WO2012014458A1 - Image encoding method and image decoding method - Google Patents

Image encoding method and image decoding method Download PDF

Info

Publication number
WO2012014458A1
WO2012014458A1 PCT/JP2011/004228 JP2011004228W WO2012014458A1 WO 2012014458 A1 WO2012014458 A1 WO 2012014458A1 JP 2011004228 W JP2011004228 W JP 2011004228W WO 2012014458 A1 WO2012014458 A1 WO 2012014458A1
Authority
WO
WIPO (PCT)
Prior art keywords
reference picture
data
processing unit
picture list
video
Prior art date
Application number
PCT/JP2011/004228
Other languages
French (fr)
Japanese (ja)
Inventor
西 孝啓
陽司 柴原
寿郎 笹井
敏康 杉尾
Original Assignee
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック株式会社 filed Critical パナソニック株式会社
Publication of WO2012014458A1 publication Critical patent/WO2012014458A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/102Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the element, parameter or selection affected or controlled by the adaptive coding
    • H04N19/103Selection of coding mode or of prediction mode
    • H04N19/109Selection of coding mode or of prediction mode among a plurality of temporal predictive coding modes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/60Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using transform coding
    • H04N19/61Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using transform coding in combination with predictive coding
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/70Methods or arrangements for coding, decoding, compressing or decompressing digital video signals characterised by syntax aspects related to video coding, e.g. related to compression standards

Definitions

  • the present invention relates to an image encoding device, an image decoding device, an image encoding method, an image decoding method, a program for causing a computer to execute these methods, and the like that perform predictive encoding of a moving image using a plurality of reference images. .
  • FIG. 1 is a block diagram showing an example of a conventional encoding device.
  • the inter prediction control unit controls the inter prediction unit according to the picture type determined by the picture type determination unit (for example, H.264 slice type), and performs inter prediction coding.
  • picture types such as I picture (for example, H.264 I slice or IDR slice), P picture (for example, H.264 P slice), B picture (for example, H.264 B slice), etc.
  • the maximum number of reference picture lists for example, H.264 reference picture list
  • the maximum number of reference picture lists for example, H.264 reference picture list for managing reference images used for inter coding of each prediction unit block is 0 (no inter coding), 1 ( For example, H.264 reference picture list 0 and 2 (for example, H.264 reference picture list 0 and 1) were switched.
  • the picture type is the first header information (for example, H.264 slice header) added to the bit stream for each first processing unit (for example, H.264 slice), from the encoding device to the decoding device. Be notified.
  • the reference picture list includes at least one index (for example, H.264 reference index) corresponding to a reference image to be referred to by inter prediction, and is referred to by inter prediction using the reference picture list and the index for each block. Specify the picture to be used.
  • FIG. 2A, FIG. 2B, FIG. 3A, and FIG. FIG. 2A and FIG. 3A each show a typical prediction reference relationship of an image sequence in display order and inter prediction
  • FIG. 2B and FIG. 3B each are encoded using two reference picture lists.
  • the concept of the prediction reference relationship between a target block and a reference block is shown.
  • FIG. 4 is a block diagram showing an example of a decoding apparatus corresponding to the conventional encoding apparatus of FIG.
  • the inter prediction control unit controls the inter prediction unit according to the picture type added to the bitstream, and performs inter prediction decoding.
  • the maximum number of reference picture lists for managing reference pictures used for inter coding of each prediction unit block is set to 0 according to the picture type such as I picture, P picture, and B picture, respectively. Since the main (no inter-coding) has been switched to one, two, there is a problem that inter prediction coding cannot be performed using three or more reference picture lists. As a result, there is a problem that the prediction unit block cannot be appropriately predicted and encoded and decoded, and the encoding efficiency is lowered.
  • the present invention has been made in view of such problems, and an object thereof is to provide an image encoding method and an image decoding method that can improve encoding efficiency.
  • an image encoding method is an image encoding method that performs predictive encoding using at least one reference image, and includes a bitstream for each first processing unit.
  • the maximum number of reference picture lists for managing reference pictures used for inter prediction in the first processing unit is set as follows: The first header information is included in the first header information as the first maximum reference picture list number.
  • an image decoding method is an image decoding method for decoding a bitstream that has been predictively encoded using at least one reference image, the first processing unit
  • the picture type included in the first header information added to the bitstream every time indicates inter coding
  • the maximum number of reference picture lists for managing reference pictures used for inter prediction in the first processing unit The bit stream is decoded according to the number of first maximum reference picture lists included in the first header information.
  • the present invention can be realized not only as such an image encoding method or image decoding method, but also according to an image encoding device, an image decoding device or an integrated circuit that performs processing according to the method, and the method. It can also be realized as a program for causing a computer to execute the processing, or as a recording medium for storing the program.
  • the image encoding method and image decoding method of the present invention can improve the encoding efficiency of inter prediction encoding.
  • FIG. 1 is a block diagram illustrating an example of a conventional encoding device.
  • FIG. 2A is a conceptual diagram illustrating an example of inter prediction encoding by a conventional encoding device and decoding device.
  • FIG. 2B is a conceptual diagram illustrating an example of inter prediction encoding by a conventional encoding device and decoding device.
  • FIG. 3A is a conceptual diagram illustrating another example of inter-prediction encoding by a conventional encoding device and decoding device.
  • FIG. 3B is a conceptual diagram illustrating another example of inter prediction encoding by a conventional encoding device and decoding device.
  • FIG. 4 is a block diagram showing an example of a conventional decoding device.
  • FIG. 5 is a block diagram showing an example of the image coding apparatus according to Embodiment 1 of the present invention.
  • FIG. 6A is a conceptual diagram showing an example of inter prediction encoding in Embodiment 1 of the present invention.
  • FIG. 6B is a conceptual diagram showing an example of inter prediction coding in Embodiment 1 of the present invention.
  • FIG. 7A is a flowchart showing an example of inter prediction control in the image coding device according to Embodiment 1 of the present invention.
  • FIG. 7B is a flowchart showing an example of inter prediction control in the image coding device according to Embodiment 1 of the present invention.
  • FIG. 8 is a block diagram showing an example of the image decoding apparatus according to Embodiment 1 of the present invention.
  • FIG. 9A is a flowchart showing an example of inter prediction control in the image decoding apparatus according to Embodiment 1 of the present invention.
  • FIG. 9B is a flowchart showing an example of inter prediction control in the image decoding apparatus according to Embodiment 1 of the present invention.
  • FIG. 10 is an overall configuration diagram of a content supply system that realizes a content distribution service.
  • FIG. 11 is an overall configuration diagram of a digital broadcasting system.
  • FIG. 12 is a block diagram illustrating a configuration example of a television.
  • FIG. 13 is a block diagram illustrating a configuration example of an information reproducing / recording unit that reads and writes information from and on a recording medium that is an optical disk.
  • FIG. 14 is a diagram illustrating a structure example of a recording medium that is an optical disk.
  • FIG. 15A is a diagram illustrating an example of a mobile phone.
  • FIG. 15B is a block diagram illustrating a configuration example of a mobile phone.
  • FIG. 16 is a diagram showing a structure of multiplexed data.
  • FIG. 17 is a diagram schematically showing how each stream is multiplexed in the multiplexed data.
  • FIG. 18 is a diagram showing in more detail how the video stream is stored in the PES packet sequence.
  • FIG. 19 is a diagram illustrating the structure of TS packets and source packets in multiplexed data.
  • FIG. 20 is a diagram illustrating a data structure of the PMT.
  • FIG. 21 is a diagram showing an internal configuration of multiplexed data information.
  • FIG. 22 shows the internal structure of stream attribute information.
  • FIG. 23 is a diagram illustrating steps for identifying video data.
  • FIG. 24 is a block diagram illustrating a configuration example of an integrated circuit that realizes the moving picture encoding method and the moving picture decoding method according to each embodiment.
  • FIG. 25 is a diagram illustrating a configuration for switching the driving frequency.
  • FIG. 26 is a diagram illustrating steps for identifying video data and switching between driving frequencies.
  • FIG. 27 is a diagram illustrating an example of a lookup table in which video data standards are associated with drive frequencies.
  • FIG. 28A is a diagram illustrating an example of a configuration for sharing a module of a signal processing unit.
  • FIG. 28B is a diagram illustrating another example of a configuration for sharing a module of a signal processing unit.
  • FIG. 5 is a block diagram showing an example of the image coding apparatus according to Embodiment 1 of the present invention. 1 differs from the conventional coding apparatus shown in FIG. 1 in that it includes a maximum reference picture list number determination unit 101 and a configuration that adds the first and second maximum reference picture list numbers to a bitstream.
  • the image decoding apparatus 5 notifies the image decoding apparatus of the first maximum reference picture list number in the header (for example, H.264 slice header) assigned to each picture, and a plurality of pictures.
  • the image decoding apparatus is notified of the second maximum reference picture list number in a header (for example, H.264 sequence parameter set) provided for each unit.
  • the first maximum reference picture list number does not necessarily need to be notified by a header added for each picture, and header information that can be used in common by a plurality of pictures (for example, H.264 picture parameter set). It is good also as a structure notified by.
  • the second maximum reference picture list number is determined by the maximum reference picture list number determination unit 101 to one or more according to the constraint conditions defined in the application standards and image codec standards using the present invention.
  • FIG. 6A and 6B show an example of inter prediction encoding that can be realized by the configuration of the image encoding device 100 of FIG. Specifically, the number of the first and second maximum reference picture lists can be notified from the image encoding device 100 to the image decoding device, so that, for example, as shown in FIG. 6A and FIG. Inter prediction using the reference picture lists 0 to 3 is possible.
  • FIG. 7A and 7B are flowcharts showing an example of inter prediction control in the image encoding device 100 of FIG.
  • FIG. 7A uses three picture types: intra-coded pictures (eg, I pictures), forward inter-predictive coded pictures (eg, P pictures), and bi-directional inter-predictive coded pictures (eg, B pictures).
  • I pictures intra-coded pictures
  • P pictures forward inter-predictive coded pictures
  • B pictures bi-directional inter-predictive coded pictures
  • An example is shown.
  • the second maximum reference picture list number is determined, and the second maximum reference picture list number is set in a header given each time a plurality of pictures are configured.
  • a memory area of a reference picture list management memory necessary for managing a reference picture list used for inter prediction is secured.
  • the first maximum reference picture list number that is the maximum number of reference picture lists used for inter prediction of each picture is determined according to the picture type.
  • the first maximum reference picture list number is set to one half of the second maximum reference picture list number.
  • the first maximum picture list number is set to the same value as the second maximum reference picture list number.
  • the first maximum reference picture list number is set to zero.
  • reference picture list management information reference picture list management memory
  • Initialization initialization process for reference picture list
  • initialization order of the index corresponding to the reference image is determined in the reference picture list. Then, the picture is encoded using the reference picture list, and the first maximum reference picture list number is set in the header given to each picture.
  • the number of first maximum reference picture lists is set to be half of the number of second maximum reference picture lists in the case of forward inter-predictive coded pictures, but the present invention is not limited to this example.
  • FIG. 7A shows an example in which three types of picture types are used, but it is also possible to use four or more types of picture types.
  • a T-picture triple-predictive picture
  • Q that is a third bidirectional inter-predictive coded picture that refers to four or more pictures.
  • a picture Quality-predictive picture
  • a new picture type that can distinguish the reference direction is defined for inter prediction coded pictures (B picture, T picture, and Q picture) that refer to two or more pictures, and a picture based on the new picture type is used. It is good as well.
  • the reference direction is distinguished as follows: (1) Whether the reference direction is only a single direction (whether it is only forward or only backward) (2) Whether it is bidirectional (Whether forward reference and backward reference are mixed).
  • the first maximum reference picture list number of the picture type picture that refers to the most pictures is the second maximum reference picture list number. It is conceivable that the first maximum picture list number of pictures of other picture types is set to an arbitrary value smaller than the second maximum reference picture list number.
  • FIG. 7B is an example in which two types of pictures, an intra-coded picture and an inter-predictive coded picture, are used.
  • FIG. 7A is a method for determining the first maximum reference picture list number according to the picture type. Different. Specifically, in the case of an inter prediction coded picture, the first maximum reference picture list number is set to the same value as the second maximum reference picture list number, and in the case of an intra coded picture, The maximum reference picture list number of 1 is set to 0.
  • the second maximum reference picture list number is 4
  • the first maximum reference picture list number is 2 for the B picture
  • the Q picture (Quad ⁇ Predictive picture) can be realized by setting it to 4.
  • 2A and 2B can be realized by setting the second maximum reference picture list number to 2, the first maximum reference picture list number to 2 for B pictures, and 1 for P pictures.
  • 3A and 3B can be realized by setting the second maximum reference picture list number to 2 and the first maximum reference picture list number to 2 for B pictures.
  • the first maximum reference picture list number is set to a header given for each picture or header information that can be used in common for a plurality of pictures.
  • the number of picture lists is set to the same value as the second maximum reference picture list number, it may not be set in the header or header information.
  • the image decoding apparatus uses the second maximum reference picture list number instead of the first maximum reference picture list number. It can be decoded by determining that it is used. In this way, by not setting information on the number of some first maximum reference picture lists, the compression rate can be improved.
  • FIG. 8 is a block diagram illustrating an example of an image decoding device 200 corresponding to the image encoding device 100 of FIG. 4 differs from the conventional decoding apparatus of FIG. 4 in that the first and second maximum reference picture list numbers are read from the bitstream and used for the processing of the inter prediction control unit 201.
  • FIGS. 9A and 9B are flowcharts showing an example of inter prediction control in the image decoding apparatus 200 of FIG. 9A and 9B are flowcharts corresponding to FIGS. 7A and 7B, respectively, illustrating a flow of inter prediction control on the image encoding device 100 side.
  • the first maximum reference picture list number is set as the third maximum reference picture list number, and reference picture list management information (reference picture management memory) is set according to the third maximum reference picture list number. ) Is initialized by the same initialization method as that on the image encoding apparatus 100 side.
  • the predetermined error processing may be any error processing as long as it is a means for avoiding a fatal situation such as deadlock or hang-up of the system including the image decoding device 200.
  • the system notifies the system that a fatal error has occurred in decoding processing, re-allocates the reference picture list management memory according to the number of first maximum reference picture lists, and performs decoding. There is a method of continuing processing. In this example, the system displays a message on the screen indicating that an error has occurred in the decryption process, so that the user (viewer) is informed of the abnormal state, and the user action such as stop playback or restart of the decryption process is performed. You can also encourage them. Further, when information on the first maximum reference picture list number is not obtained, an error can be avoided by setting the second maximum reference picture list number to the third maximum reference picture list number. Is possible.
  • a Q picture is used as a picture corresponding to a conventional B picture.
  • a new picture type that uses a predetermined number of reference picture lists to I, P, and B pictures.
  • prediction using three or more reference picture lists is possible.
  • the number of reference pictures is identified as a new picture type (T picture, Q picture, etc.) and the picture type that distinguishes the aforementioned reference direction is used.
  • the image encoding device 100 in order to express an arbitrary number, it is necessary to newly define many picture types, and the image encoding device 100 notifies the image decoding device 200 of the first and second maximum reference picture list numbers. It goes without saying that higher flexibility can be secured.
  • the image coding apparatus 100 does not use a new picture type, but the image coding apparatus 100 performs every predetermined unit (second processing unit, first processing unit, slice unit, etc.) of the coded sequence. It is also possible to insert a value for distinguishing the reference direction (only forward reference, etc.) for a predetermined picture type (B picture, etc.) into the prepared field. In this case, the image decoding apparatus 200 receives a notification of the number of reference picture lists for each first processing unit or each second processing unit, and obtains a reference direction of a processing unit such as a plurality of pictures included in the predetermined unit. Can do.
  • the storage medium may be any medium that can record a program, such as a magnetic disk, an optical disk, a magneto-optical disk, an IC card, and a semiconductor memory.
  • FIG. 10 is a diagram showing an overall configuration of a content supply system ex100 that realizes a content distribution service.
  • a communication service providing area is divided into desired sizes, and base stations ex106, ex107, ex108, ex109, and ex110, which are fixed wireless stations, are installed in each cell.
  • This content supply system ex100 includes a computer ex111, a PDA (Personal Digital Assistant) ex112, a camera ex113, a mobile phone ex114, a game machine ex115 via the Internet ex101, the Internet service provider ex102, the telephone network ex104, and the base stations ex106 to ex110. Etc. are connected.
  • PDA Personal Digital Assistant
  • each device may be directly connected to the telephone network ex104 without going from the base station ex106, which is a fixed wireless station, to ex110.
  • the devices may be directly connected to each other via short-range wireless or the like.
  • the camera ex113 is a device that can shoot moving images such as a digital video camera
  • the camera ex116 is a device that can shoot still images and movies such as a digital camera.
  • the mobile phone ex114 is a GSM (Global System for Mobile Communications) system, a CDMA (Code Division Multiple Access) system, a W-CDMA (Wideband-Code Division Multiple Access) system, an LTE (Long Terminal Evolution) system, an HSPA ( High-speed-Packet-Access) mobile phone or PHS (Personal-Handyphone System), etc.
  • GSM Global System for Mobile Communications
  • CDMA Code Division Multiple Access
  • W-CDMA Wideband-Code Division Multiple Access
  • LTE Long Terminal Evolution
  • HSPA High-speed-Packet-Access
  • PHS Personal-Handyphone System
  • the camera ex113 and the like are connected to the streaming server ex103 through the base station ex109 and the telephone network ex104, thereby enabling live distribution and the like.
  • live distribution the content (for example, music live video) captured by the user using the camera ex113 is encoded as described in the above embodiments, and transmitted to the streaming server ex103.
  • the streaming server ex103 stream-distributes the content data transmitted to the requested client. Examples of the client include a computer ex111, a PDA ex112, a camera ex113, a mobile phone ex114, and a game machine ex115 that can decode the encoded data. Each device that receives the distributed data decodes the received data and reproduces it.
  • the captured data may be encoded by the camera ex113, the streaming server ex103 that performs data transmission processing, or may be shared with each other.
  • the decryption processing of the distributed data may be performed by the client, the streaming server ex103, or may be performed in common with each other.
  • still images and / or moving image data captured by the camera ex116 may be transmitted to the streaming server ex103 via the computer ex111.
  • the encoding process in this case may be performed by any of the camera ex116, the computer ex111, and the streaming server ex103, or may be performed in a shared manner.
  • these encoding / decoding processes are generally performed in the computer ex111 and the LSI ex500 included in each device.
  • the LSI ex500 may be configured as a single chip or a plurality of chips.
  • moving image encoding / decoding software is incorporated into some recording medium (CD-ROM, flexible disk, hard disk, etc.) that can be read by the computer ex111, etc., and encoding / decoding processing is performed using the software. May be.
  • moving image data acquired by the camera may be transmitted.
  • the moving image data at this time is data encoded by the LSI ex500 included in the mobile phone ex114.
  • the streaming server ex103 may be a plurality of servers or a plurality of computers, and may process, record, and distribute data in a distributed manner.
  • the encoded data can be received and reproduced by the client.
  • the information transmitted by the user can be received, decrypted and reproduced by the client in real time, and personal broadcasting can be realized even for a user who does not have special rights or facilities.
  • At least one of the video encoding device and the video decoding device of each of the above embodiments is incorporated in the digital broadcasting system ex200. be able to.
  • the broadcast station ex201 multiplexed data obtained by multiplexing music data and the like on video data is transmitted to a communication or satellite ex202 via radio waves.
  • This video data is data encoded by the moving image encoding method described in the above embodiments.
  • the broadcasting satellite ex202 transmits a radio wave for broadcasting, and this radio wave is received by a home antenna ex204 capable of receiving satellite broadcasting.
  • the received multiplexed data is decoded and reproduced by a device such as the television (receiver) ex300 or the set top box (STB) ex217.
  • a reader / recorder ex218 that reads and decodes multiplexed data recorded on a recording medium ex215 such as a DVD or a BD, or encodes a video signal on the recording medium ex215 and, in some cases, multiplexes and writes it with a music signal. It is possible to mount the moving picture decoding apparatus or moving picture encoding apparatus described in the above embodiments. In this case, the reproduced video signal is displayed on the monitor ex219, and the video signal can be reproduced in another device or system using the recording medium ex215 on which the multiplexed data is recorded.
  • a moving picture decoding apparatus may be mounted in a set-top box ex217 connected to a cable ex203 for cable television or an antenna ex204 for satellite / terrestrial broadcasting and displayed on the monitor ex219 of the television.
  • the moving picture decoding apparatus may be incorporated in the television instead of the set top box.
  • FIG. 12 is a diagram showing a television (receiver) ex300 that uses the moving picture decoding method and the moving picture encoding method described in the above embodiments.
  • the television ex300 obtains or outputs multiplexed data in which audio data is multiplexed with video data via the antenna ex204 or the cable ex203 that receives the broadcast, and demodulates the received multiplexed data.
  • the modulation / demodulation unit ex302 that modulates multiplexed data to be transmitted to the outside, and the demodulated multiplexed data is separated into video data and audio data, or the video data and audio data encoded by the signal processing unit ex306 Is provided with a multiplexing / demultiplexing unit ex303.
  • the television ex300 decodes the audio data and the video data, or encodes each information, the audio signal processing unit ex304, the signal processing unit ex306 including the video signal processing unit ex305, and the decoded audio signal.
  • the television ex300 includes an interface unit ex317 including an operation input unit ex312 that receives an input of a user operation.
  • the television ex300 includes a control unit ex310 that performs overall control of each unit, and a power supply circuit unit ex311 that supplies power to each unit.
  • the interface unit ex317 includes a bridge unit ex313 connected to an external device such as a reader / recorder ex218, a recording unit ex216 such as an SD card, and an external recording unit such as a hard disk.
  • a driver ex315 for connecting to a medium, a modem ex316 for connecting to a telephone network, and the like may be included.
  • the recording medium ex216 is capable of electrically recording information by using a nonvolatile / volatile semiconductor memory element to be stored.
  • Each part of the television ex300 is connected to each other via a synchronous bus.
  • the television ex300 receives a user operation from the remote controller ex220 or the like, and demultiplexes the multiplexed data demodulated by the modulation / demodulation unit ex302 by the multiplexing / demultiplexing unit ex303 based on the control of the control unit ex310 having a CPU or the like. Furthermore, in the television ex300, the separated audio data is decoded by the audio signal processing unit ex304, and the separated video data is decoded by the video signal processing unit ex305 using the decoding method described in each of the above embodiments.
  • the decoded audio signal and video signal are output from the output unit ex309 to the outside. At the time of output, these signals may be temporarily stored in the buffers ex318, ex319, etc. so that the audio signal and the video signal are reproduced in synchronization. Also, the television ex300 may read multiplexed data from recording media ex215 and ex216 such as a magnetic / optical disk and an SD card, not from broadcasting. Next, a configuration in which the television ex300 encodes an audio signal or a video signal and transmits the signal to the outside or to a recording medium will be described.
  • the television ex300 receives a user operation from the remote controller ex220 and the like, encodes an audio signal with the audio signal processing unit ex304, and converts the video signal with the video signal processing unit ex305 based on the control of the control unit ex310. Encoding is performed using the encoding method described in (1).
  • the encoded audio signal and video signal are multiplexed by the multiplexing / demultiplexing unit ex303 and output to the outside. When multiplexing, these signals may be temporarily stored in the buffers ex320, ex321, etc. so that the audio signal and the video signal are synchronized.
  • a plurality of buffers ex318, ex319, ex320, and ex321 may be provided as illustrated, or one or more buffers may be shared. Further, in addition to the illustrated example, data may be stored in the buffer as a buffer material that prevents system overflow and underflow, for example, between the modulation / demodulation unit ex302 and the multiplexing / demultiplexing unit ex303.
  • the television ex300 has a configuration for receiving AV input of a microphone and a camera, and performs encoding processing on the data acquired from them. Also good.
  • the television ex300 has been described as a configuration capable of the above-described encoding processing, multiplexing, and external output, but these processing cannot be performed, and only the above-described reception, decoding processing, and external output are possible. It may be a configuration.
  • the decoding process or the encoding process may be performed by either the television ex300 or the reader / recorder ex218,
  • the reader / recorder ex218 may share with each other.
  • FIG. 13 shows a configuration of the information reproducing / recording unit ex400 when data is read from or written to an optical disk.
  • the information reproducing / recording unit ex400 includes elements ex401, ex402, ex403, ex404, ex405, ex406, and ex407 described below.
  • the optical head ex401 irradiates a laser spot on the recording surface of the recording medium ex215 that is an optical disk to write information, and detects reflected light from the recording surface of the recording medium ex215 to read the information.
  • the modulation recording unit ex402 electrically drives a semiconductor laser built in the optical head ex401 and modulates the laser beam according to the recording data.
  • the reproduction demodulator ex403 amplifies the reproduction signal obtained by electrically detecting the reflected light from the recording surface by the photodetector built in the optical head ex401, separates and demodulates the signal component recorded on the recording medium ex215, and is necessary To play back information.
  • the buffer ex404 temporarily holds information to be recorded on the recording medium ex215 and information reproduced from the recording medium ex215.
  • the disk motor ex405 rotates the recording medium ex215.
  • the servo controller ex406 moves the optical head ex401 to a predetermined information track while controlling the rotational drive of the disk motor ex405, and performs a laser spot tracking process.
  • the system control unit ex407 controls the entire information reproduction / recording unit ex400.
  • the system control unit ex407 uses various kinds of information held in the buffer ex404, and generates and adds new information as necessary, and the modulation recording unit ex402, the reproduction demodulation unit This is realized by recording / reproducing information through the optical head ex401 while operating the ex403 and the servo control unit ex406 in a coordinated manner.
  • the system control unit ex407 is composed of, for example, a microprocessor, and executes these processes by executing a read / write program.
  • the optical head ex401 has been described as irradiating a laser spot.
  • a configuration in which higher-density recording is performed using near-field light may be used.
  • FIG. 14 shows a schematic diagram of a recording medium ex215 that is an optical disk.
  • Guide grooves grooves
  • address information indicating the absolute position on the disc is recorded in advance on the information track ex230 by changing the shape of the groove.
  • This address information includes information for specifying the position of the recording block ex231 that is a unit for recording data, and the recording block is specified by reproducing the information track ex230 and reading the address information in a recording or reproducing apparatus.
  • the recording medium ex215 includes a data recording area ex233, an inner peripheral area ex232, and an outer peripheral area ex234.
  • the area used for recording user data is the data recording area ex233, and the inner circumference area ex232 and the outer circumference area ex234 arranged on the inner or outer circumference of the data recording area ex233 are used for specific purposes other than user data recording. Used.
  • the information reproducing / recording unit ex400 reads / writes encoded audio data, video data, or multiplexed data obtained by multiplexing these data with respect to the data recording area ex233 of the recording medium ex215.
  • an optical disk such as a single-layer DVD or BD has been described as an example.
  • the present invention is not limited to these, and an optical disk having a multilayer structure and capable of recording other than the surface may be used.
  • an optical disc with a multi-dimensional recording / reproducing structure such as recording information using light of different wavelengths in the same place on the disc, or recording different layers of information from various angles. It may be.
  • the car ex210 having the antenna ex205 can receive data from the satellite ex202 and the like, and the moving image can be reproduced on a display device such as the car navigation ex211 that the car ex210 has.
  • the configuration of the car navigation ex211 may be, for example, a configuration in which a GPS receiver is added in the configuration illustrated in FIG.
  • FIG. 15A is a diagram showing the mobile phone ex114 using the video decoding method and the video encoding method described in the above embodiment.
  • the mobile phone ex114 includes an antenna ex350 for transmitting and receiving radio waves to and from the base station ex110, a camera unit ex365 capable of capturing video and still images, a video captured by the camera unit ex365, a video received by the antenna ex350, and the like Is provided with a display unit ex358 such as a liquid crystal display for displaying the decrypted data.
  • the mobile phone ex114 further includes a main body unit having an operation key unit ex366, an audio output unit ex357 such as a speaker for outputting audio, an audio input unit ex356 such as a microphone for inputting audio, a captured video,
  • an audio input unit ex356 such as a microphone for inputting audio
  • a captured video In the memory unit ex367 for storing encoded data or decoded data such as still images, recorded audio, received video, still images, mails, or the like, or an interface unit with a recording medium for storing data
  • a slot ex364 is provided.
  • the mobile phone ex114 has a power supply circuit part ex361, an operation input control part ex362, and a video signal processing part ex355 with respect to a main control part ex360 that comprehensively controls each part of the main body including the display part ex358 and the operation key part ex366.
  • a camera interface unit ex363, an LCD (Liquid Crystal Display) control unit ex359, a modulation / demodulation unit ex352, a multiplexing / demultiplexing unit ex353, an audio signal processing unit ex354, a slot unit ex364, and a memory unit ex367 are connected to each other via a bus ex370. ing.
  • the power supply circuit unit ex361 starts up the mobile phone ex114 in an operable state by supplying power from the battery pack to each unit.
  • the cellular phone ex114 converts the audio signal collected by the audio input unit ex356 in the voice call mode into a digital audio signal by the audio signal processing unit ex354 based on the control of the main control unit ex360 having a CPU, a ROM, a RAM, and the like. Then, this is subjected to spectrum spread processing by the modulation / demodulation unit ex352, digital-analog conversion processing and frequency conversion processing are performed by the transmission / reception unit ex351, and then transmitted via the antenna ex350.
  • the mobile phone ex114 also amplifies the received data received via the antenna ex350 in the voice call mode, performs frequency conversion processing and analog-digital conversion processing, performs spectrum despreading processing by the modulation / demodulation unit ex352, and performs voice signal processing unit After being converted into an analog audio signal by ex354, this is output from the audio output unit ex357.
  • the text data of the e-mail input by operating the operation key unit ex366 of the main unit is sent to the main control unit ex360 via the operation input control unit ex362.
  • the main control unit ex360 performs spread spectrum processing on the text data in the modulation / demodulation unit ex352, performs digital analog conversion processing and frequency conversion processing in the transmission / reception unit ex351, and then transmits the text data to the base station ex110 via the antenna ex350.
  • almost the reverse process is performed on the received data and output to the display unit ex358.
  • the video signal processing unit ex355 compresses the video signal supplied from the camera unit ex365 by the moving image encoding method described in the above embodiments.
  • the encoded video data is sent to the multiplexing / separating unit ex353.
  • the audio signal processing unit ex354 encodes the audio signal picked up by the audio input unit ex356 while the camera unit ex365 images a video, a still image, etc., and sends the encoded audio data to the multiplexing / separating unit ex353. To do.
  • the multiplexing / demultiplexing unit ex353 multiplexes the encoded video data supplied from the video signal processing unit ex355 and the encoded audio data supplied from the audio signal processing unit ex354 by a predetermined method, and is obtained as a result.
  • the multiplexed data is subjected to spread spectrum processing by the modulation / demodulation unit (modulation / demodulation circuit unit) ex352, digital-analog conversion processing and frequency conversion processing by the transmission / reception unit ex351, and then transmitted via the antenna ex350.
  • the multiplexing / separating unit ex353 separates the multiplexed data into a video data bit stream and an audio data bit stream, and performs video signal processing on the video data encoded via the synchronization bus ex370.
  • the encoded audio data is supplied to the audio signal processing unit ex354 while being supplied to the unit ex355.
  • the video signal processing unit ex355 decodes the video signal by decoding using the video decoding method corresponding to the video encoding method described in each of the above embodiments, and the display unit ex358 via the LCD control unit ex359. From, for example, video and still images included in a moving image file linked to a home page are displayed.
  • the audio signal processing unit ex354 decodes the audio signal, and the audio is output from the audio output unit ex357.
  • the terminal such as the mobile phone ex114 is referred to as a transmission terminal having only an encoder and a receiving terminal having only a decoder.
  • a transmission terminal having only an encoder
  • a receiving terminal having only a decoder.
  • multiplexed data in which music data is multiplexed with video data is received and transmitted.
  • character data related to video is multiplexed. It may be converted data, or may be video data itself instead of multiplexed data.
  • the moving picture encoding method or the moving picture decoding method shown in each of the above embodiments can be used in any of the above-described devices / systems. The described effect can be obtained.
  • multiplexed data obtained by multiplexing audio data or the like with video data is configured to include identification information indicating which standard the video data conforms to.
  • identification information indicating which standard the video data conforms to.
  • FIG. 16 is a diagram showing a structure of multiplexed data.
  • multiplexed data is obtained by multiplexing one or more of a video stream, an audio stream, a presentation graphics stream (PG), and an interactive graphics stream.
  • the video stream indicates the main video and sub-video of the movie
  • the audio stream (IG) indicates the main audio portion of the movie and the sub-audio mixed with the main audio
  • the presentation graphics stream indicates the subtitles of the movie.
  • the main video indicates a normal video displayed on the screen
  • the sub-video is a video displayed on a small screen in the main video.
  • the interactive graphics stream indicates an interactive screen created by arranging GUI components on the screen.
  • the video stream is encoded by the moving image encoding method or apparatus shown in the above embodiments, or the moving image encoding method or apparatus conforming to the conventional standards such as MPEG-2, MPEG4-AVC, and VC-1. ing.
  • the audio stream is encoded by a method such as Dolby AC-3, Dolby Digital Plus, MLP, DTS, DTS-HD, or linear PCM.
  • Each stream included in the multiplexed data is identified by PID. For example, 0x1011 for video streams used for movie images, 0x1100 to 0x111F for audio streams, 0x1200 to 0x121F for presentation graphics, 0x1400 to 0x141F for interactive graphics streams, 0x1B00 to 0x1B1F are assigned to video streams used for sub-pictures, and 0x1A00 to 0x1A1F are assigned to audio streams used for sub-audio mixed with the main audio.
  • FIG. 17 is a diagram schematically showing how multiplexed data is multiplexed.
  • a video stream ex235 composed of a plurality of video frames and an audio stream ex238 composed of a plurality of audio frames are converted into PES packet sequences ex236 and ex239, respectively, and converted into TS packets ex237 and ex240.
  • the data of the presentation graphics stream ex241 and interactive graphics ex244 are converted into PES packet sequences ex242 and ex245, respectively, and further converted into TS packets ex243 and ex246.
  • the multiplexed data ex247 is configured by multiplexing these TS packets into one stream.
  • FIG. 18 shows in more detail how the video stream is stored in the PES packet sequence.
  • the first row in FIG. 18 shows a video frame sequence of the video stream.
  • the second level shows a PES packet sequence.
  • a plurality of Video Presentation Units in the video stream are divided into pictures, B pictures, and P pictures, and are stored in the payload of the PES packet.
  • Each PES packet has a PES header, and a PTS (Presentation Time-Stamp) that is a display time of a picture and a DTS (Decoding Time-Stamp) that is a decoding time of a picture are stored in the PES header.
  • PTS Presentation Time-Stamp
  • DTS Decoding Time-Stamp
  • FIG. 19 shows the format of TS packets that are finally written in the multiplexed data.
  • the TS packet is a 188-byte fixed-length packet composed of a 4-byte TS header having information such as a PID for identifying a stream and a 184-byte TS payload for storing data.
  • the PES packet is divided and stored in the TS payload.
  • a 4-byte TP_Extra_Header is added to a TS packet, forms a 192-byte source packet, and is written in multiplexed data.
  • TP_Extra_Header information such as ATS (Arrival_Time_Stamp) is described.
  • ATS indicates the transfer start time of the TS packet to the PID filter of the decoder.
  • Source packets are arranged in the multiplexed data as shown in the lower part of FIG. 19, and the number incremented from the head of the multiplexed data is called SPN (source packet number).
  • TS packets included in the multiplexed data include PAT (Program Association Table), PMT (Program Map Table), PCR (Program Clock Reference), and the like in addition to each stream such as video / audio / caption.
  • PAT indicates what the PID of the PMT used in the multiplexed data is, and the PID of the PAT itself is registered as 0.
  • the PMT has the PID of each stream such as video / audio / subtitles included in the multiplexed data and the attribute information of the stream corresponding to each PID, and has various descriptors related to the multiplexed data.
  • the descriptor includes copy control information for instructing permission / non-permission of copying of multiplexed data.
  • the PCR corresponds to the ATS in which the PCR packet is transferred to the decoder. Contains STC time information.
  • FIG. 20 is a diagram for explaining the data structure of the PMT in detail.
  • a PMT header describing the length of data included in the PMT is arranged at the head of the PMT.
  • a plurality of descriptors related to multiplexed data are arranged.
  • the copy control information and the like are described as descriptors.
  • a plurality of pieces of stream information regarding each stream included in the multiplexed data are arranged.
  • the stream information includes a stream descriptor in which a stream type, a stream PID, and stream attribute information (frame rate, aspect ratio, etc.) are described to identify a compression codec of the stream.
  • the multiplexed data is recorded together with the multiplexed data information file.
  • the multiplexed data information file is management information of multiplexed data, has one-to-one correspondence with the multiplexed data, and includes multiplexed data information, stream attribute information, and an entry map.
  • the multiplexed data information includes a system rate, a reproduction start time, and a reproduction end time as shown in FIG.
  • the system rate indicates a maximum transfer rate of multiplexed data to a PID filter of a system target decoder described later.
  • the ATS interval included in the multiplexed data is set to be equal to or less than the system rate.
  • the playback start time is the PTS of the first video frame of the multiplexed data
  • the playback end time is set by adding the playback interval for one frame to the PTS of the video frame at the end of the multiplexed data.
  • attribute information about each stream included in the multiplexed data is registered for each PID.
  • the attribute information has different information for each video stream, audio stream, presentation graphics stream, and interactive graphics stream.
  • the video stream attribute information includes the compression codec used to compress the video stream, the resolution of the individual picture data constituting the video stream, the aspect ratio, and the frame rate. It has information such as how much it is.
  • the audio stream attribute information includes the compression codec used to compress the audio stream, the number of channels included in the audio stream, the language supported, and the sampling frequency. With information. These pieces of information are used for initialization of the decoder before the player reproduces it.
  • the stream type included in the PMT is used.
  • video stream attribute information included in the multiplexed data information is used.
  • the video encoding shown in each of the above embodiments for the stream type or video stream attribute information included in the PMT.
  • FIG. 23 shows steps of the moving picture decoding method according to the present embodiment.
  • step exS100 the stream type included in the PMT or the video stream attribute information included in the multiplexed data information is acquired from the multiplexed data.
  • step exS101 it is determined whether or not the stream type or the video stream attribute information indicates multiplexed data generated by the moving picture encoding method or apparatus described in the above embodiments. To do.
  • step exS102 the above embodiments are performed. Decoding is performed by the moving picture decoding method shown in the form.
  • the conventional information Decoding is performed by a moving image decoding method compliant with the standard.
  • FIG. 24 shows a configuration of an LSI ex500 that is made into one chip.
  • the LSI ex500 includes elements ex501, ex502, ex503, ex504, ex505, ex506, ex507, ex508, and ex509 described below, and each element is connected via a bus ex510.
  • the power supply circuit unit ex505 is activated to an operable state by supplying power to each unit when the power supply is on.
  • the LSI ex500 when performing the encoding process, performs the microphone ex117 and the camera ex113 by the AV I / O ex509 based on the control of the control unit ex501 including the CPU ex502, the memory controller ex503, the stream controller ex504, the drive frequency control unit ex512, and the like.
  • the AV signal is input from the above.
  • the input AV signal is temporarily stored in an external memory ex511 such as SDRAM.
  • the accumulated data is divided into a plurality of times as appropriate according to the processing amount and the processing speed and sent to the signal processing unit ex507, and the signal processing unit ex507 encodes an audio signal and / or video. Signal encoding is performed.
  • the encoding process of the video signal is the encoding process described in the above embodiments.
  • the signal processing unit ex507 further performs processing such as multiplexing the encoded audio data and the encoded video data according to circumstances, and outputs the result from the stream I / Oex 506 to the outside.
  • the output multiplexed data is transmitted to the base station ex107 or written to the recording medium ex215. It should be noted that data should be temporarily stored in the buffer ex508 so as to be synchronized when multiplexing.
  • the memory ex511 is described as an external configuration of the LSI ex500.
  • a configuration included in the LSI ex500 may be used.
  • the number of buffers ex508 is not limited to one, and a plurality of buffers may be provided.
  • the LSI ex500 may be made into one chip or a plurality of chips.
  • control unit ex501 includes the CPU ex502, the memory controller ex503, the stream controller ex504, the drive frequency control unit ex512, and the like, but the configuration of the control unit ex501 is not limited to this configuration.
  • the signal processing unit ex507 may further include a CPU.
  • the CPU ex502 may be configured to include a signal processing unit ex507 or, for example, an audio signal processing unit that is a part of the signal processing unit ex507.
  • the control unit ex501 is configured to include a signal processing unit ex507 or a CPU ex502 having a part thereof.
  • LSI LSI
  • IC system LSI
  • super LSI ultra LSI depending on the degree of integration
  • the method of circuit integration is not limited to LSI, and implementation with a dedicated circuit or a general-purpose processor is also possible.
  • An FPGA Field Programmable Gate Array
  • a reconfigurable processor that can reconfigure the connection and setting of circuit cells inside the LSI may be used.
  • FIG. 25 shows a configuration ex800 in the present embodiment.
  • the drive frequency switching unit ex803 sets the drive frequency high when the video data is generated by the moving image encoding method or apparatus described in the above embodiments.
  • the decoding processing unit ex801 that executes the moving picture decoding method described in each of the above embodiments is instructed to decode the video data.
  • the video data is video data compliant with the conventional standard, compared to the case where the video data is generated by the moving picture encoding method or apparatus shown in the above embodiments, Set the drive frequency low. Then, it instructs the decoding processing unit ex802 compliant with the conventional standard to decode the video data.
  • the drive frequency switching unit ex803 includes the CPU ex502 and the drive frequency control unit ex512 in FIG.
  • the decoding processing unit ex801 that executes the moving picture decoding method shown in each of the above embodiments and the decoding processing unit ex802 that complies with the conventional standard correspond to the signal processing unit ex507 in FIG.
  • the CPU ex502 identifies which standard the video data conforms to.
  • the drive frequency control unit ex512 sets the drive frequency.
  • the signal processing unit ex507 decodes the video data.
  • the identification of the video data for example, it is conceivable to use the identification information described in the third embodiment.
  • the identification information is not limited to that described in Embodiment 3, and any information that can identify which standard the video data conforms to may be used. For example, it is possible to identify which standard the video data conforms to based on an external signal that identifies whether the video data is used for a television or a disk. In some cases, identification may be performed based on such an external signal.
  • the selection of the driving frequency in the CPU ex502 may be performed based on, for example, a look-up table in which video data standards and driving frequencies are associated with each other as shown in FIG. The look-up table is stored in the buffer ex508 or the internal memory of the LSI, and the CPU ex502 can select the drive frequency by referring to the look-up table.
  • FIG. 26 shows steps for executing the method of the present embodiment.
  • the signal processing unit ex507 acquires identification information from the multiplexed data.
  • the CPU ex502 identifies whether the video data is generated by the encoding method or apparatus described in each of the above embodiments based on the identification information.
  • the CPU ex502 sends a signal for setting the drive frequency high to the drive frequency control unit ex512. Then, the drive frequency control unit ex512 sets a high drive frequency.
  • step exS203 the CPU ex502 drives the signal for setting the drive frequency low. This is sent to the frequency control unit ex512. Then, in the drive frequency control unit ex512, the drive frequency is set to be lower than that in the case where the video data is generated by the encoding method or apparatus described in the above embodiments.
  • the power saving effect can be further enhanced by changing the voltage applied to the LSI ex500 or the device including the LSI ex500 in conjunction with the switching of the driving frequency. For example, when the drive frequency is set low, it is conceivable that the voltage applied to the LSI ex500 or the device including the LSI ex500 is set low as compared with the case where the drive frequency is set high.
  • the setting method of the driving frequency may be set to a high driving frequency when the processing amount at the time of decoding is large, and to a low driving frequency when the processing amount at the time of decoding is small. It is not limited to the method.
  • the amount of processing for decoding video data compliant with the MPEG4-AVC standard is larger than the amount of processing for decoding video data generated by the moving picture encoding method or apparatus described in the above embodiments. It is conceivable that the setting of the driving frequency is reversed to that in the case described above.
  • the method for setting the drive frequency is not limited to the configuration in which the drive frequency is lowered.
  • the voltage applied to the LSIex500 or the apparatus including the LSIex500 is set high.
  • the driving of the CPU ex502 is stopped.
  • the CPU ex502 is temporarily stopped because there is room in processing. Is also possible. Even when the identification information indicates that the video data is generated by the moving image encoding method or apparatus described in each of the above embodiments, if there is a margin for processing, the CPU ex502 is temporarily driven. It can also be stopped. In this case, it is conceivable to set the stop time shorter than in the case where the video data conforms to the conventional standards such as MPEG-2, MPEG4-AVC, and VC-1.
  • a plurality of video data that conforms to different standards may be input to the above-described devices and systems such as a television and a mobile phone.
  • the signal processing unit ex507 of the LSI ex500 needs to support a plurality of standards in order to be able to decode even when a plurality of video data complying with different standards is input.
  • the signal processing unit ex507 corresponding to each standard is used individually, there is a problem that the circuit scale of the LSI ex500 increases and the cost increases.
  • a decoding processing unit for executing the moving picture decoding method shown in each of the above embodiments and a decoding conforming to a standard such as MPEG-2, MPEG4-AVC, or VC-1
  • the processing unit is partly shared.
  • An example of this configuration is shown as ex900 in FIG. 28A.
  • the moving picture decoding method shown in each of the above embodiments and the moving picture decoding method compliant with the MPEG4-AVC standard are processed in processes such as entropy coding, inverse quantization, deblocking filter, and motion compensation. Some contents are common.
  • the decoding processing unit ex902 corresponding to the MPEG4-AVC standard is shared, and for other processing contents specific to the present invention not corresponding to the MPEG4-AVC standard, the dedicated decoding processing unit ex901 is used.
  • Configuration is conceivable.
  • a dedicated decoding processing unit ex901 is used for inverse quantization, and other entropy coding, deblocking filter, motion compensation, and the like are used.
  • ex1000 in FIG. 28A shows another example in which processing is partially shared.
  • a dedicated decoding processing unit ex1001 corresponding to processing content unique to the present invention
  • a dedicated decoding processing unit ex1002 corresponding to processing content specific to other conventional standards
  • a moving picture decoding method of the present invention A common decoding processing unit ex1003 corresponding to processing contents common to other conventional video decoding methods is used.
  • the dedicated decoding processing units ex1001 and ex1002 are not necessarily specialized in the processing content specific to the present invention or other conventional standards, and may be capable of executing other general-purpose processing.
  • the configuration of the present embodiment can be implemented by LSI ex500.
  • the moving picture decoding method of the present invention the processing contents to be shared by the moving picture decoding method of the conventional standard, by sharing the decoding processing unit, to reduce the circuit scale of LSI, and cost It is possible to reduce.
  • the image encoding method and the image decoding method according to the present invention have the effect that the encoding efficiency can be improved. It can be applied to devices and the like.

Abstract

Disclosed is an image encoding method which is capable of improving the encoding efficiency of inter-prediction encoding and which uses at least one reference image to perform prediction encoding. When a picture type is included in first header information added to a bit stream for every first processing unit and the picture type indicates inter-encoding, the maximum number of reference picture lists, which manage reference images used in inter-prediction in the first processing unit, is included in the first header information as a first maximum number of reference picture lists.

Description

画像符号化方法および画像復号方法Image encoding method and image decoding method
 本発明は、複数の参照画像を用いて動画像の予測符号化を行う画像符号化装置、画像復号装置、画像符号化方法、画像復号方法、及び、それらの方法をコンピュータに実行させるプログラムなどに関する。 The present invention relates to an image encoding device, an image decoding device, an image encoding method, an image decoding method, a program for causing a computer to execute these methods, and the like that perform predictive encoding of a moving image using a plurality of reference images. .
 図1は、従来の符号化装置の一例を示すブロック図である。図1の符号化装置では、ピクチャタイプ決定部が決定したピクチャタイプ(例えば、H.264のslice type)に応じて、インター予測制御部がインター予測部を制御し、インター予測符号化を行う。具体的には、Iピクチャ(例えば、H.264のI slice或いはIDR slice)、Pピクチャ(例えば、H.264のP slice)、Bピクチャ(例えば、H.264のB slice)などのピクチャタイプに応じて、各予測単位ブロックのインター符号化に用いる参照画像を管理する参照ピクチャリスト(例えば、H.264のreference picture list)の最大数をそれぞれ0本(インター符号化なし)、1本(例えば、H.264のreference picture list 0)、2本(例えば、H.264のreference picture list 0及び1)と切替えていた。ピクチャタイプは、第1の処理単位毎(例えば、H.264のslice)にビットストリームに付与する第1のヘッダ情報(例えば、H.264のslice header)にて、符号化装置から復号装置に通知される。参照ピクチャリストには、インター予測で参照する参照画像に対応するインデックス(例えば、H.264のreference index)を一つ以上含み、ブロック毎に前記参照ピクチャリストと前記インデックスを用いてインター予測で参照するピクチャを指定する。 FIG. 1 is a block diagram showing an example of a conventional encoding device. 1, the inter prediction control unit controls the inter prediction unit according to the picture type determined by the picture type determination unit (for example, H.264 slice type), and performs inter prediction coding. Specifically, picture types such as I picture (for example, H.264 I slice or IDR slice), P picture (for example, H.264 P slice), B picture (for example, H.264 B slice), etc. Accordingly, the maximum number of reference picture lists (for example, H.264 reference picture list) for managing reference images used for inter coding of each prediction unit block is 0 (no inter coding), 1 ( For example, H.264 reference picture list 0 and 2 (for example, H.264 reference picture list 0 and 1) were switched. The picture type is the first header information (for example, H.264 slice header) added to the bit stream for each first processing unit (for example, H.264 slice), from the encoding device to the decoding device. Be notified. The reference picture list includes at least one index (for example, H.264 reference index) corresponding to a reference image to be referred to by inter prediction, and is referred to by inter prediction using the reference picture list and the index for each block. Specify the picture to be used.
 図2A、図2B、図3Aおよび図3Bに従来の符号化装置によるインター予測符号化の一例を示す。図2Aおよび図3Aのそれぞれに、表示順の画像列とインター予測の代表的な予測参照関係を示し、図2Bおよび図3Bのそれぞれに、2本の参照ピクチャリストを使用した場合の、符号化対象ブロックと参照ブロックの予測参照関係の概念を示す。図2Bおよび図3Bにおける、参照ピクチャリスト0(1)を用いた予測参照は、具体的には、例えば、H.264のlist 0 (list 1) predictionである。 FIG. 2A, FIG. 2B, FIG. 3A, and FIG. FIG. 2A and FIG. 3A each show a typical prediction reference relationship of an image sequence in display order and inter prediction, and FIG. 2B and FIG. 3B each are encoded using two reference picture lists. The concept of the prediction reference relationship between a target block and a reference block is shown. The prediction reference using the reference picture list 0 (1) in FIG. 2B and FIG. H.264 list 0 (list 1) prediction.
 図4は、図1の従来の符号化装置に対応する復号装置の一例を示すブロック図である。図4の復号装置では、ビットストリームに付加されているピクチャタイプに応じて、インター予測制御部がインター予測部を制御し、インター予測復号を行う。 FIG. 4 is a block diagram showing an example of a decoding apparatus corresponding to the conventional encoding apparatus of FIG. In the decoding apparatus of FIG. 4, the inter prediction control unit controls the inter prediction unit according to the picture type added to the bitstream, and performs inter prediction decoding.
 従来の符号化装置及び復号装置では、Iピクチャ、Pピクチャ、Bピクチャなどのピクチャタイプに応じて、各予測単位ブロックのインター符号化に用いる参照画像を管理する参照ピクチャリストの最大数をそれぞれ0本(インター符号化なし)、1本、2本と切替えていたため、3本以上の参照ピクチャリストを用いてインター予測符号化できないという課題があった。その結果、予測単位ブロックを適切に予測して符号化および復号することができず、符号化効率が低下するという問題がある。 In the conventional coding apparatus and decoding apparatus, the maximum number of reference picture lists for managing reference pictures used for inter coding of each prediction unit block is set to 0 according to the picture type such as I picture, P picture, and B picture, respectively. Since the main (no inter-coding) has been switched to one, two, there is a problem that inter prediction coding cannot be performed using three or more reference picture lists. As a result, there is a problem that the prediction unit block cannot be appropriately predicted and encoded and decoded, and the encoding efficiency is lowered.
 そこで、本発明は、かかる問題に鑑みてなされたものであって、符号化効率を向上することができる画像符号化方法および画像復号方法などを提供することを目的とする。 Therefore, the present invention has been made in view of such problems, and an object thereof is to provide an image encoding method and an image decoding method that can improve encoding efficiency.
 上記目的を達成するために、本発明に係る画像符号化方法は、少なくとも1枚の参照画像を用いて予測符号化を行う画像符号化方法であって、第1の処理単位毎にビットストリームに付与する第1のヘッダ情報にピクチャタイプを含み、前記ピクチャタイプがインター符号化を示す場合には、前記第1の処理単位におけるインター予測に用いる参照画像を管理する参照ピクチャリストの最大数を、第1の最大参照ピクチャリスト数として前記第1のヘッダ情報に含めることを特徴とする。 In order to achieve the above object, an image encoding method according to the present invention is an image encoding method that performs predictive encoding using at least one reference image, and includes a bitstream for each first processing unit. When the first header information to be added includes a picture type and the picture type indicates inter coding, the maximum number of reference picture lists for managing reference pictures used for inter prediction in the first processing unit is set as follows: The first header information is included in the first header information as the first maximum reference picture list number.
 この構成により、3本以上の参照ピクチャリストを用いてインター予測符号化することが可能となり、インター予測符号化の符号化効率を向上することができる。 With this configuration, it is possible to perform inter prediction encoding using three or more reference picture lists, and it is possible to improve the encoding efficiency of inter prediction encoding.
 また、上記目的を達成するために、本発明に係る画像復号方法は、少なくとも1枚の参照画像を用いて予測符号化されたビットストリームを復号する画像復号方法であって、第1の処理単位毎にビットストリームに付与された第1のヘッダ情報に含まれるピクチャタイプがインター符号化を示す場合には、前記第1の処理単位におけるインター予測に用いる参照画像を管理する参照ピクチャリストの最大数である、前記第1のヘッダ情報に含まれる第1の最大参照ピクチャリスト数に応じて、前記ビットストリームを復号することを特徴とする。 In order to achieve the above object, an image decoding method according to the present invention is an image decoding method for decoding a bitstream that has been predictively encoded using at least one reference image, the first processing unit When the picture type included in the first header information added to the bitstream every time indicates inter coding, the maximum number of reference picture lists for managing reference pictures used for inter prediction in the first processing unit The bit stream is decoded according to the number of first maximum reference picture lists included in the first header information.
 この構成により、3本以上の参照ピクチャリストを用いてインター予測することが可能となり、画像符号化装置側におけるインター予測符号化の符号化効率を向上することができる。 With this configuration, it is possible to perform inter prediction using three or more reference picture lists, and it is possible to improve the coding efficiency of inter prediction coding on the image coding device side.
 なお、本発明は、このような画像符号化方法または画像復号方法として実現することができるだけでなく、その方法にしたがった処理を行う画像符号化装置、画像復号装置あるいは集積回路、その方法にしたがった処理をコンピュータに実行させるプログラム、または、そのプログラムを格納する記録媒体としても実現することができる。 The present invention can be realized not only as such an image encoding method or image decoding method, but also according to an image encoding device, an image decoding device or an integrated circuit that performs processing according to the method, and the method. It can also be realized as a program for causing a computer to execute the processing, or as a recording medium for storing the program.
 本発明の画像符号化方法および画像復号方法は、インター予測符号化の符号化効率を向上することができる。 The image encoding method and image decoding method of the present invention can improve the encoding efficiency of inter prediction encoding.
図1は、従来の符号化装置の一例を示すブロック図である。FIG. 1 is a block diagram illustrating an example of a conventional encoding device. 図2Aは、従来の符号化装置および復号装置によるインター予測符号化の一例を示す概念図である。FIG. 2A is a conceptual diagram illustrating an example of inter prediction encoding by a conventional encoding device and decoding device. 図2Bは、従来の符号化装置および復号装置によるインター予測符号化の一例を示す概念図である。FIG. 2B is a conceptual diagram illustrating an example of inter prediction encoding by a conventional encoding device and decoding device. 図3Aは、従来の符号化装置および復号装置によるインター予測符号化の他の例を示す概念図である。FIG. 3A is a conceptual diagram illustrating another example of inter-prediction encoding by a conventional encoding device and decoding device. 図3Bは、従来の符号化装置および復号装置によるインター予測符号化の他の例を示す概念図である。FIG. 3B is a conceptual diagram illustrating another example of inter prediction encoding by a conventional encoding device and decoding device. 図4は、従来の復号装置の一例を示すブロック図である。FIG. 4 is a block diagram showing an example of a conventional decoding device. 図5は、本発明の実施の形態1の画像符号化装置の一例を示すブロック図である。FIG. 5 is a block diagram showing an example of the image coding apparatus according to Embodiment 1 of the present invention. 図6Aは、本発明の実施の形態1におけるインター予測符号化の一例を示す概念図である。FIG. 6A is a conceptual diagram showing an example of inter prediction encoding in Embodiment 1 of the present invention. 図6Bは、本発明の実施の形態1におけるインター予測符号化の一例を示す概念図である。FIG. 6B is a conceptual diagram showing an example of inter prediction coding in Embodiment 1 of the present invention. 図7Aは、本発明の実施の形態1の画像符号化装置におけるインター予測制御の一例を示すフロー図である。FIG. 7A is a flowchart showing an example of inter prediction control in the image coding device according to Embodiment 1 of the present invention. 図7Bは、本発明の実施の形態1の画像符号化装置におけるインター予測制御の一例を示すフロー図である。FIG. 7B is a flowchart showing an example of inter prediction control in the image coding device according to Embodiment 1 of the present invention. 図8は、本発明の実施の形態1の画像復号装置の一例を示すブロック図である。FIG. 8 is a block diagram showing an example of the image decoding apparatus according to Embodiment 1 of the present invention. 図9Aは、本発明の実施の形態1の画像復号装置におけるインター予測制御の一例を示すフロー図である。FIG. 9A is a flowchart showing an example of inter prediction control in the image decoding apparatus according to Embodiment 1 of the present invention. 図9Bは、本発明の実施の形態1の画像復号装置におけるインター予測制御の一例を示すフロー図である。FIG. 9B is a flowchart showing an example of inter prediction control in the image decoding apparatus according to Embodiment 1 of the present invention. 図10は、コンテンツ配信サービスを実現するコンテンツ供給システムの全体構成図である。FIG. 10 is an overall configuration diagram of a content supply system that realizes a content distribution service. 図11は、デジタル放送用システムの全体構成図である。FIG. 11 is an overall configuration diagram of a digital broadcasting system. 図12は、テレビの構成例を示すブロック図である。FIG. 12 is a block diagram illustrating a configuration example of a television. 図13は、光ディスクである記録メディアに情報の読み書きを行う情報再生/記録部の構成例を示すブロック図である。FIG. 13 is a block diagram illustrating a configuration example of an information reproducing / recording unit that reads and writes information from and on a recording medium that is an optical disk. 図14は、光ディスクである記録メディアの構造例を示す図である。FIG. 14 is a diagram illustrating a structure example of a recording medium that is an optical disk. 図15Aは、携帯電話の一例を示す図である。FIG. 15A is a diagram illustrating an example of a mobile phone. 図15Bは、携帯電話の構成例を示すブロック図である。FIG. 15B is a block diagram illustrating a configuration example of a mobile phone. 図16は、多重化データの構成を示す図である。FIG. 16 is a diagram showing a structure of multiplexed data. 図17は、各ストリームが多重化データにおいてどのように多重化されているかを模式的に示す図である。FIG. 17 is a diagram schematically showing how each stream is multiplexed in the multiplexed data. 図18は、PESパケット列に、ビデオストリームがどのように格納されるかを更に詳しく示した図である。FIG. 18 is a diagram showing in more detail how the video stream is stored in the PES packet sequence. 図19は、多重化データにおけるTSパケットとソースパケットの構造を示す図である。FIG. 19 is a diagram illustrating the structure of TS packets and source packets in multiplexed data. 図20は、PMTのデータ構成を示す図である。FIG. 20 is a diagram illustrating a data structure of the PMT. 図21は、多重化データ情報の内部構成を示す図である。FIG. 21 is a diagram showing an internal configuration of multiplexed data information. 図22は、ストリーム属性情報の内部構成を示す図である。FIG. 22 shows the internal structure of stream attribute information. 図23は、映像データを識別するステップを示す図である。FIG. 23 is a diagram illustrating steps for identifying video data. 図24は、各実施の形態の動画像符号化方法および動画像復号化方法を実現する集積回路の構成例を示すブロック図である。FIG. 24 is a block diagram illustrating a configuration example of an integrated circuit that realizes the moving picture encoding method and the moving picture decoding method according to each embodiment. 図25は、駆動周波数を切り替える構成を示す図である。FIG. 25 is a diagram illustrating a configuration for switching the driving frequency. 図26は、映像データを識別し、駆動周波数を切り替えるステップを示す図である。FIG. 26 is a diagram illustrating steps for identifying video data and switching between driving frequencies. 図27は、映像データの規格と駆動周波数を対応づけたルックアップテーブルの一例を示す図である。FIG. 27 is a diagram illustrating an example of a lookup table in which video data standards are associated with drive frequencies. 図28Aは、信号処理部のモジュールを共有化する構成の一例を示す図である。FIG. 28A is a diagram illustrating an example of a configuration for sharing a module of a signal processing unit. 図28Bは、信号処理部のモジュールを共有化する構成の他の一例を示す図である。FIG. 28B is a diagram illustrating another example of a configuration for sharing a module of a signal processing unit.
 以下、本発明の実施の形態について、図面を参照しながら説明する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings.
 (実施の形態1)
 図5は本発明の実施の形態1の画像符号化装置の一例を示すブロック図である。図1に示す従来の符号化装置とは、最大参照ピクチャリスト数決定部101を備える点、及び第1および第2の最大参照ピクチャリスト数をビットストリームに付加する構成を備える点で異なる。
(Embodiment 1)
FIG. 5 is a block diagram showing an example of the image coding apparatus according to Embodiment 1 of the present invention. 1 differs from the conventional coding apparatus shown in FIG. 1 in that it includes a maximum reference picture list number determination unit 101 and a configuration that adds the first and second maximum reference picture list numbers to a bitstream.
 図5の画像符号化装置100では、ピクチャ毎に付与されるヘッダ(例えば、H.264のslice header)にて、第1の最大参照ピクチャリスト数を画像復号装置へ通知し、複数枚のピクチャで構成される単位毎に付与されるヘッダ(例えば、H.264のsequence parameter set)にて、前記第2の最大参照ピクチャリスト数を画像復号装置へ通知する。なお、第1の最大参照ピクチャリスト数は、必ずしもピクチャ毎に付加されるヘッダにて通知する必要は無く、複数のピクチャで共通に使用可能なヘッダ情報(例えば、H.264のpicture parameter set)にて通知する構成としてもよい。 5 notifies the image decoding apparatus of the first maximum reference picture list number in the header (for example, H.264 slice header) assigned to each picture, and a plurality of pictures. The image decoding apparatus is notified of the second maximum reference picture list number in a header (for example, H.264 sequence parameter set) provided for each unit. Note that the first maximum reference picture list number does not necessarily need to be notified by a header added for each picture, and header information that can be used in common by a plurality of pictures (for example, H.264 picture parameter set). It is good also as a structure notified by.
 前記第2の最大参照ピクチャリスト数は、最大参照ピクチャリスト数決定部101にて、本発明を使用するアプリケーション規格や画像コーデック規格で規定される制約条件などに応じて、1本以上に決定される。 The second maximum reference picture list number is determined by the maximum reference picture list number determination unit 101 to one or more according to the constraint conditions defined in the application standards and image codec standards using the present invention. The
 図6Aおよび図6Bは、図5の画像符号化装置100の構成により実現可能となるインター予測符号化の一例を示している。具体的には、前記第1および第2の最大参照ピクチャリスト数を画像符号化装置100から画像復号装置へ通知可能な構成としたことにより、図6Aおよび図6Bに示すように、例えば4本の参照ピクチャリスト0~3を用いたインター予測が可能となる。 6A and 6B show an example of inter prediction encoding that can be realized by the configuration of the image encoding device 100 of FIG. Specifically, the number of the first and second maximum reference picture lists can be notified from the image encoding device 100 to the image decoding device, so that, for example, as shown in FIG. 6A and FIG. Inter prediction using the reference picture lists 0 to 3 is possible.
 図7Aおよび図7Bは、図5の画像符号化装置100におけるインター予測制御の一例を示すフロー図である。 7A and 7B are flowcharts showing an example of inter prediction control in the image encoding device 100 of FIG.
 図7Aは、イントラ符号化ピクチャ(例えば、Iピクチャ)、前方インター予測符号化ピクチャ(例えば、Pピクチャ)、および双方向インター予測符号化ピクチャ(例えば、Bピクチャ)の3種類のピクチャタイプを使用する例を示している。本フローでは、まず第2の最大参照ピクチャリスト数を決定し、第2の最大参照ピクチャリスト数を、複数枚のピクチャで構成される毎に付与されるヘッダに設定する。次に、第2の最大参照ピクチャリスト数に応じて、インター予測で使用する参照ピクチャリストの管理に必要な参照ピクチャリスト管理メモリのメモリ領域を確保する。その後、ピクチャタイプに応じて各ピクチャのインター予測で使用する最大の参照ピクチャリスト数である第1の最大参照ピクチャリスト数を決定する。前方インター予測符号化ピクチャの場合には、第1の最大参照ピクチャリスト数を、第2の最大参照ピクチャリスト数の2分の1に設定し、双方向インター予測符号化ピクチャの場合には、第1の最大ピクチャリスト数を、第2の最大参照ピクチャリスト数と同じ値に設定し、イントラ符号化ピクチャの場合には、第1の最大参照ピクチャリスト数を0に設定する。第1の最大参照ピクチャリスト数を決定した後、第1の最大参照ピクチャリスト数に応じて参照ピクチャリストの管理情報(参照ピクチャリスト管理メモリ)を所定の初期化方法(例えば、H.264のInitialization process for reference picture lists)により初期化(参照画像に対応するインデックスの参照ピクチャリスト内での並び順を決定)する。そして、参照ピクチャリストを用いて、ピクチャを符号化し、第1の最大参照ピクチャリスト数を、ピクチャ毎に付与されるヘッダに設定する。 FIG. 7A uses three picture types: intra-coded pictures (eg, I pictures), forward inter-predictive coded pictures (eg, P pictures), and bi-directional inter-predictive coded pictures (eg, B pictures). An example is shown. In this flow, first, the second maximum reference picture list number is determined, and the second maximum reference picture list number is set in a header given each time a plurality of pictures are configured. Next, according to the second maximum reference picture list number, a memory area of a reference picture list management memory necessary for managing a reference picture list used for inter prediction is secured. Thereafter, the first maximum reference picture list number that is the maximum number of reference picture lists used for inter prediction of each picture is determined according to the picture type. In the case of forward inter-predictive coded pictures, the first maximum reference picture list number is set to one half of the second maximum reference picture list number. The first maximum picture list number is set to the same value as the second maximum reference picture list number. In the case of an intra-coded picture, the first maximum reference picture list number is set to zero. After the first maximum reference picture list number is determined, reference picture list management information (reference picture list management memory) is stored in a predetermined initialization method (for example, H.264) according to the first maximum reference picture list number. Initialization (initialization process for reference picture list)) (initialization order of the index corresponding to the reference image is determined in the reference picture list). Then, the picture is encoded using the reference picture list, and the first maximum reference picture list number is set in the header given to each picture.
 図7Aでは、前方インター予測符号化ピクチャの場合に、第1の最大参照ピクチャリスト数を、第2の最大参照ピクチャリスト数の半分となるように設定しているが、この例に限らない。例えば、第1の最大参照ピクチャリスト数を、第2の最大参照ピクチャリスト数よりも小さい任意の値に設定することが考えられる。図7Aでは、3種類のピクチャタイプを使用する例を示しているが、4種類以上のピクチャタイプを使用することも考えられる。例えば、第2双方向インター予測符号化ピクチャとして、3つ以上のピクチャを参照するTピクチャ(triple-predictive picture)、4つ以上のピクチャを参照する第3双方向インター予測符号化ピクチャとして、Qピクチャ(Quad-predictive picture)を使用することが考えられる。また、2枚以上のピクチャを参照するインター予測符号化ピクチャ(Bピクチャ、Tピクチャ及びQピクチャ)について参照方向を区別可能な新たなピクチャタイプを定義し、この新たなピクチャタイプによるピクチャを使用することとしてもよい。参照方向の区別としては、参照方向が(1)単一方向のみであるか否か(前方のみであるか否か、または、後方のみであるか否か)(2)双方向であるか否か(前方参照と後方参照とが混在するか否か)が挙げられる。いずれの場合であっても4種類以上のピクチャタイプを使用する場合には、最も多くのピクチャを参照するピクチャタイプのピクチャの第1の最大参照ピクチャリスト数を、第2の最大参照ピクチャリスト数と同じ値に設定し、それ以外のピクチャタイプのピクチャの第1の最大ピクチャリスト数を、第2の最大参照ピクチャリスト数よりも小さい任意の値に設定することが考えられる。 In FIG. 7A, the number of first maximum reference picture lists is set to be half of the number of second maximum reference picture lists in the case of forward inter-predictive coded pictures, but the present invention is not limited to this example. For example, it is conceivable to set the first maximum reference picture list number to an arbitrary value smaller than the second maximum reference picture list number. FIG. 7A shows an example in which three types of picture types are used, but it is also possible to use four or more types of picture types. For example, a T-picture (triple-predictive picture) that refers to three or more pictures as a second bidirectional inter-predictive coded picture, and a Q that is a third bidirectional inter-predictive coded picture that refers to four or more pictures. It is conceivable to use a picture (Quad-predictive picture). Also, a new picture type that can distinguish the reference direction is defined for inter prediction coded pictures (B picture, T picture, and Q picture) that refer to two or more pictures, and a picture based on the new picture type is used. It is good as well. The reference direction is distinguished as follows: (1) Whether the reference direction is only a single direction (whether it is only forward or only backward) (2) Whether it is bidirectional (Whether forward reference and backward reference are mixed). In any case, when four or more picture types are used, the first maximum reference picture list number of the picture type picture that refers to the most pictures is the second maximum reference picture list number. It is conceivable that the first maximum picture list number of pictures of other picture types is set to an arbitrary value smaller than the second maximum reference picture list number.
 図7Bは、イントラ符号化ピクチャと、インター予測符号化ピクチャの2種類のピクチャタイプを使用する例であり、図7Aとは、ピクチャタイプに応じた第1の最大参照ピクチャリスト数の決定方法が異なる。具体的には、インター予測符号化ピクチャの場合には、第1の最大参照ピクチャリスト数を、第2の最大参照ピクチャリスト数と同じ値に設定し、イントラ符号化ピクチャの場合には、第1の最大参照ピクチャリスト数を0に設定する。 FIG. 7B is an example in which two types of pictures, an intra-coded picture and an inter-predictive coded picture, are used. FIG. 7A is a method for determining the first maximum reference picture list number according to the picture type. Different. Specifically, in the case of an inter prediction coded picture, the first maximum reference picture list number is set to the same value as the second maximum reference picture list number, and in the case of an intra coded picture, The maximum reference picture list number of 1 is set to 0.
 なお、図6Aおよび図6Bのインター予測は、図7Aのフローにて、第2の最大参照ピクチャリスト数を4、第1の最大参照ピクチャリスト数をBピクチャについては2、Qピクチャ(Quad-predictive picture)については4とすることで実現できる。また、図2Aおよび図2Bのインター予測は、第2の最大参照ピクチャリスト数を2、第1の最大参照ピクチャリスト数をBピクチャについては2、Pピクチャについては1とすることで実現できる。さらに、図3Aおよび図3Bのインター予測は、第2の最大参照ピクチャリスト数を2、第1の最大参照ピクチャリスト数をBピクチャについて2とすることで実現できる。 6A and 6B, in the flow of FIG. 7A, the second maximum reference picture list number is 4, the first maximum reference picture list number is 2 for the B picture, and the Q picture (Quad− Predictive picture) can be realized by setting it to 4. 2A and 2B can be realized by setting the second maximum reference picture list number to 2, the first maximum reference picture list number to 2 for B pictures, and 1 for P pictures. 3A and 3B can be realized by setting the second maximum reference picture list number to 2 and the first maximum reference picture list number to 2 for B pictures.
 また、H.264のInitialization process for reference picture listsでは、参照ピクチャリスト0、1しか規定されていないが、参照ピクチャリスト(2n)(nは1以上の整数)については、参照ピクチャリスト0の並びをコピーすることにより、参照ピクチャリスト(2n+1)(nは1以上の整数)については、参照ピクチャリスト1の並びをコピーすることにより、インター予測に必要な参照ピクチャリストの全ての管理情報の初期化が可能である。 H. In the H.264 initialization process for reference picture list, only the reference picture list 0 and 1 are specified, but for the reference picture list (2n) (n is an integer of 1 or more), the sequence of the reference picture list 0 should be copied. Thus, for the reference picture list (2n + 1) (n is an integer greater than or equal to 1), it is possible to initialize all management information of the reference picture list necessary for inter prediction by copying the sequence of the reference picture list 1 is there.
 画像符号化装置100において、第1の最大参照ピクチャリスト数を、ピクチャ毎に付与されるヘッダ、または、複数のピクチャに共通に使用可能なヘッダ情報に設定するとしているが、第1の最大参照ピクチャリスト数を、第2の最大参照ピクチャリスト数と同じ値とする場合には、ヘッダ、または、ヘッダ情報に設定しなくてもよい。ヘッダ、または、ヘッダ情報に、第1の最大参照ピクチャリスト数が設定されていない場合には、画像復号装置は、第1の最大参照ピクチャリスト数の代わりに第2の最大参照ピクチャリスト数を用いると判断することによって復号できる。このように、一部の第1の最大参照ピクチャリスト数の情報を設定しないことにより、圧縮率を向上させることが可能になる。 In the image coding apparatus 100, the first maximum reference picture list number is set to a header given for each picture or header information that can be used in common for a plurality of pictures. When the number of picture lists is set to the same value as the second maximum reference picture list number, it may not be set in the header or header information. When the first maximum reference picture list number is not set in the header or the header information, the image decoding apparatus uses the second maximum reference picture list number instead of the first maximum reference picture list number. It can be decoded by determining that it is used. In this way, by not setting information on the number of some first maximum reference picture lists, the compression rate can be improved.
 図8は、図5の画像符号化装置100に対応する画像復号装置200の一例を示すブロック図である。図4の従来の復号装置とは、第1および第2の最大参照ピクチャリスト数をビットストリームから読み込み、インター予測制御部201の処理に使用する点が異なる。 FIG. 8 is a block diagram illustrating an example of an image decoding device 200 corresponding to the image encoding device 100 of FIG. 4 differs from the conventional decoding apparatus of FIG. 4 in that the first and second maximum reference picture list numbers are read from the bitstream and used for the processing of the inter prediction control unit 201.
 図9Aおよび図9Bは、図8の画像復号装置200におけるインター予測制御の一例を示すフロー図である。なお、図9Aおよび図9Bは、画像符号化装置100側のインター予測制御のフローを示す図7Aおよび図7Bにそれぞれ対応したフロー図である。 FIGS. 9A and 9B are flowcharts showing an example of inter prediction control in the image decoding apparatus 200 of FIG. 9A and 9B are flowcharts corresponding to FIGS. 7A and 7B, respectively, illustrating a flow of inter prediction control on the image encoding device 100 side.
 図9Aおよび図9Bのフローでは、まず第2の最大参照ピクチャリスト数に応じて、インター予測で使用する参照ピクチャリストの管理に必要な参照ピクチャ管理メモリのメモリ領域を確保する。その後、第1の最大参照ピクチャリスト数と第2の最大参照ピクチャリスト数との比較により、第1の最大参照ピクチャリスト数が第2の最大参照ピクチャリスト数より大きい場合には、エラーと判断し所定のエラー処理を実施する。正常と判断された場合には、第1の最大参照ピクチャリスト数を第3の最大参照ピクチャリスト数として、第3の最大参照ピクチャリスト数に応じて参照ピクチャリストの管理情報(参照ピクチャ管理メモリ)を画像符号化装置100側と同様の初期化方法により初期化する。 9A and 9B, first, according to the second maximum reference picture list number, a memory area of the reference picture management memory necessary for managing the reference picture list used in the inter prediction is secured. Thereafter, if the first maximum reference picture list number is larger than the second maximum reference picture list number by comparing the first maximum reference picture list number and the second maximum reference picture list number, it is determined as an error. Then, predetermined error processing is performed. When it is determined to be normal, the first maximum reference picture list number is set as the third maximum reference picture list number, and reference picture list management information (reference picture management memory) is set according to the third maximum reference picture list number. ) Is initialized by the same initialization method as that on the image encoding apparatus 100 side.
 なお、前記所定のエラー処理は、画像復号装置200を含むシステムのデッドロックやハングアップなど致命的な状況になることを回避する手段であれば、どのようなエラー処理でも構わない。具体的なエラー処理の一例として、復号処理に致命的なエラーが発生したことをシステムへ通知すると共に、第1の最大参照ピクチャリスト数に応じて参照ピクチャリスト管理メモリの再確保を行い、デコード処理を継続するという方法がある。また、この例においては、システムは復号処理にエラーが発生した旨のメッセージを画面に表示することで、ユーザー(視聴者)へ異常状態を伝え、再生停止や復号処理再起動などのユーザーアクションを促すことも出来る。また、第1の最大参照ピクチャリスト数の情報が得られない場合には、第3の最大参照ピクチャリスト数に、第2の最大参照ピクチャリスト数を設定することにより、エラーを回避することが可能である。 Note that the predetermined error processing may be any error processing as long as it is a means for avoiding a fatal situation such as deadlock or hang-up of the system including the image decoding device 200. As an example of specific error processing, the system notifies the system that a fatal error has occurred in decoding processing, re-allocates the reference picture list management memory according to the number of first maximum reference picture lists, and performs decoding. There is a method of continuing processing. In this example, the system displays a message on the screen indicating that an error has occurred in the decryption process, so that the user (viewer) is informed of the abnormal state, and the user action such as stop playback or restart of the decryption process is performed. You can also encourage them. Further, when information on the first maximum reference picture list number is not obtained, an error can be avoided by setting the second maximum reference picture list number to the third maximum reference picture list number. Is possible.
 なお、図6Aでは、従来のBピクチャに対応するピクチャにQピクチャを用いているが、I、P、Bピクチャに予め定めた参照ピクチャリスト数を使用する新たなピクチャタイプを加えることで、前記第1および第2の最大参照ピクチャリスト数の画像符号化装置100から画像復号装置200への通知を省略しても、3本以上の参照ピクチャリストを用いた予測が可能である。新たなピクチャタイプとして参照ピクチャ数を識別する(Tピクチャ、Qピクチャ等)とともに前述の参照方向を区別するピクチャタイプを用いる場合であっても同様である。但し、任意の枚数を表現するには、多くのピクチャタイプを新たに定義する必要があり、第1および第2の最大参照ピクチャリスト数を画像符号化装置100から画像復号装置200へ通知する構成の方が、高い柔軟性を確保できることは言うまでもない。 In FIG. 6A, a Q picture is used as a picture corresponding to a conventional B picture. However, by adding a new picture type that uses a predetermined number of reference picture lists to I, P, and B pictures, Even if the notification of the first and second maximum reference picture list numbers from the image coding apparatus 100 to the image decoding apparatus 200 is omitted, prediction using three or more reference picture lists is possible. The same applies to the case where the number of reference pictures is identified as a new picture type (T picture, Q picture, etc.) and the picture type that distinguishes the aforementioned reference direction is used. However, in order to express an arbitrary number, it is necessary to newly define many picture types, and the image encoding device 100 notifies the image decoding device 200 of the first and second maximum reference picture list numbers. It goes without saying that higher flexibility can be secured.
 尚、参照方向の区別については新たなピクチャタイプを用いるのではなく、画像符号化装置100が、符号化列の所定の単位(第2の処理単位、第1の処理単位、スライス単位等)毎に用意されたフィールドに所定のピクチャタイプ(Bピクチャ等)についての参照方向を区別(前方参照のみ等)する値を挿入することとしてもよい。この場合、画像復号装置200は第1の処理単位または第2の処理単位毎に参照ピクチャリスト数の通知を受けるとともに、所定の単位に含まれる複数のピクチャ等の処理単位の参照方向を得ることができる。 For distinguishing the reference direction, the image coding apparatus 100 does not use a new picture type, but the image coding apparatus 100 performs every predetermined unit (second processing unit, first processing unit, slice unit, etc.) of the coded sequence. It is also possible to insert a value for distinguishing the reference direction (only forward reference, etc.) for a predetermined picture type (B picture, etc.) into the prepared field. In this case, the image decoding apparatus 200 receives a notification of the number of reference picture lists for each first processing unit or each second processing unit, and obtains a reference direction of a processing unit such as a plurality of pictures included in the predetermined unit. Can do.
 (実施の形態2)
 上記各実施の形態で示した動画像符号化方法または動画像復号化方法の構成を実現するためのプログラムを記憶メディアに記録することにより、上記各実施の形態で示した処理を独立したコンピュータシステムにおいて簡単に実施することが可能となる。記憶メディアは、磁気ディスク、光ディスク、光磁気ディスク、ICカード、半導体メモリ等、プログラムを記録できるものであればよい。
(Embodiment 2)
By recording a program for realizing the configuration of the moving picture encoding method or the moving picture decoding method shown in each of the above embodiments on a storage medium, the computer system in which the processing shown in each of the above embodiments is independent It becomes possible to carry out easily. The storage medium may be any medium that can record a program, such as a magnetic disk, an optical disk, a magneto-optical disk, an IC card, and a semiconductor memory.
 さらにここで、上記各実施の形態で示した動画像符号化方法や動画像復号化方法の応用例とそれを用いたシステムを説明する。 Further, application examples of the moving picture encoding method and the moving picture decoding method shown in the above embodiments and a system using the same will be described.
 図10は、コンテンツ配信サービスを実現するコンテンツ供給システムex100の全体構成を示す図である。通信サービスの提供エリアを所望の大きさに分割し、各セル内にそれぞれ固定無線局である基地局ex106、ex107、ex108、ex109、ex110が設置されている。 FIG. 10 is a diagram showing an overall configuration of a content supply system ex100 that realizes a content distribution service. A communication service providing area is divided into desired sizes, and base stations ex106, ex107, ex108, ex109, and ex110, which are fixed wireless stations, are installed in each cell.
 このコンテンツ供給システムex100は、インターネットex101にインターネットサービスプロバイダex102および電話網ex104、および基地局ex106からex110を介して、コンピュータex111、PDA(Personal Digital Assistant)ex112、カメラex113、携帯電話ex114、ゲーム機ex115などの各機器が接続される。 This content supply system ex100 includes a computer ex111, a PDA (Personal Digital Assistant) ex112, a camera ex113, a mobile phone ex114, a game machine ex115 via the Internet ex101, the Internet service provider ex102, the telephone network ex104, and the base stations ex106 to ex110. Etc. are connected.
 しかし、コンテンツ供給システムex100は図10のような構成に限定されず、いずれかの要素を組合せて接続するようにしてもよい。また、固定無線局である基地局ex106からex110を介さずに、各機器が電話網ex104に直接接続されてもよい。また、各機器が近距離無線等を介して直接相互に接続されていてもよい。 However, the content supply system ex100 is not limited to the configuration shown in FIG. 10 and may be connected by combining any of the elements. In addition, each device may be directly connected to the telephone network ex104 without going from the base station ex106, which is a fixed wireless station, to ex110. In addition, the devices may be directly connected to each other via short-range wireless or the like.
 カメラex113はデジタルビデオカメラ等の動画撮影が可能な機器であり、カメラex116はデジタルカメラ等の静止画撮影、動画撮影が可能な機器である。また、携帯電話ex114は、GSM(Global System for Mobile Communications)方式、CDMA(Code Division Multiple Access)方式、W-CDMA(Wideband-Code Division Multiple Access)方式、若しくはLTE(Long Term Evolution)方式、HSPA(High Speed Packet Access)の携帯電話機、またはPHS(Personal Handyphone System)等であり、いずれでも構わない。 The camera ex113 is a device that can shoot moving images such as a digital video camera, and the camera ex116 is a device that can shoot still images and movies such as a digital camera. In addition, the mobile phone ex114 is a GSM (Global System for Mobile Communications) system, a CDMA (Code Division Multiple Access) system, a W-CDMA (Wideband-Code Division Multiple Access) system, an LTE (Long Terminal Evolution) system, an HSPA ( High-speed-Packet-Access) mobile phone or PHS (Personal-Handyphone System), etc.
 コンテンツ供給システムex100では、カメラex113等が基地局ex109、電話網ex104を通じてストリーミングサーバex103に接続されることで、ライブ配信等が可能になる。ライブ配信では、ユーザがカメラex113を用いて撮影するコンテンツ(例えば、音楽ライブの映像等)に対して上記各実施の形態で説明したように符号化処理を行い、ストリーミングサーバex103に送信する。一方、ストリーミングサーバex103は要求のあったクライアントに対して送信されたコンテンツデータをストリーム配信する。クライアントとしては、上記符号化処理されたデータを復号化することが可能な、コンピュータex111、PDAex112、カメラex113、携帯電話ex114、ゲーム機ex115等がある。配信されたデータを受信した各機器では、受信したデータを復号化処理して再生する。 In the content supply system ex100, the camera ex113 and the like are connected to the streaming server ex103 through the base station ex109 and the telephone network ex104, thereby enabling live distribution and the like. In live distribution, the content (for example, music live video) captured by the user using the camera ex113 is encoded as described in the above embodiments, and transmitted to the streaming server ex103. On the other hand, the streaming server ex103 stream-distributes the content data transmitted to the requested client. Examples of the client include a computer ex111, a PDA ex112, a camera ex113, a mobile phone ex114, and a game machine ex115 that can decode the encoded data. Each device that receives the distributed data decodes the received data and reproduces it.
 なお、撮影したデータの符号化処理はカメラex113で行っても、データの送信処理をするストリーミングサーバex103で行ってもよいし、互いに分担して行ってもよい。同様に配信されたデータの復号化処理はクライアントで行っても、ストリーミングサーバex103で行ってもよいし、互いに分担して行ってもよい。また、カメラex113に限らず、カメラex116で撮影した静止画像および/または動画像データを、コンピュータex111を介してストリーミングサーバex103に送信してもよい。この場合の符号化処理はカメラex116、コンピュータex111、ストリーミングサーバex103のいずれで行ってもよいし、互いに分担して行ってもよい。 Note that the captured data may be encoded by the camera ex113, the streaming server ex103 that performs data transmission processing, or may be shared with each other. Similarly, the decryption processing of the distributed data may be performed by the client, the streaming server ex103, or may be performed in common with each other. In addition to the camera ex113, still images and / or moving image data captured by the camera ex116 may be transmitted to the streaming server ex103 via the computer ex111. The encoding process in this case may be performed by any of the camera ex116, the computer ex111, and the streaming server ex103, or may be performed in a shared manner.
 また、これら符号化・復号化処理は、一般的にコンピュータex111や各機器が有するLSIex500において処理する。LSIex500は、ワンチップであっても複数チップからなる構成であってもよい。なお、動画像符号化・復号化用のソフトウェアをコンピュータex111等で読み取り可能な何らかの記録メディア(CD-ROM、フレキシブルディスク、ハードディスクなど)に組み込み、そのソフトウェアを用いて符号化・復号化処理を行ってもよい。さらに、携帯電話ex114がカメラ付きである場合には、そのカメラで取得した動画データを送信してもよい。このときの動画データは携帯電話ex114が有するLSIex500で符号化処理されたデータである。 Further, these encoding / decoding processes are generally performed in the computer ex111 and the LSI ex500 included in each device. The LSI ex500 may be configured as a single chip or a plurality of chips. It should be noted that moving image encoding / decoding software is incorporated into some recording medium (CD-ROM, flexible disk, hard disk, etc.) that can be read by the computer ex111, etc., and encoding / decoding processing is performed using the software. May be. Furthermore, when the mobile phone ex114 is equipped with a camera, moving image data acquired by the camera may be transmitted. The moving image data at this time is data encoded by the LSI ex500 included in the mobile phone ex114.
 また、ストリーミングサーバex103は複数のサーバや複数のコンピュータであって、データを分散して処理したり記録したり配信するものであってもよい。 Further, the streaming server ex103 may be a plurality of servers or a plurality of computers, and may process, record, and distribute data in a distributed manner.
 以上のようにして、コンテンツ供給システムex100では、符号化されたデータをクライアントが受信して再生することができる。このようにコンテンツ供給システムex100では、ユーザが送信した情報をリアルタイムでクライアントが受信して復号化し、再生することができ、特別な権利や設備を有さないユーザでも個人放送を実現できる。 As described above, in the content supply system ex100, the encoded data can be received and reproduced by the client. Thus, in the content supply system ex100, the information transmitted by the user can be received, decrypted and reproduced by the client in real time, and personal broadcasting can be realized even for a user who does not have special rights or facilities.
 なお、コンテンツ供給システムex100の例に限らず、図11に示すように、デジタル放送用システムex200にも、上記各実施の形態の少なくとも動画像符号化装置または動画像復号化装置のいずれかを組み込むことができる。具体的には、放送局ex201では映像データに音楽データなどが多重化された多重化データが電波を介して通信または衛星ex202に伝送される。この映像データは上記各実施の形態で説明した動画像符号化方法により符号化されたデータである。これを受けた放送衛星ex202は、放送用の電波を発信し、この電波を衛星放送の受信が可能な家庭のアンテナex204が受信する。受信した多重化データを、テレビ(受信機)ex300またはセットトップボックス(STB)ex217等の装置が復号化して再生する。 In addition to the example of the content supply system ex100, as shown in FIG. 11, at least one of the video encoding device and the video decoding device of each of the above embodiments is incorporated in the digital broadcasting system ex200. be able to. Specifically, in the broadcast station ex201, multiplexed data obtained by multiplexing music data and the like on video data is transmitted to a communication or satellite ex202 via radio waves. This video data is data encoded by the moving image encoding method described in the above embodiments. Receiving this, the broadcasting satellite ex202 transmits a radio wave for broadcasting, and this radio wave is received by a home antenna ex204 capable of receiving satellite broadcasting. The received multiplexed data is decoded and reproduced by a device such as the television (receiver) ex300 or the set top box (STB) ex217.
 また、DVD、BD等の記録メディアex215に記録した多重化データを読み取り復号化する、または記録メディアex215に映像信号を符号化し、さらに場合によっては音楽信号と多重化して書き込むリーダ/レコーダex218にも上記各実施の形態で示した動画像復号化装置または動画像符号化装置を実装することが可能である。この場合、再生された映像信号はモニタex219に表示され、多重化データが記録された記録メディアex215により他の装置やシステムにおいて映像信号を再生することができる。また、ケーブルテレビ用のケーブルex203または衛星/地上波放送のアンテナex204に接続されたセットトップボックスex217内に動画像復号化装置を実装し、これをテレビのモニタex219で表示してもよい。このときセットトップボックスではなく、テレビ内に動画像復号化装置を組み込んでもよい。 Also, a reader / recorder ex218 that reads and decodes multiplexed data recorded on a recording medium ex215 such as a DVD or a BD, or encodes a video signal on the recording medium ex215 and, in some cases, multiplexes and writes it with a music signal. It is possible to mount the moving picture decoding apparatus or moving picture encoding apparatus described in the above embodiments. In this case, the reproduced video signal is displayed on the monitor ex219, and the video signal can be reproduced in another device or system using the recording medium ex215 on which the multiplexed data is recorded. Alternatively, a moving picture decoding apparatus may be mounted in a set-top box ex217 connected to a cable ex203 for cable television or an antenna ex204 for satellite / terrestrial broadcasting and displayed on the monitor ex219 of the television. At this time, the moving picture decoding apparatus may be incorporated in the television instead of the set top box.
 図12は、上記各実施の形態で説明した動画像復号化方法および動画像符号化方法を用いたテレビ(受信機)ex300を示す図である。テレビex300は、上記放送を受信するアンテナex204またはケーブルex203等を介して映像データに音声データが多重化された多重化データを取得、または出力するチューナex301と、受信した多重化データを復調する、または外部に送信する多重化データに変調する変調/復調部ex302と、復調した多重化データを映像データと、音声データとに分離する、または信号処理部ex306で符号化された映像データ、音声データを多重化する多重/分離部ex303を備える。 FIG. 12 is a diagram showing a television (receiver) ex300 that uses the moving picture decoding method and the moving picture encoding method described in the above embodiments. The television ex300 obtains or outputs multiplexed data in which audio data is multiplexed with video data via the antenna ex204 or the cable ex203 that receives the broadcast, and demodulates the received multiplexed data. Alternatively, the modulation / demodulation unit ex302 that modulates multiplexed data to be transmitted to the outside, and the demodulated multiplexed data is separated into video data and audio data, or the video data and audio data encoded by the signal processing unit ex306 Is provided with a multiplexing / demultiplexing unit ex303.
 また、テレビex300は、音声データ、映像データそれぞれを復号化する、またはそれぞれの情報を符号化する音声信号処理部ex304、映像信号処理部ex305を有する信号処理部ex306と、復号化した音声信号を出力するスピーカex307、復号化した映像信号を表示するディスプレイ等の表示部ex308を有する出力部ex309とを有する。さらに、テレビex300は、ユーザ操作の入力を受け付ける操作入力部ex312等を有するインタフェース部ex317を有する。さらに、テレビex300は、各部を統括的に制御する制御部ex310、各部に電力を供給する電源回路部ex311を有する。インタフェース部ex317は、操作入力部ex312以外に、リーダ/レコーダex218等の外部機器と接続されるブリッジex313、SDカード等の記録メディアex216を装着可能とするためのスロット部ex314、ハードディスク等の外部記録メディアと接続するためのドライバex315、電話網と接続するモデムex316等を有していてもよい。なお記録メディアex216は、格納する不揮発性/揮発性の半導体メモリ素子により電気的に情報の記録を可能としたものである。テレビex300の各部は同期バスを介して互いに接続されている。 Further, the television ex300 decodes the audio data and the video data, or encodes each information, the audio signal processing unit ex304, the signal processing unit ex306 including the video signal processing unit ex305, and the decoded audio signal. A speaker ex307 for outputting, and an output unit ex309 having a display unit ex308 such as a display for displaying the decoded video signal. Furthermore, the television ex300 includes an interface unit ex317 including an operation input unit ex312 that receives an input of a user operation. Furthermore, the television ex300 includes a control unit ex310 that performs overall control of each unit, and a power supply circuit unit ex311 that supplies power to each unit. In addition to the operation input unit ex312, the interface unit ex317 includes a bridge unit ex313 connected to an external device such as a reader / recorder ex218, a recording unit ex216 such as an SD card, and an external recording unit such as a hard disk. A driver ex315 for connecting to a medium, a modem ex316 for connecting to a telephone network, and the like may be included. Note that the recording medium ex216 is capable of electrically recording information by using a nonvolatile / volatile semiconductor memory element to be stored. Each part of the television ex300 is connected to each other via a synchronous bus.
 まず、テレビex300がアンテナex204等により外部から取得した多重化データを復号化し、再生する構成について説明する。テレビex300は、リモートコントローラex220等からのユーザ操作を受け、CPU等を有する制御部ex310の制御に基づいて、変調/復調部ex302で復調した多重化データを多重/分離部ex303で分離する。さらにテレビex300は、分離した音声データを音声信号処理部ex304で復号化し、分離した映像データを映像信号処理部ex305で上記各実施の形態で説明した復号化方法を用いて復号化する。復号化した音声信号、映像信号は、それぞれ出力部ex309から外部に向けて出力される。出力する際には、音声信号と映像信号が同期して再生するよう、バッファex318、ex319等に一旦これらの信号を蓄積するとよい。また、テレビex300は、放送等からではなく、磁気/光ディスク、SDカード等の記録メディアex215、ex216から多重化データを読み出してもよい。次に、テレビex300が音声信号や映像信号を符号化し、外部に送信または記録メディア等に書き込む構成について説明する。テレビex300は、リモートコントローラex220等からのユーザ操作を受け、制御部ex310の制御に基づいて、音声信号処理部ex304で音声信号を符号化し、映像信号処理部ex305で映像信号を上記各実施の形態で説明した符号化方法を用いて符号化する。符号化した音声信号、映像信号は多重/分離部ex303で多重化され外部に出力される。多重化する際には、音声信号と映像信号が同期するように、バッファex320、ex321等に一旦これらの信号を蓄積するとよい。なお、バッファex318、ex319、ex320、ex321は図示しているように複数備えていてもよいし、1つ以上のバッファを共有する構成であってもよい。さらに、図示している以外に、例えば変調/復調部ex302や多重/分離部ex303の間等でもシステムのオーバフロー、アンダーフローを避ける緩衝材としてバッファにデータを蓄積することとしてもよい。 First, a configuration in which the television ex300 decodes and reproduces multiplexed data acquired from the outside by the antenna ex204 and the like will be described. The television ex300 receives a user operation from the remote controller ex220 or the like, and demultiplexes the multiplexed data demodulated by the modulation / demodulation unit ex302 by the multiplexing / demultiplexing unit ex303 based on the control of the control unit ex310 having a CPU or the like. Furthermore, in the television ex300, the separated audio data is decoded by the audio signal processing unit ex304, and the separated video data is decoded by the video signal processing unit ex305 using the decoding method described in each of the above embodiments. The decoded audio signal and video signal are output from the output unit ex309 to the outside. At the time of output, these signals may be temporarily stored in the buffers ex318, ex319, etc. so that the audio signal and the video signal are reproduced in synchronization. Also, the television ex300 may read multiplexed data from recording media ex215 and ex216 such as a magnetic / optical disk and an SD card, not from broadcasting. Next, a configuration in which the television ex300 encodes an audio signal or a video signal and transmits the signal to the outside or to a recording medium will be described. The television ex300 receives a user operation from the remote controller ex220 and the like, encodes an audio signal with the audio signal processing unit ex304, and converts the video signal with the video signal processing unit ex305 based on the control of the control unit ex310. Encoding is performed using the encoding method described in (1). The encoded audio signal and video signal are multiplexed by the multiplexing / demultiplexing unit ex303 and output to the outside. When multiplexing, these signals may be temporarily stored in the buffers ex320, ex321, etc. so that the audio signal and the video signal are synchronized. Note that a plurality of buffers ex318, ex319, ex320, and ex321 may be provided as illustrated, or one or more buffers may be shared. Further, in addition to the illustrated example, data may be stored in the buffer as a buffer material that prevents system overflow and underflow, for example, between the modulation / demodulation unit ex302 and the multiplexing / demultiplexing unit ex303.
 また、テレビex300は、放送等や記録メディア等から音声データ、映像データを取得する以外に、マイクやカメラのAV入力を受け付ける構成を備え、それらから取得したデータに対して符号化処理を行ってもよい。なお、ここではテレビex300は上記の符号化処理、多重化、および外部出力ができる構成として説明したが、これらの処理を行うことはできず、上記受信、復号化処理、外部出力のみが可能な構成であってもよい。 In addition to acquiring audio data and video data from broadcasts, recording media, and the like, the television ex300 has a configuration for receiving AV input of a microphone and a camera, and performs encoding processing on the data acquired from them. Also good. Here, the television ex300 has been described as a configuration capable of the above-described encoding processing, multiplexing, and external output, but these processing cannot be performed, and only the above-described reception, decoding processing, and external output are possible. It may be a configuration.
 また、リーダ/レコーダex218で記録メディアから多重化データを読み出す、または書き込む場合には、上記復号化処理または符号化処理はテレビex300、リーダ/レコーダex218のいずれで行ってもよいし、テレビex300とリーダ/レコーダex218が互いに分担して行ってもよい。 In addition, when reading or writing multiplexed data from a recording medium by the reader / recorder ex218, the decoding process or the encoding process may be performed by either the television ex300 or the reader / recorder ex218, The reader / recorder ex218 may share with each other.
 一例として、光ディスクからデータの読み込みまたは書き込みをする場合の情報再生/記録部ex400の構成を図13に示す。情報再生/記録部ex400は、以下に説明する要素ex401、ex402、ex403、ex404、ex405、ex406、ex407を備える。光ヘッドex401は、光ディスクである記録メディアex215の記録面にレーザスポットを照射して情報を書き込み、記録メディアex215の記録面からの反射光を検出して情報を読み込む。変調記録部ex402は、光ヘッドex401に内蔵された半導体レーザを電気的に駆動し記録データに応じてレーザ光の変調を行う。再生復調部ex403は、光ヘッドex401に内蔵されたフォトディテクタにより記録面からの反射光を電気的に検出した再生信号を増幅し、記録メディアex215に記録された信号成分を分離して復調し、必要な情報を再生する。バッファex404は、記録メディアex215に記録するための情報および記録メディアex215から再生した情報を一時的に保持する。ディスクモータex405は記録メディアex215を回転させる。サーボ制御部ex406は、ディスクモータex405の回転駆動を制御しながら光ヘッドex401を所定の情報トラックに移動させ、レーザスポットの追従処理を行う。システム制御部ex407は、情報再生/記録部ex400全体の制御を行う。上記の読み出しや書き込みの処理はシステム制御部ex407が、バッファex404に保持された各種情報を利用し、また必要に応じて新たな情報の生成・追加を行うと共に、変調記録部ex402、再生復調部ex403、サーボ制御部ex406を協調動作させながら、光ヘッドex401を通して、情報の記録再生を行うことにより実現される。システム制御部ex407は例えばマイクロプロセッサで構成され、読み出し書き込みのプログラムを実行することでそれらの処理を実行する。 As an example, FIG. 13 shows a configuration of the information reproducing / recording unit ex400 when data is read from or written to an optical disk. The information reproducing / recording unit ex400 includes elements ex401, ex402, ex403, ex404, ex405, ex406, and ex407 described below. The optical head ex401 irradiates a laser spot on the recording surface of the recording medium ex215 that is an optical disk to write information, and detects reflected light from the recording surface of the recording medium ex215 to read the information. The modulation recording unit ex402 electrically drives a semiconductor laser built in the optical head ex401 and modulates the laser beam according to the recording data. The reproduction demodulator ex403 amplifies the reproduction signal obtained by electrically detecting the reflected light from the recording surface by the photodetector built in the optical head ex401, separates and demodulates the signal component recorded on the recording medium ex215, and is necessary To play back information. The buffer ex404 temporarily holds information to be recorded on the recording medium ex215 and information reproduced from the recording medium ex215. The disk motor ex405 rotates the recording medium ex215. The servo controller ex406 moves the optical head ex401 to a predetermined information track while controlling the rotational drive of the disk motor ex405, and performs a laser spot tracking process. The system control unit ex407 controls the entire information reproduction / recording unit ex400. In the reading and writing processes described above, the system control unit ex407 uses various kinds of information held in the buffer ex404, and generates and adds new information as necessary, and the modulation recording unit ex402, the reproduction demodulation unit This is realized by recording / reproducing information through the optical head ex401 while operating the ex403 and the servo control unit ex406 in a coordinated manner. The system control unit ex407 is composed of, for example, a microprocessor, and executes these processes by executing a read / write program.
 以上では、光ヘッドex401はレーザスポットを照射するとして説明したが、近接場光を用いてより高密度な記録を行う構成であってもよい。 In the above, the optical head ex401 has been described as irradiating a laser spot. However, a configuration in which higher-density recording is performed using near-field light may be used.
 図14に光ディスクである記録メディアex215の模式図を示す。記録メディアex215の記録面には案内溝(グルーブ)がスパイラル状に形成され、情報トラックex230には、予めグルーブの形状の変化によってディスク上の絶対位置を示す番地情報が記録されている。この番地情報はデータを記録する単位である記録ブロックex231の位置を特定するための情報を含み、記録や再生を行う装置において情報トラックex230を再生し番地情報を読み取ることで記録ブロックを特定することができる。また、記録メディアex215は、データ記録領域ex233、内周領域ex232、外周領域ex234を含んでいる。ユーザデータを記録するために用いる領域がデータ記録領域ex233であり、データ記録領域ex233より内周または外周に配置されている内周領域ex232と外周領域ex234は、ユーザデータの記録以外の特定用途に用いられる。情報再生/記録部ex400は、このような記録メディアex215のデータ記録領域ex233に対して、符号化された音声データ、映像データまたはそれらのデータを多重化した多重化データの読み書きを行う。 FIG. 14 shows a schematic diagram of a recording medium ex215 that is an optical disk. Guide grooves (grooves) are formed in a spiral shape on the recording surface of the recording medium ex215, and address information indicating the absolute position on the disc is recorded in advance on the information track ex230 by changing the shape of the groove. This address information includes information for specifying the position of the recording block ex231 that is a unit for recording data, and the recording block is specified by reproducing the information track ex230 and reading the address information in a recording or reproducing apparatus. Can do. Further, the recording medium ex215 includes a data recording area ex233, an inner peripheral area ex232, and an outer peripheral area ex234. The area used for recording user data is the data recording area ex233, and the inner circumference area ex232 and the outer circumference area ex234 arranged on the inner or outer circumference of the data recording area ex233 are used for specific purposes other than user data recording. Used. The information reproducing / recording unit ex400 reads / writes encoded audio data, video data, or multiplexed data obtained by multiplexing these data with respect to the data recording area ex233 of the recording medium ex215.
 以上では、1層のDVD、BD等の光ディスクを例に挙げ説明したが、これらに限ったものではなく、多層構造であって表面以外にも記録可能な光ディスクであってもよい。また、ディスクの同じ場所にさまざまな異なる波長の色の光を用いて情報を記録したり、さまざまな角度から異なる情報の層を記録したりなど、多次元的な記録/再生を行う構造の光ディスクであってもよい。 In the above description, an optical disk such as a single-layer DVD or BD has been described as an example. However, the present invention is not limited to these, and an optical disk having a multilayer structure and capable of recording other than the surface may be used. Also, an optical disc with a multi-dimensional recording / reproducing structure, such as recording information using light of different wavelengths in the same place on the disc, or recording different layers of information from various angles. It may be.
 また、デジタル放送用システムex200において、アンテナex205を有する車ex210で衛星ex202等からデータを受信し、車ex210が有するカーナビゲーションex211等の表示装置に動画を再生することも可能である。なお、カーナビゲーションex211の構成は例えば図12に示す構成のうち、GPS受信部を加えた構成が考えられ、同様なことがコンピュータex111や携帯電話ex114等でも考えられる。 Also, in the digital broadcasting system ex200, the car ex210 having the antenna ex205 can receive data from the satellite ex202 and the like, and the moving image can be reproduced on a display device such as the car navigation ex211 that the car ex210 has. Note that the configuration of the car navigation ex211 may be, for example, a configuration in which a GPS receiver is added in the configuration illustrated in FIG.
 図15Aは、上記実施の形態で説明した動画像復号化方法および動画像符号化方法を用いた携帯電話ex114を示す図である。携帯電話ex114は、基地局ex110との間で電波を送受信するためのアンテナex350、映像、静止画を撮ることが可能なカメラ部ex365、カメラ部ex365で撮像した映像、アンテナex350で受信した映像等が復号化されたデータを表示する液晶ディスプレイ等の表示部ex358を備える。携帯電話ex114は、さらに、操作キー部ex366を有する本体部、音声を出力するためのスピーカ等である音声出力部ex357、音声を入力するためのマイク等である音声入力部ex356、撮影した映像、静止画、録音した音声、または受信した映像、静止画、メール等の符号化されたデータもしくは復号化されたデータを保存するメモリ部ex367、又は同様にデータを保存する記録メディアとのインタフェース部であるスロット部ex364を備える。 FIG. 15A is a diagram showing the mobile phone ex114 using the video decoding method and the video encoding method described in the above embodiment. The mobile phone ex114 includes an antenna ex350 for transmitting and receiving radio waves to and from the base station ex110, a camera unit ex365 capable of capturing video and still images, a video captured by the camera unit ex365, a video received by the antenna ex350, and the like Is provided with a display unit ex358 such as a liquid crystal display for displaying the decrypted data. The mobile phone ex114 further includes a main body unit having an operation key unit ex366, an audio output unit ex357 such as a speaker for outputting audio, an audio input unit ex356 such as a microphone for inputting audio, a captured video, In the memory unit ex367 for storing encoded data or decoded data such as still images, recorded audio, received video, still images, mails, or the like, or an interface unit with a recording medium for storing data A slot ex364 is provided.
 さらに、携帯電話ex114の構成例について、図15Bを用いて説明する。携帯電話ex114は、表示部ex358及び操作キー部ex366を備えた本体部の各部を統括的に制御する主制御部ex360に対して、電源回路部ex361、操作入力制御部ex362、映像信号処理部ex355、カメラインタフェース部ex363、LCD(Liquid Crystal Display)制御部ex359、変調/復調部ex352、多重/分離部ex353、音声信号処理部ex354、スロット部ex364、メモリ部ex367がバスex370を介して互いに接続されている。 Furthermore, a configuration example of the mobile phone ex114 will be described with reference to FIG. 15B. The mobile phone ex114 has a power supply circuit part ex361, an operation input control part ex362, and a video signal processing part ex355 with respect to a main control part ex360 that comprehensively controls each part of the main body including the display part ex358 and the operation key part ex366. , A camera interface unit ex363, an LCD (Liquid Crystal Display) control unit ex359, a modulation / demodulation unit ex352, a multiplexing / demultiplexing unit ex353, an audio signal processing unit ex354, a slot unit ex364, and a memory unit ex367 are connected to each other via a bus ex370. ing.
 電源回路部ex361は、ユーザの操作により終話及び電源キーがオン状態にされると、バッテリパックから各部に対して電力を供給することにより携帯電話ex114を動作可能な状態に起動する。 When the end of call and the power key are turned on by a user operation, the power supply circuit unit ex361 starts up the mobile phone ex114 in an operable state by supplying power from the battery pack to each unit.
 携帯電話ex114は、CPU、ROM、RAM等を有する主制御部ex360の制御に基づいて、音声通話モード時に音声入力部ex356で収音した音声信号を音声信号処理部ex354でデジタル音声信号に変換し、これを変調/復調部ex352でスペクトラム拡散処理し、送信/受信部ex351でデジタルアナログ変換処理および周波数変換処理を施した後にアンテナex350を介して送信する。また携帯電話ex114は、音声通話モード時にアンテナex350を介して受信した受信データを増幅して周波数変換処理およびアナログデジタル変換処理を施し、変調/復調部ex352でスペクトラム逆拡散処理し、音声信号処理部ex354でアナログ音声信号に変換した後、これを音声出力部ex357から出力する。 The cellular phone ex114 converts the audio signal collected by the audio input unit ex356 in the voice call mode into a digital audio signal by the audio signal processing unit ex354 based on the control of the main control unit ex360 having a CPU, a ROM, a RAM, and the like. Then, this is subjected to spectrum spread processing by the modulation / demodulation unit ex352, digital-analog conversion processing and frequency conversion processing are performed by the transmission / reception unit ex351, and then transmitted via the antenna ex350. The mobile phone ex114 also amplifies the received data received via the antenna ex350 in the voice call mode, performs frequency conversion processing and analog-digital conversion processing, performs spectrum despreading processing by the modulation / demodulation unit ex352, and performs voice signal processing unit After being converted into an analog audio signal by ex354, this is output from the audio output unit ex357.
 さらにデータ通信モード時に電子メールを送信する場合、本体部の操作キー部ex366等の操作によって入力された電子メールのテキストデータは操作入力制御部ex362を介して主制御部ex360に送出される。主制御部ex360は、テキストデータを変調/復調部ex352でスペクトラム拡散処理をし、送信/受信部ex351でデジタルアナログ変換処理および周波数変換処理を施した後にアンテナex350を介して基地局ex110へ送信する。電子メールを受信する場合は、受信したデータに対してこのほぼ逆の処理が行われ、表示部ex358に出力される。 Further, when an e-mail is transmitted in the data communication mode, the text data of the e-mail input by operating the operation key unit ex366 of the main unit is sent to the main control unit ex360 via the operation input control unit ex362. The main control unit ex360 performs spread spectrum processing on the text data in the modulation / demodulation unit ex352, performs digital analog conversion processing and frequency conversion processing in the transmission / reception unit ex351, and then transmits the text data to the base station ex110 via the antenna ex350. . In the case of receiving an e-mail, almost the reverse process is performed on the received data and output to the display unit ex358.
 データ通信モード時に映像、静止画、または映像と音声を送信する場合、映像信号処理部ex355は、カメラ部ex365から供給された映像信号を上記各実施の形態で示した動画像符号化方法によって圧縮符号化し、符号化された映像データを多重/分離部ex353に送出する。また、音声信号処理部ex354は、映像、静止画等をカメラ部ex365で撮像中に音声入力部ex356で収音した音声信号を符号化し、符号化された音声データを多重/分離部ex353に送出する。 When transmitting video, still images, or video and audio in the data communication mode, the video signal processing unit ex355 compresses the video signal supplied from the camera unit ex365 by the moving image encoding method described in the above embodiments. The encoded video data is sent to the multiplexing / separating unit ex353. The audio signal processing unit ex354 encodes the audio signal picked up by the audio input unit ex356 while the camera unit ex365 images a video, a still image, etc., and sends the encoded audio data to the multiplexing / separating unit ex353. To do.
 多重/分離部ex353は、映像信号処理部ex355から供給された符号化された映像データと音声信号処理部ex354から供給された符号化された音声データを所定の方式で多重化し、その結果得られる多重化データを変調/復調部(変調/復調回路部)ex352でスペクトラム拡散処理をし、送信/受信部ex351でデジタルアナログ変換処理及び周波数変換処理を施した後にアンテナex350を介して送信する。 The multiplexing / demultiplexing unit ex353 multiplexes the encoded video data supplied from the video signal processing unit ex355 and the encoded audio data supplied from the audio signal processing unit ex354 by a predetermined method, and is obtained as a result. The multiplexed data is subjected to spread spectrum processing by the modulation / demodulation unit (modulation / demodulation circuit unit) ex352, digital-analog conversion processing and frequency conversion processing by the transmission / reception unit ex351, and then transmitted via the antenna ex350.
 データ通信モード時にホームページ等にリンクされた動画像ファイルのデータを受信する場合、または映像およびもしくは音声が添付された電子メールを受信する場合、アンテナex350を介して受信された多重化データを復号化するために、多重/分離部ex353は、多重化データを分離することにより映像データのビットストリームと音声データのビットストリームとに分け、同期バスex370を介して符号化された映像データを映像信号処理部ex355に供給するとともに、符号化された音声データを音声信号処理部ex354に供給する。映像信号処理部ex355は、上記各実施の形態で示した動画像符号化方法に対応した動画像復号化方法によって復号化することにより映像信号を復号し、LCD制御部ex359を介して表示部ex358から、例えばホームページにリンクされた動画像ファイルに含まれる映像、静止画が表示される。また音声信号処理部ex354は、音声信号を復号し、音声出力部ex357から音声が出力される。 Decode multiplexed data received via antenna ex350 when receiving video file data linked to a homepage, etc. in data communication mode, or when receiving e-mail with video and / or audio attached Therefore, the multiplexing / separating unit ex353 separates the multiplexed data into a video data bit stream and an audio data bit stream, and performs video signal processing on the video data encoded via the synchronization bus ex370. The encoded audio data is supplied to the audio signal processing unit ex354 while being supplied to the unit ex355. The video signal processing unit ex355 decodes the video signal by decoding using the video decoding method corresponding to the video encoding method described in each of the above embodiments, and the display unit ex358 via the LCD control unit ex359. From, for example, video and still images included in a moving image file linked to a home page are displayed. The audio signal processing unit ex354 decodes the audio signal, and the audio is output from the audio output unit ex357.
 また、上記携帯電話ex114等の端末は、テレビex300と同様に、符号化器・復号化器を両方持つ送受信型端末の他に、符号化器のみの送信端末、復号化器のみの受信端末という3通りの実装形式が考えられる。さらに、デジタル放送用システムex200において、映像データに音楽データなどが多重化された多重化された多重化データを受信、送信するとして説明したが、音声データ以外に映像に関連する文字データなどが多重化されたデータであってもよいし、多重化データではなく映像データ自体であってもよい。 In addition to the transmission / reception type terminal having both the encoder and the decoder, the terminal such as the mobile phone ex114 is referred to as a transmission terminal having only an encoder and a receiving terminal having only a decoder. There are three possible mounting formats. Furthermore, in the digital broadcasting system ex200, it has been described that multiplexed data in which music data is multiplexed with video data is received and transmitted. However, in addition to audio data, character data related to video is multiplexed. It may be converted data, or may be video data itself instead of multiplexed data.
 このように、上記各実施の形態で示した動画像符号化方法あるいは動画像復号化方法を上述したいずれの機器・システムに用いることは可能であり、そうすることで、上記各実施の形態で説明した効果を得ることができる。 As described above, the moving picture encoding method or the moving picture decoding method shown in each of the above embodiments can be used in any of the above-described devices / systems. The described effect can be obtained.
 また、本発明はかかる上記実施形態に限定されるものではなく、本発明の範囲を逸脱することなく種々の変形または修正が可能である。 Further, the present invention is not limited to the above-described embodiment, and various changes and modifications can be made without departing from the scope of the present invention.
 (実施の形態3)
 上記各実施の形態で示した動画像符号化方法または装置と、MPEG-2、MPEG4-AVC、VC-1など異なる規格に準拠した動画像符号化方法または装置とを、必要に応じて適宜切替えることにより、映像データを生成することも可能である。
(Embodiment 3)
The moving picture coding method or apparatus shown in each of the above embodiments and the moving picture coding method or apparatus compliant with different standards such as MPEG-2, MPEG4-AVC, and VC-1 are appropriately switched as necessary. Thus, it is also possible to generate video data.
 ここで、それぞれ異なる規格に準拠する複数の映像データを生成した場合、復号する際に、それぞれの規格に対応した復号方法を選択する必要がある。しかしながら、復号する映像データが、どの規格に準拠するものであるか識別できないため、適切な復号方法を選択することができないという課題を生じる。 Here, when a plurality of pieces of video data conforming to different standards are generated, it is necessary to select a decoding method corresponding to each standard when decoding. However, since it is impossible to identify which standard the video data to be decoded complies with, there arises a problem that an appropriate decoding method cannot be selected.
 この課題を解決するために、映像データに音声データなどを多重化した多重化データは、映像データがどの規格に準拠するものであるかを示す識別情報を含む構成とする。上記各実施の形態で示す動画像符号化方法または装置によって生成された映像データを含む多重化データの具体的な構成を以下説明する。多重化データは、MPEG-2トランスポートストリーム形式のデジタルストリームである。 In order to solve this problem, multiplexed data obtained by multiplexing audio data or the like with video data is configured to include identification information indicating which standard the video data conforms to. A specific configuration of multiplexed data including video data generated by the moving picture encoding method or apparatus shown in the above embodiments will be described below. The multiplexed data is a digital stream in the MPEG-2 transport stream format.
 図16は、多重化データの構成を示す図である。図16に示すように多重化データは、ビデオストリーム、オーディオストリーム、プレゼンテーショングラフィックスストリーム(PG)、インタラクティブグラフィックスストリームのうち、1つ以上を多重化することで得られる。ビデオストリームは映画の主映像および副映像を、オーディオストリーム(IG)は映画の主音声部分とその主音声とミキシングする副音声を、プレゼンテーショングラフィックスストリームは、映画の字幕をそれぞれ示している。ここで主映像とは画面に表示される通常の映像を示し、副映像とは主映像の中に小さな画面で表示する映像のことである。また、インタラクティブグラフィックスストリームは、画面上にGUI部品を配置することにより作成される対話画面を示している。ビデオストリームは、上記各実施の形態で示した動画像符号化方法または装置、従来のMPEG-2、MPEG4-AVC、VC-1などの規格に準拠した動画像符号化方法または装置によって符号化されている。オーディオストリームは、ドルビーAC-3、Dolby Digital Plus、MLP、DTS、DTS-HD、または、リニアPCMのなどの方式で符号化されている。 FIG. 16 is a diagram showing a structure of multiplexed data. As shown in FIG. 16, multiplexed data is obtained by multiplexing one or more of a video stream, an audio stream, a presentation graphics stream (PG), and an interactive graphics stream. The video stream indicates the main video and sub-video of the movie, the audio stream (IG) indicates the main audio portion of the movie and the sub-audio mixed with the main audio, and the presentation graphics stream indicates the subtitles of the movie. Here, the main video indicates a normal video displayed on the screen, and the sub-video is a video displayed on a small screen in the main video. The interactive graphics stream indicates an interactive screen created by arranging GUI components on the screen. The video stream is encoded by the moving image encoding method or apparatus shown in the above embodiments, or the moving image encoding method or apparatus conforming to the conventional standards such as MPEG-2, MPEG4-AVC, and VC-1. ing. The audio stream is encoded by a method such as Dolby AC-3, Dolby Digital Plus, MLP, DTS, DTS-HD, or linear PCM.
 多重化データに含まれる各ストリームはPIDによって識別される。例えば、映画の映像に利用するビデオストリームには0x1011が、オーディオストリームには0x1100から0x111Fまでが、プレゼンテーショングラフィックスには0x1200から0x121Fまでが、インタラクティブグラフィックスストリームには0x1400から0x141Fまでが、映画の副映像に利用するビデオストリームには0x1B00から0x1B1Fまで、主音声とミキシングする副音声に利用するオーディオストリームには0x1A00から0x1A1Fが、それぞれ割り当てられている。 Each stream included in the multiplexed data is identified by PID. For example, 0x1011 for video streams used for movie images, 0x1100 to 0x111F for audio streams, 0x1200 to 0x121F for presentation graphics, 0x1400 to 0x141F for interactive graphics streams, 0x1B00 to 0x1B1F are assigned to video streams used for sub-pictures, and 0x1A00 to 0x1A1F are assigned to audio streams used for sub-audio mixed with the main audio.
 図17は、多重化データがどのように多重化されるかを模式的に示す図である。まず、複数のビデオフレームからなるビデオストリームex235、複数のオーディオフレームからなるオーディオストリームex238を、それぞれPESパケット列ex236およびex239に変換し、TSパケットex237およびex240に変換する。同じくプレゼンテーショングラフィックスストリームex241およびインタラクティブグラフィックスex244のデータをそれぞれPESパケット列ex242およびex245に変換し、さらにTSパケットex243およびex246に変換する。多重化データex247はこれらのTSパケットを1本のストリームに多重化することで構成される。 FIG. 17 is a diagram schematically showing how multiplexed data is multiplexed. First, a video stream ex235 composed of a plurality of video frames and an audio stream ex238 composed of a plurality of audio frames are converted into PES packet sequences ex236 and ex239, respectively, and converted into TS packets ex237 and ex240. Similarly, the data of the presentation graphics stream ex241 and interactive graphics ex244 are converted into PES packet sequences ex242 and ex245, respectively, and further converted into TS packets ex243 and ex246. The multiplexed data ex247 is configured by multiplexing these TS packets into one stream.
 図18は、PESパケット列に、ビデオストリームがどのように格納されるかをさらに詳しく示している。図18における第1段目はビデオストリームのビデオフレーム列を示す。第2段目は、PESパケット列を示す。図18の矢印yy1,yy2, yy3, yy4に示すように、ビデオストリームにおける複数のVideo Presentation UnitであるIピクチャ、Bピクチャ、Pピクチャは、ピクチャ毎に分割され、PESパケットのペイロードに格納される。各PESパケットはPESヘッダを持ち、PESヘッダには、ピクチャの表示時刻であるPTS(Presentation Time-Stamp)やピクチャの復号時刻であるDTS(Decoding Time-Stamp)が格納される。 FIG. 18 shows in more detail how the video stream is stored in the PES packet sequence. The first row in FIG. 18 shows a video frame sequence of the video stream. The second level shows a PES packet sequence. As shown by arrows yy1, yy2, yy3, yy4 in FIG. 18, a plurality of Video Presentation Units in the video stream are divided into pictures, B pictures, and P pictures, and are stored in the payload of the PES packet. . Each PES packet has a PES header, and a PTS (Presentation Time-Stamp) that is a display time of a picture and a DTS (Decoding Time-Stamp) that is a decoding time of a picture are stored in the PES header.
 図19は、多重化データに最終的に書き込まれるTSパケットの形式を示している。TSパケットは、ストリームを識別するPIDなどの情報を持つ4ByteのTSヘッダとデータを格納する184ByteのTSペイロードから構成される188Byte固定長のパケットであり、上記PESパケットは分割されTSペイロードに格納される。BD-ROMの場合、TSパケットには、4ByteのTP_Extra_Headerが付与され、192Byteのソースパケットを構成し、多重化データに書き込まれる。TP_Extra_HeaderにはATS(Arrival_Time_Stamp)などの情報が記載される。ATSは当該TSパケットのデコーダのPIDフィルタへの転送開始時刻を示す。多重化データには図19下段に示すようにソースパケットが並ぶこととなり、多重化データの先頭からインクリメントする番号はSPN(ソースパケットナンバー)と呼ばれる。 FIG. 19 shows the format of TS packets that are finally written in the multiplexed data. The TS packet is a 188-byte fixed-length packet composed of a 4-byte TS header having information such as a PID for identifying a stream and a 184-byte TS payload for storing data. The PES packet is divided and stored in the TS payload. The In the case of a BD-ROM, a 4-byte TP_Extra_Header is added to a TS packet, forms a 192-byte source packet, and is written in multiplexed data. In TP_Extra_Header, information such as ATS (Arrival_Time_Stamp) is described. ATS indicates the transfer start time of the TS packet to the PID filter of the decoder. Source packets are arranged in the multiplexed data as shown in the lower part of FIG. 19, and the number incremented from the head of the multiplexed data is called SPN (source packet number).
 また、多重化データに含まれるTSパケットには、映像・音声・字幕などの各ストリーム以外にもPAT(Program Association Table)、PMT(Program Map Table)、PCR(Program Clock Reference)などがある。PATは多重化データ中に利用されるPMTのPIDが何であるかを示し、PAT自身のPIDは0で登録される。PMTは、多重化データ中に含まれる映像・音声・字幕などの各ストリームのPIDと各PIDに対応するストリームの属性情報を持ち、また多重化データに関する各種ディスクリプタを持つ。ディスクリプタには多重化データのコピーを許可・不許可を指示するコピーコントロール情報などがある。PCRは、ATSの時間軸であるATC(Arrival Time Clock)とPTS・DTSの時間軸であるSTC(System Time Clock)の同期を取るために、そのPCRパケットがデコーダに転送されるATSに対応するSTC時間の情報を持つ。 In addition, TS packets included in the multiplexed data include PAT (Program Association Table), PMT (Program Map Table), PCR (Program Clock Reference), and the like in addition to each stream such as video / audio / caption. PAT indicates what the PID of the PMT used in the multiplexed data is, and the PID of the PAT itself is registered as 0. The PMT has the PID of each stream such as video / audio / subtitles included in the multiplexed data and the attribute information of the stream corresponding to each PID, and has various descriptors related to the multiplexed data. The descriptor includes copy control information for instructing permission / non-permission of copying of multiplexed data. In order to synchronize the ATC (Arrival Time Clock), which is the ATS time axis, and the STC (System Time Clock), which is the PTS / DTS time axis, the PCR corresponds to the ATS in which the PCR packet is transferred to the decoder. Contains STC time information.
 図20はPMTのデータ構造を詳しく説明する図である。PMTの先頭には、そのPMTに含まれるデータの長さなどを記したPMTヘッダが配置される。その後ろには、多重化データに関するディスクリプタが複数配置される。上記コピーコントロール情報などが、ディスクリプタとして記載される。ディスクリプタの後には、多重化データに含まれる各ストリームに関するストリーム情報が複数配置される。ストリーム情報は、ストリームの圧縮コーデックなどを識別するためストリームタイプ、ストリームのPID、ストリームの属性情報(フレームレート、アスペクト比など)が記載されたストリームディスクリプタから構成される。ストリームディスクリプタは多重化データに存在するストリームの数だけ存在する。 FIG. 20 is a diagram for explaining the data structure of the PMT in detail. A PMT header describing the length of data included in the PMT is arranged at the head of the PMT. After that, a plurality of descriptors related to multiplexed data are arranged. The copy control information and the like are described as descriptors. After the descriptor, a plurality of pieces of stream information regarding each stream included in the multiplexed data are arranged. The stream information includes a stream descriptor in which a stream type, a stream PID, and stream attribute information (frame rate, aspect ratio, etc.) are described to identify a compression codec of the stream. There are as many stream descriptors as the number of streams existing in the multiplexed data.
 記録媒体などに記録する場合には、上記多重化データは、多重化データ情報ファイルと共に記録される。 When recording on a recording medium or the like, the multiplexed data is recorded together with the multiplexed data information file.
 多重化データ情報ファイルは、図21に示すように多重化データの管理情報であり、多重化データと1対1に対応し、多重化データ情報、ストリーム属性情報とエントリマップから構成される。 As shown in FIG. 21, the multiplexed data information file is management information of multiplexed data, has one-to-one correspondence with the multiplexed data, and includes multiplexed data information, stream attribute information, and an entry map.
 多重化データ情報は図21に示すようにシステムレート、再生開始時刻、再生終了時刻から構成されている。システムレートは多重化データの、後述するシステムターゲットデコーダのPIDフィルタへの最大転送レートを示す。多重化データ中に含まれるATSの間隔はシステムレート以下になるように設定されている。再生開始時刻は多重化データの先頭のビデオフレームのPTSであり、再生終了時刻は多重化データの終端のビデオフレームのPTSに1フレーム分の再生間隔を足したものが設定される。 The multiplexed data information includes a system rate, a reproduction start time, and a reproduction end time as shown in FIG. The system rate indicates a maximum transfer rate of multiplexed data to a PID filter of a system target decoder described later. The ATS interval included in the multiplexed data is set to be equal to or less than the system rate. The playback start time is the PTS of the first video frame of the multiplexed data, and the playback end time is set by adding the playback interval for one frame to the PTS of the video frame at the end of the multiplexed data.
 ストリーム属性情報は図22に示すように、多重化データに含まれる各ストリームについての属性情報が、PID毎に登録される。属性情報はビデオストリーム、オーディオストリーム、プレゼンテーショングラフィックスストリーム、インタラクティブグラフィックスストリーム毎に異なる情報を持つ。ビデオストリーム属性情報は、そのビデオストリームがどのような圧縮コーデックで圧縮されたか、ビデオストリームを構成する個々のピクチャデータの解像度がどれだけであるか、アスペクト比はどれだけであるか、フレームレートはどれだけであるかなどの情報を持つ。オーディオストリーム属性情報は、そのオーディオストリームがどのような圧縮コーデックで圧縮されたか、そのオーディオストリームに含まれるチャンネル数は何であるか、何の言語に対応するか、サンプリング周波数がどれだけであるかなどの情報を持つ。これらの情報は、プレーヤが再生する前のデコーダの初期化などに利用される。 In the stream attribute information, as shown in FIG. 22, attribute information about each stream included in the multiplexed data is registered for each PID. The attribute information has different information for each video stream, audio stream, presentation graphics stream, and interactive graphics stream. The video stream attribute information includes the compression codec used to compress the video stream, the resolution of the individual picture data constituting the video stream, the aspect ratio, and the frame rate. It has information such as how much it is. The audio stream attribute information includes the compression codec used to compress the audio stream, the number of channels included in the audio stream, the language supported, and the sampling frequency. With information. These pieces of information are used for initialization of the decoder before the player reproduces it.
 本実施の形態においては、上記多重化データのうち、PMTに含まれるストリームタイプを利用する。また、記録媒体に多重化データが記録されている場合には、多重化データ情報に含まれる、ビデオストリーム属性情報を利用する。具体的には、上記各実施の形態で示した動画像符号化方法または装置において、PMTに含まれるストリームタイプ、または、ビデオストリーム属性情報に対し、上記各実施の形態で示した動画像符号化方法または装置によって生成された映像データであることを示す固有の情報を設定するステップまたは手段を設ける。この構成により、上記各実施の形態で示した動画像符号化方法または装置によって生成した映像データと、他の規格に準拠する映像データとを識別することが可能になる。 In this embodiment, among the multiplexed data, the stream type included in the PMT is used. Also, when multiplexed data is recorded on the recording medium, video stream attribute information included in the multiplexed data information is used. Specifically, in the video encoding method or apparatus shown in each of the above embodiments, the video encoding shown in each of the above embodiments for the stream type or video stream attribute information included in the PMT. There is provided a step or means for setting unique information indicating that the video data is generated by the method or apparatus. With this configuration, it is possible to discriminate between video data generated by the moving picture encoding method or apparatus described in the above embodiments and video data compliant with other standards.
 また、本実施の形態における動画像復号化方法のステップを図23に示す。ステップexS100において、多重化データからPMTに含まれるストリームタイプ、または、多重化データ情報に含まれるビデオストリーム属性情報を取得する。次に、ステップexS101において、ストリームタイプ、または、ビデオストリーム属性情報が上記各実施の形態で示した動画像符号化方法または装置によって生成された多重化データであることを示しているか否かを判断する。そして、ストリームタイプ、または、ビデオストリーム属性情報が上記各実施の形態で示した動画像符号化方法または装置によって生成されたものであると判断された場合には、ステップexS102において、上記各実施の形態で示した動画像復号方法により復号を行う。また、ストリームタイプ、または、ビデオストリーム属性情報が、従来のMPEG-2、MPEG4-AVC、VC-1などの規格に準拠するものであることを示している場合には、ステップexS103において、従来の規格に準拠した動画像復号方法により復号を行う。 FIG. 23 shows steps of the moving picture decoding method according to the present embodiment. In step exS100, the stream type included in the PMT or the video stream attribute information included in the multiplexed data information is acquired from the multiplexed data. Next, in step exS101, it is determined whether or not the stream type or the video stream attribute information indicates multiplexed data generated by the moving picture encoding method or apparatus described in the above embodiments. To do. When it is determined that the stream type or the video stream attribute information is generated by the moving image encoding method or apparatus described in the above embodiments, in step exS102, the above embodiments are performed. Decoding is performed by the moving picture decoding method shown in the form. If the stream type or video stream attribute information indicates that it conforms to a standard such as conventional MPEG-2, MPEG4-AVC, or VC-1, in step exS103, the conventional information Decoding is performed by a moving image decoding method compliant with the standard.
 このように、ストリームタイプ、または、ビデオストリーム属性情報に新たな固有値を設定することにより、復号する際に、上記各実施の形態で示した動画像復号化方法または装置で復号可能であるかを判断することができる。従って、異なる規格に準拠する多重化データが入力された場合であっても、適切な復号化方法または装置を選択することができるため、エラーを生じることなく復号することが可能となる。また、本実施の形態で示した動画像符号化方法または装置、または、動画像復号方法または装置を、上述したいずれの機器・システムに用いることも可能である。 In this way, by setting a new unique value in the stream type or video stream attribute information, whether or not decoding is possible with the moving picture decoding method or apparatus described in each of the above embodiments is performed. Judgment can be made. Therefore, even when multiplexed data conforming to different standards is input, an appropriate decoding method or apparatus can be selected, and therefore decoding can be performed without causing an error. In addition, the moving picture encoding method or apparatus or the moving picture decoding method or apparatus described in this embodiment can be used in any of the above-described devices and systems.
 (実施の形態4)
 上記各実施の形態で示した動画像符号化方法および装置、動画像復号化方法および装置は、典型的には集積回路であるLSIで実現される。一例として、図24に1チップ化されたLSIex500の構成を示す。LSIex500は、以下に説明する要素ex501、ex502、ex503、ex504、ex505、ex506、ex507、ex508、ex509を備え、各要素はバスex510を介して接続している。電源回路部ex505は電源がオン状態の場合に各部に対して電力を供給することで動作可能な状態に起動する。
(Embodiment 4)
The moving picture encoding method and apparatus and moving picture decoding method and apparatus described in the above embodiments are typically realized by an LSI that is an integrated circuit. As an example, FIG. 24 shows a configuration of an LSI ex500 that is made into one chip. The LSI ex500 includes elements ex501, ex502, ex503, ex504, ex505, ex506, ex507, ex508, and ex509 described below, and each element is connected via a bus ex510. The power supply circuit unit ex505 is activated to an operable state by supplying power to each unit when the power supply is on.
 例えば符号化処理を行う場合には、LSIex500は、CPUex502、メモリコントローラex503、ストリームコントローラex504、駆動周波数制御部ex512等を有する制御部ex501の制御に基づいて、AV I/Oex509によりマイクex117やカメラex113等からAV信号を入力する。入力されたAV信号は、一旦SDRAM等の外部のメモリex511に蓄積される。制御部ex501の制御に基づいて、蓄積したデータは処理量や処理速度に応じて適宜複数回に分けるなどされ信号処理部ex507に送られ、信号処理部ex507において音声信号の符号化および/または映像信号の符号化が行われる。ここで映像信号の符号化処理は上記各実施の形態で説明した符号化処理である。信号処理部ex507ではさらに、場合により符号化された音声データと符号化された映像データを多重化するなどの処理を行い、ストリームI/Oex506から外部に出力する。この出力された多重化データは、基地局ex107に向けて送信されたり、または記録メディアex215に書き込まれたりする。なお、多重化する際には同期するよう、一旦バッファex508にデータを蓄積するとよい。 For example, when performing the encoding process, the LSI ex500 performs the microphone ex117 and the camera ex113 by the AV I / O ex509 based on the control of the control unit ex501 including the CPU ex502, the memory controller ex503, the stream controller ex504, the drive frequency control unit ex512, and the like. The AV signal is input from the above. The input AV signal is temporarily stored in an external memory ex511 such as SDRAM. Based on the control of the control unit ex501, the accumulated data is divided into a plurality of times as appropriate according to the processing amount and the processing speed and sent to the signal processing unit ex507, and the signal processing unit ex507 encodes an audio signal and / or video. Signal encoding is performed. Here, the encoding process of the video signal is the encoding process described in the above embodiments. The signal processing unit ex507 further performs processing such as multiplexing the encoded audio data and the encoded video data according to circumstances, and outputs the result from the stream I / Oex 506 to the outside. The output multiplexed data is transmitted to the base station ex107 or written to the recording medium ex215. It should be noted that data should be temporarily stored in the buffer ex508 so as to be synchronized when multiplexing.
 なお、上記では、メモリex511がLSIex500の外部の構成として説明したが、LSIex500の内部に含まれる構成であってもよい。バッファex508も1つに限ったものではなく、複数のバッファを備えていてもよい。また、LSIex500は1チップ化されてもよいし、複数チップ化されてもよい。 In the above description, the memory ex511 is described as an external configuration of the LSI ex500. However, a configuration included in the LSI ex500 may be used. The number of buffers ex508 is not limited to one, and a plurality of buffers may be provided. The LSI ex500 may be made into one chip or a plurality of chips.
 また、上記では、制御部ex501が、CPUex502、メモリコントローラex503、ストリームコントローラex504、駆動周波数制御部ex512等を有するとしているが、制御部ex501の構成は、この構成に限らない。例えば、信号処理部ex507がさらにCPUを備える構成であってもよい。信号処理部ex507の内部にもCPUを設けることにより、処理速度をより向上させることが可能になる。また、他の例として、CPUex502が信号処理部ex507、または信号処理部ex507の一部である例えば音声信号処理部を備える構成であってもよい。このような場合には、制御部ex501は、信号処理部ex507、またはその一部を有するCPUex502を備える構成となる。 In the above description, the control unit ex501 includes the CPU ex502, the memory controller ex503, the stream controller ex504, the drive frequency control unit ex512, and the like, but the configuration of the control unit ex501 is not limited to this configuration. For example, the signal processing unit ex507 may further include a CPU. By providing a CPU also in the signal processing unit ex507, the processing speed can be further improved. As another example, the CPU ex502 may be configured to include a signal processing unit ex507 or, for example, an audio signal processing unit that is a part of the signal processing unit ex507. In such a case, the control unit ex501 is configured to include a signal processing unit ex507 or a CPU ex502 having a part thereof.
 なお、ここでは、LSIとしたが、集積度の違いにより、IC、システムLSI、スーパーLSI、ウルトラLSIと呼称されることもある。 In addition, although it was set as LSI here, it may be called IC, system LSI, super LSI, and ultra LSI depending on the degree of integration.
 また、集積回路化の手法はLSIに限るものではなく、専用回路または汎用プロセッサで実現してもよい。LSI製造後に、プログラムすることが可能なFPGA(Field Programmable Gate Array)や、LSI内部の回路セルの接続や設定を再構成可能なリコンフィギュラブル・プロセッサを利用してもよい。 Further, the method of circuit integration is not limited to LSI, and implementation with a dedicated circuit or a general-purpose processor is also possible. An FPGA (Field Programmable Gate Array) that can be programmed after manufacturing the LSI or a reconfigurable processor that can reconfigure the connection and setting of circuit cells inside the LSI may be used.
 さらには、半導体技術の進歩または派生する別技術によりLSIに置き換わる集積回路化の技術が登場すれば、当然、その技術を用いて機能ブロックの集積化を行ってもよい。バイオ技術の適応等が可能性としてありえる。 Furthermore, if integrated circuit technology that replaces LSI emerges as a result of progress in semiconductor technology or other derived technology, it is naturally possible to integrate functional blocks using this technology. Biotechnology can be applied.
 (実施の形態5)
 上記各実施の形態で示した動画像符号化方法または装置によって生成された映像データを復号する場合、従来のMPEG-2、MPEG4-AVC、VC-1などの規格に準拠する映像データを復号する場合に比べ、処理量が増加することが考えられる。そのため、LSIex500において、従来の規格に準拠する映像データを復号する際のCPUex502の駆動周波数よりも高い駆動周波数に設定する必要がある。しかし、駆動周波数を高くすると、消費電力が高くなるという課題が生じる。
(Embodiment 5)
When decoding video data generated by the moving picture encoding method or apparatus described in each of the above embodiments, the video data conforming to the conventional standards such as MPEG-2, MPEG4-AVC, and VC-1 is decoded. It is conceivable that the amount of processing increases compared to the case. Therefore, in LSI ex500, it is necessary to set a driving frequency higher than the driving frequency of CPU ex502 when decoding video data compliant with the conventional standard. However, when the drive frequency is increased, there is a problem that power consumption increases.
 この課題を解決するために、テレビex300、LSIex500などの動画像復号化装置は、映像データがどの規格に準拠するものであるかを識別し、規格に応じて駆動周波数を切替える構成とする。図25は、本実施の形態における構成ex800を示している。駆動周波数切替え部ex803は、映像データが、上記各実施の形態で示した動画像符号化方法または装置によって生成されたものである場合には、駆動周波数を高く設定する。そして、上記各実施の形態で示した動画像復号化方法を実行する復号処理部ex801に対し、映像データを復号するよう指示する。一方、映像データが、従来の規格に準拠する映像データである場合には、映像データが、上記各実施の形態で示した動画像符号化方法または装置によって生成されたものである場合に比べ、駆動周波数を低く設定する。そして、従来の規格に準拠する復号処理部ex802に対し、映像データを復号するよう指示する。 In order to solve this problem, moving picture decoding devices such as the television ex300 and LSI ex500 are configured to identify which standard the video data conforms to and switch the driving frequency in accordance with the standard. FIG. 25 shows a configuration ex800 in the present embodiment. The drive frequency switching unit ex803 sets the drive frequency high when the video data is generated by the moving image encoding method or apparatus described in the above embodiments. Then, the decoding processing unit ex801 that executes the moving picture decoding method described in each of the above embodiments is instructed to decode the video data. On the other hand, when the video data is video data compliant with the conventional standard, compared to the case where the video data is generated by the moving picture encoding method or apparatus shown in the above embodiments, Set the drive frequency low. Then, it instructs the decoding processing unit ex802 compliant with the conventional standard to decode the video data.
 より具体的には、駆動周波数切替え部ex803は、図24のCPUex502と駆動周波数制御部ex512から構成される。また、上記各実施の形態で示した動画像復号化方法を実行する復号処理部ex801、および、従来の規格に準拠する復号処理部ex802は、図24の信号処理部ex507に該当する。CPUex502は、映像データがどの規格に準拠するものであるかを識別する。そして、CPUex502からの信号に基づいて、駆動周波数制御部ex512は、駆動周波数を設定する。また、CPUex502からの信号に基づいて、信号処理部ex507は、映像データの復号を行う。ここで、映像データの識別には、例えば、実施の形態3で記載した識別情報を利用することが考えられる。識別情報に関しては、実施の形態3で記載したものに限られず、映像データがどの規格に準拠するか識別できる情報であればよい。例えば、映像データがテレビに利用されるものであるか、ディスクに利用されるものであるかなどを識別する外部信号に基づいて、映像データがどの規格に準拠するものであるか識別可能である場合には、このような外部信号に基づいて識別してもよい。また、CPUex502における駆動周波数の選択は、例えば、図27のような映像データの規格と、駆動周波数とを対応付けたルックアップテーブルに基づいて行うことが考えられる。ルックアップテーブルを、バッファex508や、LSIの内部メモリに格納しておき、CPUex502がこのルックアップテーブルを参照することにより、駆動周波数を選択することが可能である。 More specifically, the drive frequency switching unit ex803 includes the CPU ex502 and the drive frequency control unit ex512 in FIG. Also, the decoding processing unit ex801 that executes the moving picture decoding method shown in each of the above embodiments and the decoding processing unit ex802 that complies with the conventional standard correspond to the signal processing unit ex507 in FIG. The CPU ex502 identifies which standard the video data conforms to. Then, based on the signal from the CPU ex502, the drive frequency control unit ex512 sets the drive frequency. Further, based on the signal from the CPU ex502, the signal processing unit ex507 decodes the video data. Here, for the identification of the video data, for example, it is conceivable to use the identification information described in the third embodiment. The identification information is not limited to that described in Embodiment 3, and any information that can identify which standard the video data conforms to may be used. For example, it is possible to identify which standard the video data conforms to based on an external signal that identifies whether the video data is used for a television or a disk. In some cases, identification may be performed based on such an external signal. In addition, the selection of the driving frequency in the CPU ex502 may be performed based on, for example, a look-up table in which video data standards and driving frequencies are associated with each other as shown in FIG. The look-up table is stored in the buffer ex508 or the internal memory of the LSI, and the CPU ex502 can select the drive frequency by referring to the look-up table.
 図26は、本実施の形態の方法を実施するステップを示している。まず、ステップexS200では、信号処理部ex507において、多重化データから識別情報を取得する。次に、ステップexS201では、CPUex502において、識別情報に基づいて映像データが上記各実施の形態で示した符号化方法または装置によって生成されたものであるか否かを識別する。映像データが上記各実施の形態で示した符号化方法または装置によって生成されたものである場合には、ステップexS202において、駆動周波数を高く設定する信号を、CPUex502が駆動周波数制御部ex512に送る。そして、駆動周波数制御部ex512において、高い駆動周波数に設定される。一方、従来のMPEG-2、MPEG4-AVC、VC-1などの規格に準拠する映像データであることを示している場合には、ステップexS203において、駆動周波数を低く設定する信号を、CPUex502が駆動周波数制御部ex512に送る。そして、駆動周波数制御部ex512において、映像データが上記各実施の形態で示した符号化方法または装置によって生成されたものである場合に比べ、低い駆動周波数に設定される。 FIG. 26 shows steps for executing the method of the present embodiment. First, in step exS200, the signal processing unit ex507 acquires identification information from the multiplexed data. Next, in step exS201, the CPU ex502 identifies whether the video data is generated by the encoding method or apparatus described in each of the above embodiments based on the identification information. When the video data is generated by the encoding method or apparatus shown in the above embodiments, in step exS202, the CPU ex502 sends a signal for setting the drive frequency high to the drive frequency control unit ex512. Then, the drive frequency control unit ex512 sets a high drive frequency. On the other hand, if it indicates that the video data conforms to the conventional standards such as MPEG-2, MPEG4-AVC, and VC-1, in step exS203, the CPU ex502 drives the signal for setting the drive frequency low. This is sent to the frequency control unit ex512. Then, in the drive frequency control unit ex512, the drive frequency is set to be lower than that in the case where the video data is generated by the encoding method or apparatus described in the above embodiments.
 さらに、駆動周波数の切替えに連動して、LSIex500またはLSIex500を含む装置に与える電圧を変更することにより、省電力効果をより高めることが可能である。例えば、駆動周波数を低く設定する場合には、これに伴い、駆動周波数を高く設定している場合に比べ、LSIex500またはLSIex500を含む装置に与える電圧を低く設定することが考えられる。 Furthermore, the power saving effect can be further enhanced by changing the voltage applied to the LSI ex500 or the device including the LSI ex500 in conjunction with the switching of the driving frequency. For example, when the drive frequency is set low, it is conceivable that the voltage applied to the LSI ex500 or the device including the LSI ex500 is set low as compared with the case where the drive frequency is set high.
 また、駆動周波数の設定方法は、復号する際の処理量が大きい場合に、駆動周波数を高く設定し、復号する際の処理量が小さい場合に、駆動周波数を低く設定すればよく、上述した設定方法に限らない。例えば、MPEG4-AVC規格に準拠する映像データを復号する処理量の方が、上記各実施の形態で示した動画像符号化方法または装置により生成された映像データを復号する処理量よりも大きい場合には、駆動周波数の設定を上述した場合の逆にすることが考えられる。 In addition, the setting method of the driving frequency may be set to a high driving frequency when the processing amount at the time of decoding is large, and to a low driving frequency when the processing amount at the time of decoding is small. It is not limited to the method. For example, the amount of processing for decoding video data compliant with the MPEG4-AVC standard is larger than the amount of processing for decoding video data generated by the moving picture encoding method or apparatus described in the above embodiments. It is conceivable that the setting of the driving frequency is reversed to that in the case described above.
 さらに、駆動周波数の設定方法は、駆動周波数を低くする構成に限らない。例えば、識別情報が、上記各実施の形態で示した動画像符号化方法または装置によって生成された映像データであることを示している場合には、LSIex500またはLSIex500を含む装置に与える電圧を高く設定し、従来のMPEG-2、MPEG4-AVC、VC-1などの規格に準拠する映像データであることを示している場合には、LSIex500またはLSIex500を含む装置に与える電圧を低く設定することも考えられる。また、他の例としては、識別情報が、上記各実施の形態で示した動画像符号化方法または装置によって生成された映像データであることを示している場合には、CPUex502の駆動を停止させることなく、従来のMPEG-2、MPEG4-AVC、VC-1などの規格に準拠する映像データであることを示している場合には、処理に余裕があるため、CPUex502の駆動を一時停止させることも考えられる。識別情報が、上記各実施の形態で示した動画像符号化方法または装置によって生成された映像データであることを示している場合であっても、処理に余裕があれば、CPUex502の駆動を一時停止させることも考えられる。この場合は、従来のMPEG-2、MPEG4-AVC、VC-1などの規格に準拠する映像データであることを示している場合に比べて、停止時間を短く設定することが考えられる。 Furthermore, the method for setting the drive frequency is not limited to the configuration in which the drive frequency is lowered. For example, when the identification information indicates that the video data is generated by the moving image encoding method or apparatus described in the above embodiments, the voltage applied to the LSIex500 or the apparatus including the LSIex500 is set high. However, when it is shown that the video data conforms to the conventional standards such as MPEG-2, MPEG4-AVC, VC-1, etc., it is also possible to set the voltage applied to the LSIex500 or the device including the LSIex500 low. It is done. As another example, when the identification information indicates that the video data is generated by the moving image encoding method or apparatus described in the above embodiments, the driving of the CPU ex502 is stopped. If the video data conforms to the standards such as MPEG-2, MPEG4-AVC, VC-1, etc., the CPU ex502 is temporarily stopped because there is room in processing. Is also possible. Even when the identification information indicates that the video data is generated by the moving image encoding method or apparatus described in each of the above embodiments, if there is a margin for processing, the CPU ex502 is temporarily driven. It can also be stopped. In this case, it is conceivable to set the stop time shorter than in the case where the video data conforms to the conventional standards such as MPEG-2, MPEG4-AVC, and VC-1.
 このように、映像データが準拠する規格に応じて、駆動周波数を切替えることにより、省電力化を図ることが可能になる。また、電池を用いてLSIex500またはLSIex500を含む装置を駆動している場合には、省電力化に伴い、電池の寿命を長くすることが可能である。 Thus, it is possible to save power by switching the drive frequency according to the standard to which the video data conforms. In addition, when the battery is used to drive the LSI ex500 or the device including the LSI ex500, it is possible to extend the life of the battery with power saving.
 (実施の形態6)
 テレビや、携帯電話など、上述した機器・システムには、異なる規格に準拠する複数の映像データが入力される場合がある。このように、異なる規格に準拠する複数の映像データが入力された場合にも復号できるようにするために、LSIex500の信号処理部ex507が複数の規格に対応している必要がある。しかし、それぞれの規格に対応する信号処理部ex507を個別に用いると、LSIex500の回路規模が大きくなり、また、コストが増加するという課題が生じる。
(Embodiment 6)
A plurality of video data that conforms to different standards may be input to the above-described devices and systems such as a television and a mobile phone. As described above, the signal processing unit ex507 of the LSI ex500 needs to support a plurality of standards in order to be able to decode even when a plurality of video data complying with different standards is input. However, when the signal processing unit ex507 corresponding to each standard is used individually, there is a problem that the circuit scale of the LSI ex500 increases and the cost increases.
 この課題を解決するために、上記各実施の形態で示した動画像復号方法を実行するための復号処理部と、従来のMPEG-2、MPEG4-AVC、VC-1などの規格に準拠する復号処理部とを一部共有化する構成とする。この構成例を図28Aのex900に示す。例えば、上記各実施の形態で示した動画像復号方法と、MPEG4-AVC規格に準拠する動画像復号方法とは、エントロピー符号化、逆量子化、デブロッキング・フィルタ、動き補償などの処理において処理内容が一部共通する。共通する処理内容については、MPEG4-AVC規格に対応する復号処理部ex902を共有し、MPEG4-AVC規格に対応しない、本発明特有の他の処理内容については、専用の復号処理部ex901を用いるという構成が考えられる。特に、本発明は、逆量子化に特徴を有していることから、例えば、逆量子化については専用の復号処理部ex901を用い、それ以外のエントロピー符号化、デブロッキング・フィルタ、動き補償のいずれか、または、全ての処理については、復号処理部を共有することが考えられる。復号処理部の共有化に関しては、共通する処理内容については、上記各実施の形態で示した動画像復号化方法を実行するための復号処理部を共有し、MPEG4-AVC規格に特有の処理内容については、専用の復号処理部を用いる構成であってもよい。 In order to solve this problem, a decoding processing unit for executing the moving picture decoding method shown in each of the above embodiments and a decoding conforming to a standard such as MPEG-2, MPEG4-AVC, or VC-1 The processing unit is partly shared. An example of this configuration is shown as ex900 in FIG. 28A. For example, the moving picture decoding method shown in each of the above embodiments and the moving picture decoding method compliant with the MPEG4-AVC standard are processed in processes such as entropy coding, inverse quantization, deblocking filter, and motion compensation. Some contents are common. For the common processing contents, the decoding processing unit ex902 corresponding to the MPEG4-AVC standard is shared, and for other processing contents specific to the present invention not corresponding to the MPEG4-AVC standard, the dedicated decoding processing unit ex901 is used. Configuration is conceivable. In particular, since the present invention is characterized by inverse quantization, for example, a dedicated decoding processing unit ex901 is used for inverse quantization, and other entropy coding, deblocking filter, motion compensation, and the like are used. For any or all of the processes, it is conceivable to share the decoding processing unit. For sharing of the decoding processing unit, for processing contents in common, to share the decoding processing unit for executing a moving picture decoding method described in each of embodiments, specific to the MPEG4-AVC standard processing content As for, a configuration using a dedicated decoding processing unit may be used.
 また、処理を一部共有化する他の例を図28Aのex1000に示す。この例では、本発明に特有の処理内容に対応した専用の復号処理部ex1001と、他の従来規格に特有の処理内容に対応した専用の復号処理部ex1002と、本発明の動画像復号方法と他の従来規格の動画像復号方法とに共通する処理内容に対応した共用の復号処理部ex1003とを用いる構成としている。ここで、専用の復号処理部ex1001、ex1002は、必ずしも本発明、または、他の従来規格に特有の処理内容に特化したものではなく、他の汎用処理を実行できるものであってもよい。また、本実施の形態の構成を、LSIex500で実装することも可能である。 Further, ex1000 in FIG. 28A shows another example in which processing is partially shared. In this example, a dedicated decoding processing unit ex1001 corresponding to processing content unique to the present invention, a dedicated decoding processing unit ex1002 corresponding to processing content specific to other conventional standards, and a moving picture decoding method of the present invention A common decoding processing unit ex1003 corresponding to processing contents common to other conventional video decoding methods is used. Here, the dedicated decoding processing units ex1001 and ex1002 are not necessarily specialized in the processing content specific to the present invention or other conventional standards, and may be capable of executing other general-purpose processing. Also, the configuration of the present embodiment can be implemented by LSI ex500.
 このように、本発明の動画像復号方法と、従来の規格の動画像復号方法とで共通する処理内容について、復号処理部を共有することにより、LSIの回路規模を小さくし、かつ、コストを低減することが可能である。 Thus, the moving picture decoding method of the present invention, the processing contents to be shared by the moving picture decoding method of the conventional standard, by sharing the decoding processing unit, to reduce the circuit scale of LSI, and cost It is possible to reduce.
 本発明にかかる画像符号化方法および画像復号方法は、符号化効率を向上することができるという効果を奏し、例えば、ビデオカメラ、動画の撮影および再生機能を有する携帯電話、パーソナルコンピュータ、または録画再生装置などに適用することができる。 INDUSTRIAL APPLICABILITY The image encoding method and the image decoding method according to the present invention have the effect that the encoding efficiency can be improved. It can be applied to devices and the like.
 100  画像符号化装置
 101  最大参照ピクチャリスト数決定部
 200  画像復号装置
 201  インター予測制御部
DESCRIPTION OF SYMBOLS 100 Image coding apparatus 101 Maximum reference picture list number determination part 200 Image decoding apparatus 201 Inter prediction control part

Claims (6)

  1.  少なくとも1枚の参照画像を用いて予測符号化を行う画像符号化方法であって、
     第1の処理単位毎にビットストリームに付与する第1のヘッダ情報にピクチャタイプを含み、前記ピクチャタイプがインター符号化を示す場合には、前記第1の処理単位におけるインター予測に用いる参照画像を管理する参照ピクチャリストの最大数を、第1の最大参照ピクチャリスト数として前記第1のヘッダ情報に含める
     ことを特徴とする画像符号化方法。
    An image encoding method for performing predictive encoding using at least one reference image,
    When the first header information added to the bitstream for each first processing unit includes a picture type and the picture type indicates inter coding, a reference image used for inter prediction in the first processing unit is selected. The image encoding method, wherein the maximum number of reference picture lists to be managed is included in the first header information as a first maximum reference picture list number.
  2.  前記第1の処理単位を少なくとも1つ以上包含する第2の処理単位毎に、ビットストリームに付与される、或いは前記ビットストリームとは別の代替手段により通知される第2のヘッダ情報に、前記第2の処理単位内で最大の前記第1の最大参照ピクチャリスト数を、第2の最大参照ピクチャリスト数として含める
     ことを特徴とする請求項1に記載の画像符号化方法。
    For each second processing unit including at least one of the first processing units, the second header information given to the bitstream or notified by an alternative means different from the bitstream, 2. The image encoding method according to claim 1, wherein the maximum number of the first maximum reference picture lists in the second processing unit is included as the second maximum reference picture list number.
  3.  少なくとも1枚の参照画像を用いて予測符号化されたビットストリームを復号する画像復号方法であって、
     第1の処理単位毎にビットストリームに付与された第1のヘッダ情報に含まれるピクチャタイプがインター符号化を示す場合には、前記第1の処理単位におけるインター予測に用いる参照画像を管理する参照ピクチャリストの最大数である、前記第1のヘッダ情報に含まれる第1の最大参照ピクチャリスト数に応じて、前記ビットストリームを復号する
     ことを特徴とする画像復号方法。
    An image decoding method for decoding a bitstream that has been predictively encoded using at least one reference image,
    When the picture type included in the first header information added to the bitstream for each first processing unit indicates inter coding, a reference for managing a reference image used for inter prediction in the first processing unit The image decoding method, wherein the bitstream is decoded according to a first maximum reference picture list number included in the first header information, which is a maximum number of picture lists.
  4.  前記第1の処理単位を一つ以上包含する第2の処理単位毎にビットストリームに付与される、或いは前記ビットストリームとは別の代替手段により通知される第2のヘッダ情報に含まれる、前記第2の処理単位内で最大の前記第1の最大参照ピクチャリスト数である第2の最大参照ピクチャリスト数に応じて、参照ピクチャリスト管理メモリを確保する
     ことを特徴とする請求項3に記載の画像復号方法。
    Added to the bitstream for each second processing unit including one or more of the first processing units, or included in the second header information notified by alternative means different from the bitstream, The reference picture list management memory is secured according to a second maximum reference picture list number that is the maximum number of the first maximum reference picture lists in a second processing unit. Image decoding method.
  5.  前記第1の最大参照ピクチャリスト数に応じて、前記第1の処理単位毎に前記参照ピクチャリスト管理メモリの初期化が必要な領域を所定の初期化方法により初期化する
     ことを特徴とする請求項4に記載の画像復号方法。
    The area that needs to be initialized in the reference picture list management memory is initialized by a predetermined initialization method for each of the first processing units according to the first maximum reference picture list number. Item 5. The image decoding method according to Item 4.
  6.  前記第1の最大参照ピクチャリスト数が前記第2の最大参照ピクチャリスト数より大きい場合には、エラーと判断し、所定のエラー処理を実施する
     ことを特徴とする請求項4に記載の画像復号方法
     
     
    5. The image decoding according to claim 4, wherein when the first maximum reference picture list number is larger than the second maximum reference picture list number, an error is determined and predetermined error processing is performed. Method
PCT/JP2011/004228 2010-07-27 2011-07-26 Image encoding method and image decoding method WO2012014458A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US36799410P 2010-07-27 2010-07-27
US61/367,994 2010-07-27
US42039110P 2010-12-07 2010-12-07
US61/420,391 2010-12-07

Publications (1)

Publication Number Publication Date
WO2012014458A1 true WO2012014458A1 (en) 2012-02-02

Family

ID=45529689

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/004228 WO2012014458A1 (en) 2010-07-27 2011-07-26 Image encoding method and image decoding method

Country Status (1)

Country Link
WO (1) WO2012014458A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007184791A (en) * 2006-01-06 2007-07-19 Victor Co Of Japan Ltd Reproducing device for moving picture encoded data
WO2007132647A1 (en) * 2006-05-12 2007-11-22 Panasonic Corporation Moving picture decoding device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007184791A (en) * 2006-01-06 2007-07-19 Victor Co Of Japan Ltd Reproducing device for moving picture encoded data
WO2007132647A1 (en) * 2006-05-12 2007-11-22 Panasonic Corporation Moving picture decoding device

Similar Documents

Publication Publication Date Title
JP6210248B2 (en) Moving picture coding method and moving picture coding apparatus
JP6327435B2 (en) Image encoding method, image decoding method, image encoding device, and image decoding device
JP6414712B2 (en) Moving picture encoding method, moving picture decoding method, moving picture encoding apparatus, and moving picture decoding method using a large number of reference pictures
WO2012023281A1 (en) Video image decoding method, video image encoding method, video image decoding apparatus, and video image encoding apparatus
JP6156648B2 (en) Moving picture coding method, moving picture coding apparatus, moving picture decoding method, and moving picture decoding apparatus
JP6451961B2 (en) Decoding device
JP6376470B2 (en) Image encoding method, image decoding method, image encoding device, and image decoding device
WO2012120840A1 (en) Image decoding method, image coding method, image decoding device and image coding device
WO2012105265A1 (en) Systems and methods for encoding and decoding video which support compatibility functionality to legacy video players
JP2013187905A (en) Methods and apparatuses for encoding and decoding video
JP6078927B2 (en) Moving picture coding method, moving picture coding apparatus, moving picture decoding method, and moving picture decoding apparatus
JP5873029B2 (en) Video encoding method and video decoding method
JP5680812B1 (en) Image encoding method, image decoding method, image encoding device, and image decoding device
JP2018133820A (en) Coding method, decoding method, coding apparatus, and decoding apparatus
WO2012124347A1 (en) Methods and apparatuses for encoding and decoding video using reserved nal unit type values of avc standard
JP2014039252A (en) Image decoding method and image decoding device
WO2013014884A1 (en) Moving image encoding method, moving image encoding device, moving image decoding method, and moving image decoding device
WO2011135841A1 (en) Image encoding method, image decoding method, image encoding apparatus and image decoding apparatus
WO2015001700A1 (en) Image encoding method and image encoding device
WO2012124300A1 (en) Video image encoding method, video image decoding method, video image encoding device, and video image decoding device
WO2012096157A1 (en) Image encoding method, image decoding method, image encoding device, and image decoding device
WO2012014458A1 (en) Image encoding method and image decoding method
WO2013153808A1 (en) Image decoding method and image decoding device
WO2012086166A1 (en) Image encoding method and image decoding method
WO2013046616A1 (en) Image encoding apparatus, image decoding apparatus, image encoding method and image decoding method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11812060

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11812060

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP