WO2017199307A1 - Wireless transmitting station, wireless receiving station, and wireless communication system - Google Patents

Wireless transmitting station, wireless receiving station, and wireless communication system Download PDF

Info

Publication number
WO2017199307A1
WO2017199307A1 PCT/JP2016/064518 JP2016064518W WO2017199307A1 WO 2017199307 A1 WO2017199307 A1 WO 2017199307A1 JP 2016064518 W JP2016064518 W JP 2016064518W WO 2017199307 A1 WO2017199307 A1 WO 2017199307A1
Authority
WO
WIPO (PCT)
Prior art keywords
divided
transmission
unit
signal
symbol
Prior art date
Application number
PCT/JP2016/064518
Other languages
French (fr)
Japanese (ja)
Inventor
長谷川 剛
Original Assignee
富士通株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士通株式会社 filed Critical 富士通株式会社
Priority to PCT/JP2016/064518 priority Critical patent/WO2017199307A1/en
Publication of WO2017199307A1 publication Critical patent/WO2017199307A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J11/00Orthogonal multiplex systems, e.g. using WALSH codes

Definitions

  • the technology described in this specification relates to a radio transmission station, a radio reception station, and a radio communication system.
  • a new radio access technology (new radio access technology, new RAT) is being discussed for the realization of the fifth generation (5G) radio communication technology.
  • new RAT for example, with respect to the existing RAT in LTE (long term evolution), LTE-Advanced, etc., further higher communication speed, larger capacity, lower delay, etc. are required.
  • one of the objects of the technology described in this specification is to improve the degree of freedom of frame configuration, to reduce communication delay and to improve the utilization efficiency of radio resources.
  • the wireless transmission station may include a division unit and a transmission unit.
  • the dividing unit may divide a temporally continuous signal waveform, which is a transmission unit of wireless communication, in the time domain.
  • the transmission unit may transmit the divided signal waveform separately in a plurality of time intervals that are discontinuous in time.
  • the radio reception station may include a receiving unit, an extracting unit, and a combining unit.
  • the receiving unit may receive a signal from the wireless transmission station.
  • the wireless transmission station may divide a temporally continuous signal waveform, which is a transmission unit of wireless communication, in a time domain, and transmit the divided signal waveform separately into a plurality of temporally discontinuous time intervals.
  • the extraction unit may extract each of the divided signal waveforms from the signal received by the reception unit.
  • the synthesizer may synthesize the extracted signal waveform by adjusting the timing so as to be continuous in the time domain.
  • the wireless communication system may include a wireless transmission station and a wireless reception station.
  • the wireless transmission station may divide a temporally continuous signal waveform, which is a transmission unit of wireless communication, in a time domain, and transmit the divided signal waveform separately into a plurality of temporally discontinuous time intervals.
  • the radio reception station may extract the divided signal waveforms from the signal received from the radio transmission station, and synthesize the extracted signal waveforms by adjusting the timing so as to be continuous in the time domain.
  • FIG. 1 is a block diagram illustrating a configuration example of a wireless communication system according to an embodiment.
  • the wireless communication system 1 illustrated in FIG. 1 may include a base station 2 and a wireless terminal 3 exemplarily.
  • the base station 2 may be illustratively connected to the core network 4.
  • attention is focused on one base station 2 and one wireless terminal 3, but there are two or more base stations 2 and wireless terminals 3 in the wireless communication system 1. You can do it.
  • the wireless terminal 3 can wirelessly communicate with the base station 2 in a wireless area formed or provided by the base station 2.
  • the “wireless terminal” may be referred to as “wireless device”, “wireless device”, “terminal device”, or the like.
  • the wireless terminal 3 may be a fixed terminal whose position does not change, or may be a mobile terminal (which may be referred to as a “mobile device”) whose position changes.
  • the wireless terminal 3 may be a mobile UE such as a mobile phone, a smartphone, or a tablet terminal.
  • UE is an abbreviation for “User Equipment”.
  • the base station 2 forms or provides a wireless area 200 that enables wireless communication with the wireless terminal 3.
  • the “wireless area” may be referred to as “cell”, “coverage area”, “communication area”, “service area”, and the like.
  • the base station 2 may be, for example, an “eNB” compliant with 3rd generation “partnership” project (3GPP) long term evolution (LTE) or LTE-Advanced (hereinafter collectively referred to as “LTE”).
  • 3GPP 3rd generation “partnership” project
  • LTE long term evolution
  • LTE-Advanced hereinafter collectively referred to as “LTE”.
  • ENB is an abbreviation for “evolved Node B”.
  • a communication point which is called a remote radio unit (RRE), remote radio head (RRH), etc., which is separated from the base station main body and located at a remote location, may correspond to the base station 2.
  • RRE remote radio unit
  • RRH remote radio head
  • the “cell” formed or provided by the base station 2 may be divided into “sector cells”.
  • the “cell” may include a macro cell and a small cell.
  • a small cell is an example of a cell having a radio wave coverage (coverage) smaller than that of a macro cell.
  • the name of the small cell may be different depending on the coverage area.
  • the small cell may be referred to as “femtocell”, “picocell”, “microcell”, “nanocell”, “metrocell”, “homecell”, and the like.
  • the core network 4 may include an MME 41, a PGW 42, and a PGW 43 as illustrated in FIG.
  • MME is an abbreviation of “Mobility Management Entity”.
  • PGW is an abbreviation for “Packet Data Gateway” and “SGW” is an abbreviation for “Serving Gateway”.
  • the core network 4 may be regarded as corresponding to an “upper network” for the base station 2.
  • the MME 41, the PGW 42, and the SGW 43 may be regarded as corresponding to an element (NE) or an entity of the “core network”, and may be collectively referred to as a “core node”.
  • the “core node” may be considered to correspond to the “upper node” of the base station 2.
  • the base station 2 may be connected to the core network 4 via an “S1 interface” which is an example of a wired interface. However, the base station 2 may be communicably connected to the core network 4 through a wireless interface.
  • a network including the base station 2 and the core network 4 may be referred to as a radio access network (RAN).
  • RAN radio access network
  • An example of RAN is “Evolved Universal Terrestrial Radio Access Network, E-UTRAN”.
  • the base station 2 may be communicatively connected to the MME 41 and the SGW 43, for example.
  • the base station 2 and the MME 41 and the SGW 43 may be communicably connected via an interface called an S1 interface.
  • the SGW 43 may be communicably connected to the PGW 42 through an interface called an S5 interface.
  • the PGW 42 may be communicably connected to a packet data network (PDN) such as the Internet or an intranet.
  • PDN packet data network
  • User packets can be transmitted and received between the UE 3 and the PDN via the PGW 42 and the SGW 43.
  • the user packet is an example of user data, and may be referred to as a user plane signal.
  • the SGW 43 may process the user plane signal.
  • the control plane signal may be processed by the MME 41.
  • the SGW 43 may be communicably connected to the MME 41 via an interface called an S11 interface.
  • the MME 41 illustratively manages the location information of the UE 11.
  • the SGW 43 may perform movement control such as path switching of a user plane signal accompanying movement of the UE 3 based on the position information managed by the MME 41, for example.
  • the mobility control may include control associated with the handover of UE3.
  • the base stations 2 when there are a plurality of base stations 2 in the RAN, the base stations 2 are connected so as to be communicable by an interface between base stations called an X2 interface, for example. It's okay.
  • the interface between base stations may be a wired interface or a wireless interface.
  • the radio area 200 formed by the eNB 2 which is an example of the base station 2 may be referred to as a “macro cell”.
  • the eNB 2 forming the macro cell 200 may be referred to as “macro base station”, “macro eNB”, or “MeNB” for convenience.
  • a “small cell” having a smaller coverage than the macro cell may be arranged (overlaid).
  • ENB2 may control the setting (may be referred to as “allocation”) of radio resources used for radio communication with UE3. This control may be referred to as “scheduling”.
  • Radio resources (hereinafter sometimes simply referred to as “resources”) may be two-dimensionally distinguished by a frequency domain and a time domain, for example.
  • the eNB 2 may allocate resources in units of a frequency / time grid in which radio resources that can be used for radio communication with the UE 3 are divided in two dimensions in the frequency domain and the time domain. Resource allocation may be referred to as “scheduling”. In LTE, the unit of scheduling is referred to as a “resource block (RB)”.
  • RB resource block
  • RB corresponds to one block obtained by dividing a radio lease that eNB 2 can use for radio communication with UE 3 into a slot in the time domain and a plurality of subcarriers (carrier waves) adjacent in the frequency domain.
  • one slot has a time length of 0.5 ms, two slots form one subframe of 1 ms length, and ten subframes form a radio frame of 10 ms length.
  • Time Division Duplex TDD
  • frequency division duplex Frequency Division Duplex: FDD
  • downlink (downlink, DL) communication and uplink (uplink, UL) communication are performed at different times.
  • the eNB 2 schedules the time for DL communication and the time for UL communication at different times with respect to the UE 3 in one frequency band.
  • the eNB 2 and the UE 3 perform transmission and reception at different times in one frequency band.
  • DL communication and UL communication are performed using different frequencies (or frequency bands).
  • the eNB 2 may schedule the frequency for DL communication and the frequency for UL communication to different frequencies regardless of the communication timing.
  • the eNB 2 and the UE 3 can perform reception at a frequency different from the transmission frequency while performing transmission.
  • F-OFDM is an abbreviation for “filtered Orthogonal Frequency Division Multiplexing”
  • UF-OFDM is an abbreviation for “universal filtered OFDM”
  • FBMC is an abbreviation for “Filter Bank Multi-Carrier”.
  • filters are applied in units of “subbands” to be described later.
  • FBMC a filter is applied in units of subcarriers.
  • CP cyclic prefix
  • UF-OFDM In F-OFDM, a cyclic prefix (CP) is added to a symbol to suppress intersymbol interference.
  • CP cyclic prefix
  • UF-OFDM no CP is added to symbols, and instead, inter-symbol interference is suppressed by inserting guard intervals (non-transmission intervals) between symbols.
  • FIG. 2 shows an example of radio resource allocation in F-OFDM (or UF-OFDM, the same shall apply hereinafter).
  • F-OFDM for example, a certain frequency band (for example, all or a part of the system band) may be divided into a plurality of frequency bands # 1 to #n (n is an integer of 2 or more).
  • Each of the divided frequency bands (may be abbreviated as “divided band”) #i (i is any one of 1 to n) is referred to as “subband”, “subcarrier block”, or “cluster”. May be.
  • FIG. 2 shows three subbands # 1 to # 3 as a non-limiting example.
  • signal waveform shaping (in other words, filtering) may be performed for each subband #i.
  • filtering for example, a band pass filter (BPF) may be applied to the filtering.
  • BPF band pass filter
  • the orthogonality between subcarriers may not be maintained between subbands #i, unlike normal OFDM. Therefore, it is allowed that the number of subcarriers, the subcarrier interval, the transmission time interval (transmission time interval, ⁇ TTI), and the like differ between subbands #i.
  • the number of subcarriers, the number of symbols, the symbol length, the slot length, the radio frame length, the subframe length (in other words, TTI), and the like may be different.
  • these parameters (sometimes referred to as “transmission parameters” for convenience) may be constant.
  • one or more of the number of subcarriers, the number of symbols, the symbol length, the slot length, the radio frame length, and the subframe length (TTI) is varied for each subband #i. It is acceptable.
  • the OFDM symbol of subband # 1 has a shorter symbol length and a smaller number of subcarriers than the OFDM symbols of other subbands # 2 and # 3.
  • An OFDM symbol with a short symbol length may be used, for example, for UE3 whose radio propagation environment with eNB2 is likely to change with time, for example, for UE3 that moves at high speed.
  • the OFDM symbol of subband # 3 has a longer symbol length and a larger number of subcarriers than the OFDM symbols of other subbands # 2 and # 3 (in other words, subcarrier spacing). Is short).
  • the OFDM symbol of subband # 3 may be used for UE3 whose radio propagation environment does not change much in time, for example, UE3 moving at a low speed or fixed UE3.
  • UE3 moving at a low speed or fixed UE3 since the subcarrier interval per OFDM symbol is shorter than the other subbands # 1 and # 2, more UEs 2 can be efficiently accommodated in the subband # 3.
  • an IoT (Internet of Things) wireless device may correspond to the UE 3 that moves at a low speed or the fixed UE 3.
  • the subband # 2 OFDM symbol has an intermediate symbol length and number of subcarriers compared to the subband # 1 and subband # 3 OFDM symbols.
  • the OFDM symbol of subband # 2 may be used for UE 2 having an average moving speed, for example.
  • F-OFDM can separate different parameters for each subband #i and coexist in a continuous frequency band by filtering, so that it is suitable for a plurality of UEs 3 in each radio environment. Parameters can be used.
  • a “symbol” is an example of a transmission unit in wireless communication, and has a signal waveform that is continuous in time. Since a symbol is exemplarily generated by digitally modulating one or more subcarriers with one or more transmission data signals, the “transmission unit” is rephrased as “modulation symbol unit” or “modulation unit”. Also good. Alternatively, since digital demodulation is performed in symbol units on the symbol receiving side, the “transmission unit” may be rephrased as “demodulation unit”.
  • the symbol length can be changed by changing the number of subcarriers to be digitally modulated. Therefore, the difference in the number of subcarriers and the symbol length per symbol means that the signal waveforms that are temporally continuous as transmission units are different.
  • dividing one symbol in the time domain is equivalent to dividing a time-continuous signal waveform as a transmission unit in the time domain.
  • the waveform of the OFDM signal will be described as an example of the signal waveform divided in the time domain, but other signal waveforms may be used as long as they are signal waveforms used for wireless communication.
  • Non-limiting examples of other signal waveforms include the waveform of a signal to which an RRC (Root Raised Cosine) filter is applied and the waveform of an FBMC signal.
  • the signal waveforms that are allowed to be mixed in a certain frequency band may be different types of signal waveforms, or may be signal waveforms having the same type but different types of transmission parameters. Different signal waveforms can be obtained by changing any one or more of the transmission parameters.
  • Allowing mixing of different signal waveforms in a certain frequency band means that a signal waveform belonging to one of the divided bands obtained by dividing the frequency band can be different from a signal waveform belonging to another divided band. .
  • the waveform of the transmitted or received OFDM signal differs between subbands # 1 to # 3 illustrated in FIG.
  • the switching time between the UL communication and the DL communication for example, it is considered to shorten the DL communication time and the UL communication time (in other words, the length of the DL frame and the UL frame) in the TDD frame. Is done.
  • (2) in FIG. 4 shows an OFDM symbol having a symbol length twice as long as an OFDM symbol having an average symbol length.
  • one TDD frame can accommodate, for example, only two symbols fewer than five symbols. If three symbols are to be accommodated, they will not fit in one TDD frame, and at least a part of the OFDM symbols will protrude from the TDD frame.
  • the length of CP added per OFDM symbol may be increased as illustrated in (3) of FIG. 4, but resource (for example, frequency) utilization efficiency is increased due to CP overhead. Decreases.
  • each symbol length is shown to be an integral multiple.
  • the OFDM symbol length including the CP is not necessarily an integral multiple. For this reason, it is difficult to optimize the CP length while accommodating a plurality of OFDM symbols within a predetermined frame length.
  • an OFDM symbol that does not fit in one frame is divided into two or more and divided OFDM symbols (for convenience, they may be referred to as “division symbols”). .) Is transmitted separately in a plurality of frames which are different in time. In other words, the divided symbols are transmitted across different frames in time.
  • the third OFDM symbol that does not fit in the first frame is divided into two, and among the two divided symbols, the temporally preceding divided symbol is transmitted at the end of the first frame, and the subsequent division is performed.
  • the symbol is transmitted at the beginning of the second frame.
  • first frame and the second frame in which the divided symbols are accommodated separately may be frames that are not temporally continuous as illustrated in FIG.
  • the divided symbols may be transmitted separately in time intervals that are discontinuous in time.
  • one or more frames may be interposed between the first frame and the second frame.
  • one or more received frames for example, UL frames
  • first and second transmission frames for example, DL frames
  • the DL transmission is performed in a different subband #j (j is an integer from 1 to n satisfying j ⁇ i) during a UL reception period in a certain subband #i.
  • the reception quality of UL may deteriorate due to interference with UL reception.
  • the TDD frame may be configured so that UL reception and DL transmission are not performed at the same time between different subbands # i- # j.
  • one or more UL frames may be set between the first DL frame and the second DL frame.
  • FIG. 6 shows an example in which subbands #i and #j are discontinuous (in other words, not adjacent) in the frequency domain
  • FIG. 7 shows that subbands #i and #j are continuous in the frequency domain.
  • An example in other words, adjacent is shown.
  • 5 to 7 are examples in which the divided symbols divided into two are transmitted separately in two temporally discontinuous frames. However, a part of divided symbols divided into three or more or All may be transmitted separately in three or more frames that are discontinuous in time.
  • FIG. 8 is a block diagram illustrating a first configuration example of the transmission processing unit 20 capable of realizing the OFDM symbol division transmission described with reference to FIG.
  • the transmission processing unit 20 may be provided in the eNB 2 as an example.
  • the eNB 2 including the transmission processing unit 20 may be regarded as an example of a radio transmission station (sometimes abbreviated as “transmission station”).
  • the transmission processing unit 20 exemplarily includes a transmission symbol generation unit 21, a switch (SW) 22, a wireless transmission unit 23, a symbol division unit 24, a BPF 25, a timing adjustment unit 26, and an antenna 27. May be provided.
  • reference numeral 51 denotes a control unit that controls the operation of the transmission processing unit 20.
  • the control unit 51 may be provided in a wireless device (for example, eNB 2) provided with the transmission processing unit 20.
  • the transmission symbol generation unit 21 exemplarily generates an OFDM symbol as an example of a transmission symbol.
  • a transmission symbol is an example of a transmission signal.
  • the switch 22 illustratively switches the output destination of the transmission symbol generated by the transmission symbol generation unit 21 to one of the radio transmission unit 23 and the symbol division unit 24 according to control from the control unit 51.
  • the output destination of the switch 22 is switched to the wireless transmission unit 23 side. Therefore, the OFDM symbol is output to the wireless transmission unit 23 and transmitted from the antenna 27 as usual without being divided.
  • the output destination of the switch 22 is switched to the symbol division unit 24 side, and the OFDM symbol is output to the symbol division unit 24.
  • the symbol dividing unit 24 exemplarily divides the OFDM symbol as described in FIG.
  • the number of divisions may be two or more.
  • the BPF 25 may be referred to as a divided transmission BPF 25, and may have a BPF characteristic according to the bandwidth of the transmission frequency band.
  • the BPF 25 may individually filter the divided symbols input from the symbol dividing unit 24 using the BPF characteristics.
  • the transmission frequency band may illustratively correspond to one of the subbands #i.
  • the timing adjustment unit 26 exemplarily adjusts the timing between the divided symbols so that the divided symbols filtered by the BPF 25 are transmitted in different transmission frames as illustrated in FIG.
  • the wireless transmission unit 23 illustratively up-converts the OFDM symbol input from the switch 22 or the timing adjustment unit 26 into a wireless signal and transmits it from the antenna 27.
  • the timing adjustment unit 26 and the wireless transmission unit 23 are an example of a transmission unit that transmits divided symbols in a plurality of temporally discontinuous time intervals.
  • the non-divided OFDM symbol may be filtered by the BPF 25 for normal transmission (non-divided transmission) provided in the previous stage of the wireless transmission unit 23.
  • the BPF 25 for normal transmission may exemplarily have a BPF characteristic equivalent to the BPF 25 for divided transmission.
  • the BPF 25 for normal transmission filters undivided OFDM symbols with the BPF characteristic.
  • the transmission processing unit 20 when performing OFDM symbol division transmission in F-OFDM, the transmission processing unit 20 may be configured as illustrated in FIG.
  • the configuration example illustrated in FIG. 9 corresponds to a second configuration example of the transmission processing unit 20.
  • the same reference numerals as those in FIG. 8 are the same or similar to the same reference numerals in FIG. 8 unless otherwise specified.
  • the configuration for split transmission illustrated in FIG. 8 (for example, the switch 22, the symbol splitting unit 24, and the timing adjustment unit 26) is applied to the subband #n.
  • the configuration for split transmission is not limited to subband #n, and may be applied to at least part of subbands # 1 to #n.
  • the transmission processing unit 20 may include, for example, BPFs 25-1 to 25-n corresponding to the subbands # 1 to #n. Two BPFs 25-n corresponding to subband #n may be provided for normal transmission and divided transmission.
  • Each BPF 25-i has a BPF characteristic corresponding to the bandwidth of the corresponding subband #i, and filters the input OFDM symbol with the BPF characteristic.
  • the transmission symbol generator 21 generates OFDM symbols of subbands # 1 to #n.
  • the OFDM symbols of subbands # 1 to # (n ⁇ 1) excluding subband #n are input to corresponding BPFs 25-1 to 25- (n ⁇ 1), respectively.
  • the OFDM symbol of subband #n is illustratively input to switch 22.
  • the switch 22 sets the output destination of the OFDM symbol input from the transmission symbol generation unit 21 to either the BPF 25-n for normal transmission or the symbol division unit 24. Switch.
  • the OFDM symbols are output to BPF 25-n for normal transmission.
  • the OFDM symbol is not divided for subband #n and does not fit in the predetermined frame, the OFDM symbol is output to symbol division section 24.
  • the symbol dividing unit 24 divides the input OFDM symbol, for example, as illustrated in FIG. 6 and FIG.
  • the number of divisions may be two or more.
  • the BPF 25-n for division transmission for example, individually filters the division symbols input from the symbol division unit 24.
  • the timing adjustment unit 26 exemplifies the interval between the divided symbols so that the divided symbols filtered by the BPF 25-n for divided transmission are transmitted in different transmission frames as illustrated in FIG. 6 and FIG. Adjust the timing.
  • the divided symbols transmitted in the subband #n frame are individually filtered by the divided transmission BPF 25-n, and then transmitted by the timing adjustment unit 26 in temporally different frames.
  • the timing is adjusted as follows.
  • the OFDM symbols (which may include divided symbols) of each of the subbands # 1 to #n are exemplarily added (may be referred to as “multiplexing”) by the adder 28, and are described above. It is transmitted from the antenna 27 through the wireless transmission unit 23.
  • reception processing Next, reception processing of the OFDM symbol divided and transmitted as described above will be described.
  • the reception process may illustratively correspond to a reception process at UE3.
  • an OFDM symbol that does not require division is transmitted as it is (non-division transmission).
  • the OFDM symbols subjected to symbol division are individually transmitted in temporally different frames.
  • the OFDM symbol restored by combining can be correctly demodulated by a demodulation process equivalent to the demodulation process for a normal OFDM symbol of non-division transmission illustrated in FIG.
  • the received divided symbols do not include noise due to filtering or have a noise level that does not affect restoration even if included.
  • the radio propagation path (also referred to as “channel”) of the divided symbols does not change with time, or changes that do not affect restoration even if they change.
  • reception quality deteriorate.
  • FIGS. 10A to 10C do not consider the time response of filtering applied to the OFDM symbol (hereinafter sometimes referred to as “filter time response”).
  • filter time response An example of the reception process considering the filter time response is shown in FIGS. 11 (A) to 11 (D).
  • the OFDM symbol that does not need to be divided has a bandwidth of a transmission frequency band as a whole.
  • the corresponding filtering is performed and transmitted (non-divided transmission).
  • the OFDM symbols that are divided into symbols are filtered for each divided symbol and transmitted as schematically illustrated in FIG. Therefore, a “round” of the signal waveform corresponding to the filter time response occurs for each divided symbol.
  • the received divided symbols are adjusted in timing so as to be temporally continuous, and are synthesized (for example, added) including the time waveform of the filter time response. ), A signal waveform substantially equivalent to that in non-divided transmission can be obtained. If OFDM symbol filtering is performed on both the transmitting side and the receiving side, the filter time response may be a combination of both filter time responses.
  • the OFDM symbol restored by combining can be correctly demodulated by the demodulation processing equivalent to the demodulation processing for the normal OFDM symbol of non-division transmission illustrated in FIG.
  • the received divided symbols include noise due to filtering. It is assumed that the noise level does not affect the restoration even if it is included. Further, it is assumed that the radio propagation path of the divided symbols (hereinafter may be abbreviated as “propagation path”) does not change with time, or changes that do not affect the restoration even if they change.
  • FIG. 12 is a block diagram illustrating a first configuration example of the reception processing unit 30 capable of realizing the above-described reception processing.
  • the reception processing unit 30 may be provided in the UE 3 as an example.
  • the UE 3 provided with the reception processing unit 30 may be regarded as an example of a radio reception station (sometimes abbreviated as “reception station”).
  • the reception processing unit 30 exemplarily includes an analog-to-digital converter (ADC) 31, a divided symbol extraction unit 32, a timing adjustment / synthesis (addition) unit 33, and a demodulation processing unit 34. May be provided.
  • ADC analog-to-digital converter
  • the reception processing unit 30 exemplarily includes an analog-to-digital converter (ADC) 31, a divided symbol extraction unit 32, a timing adjustment / synthesis (addition) unit 33, and a demodulation processing unit 34. May be provided.
  • ADC analog-to-digital converter
  • the ADC 31 converts the received signal into a digital signal.
  • the received digital signal may be input to the divided symbol extraction unit 32 and the demodulation processing unit 34.
  • the division symbol extraction unit 32 illustratively extracts a division symbol from the digital signal input from the ADC 31. As illustrated in FIGS. 5 to 7, the divided symbols are accommodated at the end or the beginning of a temporally different frame, and can be detected based on the frame timing.
  • the frame timing can be detected, for example, by establishing frame synchronization between the eNB 2 and the UE 3.
  • the timing adjustment / combination unit 33 determines the divided symbols extracted by the divided symbol extraction unit 32 as follows. The timing is adjusted so that it is continuous in time. As a result, the original OFDM symbol before division is restored.
  • the demodulation processing unit 34 demodulates the OFDM symbol restored by the timing adjustment / combination unit 33 in the same manner as the demodulation of a normal OFDM symbol for non-division transmission.
  • a normal OFDM symbol for non-division transmission may be demodulated as usual by the demodulation processing unit 34 through a route that does not pass through the division symbol extraction unit 32 and the timing adjustment / synthesis unit 33 from the ADC 31.
  • FIG. 13 is a diagram illustrating a second example of transmission processing.
  • the second example of the transmission process may be considered to correspond to a modification of the first example of the transmission process illustrated in FIGS.
  • a part of the divided symbols may be transmitted in duplicate in frames that are temporally different.
  • a part of the first division symbol transmitted in a certain frame may be redundantly transmitted in the other frame together with the second division symbol transmitted in another temporally different frame.
  • a part may be copied from the beginning of the divided symbol transmitted in the second frame, and the copy part may be set at the end of the divided symbol transmitted in the first frame.
  • a part may be copied from the end of the divided symbol transmitted in the first frame, and the copy part may be set at the beginning of the divided symbol transmitted in the second frame.
  • the partial copying of the divided symbols may be performed by the symbol dividing unit 24 illustrated in FIGS. 8 and 9 exemplarily.
  • the setting of the copy portion to a different frame may be performed by the timing adjustment unit 26 illustrated in FIGS. 8 and 9.
  • the demodulation process can be performed in the same manner as in FIG.
  • the propagation path environment may change for each divided symbol.
  • the propagation path characteristic of the transmission signal may be estimated from the propagation path characteristic of the reception signal.
  • the eNB 2 may estimate the DL propagation path characteristic (in other words, channel estimation) based on the propagation path characteristic of the UL signal received from the UE 3.
  • channel estimation a known signal between the eNB 2 and the UE 3 such as a reference signal or a pilot signal may be used.
  • UE3 may report the propagation path characteristic of DL to eNB2.
  • the UE 3 may perform DL channel estimation based on a DL reference signal, a pilot signal, or the like, and transmit and report the estimation result to the eNB 2.
  • the eNB 2 may give in advance a phase rotation that cancels the phase rotation that the divided symbol receives in the DL propagation path for each divided symbol based on the DL radio path characteristics.
  • the phase rotation given in advance for each divided symbol may be varied by controlling the filter parameters of the BPF 25 and BPF 25-n for divided transmission in the transmission processing unit 20 illustrated in FIGS. .
  • the control of the filter parameters may be performed by the control unit 51, for example.
  • the transmission processing unit 20 includes a plurality of filters 25a-1 to 25a-m that can give different phase rotation amounts to the input signal.
  • the filters 25a-k to be passed may be changed for each divided symbol.
  • Each of the filters 25a-k may be a BPF. “M” represents an integer of 2 or more, and “k” is any one of 1 to m.
  • the filters 25a-k that pass the divided symbols may be selected and controlled by the control unit 51, for example.
  • the third example of the transmission process described above may be implemented in combination with the second example of the transmission process described with reference to FIG.
  • the divided symbols may be multiplexed and transmitted on different frequencies (for example, subband #i).
  • FIG. 15 shows an example in which the divided symbols are multiplexed in different subbands #i of the same frame. For example, as schematically shown in FIG. 16, different subbands of temporally different frames are shown. Divided symbols may be multiplexed on band #i.
  • the frequency shifter 29 can change the transmission frequency (for example, subband #i) for each divided symbol.
  • demodulation processing can be performed in the same manner as in FIGS. 10 to 12 by passing the frequency shifter corresponding to each frequency.
  • the fourth example of the transmission process described above may be implemented in combination with one or both of the second example of the transmission process described with reference to FIG. 13 and the third example of the transmission process described with reference to FIG. Good.
  • reception processing As schematically illustrated in FIGS. 11A to 11D, when extracting and synthesizing the divided symbols in the reception process, all time waveforms including a portion spread by the filter time response are extracted. In some cases, noise components may be combined with signal components. When the noise components are combined, the reception quality of the OFDM symbol may deteriorate.
  • the ratio of the noise component is considered to be large in the portion widened by the filter time response, as schematically illustrated in FIGS. 18 (A) to 18 (C).
  • Some time waveforms may be excluded from the candidates for extraction and synthesis of divided symbols. In other words, a portion that is considered to have a large ratio of noise components may be cut out from the portion that has spread due to the filter time response.
  • timing adjustment / synthesis unit 33 synthesizes the divided symbols, it can be avoided or suppressed that the noise components are synthesized and the signal quality of the OFDM symbol is deteriorated.
  • the selection and determination of the cutout portion in the time domain of the divided symbols to be included in the candidate for synthesis may be performed in the extraction process in the divided symbol extraction unit 32, or the timing It may be implemented in the synthesis process in the adjustment / synthesis unit 33.
  • the synthesis may be performed after performing equalization processing of the propagation path for each divided symbol.
  • FIG. 19 shows a configuration example (second configuration example) of the reception processing unit 30 according to this example.
  • the configuration example illustrated in FIG. 19 is a case where the number of OFDM symbol divisions in the transmission process is 2, for example, two division symbol extraction units 32-1 and 32-2 corresponding to the number of symbol divisions, 2 Two equalizers 35-1 and 35-2 are provided. If the number of symbol divisions is 3 or more, the reception processing unit 30 may be provided with three or more sets of divided symbol extraction units and equalizers.
  • the divided symbol extraction units 32-1 and 32-2 each extract a divided symbol from the received signal converted into a digital signal by the ADC 31.
  • the division symbol extraction may be performed in the same manner as the division symbol extraction unit 32 illustrated in FIG.
  • the equalizer 35-1 equalizes the divided symbols extracted by the divided symbol extractor 32-1, and the equalizer 35-2 equalizes the divided symbols extracted by the divided symbol extractor 32-2.
  • the divided symbols are synthesized by the timing adjustment / synthesis unit 33 with the timing adjusted as described above, and the demodulation processing unit 34 performs the demodulation processing as usual. Is done.
  • FIG. 20 is a block diagram illustrating a configuration example of the eNB 2 that is an example of a transmission station. 20 may be considered to correspond to a configuration example in which the transmission processing unit 20 illustrated in FIG. 8 is applied to the eNB 2.
  • the eNB 2 includes an error correction encoding unit 211, a modulation unit 212, an inverse fast Fourier transformer (IFFT) 213, and a CP adder 214 as an example of the transmission symbol generation unit 21. Good.
  • IFFT inverse fast Fourier transformer
  • the eNB 2 includes the switch 22, the radio transmission unit 23, the symbol division unit 24, the BPF 25, the timing adjustment unit 26, and the control unit 51, and also includes a DAC (Digital-to-Analog Converter) 22A. Good.
  • DAC Digital-to-Analog Converter
  • the error correction coding unit 211 illustratively performs error correction coding on the transmission data signal.
  • a convolutional code such as a turbo code may be applied to the error correction code.
  • the modulation unit 212 illustratively modulates a transmission data signal that has been subjected to error correction coding.
  • a transmission data signal that has been subjected to error correction coding.
  • a plurality of subcarriers may be modulated by different transmission data signals.
  • QPSK or multi-level QAM may be applied to the modulation scheme (may be referred to as “modulation format”).
  • QPSK is an abbreviation for “quadrature phase shift keying”
  • QAM is an abbreviation for “quadrature amplitude modulation”.
  • the multilevel value of QAM may illustratively be 16, 64, 128, 256, or the like.
  • a transmission symbol represented by complex data is generated by modulation of the transmission data signal.
  • the IFFT 213 converts, for example, a transmission symbol sequence for each subcarrier obtained by the modulation unit 212 into a time-domain signal sequence by performing inverse fast Fourier transform. Note that IFFT 213 may be replaced by an inverse discrete Fourier transformer (IDFT).
  • IDFT inverse discrete Fourier transformer
  • CP adder 214 illustratively adds a CP in the time domain to the transmission symbol sequence in the time domain obtained by IFFT 214.
  • CP may be referred to as a guard interval (GI).
  • GI guard interval
  • a transmission symbol to which a CP is added (in other words, an OFDM symbol) is output to the switch 22, and the output destination of the switch 22 is controlled by, for example, the control unit 51 as described above, so that normal transmission and divided transmission are performed. And can be switched.
  • the OFDM symbol during normal transmission or the divided symbol during divided transmission is selectively input to the DAC 22A (in other words, time division).
  • the DAC 22 ⁇ / b> A converts an input symbol that is a digital signal into an analog signal and outputs the analog signal to the wireless transmission unit 23.
  • the wireless transmission unit 23 may be provided with a high power amplifier (HPA) 231.
  • the HPA 231 amplifies the analog signal input from the DAC 22A to a specified transmission power and outputs the amplified signal to the antenna 27.
  • the transmission power may be controlled by the control unit 51, for example.
  • the control of the transmission power may be performed by controlling the amplification gain of the HPA 231, for example.
  • any one or more of the transmission processing units 20 illustrated in FIG. 9, FIG. 14, and FIG. A configuration may be applied.
  • FIG. 21 is a block diagram illustrating a configuration example of the UE 3 that is an example of a receiving station.
  • FIG. 21 may be regarded as corresponding to a configuration example in which the reception processing unit 30 illustrated in FIG. 12 is applied to the eNB 2.
  • the UE 3 exemplarily includes the antenna 31, the radio reception unit 37, the BPF 38, and the demodulation / decoding process in addition to the ADC 31, the divided symbol extraction unit 32, and the timing adjustment / synthesis unit 33 described above.
  • a unit 34A and a channel estimation unit 39 may be provided.
  • the antenna 36 illustratively receives a DL radio signal transmitted by the eNB 2 which is an example of a transmission station, and outputs the DL radio signal to the radio reception unit 37.
  • the radio reception unit 37 amplifies the radio signal input from the antenna 36 by, for example, a low noise amplifier (LNA) 371 and then down-converts the radio signal to a baseband signal.
  • LNA low noise amplifier
  • the BPF 38 may have a BPF characteristic corresponding to the bandwidth of the reception frequency band.
  • the BPF 38 may filter the signal input from the wireless reception unit 37 with the BPF characteristic.
  • the received frequency band may illustratively correspond to one of subband #i.
  • the received signal filtered by the BPF 38 is input to the ADC 31 and converted into a digital signal.
  • the received digital signal obtained by the ADC 31 may be input to the divided symbol extraction unit 32 and the demodulation / decoding processing unit 34A.
  • the demodulator / decoder processor 34A may include a CP remover 341, a fast Fourier transformer (FFT) 342, a demodulator 343, and an error correction decoder 344, as illustrated in FIG.
  • FFT fast Fourier transformer
  • the CP remover 341 illustratively removes the CP added to the received digital signal (eg, OFDM symbol or divided symbol) input from the ADC 31 or the timing adjustment / synthesis unit 33.
  • the FFT 342 illustratively converts the signal sequence from which the CP is removed into a frequency domain signal sequence by performing a fast Fourier transform. Note that the FFT 342 may be replaced with a discrete Fourier transformer (DFT).
  • DFT discrete Fourier transformer
  • the demodulator 343 illustratively demodulates the received signal sequence in the frequency domain input from the FFT 342 in a demodulation scheme corresponding to the modulation scheme in the transmission station 2, for example, for each subcarrier. For example, a received data symbol sequence for each subcarrier is obtained by demodulation.
  • the channel estimation value obtained by the channel estimation unit 39 may be used for demodulation.
  • the channel estimation unit 39 estimates a channel state with the transmitting station 2 based on a reference signal or a pilot signal mapped to a predetermined subcarrier to obtain a channel estimation value.
  • the error correction decoding unit 344 exemplarily performs error correction decoding on the received data symbol sequence input from the demodulation unit 343 by a decoding method corresponding to the error correction encoding method in the transmission station 2.
  • the configuration after BPF 38 may be regarded as corresponding to one subband #i. In other words, it may be considered that the configuration after the BPF 38 is provided in the receiving station 3 in parallel for each subband.
  • the configuration of the reception processing unit 30 illustrated in FIG. 19 may be applied instead of the configuration corresponding to the reception processing unit 30 illustrated in FIG. 12.
  • the eNB 2 illustrated in FIG. 20 may have a configuration corresponding to the reception system of the UE 3 illustrated in FIG. 21 as an example of the reception system.
  • the UE 3 illustrated in FIG. 21 is illustrated in FIG. 20 as an example of the transmission system.
  • a configuration corresponding to the transmission system of the eNB 2 may be provided.
  • the reception system of the eNB 2 may not include the divided symbol extraction unit 32 and the timing adjustment / synthesis unit 33 illustrated in FIG.
  • the transmission system of the UE 3 may not include the switch 22, the symbol division unit 24, the BPF 25 for division transmission, and the timing adjustment unit 26 illustrated in FIG.
  • wireless communication system base station (eNB) 20 Transmission Processing Unit 21 Transmission Symbol Generation Unit 211 Error Correction Coding Unit 212 Modulation Unit 213 IFFT 214 CP Adder 22 Switch (SW) 22A DAC 23 Wireless transmission unit 24 Symbol division unit 25, 25-1 to 25-n BPF 25a-1 to 25a-m filter 26 timing adjustment unit 27 antenna 28 adder 29 frequency shifter 3 radio terminal (UE) 30 reception processing unit 31 ADC 32, 32-1, 32-2 Division symbol extraction unit 33 Timing adjustment / combination (addition) unit 34 Demodulation processing unit 34A Demodulation / decoding processing unit 341 CP remover 342 FFT 343 Demodulator 344 Error correction decoder 35-1, 35-2 Equalizer 36 Antenna 37 Wireless receiver 371 HPA 38 BPF 39 Channel estimation unit 4 Core network 41 MME 42 PGW 43 SGW 51 Control unit 200 Wireless area

Abstract

In a wireless communication system (1), a wireless transmitting station (2) may divide, in time domain, a temporally continuous signal waveform that is a wireless communication transmission unit, and transmit the divided signal waveforms separately in a plurality of temporally noncontinuous time periods. A wireless receiving station (3) may extract each of the divided signal waveforms from a signal received from the wireless transmitting station (2), and combine the extracted signal waveforms through timing adjustment so that the extracted signal waveforms are continuous in time domain.

Description

無線送信局、無線受信局、及び、無線通信システムRadio transmitting station, radio receiving station, and radio communication system
 本明細書に記載する技術は、無線送信局、無線受信局、及び、無線通信システムに関する。 The technology described in this specification relates to a radio transmission station, a radio reception station, and a radio communication system.
 第5世代(5G)の無線通信技術の実現に向けて、新たな無線アクセス技術(new radio access technology, new RAT)について議論されている。new RATでは、例えば、LTE(long term evolution)やLTE-Advanced等における既存RATに対して、更なる通信の高速化や、大容量化、低遅延化等が要求されている。 A new radio access technology (new radio access technology, new RAT) is being discussed for the realization of the fifth generation (5G) radio communication technology. In the new RAT, for example, with respect to the existing RAT in LTE (long term evolution), LTE-Advanced, etc., further higher communication speed, larger capacity, lower delay, etc. are required.
特表2011-510569号公報Special table 2011-51069 gazette 特開2012-151853号公報JP 2012-151853 A 特表2004-531944号公報Special Table 2004-53944
 しかし、既存の無線フレームフォーマットでは、フレーム構成の自由度が低いために、通信の低遅延化や無線リソースの利用効率の向上を図ることが難しいことがある。 However, in the existing radio frame format, since the degree of freedom of the frame configuration is low, it may be difficult to reduce communication delay and improve the utilization efficiency of radio resources.
 1つの側面では、本明細書に記載する技術の目的の1つは、フレーム構成の自由度を向上して、通信の低遅延化や無線リソースの利用効率の向上を図ることにある。 In one aspect, one of the objects of the technology described in this specification is to improve the degree of freedom of frame configuration, to reduce communication delay and to improve the utilization efficiency of radio resources.
 1つの側面において、無線送信局は、分割部と、送信部と、を備えてよい。分割部は、無線通信の送信単位である時間的に連続した信号波形を、時間領域で分割してよい。送信部は、前記分割した信号波形を、時間的に不連続な複数の時間区間に別けて送信してよい。 In one aspect, the wireless transmission station may include a division unit and a transmission unit. The dividing unit may divide a temporally continuous signal waveform, which is a transmission unit of wireless communication, in the time domain. The transmission unit may transmit the divided signal waveform separately in a plurality of time intervals that are discontinuous in time.
 また、1つの側面において、無線受信局は、受信部と、抽出部と、合成部と、を備えてよい。受信部は、無線送信局から信号を受信してよい。無線送信局は、無線通信の送信単位である時間的に連続した信号波形を時間領域で分割し、前記分割した信号波形を時間的に不連続な複数の時間区間に別けて送信してよい。抽出部は、前記受信部で受信した信号から、前記分割された信号波形をそれぞれ抽出してよい。合成部は、前記抽出された信号波形を時間領域において連続するようにタイミング調整して合成してよい。 Further, in one aspect, the radio reception station may include a receiving unit, an extracting unit, and a combining unit. The receiving unit may receive a signal from the wireless transmission station. The wireless transmission station may divide a temporally continuous signal waveform, which is a transmission unit of wireless communication, in a time domain, and transmit the divided signal waveform separately into a plurality of temporally discontinuous time intervals. The extraction unit may extract each of the divided signal waveforms from the signal received by the reception unit. The synthesizer may synthesize the extracted signal waveform by adjusting the timing so as to be continuous in the time domain.
 更に、1つの側面において、無線通信システムは、無線送信局と、無線受信局と、を備えてよい。無線送信局は、無線通信の送信単位である時間的に連続した信号波形を時間領域で分割し、前記分割した信号波形を、時間的に不連続な複数の時間区間に別けて送信してよい。無線受信局は、前記無線送信局から受信した信号から、前記分割された信号波形をそれぞれ抽出し、前記抽出した信号波形を、時間領域において連続するようにタイミング調整して合成してよい。 Furthermore, in one aspect, the wireless communication system may include a wireless transmission station and a wireless reception station. The wireless transmission station may divide a temporally continuous signal waveform, which is a transmission unit of wireless communication, in a time domain, and transmit the divided signal waveform separately into a plurality of temporally discontinuous time intervals. . The radio reception station may extract the divided signal waveforms from the signal received from the radio transmission station, and synthesize the extracted signal waveforms by adjusting the timing so as to be continuous in the time domain.
 1つの側面として、フレーム構成の自由度を向上して、通信の低遅延化や無線リソースの利用効率の向上を図ることができる。 As one aspect, it is possible to improve the degree of freedom of frame configuration, reduce communication delay, and improve the utilization efficiency of radio resources.
一実施形態に係る無線通信システムの構成例を示すブロック図である。It is a block diagram which shows the structural example of the radio | wireless communications system which concerns on one Embodiment. F-OFDM(filtered Orthogonal Frequency Division Multiplexing)での無線リソースの割り当て例を示す図である。It is a figure which shows the example of allocation of the radio | wireless resource in F-OFDM (filtered | Orthogonal | Frequency | Division | Multiplexing). F-OFDMにおいてサブバンド毎に信号がフィルタリングされる例を模式的に示す図である。It is a figure which shows typically the example by which a signal is filtered for every subband in F-OFDM. 1フレームに収容されるOFDMシンボルの一例を模式的に示す図である。It is a figure which shows typically an example of the OFDM symbol accommodated in 1 frame. 一実施形態に係る送信処理の第1例を模式的に示す図である。It is a figure which shows typically the 1st example of the transmission process which concerns on one Embodiment. 一実施形態に係るF-OFDMでの送信処理例を模式的に示す図である。It is a figure which shows typically the example of a transmission process in F-OFDM which concerns on one Embodiment. 一実施形態に係るF-OFDMでの送信処理例を模式的に示す図である。It is a figure which shows typically the example of a transmission process in F-OFDM which concerns on one Embodiment. 一実施形態に係る送信処理部の第1構成例を示すブロック図である。It is a block diagram which shows the 1st structural example of the transmission process part which concerns on one Embodiment. 一実施形態に係る送信処理部の第2構成例(F-OFDMへの適用例)を示すブロック図である。It is a block diagram which shows the 2nd structural example (application example to F-OFDM) of the transmission process part which concerns on one Embodiment. (A)~(C)は、一実施形態に係る受信処理の第1例を模式的に説明するための図である。(A)-(C) are the figures for demonstrating typically the 1st example of the reception process which concerns on one Embodiment. (A)~(D)は、一実施形態に係る受信処理の第1例を模式的に説明するための図である。(A)-(D) are the figures for demonstrating typically the 1st example of the reception process which concerns on one Embodiment. 一実施形態に係る受信処理部の第1構成例を示すブロック図である。It is a block diagram which shows the 1st structural example of the reception process part which concerns on one Embodiment. 一実施形態に係る送信処理の第2例を模式的に示す図である。It is a figure which shows typically the 2nd example of the transmission process which concerns on one Embodiment. 一実施形態に係る送信処理部の第3構成例を示すブロック図である。It is a block diagram which shows the 3rd structural example of the transmission process part which concerns on one Embodiment. 一実施形態に係る送信処理の第4例を模式的に示す図である。It is a figure which shows typically the 4th example of the transmission process which concerns on one Embodiment. 一実施形態に係る送信処理の第4例を模式的に示す図である。It is a figure which shows typically the 4th example of the transmission process which concerns on one Embodiment. 一実施形態に係る送信処理部の第4構成例を示すブロック図である。It is a block diagram which shows the 4th structural example of the transmission process part which concerns on one Embodiment. (A)~(C)は、一実施形態に係る受信処理の第2例を模式的に説明するための図である。(A)-(C) are the figures for demonstrating typically the 2nd example of the reception process which concerns on one Embodiment. 一実施形態に係る受信処理部の第2構成例を示すブロック図である。It is a block diagram which shows the 2nd structural example of the reception process part which concerns on one Embodiment. 一実施形態に係る送信局の一例としての基地局の構成例を示すブロック図である。It is a block diagram which shows the structural example of the base station as an example of the transmission station which concerns on one Embodiment. 一実施形態に係る受信局の一例としての無線端末の構成例を示すブロック図である。It is a block diagram which shows the structural example of the radio | wireless terminal as an example of the receiving station which concerns on one Embodiment.
 以下、図面を参照して実施の形態を説明する。ただし、以下に説明する実施形態は、あくまでも例示であり、以下に明示しない種々の変形や技術の適用を排除する意図はない。また、以下に説明する各種の例示的態様は、適宜に組み合わせて実施しても構わない。なお、以下の実施形態で用いる図面において、同一符号を付した部分は、特に断らない限り、同一若しくは同様の部分を表す。 Hereinafter, embodiments will be described with reference to the drawings. However, the embodiment described below is merely an example, and there is no intention to exclude various modifications and technical applications that are not explicitly described below. Various exemplary embodiments described below may be implemented in combination as appropriate. Note that, in the drawings used in the following embodiments, portions denoted by the same reference numerals represent the same or similar portions unless otherwise specified.
 図1は、一実施形態に係る無線通信システムの構成例を示すブロック図である。図1に示す無線通信システム1は、例示的に、基地局2と、無線端末3と、を備えてよい。基地局2は、例示的に、コアネットワーク4に接続されてよい。なお、図1の例では、1台の基地局2と1台の無線端末3とに着目しているが、基地局2及び無線端末3は、いずれも、無線通信システム1において2台以上存在してよい。 FIG. 1 is a block diagram illustrating a configuration example of a wireless communication system according to an embodiment. The wireless communication system 1 illustrated in FIG. 1 may include a base station 2 and a wireless terminal 3 exemplarily. The base station 2 may be illustratively connected to the core network 4. In the example of FIG. 1, attention is focused on one base station 2 and one wireless terminal 3, but there are two or more base stations 2 and wireless terminals 3 in the wireless communication system 1. You can do it.
 無線端末3は、基地局2が形成又は提供する無線エリアにおいて当該基地局2と無線通信することが可能である。「無線端末」は、「無線デバイス」、「無線装置」、あるいは「端末装置」等と称されてもよい。 The wireless terminal 3 can wirelessly communicate with the base station 2 in a wireless area formed or provided by the base station 2. The “wireless terminal” may be referred to as “wireless device”, “wireless device”, “terminal device”, or the like.
 無線端末3は、その位置が変化しない固定端末であってもよいし、その位置が変化する移動端末(「移動機」と称してもよい。)であってもよい。非限定的な一例として、無線端末3は、携帯電話やスマートフォン、タブレット端末等の移動可能なUEであってよい。「UE」は、「User Equipment」の略称である。 The wireless terminal 3 may be a fixed terminal whose position does not change, or may be a mobile terminal (which may be referred to as a “mobile device”) whose position changes. As a non-limiting example, the wireless terminal 3 may be a mobile UE such as a mobile phone, a smartphone, or a tablet terminal. “UE” is an abbreviation for “User Equipment”.
 基地局2は、無線端末3との無線通信を可能にする無線エリア200を形成又は提供する。「無線エリア」は、「セル」、「カバレッジエリア」、「通信エリア」、「サービスエリア」等と称されてもよい。 The base station 2 forms or provides a wireless area 200 that enables wireless communication with the wireless terminal 3. The “wireless area” may be referred to as “cell”, “coverage area”, “communication area”, “service area”, and the like.
 基地局2は、例示的に、3rd generation partnership project(3GPP)のlong term evolution(LTE)やLTE-Advanced(以下「LTE」と総称する。)に準拠した「eNB」であってよい。 The base station 2 may be, for example, an “eNB” compliant with 3rd generation “partnership” project (3GPP) long term evolution (LTE) or LTE-Advanced (hereinafter collectively referred to as “LTE”).
 「eNB」は、「evolved Node B」の略称である。なお、remote radio equipment(RRE)やremote radio head(RRH)等と称される、基地局本体から分離されて遠隔地に配置された通信ポイントが、基地局2に該当してもよい。 “ENB” is an abbreviation for “evolved Node B”. Note that a communication point, which is called a remote radio unit (RRE), remote radio head (RRH), etc., which is separated from the base station main body and located at a remote location, may correspond to the base station 2.
 基地局2が形成又は提供する「セル」は「セクタセル」に分割されてもよい。「セル」には、マクロセルやスモールセルが含まれてよい。スモールセルは、マクロセルよりも電波到達範囲(カバレッジ)の小さいセルの一例である。 The “cell” formed or provided by the base station 2 may be divided into “sector cells”. The “cell” may include a macro cell and a small cell. A small cell is an example of a cell having a radio wave coverage (coverage) smaller than that of a macro cell.
 スモールセルは、カバレッジエリアに応じて呼称が異なってよい。例えば、スモールセルは、「フェムトセル」、「ピコセル」、「マイクロセル」、「ナノセル」、「メトロセル」、「ホームセル」等と称されてもよい。 The name of the small cell may be different depending on the coverage area. For example, the small cell may be referred to as “femtocell”, “picocell”, “microcell”, “nanocell”, “metrocell”, “homecell”, and the like.
 コアネットワーク4には、図1に例示するように、MME41、PGW42、及び、PGW43が含まれてよい。「MME」は、「Mobility Management Entity」の略称である。「PGW」は、「Packet Data Network Gateway」の略称であり、「SGW」は、「Serving Gateway」の略称である。 The core network 4 may include an MME 41, a PGW 42, and a PGW 43 as illustrated in FIG. “MME” is an abbreviation of “Mobility Management Entity”. “PGW” is an abbreviation for “Packet Data Gateway” and “SGW” is an abbreviation for “Serving Gateway”.
 コアネットワーク4は、基地局2に対する「上位ネットワーク」に相当すると捉えてよい。MME41、PGW42、及び、SGW43は、「コアネットワーク」のエレメント(NE)あるいはエンティティに相当すると捉えてよく、「コアノード」と総称してよい。「コアノード」は、基地局2の「上位ノード」に相当すると捉えてもよい。 The core network 4 may be regarded as corresponding to an “upper network” for the base station 2. The MME 41, the PGW 42, and the SGW 43 may be regarded as corresponding to an element (NE) or an entity of the “core network”, and may be collectively referred to as a “core node”. The “core node” may be considered to correspond to the “upper node” of the base station 2.
 基地局2は、コアネットワーク4に、有線インタフェースの一例である「S1インタフェース」によって接続されてよい。ただし、基地局2は、無線インタフェースによってコアネットワーク4と通信可能に接続されても構わない。 The base station 2 may be connected to the core network 4 via an “S1 interface” which is an example of a wired interface. However, the base station 2 may be communicably connected to the core network 4 through a wireless interface.
 基地局2とコアネットワーク4とを含むネットワークは、無線アクセスネットワーク(RAN)と称されてもよい。RANの一例は、「Evolved Universal Terrestrial Radio Access Network, E-UTRAN」である。 A network including the base station 2 and the core network 4 may be referred to as a radio access network (RAN). An example of RAN is “Evolved Universal Terrestrial Radio Access Network, E-UTRAN”.
 また、基地局2は、例示的に、MME41及びSGW43と通信可能に接続されてよい。基地局2と、MME41及びSGW43と、の間は、例えば、S1インタフェースと称されるインタフェースによって通信可能に接続されてよい。 Further, the base station 2 may be communicatively connected to the MME 41 and the SGW 43, for example. For example, the base station 2 and the MME 41 and the SGW 43 may be communicably connected via an interface called an S1 interface.
 SGW43は、S5インタフェースと称されるインタフェースによってPGW42と通信可能に接続されてよい。PGW42は、インターネットやイントラネット等のパケットデータネットワーク(PDN)と通信可能に接続されてよい。 The SGW 43 may be communicably connected to the PGW 42 through an interface called an S5 interface. The PGW 42 may be communicably connected to a packet data network (PDN) such as the Internet or an intranet.
 PGW42及びSGW43を介して、UE3とPDNとの間でユーザパケットの送受信が可能である。ユーザパケットは、ユーザデータの一例であり、ユーザプレーン信号と称してもよい。 User packets can be transmitted and received between the UE 3 and the PDN via the PGW 42 and the SGW 43. The user packet is an example of user data, and may be referred to as a user plane signal.
 例示的に、SGW43は、ユーザプレーン信号を処理してよい。制御プレーン信号は、MME41が処理してよい。SGW43は、S11インタフェースと称されるインタフェースによってMME41と通信可能に接続されてよい。 For example, the SGW 43 may process the user plane signal. The control plane signal may be processed by the MME 41. The SGW 43 may be communicably connected to the MME 41 via an interface called an S11 interface.
 MME41は、例示的に、UE11の位置情報を管理する。SGW43は、MME41で管理されている位置情報を基に、例えば、UE3の移動に伴うユーザプレーン信号のパス切り替え等の移動制御を実施してよい。移動制御には、UE3のハンドオーバに伴う制御が含まれてよい。 The MME 41 illustratively manages the location information of the UE 11. The SGW 43 may perform movement control such as path switching of a user plane signal accompanying movement of the UE 3 based on the position information managed by the MME 41, for example. The mobility control may include control associated with the handover of UE3.
 なお、図1には図示を省略しているが、RANに複数の基地局2が存在する場合、基地局2間は、例えば、X2インタフェースと称される基地局間インタフェースによって通信可能に接続されてよい。基地局間インタフェースは、有線インタフェースでもよいし、無線インタフェースでもよい。 Although not shown in FIG. 1, when there are a plurality of base stations 2 in the RAN, the base stations 2 are connected so as to be communicable by an interface between base stations called an X2 interface, for example. It's okay. The interface between base stations may be a wired interface or a wireless interface.
 基地局2の一例であるeNB2が形成する無線エリア200は、「マクロセル」と称されてよい。マクロセル200を形成するeNB2は、便宜的に、「マクロ基地局」、「マクロeNB」、又は、「MeNB」等と称されてもよい。マクロセルには、マクロセルよりもカバレッジの小さい「スモールセル」が配置(オーバレイ)されてもよい。 The radio area 200 formed by the eNB 2 which is an example of the base station 2 may be referred to as a “macro cell”. The eNB 2 forming the macro cell 200 may be referred to as “macro base station”, “macro eNB”, or “MeNB” for convenience. In the macro cell, a “small cell” having a smaller coverage than the macro cell may be arranged (overlaid).
 eNB2は、UE3との無線通信に用いる無線リソースの設定(「割当」と称してもよい。)を制御してよい。当該制御は、「スケジューリング」と称されてもよい。無線リソース(以下、単に「リソース」と称することもある)は、例示的に、周波数領域及び時間領域によって2次元的に区別されてよい。 ENB2 may control the setting (may be referred to as “allocation”) of radio resources used for radio communication with UE3. This control may be referred to as “scheduling”. Radio resources (hereinafter sometimes simply referred to as “resources”) may be two-dimensionally distinguished by a frequency domain and a time domain, for example.
 eNB2は、UE3との無線通信に利用可能な無線リソースを、周波数領域及び時間領域の2次元で区切られる周波数・時間グリッドの単位でリソースの割り当てを実施してよい。リソースの割り当ては、「スケジューリング」と称されることがある。LTEにおいて、スケジューリングの単位は、「リソースブロック(RB)」と称される。 The eNB 2 may allocate resources in units of a frequency / time grid in which radio resources that can be used for radio communication with the UE 3 are divided in two dimensions in the frequency domain and the time domain. Resource allocation may be referred to as “scheduling”. In LTE, the unit of scheduling is referred to as a “resource block (RB)”.
 RBは、eNB2がUE3との無線通信に利用可能な無線リースを、時間領域におけるスロットと、周波数領域において隣り合う複数のサブキャリア(搬送波)と、を単位に分割した1つのブロックに相当する。 RB corresponds to one block obtained by dividing a radio lease that eNB 2 can use for radio communication with UE 3 into a slot in the time domain and a plurality of subcarriers (carrier waves) adjacent in the frequency domain.
 例えば、LTEにおいて、1スロットは、0.5msの時間長を有し、2スロットで1ms長の1サブフレームが構成され、10個のサブフレームで10ms長の無線フレームが構成される。RBは、例えば、2スロット(=1サブフレーム)×12サブキャリアで表される。 For example, in LTE, one slot has a time length of 0.5 ms, two slots form one subframe of 1 ms length, and ten subframes form a radio frame of 10 ms length. The RB is represented by, for example, 2 slots (= 1 subframe) × 12 subcarriers.
 eNB2とUE3との間の無線通信には、時分割複信(Time Division Duplex:TDD)、及び、周波数分割複信(Frequency Division Duplex:FDD)のいずれが適用されてもよい。 For radio communication between the eNB 2 and the UE 3, either time division duplex (Time Division Duplex: TDD) or frequency division duplex (Frequency Division Duplex: FDD) may be applied.
 TDDでは、1つの周波数(又は周波数帯域)を用いて、下り(ダウンリンク,DL)の通信と、上り(アップリンク,UL)の通信と、が異なる時間に実施される。 In TDD, using one frequency (or frequency band), downlink (downlink, DL) communication and uplink (uplink, UL) communication are performed at different times.
 例えば、eNB2は、UE3に対して、1つの周波数帯域においてDL通信のための時間とUL通信のための時間とを異なる時間にスケジューリングする。 For example, the eNB 2 schedules the time for DL communication and the time for UL communication at different times with respect to the UE 3 in one frequency band.
 したがって、eNB2及びUE3は、1つの周波数帯域において送信と受信とを異なる時間に実施する。 Therefore, the eNB 2 and the UE 3 perform transmission and reception at different times in one frequency band.
 これに対し、FDDでは、DLの通信とULの通信とが異なる周波数(又は周波数帯域)を用いて実施される。 On the other hand, in FDD, DL communication and UL communication are performed using different frequencies (or frequency bands).
 例えば、eNB2は、DL通信のための周波数とUL通信のための周波数とを通信のタイミングに関わらず異なる周波数にスケジューリングしてよい。 For example, the eNB 2 may schedule the frequency for DL communication and the frequency for UL communication to different frequencies regardless of the communication timing.
 したがって、eNB2及びUE3は、送信を行ないながら送信周波数とは異なる周波数にて受信を行なうことができる。 Therefore, the eNB 2 and the UE 3 can perform reception at a frequency different from the transmission frequency while performing transmission.
 ところで、第5世代(5G)の無線通信技術の実現に向けて、eNB2とUE3との間の通信に用いる新たな無線信号の信号波形の候補が議論されている。例えば、F-OFDMや、UF-OFDM、FBMCの信号波形が候補に挙げられている。 By the way, for the realization of the 5th generation (5G) radio communication technology, candidates for signal waveforms of new radio signals used for communication between the eNB 2 and the UE 3 are being discussed. For example, F-OFDM, UF-OFDM, and FBMC signal waveforms are listed as candidates.
 なお、F-OFDMは、「filtered Orthogonal Frequency Division Multiplexing」の略称であり、UF-OFDMは、「universal filtered OFDM」の略称であり、FBMCは、「Filter Bank Multi-Carrier」の略称である。 Note that F-OFDM is an abbreviation for “filtered Orthogonal Frequency Division Multiplexing”, UF-OFDM is an abbreviation for “universal filtered OFDM”, and FBMC is an abbreviation for “Filter Bank Multi-Carrier”.
 F-OFDM及びUF-OFDMでは、いずれも、後述する「サブバンド」の単位でフィルタが適用される。これに対し、FBMCでは、サブキャリアの単位でフィルタが適用される。 In both F-OFDM and UF-OFDM, filters are applied in units of “subbands” to be described later. On the other hand, in FBMC, a filter is applied in units of subcarriers.
 F-OFDMでは、シンボル間干渉の抑制のために、シンボルにサイクリックプレフィクス(CP)が付加される。これに対し、UF-OFDMでは、シンボルにCPは付加されず、代わりに、シンボル間にガードインターバル(無送信区間)を挿入することで、シンボル間干渉の抑制が図られる。 In F-OFDM, a cyclic prefix (CP) is added to a symbol to suppress intersymbol interference. On the other hand, in UF-OFDM, no CP is added to symbols, and instead, inter-symbol interference is suppressed by inserting guard intervals (non-transmission intervals) between symbols.
 図2に、F-OFDM(又は、UF-OFDM。以下同様。)での無線リソースの割り当て例を示す。F-OFDMでは、例えば、或る周波数帯域(例えば、システム帯域の全部でもよいし一部でもよい)を、複数の周波数帯域#1~#n(nは2以上の整数)に分割する。 FIG. 2 shows an example of radio resource allocation in F-OFDM (or UF-OFDM, the same shall apply hereinafter). In F-OFDM, for example, a certain frequency band (for example, all or a part of the system band) may be divided into a plurality of frequency bands # 1 to #n (n is an integer of 2 or more).
 分割された周波数帯域(「分割帯域」と略称してもよい。)#i(iは1~nのいずれか)のそれぞれは、「サブバンド」、「サブキャリアブロック」あるいは「クラスタ」と称されることがある。図2には、非限定的な一例として、3つのサブバンド#1~#3が示されている。 Each of the divided frequency bands (may be abbreviated as “divided band”) #i (i is any one of 1 to n) is referred to as “subband”, “subcarrier block”, or “cluster”. May be. FIG. 2 shows three subbands # 1 to # 3 as a non-limiting example.
 ここで、F-OFDMにおいては、図3に模式的に例示するように、サブバンド#i毎に信号の波形整形(別点すると、フィルタリング)が実施されてよい。フィルタリングには、例示的に、バンドパスフィルタ(BPF)が適用されてよい。 Here, in F-OFDM, as schematically illustrated in FIG. 3, signal waveform shaping (in other words, filtering) may be performed for each subband #i. For example, a band pass filter (BPF) may be applied to the filtering.
 サブバンド#i毎のフィルタリングによって、サブバンド#i間においては、通常のOFDMとは異なり、サブキャリア間の直交性は保たれなくてもよい。したがって、サブバンド#i間で、サブキャリア数や、サブキャリア間隔、送信時間間隔(transmission time interval, TTI)等が異なることも許容される。 Due to the filtering for each subband #i, the orthogonality between subcarriers may not be maintained between subbands #i, unlike normal OFDM. Therefore, it is allowed that the number of subcarriers, the subcarrier interval, the transmission time interval (transmission time interval, 等 TTI), and the like differ between subbands #i.
 例えば、サブバンド#i間では、サブキャリア数、シンボル数、シンボル長、スロット長、無線フレーム長、サブフレーム長(別言すると、TTI)等が異なっていてよい。1つのサブバンド#i内では、これらのパラメータ(便宜的に「伝送パラメータ」と称することがある。)は一定でよい。 For example, between the subbands #i, the number of subcarriers, the number of symbols, the symbol length, the slot length, the radio frame length, the subframe length (in other words, TTI), and the like may be different. Within one subband #i, these parameters (sometimes referred to as “transmission parameters” for convenience) may be constant.
 別言すると、F-OFDMでは、サブバンド#i毎に、サブキャリア数、シンボル数、シンボル長、スロット長、無線フレーム長、及び、サブフレーム長(TTI)のいずれか1つ以上を可変することが許容される。 In other words, in F-OFDM, one or more of the number of subcarriers, the number of symbols, the symbol length, the slot length, the radio frame length, and the subframe length (TTI) is varied for each subband #i. It is acceptable.
 そのため、或る周波数帯域(例えば、システム帯域)において、1OFDMシンボルあたりのサブキャリア数及びシンボル長が異なるOFDMシンボルが混在することも許容される。 Therefore, it is allowed to mix OFDM symbols having different numbers of subcarriers per OFDM symbol and different symbol lengths in a certain frequency band (for example, system band).
 図2の例では、サブバンド#1~#3のそれぞれにおいて、太枠で囲んだ異なるサイズの周波数・時間グリッドが1つのOFDMシンボル(「OFDM信号」と称してもよい。)に相当すると捉えてよい。 In the example of FIG. 2, in each of the subbands # 1 to # 3, it is considered that the frequency / time grids of different sizes surrounded by a thick frame correspond to one OFDM symbol (which may be referred to as “OFDM signal”). It's okay.
 例示的に、サブバンド#1のOFDMシンボルは、他のサブバンド#2及び#3のOFDMシンボルに比べて、シンボル長が短く、かつ、サブキャリア数が少ない。シンボル長が短いOFDMシンボルは、例えば、eNB2との間の無線伝搬環境が時間的に変化し易いUE3向け、例えば、高速移動するUE3向けに用いられてよい。 For example, the OFDM symbol of subband # 1 has a shorter symbol length and a smaller number of subcarriers than the OFDM symbols of other subbands # 2 and # 3. An OFDM symbol with a short symbol length may be used, for example, for UE3 whose radio propagation environment with eNB2 is likely to change with time, for example, for UE3 that moves at high speed.
 これに対して、サブバンド#3のOFDMシンボルは、他のサブバンド#2及び#3のOFDMシンボルに比べて、シンボル長が長く、かつ、サブキャリア数が多い(別言すると、サブキャリア間隔が短い)。 On the other hand, the OFDM symbol of subband # 3 has a longer symbol length and a larger number of subcarriers than the OFDM symbols of other subbands # 2 and # 3 (in other words, subcarrier spacing). Is short).
 サブバンド#3のOFDMシンボルは、無線伝搬環境が時間的にあまり変化しないUE3向け、例えば、低速移動するUE3や固定のUE3向けに用いられてよい。また、1OFDMシンボルあたりのサブキャリア間隔が他のサブバンド#1及び#2に比べて短いため、より多くのUE2を効率的にサブバンド#3に収容することが可能である。なお、低速移動するUE3や固定のUE3には、例示的に、IoT(Internet of Things)の無線機器が該当してよい。 The OFDM symbol of subband # 3 may be used for UE3 whose radio propagation environment does not change much in time, for example, UE3 moving at a low speed or fixed UE3. In addition, since the subcarrier interval per OFDM symbol is shorter than the other subbands # 1 and # 2, more UEs 2 can be efficiently accommodated in the subband # 3. Note that, for example, an IoT (Internet of Things) wireless device may correspond to the UE 3 that moves at a low speed or the fixed UE 3.
 サブバンド#2のOFDMシンボルは、サブバンド#1及びサブバンド#3のOFDMシンボルに対して中間的なシンボル長及びサブキャリア数を有する。サブバンド#2のOFDMシンボルは、例えば、平均的な移動速度のUE2向けに用いられてよい。 The subband # 2 OFDM symbol has an intermediate symbol length and number of subcarriers compared to the subband # 1 and subband # 3 OFDM symbols. The OFDM symbol of subband # 2 may be used for UE 2 having an average moving speed, for example.
 このように、F-OFDMは、サブバンド#i毎に、異なるパラメータをフィルタリングによって分離して連続する周波数帯域において共存させることができるため、複数のUE3に対して、それぞれの無線環境に適したパラメータを使用することができる。 As described above, F-OFDM can separate different parameters for each subband #i and coexist in a continuous frequency band by filtering, so that it is suitable for a plurality of UEs 3 in each radio environment. Parameters can be used.
 なお、「シンボル」は、無線通信における送信単位の一例であり、時間的に連続した信号波形を有する。シンボルは、例示的に、1以上のサブキャリアを1以上の送信データ信号によってデジタル変調することで生成されるから、「送信単位」は、「変調シンボルの単位」又は「変調単位」と言い換えてもよい。あるいは、シンボルの受信側においては、シンボル単位でデジタル復調が実施されるから、「送信単位」は、「復調単位」と言い換えてもよい。 A “symbol” is an example of a transmission unit in wireless communication, and has a signal waveform that is continuous in time. Since a symbol is exemplarily generated by digitally modulating one or more subcarriers with one or more transmission data signals, the “transmission unit” is rephrased as “modulation symbol unit” or “modulation unit”. Also good. Alternatively, since digital demodulation is performed in symbol units on the symbol receiving side, the “transmission unit” may be rephrased as “demodulation unit”.
 シンボル長は、デジタル変調するサブキャリア数を可変することで可変することができる。したがって、1シンボルあたりのサブキャリア数やシンボル長が異なることは、送信単位である時間的に連続した信号波形が異なることを意味する。 The symbol length can be changed by changing the number of subcarriers to be digitally modulated. Therefore, the difference in the number of subcarriers and the symbol length per symbol means that the signal waveforms that are temporally continuous as transmission units are different.
 よって、以下に説明するように、1つのシンボルを時間領域で分割することは、送信単位である時間的に連続した信号波形を時間領域で分割することに相当する。 Therefore, as described below, dividing one symbol in the time domain is equivalent to dividing a time-continuous signal waveform as a transmission unit in the time domain.
 なお、本実施形態では、時間領域において分割される信号波形の一例として、OFDM信号の波形について説明するが、無線通信に用いられる信号波形であれば、他の信号波形であってもよい。 In the present embodiment, the waveform of the OFDM signal will be described as an example of the signal waveform divided in the time domain, but other signal waveforms may be used as long as they are signal waveforms used for wireless communication.
 他の信号波形の非限定的な一例としては、RRC(Root Raised Cosine)フィルタが適用された信号の波形や、FBMC信号の波形が挙げられる。或る周波数帯域において混在が許容される信号波形は、異なる種類の信号波形でもよいし、同一種類であるが異なる種類の伝送パラメータを有する信号波形でもよい。伝送パラメータのいずれか1以上を可変することで、異なる信号波形を得ることができる。 Non-limiting examples of other signal waveforms include the waveform of a signal to which an RRC (Root Raised Cosine) filter is applied and the waveform of an FBMC signal. The signal waveforms that are allowed to be mixed in a certain frequency band may be different types of signal waveforms, or may be signal waveforms having the same type but different types of transmission parameters. Different signal waveforms can be obtained by changing any one or more of the transmission parameters.
 或る周波数帯域において異なる信号波形の混在が許容されることは、当該周波数帯域を分割した分割帯域の1つに属する信号波形が、他の分割帯域に属する信号波形とは異なり得ることを意味する。 Allowing mixing of different signal waveforms in a certain frequency band means that a signal waveform belonging to one of the divided bands obtained by dividing the frequency band can be different from a signal waveform belonging to another divided band. .
 例えば、図2に例示したサブバンド#1~#3間では、送信又は受信されるOFDM信号の波形が異なる。 For example, the waveform of the transmitted or received OFDM signal differs between subbands # 1 to # 3 illustrated in FIG.
 ところで、5Gの無線通信技術では、低遅延な通信の実現が要求されており、そのため、TDDの切り替え時間(別言すると、UL通信とDL通信との切り替え時間)を短縮化する要求がある。 By the way, in the 5G wireless communication technology, it is required to realize low-latency communication. Therefore, there is a request to shorten the TDD switching time (in other words, the switching time between UL communication and DL communication).
 UL通信とDL通信との切り替え時間を短縮化するには、例えば、TDDフレームにおけるDL通信の時間及びUL通信の時間(別言すると、DLフレーム及びULフレームの長さ)を短くすることが検討される。 In order to shorten the switching time between the UL communication and the DL communication, for example, it is considered to shorten the DL communication time and the UL communication time (in other words, the length of the DL frame and the UL frame) in the TDD frame. Is done.
 しかし、フレーム長を短くすると、F-OFDMで用いられるような、シンボル長及びサブキャリア間隔の異なるOFDMシンボルを1つのフレームに混在させることが難しくなることがある。 However, if the frame length is shortened, it may be difficult to mix OFDM symbols having different symbol lengths and subcarrier intervals as used in F-OFDM in one frame.
 例えば図4の(1)に示すように、平均的なシンボル長のOFDMシンボルを最大で5つ収容できるようにフレーム長が好適化されたTDDフレームを想定する。 For example, as shown in (1) of FIG. 4, a TDD frame whose frame length is optimized so as to accommodate a maximum of five OFDM symbols having an average symbol length is assumed.
 当該TDDフレームに、平均的なシンボル長のOFDMシンボルよりもシンボル長の長いOFDMシンボルを収容しようとすると、図4の(2)に例示するように、5シンボルよりも少ないシンボル数のOFDMシンボルしか収容できない。 If an OFDM symbol having a longer symbol length than the OFDM symbol having an average symbol length is to be accommodated in the TDD frame, as illustrated in (2) of FIG. Cannot be accommodated.
 非限定的な一例として、図4の(2)には、平均的なシンボル長のOFDMシンボルの2倍のシンボル長のOFDMシンボルが示されている。この場合、1つのTDDフレームには、例えば、5シンボルよりも少ない2シンボル分しか収容できない。3シンボル分を収容しようとすると、1つのTDDフレームに収まりきらず、OFDMシンボルの少なくとも一部がTDDフレームからはみ出してしまう。 As a non-limiting example, (2) in FIG. 4 shows an OFDM symbol having a symbol length twice as long as an OFDM symbol having an average symbol length. In this case, one TDD frame can accommodate, for example, only two symbols fewer than five symbols. If three symbols are to be accommodated, they will not fit in one TDD frame, and at least a part of the OFDM symbols will protrude from the TDD frame.
 2シンボルで収めるために、図4の(3)に例示するように、1OFDMシンボルあたりに付加されるCPの長さを増やしてもよいが、CPのオーバーヘッドにより、リソース(例えば周波数)の利用効率が低下する。 In order to accommodate 2 symbols, the length of CP added per OFDM symbol may be increased as illustrated in (3) of FIG. 4, but resource (for example, frequency) utilization efficiency is increased due to CP overhead. Decreases.
 なお、図2には、説明の簡単化のために、各シンボル長が整数倍になるように図示されているが、実際のOFDMシンボルには、CPが付加されるため、図4のようにCPも含めたOFDMシンボル長は必ずしも整数倍にはならない。そのため、所定のフレーム長に複数のOFDMシンボルを収めつつCP長を最適化することは難しい。 In FIG. 2, for simplicity of explanation, each symbol length is shown to be an integral multiple. However, since an actual OFDM symbol is added with a CP, as shown in FIG. The OFDM symbol length including the CP is not necessarily an integral multiple. For this reason, it is difficult to optimize the CP length while accommodating a plurality of OFDM symbols within a predetermined frame length.
 (送信処理の第1例)
 そこで、本実施形態では、図5に模式的に例示するように、1つのフレームに収まり切らないOFDMシンボルを2以上に分割し、分割したOFDMシンボル(便宜的に「分割シンボル」と称してよい。)を、時間的に異なる複数のフレームに別けて送信する。別言すると、分割シンボルは、時間的に異なるフレームに跨って送信される。
(First example of transmission processing)
Therefore, in this embodiment, as schematically illustrated in FIG. 5, an OFDM symbol that does not fit in one frame is divided into two or more and divided OFDM symbols (for convenience, they may be referred to as “division symbols”). .) Is transmitted separately in a plurality of frames which are different in time. In other words, the divided symbols are transmitted across different frames in time.
 図5の例では、第1フレームに収まりきらない3番目のOFDMシンボルを2分割し、2つの分割シンボルのうち、時間的に先行する分割シンボルを第1フレームの末尾で送信し、後続の分割シンボルを第2フレームの先頭で送信する。 In the example of FIG. 5, the third OFDM symbol that does not fit in the first frame is divided into two, and among the two divided symbols, the temporally preceding divided symbol is transmitted at the end of the first frame, and the subsequent division is performed. The symbol is transmitted at the beginning of the second frame.
 これにより、1シンボルあたりのCP長を大きく調整しなくても複数フレームにわたって収容シンボル数を調整できるようになるため、フレーム構成の自由度を向上できる。 This makes it possible to adjust the number of accommodated symbols over a plurality of frames without greatly adjusting the CP length per symbol, thereby improving the degree of freedom of the frame configuration.
 したがって、例えば既存のフレーム長を変更できない場合や、通信の低遅延化のためにフレーム長が短く制限された場合でも、異なるシンボル長の信号を、リソースを効率的に利用しつつ、送信することが可能になる。 Therefore, for example, even when the existing frame length cannot be changed or when the frame length is limited to be short for communication delay, signals having different symbol lengths are transmitted while efficiently using resources. Is possible.
 なお、分割シンボルが別けて収容される第1フレームと第2フレームとは、図5に例示するように時間的に連続しないフレームであってよい。別言すると、分割シンボルは、時間的に不連続な時間区間に別けて送信されてよい。 Note that the first frame and the second frame in which the divided symbols are accommodated separately may be frames that are not temporally continuous as illustrated in FIG. In other words, the divided symbols may be transmitted separately in time intervals that are discontinuous in time.
 例えば図5において、第1フレームと第2フレームとの間には、例示的に、1つ以上のフレームが介在してよい。非限定的な一例として、図6及び図7に示すように、第1及び第2の送信フレーム(例えば、DLフレーム)の間に、1つ以上の受信フレーム(例えば、ULフレーム)が設定されてもよい。 For example, in FIG. 5, for example, one or more frames may be interposed between the first frame and the second frame. As one non-limiting example, as shown in FIGS. 6 and 7, one or more received frames (for example, UL frames) are set between the first and second transmission frames (for example, DL frames). May be.
 例えば、或るサブバンド#iでのUL受信期間に、異なるサブバンド#j(jは、j≠iを満たす1~nのいずれかの整数)においてDL送信が実施されると、DL送信がUL受信に干渉してULの受信品質が低下し得る。 For example, when DL transmission is performed in a different subband #j (j is an integer from 1 to n satisfying j ≠ i) during a UL reception period in a certain subband #i, the DL transmission is performed. The reception quality of UL may deteriorate due to interference with UL reception.
 そのため、図6及び図7に例示するように、異なるサブバンド#i-#j間でUL受信とDL送信とが同時期に実施されないように、TDDフレームが構成されることがある。このような場合に、第1のDLフレームと第2のDLフレームとの間に、1つの以上のULフレームが設定され得る。 Therefore, as illustrated in FIGS. 6 and 7, the TDD frame may be configured so that UL reception and DL transmission are not performed at the same time between different subbands # i- # j. In such a case, one or more UL frames may be set between the first DL frame and the second DL frame.
 なお、図6は、サブバンド#i及び#jが周波数領域において不連続である(別言すると、隣接しない)例を示し、図7は、サブバンド#i及び#jが周波数領域において連続する(別言すると、隣接する)例を示している。 6 shows an example in which subbands #i and #j are discontinuous (in other words, not adjacent) in the frequency domain, and FIG. 7 shows that subbands #i and #j are continuous in the frequency domain. An example (in other words, adjacent) is shown.
 また、図5~図7の例では、2分割された分割シンボルが時間的に不連続な2つのフレームに別けて送信される例であるが、3つ以上に分割された分割シンボル一部又は全部が、時間的に不連続な3つ以上のフレームに別けて送信されてもよい。 5 to 7 are examples in which the divided symbols divided into two are transmitted separately in two temporally discontinuous frames. However, a part of divided symbols divided into three or more or All may be transmitted separately in three or more frames that are discontinuous in time.
 (送信処理部の第1構成例)
 図8は、図5にて説明したOFDMシンボルの分割送信を実現可能な送信処理部20の第1構成例を示すブロック図である。送信処理部20は、例示的に、eNB2に備えられてよい。送信処理部20を備えたeNB2は、無線送信局(「送信局」と略称することがある。)の一例であると捉えてもよい。
(First configuration example of transmission processing unit)
FIG. 8 is a block diagram illustrating a first configuration example of the transmission processing unit 20 capable of realizing the OFDM symbol division transmission described with reference to FIG. The transmission processing unit 20 may be provided in the eNB 2 as an example. The eNB 2 including the transmission processing unit 20 may be regarded as an example of a radio transmission station (sometimes abbreviated as “transmission station”).
 図8に示すように、送信処理部20は、例示的に、送信シンボル生成部21、スイッチ(SW)22、無線送信部23、シンボル分割部24、BPF25、タイミング調整部26、及び、アンテナ27を備えてよい。 As illustrated in FIG. 8, the transmission processing unit 20 exemplarily includes a transmission symbol generation unit 21, a switch (SW) 22, a wireless transmission unit 23, a symbol division unit 24, a BPF 25, a timing adjustment unit 26, and an antenna 27. May be provided.
 なお、図8において、符号51は、送信処理部20の動作を制御する制御部を表す。制御部51は、送信処理部20が備えられた無線機器(例えば、eNB2)に備えられてよい。 In FIG. 8, reference numeral 51 denotes a control unit that controls the operation of the transmission processing unit 20. The control unit 51 may be provided in a wireless device (for example, eNB 2) provided with the transmission processing unit 20.
 送信シンボル生成部21は、例示的に、送信シンボルの一例としてOFDMシンボルを生成する。なお、送信シンボルは、送信信号の一例である。 The transmission symbol generation unit 21 exemplarily generates an OFDM symbol as an example of a transmission symbol. A transmission symbol is an example of a transmission signal.
 スイッチ22は、例示的に、制御部51からの制御に応じて、送信シンボル生成部21で生成された送信シンボルの出力先を、無線送信部23及びシンボル分割部24のいずれかに切り替える。 The switch 22 illustratively switches the output destination of the transmission symbol generated by the transmission symbol generation unit 21 to one of the radio transmission unit 23 and the symbol division unit 24 according to control from the control unit 51.
 例えば、OFDMシンボルの分割が必要でなければ、スイッチ22の出力先が無線送信部23側に切り替えられる。したがって、当該OFDMシンボルは、無線送信部23へ出力されて、分割されずに通常通りにアンテナ27から送信される。 For example, if division of the OFDM symbol is not necessary, the output destination of the switch 22 is switched to the wireless transmission unit 23 side. Therefore, the OFDM symbol is output to the wireless transmission unit 23 and transmitted from the antenna 27 as usual without being divided.
 一方、OFDMシンボルを分割しなければ所定フレームに収まり切らない場合、スイッチ22の出力先がシンボル分割部24側に切り替えられて、当該OFDMシンボルは、シンボル分割部24に出力される。 On the other hand, if the OFDM symbol does not fit into a predetermined frame unless it is divided, the output destination of the switch 22 is switched to the symbol division unit 24 side, and the OFDM symbol is output to the symbol division unit 24.
 シンボル分割部24は、例示的に、図5にて説明したように、OFDMシンボルを分割する。分割数は、2以上であってよい。 The symbol dividing unit 24 exemplarily divides the OFDM symbol as described in FIG. The number of divisions may be two or more.
 BPF25は、分割送信用のBPF25と称してよく、例示的に、送信周波数帯域の帯域幅に応じたBPF特性を有してよい。BPF25は、シンボル分割部24から入力された分割シンボルをそれぞれ当該BPF特性にて個別にフィルタリングしてよい。 The BPF 25 may be referred to as a divided transmission BPF 25, and may have a BPF characteristic according to the bandwidth of the transmission frequency band. The BPF 25 may individually filter the divided symbols input from the symbol dividing unit 24 using the BPF characteristics.
 なお、送信周波数帯域は、例示的に、サブバンド#iの1つに対応してよい。BPF25にて、分割シンボルのそれぞれをフィルタリングすることで、シンボル分割による周波数帯域の拡大を抑制することができる。 Note that the transmission frequency band may illustratively correspond to one of the subbands #i. By filtering each of the divided symbols in the BPF 25, it is possible to suppress the expansion of the frequency band due to the symbol division.
 タイミング調整部26は、例示的に、BPF25にてフィルタリングされた分割シンボルが、図5に例示したように異なる送信フレームにて送信されるように、分割シンボル間のタイミング調整を行なう。 The timing adjustment unit 26 exemplarily adjusts the timing between the divided symbols so that the divided symbols filtered by the BPF 25 are transmitted in different transmission frames as illustrated in FIG.
 無線送信部23は、例示的に、スイッチ22又はタイミング調整部26から入力されたOFDMシンボルを無線信号にアップコンバートしてアンテナ27から送信する。 The wireless transmission unit 23 illustratively up-converts the OFDM symbol input from the switch 22 or the timing adjustment unit 26 into a wireless signal and transmits it from the antenna 27.
 タイミング調整部26及び無線送信部23は、分割シンボルを時間的に不連続な複数の時間区間に別けて送信する送信部の一例である。 The timing adjustment unit 26 and the wireless transmission unit 23 are an example of a transmission unit that transmits divided symbols in a plurality of temporally discontinuous time intervals.
 なお、図8に点線で例示するように、非分割のOFDMシンボルは、無線送信部23の前段に備えられた通常送信(非分割送信)用のBPF25にてフィルタリングされてもよい。 Note that, as exemplified by a dotted line in FIG. 8, the non-divided OFDM symbol may be filtered by the BPF 25 for normal transmission (non-divided transmission) provided in the previous stage of the wireless transmission unit 23.
 通常送信用のBPF25は、例示的に、分割送信用のBPF25と同等のBPF特性を有してよい。ただし、通常送信用のBPF25は、非分割のOFDMシンボルを当該BPF特性にてフィルタリングする。 The BPF 25 for normal transmission may exemplarily have a BPF characteristic equivalent to the BPF 25 for divided transmission. However, the BPF 25 for normal transmission filters undivided OFDM symbols with the BPF characteristic.
 (F-OFDMへの適用例)
 図6や図7に例示したように、F-OFDMにおいてOFDMシンボルの分割送信を実施する場合には、送信処理部20は、図9に例示するように構成されてよい。図9に例示する構成例は、送信処理部20の第2構成例に相当する。なお、図9において、図8と同一符号を付した部分は、特に断らない限り、図8において同一符号を付した部分と同一若しくは同様の部分である。
(Application example to F-OFDM)
As illustrated in FIG. 6 and FIG. 7, when performing OFDM symbol division transmission in F-OFDM, the transmission processing unit 20 may be configured as illustrated in FIG. The configuration example illustrated in FIG. 9 corresponds to a second configuration example of the transmission processing unit 20. In FIG. 9, the same reference numerals as those in FIG. 8 are the same or similar to the same reference numerals in FIG. 8 unless otherwise specified.
 図9の例では、サブバンド#nに対して、図8に例示した分割送信のための構成(例示的に、スイッチ22、シンボル分割部24、及び、タイミング調整部26)が適用されている。ただし、分割送信のための構成は、サブバンド#nに限らず、サブバンド#1~#nの少なくとも一部に適用されてよい。 In the example of FIG. 9, the configuration for split transmission illustrated in FIG. 8 (for example, the switch 22, the symbol splitting unit 24, and the timing adjustment unit 26) is applied to the subband #n. . However, the configuration for split transmission is not limited to subband #n, and may be applied to at least part of subbands # 1 to #n.
 図9の例において、送信処理部20は、例えば、サブバンド#1~nのそれぞれに対応したBPF25-1~25-nを備えてよい。サブバンド#nに対応するBPF25-nは、通常送信用と分割送信用とで2つ備えられてよい。 In the example of FIG. 9, the transmission processing unit 20 may include, for example, BPFs 25-1 to 25-n corresponding to the subbands # 1 to #n. Two BPFs 25-n corresponding to subband #n may be provided for normal transmission and divided transmission.
 BPF25-iは、それぞれ、対応するサブバンド#iの帯域幅に応じたBPF特性を有し、入力されたOFDMシンボルを当該BPF特性にてフィルタリングする。 Each BPF 25-i has a BPF characteristic corresponding to the bandwidth of the corresponding subband #i, and filters the input OFDM symbol with the BPF characteristic.
 送信シンボル生成部21において、サブバンド#1~#nのOFDMシンボルがそれぞれ生成される。サブバンド#nを除いたサブバンド#1~#(n-1)のOFDMシンボルは、それぞれ、対応するBPF25-1~25-(n-1)に入力される。サブバンド#nのOFDMシンボルは、例示的に、スイッチ22に入力される。 The transmission symbol generator 21 generates OFDM symbols of subbands # 1 to #n. The OFDM symbols of subbands # 1 to # (n−1) excluding subband #n are input to corresponding BPFs 25-1 to 25- (n−1), respectively. The OFDM symbol of subband #n is illustratively input to switch 22.
 スイッチ22は、例示的に、制御部51からの制御に応じて、送信シンボル生成部21から入力されたOFDMシンボルの出力先を、通常送信用のBPF25-n及びシンボル分割部24のいずれかに切り替える。 For example, according to the control from the control unit 51, the switch 22 sets the output destination of the OFDM symbol input from the transmission symbol generation unit 21 to either the BPF 25-n for normal transmission or the symbol division unit 24. Switch.
 例えば、サブバンド#nについてOFDMシンボルの分割が必要でなければ、当該OFDMシンボルは通常送信用のBPF25-nへ出力される。これに対し、サブバンド#nについてOFDMシンボルを分割しなければ所定フレームに収まり切らない場合、当該OFDMシンボルは、シンボル分割部24に出力される。 For example, if it is not necessary to divide OFDM symbols for subband #n, the OFDM symbols are output to BPF 25-n for normal transmission. On the other hand, if the OFDM symbol is not divided for subband #n and does not fit in the predetermined frame, the OFDM symbol is output to symbol division section 24.
 シンボル分割部24は、例示的に、図6や図7に例示したように、入力されたOFDMシンボルを分割する。分割数は、2以上であってよい。 The symbol dividing unit 24 divides the input OFDM symbol, for example, as illustrated in FIG. 6 and FIG. The number of divisions may be two or more.
 分割送信用のBPF25-nは、例示的に、シンボル分割部24から入力された分割シンボルをそれぞれ個別にフィルタリングする。 The BPF 25-n for division transmission, for example, individually filters the division symbols input from the symbol division unit 24.
 タイミング調整部26は、例示的に、分割送信用のBPF25-nにてフィルタリングされた分割シンボルが、図6や図7に例示したように異なる送信フレームにて送信されるように、分割シンボル間のタイミング調整を行なう。 The timing adjustment unit 26 exemplifies the interval between the divided symbols so that the divided symbols filtered by the BPF 25-n for divided transmission are transmitted in different transmission frames as illustrated in FIG. 6 and FIG. Adjust the timing.
 このように、サブバンド#nのフレームで送信する分割シンボルは、分割送信用のBPF25-nにてそれぞれ個別にフィルタリングされた後、タイミング調整部26にて、時間的に異なるフレームで送信されるようにタイミング調整が施される。 In this way, the divided symbols transmitted in the subband #n frame are individually filtered by the divided transmission BPF 25-n, and then transmitted by the timing adjustment unit 26 in temporally different frames. The timing is adjusted as follows.
 各サブバンド#1~#nのOFDMシンボル(分割シンボルが含まれてよい。)は、例示的に、加算器28で加算(「多重化」と称してもよい。)されて、既述の無線送信部23を通じてアンテナ27から送信される。 The OFDM symbols (which may include divided symbols) of each of the subbands # 1 to #n are exemplarily added (may be referred to as “multiplexing”) by the adder 28, and are described above. It is transmitted from the antenna 27 through the wireless transmission unit 23.
 (受信処理の第1例)
 次に、上述のごとく分割送信されたOFDMシンボルの受信処理について説明する。当該受信処理は、例示的に、UE3での受信処理に相当してよい。
(First example of reception processing)
Next, reception processing of the OFDM symbol divided and transmitted as described above will be described. The reception process may illustratively correspond to a reception process at UE3.
 図10(A)に模式的に例示するように、既述の送信処理部20において、分割が不要なOFDMシンボルについては、そのまま送信される(非分割送信)。 As schematically illustrated in FIG. 10A, in the transmission processing unit 20 described above, an OFDM symbol that does not require division is transmitted as it is (non-division transmission).
 これに対し、図10(B)に模式的に例示するように、送信処理部20において、シンボル分割されたOFDMシンボルについては、時間的に異なるフレームにて個別に送信される。 On the other hand, as schematically illustrated in FIG. 10B, in the transmission processing unit 20, the OFDM symbols subjected to symbol division are individually transmitted in temporally different frames.
 受信処理では、図10(C)に模式的に例示するように、受信した分割シンボルを時間的に連続するようにタイミング調整して合成(例えば、加算)すると、非分割送信時と実質的に同等の信号波形が得られる。 In the reception process, as schematically illustrated in FIG. 10C, when the received divided symbols are synthesized by adjusting the timing so that they are temporally continuous (for example, addition), they are substantially the same as in non-divided transmission. An equivalent signal waveform is obtained.
 したがって、合成によって復元されたOFDMシンボルは、図10(A)に例示した、非分割送信の通常のOFDMシンボルに対する復調処理と同等の復調処理で正しく復調することができる。 Therefore, the OFDM symbol restored by combining can be correctly demodulated by a demodulation process equivalent to the demodulation process for a normal OFDM symbol of non-division transmission illustrated in FIG.
 ただし、受信した分割シンボルには、フィルタリングに起因した雑音が含まれないか、含まれていても復元に影響しない程度の雑音レベルであると仮定する。また、分割シンボルの無線伝搬路(「チャネル」と称してもよい。)が時間的に変化していないか、変化していても復元に影響しない程度の変化であると仮定する。 However, it is assumed that the received divided symbols do not include noise due to filtering or have a noise level that does not affect restoration even if included. Further, it is assumed that the radio propagation path (also referred to as “channel”) of the divided symbols does not change with time, or changes that do not affect restoration even if they change.
 なお、分割シンボルを単独で個別に復調しても、分割シンボル単独ではサブキャリ間の直交性が保たれないため、通常のOFDMシンボルの復調結果とは大きく異なることになる。その結果、受信特性(「受信品質」と称してもよい。)が劣化する。 Note that even if the divided symbols are individually demodulated individually, the orthogonality between the sub-carriers is not maintained with the divided symbols alone, which is significantly different from the demodulation result of a normal OFDM symbol. As a result, reception characteristics (may be referred to as “reception quality”) deteriorate.
 また、図10(A)~図10(C)の例は、OFDMシンボルに適用されるフィルタリングの時間応答(以下「フィルタ時間応答」と称することがある。)を考慮していない。フィルタ時間応答を考慮した受信処理の一例を図11(A)~図11(D)に示す。 Also, the examples of FIGS. 10A to 10C do not consider the time response of filtering applied to the OFDM symbol (hereinafter sometimes referred to as “filter time response”). An example of the reception process considering the filter time response is shown in FIGS. 11 (A) to 11 (D).
 図11(A)及び図11(B)に模式的に例示するように、既述の送信処理部20において、分割が不要なOFDMシンボルについては、当該OFDMシンボル全体として送信周波数帯域の帯域幅に応じたフィルタリングが施されて送信される(非分割送信)。 As schematically illustrated in FIGS. 11A and 11B, in the transmission processing unit 20 described above, the OFDM symbol that does not need to be divided has a bandwidth of a transmission frequency band as a whole. The corresponding filtering is performed and transmitted (non-divided transmission).
 そのため、非分割送信のOFDMシンボルには、OFDMシンボル全体としてフィルタ時間応答に応じた信号波形の「なまり」が生じる。 Therefore, in the OFDM symbol of non-division transmission, a “round” of the signal waveform corresponding to the filter time response occurs as a whole OFDM symbol.
 これに対し、送信処理部20において、シンボル分割されたOFDMシンボルについては、図11(C)に模式的に例示するように、分割シンボル毎にフィルタリングが施されて送信される。そのため、分割シンボル毎に、フィルタ時間応答に応じた信号波形の「なまり」が生じる。 On the other hand, in the transmission processing unit 20, the OFDM symbols that are divided into symbols are filtered for each divided symbol and transmitted as schematically illustrated in FIG. Therefore, a “round” of the signal waveform corresponding to the filter time response occurs for each divided symbol.
 しかし、受信処理において、図11(D)に模式的に例示するように、受信した分割シンボルを時間的に連続するようにタイミング調整し、フィルタ時間応答の時間波形を含めて合成(例えば、加算)すると、非分割送信時と実質的に同等の信号波形が得られる。送信側及び受信側の双方でOFDMシンボルのフィルタリングが実施される場合、フィルタ時間応答は、双方のフィルタ時間応答の合成でよい。 However, in the reception process, as schematically illustrated in FIG. 11D, the received divided symbols are adjusted in timing so as to be temporally continuous, and are synthesized (for example, added) including the time waveform of the filter time response. ), A signal waveform substantially equivalent to that in non-divided transmission can be obtained. If OFDM symbol filtering is performed on both the transmitting side and the receiving side, the filter time response may be a combination of both filter time responses.
 したがって、合成によって復元されたOFDMシンボルは、図10(B)に例示した、非分割送信の通常のOFDMシンボルに対する復調処理と同等の復調処理で正しく復調することができる。 Therefore, the OFDM symbol restored by combining can be correctly demodulated by the demodulation processing equivalent to the demodulation processing for the normal OFDM symbol of non-division transmission illustrated in FIG.
 ただし、図11(A)~図11(D)の例においても、図10(A)~図10(C)の例と同様に、受信した分割シンボルには、フィルタリングに起因した雑音が含まれないか、含まれていても復元に影響しない程度の雑音レベルであると仮定する。また、分割シンボルの無線伝搬路(以下「伝搬路」と略称することがある。)が時間的に変化していないか、変化していても復元に影響しない程度の変化であると仮定する。 However, in the examples of FIGS. 11A to 11D as well, as in the examples of FIGS. 10A to 10C, the received divided symbols include noise due to filtering. It is assumed that the noise level does not affect the restoration even if it is included. Further, it is assumed that the radio propagation path of the divided symbols (hereinafter may be abbreviated as “propagation path”) does not change with time, or changes that do not affect the restoration even if they change.
 (受信処理部の第1構成例)
 図12は、上述した受信処理を実現可能な受信処理部30の第1構成例を示すブロック図である。受信処理部30は、例示的に、UE3に備えられてよい。受信処理部30を備えたUE3は、無線受信局(「受信局」と略称することがある。)の一例であると捉えてもよい。
(First configuration example of reception processing unit)
FIG. 12 is a block diagram illustrating a first configuration example of the reception processing unit 30 capable of realizing the above-described reception processing. The reception processing unit 30 may be provided in the UE 3 as an example. The UE 3 provided with the reception processing unit 30 may be regarded as an example of a radio reception station (sometimes abbreviated as “reception station”).
 図12に示すように、受信処理部30は、例示的に、ADC(analog-to-digital converter)31、分割シンボル抽出部32、タイミング調整・合成(加算)部33、及び、復調処理部34を備えてよい。 As illustrated in FIG. 12, the reception processing unit 30 exemplarily includes an analog-to-digital converter (ADC) 31, a divided symbol extraction unit 32, a timing adjustment / synthesis (addition) unit 33, and a demodulation processing unit 34. May be provided.
 ADC31は、受信信号をデジタル信号に変換する。受信デジタル信号は、例示的に、分割シンボル抽出部32と復調処理部34とに入力されてよい。 The ADC 31 converts the received signal into a digital signal. For example, the received digital signal may be input to the divided symbol extraction unit 32 and the demodulation processing unit 34.
 分割シンボル抽出部32は、例示的に、ADC31から入力されたデジタル信号から、分割シンボルを抽出する。分割シンボルは、図5~図7に例示したように、時間的に異なるフレームの末尾又は先頭に収容されているから、フレームタイミングを基に検出できる。フレームタイミングは、例えば、eNB2とUE3との間でフレーム同期が確立することで検出できる。 The division symbol extraction unit 32 illustratively extracts a division symbol from the digital signal input from the ADC 31. As illustrated in FIGS. 5 to 7, the divided symbols are accommodated at the end or the beginning of a temporally different frame, and can be detected based on the frame timing. The frame timing can be detected, for example, by establishing frame synchronization between the eNB 2 and the UE 3.
 タイミング調整・合成部33は、図10(B)及び図10(C)や図11(C)及び図11(D)に例示したように、分割シンボル抽出部32で抽出された分割シンボルを、時間的に連続するようにタイミング調整して合成する。これにより、分割前の元のOFDMシンボルが復元される。 As illustrated in FIGS. 10B and 10C, FIG. 11C, and FIG. 11D, the timing adjustment / combination unit 33 determines the divided symbols extracted by the divided symbol extraction unit 32 as follows. The timing is adjusted so that it is continuous in time. As a result, the original OFDM symbol before division is restored.
 復調処理部34は、例示的に、タイミング調整・合成部33にて復元されたOFDMシンボルを、非分割送信の通常のOFDMシンボルの復調と同様にして復調する。 For example, the demodulation processing unit 34 demodulates the OFDM symbol restored by the timing adjustment / combination unit 33 in the same manner as the demodulation of a normal OFDM symbol for non-division transmission.
 なお、非分割送信の通常のOFDMシンボルは、ADC31から、分割シンボル抽出部32及びタイミング調整・合成部33を経由しないルートで、復調処理部34にて通常通りに復調されてよい。 Note that a normal OFDM symbol for non-division transmission may be demodulated as usual by the demodulation processing unit 34 through a route that does not pass through the division symbol extraction unit 32 and the timing adjustment / synthesis unit 33 from the ADC 31.
 (送信処理の第2例)
 図13は、送信処理の第2例を示す図である。送信処理の第2例は、図5~図7に例示した送信処理の第1例の変形例に相当すると捉えてもよい。図13に例示するように、分割シンボルは、その一部が時間的に異なるフレームにて重複して送信されてもよい。
(Second example of transmission processing)
FIG. 13 is a diagram illustrating a second example of transmission processing. The second example of the transmission process may be considered to correspond to a modification of the first example of the transmission process illustrated in FIGS. As illustrated in FIG. 13, a part of the divided symbols may be transmitted in duplicate in frames that are temporally different.
 例えば、或るフレームで送信される第1の分割シンボルの一部が、時間的に異なる他のフレームで送信される第2の分割シンボルと共に当該他のフレームにて冗長的に送信されてよい。 For example, a part of the first division symbol transmitted in a certain frame may be redundantly transmitted in the other frame together with the second division symbol transmitted in another temporally different frame.
 例えば図13において、第2フレームで送信される分割シンボルの先頭から一部をコピーし、コピー部分を第1フレームで送信される分割シンボルの末尾に設定してよい。 For example, in FIG. 13, a part may be copied from the beginning of the divided symbol transmitted in the second frame, and the copy part may be set at the end of the divided symbol transmitted in the first frame.
 あるいは逆に、第1フレームで送信される分割シンボルの末尾から一部をコピーして、コピー部分を第2フレームで送信される分割シンボルの先頭に設定してもよい。 Alternatively, conversely, a part may be copied from the end of the divided symbol transmitted in the first frame, and the copy part may be set at the beginning of the divided symbol transmitted in the second frame.
 分割シンボルの部分的なコピーは、例示的に、図8や図9に例示したシンボル分割部24にて実施されてよい。コピー部分の異なるフレームへの設定は、例示的に、図8や図9に例示したタイミング調整部26にて実施されてよい。受信側での復調時には重複部分を切り捨てることにより、図10と同様に復調処理を行なうことができる。 The partial copying of the divided symbols may be performed by the symbol dividing unit 24 illustrated in FIGS. 8 and 9 exemplarily. For example, the setting of the copy portion to a different frame may be performed by the timing adjustment unit 26 illustrated in FIGS. 8 and 9. By demodulating the overlapping part at the time of demodulation on the receiving side, the demodulation process can be performed in the same manner as in FIG.
 このように、分割シンボルの一部を重複して送信することを許容することで、フレーム構成の自由度を向上できる。 In this way, by allowing a part of the divided symbols to be transmitted in duplicate, the degree of freedom of the frame configuration can be improved.
 (送信処理の第3例)
 分割シンボルを時間的に異なるフレームにて送信する場合、分割シンボル毎に伝搬路環境が変化している可能性がある。ここで、TDD通信では、送受信の伝搬路に対象性があるため、例えば、受信信号の伝搬路特性から送信信号の伝搬路特性を推定してよい。
(Third example of transmission processing)
When transmitting divided symbols in temporally different frames, the propagation path environment may change for each divided symbol. Here, in TDD communication, since the transmission / reception propagation path has objectivity, for example, the propagation path characteristic of the transmission signal may be estimated from the propagation path characteristic of the reception signal.
 したがって、例えば、eNB2は、UE3から受信したUL信号の伝搬路特性を基にDLの伝搬路特性を推定(別言すると、チャネル推定)してよい。チャネル推定には、参照信号やパイロット信号等の、eNB2とUE3との間で既知の信号が用いられてよい。 Therefore, for example, the eNB 2 may estimate the DL propagation path characteristic (in other words, channel estimation) based on the propagation path characteristic of the UL signal received from the UE 3. For channel estimation, a known signal between the eNB 2 and the UE 3 such as a reference signal or a pilot signal may be used.
 なお、DLの伝搬路特性は、UE3がeNB2に報告してもよい。例えば、UE3が、DLの参照信号やパイロット信号等を基にDLのチャネル推定を行ない、推定結果をeNB2へ送信、報告してもよい。 In addition, UE3 may report the propagation path characteristic of DL to eNB2. For example, the UE 3 may perform DL channel estimation based on a DL reference signal, a pilot signal, or the like, and transmit and report the estimation result to the eNB 2.
 eNB2は、DLの電波路特性を基に、分割シンボル毎に、分割シンボルがDLの伝搬路で受ける位相回転をキャンセルするような位相回転を予め付与してよい。 The eNB 2 may give in advance a phase rotation that cancels the phase rotation that the divided symbol receives in the DL propagation path for each divided symbol based on the DL radio path characteristics.
 分割シンボル毎に予め付与する位相回転は、例示的に、図8や図9に例示した送信処理部20において、分割送信用のBPF25やBPF25-nのフィルタパラメータを制御することで可変されてよい。フィルタパラメータの制御は、例示的に、制御部51によって実施されてよい。 For example, the phase rotation given in advance for each divided symbol may be varied by controlling the filter parameters of the BPF 25 and BPF 25-n for divided transmission in the transmission processing unit 20 illustrated in FIGS. . The control of the filter parameters may be performed by the control unit 51, for example.
 あるいは、図14の送信処理部20の第3構成例に示すように、送信処理部20に、入力信号に異なる位相回転量を与えることが可能な複数のフィルタ25a-1~25a-mを備えておき、分割シンボル毎に、通過させるフィルタ25a-kを変更してもよい。 Alternatively, as shown in the third configuration example of the transmission processing unit 20 in FIG. 14, the transmission processing unit 20 includes a plurality of filters 25a-1 to 25a-m that can give different phase rotation amounts to the input signal. In addition, the filters 25a-k to be passed may be changed for each divided symbol.
 フィルタ25a-kは、それぞれ、BPFであってよい。なお、「m」は2以上の整数を表し、「k」は1~mのいずれかである。分割シンボルを通過させるフィルタ25a-kは、例示的に、制御部51によって選択、制御されてよい。 Each of the filters 25a-k may be a BPF. “M” represents an integer of 2 or more, and “k” is any one of 1 to m. The filters 25a-k that pass the divided symbols may be selected and controlled by the control unit 51, for example.
 上述した送信処理の第3例は、図13を用いて説明した送信処理の第2例と組み合わせて実施されてもよい。 The third example of the transmission process described above may be implemented in combination with the second example of the transmission process described with reference to FIG.
 (送信処理の第4例)
 分割シンボルは、図15に模式的に例示するように、異なる周波数(例えば、サブバンド#i)に多重化されて送信されてもよい。なお、図15には、同じフレームの異なるサブバンド#iに、分割シンボルが多重化される例を示しているが、例えば図16に模式的に示すように、時間的に異なるフレームの異なるサブバンド#iに、分割シンボルが多重化されてもよい。
(Fourth example of transmission processing)
As schematically illustrated in FIG. 15, the divided symbols may be multiplexed and transmitted on different frequencies (for example, subband #i). FIG. 15 shows an example in which the divided symbols are multiplexed in different subbands #i of the same frame. For example, as schematically shown in FIG. 16, different subbands of temporally different frames are shown. Divided symbols may be multiplexed on band #i.
 図15や図16に例示する送信処理を実現するには、例えば図17に示すように、図9に例示した送信処理部20の構成において、分割送信用のBPF25-nとタイミング調整部26との間に、周波数シフタ29を備える。なお、図17に例示した構成例は、送信処理部20の第4構成例に相当する。 In order to realize the transmission processing illustrated in FIGS. 15 and 16, for example, as illustrated in FIG. 17, in the configuration of the transmission processing unit 20 illustrated in FIG. 9, the BPF 25-n for divided transmission, the timing adjustment unit 26, In the meantime, a frequency shifter 29 is provided. Note that the configuration example illustrated in FIG. 17 corresponds to a fourth configuration example of the transmission processing unit 20.
 周波数シフタ29によって、分割シンボル毎に、送信する周波数(例えば、サブバンド#i)を変更できる。受信側での復調時には、それぞれの周波数に対応した周波数シフタを通すことにより、図10~図12と同様に復調処理を行なうことができる。 The frequency shifter 29 can change the transmission frequency (for example, subband #i) for each divided symbol. At the time of demodulation on the receiving side, demodulation processing can be performed in the same manner as in FIGS. 10 to 12 by passing the frequency shifter corresponding to each frequency.
 このように、分割シンボルを異なる周波数に分けて送信することを許容することで、フレーム構成の自由度を更に向上できる。 In this way, by allowing the divided symbols to be transmitted by dividing them into different frequencies, the degree of freedom of the frame configuration can be further improved.
 上述した送信処理の第4例は、図13を用いて説明した送信処理の第2例、及び、図14を用いて説明した送信処理の第3例の一方又は双方と組み合わせて実施されてもよい。 The fourth example of the transmission process described above may be implemented in combination with one or both of the second example of the transmission process described with reference to FIG. 13 and the third example of the transmission process described with reference to FIG. Good.
 (受信処理の第2例)
 図11(A)~図11(D)に模式的に例示したように、受信処理において分割シンボルを抽出して合成する際に、フィルタ時間応答で広がった部分を含む全ての時間波形を抽出して合成すると、信号成分と共に雑音成分も合成されてしまうことがある。雑音成分が合成されると、OFDMシンボルの受信品質が低下し得る。
(Second example of reception processing)
As schematically illustrated in FIGS. 11A to 11D, when extracting and synthesizing the divided symbols in the reception process, all time waveforms including a portion spread by the filter time response are extracted. In some cases, noise components may be combined with signal components. When the noise components are combined, the reception quality of the OFDM symbol may deteriorate.
 そこで、雑音成分の存在が見込まれる場合には、図18(A)~図18(C)に模式的に例示するように、フィルタ時間応答で広がった部分のうち雑音成分の比率が大きい考えられる一部の時間波形を、分割シンボルの抽出及び合成の候補から除外してよい。別言すると、フィルタ時間応答で広がった部分のうち、雑音成分の比率が大きいと考えられる部分を除いて切り出してよい。 Therefore, when the presence of a noise component is expected, the ratio of the noise component is considered to be large in the portion widened by the filter time response, as schematically illustrated in FIGS. 18 (A) to 18 (C). Some time waveforms may be excluded from the candidates for extraction and synthesis of divided symbols. In other words, a portion that is considered to have a large ratio of noise components may be cut out from the portion that has spread due to the filter time response.
 これにより、タイミング調整・合成部33において、分割シンボルを合成する際に、雑音成分が合成されてOFDMシンボルの信号品質が低下することを回避あるいは抑制することができる。 Thereby, when the timing adjustment / synthesis unit 33 synthesizes the divided symbols, it can be avoided or suppressed that the noise components are synthesized and the signal quality of the OFDM symbol is deteriorated.
 なお、合成の候補に含める(又は、合成の候補から除外する)分割シンボルの時間領域での切り出し部分の選択、決定は、分割シンボル抽出部32での抽出処理において実施されてもよいし、タイミング調整・合成部33での合成処理において実施されてもよい。 Note that the selection and determination of the cutout portion in the time domain of the divided symbols to be included in the candidate for synthesis (or excluded from the candidates for synthesis) may be performed in the extraction process in the divided symbol extraction unit 32, or the timing It may be implemented in the synthesis process in the adjustment / synthesis unit 33.
 (受信処理の第3例)
 分割シンボルの送信間隔が離れるほど、個々の分割シンボルの伝搬路環境が変動している可能性が高くなる。分割シンボル毎に伝搬環境が変動すると、受信処理において、伝搬環境の異なる分割シンボルを合成することになるため、元のOFDMシンボルの復元精度が低下し、結果的に、受信特性が低下し得る。
(Third example of reception processing)
The longer the transmission interval of the divided symbols, the higher the possibility that the propagation path environment of each divided symbol changes. If the propagation environment varies for each divided symbol, divided symbols having different propagation environments are combined in the reception process, so that the restoration accuracy of the original OFDM symbol is lowered, and as a result, reception characteristics can be lowered.
 そこで、受信処理においては、例えば、分割シンボル毎に伝搬路の等化処理を施してから合成を行なってよい。 Therefore, in the reception processing, for example, the synthesis may be performed after performing equalization processing of the propagation path for each divided symbol.
 図19に、本例に係る受信処理部30の構成例(第2構成例)を示す。図19に例示する構成例は、送信処理におけるOFDMシンボルの分割数が2の場合であり、例えば、シンボル分割数に対応して、2つの分割シンボル抽出部32-1及び32-2と、2つのイコライザ35-1及び35-2と、が備えられる。シンボル分割数が3以上であれば、分割シンボル抽出部及びイコライザのセットが受信処理部30に3つ以上備えられてよい。 FIG. 19 shows a configuration example (second configuration example) of the reception processing unit 30 according to this example. The configuration example illustrated in FIG. 19 is a case where the number of OFDM symbol divisions in the transmission process is 2, for example, two division symbol extraction units 32-1 and 32-2 corresponding to the number of symbol divisions, 2 Two equalizers 35-1 and 35-2 are provided. If the number of symbol divisions is 3 or more, the reception processing unit 30 may be provided with three or more sets of divided symbol extraction units and equalizers.
 分割シンボル抽出部32-1及び32-2は、それぞれ、ADC31でデジタル信号に変換された受信信号から分割シンボルを抽出する。分割シンボルの抽出は、図12に例示した分割シンボル抽出部32と同様にして実施されてよい。 The divided symbol extraction units 32-1 and 32-2 each extract a divided symbol from the received signal converted into a digital signal by the ADC 31. The division symbol extraction may be performed in the same manner as the division symbol extraction unit 32 illustrated in FIG.
 イコライザ35-1は、分割シンボル抽出部32-1で抽出された分割シンボルを等化処理し、イコライザ35-2は、分割シンボル抽出部32-2で抽出された分割シンボルを等化処理する。 The equalizer 35-1 equalizes the divided symbols extracted by the divided symbol extractor 32-1, and the equalizer 35-2 equalizes the divided symbols extracted by the divided symbol extractor 32-2.
 イコライザ35-1及び35-2による等化処理後に、各分割シンボルは、タイミング調整・合成部33にて既述のようにタイミング調整されて合成され、復調処理部34にて通常通りに復調処理される。 After the equalization processing by the equalizers 35-1 and 35-2, the divided symbols are synthesized by the timing adjustment / synthesis unit 33 with the timing adjusted as described above, and the demodulation processing unit 34 performs the demodulation processing as usual. Is done.
 このように、分割シンボル毎に等化処理を施してから各分割シンボルをタイミング調整して合成することで、分割シンボル毎に伝搬環境が変動したとしても、受信処理におけるOFDMシンボルの復元精度の低下を回避あるいは抑制できる。したがって、OFDMシンボルの受信特性低下を回避あるいは抑制できる。 In this way, by performing equalization processing for each divided symbol and then combining each divided symbol with timing adjustment, even if the propagation environment fluctuates for each divided symbol, the OFDM symbol restoration accuracy in reception processing is reduced. Can be avoided or suppressed. Therefore, it is possible to avoid or suppress a decrease in reception characteristics of the OFDM symbol.
 なお、上述した受信処理の第3例は、図18(A)~図18(C)を用いて説明した受信処理の第2例と組み合わせて実施されてもよい。 Note that the third example of the reception process described above may be implemented in combination with the second example of the reception process described with reference to FIGS. 18A to 18C.
 (送信局の構成例)
 図20は、送信局の一例であるeNB2の構成例を示すブロック図である。図20は、図8に例示した送信処理部20をeNB2に適用した構成例に相当すると捉えてよい。
(Configuration example of transmitting station)
FIG. 20 is a block diagram illustrating a configuration example of the eNB 2 that is an example of a transmission station. 20 may be considered to correspond to a configuration example in which the transmission processing unit 20 illustrated in FIG. 8 is applied to the eNB 2.
 図20に例示するように、eNB2は、送信シンボル生成部21の一例として、誤り訂正符号化部211、変調部212、逆高速フーリエ変換器(IFFT)213、及び、CP付加器214を備えてよい。 As illustrated in FIG. 20, the eNB 2 includes an error correction encoding unit 211, a modulation unit 212, an inverse fast Fourier transformer (IFFT) 213, and a CP adder 214 as an example of the transmission symbol generation unit 21. Good.
 また、eNB2は、既述のスイッチ22、無線送信部23、シンボル分割部24、BPF25、タイミング調整部26、及び、制御部51を備えるほか、DAC(Digital-to-Analog Converter)22Aを備えてよい。 The eNB 2 includes the switch 22, the radio transmission unit 23, the symbol division unit 24, the BPF 25, the timing adjustment unit 26, and the control unit 51, and also includes a DAC (Digital-to-Analog Converter) 22A. Good.
 誤り訂正符号化部211は、例示的に、送信データ信号を誤り訂正符号化する。誤り訂正符号には、非限定的な一例として、ターボ符号のような畳み込み符号が適用されてよい。 The error correction coding unit 211 illustratively performs error correction coding on the transmission data signal. As a non-limiting example, a convolutional code such as a turbo code may be applied to the error correction code.
 変調部212は、例示的に、誤り訂正符号化された送信データ信号を変調する。OFDMやF-OFDMの場合、複数のサブキャリアがそれぞれ異なる送信データ信号によって変調されてよい。 The modulation unit 212 illustratively modulates a transmission data signal that has been subjected to error correction coding. In the case of OFDM or F-OFDM, a plurality of subcarriers may be modulated by different transmission data signals.
 変調方式(「変調フォーマット」と称してもよい。)には、非限定的な一例として、QPSKや多値QAMが適用されてよい。QPSKは、「quadrature phase shift keying」の略称であり、QAMは、「quadrature amplitude modulation」の略称である。QAMの多値度は、例示的に、16や64、128、256等であってよい。送信データ信号の変調によって、複素データで表される送信シンボルが生成される。 As a non-limiting example, QPSK or multi-level QAM may be applied to the modulation scheme (may be referred to as “modulation format”). QPSK is an abbreviation for “quadrature phase shift keying”, and QAM is an abbreviation for “quadrature amplitude modulation”. The multilevel value of QAM may illustratively be 16, 64, 128, 256, or the like. A transmission symbol represented by complex data is generated by modulation of the transmission data signal.
 IFFT213は、変調部212にて得られた例えばサブキャリア毎の送信シンボル系列を逆高速フーリエ変換することで時間領域の信号系列に変換する。なお、IFFT213は、逆離散フーリエ変換器(IDFT)に代替されてもよい。 The IFFT 213 converts, for example, a transmission symbol sequence for each subcarrier obtained by the modulation unit 212 into a time-domain signal sequence by performing inverse fast Fourier transform. Note that IFFT 213 may be replaced by an inverse discrete Fourier transformer (IDFT).
 CP付加器214は、例示的に、IFFT214によって得られた時間領域の送信シンボル系列に、時間領域でCPを付加する。なお、CPは、ガードインターバル(GI)と称されることもある。CPの付加によって、シンボル間干渉を低減してマルチパス耐性を向上することができる。 CP adder 214 illustratively adds a CP in the time domain to the transmission symbol sequence in the time domain obtained by IFFT 214. Note that CP may be referred to as a guard interval (GI). By adding a CP, it is possible to reduce intersymbol interference and improve multipath tolerance.
 CPが付加された送信シンボル(別言すると、OFDMシンボル)は、スイッチ22に出力され、既述のようにスイッチ22の出力先が例えば制御部51によって制御されることで、通常送信と分割送信とが切り替えられる。 A transmission symbol to which a CP is added (in other words, an OFDM symbol) is output to the switch 22, and the output destination of the switch 22 is controlled by, for example, the control unit 51 as described above, so that normal transmission and divided transmission are performed. And can be switched.
 SW22の出力先切り替えに応じて、通常送信時のOFDMシンボル、又は、分割送信時の分割シンボルが、DAC22Aに選択的(別言すると、時分割)に入力される。DAC22Aは、デジタル信号である入力シンボルをアナログ信号に変換して無線送信部23に出力する。 In response to the switching of the output destination of the SW 22, the OFDM symbol during normal transmission or the divided symbol during divided transmission is selectively input to the DAC 22A (in other words, time division). The DAC 22 </ b> A converts an input symbol that is a digital signal into an analog signal and outputs the analog signal to the wireless transmission unit 23.
 無線送信部23には、ハイパワーアンプ(HPA)231が備えられてよい。HPA231は、DAC22Aから入力されたアナログ信号を規定の送信電力に増幅してアンテナ27へ出力する。送信電力は、例示的に、制御部51によって制御されてよい。送信電力の制御は、例示的に、HPA231の増幅利得を制御することで実施されてよい。 The wireless transmission unit 23 may be provided with a high power amplifier (HPA) 231. The HPA 231 amplifies the analog signal input from the DAC 22A to a specified transmission power and outputs the amplified signal to the antenna 27. The transmission power may be controlled by the control unit 51, for example. The control of the transmission power may be performed by controlling the amplification gain of the HPA 231, for example.
 なお、図20に例示する構成において、図8に例示した送信処理部20に相当する構成に代えて、図9、図14、及び、図17に例示した送信処理部20のいずれか1以上の構成が適用されてよい。 In the configuration illustrated in FIG. 20, instead of the configuration corresponding to the transmission processing unit 20 illustrated in FIG. 8, any one or more of the transmission processing units 20 illustrated in FIG. 9, FIG. 14, and FIG. A configuration may be applied.
 (受信局の構成例)
 図21は、受信局の一例であるUE3の構成例を示すブロック図である。図21は、図12に例示した受信処理部30をeNB2に適用した構成例に相当すると捉えてよい。
(Configuration example of receiving station)
FIG. 21 is a block diagram illustrating a configuration example of the UE 3 that is an example of a receiving station. FIG. 21 may be regarded as corresponding to a configuration example in which the reception processing unit 30 illustrated in FIG. 12 is applied to the eNB 2.
 図21に示すように、UE3は、既述のADC31、分割シンボル抽出部32、及び、タイミング調整・合成部33のほか、例示的に、アンテナ36、無線受信部37、BPF38、復調・復号処理部34A、及び、チャネル推定部39を備えてよい。 As illustrated in FIG. 21, the UE 3 exemplarily includes the antenna 31, the radio reception unit 37, the BPF 38, and the demodulation / decoding process in addition to the ADC 31, the divided symbol extraction unit 32, and the timing adjustment / synthesis unit 33 described above. A unit 34A and a channel estimation unit 39 may be provided.
 アンテナ36は、例示的に、送信局の一例であるeNB2が送信したDLの無線信号を受信して無線受信部37へ出力する。 The antenna 36 illustratively receives a DL radio signal transmitted by the eNB 2 which is an example of a transmission station, and outputs the DL radio signal to the radio reception unit 37.
 無線受信部37は、アンテナ36から入力された無線信号を、例えば低雑音増幅器(LNA)371によって増幅してから、ベースバンド信号にダウンコンバートする。 The radio reception unit 37 amplifies the radio signal input from the antenna 36 by, for example, a low noise amplifier (LNA) 371 and then down-converts the radio signal to a baseband signal.
 BPF38は、受信周波数帯域の帯域幅に応じたBPF特性を有してよい。BPF38は、無線受信部37から入力された信号を当該BPF特性にてフィルタリングしてよい。受信周波数帯域は、例示的に、サブバンド#iの1つに対応してよい。 The BPF 38 may have a BPF characteristic corresponding to the bandwidth of the reception frequency band. The BPF 38 may filter the signal input from the wireless reception unit 37 with the BPF characteristic. The received frequency band may illustratively correspond to one of subband #i.
 BPF38でフィルタリングされた受信信号は、ADC31に入力されて、デジタル信号に変換される。ADC31によって得られた受信デジタル信号は、分割シンボル抽出部32と復調・復号処理部34Aとに入力されてよい。 The received signal filtered by the BPF 38 is input to the ADC 31 and converted into a digital signal. The received digital signal obtained by the ADC 31 may be input to the divided symbol extraction unit 32 and the demodulation / decoding processing unit 34A.
 分割シンボル抽出部32及びタイミング調整・合成部33の動作は、いずれも既述のとおりである。 The operations of the divided symbol extraction unit 32 and the timing adjustment / synthesis unit 33 are as described above.
 復調・復号処理部34Aには、図21に例示するように、CP除去器341、高速フーリエ変換器(FFT)342、復調部343、及び、誤り訂正復号部344が備えられてよい。 The demodulator / decoder processor 34A may include a CP remover 341, a fast Fourier transformer (FFT) 342, a demodulator 343, and an error correction decoder 344, as illustrated in FIG.
 CP除去器341は、例示的に、ADC31又はタイミング調整・合成部33から入力された受信デジタル信号(例示的に、OFDMシンボル又は分割シンボル)に付加されているCPを除去する。 The CP remover 341 illustratively removes the CP added to the received digital signal (eg, OFDM symbol or divided symbol) input from the ADC 31 or the timing adjustment / synthesis unit 33.
 FFT342は、例示的に、CPが除去された信号系列を高速フーリエ変換することで周波数領域の信号系列に変換する。なお、FFT342は、離散フーリエ変換器(DFT)に代替されてもよい。 The FFT 342 illustratively converts the signal sequence from which the CP is removed into a frequency domain signal sequence by performing a fast Fourier transform. Note that the FFT 342 may be replaced with a discrete Fourier transformer (DFT).
 復調部343は、例示的に、FFT342から入力された周波数領域の受信信号系列を、送信局2での変調方式に対応した復調方式で、例えばサブキャリア毎に復調する。復調によって例えばサブキャリア毎の受信データシンボル系列が得られる。 The demodulator 343 illustratively demodulates the received signal sequence in the frequency domain input from the FFT 342 in a demodulation scheme corresponding to the modulation scheme in the transmission station 2, for example, for each subcarrier. For example, a received data symbol sequence for each subcarrier is obtained by demodulation.
 復調には、チャネル推定部39で得られるチャネル推定値が用いられてよい。チャネル推定部39は、例示的に、所定のサブキャリアにマッピングされている参照信号やパイロット信号を基に、送信局2との間のチャネル状態を推定してチャネル推定値を得る。 The channel estimation value obtained by the channel estimation unit 39 may be used for demodulation. For example, the channel estimation unit 39 estimates a channel state with the transmitting station 2 based on a reference signal or a pilot signal mapped to a predetermined subcarrier to obtain a channel estimation value.
 誤り訂正復号部344は、例示的に、復調部343から入力された受信データシンボル系列を、送信局2での誤り訂正符号化方式に対応した復号方式で、誤り訂正復号する。 The error correction decoding unit 344 exemplarily performs error correction decoding on the received data symbol sequence input from the demodulation unit 343 by a decoding method corresponding to the error correction encoding method in the transmission station 2.
 なお、F-OFDMの場合、例示的に、BPF38以降の構成が、1つのサブバンド#iに対応すると捉えてよい。別言すると、サブバンド毎にBPF38以降の構成が並列的に受信局3に備えられると捉えてよい。 In the case of F-OFDM, for example, the configuration after BPF 38 may be regarded as corresponding to one subband #i. In other words, it may be considered that the configuration after the BPF 38 is provided in the receiving station 3 in parallel for each subband.
 また、図21に例示する構成において、図12に例示した受信処理部30に相当する構成に代えて、図19に例示した受信処理部30の構成が適用されてもよい。 21, the configuration of the reception processing unit 30 illustrated in FIG. 19 may be applied instead of the configuration corresponding to the reception processing unit 30 illustrated in FIG. 12.
 図20に例示したeNB2は、受信系の一例として、図21に例示したUE3の受信系に相当する構成を備えてよく、図21に例示したUE3は、送信系の一例として、図20に例示したeNB2の送信系に相当する構成を備えてよい。 The eNB 2 illustrated in FIG. 20 may have a configuration corresponding to the reception system of the UE 3 illustrated in FIG. 21 as an example of the reception system. The UE 3 illustrated in FIG. 21 is illustrated in FIG. 20 as an example of the transmission system. A configuration corresponding to the transmission system of the eNB 2 may be provided.
 ただし、eNB2の受信系には、図21に例示した分割シンボル抽出部32及びタイミング調整・合成部33は備えられなくてもよい。また、UE3の送信系には、図20に例示したスイッチ22、シンボル分割部24、分割送信用のBPF25、及び、タイミング調整部26は備えられなくてもよい。 However, the reception system of the eNB 2 may not include the divided symbol extraction unit 32 and the timing adjustment / synthesis unit 33 illustrated in FIG. Also, the transmission system of the UE 3 may not include the switch 22, the symbol division unit 24, the BPF 25 for division transmission, and the timing adjustment unit 26 illustrated in FIG.
 1 無線通信システム
 2 基地局(eNB)
 20 送信処理部
 21 送信シンボル生成部
 211 誤り訂正符号化部
 212 変調部
 213 IFFT
 214 CP付加器
 22 スイッチ(SW)
 22A DAC
 23 無線送信部
 24 シンボル分割部
 25,25-1~25-n BPF
 25a-1~25a-m フィルタ
 26 タイミング調整部
 27 アンテナ
 28 加算器
 29 周波数シフタ
 3 無線端末(UE)
 30 受信処理部
 31 ADC
 32,32-1,32-2 分割シンボル抽出部
 33 タイミング調整・合成(加算)部
 34 復調処理部
 34A 復調・復号処理部
 341 CP除去器
 342 FFT
 343 復調部
 344 誤り訂正復号部
 35-1,35-2 イコライザ
 36 アンテナ
 37 無線受信部
 371 HPA
 38 BPF
 39 チャネル推定部
 4 コアネットワーク
 41 MME
 42 PGW
 43 SGW
 51 制御部
 200 無線エリア
1 wireless communication system 2 base station (eNB)
20 Transmission Processing Unit 21 Transmission Symbol Generation Unit 211 Error Correction Coding Unit 212 Modulation Unit 213 IFFT
214 CP Adder 22 Switch (SW)
22A DAC
23 Wireless transmission unit 24 Symbol division unit 25, 25-1 to 25-n BPF
25a-1 to 25a-m filter 26 timing adjustment unit 27 antenna 28 adder 29 frequency shifter 3 radio terminal (UE)
30 reception processing unit 31 ADC
32, 32-1, 32-2 Division symbol extraction unit 33 Timing adjustment / combination (addition) unit 34 Demodulation processing unit 34A Demodulation / decoding processing unit 341 CP remover 342 FFT
343 Demodulator 344 Error correction decoder 35-1, 35-2 Equalizer 36 Antenna 37 Wireless receiver 371 HPA
38 BPF
39 Channel estimation unit 4 Core network 41 MME
42 PGW
43 SGW
51 Control unit 200 Wireless area

Claims (13)

  1.  無線通信の送信単位である時間的に連続した信号波形を、時間領域で分割する分割部と、
     前記分割した信号波形を、時間的に不連続な複数の時間区間に別けて送信する送信部と、
    を備えた、無線送信局。
    A division unit that divides a time-continuous signal waveform, which is a transmission unit of wireless communication, in a time domain;
    A transmitter that transmits the divided signal waveform separately in a plurality of temporally discontinuous time intervals;
    A wireless transmitter station.
  2.  前記送信部は、
     前記分割した信号波形の一部を、当該信号波形が送信される時間区間とは異なる時間区間において重複して送信する、請求項1に記載の無線送信局。
    The transmitter is
    The radio transmission station according to claim 1, wherein a part of the divided signal waveform is transmitted in a time interval different from a time interval in which the signal waveform is transmitted.
  3.  前記分割した信号波形のそれぞれを個別にフィルタリングするフィルタを備えた、請求項1又は2に記載の無線送信局。 The wireless transmission station according to claim 1 or 2, further comprising a filter that individually filters each of the divided signal waveforms.
  4.  前記フィルタは、前記分割した信号波形が前記不連続な時間区間に別けて送信されることによって前記分割した信号波形のそれぞれが無線伝搬路で受ける位相回転を予め個別にキャンセルする特性を有する、請求項3に記載の無線送信局。 The filter has a characteristic of individually canceling in advance a phase rotation that each of the divided signal waveforms receives in a radio propagation path by transmitting the divided signal waveforms separately in the discontinuous time interval. Item 4. The wireless transmission station according to Item 3.
  5.  前記無線通信の送信単位である時間的に連続した信号波形は、或る周波数帯域を周波数領域において分割した複数の分割帯域の1つに属する信号波形であり、かつ、他の分割帯域に属する信号波形とは異なる波形を有する、請求項1~4のいずれか1項に記載の無線送信局。 The signal waveform that is temporally continuous as the transmission unit of the wireless communication is a signal waveform that belongs to one of a plurality of divided bands obtained by dividing a certain frequency band in the frequency domain, and a signal that belongs to another divided band. The wireless transmission station according to any one of claims 1 to 4, wherein the wireless transmission station has a waveform different from the waveform.
  6.  前記送信単位は、1以上の搬送波を1以上の送信データ信号によってデジタル変調することで得られる変調シンボルの単位である、請求項1~5のいずれか1項に記載の無線送信局。 The radio transmission station according to any one of claims 1 to 5, wherein the transmission unit is a unit of a modulation symbol obtained by digitally modulating one or more carriers with one or more transmission data signals.
  7.  前記送信部は、前記分割した信号波形を異なる周波数で送信する、請求項1~6のいずれか1項に記載の無線送信局。 The wireless transmission station according to any one of claims 1 to 6, wherein the transmission unit transmits the divided signal waveforms at different frequencies.
  8.  前記信号波形は、OFDM(Orthogonal Frequency Division Multiplexing)信号の波形、RRC(Root Raised Cosine)フィルタが適用された信号の波形、又は、FBMC(Filter Bank Multi-Carrier)信号の波形である、請求項1~7のいずれか1項に記載の無線送信局。 The signal waveform is a waveform of an OFDM (Orthogonal Frequency Division Multiplexing) signal, a waveform of a signal to which an RRC (Root Raised Cosine) filter is applied, or a waveform of an FBMC (Filter Bank Multi-Carrier) signal. 8. The wireless transmission station according to any one of 1 to 7.
  9.  無線通信の送信単位である時間的に連続した信号波形を時間領域で分割し、前記分割した信号波形を時間的に不連続な複数の時間区間に別けて送信する無線送信局から信号を受信する受信部と、
     前記受信部で受信した信号から、前記分割された信号波形をそれぞれ抽出する抽出部と、
     前記抽出された信号波形を時間領域において連続するようにタイミング調整して合成する合成部と、
    を備えた、無線受信局。
    A signal waveform that is continuous in time, which is a transmission unit of wireless communication, is divided in a time domain, and a signal is received from a wireless transmission station that transmits the divided signal waveform in a plurality of time intervals that are discontinuous in time. A receiver,
    An extraction unit for extracting each of the divided signal waveforms from the signal received by the reception unit;
    A combining unit that adjusts the timing so that the extracted signal waveform is continuous in the time domain; and
    A wireless receiver station.
  10.  前記抽出部は、
     前記分割された信号波形のそれぞれに適用されたフィルタリングの時間応答波形の全部を含めて、前記分割された信号波形を抽出する、請求項9に記載の無線受信局。
    The extraction unit includes:
    The radio reception station according to claim 9, wherein the divided signal waveform is extracted including the entire time response waveform of filtering applied to each of the divided signal waveforms.
  11.  前記抽出部は、
     前記分割された信号波形のそれぞれに適用されたフィルタリングの時間応答波形の広がった部分の一部を除いて、前記分割された信号波形を抽出する、請求項9に記載の無線受信局。
    The extraction unit includes:
    The radio receiving station according to claim 9, wherein the divided signal waveform is extracted by excluding a part of a widened portion of a time response waveform of filtering applied to each of the divided signal waveforms.
  12.  前記抽出部で抽出された、前記分割された信号波形のそれぞれを個別に等化して前記合成部へ出力するイコライザを備えた、請求項9~11のいずれか1項に記載の無線受信局。 12. The radio receiving station according to claim 9, further comprising an equalizer that individually equalizes each of the divided signal waveforms extracted by the extraction unit and outputs the equalized signal waveforms to the synthesis unit.
  13.  無線通信の送信単位である時間的に連続した信号波形を時間領域で分割し、前記分割した信号波形を、時間的に不連続な複数の時間区間に別けて送信する無線送信局と、
     前記無線送信局から受信した信号から、前記分割された信号波形をそれぞれ抽出し、前記抽出した信号波形を、時間領域において連続するようにタイミング調整して合成する無線受信局と、
    を備えた、無線通信システム。
    A radio transmission station that divides a time continuous signal waveform, which is a transmission unit of wireless communication, in a time domain, and transmits the divided signal waveform separately in a plurality of time discontinuous time sections;
    Each of the divided signal waveforms is extracted from the signal received from the wireless transmission station, and the extracted signal waveform is synthesized by adjusting the timing so as to be continuous in the time domain, and
    A wireless communication system comprising:
PCT/JP2016/064518 2016-05-16 2016-05-16 Wireless transmitting station, wireless receiving station, and wireless communication system WO2017199307A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2016/064518 WO2017199307A1 (en) 2016-05-16 2016-05-16 Wireless transmitting station, wireless receiving station, and wireless communication system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2016/064518 WO2017199307A1 (en) 2016-05-16 2016-05-16 Wireless transmitting station, wireless receiving station, and wireless communication system

Publications (1)

Publication Number Publication Date
WO2017199307A1 true WO2017199307A1 (en) 2017-11-23

Family

ID=60324937

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/064518 WO2017199307A1 (en) 2016-05-16 2016-05-16 Wireless transmitting station, wireless receiving station, and wireless communication system

Country Status (1)

Country Link
WO (1) WO2017199307A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI747055B (en) * 2019-05-20 2021-11-21 日商三菱電機股份有限公司 State inference device and state inference method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010041687A (en) * 2008-08-08 2010-02-18 Fujitsu Ltd Wireless communication apparatus, and wireless communication controlling method
JP2011510569A (en) * 2008-01-16 2011-03-31 テレフオンアクチーボラゲット エル エム エリクソン(パブル) OFDM symbol with reduced symbol length
JP2016511584A (en) * 2013-02-05 2016-04-14 インターデイジタル パテント ホールディングス インコーポレイテッド Pulse shaping orthogonal frequency division multiplexing

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011510569A (en) * 2008-01-16 2011-03-31 テレフオンアクチーボラゲット エル エム エリクソン(パブル) OFDM symbol with reduced symbol length
JP2010041687A (en) * 2008-08-08 2010-02-18 Fujitsu Ltd Wireless communication apparatus, and wireless communication controlling method
JP2016511584A (en) * 2013-02-05 2016-04-14 インターデイジタル パテント ホールディングス インコーポレイテッド Pulse shaping orthogonal frequency division multiplexing

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI747055B (en) * 2019-05-20 2021-11-21 日商三菱電機股份有限公司 State inference device and state inference method

Similar Documents

Publication Publication Date Title
JP6410056B2 (en) Dynamic time division duplex data channel transmission method and apparatus for wireless communication system
US9686061B2 (en) Method and system using relays with aggregated spectrum
JP6266512B2 (en) Time division duplex frame configuration information transmission / reception method and apparatus in wireless communication system
EP3245771B1 (en) Apparatus and method of providing a flexible guard interval for block single carrier transmission
JP5647223B2 (en) Control and data channel design for advanced relay operation
KR101790040B1 (en) Method and apparatus for transmission of dedicated control channel with dedicated reference signal in wireless communication system
EP3116151A1 (en) User terminal, radio base station, radio communication method, and radio communication system
US20090310589A1 (en) Adaptive dc sub-carrier handling in a receiver
EP2353321A1 (en) Wireless communication clustering method and system for coordinated multi-point transmission and reception
JP2009533933A (en) Broadcast superposition and removal apparatus and method in multi-carrier wireless network
JP2013505602A (en) Reference signal design for downlink higher-order MIMO
WO2018063598A1 (en) Adaptive cyclic-shift based multiplexing
JP5466241B2 (en) Relaying technique suitable for user equipment in downlink
US10171155B2 (en) PUCCH transmit diversity with one-symbol STBC
KR20120032469A (en) Method for sending an uplink control signal on a wireless communications system and a device therefor
CN112838915A (en) Physical signal transmission method, terminal and base station
WO2017199307A1 (en) Wireless transmitting station, wireless receiving station, and wireless communication system
CN102792609A (en) Frequency division duplexing in multihop relay networks
WO2024026781A1 (en) Apparatus and methods for phase rotation of phase tracking reference signals
KR20210058663A (en) Method and apparatus for channel estimation in orthogonal frequency division multiplexing system based on time division duplex
US9209923B2 (en) Method and apparatus for transmitting of OFDM signal
JP2012182840A (en) Transmitting station and receiving station
Lutfi Phase Noise Estimation and Mitigation in Uplink OFDMA
US20110075618A1 (en) Wireless scheduling systems and methods

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16902327

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 16902327

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP