refers to the input timing information when the OFDM signal received from either the base station apparatus 100 in communication or the small eNB is shifted in time. The OFDM signal, which is a baseband signal input from the RF unit, is shifted on the time axis based on the monitoring result. Specifically, reception timing adjustment section 203 returns to the timing before shifting on the time axis by transmission timing adjustment section 108 of base station apparatus 100. Reception timing adjustment section 203 outputs the OFDM signal shifted in time to CP removal section 204. In addition, the reception timing adjustment unit 203 receives the OFDM signal input from the RF unit 202 when the OFDM signal received from the base station apparatus 100 of either the MeNB or the small eNB in communication is not shifted on the time axis. The signal is output to the CP removing unit 204 without shifting on the time axis.
 CP除去部204は、受信タイミング調整部203から入力したOFDM信号より、あらかじめ定めたシンボルタイミングに基づきCPを除去してFFT部205へ出力する。 CP removing section 204 removes the CP from the OFDM signal input from reception timing adjusting section 203 based on a predetermined symbol timing, and outputs the result to FFT section 205.
 FFT部205は、CP除去部204から入力したOFDM信号をOFDM復調である離散フーリエ変換して等化部206へ出力する。 The FFT unit 205 subjects the OFDM signal input from the CP removal unit 204 to discrete Fourier transform, which is OFDM demodulation, and outputs the result to the equalization unit 206.
 等化部206は、FFT部205から入力したOFDM信号より参照信号を抽出する。また、等化部206は、抽出した参照信号とあらかじめ記憶する参照信号のレプリカとを用いて伝搬路のチャネル応答を求め、求めた伝搬路のチャネル応答よりチャネル推定値を求める等により、OFDM信号の等化処理を行う。また、等化部206は、等化処理後のOFDM信号をリソースデマッピング部207へ出力する。ここで、チャネル推定値を求める方法としては、EGC(Equal Gain Combining)またはMMSE(Minimum Mean Square Error)等の様々な方法を用いることができる。 The equalization unit 206 extracts a reference signal from the OFDM signal input from the FFT unit 205. Further, the equalization unit 206 obtains a channel response of the propagation path using the extracted reference signal and a replica of the reference signal stored in advance, and obtains the channel estimation value from the obtained channel response of the propagation path. The equalization process is performed. Further, equalization section 206 outputs the OFDM signal after the equalization processing to resource demapping section 207. Here, as a method for obtaining the channel estimation value, various methods such as EGC (Equal Gain Combining) or MMSE (Minimum Mean Square Error) can be used.
 リソースデマッピング部207は、入力したシンボル番号情報に基づいて、等化部206から入力したOFDM信号より、自局に必要なデータを抽出する。具体的には、リソースデマッピング部207は、シンボル番号情報のシンボル番号がCCHシンボルをマッピングしているt0である場合、自局に割り当てられたCCHシンボルを抽出する。また、リソースデマッピング部207は、シンボル番号情報のシンボル番号がSCHシンボルをマッピングしているt3~t13である場合、あらかじめ抽出したCCHシンボルから自局宛のSCHシンボルが割り当てられているリソースを特定し、当該リソースからのSCHシンボルのみを抽出する。そして、リソースデマッピング部207は、抽出したCCHシンボル及びSCHシンボルをチャネル選択部208へ出力する。 The resource demapping unit 207 extracts data necessary for the own station from the OFDM signal input from the equalization unit 206 based on the input symbol number information. Specifically, the resource demapping section 207 extracts the CCH symbol assigned to the own station when the symbol number of the symbol number information is t0 mapping the CCH symbol. Further, when the symbol number of the symbol number information is t3 to t13 mapping the SCH symbol, the resource demapping unit 207 identifies the resource to which the SCH symbol addressed to the own station is allocated from the CCH symbol extracted in advance. Then, only the SCH symbol from the resource is extracted. Resource demapping section 207 then outputs the extracted CCH symbol and SCH symbol to channel selection section 208.
 チャネル選択部208は、シンボル番号情報に基づいて、リソースデマッピング部207から入力したシンボル番号t0のCCHシンボルを合成部209に出力し、リソースデマッピング部207から入力したシンボル番号t3~t13のSCHシンボルをSCH復調部211へ出力する。 Based on the symbol number information, channel selection section 208 outputs the CCH symbol of symbol number t0 input from resource demapping section 207 to combining section 209, and the SCHs of symbol numbers t3 to t13 input from resource demapping section 207. The symbol is output to SCH demodulating section 211.
 合成部209は、シンボル番号情報に基づいて、チャネル選択部208から入力したCCHシンボルを合成してCCH復調部210へ出力する。ここで、合成方法としては、単純合成法または重み付け合成法等の種々の合成を用いることができる。 The combining unit 209 combines the CCH symbols input from the channel selection unit 208 based on the symbol number information, and outputs the combined CCH symbols to the CCH demodulation unit 210. Here, various synthesis methods such as a simple synthesis method or a weighted synthesis method can be used as the synthesis method.
 CCH復調部210は、合成部209から入力したCCHシンボルを復調してCCHデータとして出力する。 The CCH demodulator 210 demodulates the CCH symbol input from the combiner 209 and outputs it as CCH data.
 SCH復調部211は、チャネル選択部208から入力したSCHシンボルを復調してSCHデータとして出力する。この際、復調したSCHデータを図示しない復号部により誤り訂正復号することにより、基地局装置100において送信電力を低減したことに伴って品質劣化を生じたPDSCHシンボルの劣化を最小限にすることができる。 The SCH demodulator 211 demodulates the SCH symbol input from the channel selector 208 and outputs it as SCH data. At this time, by performing error correction decoding on the demodulated SCH data by a decoding unit (not shown), it is possible to minimize the deterioration of the PDSCH symbol that has caused the quality deterioration due to the reduction of the transmission power in the base station apparatus 100. it can.
 以上で、通信端末装置200の構成の説明を終える。 This completes the description of the configuration of the communication terminal apparatus 200.
 次に、基地局装置100と基地局装置100の周辺基地局とにおける送信電力の制御方法について、図3を用いて説明する。図3は、基地局装置100と基地局装置100の周辺基地局とにおける送信電力の制御方法を示す図である。 Next, a transmission power control method in the base station apparatus 100 and the base stations surrounding the base station apparatus 100 will be described with reference to FIG. FIG. 3 is a diagram illustrating a transmission power control method in the base station apparatus 100 and base stations surrounding the base station apparatus 100.
 図3より、下りフレーム#301がMeNBから送信され、下りフレーム#302が小型eNBから送信される。なお、各フレームにおいて、参照信号(RS)(図3において斜線部分)が間欠的に振り分けられる。 From FIG. 3, downlink frame # 301 is transmitted from the MeNB, and downlink frame # 302 is transmitted from the small eNB. In each frame, the reference signal (RS) (shaded area in FIG. 3) is assigned intermittently.
 図3に示すように、MeNBは、OFDMシンボルを時間上においてシフトせずに送信する。一方、小型eNBは、MeNBの送信タイミングに対して、3OFDMシンボル分時間上でシフトすることにより3OFDMだけ遅延(遅延時間T)して送信する。その結果、MeNBから送信する下りフレーム#301のシンボル番号t3~t4のSCHシンボル#320が、小型eNBから送信する下りフレーム#302のシンボル番号t0~t1のCCHシンボル#321と時間軸上で重なる。 As shown in FIG. 3, the MeNB transmits the OFDM symbol without shifting in time. On the other hand, the small eNB performs transmission by delaying by 3 OFDM (delay time T) by shifting the time by 3 OFDM symbols with respect to the transmission timing of the MeNB. As a result, the SCH symbol # 320 of the symbol numbers t3 to t4 of the downlink frame # 301 transmitted from the MeNB overlaps with the CCH symbol # 321 of the symbol numbers t0 to t1 of the downlink frame # 302 transmitted from the small eNB on the time axis. .
 従って、本実施の形態では、MeNBの送信電力制御部106は、CCHシンボル#321と時間軸上で重なるシンボル番号t3~t4のSCHシンボル#320において、PDSCHシンボル(図3において網掛部分のシンボル)の送信電力を低減する。これにより、本実施の形態では、通信端末装置200における小型eNBのCCHシンボルの品質劣化を抑制することができる。 Therefore, in this embodiment, transmission power control section 106 of MeNB performs PDSCH symbols (symbols in FIG. 3) in SCH symbols # 320 of symbol numbers t3 to t4 that overlap with CCH symbol # 321 on the time axis. Reduce the transmission power. Thereby, in this Embodiment, the quality degradation of the CCH symbol of the small eNB in the communication terminal device 200 can be suppressed.
 次に、基地局装置100の送信電力制御部106における送信電力を制御する方法について説明する。 Next, a method for controlling transmission power in transmission power control section 106 of base station apparatus 100 will be described.
 3GPP TS 36.213 5.2の「Downlink power allocation」節に記載されているダウンリンクの送信電力制御方法を下記のように変更する。 The downlink transmission power control method described in the “Downlink 電力 power allocation” section of 3GPP TS 36.213 5.2 is changed as follows.
 即ち、送信電力を低減するPDSCHシンボル数がK(Kは、任意の正の整数)の場合には、シンボル番号t3~(t3+K)のシンボルに対して(1)式により送信電力を低減する制御を行う。
Figure JPOXMLDOC01-appb-M000001
That is, when the number of PDSCH symbols for reducing the transmission power is K (K is an arbitrary positive integer), the control for reducing the transmission power with respect to the symbols of symbol numbers t3 to (t3 + K) by the expression (1). I do.
Figure JPOXMLDOC01-appb-M000001
 また、基地局装置100がMIMO通信を行う場合において4セル固有アンテナの場合には、(2)式により送信電力を低減する制御を行う。
Figure JPOXMLDOC01-appb-M000002
In addition, when the base station apparatus 100 performs MIMO communication, in the case of a 4-cell specific antenna, control to reduce transmission power is performed according to Equation (2).
Figure JPOXMLDOC01-appb-M000002
 また、基地局装置100がMIMO通信を行う場合において4セル固有アンテナ以外の場合には、(3)式により送信電力を低減する。
Figure JPOXMLDOC01-appb-M000003
Further, when the base station apparatus 100 performs MIMO communication, the transmission power is reduced according to the equation (3) when the base station apparatus 100 is other than the 4-cell specific antenna.
Figure JPOXMLDOC01-appb-M000003
 図4は、基地局装置100と基地局装置100の周辺基地局とにおける送信電力の他の制御方法を示す図である。 FIG. 4 is a diagram illustrating another method of controlling the transmission power between the base station apparatus 100 and the base stations surrounding the base station apparatus 100.
 図4より、MeNBは、シンボル番号t3~t4の送信電力を低減することに代えて、シンボル番号t3~t5の送信電力を低減するようにしてもよい。 4, the MeNB may reduce the transmission power of the symbol numbers t3 to t5 instead of reducing the transmission power of the symbol numbers t3 to t4.
 図4は、実際にCCHシンボルが振り分けられたOFDMシンボル数に関わりなく、CCHシンボルを振り分けることができる最大OFDMシンボル数の3OFDMシンボルの送信電力を低減するものである。これにより、送信電力の制御処理を簡易にすることができる。 FIG. 4 shows a reduction in transmission power of 3 OFDM symbols with the maximum number of OFDM symbols that can be allocated to CCH symbols regardless of the number of OFDM symbols to which CCH symbols are actually allocated. As a result, the transmission power control process can be simplified.
 このように、本実施の形態によれば、周辺基地局装置のCCHシンボルの送信タイミングと重なる送信タイミングのPDSCHシンボルの送信電力を低減するので、周辺基地局装置のCCHシンボルの品質劣化を防ぐことができる。また、本実施の形態によれば、CCHシンボルをパンクチャしないので所定のリソースを確保することができる。また、本実施の形態によれば、特定のOFDMシンボルに送信電力の高いPDSCHシンボルが集中しないので、周辺基地局装置に与える干渉を抑制することができる。 As described above, according to the present embodiment, the transmission power of the PDSCH symbol at the transmission timing that overlaps the transmission timing of the CCH symbol of the neighboring base station apparatus is reduced, thereby preventing the quality deterioration of the CCH symbol of the neighboring base station apparatus. Can do. Further, according to the present embodiment, since CCH symbols are not punctured, predetermined resources can be secured. Further, according to the present embodiment, since PDSCH symbols with high transmission power are not concentrated on specific OFDM symbols, it is possible to suppress interference given to neighboring base station apparatuses.
 なお、本実施の形態において、MeNBの送信電力制御部106においてのみCCHシンボルと重なるPDSCHシンボルの送信電力を低減したが、本発明はこれに限らず、小型eNBの送信電力制御部106においてのみCCHシンボルと重なるPDSCHシンボルの送信電力を低減してもよい。 In the present embodiment, the transmission power of the PDSCH symbol that overlaps the CCH symbol is reduced only in the transmission power control unit 106 of the MeNB. However, the present invention is not limited to this, and the CCH only in the transmission power control unit 106 of the small eNB. You may reduce the transmission power of the PDSCH symbol which overlaps with a symbol.
 (実施の形態2)
 図5は、本発明の実施の形態2に係る基地局装置500の構成を示すブロック図である。
(Embodiment 2)
FIG. 5 is a block diagram showing a configuration of base station apparatus 500 according to Embodiment 2 of the present invention.
 図5に示す基地局装置500は、送信電力制御部106に代えて送信電力制御部501を有する。なお、図5において、図1と同一構成である部分には同一の符号を付してその説明を省略する。また、本実施の形態において、通信端末装置は図2と同一構成であるので、その説明を省略する。 5 has a transmission power control unit 501 instead of the transmission power control unit 106. The base station apparatus 500 shown in FIG. In FIG. 5, parts having the same configuration as in FIG. In the present embodiment, the communication terminal apparatus has the same configuration as that shown in FIG.
 基地局装置500は、CCH変調部101と、SCH変調部102と、チャネル選択部103と、リソースマッピング部104と、IFFT部105と、付加部107と、送信タイミング調整部108と、RF部109と、アンテナ110と、送信電力制御部501とから主に構成される。 Base station apparatus 500 includes CCH modulation section 101, SCH modulation section 102, channel selection section 103, resource mapping section 104, IFFT section 105, addition section 107, transmission timing adjustment section 108, and RF section 109. And an antenna 110 and a transmission power control unit 501.
 IFFT部105は、リソースマッピング部104から入力したCCHシンボルまたはSCHシンボルに対してOFDM変調処理である逆離散フーリエ変換処理を行ってOFDM信号を形成する。また、IFFT部105は、形成したOFDM信号を送信電力制御部501へ出力する。 The IFFT unit 105 performs an inverse discrete Fourier transform process, which is an OFDM modulation process, on the CCH symbol or SCH symbol input from the resource mapping unit 104 to form an OFDM signal. Further, IFFT section 105 outputs the formed OFDM signal to transmission power control section 501.
 送信電力制御部501は、入力したシンボル番号情報に従って、IFFT部105から入力したOFDM信号のSCHシンボルのうちのPDSCHシンボルの送信電力制御を行う。この際、送信電力制御部501は、入力したタイミング情報に基づいて、周辺基地局のCCHシンボルの送信タイミングと重なるPDSCHシンボルの送信電力を、所定量だけ低減する制御を行う。また、送信電力制御部501は、入力した周辺基地局情報に含まれる周辺基地局装置におけるCCHシンボルが振り分けられるOFDMシンボル数の情報(CFI)に基づいて、送信電力を低減するOFDMシンボルのシンボル数を適応的に変化させる。そして、送信電力制御部501は、送信電力制御を行ったOFDMシンボルを付加部107へ出力する。なお、送信電力制御部501における詳細な動作については後述する。 The transmission power control unit 501 performs transmission power control of PDSCH symbols among the SCH symbols of the OFDM signal input from the IFFT unit 105 according to the input symbol number information. At this time, based on the input timing information, transmission power control section 501 performs control to reduce the transmission power of PDSCH symbols that overlap the transmission timing of CCH symbols of neighboring base stations by a predetermined amount. Also, the transmission power control section 501 uses the number of OFDM symbols to reduce transmission power based on information (CFI) on the number of OFDM symbols to which CCH symbols are distributed in the peripheral base station apparatus included in the input peripheral base station information. Is adaptively changed. Then, transmission power control section 501 outputs the OFDM symbol subjected to transmission power control to adding section 107. The detailed operation in the transmission power control unit 501 will be described later.
 付加部107は、送信電力制御部501から入力したOFDM信号の後半部をCPとして複製し、複製したCPをOFDM信号の先頭に配置する。また、付加部107は、CP付きOFDM信号に対して、隣接シンボル間の連続性を保持するために窓関数を乗じる。また、付加部107は、窓関数を乗じたOFDM信号を送信タイミング調整部108へ出力する。 The addition unit 107 duplicates the latter half of the OFDM signal input from the transmission power control unit 501 as a CP, and places the duplicated CP at the beginning of the OFDM signal. Further, the adding unit 107 multiplies the CP-added OFDM signal by a window function in order to maintain continuity between adjacent symbols. Further, adding section 107 outputs the OFDM signal multiplied by the window function to transmission timing adjusting section 108.
 次に、基地局装置500と基地局装置500の周辺基地局とにおける送信電力の制御方法について、図6を用いて説明する。図6は、基地局装置500と基地局装置500の周辺基地局とにおける送信電力の制御方法を示す図である。 Next, a transmission power control method in the base station apparatus 500 and the base stations surrounding the base station apparatus 500 will be described with reference to FIG. FIG. 6 is a diagram illustrating a transmission power control method in the base station device 500 and base stations surrounding the base station device 500.
 図6より、下りフレーム#601がMeNBから送信され、下りフレーム#602が小型eNBから送信される。 6, downlink frame # 601 is transmitted from the MeNB, and downlink frame # 602 is transmitted from the small eNB.
 図6に示すように、MeNBは、OFDMシンボルを時間軸上においてシフトせずに送信する。一方、小型eNBは、MeNBの送信タイミングに対して、3OFDMシンボル分時間上でシフトすることにより3OFDMだけ遅延して送信する。その結果、MeNBから送信するサブフレーム#610のシンボル番号t3~t4のSCHシンボル#630が、小型eNBから送信するサブフレーム#620のシンボル番号t0~t1のCCHシンボル#631と時間軸上で重なる。 As shown in FIG. 6, the MeNB transmits the OFDM symbol without shifting on the time axis. On the other hand, the small eNB shifts by 3 OFDM symbols with respect to the transmission timing of the MeNB, thereby transmitting with a delay of 3 OFDM. As a result, SCH symbol # 630 of symbol numbers t3 to t4 of subframe # 610 transmitted from MeNB overlaps with CCH symbol # 631 of symbol numbers t0 to t1 of subframe # 620 transmitted from the small eNB on the time axis. .
 従って、本実施の形態では、MeNBの送信電力制御部501は、CCHシンボル#631と時間軸上で重なるシンボル番号t3~t4のSCHシンボル#630において、PDSCHシンボル(図6において網掛部分のシンボル)の送信電力を低減する。 Therefore, in the present embodiment, MeNB transmission power control section 501 uses PDSCH symbols (symbols in FIG. 6) in SCH symbols # 630 of symbol numbers t3 to t4 that overlap with CCH symbol # 631 on the time axis. Reduce the transmission power.
 また、MeNBから送信するサブフレーム#611のシンボル番号t3のSCHシンボル#632が、小型eNBから送信するサブフレーム#621のシンボル番号t0のCCHシンボル#633と時間軸上で重なる。 Also, SCH symbol # 632 of symbol number t3 of subframe # 611 transmitted from the MeNB overlaps with CCH symbol # 633 of symbol number t0 of subframe # 621 transmitted from the small eNB on the time axis.
 この際、本実施の形態では、MeNBの送信電力制御部501は、周辺基地局情報により小型eNBにおいてCCHシンボルがマッピングされるシンボル番号を知ることができる。従って、MeNBの送信電力制御部501は、小型eNBのCCHシンボル#633と時間軸上で重なるシンボル番号t3のSCHシンボル#632において、PDSCHシンボル(図6において網掛部分のシンボル)の送信電力を低減する。 At this time, in the present embodiment, the transmission power control unit 501 of the MeNB can know the symbol number to which the CCH symbol is mapped in the small eNB from the neighboring base station information. Therefore, the transmission power control unit 501 of the MeNB reduces the transmission power of the PDSCH symbol (the symbol of the shaded portion in FIG. 6) in the SCH symbol # 632 of the symbol number t3 that overlaps the CCH symbol # 633 of the small eNB on the time axis. To do.
 なお、基地局装置500の送信電力制御部501における送信電力を制御する方法は、上記の実施の形態1の送信電力制御部106における送信電力を制御する方法と同一であるので、その説明を省略する。 The method for controlling the transmission power in transmission power control section 501 of base station apparatus 500 is the same as the method for controlling the transmission power in transmission power control section 106 in the first embodiment, and the description thereof is omitted. To do.
 このように、本実施の形態では、上記の実施の形態1の効果に加えて、周辺基地局装置のCCHシンボルを振り分けるOFDMシンボル数に応じて、送信電力を低減するOFDMシンボル数を適応的に変える。これにより、本実施の形態によれば、送信電力を低減するOFDMシンボル数を固定にする場合に比べて、送信電力を低減する基地局装置が送信するPDSCHシンボルの特性劣化を抑制することができる。 Thus, in the present embodiment, in addition to the effects of the above-described first embodiment, the number of OFDM symbols for reducing transmission power is adaptively set according to the number of OFDM symbols to which the CCH symbols of the neighboring base station apparatuses are allocated. Change. Thereby, according to this Embodiment, compared with the case where the number of OFDM symbols which reduces transmission power is fixed, the characteristic deterioration of the PDSCH symbol which the base station apparatus which reduces transmission power can transmit can be suppressed. .
 なお、本実施の形態において、MeNBの送信電力制御部106においてのみCCHシンボルと重なるPDSCHシンボルの送信電力を低減したが、本発明はこれに限らず、小型eNBの送信電力制御部106においてのみCCHシンボルと重なるPDSCHシンボルの送信電力を低減してもよい。 In the present embodiment, the transmission power of the PDSCH symbol that overlaps the CCH symbol is reduced only in the transmission power control unit 106 of the MeNB. However, the present invention is not limited to this, and the CCH only in the transmission power control unit 106 of the small eNB. You may reduce the transmission power of the PDSCH symbol which overlaps with a symbol.
 (実施の形態3)
 図7は、本発明の実施の形態3に係る基地局装置と当該基地局装置の周辺基地局とにおける送信電力の制御方法を示す図である。
(Embodiment 3)
FIG. 7 is a diagram illustrating a transmission power control method in the base station apparatus according to Embodiment 3 of the present invention and neighboring base stations of the base station apparatus.
 なお、本実施の形態において、基地局装置は図1と同一構成であるとともに、通信端末装置は図2と同一構成であるので、その説明を省略する。また、以下の説明においては、図1の符号を用いて説明する。 In the present embodiment, the base station apparatus has the same configuration as in FIG. 1, and the communication terminal apparatus has the same configuration as in FIG. Moreover, in the following description, it demonstrates using the code | symbol of FIG.
 本実施の形態における基地局装置100は、自局がMeNBまたは小型eNBであるか否かに関わりなく、送信電力制御部106において常に送信電力を低減する制御を行う点のみが上記の実施の形態1と異なる。 The base station apparatus 100 according to the present embodiment is only the point that the transmission power control unit 106 always performs control to reduce the transmission power regardless of whether the own station is a MeNB or a small eNB. Different from 1.
 図7より、下りフレーム#701がMeNBから送信され、下りフレーム#702が小型eNBから送信される。 7, downlink frame # 701 is transmitted from the MeNB, and downlink frame # 702 is transmitted from the small eNB.
 図7に示すように、MeNBは、OFDMシンボルを時間軸上においてシフトせずに送信する。一方、小型eNBは、MeNBの送信タイミングに対して、3OFDMシンボル分時間軸上においてシフトすることにより3OFDMだけ遅延して送信する。その結果、MeNBから送信するサブフレーム#710のシンボル番号t3~t4のSCHシンボル#730が、小型eNBから送信するサブフレーム#720のシンボル番号t0~t1のCCHシンボル#731と時間軸上で重なる。 As shown in FIG. 7, the MeNB transmits the OFDM symbol without shifting on the time axis. On the other hand, the small eNB transmits the signal with a delay of 3OFDM by shifting the transmission timing of the MeNB on the time axis by 3OFDM symbols. As a result, SCH symbol # 730 of symbol numbers t3 to t4 of subframe # 710 transmitted from the MeNB overlaps with CCH symbol # 731 of symbol numbers t0 to t1 of subframe # 720 transmitted from the small eNB on the time axis. .
 従って、本実施の形態では、MeNBの送信電力制御部106は、CCHシンボル#731と時間軸上で重なるシンボル番号t3~t4のSCHシンボル#730において、PDSCHシンボル(図7において網掛部分のシンボル)の送信電力を低減する。 Therefore, in the present embodiment, MeNB transmission power control section 106 uses PDSCH symbols (symbols in FIG. 7) in SCH symbols # 730 of symbol numbers t3 to t4 that overlap with CCH symbol # 731 on the time axis. Reduce the transmission power.
 また、MeNBから送信するサブフレーム#711のシンボル番号t3のSCHシンボル#732が、小型eNBから送信するサブフレーム#721のシンボル番号t0のCCHシンボル#733と時間軸上で重なる。 Also, SCH symbol # 732 with symbol number t3 in subframe # 711 transmitted from the MeNB overlaps with CCH symbol # 733 with symbol number t0 in subframe # 721 transmitted from the small eNB on the time axis.
 従って、MeNBの送信電力制御部106は、小型eNBのCCHシンボル#733と時間軸上で重なるシンボル番号t3のSCHシンボル#732において、PDSCHシンボル(図7において網掛部分のシンボル)の送信電力を低減する。また、本実施の形態では、SCHシンボル#732に加えて、サブフレーム#711のシンボル番号t4のSCHシンボルにおいて、PDSCHシンボルの送信電力も低減する。なお、図7の場合、サブフレーム#711のシンボル番号t4のSCHシンボルにおいて、PDSCHシンボルの送信電力は低減しなくてもよい。 Therefore, the transmission power control unit 106 of the MeNB reduces the transmission power of the PDSCH symbol (the symbol of the shaded portion in FIG. 7) in the SCH symbol # 732 of the symbol number t3 that overlaps the CCH symbol # 733 of the small eNB on the time axis. To do. Further, in this embodiment, in addition to SCH symbol # 732, the transmission power of the PDSCH symbol is also reduced in the SCH symbol of symbol number t4 in subframe # 711. In the case of FIG. 7, the transmission power of the PDSCH symbol does not have to be reduced in the SCH symbol of symbol number t4 in subframe # 711.
 さらに、小型eNBから送信するサブフレーム#720のシンボル番号t11~t13のSCHシンボル#734が、MeNBから送信するサブフレーム#711のシンボル番号t0~t2のCCHシンボル#735と時間軸上で重なる。 Further, SCH symbol # 734 of symbol numbers t11 to t13 of subframe # 720 transmitted from the small eNB overlaps with CCH symbol # 735 of symbol numbers t0 to t2 of subframe # 711 transmitted from the MeNB on the time axis.
 従って、小型eNBの送信電力制御部106は、MeNBのCCHシンボル#735と時間軸上で重なるシンボル番号t11~t13のSCHシンボル#734において、PDSCHシンボル(図7において網掛部分のシンボル)の送信電力を低減する。 Therefore, the transmission power control unit 106 of the small eNB transmits the transmission power of the PDSCH symbol (the symbol of the shaded portion in FIG. 7) in the SCH symbol # 734 of the symbol numbers t11 to t13 that overlaps the CCH symbol # 735 of the MeNB on the time axis. Reduce.
 なお、基地局装置500の送信電力制御部501における送信電力を制御する方法は、上記の実施の形態1の送信電力制御部106における送信電力を制御する方法と同一であるので、その説明を省略する。 The method for controlling the transmission power in transmission power control section 501 of base station apparatus 500 is the same as the method for controlling the transmission power in transmission power control section 106 in the first embodiment, and the description thereof is omitted. To do.
 このように、本実施の形態では、上記の実施の形態1の効果に加えて、MeNBと小型eNBの双方において、周辺基地局装置のCCHシンボルの送信タイミングと送信タイミングが重なるPDSCHシンボルの送信電力を低減する。これにより、本実施の形態によれば、全ての基地局装置のCCHシンボルの品質劣化を抑制することができる。 As described above, in the present embodiment, in addition to the effects of the first embodiment, the transmission power of the PDSCH symbol in which the transmission timing and the transmission timing of the CCH symbol of the neighboring base station apparatus overlap in both the MeNB and the small eNB. Reduce. Thereby, according to this Embodiment, the quality degradation of the CCH symbol of all the base station apparatuses can be suppressed.
 上記の実施の形態1~実施の形態3において、送信電力を低減したが、本発明はこれに限らず、送信電力が小さい通信端末装置宛のPDSCHシンボルから順次選択し、選択したPDSCHシンボルをCCHシンボルと重なるOFDMシンボルに順次振り分けるようにしてもよい。また、上記の実施の形態1~実施の形態3において、送信タイミングを3OFDM分時間軸上でシフトしたが、本発明はこれに限らず、MeNBの制御チャネルシンボルと小型eNBの制御チャネルとが時間軸上で重ならないようにマッピングされていれば、時間軸上においてシフトしなくてもよい。 In Embodiments 1 to 3 above, the transmission power is reduced. However, the present invention is not limited to this, and the PDSCH symbols addressed to communication terminal apparatuses having a low transmission power are sequentially selected, and the selected PDSCH symbols are converted to CCH. You may make it distribute to the OFDM symbol which overlaps with a symbol one by one. Further, in the above-described Embodiments 1 to 3, the transmission timing is shifted on the time axis by 3 OFDM. However, the present invention is not limited to this, and the control channel symbol of the MeNB and the control channel of the small eNB are timed. If mapping is performed so as not to overlap on the axis, there is no need to shift on the time axis.
 また、上記の実施の形態1~実施の形態3において、時間軸上のOFDMシンボルのシフト量は、3OFDMシンボルとしたが、本発明はこれに限らず、N(Nは、任意の正の整数)OFDMシンボルでもよい。 In Embodiments 1 to 3, the OFDM symbol shift amount on the time axis is 3 OFDM symbols. However, the present invention is not limited to this, and N (N is an arbitrary positive integer). It may be an OFDM symbol.
 2010年7月30日出願の特願2010-172375の日本出願に含まれる明細書、図面及び要約書の開示内容は、すべて本願に援用される。 The disclosure of the specification, drawings and abstract contained in the Japanese application of Japanese Patent Application No. 2010-172375 filed on July 30, 2010 is incorporated herein by reference.
 本発明にかかる基地局装置及び送信電力制御方法は、例えばマクロセルを形成する基地局装置の下り制御チャネルのデータが、小型基地局から送信する下りデータチャネルのデータと干渉する場合において、下り制御チャネルに対する干渉を緩和するのに好適である。 The base station apparatus and transmission power control method according to the present invention provide a downlink control channel when, for example, downlink control channel data of a base station apparatus forming a macro cell interferes with downlink data channel data transmitted from a small base station. It is suitable for mitigating interference with respect to.
 100 基地局装置
 101 CCH変調部
 102 SCH変調部
 103 チャネル選択部
 104 リソースマッピング部
 105 IFFT部
 106 送信電力制御部
 107 付加部
 108 送信タイミング調整部
 109 RF部
 110 アンテナ
DESCRIPTION OF SYMBOLS 100 Base station apparatus 101 CCH modulation part 102 SCH modulation part 103 Channel selection part 104 Resource mapping part 105 IFFT part 106 Transmission power control part 107 Addition part 108 Transmission timing adjustment part 109 RF part 110 Antenna

Claims (8)

  1.  周辺基地局装置が形成するセルと異なる大きさのセルを形成するとともに、前記周辺基地局装置と同一の通信方式であるOFDM方式により通信する基地局装置であって、
     複数チャネルのデータを直交周波数分割多重処理することにより、所定の送信期間毎に、前記送信期間の先頭から所定数のシンボルに振り分けた制御データと、前記所定数のシンボルの後方のシンボルに振り分けた送信データとを含むOFDM信号を生成する直交周波数分割多重手段と、
     前記OFDM信号において、前記周辺基地局装置の制御データの送信タイミングと重なる送信タイミングの前記送信データの送信電力を、前記重なる送信タイミング以外の送信タイミングの前記送信データの送信電力よりも低減する制御を行う送信電力制御手段と、
     前記送信電力制御手段により制御された送信電力で前記OFDM信号を送信する送信手段と、
     を具備する基地局装置。
    A base station apparatus that forms a cell having a different size from a cell formed by a peripheral base station apparatus and communicates using an OFDM scheme that is the same communication scheme as the peripheral base station apparatus,
    By performing orthogonal frequency division multiplexing on the data of a plurality of channels, the control data allocated to a predetermined number of symbols from the beginning of the transmission period and the symbols behind the predetermined number of symbols are allocated for each predetermined transmission period. Orthogonal frequency division multiplexing means for generating an OFDM signal including transmission data;
    In the OFDM signal, control is performed to reduce the transmission power of the transmission data at a transmission timing overlapping with the transmission timing of the control data of the neighboring base station apparatus, compared to the transmission power of the transmission data at a transmission timing other than the overlapping transmission timing. Transmission power control means to perform,
    Transmitting means for transmitting the OFDM signal with transmission power controlled by the transmission power control means;
    A base station apparatus comprising:
  2.  前記OFDM信号における制御データと、前記周辺基地局装置の制御データとの送信タイミングが重ならないように、前記直交周波数分割多重手段により生成した前記OFDM信号の送信タイミングを調整する調整手段をさらに具備し、
     前記送信電力制御手段は、前記周辺基地局装置の制御データの送信タイミングと、前記調整手段により送信タイミングを調整した前記OFDM信号における前記送信データの送信タイミングとが重なる場合に、前記制御を行う請求項1記載の基地局装置。
    The apparatus further comprises adjusting means for adjusting the transmission timing of the OFDM signal generated by the orthogonal frequency division multiplexing means so that the transmission timing of the control data in the OFDM signal and the control data of the neighboring base station apparatus do not overlap. ,
    The transmission power control means performs the control when the transmission timing of control data of the neighboring base station apparatus overlaps the transmission timing of the transmission data in the OFDM signal whose transmission timing is adjusted by the adjustment means. Item 4. The base station apparatus according to Item 1.
  3.  前記送信電力制御手段は、シンボル単位で前記制御を行うとともに、送信電力を低減するシンボル数を固定にする請求項1記載の基地局装置。 The base station apparatus according to claim 1, wherein the transmission power control means performs the control in symbol units and fixes the number of symbols for reducing transmission power.
  4.  前記送信電力制御手段は、シンボル単位で前記制御を行うとともに、送信電力を低減するシンボル数を、前記周辺基地局装置が制御データを振り分け可能な最大シンボル数と同一にする請求項1記載の基地局装置。 2. The base according to claim 1, wherein the transmission power control means performs the control on a symbol-by-symbol basis, and makes the number of symbols for reducing transmission power the same as the maximum number of symbols to which the peripheral base station apparatus can distribute control data. Station equipment.
  5.  前記送信電力制御手段は、シンボル単位で前記制御を行うとともに、送信電力を低減するシンボル数を、前記周辺基地局装置が制御データを振り分けるシンボル数に合わせて適応的に変化させる請求項1記載の基地局装置。 The transmission power control means performs the control on a symbol-by-symbol basis, and adaptively changes the number of symbols for reducing transmission power according to the number of symbols to which the peripheral base station device distributes control data. Base station device.
  6.  前記周辺基地局装置が形成するマクロセルと異なる大きさのセルを形成する請求項1記載の基地局装置。 The base station apparatus according to claim 1, wherein a cell having a size different from a macro cell formed by the neighboring base station apparatus is formed.
  7.  前記周辺基地局装置が形成するセルと異なる大きさのマクロセルを形成する請求項1記載の基地局装置。 The base station apparatus according to claim 1, wherein a macro cell having a size different from a cell formed by the neighboring base station apparatus is formed.
  8.  周辺基地局装置が形成するセルと異なる大きさのセルを形成するとともに、前記周辺基地局装置と同一の通信方式であるOFDM方式により通信する基地局装置における送信電力制御方法であって、
     複数チャネルのデータを直交周波数分割多重処理することにより、所定の送信期間毎に、前記送信期間の先頭から所定数のシンボルに振り分けた制御データと、前記所定数のシンボルの後方のシンボルに振り分けた送信データとを含むOFDM信号を生成するステップと、
     前記OFDM信号において、前記周辺基地局装置の制御データの送信タイミングと重なる送信タイミングの前記送信データの送信電力を、前記重なる送信タイミング以外の送信タイミングの前記送信データの送信電力よりも低減する制御を行うステップと、
     を具備する送信電力制御方法。
    A transmission power control method in a base station apparatus that forms a cell having a different size from a cell formed by a peripheral base station apparatus and communicates using an OFDM method that is the same communication method as the peripheral base station apparatus,
    By performing orthogonal frequency division multiplexing on the data of a plurality of channels, the control data allocated to a predetermined number of symbols from the beginning of the transmission period and the symbols behind the predetermined number of symbols are allocated for each predetermined transmission period. Generating an OFDM signal including transmission data;
    In the OFDM signal, control is performed to reduce the transmission power of the transmission data at a transmission timing overlapping with the transmission timing of the control data of the neighboring base station apparatus, compared to the transmission power of the transmission data at a transmission timing other than the overlapping transmission timing. Steps to do,
    A transmission power control method comprising:
PCT/JP2011/004286 2010-07-30 2011-07-28 Base station device and transmitting power control method WO2012014486A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-172375 2010-07-30
JP2010172375A JP2012034211A (en) 2010-07-30 2010-07-30 Base station device and transmission power control method

Publications (1)

Publication Number Publication Date
WO2012014486A1 true WO2012014486A1 (en) 2012-02-02

Family

ID=45529713

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/004286 WO2012014486A1 (en) 2010-07-30 2011-07-28 Base station device and transmitting power control method

Country Status (2)

Country Link
JP (1) JP2012034211A (en)
WO (1) WO2012014486A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014027608A (en) * 2012-07-30 2014-02-06 Ntt Docomo Inc Base station device, user terminal, communication system and communication control method
WO2014057924A1 (en) * 2012-10-11 2014-04-17 日本放送協会 Transmission apparatus, reception apparatus, transmission method, reception method and chips

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010073987A1 (en) * 2008-12-22 2010-07-01 株式会社日立製作所 Method of positioning of signal, and communication device

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010073987A1 (en) * 2008-12-22 2010-07-01 株式会社日立製作所 Method of positioning of signal, and communication device

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
MOTOROLA: "Downlink Control Protection in LTE TDD for non-CA Heterogeneous Networks", 3GPP TSG RAN1#61BIS, R1-103924, 2 July 2010 (2010-07-02), pages 1 - 6 *

Also Published As

Publication number Publication date
JP2012034211A (en) 2012-02-16

Similar Documents

Publication Publication Date Title
US10827488B2 (en) Dynamic uplink/downlink frame structure for enhanced component carriers
JP5411782B2 (en) Base station apparatus, mobile terminal apparatus and communication control method
AU2012274232B2 (en) Method and apparatus for transmitting and receiving time division duplex frame configuration information in wireless communication system
JP6077529B2 (en) Control channel transmission method and apparatus for dedicated reference signal in wireless communication system
EP2744255B1 (en) Methods and systems to mitigate inter-cell interference
JP6104938B2 (en) Method and apparatus for assignment dependent downlink channel processing for wireless networks
JP5114523B2 (en) Base station apparatus, mobile terminal apparatus and communication control method
US10122506B2 (en) Single TTI transmission of control data in wireless communications
US9077472B2 (en) Wireless communication apparatus and wireless communication method
CN110050452B (en) Base station device, terminal device, communication method, and integrated circuit
US20110164549A1 (en) Mobile communication system
US9801191B2 (en) Resource allocation method for supporting interference removal, and serving cell base station
KR20080098282A (en) Method and apparatus for receiving/transmitting data in orthogonal frequency division multiplexing system
KR20120138423A (en) Method and apparatus for allocating resource of common control channel with dedicated reference signal
CN115037427B (en) Parameter set dependent downlink control channel mapping
JP2012235340A (en) Radio base station device, user terminal, radio communication system and radio communication method
TWI683562B (en) Techniques for allocating resources in low latency wireless communications
WO2012014486A1 (en) Base station device and transmitting power control method
JP5319303B2 (en) Base station apparatus, mobile station, synchronization signal transmission method, and synchronization signal reception method
WO2017199307A1 (en) Wireless transmitting station, wireless receiving station, and wireless communication system
JP2012039365A (en) Base station device, communication terminal and transmission method
JP2012044531A (en) Base station device, communication terminal device and transmission method
KR20130055469A (en) Method and apparatus for transmisson of uplink time advanced response in wireless communications system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11812084

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11812084

Country of ref document: EP

Kind code of ref document: A1