WO2012013466A2 - Absorbeur de capteur solaire thermique, capteur le comprenant, et procédé pour sa préparation - Google Patents

Absorbeur de capteur solaire thermique, capteur le comprenant, et procédé pour sa préparation Download PDF

Info

Publication number
WO2012013466A2
WO2012013466A2 PCT/EP2011/061436 EP2011061436W WO2012013466A2 WO 2012013466 A2 WO2012013466 A2 WO 2012013466A2 EP 2011061436 W EP2011061436 W EP 2011061436W WO 2012013466 A2 WO2012013466 A2 WO 2012013466A2
Authority
WO
WIPO (PCT)
Prior art keywords
absorber
nano
nanostructures
objects
absorber according
Prior art date
Application number
PCT/EP2011/061436
Other languages
English (en)
Other versions
WO2012013466A3 (fr
Inventor
Sylvain Augier
Nathalie Baclet
Philippe Papillon
Pascal Tiquet
Original Assignee
Commissariat à l'énergie atomique et aux énergies alternatives
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Commissariat à l'énergie atomique et aux énergies alternatives filed Critical Commissariat à l'énergie atomique et aux énergies alternatives
Priority to EP11729331.6A priority Critical patent/EP2598811A2/fr
Publication of WO2012013466A2 publication Critical patent/WO2012013466A2/fr
Publication of WO2012013466A3 publication Critical patent/WO2012013466A3/fr

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/03Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the shape of the extruded material at extrusion
    • B29C48/05Filamentary, e.g. strands
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/03Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the shape of the extruded material at extrusion
    • B29C48/06Rod-shaped
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/03Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the shape of the extruded material at extrusion
    • B29C48/07Flat, e.g. panels
    • B29C48/08Flat, e.g. panels flexible, e.g. films
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/03Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the shape of the extruded material at extrusion
    • B29C48/09Articles with cross-sections having partially or fully enclosed cavities, e.g. pipes or channels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/03Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the shape of the extruded material at extrusion
    • B29C48/12Articles with an irregular circumference when viewed in cross-section, e.g. window profiles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/255Flow control means, e.g. valves
    • B29C48/2556Flow control means, e.g. valves provided in or in the proximity of dies
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/30Extrusion nozzles or dies
    • B29C48/32Extrusion nozzles or dies with annular openings, e.g. for forming tubular articles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S10/00Solar heat collectors using working fluids
    • F24S10/70Solar heat collectors using working fluids the working fluids being conveyed through tubular absorbing conduits
    • F24S10/72Solar heat collectors using working fluids the working fluids being conveyed through tubular absorbing conduits the tubular conduits being integrated in a block; the tubular conduits touching each other
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S10/00Solar heat collectors using working fluids
    • F24S10/70Solar heat collectors using working fluids the working fluids being conveyed through tubular absorbing conduits
    • F24S10/73Solar heat collectors using working fluids the working fluids being conveyed through tubular absorbing conduits the tubular conduits being of plastic material
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S10/00Solar heat collectors using working fluids
    • F24S10/70Solar heat collectors using working fluids the working fluids being conveyed through tubular absorbing conduits
    • F24S10/74Solar heat collectors using working fluids the working fluids being conveyed through tubular absorbing conduits the tubular conduits are not fixed to heat absorbing plates and are not touching each other
    • F24S10/742Solar heat collectors using working fluids the working fluids being conveyed through tubular absorbing conduits the tubular conduits are not fixed to heat absorbing plates and are not touching each other the conduits being parallel to each other
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S70/00Details of absorbing elements
    • F24S70/10Details of absorbing elements characterised by the absorbing material
    • F24S70/14Details of absorbing elements characterised by the absorbing material made of plastics
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S70/00Details of absorbing elements
    • F24S70/20Details of absorbing elements characterised by absorbing coatings; characterised by surface treatment for increasing absorption
    • F24S70/225Details of absorbing elements characterised by absorbing coatings; characterised by surface treatment for increasing absorption for spectrally selective absorption
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S70/00Details of absorbing elements
    • F24S70/20Details of absorbing elements characterised by absorbing coatings; characterised by surface treatment for increasing absorption
    • F24S70/25Coatings made of metallic material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/022Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the choice of material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/285Feeding the extrusion material to the extruder
    • B29C48/29Feeding the extrusion material to the extruder in liquid form
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/285Feeding the extrusion material to the extruder
    • B29C48/295Feeding the extrusion material to the extruder in gaseous form
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2023/00Use of polyalkenes or derivatives thereof as moulding material
    • B29K2023/04Polymers of ethylene
    • B29K2023/06PE, i.e. polyethylene
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2023/00Use of polyalkenes or derivatives thereof as moulding material
    • B29K2023/10Polymers of propylene
    • B29K2023/12PP, i.e. polypropylene
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2025/00Use of polymers of vinyl-aromatic compounds or derivatives thereof as moulding material
    • B29K2025/04Polymers of styrene
    • B29K2025/06PS, i.e. polystyrene
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2033/00Use of polymers of unsaturated acids or derivatives thereof as moulding material
    • B29K2033/04Polymers of esters
    • B29K2033/12Polymers of methacrylic acid esters, e.g. PMMA, i.e. polymethylmethacrylate
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2067/00Use of polyesters or derivatives thereof, as moulding material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2067/00Use of polyesters or derivatives thereof, as moulding material
    • B29K2067/003PET, i.e. poylethylene terephthalate
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2069/00Use of PC, i.e. polycarbonates or derivatives thereof, as moulding material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2077/00Use of PA, i.e. polyamides, e.g. polyesteramides or derivatives thereof, as moulding material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2105/00Condition, form or state of moulded material or of the material to be shaped
    • B29K2105/06Condition, form or state of moulded material or of the material to be shaped containing reinforcements, fillers or inserts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2105/00Condition, form or state of moulded material or of the material to be shaped
    • B29K2105/06Condition, form or state of moulded material or of the material to be shaped containing reinforcements, fillers or inserts
    • B29K2105/16Fillers
    • B29K2105/162Nanoparticles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2279/00Use of polymers having nitrogen, with or without oxygen or carbon only, in the main chain not provided for in groups B29K2261/00 - B29K2277/00, as reinforcement
    • B29K2279/08PI, i.e. polyimides or derivatives thereof
    • B29K2279/085Thermoplastic polyimides, e.g. polyesterimides, PEI, i.e. polyetherimides, or polyamideimides; Derivatives thereof
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S10/00Solar heat collectors using working fluids
    • F24S10/70Solar heat collectors using working fluids the working fluids being conveyed through tubular absorbing conduits
    • F24S10/75Solar heat collectors using working fluids the working fluids being conveyed through tubular absorbing conduits with enlarged surfaces, e.g. with protrusions or corrugations
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S80/00Details, accessories or component parts of solar heat collectors not provided for in groups F24S10/00-F24S70/00
    • F24S2080/01Selection of particular materials
    • F24S2080/011Ceramics
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S80/00Details, accessories or component parts of solar heat collectors not provided for in groups F24S10/00-F24S70/00
    • F24S2080/01Selection of particular materials
    • F24S2080/015Plastics
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/40Solar thermal energy, e.g. solar towers
    • Y02E10/44Heat exchange systems

Definitions

  • the invention relates to an absorber for a solar thermal collector.
  • the invention further relates to a solar collector comprising this absorber.
  • the invention also relates to a method for preparing said absorber.
  • the technical field of the invention can be defined generally as that of solar thermal collectors.
  • a solar thermal collector as shown in FIG. 1, comprises as an essential element an absorber (1) in which circulates a heat transfer fluid, such as brine.
  • the absorber (1) is placed in a box or casing (2), generally made of steel, under a transparent cover (3), usually made of glass.
  • the cabinet (2) is usually lined internally by a thermal insulator, usually mineral wool (4).
  • the absorber (1) comprises, as shown in FIGS. 1 and 2, channels (5, 21), of circular section or the like, generally arranged parallel to one another. All of these channels (5, 21) form the central part or body of the absorber (22).
  • the first ends (23) of the channels (21) are connected to a first hollow end piece (24) forming an inlet volume for the coolant and the second ends (25) of the channels (21) are connected to a second hollow end piece (26) forming an outlet volume for the coolant circulating in the channels (5, 21).
  • the absorber (1) constitutes the active part of the thermal sensor.
  • the absorber (1) must have very particular optical properties: it must indeed absorb (6) at most the solar spectrum (7) while limiting the maximum radiation losses that is to say the re-emission of photons (8) induced by the heating of the absorber.
  • the absorption of the solar spectrum by the absorber is a property which is characterized by the absorption coefficient s, which must therefore be as large as possible, while the re-emission of photons is a property which is characterized by the emissivity
  • the emissivity of a material is the ratio between the energy it radiates and that which a black body radiates at the same temperature. It is therefore a measure of the ability of a body to absorb and re ⁇ emit radiant energy.
  • the lowest possible emissivity often determined at 10 ° C., is desired.
  • the energy balance of the sensor takes into account the solar energy (7), the energy absorbed by the absorber (6), the energy re-emitted by irradiation (black body) (8), and the energy reflected by the underside of the cover (9), to finally give the energy lost by the sensor (10).
  • the absorber is provided on its upper surface, generally metallic, with a selective spectral coating (11) which limits the energy re-emitted by irradiation by the absorber.
  • the material used for the absorber and in particular for the tubes, channels, of the absorber (31) which carry the coolant is a good conducting metal.
  • thermal device such as copper or aluminum on which is deposited a selective spectral treatment generally consisting of a stack (32) of two or three layers, or more, to obtain good performance both in terms of the absorption coefficient that emissivity ⁇ 3 ⁇ 4 ⁇
  • These layers are generally cermet layers with different metal contents or with a gradient and an anti-reflective layer.
  • US-A-4, 112, 921 discloses solar thermal collectors in which the use of glass and metal is almost completely eliminated, which in particular reduces the cost and weight of the sensor.
  • the absorber consists of very low thermal conductivity materials such as plastics.
  • US-A-4, 556, 048 discloses solar thermal collectors in which the surface of the polyolefin resin which constitutes the absorber, receives a two-layer treatment for achieving selective absorption of solar radiation.
  • the first layer applied to the surface is mainly made of a thermoplastic acrylic resin, or an alkyd resin, a chlorinated polyolefin resin, an epoxy resin, and a metal powder.
  • This first layer has the effect of reducing the infrared radiation.
  • the second layer which has selective absorption properties of solar radiation is mainly composed of a metal oxide and at least one resin selected from acrylic resins, fluorinated resins, urethane resins, and alkyd resins.
  • CN-A-101158513 describes an absorber and its method of preparation. This absorber comprises circular tubes which are arranged on the same surface and interconnected by fins, a top plate forming a cover and a bottom plate forming a support. A solar energy absorbing layer is provided on the inner wall of the tubes and a reflective layer is provided on the lower plate to increase the number of photons transmitted in the absorber.
  • US-A1-2002 / 0002972 discloses a solar collector comprising a plurality of identical reflective elements, arranged in rows, which concentrate the incident solar radiation on a coolant pipe.
  • the reflective surface is coated with a reflective layer such as a vacuum deposited aluminum layer.
  • the reflective elements may be prepared by molding, in particular in a compression mold of a material comprising hydrated aluminum silicates.
  • US-A-4, 060, 070 discloses the use of a polymeric material such as polypropylene or polyethylene, charged with carbon black to make a solar collector absorber.
  • This absorber comprises a main body which is prepared by extruding the polymer to thereby define a base plate and a plurality of spaced parallel hollow tubes.
  • the plate is attached at each of its ends to an extruded plastic manifold optionally comprising tubular adapters.
  • the tubes and collectors are assembled by heating, for example by induction.
  • the document FR-A-2 498 614 relates to a product for producing a heat exchanger of a solar collector which is constituted by a mixture of ethylene propylene diene monomer (EPDM), carbon black, precipitated silica intended to facilitate extruding the product or other reinforcing mineral filler, an EPDM-compatible plasticizer, a vulcanization system, a coupling agent for silica or mineral filler and EPDM.
  • EPDM ethylene propylene diene monomer
  • carbon black carbon black
  • precipitated silica intended to facilitate extruding the product or other reinforcing mineral filler
  • an EPDM-compatible plasticizer an EPDM-compatible plasticizer
  • a vulcanization system a coupling agent for silica or mineral filler and EPDM.
  • the document WO-A1-01 / 34698 describes an elastomer mixture, in particular based on EPM or EPDM to which a thermally conductive component such as graphite, carbon black, calcium oxide, and a crosslinking agent.
  • This elastomeric mixture is used for the extrusion manufacture of pipes for absorbers and heat exchangers.
  • the document FR-A-2 430 578 relates to a solar collector absorber which is made of a generally transparent or translucent material, which passes at least 50% of the solar radiation.
  • the heat transfer fluid contains a dispersed pigment and / or a dissolved dye capable of absorbing solar energy.
  • US-A-4, 161, 942 relates to a solar energy sensor comprising one or more tubes arranged in a helix on which is fixed a heat transfer coating.
  • the heat transfer coating comprises carbon black and plaster of Paris.
  • US-A-4,376,801 relates to a selective coating for surfaces exposed to solar energy of a solar collector, which comprises an organic compound or a substance having a high molecular weight and a high carbon content, such as oil, oil, fat, or wax, vegetable or animal that is pyrolyzed to give a carbon black pigmented varnish.
  • DE-A1-3228274 relates to a method for producing a selective absorber layer on the surface of a metal solar collector in which carbon black with a particle size of 10 to 300 nm is dispersed in a binder and this dispersion is applied with a suitable solvent on said surface and then dried.
  • the absorbers are traditionally prepared by a method (FIG. 2) of extruding two pieces (27, 28) each forming half of the channel body (22) of the absorber, that is to say the half -absorbers (27, 28) then to assemble them with the other two end pieces (29, 210) in which are defined the end chambers (24, 26) of the absorber, that is to say the hollow chambers in which the channels of the absorber open.
  • the absorber is thus prepared by assembling four parts, namely the two parts (27, 28) which constitute the channel body of the absorber, the part (29) which constitutes the first end part and finally the part ( 210) which constitutes the second end portion. This process is long, complex, expensive, and unreliable.
  • the absorbers obtained by this process have particularly sealing problems especially at the level of the connections between the parts constituting the end portions, and the channel body.
  • the object of the present invention is to provide a solar collector absorber and a method of preparing this absorber, which meet the needs mentioned above.
  • the object of the present invention is also to provide a solar collector absorber and a method of preparing this absorber which do not have the defects, disadvantages, limitations and disadvantages, absorbers and processes for the preparation of absorbers of the prior art. and which solve the problems of the absorbers and methods of the prior art.
  • a solar thermal collector absorber comprising channels each having a first end and a second end, the first ends of the channels opening into a cavity. first end chamber, and the second ends of the channels opening into a second end chamber, wherein said absorber consists of a single extruded part of a solid nanocomposite material comprising a polymer matrix in which are incorporated nano-objects and / or nanostructures.
  • the polymer of the matrix may be chosen from thermoplastic polymers such as polyolefins such as polyethylenes and polypropylenes; polymers and copolymers of cyclic olefins; polystyrenes; polyamides; polyesters such as polycarbonates, poly ((meth) acrylates), poly (ethylene terephthalate) s or PETs, poly (naphthalate ethylene) s; and their mixtures.
  • thermoplastic polymers such as polyolefins such as polyethylenes and polypropylenes; polymers and copolymers of cyclic olefins; polystyrenes; polyamides; polyesters such as polycarbonates, poly ((meth) acrylates), poly (ethylene terephthalate) s or PETs, poly (naphthalate ethylene) s; and their mixtures.
  • the content of nano-objects and / or nanostructures may be less than or equal to 5% by weight, preferably less than or equal to 1 ⁇ 6 by weight, more preferably 10 ppm to 0.5% by weight. of the mass of the nanocomposite material.
  • the nano-objects can be chosen from nanotubes, nanowires, nanoparticles, nanocrystals, and mixtures thereof.
  • the nano-objects and / or nanostructures can be functionalized, in particular chemically.
  • the nano-objects and / or nanostructures are chosen from nano-objects and / or nanostructures which confer thermal and / or electrical and / or magnetic and / or optical properties on the nanocomposite material; and among the nano-objects and / or nanostructures that improve the thermal and / or electrical and / or magnetic and / or optical properties of the nanocomposite material.
  • the material constituting the nano-objects and / or nanostructures may be chosen from carbon; metals such as gold, copper, manganese or aluminum; metal alloys such as alloys of copper, gold, manganese or aluminum; metal oxides such as rare earth oxides possibly doped; organic polymers; and materials comprising a plurality of materials from the aforesaid materials.
  • the nano-objects may be carbon nanotubes; nanoparticles of metals such as copper, gold, manganese or aluminum; nanoparticles of metal alloys such as alloys of copper, gold, manganese or aluminum; nanoparticles of metal oxides; magnetic nanoparticles such as nanoparticles of AgMn, Fe 2 O 3 or Fe 3 O 4 ; or a mixture thereof.
  • carbon nanotubes and magnetic nanoparticles are incorporated in the polymer matrix.
  • the nanostructures may be core-filament nanostructures, in particular core-filament nanostructures with a core consisting of alumina and filaments consisting of carbon nanotubes.
  • Nanostructures of this type impart good thermal properties to the material, i.e. the polymer matrix, in which they are dispersed. In other words, nanostructures of this type provide a significant improvement in the thermal properties of the material for a minimal addition of nanostructures.
  • the nano-objects and / or nanostructures can be distributed homogeneously in the polymer matrix.
  • the upper face of the absorber which may be exposed to solar radiation, is provided with a coating made of a material transparent to radiation having a wavelength in the wavelength range of the solar spectrum and a reflectivity to radiation having a wavelength greater than the wavelength range of the solar spectrum.
  • said transparent material may be chosen from transparent conductive oxides or OTC, such as indium tin oxide or ITO, and zinc oxide doped with aluminum or ZnO: Al.
  • said coating made of a transparent material comprises a single layer, preferably a single layer of zinc oxide doped with aluminum or ZnO: Al.
  • the absorber according to the invention does not have the drawbacks of the absorbers of the prior art and solves the problems of the absorbers of the prior art.
  • the absorber according to the invention differs fundamentally from the absorbers of the prior art first of all in that it consists of a single extruded part.
  • the absorber according to the invention consists of a single piece extruded in a single material, and not by several parts assembled for example by welding, the absorber according to the invention has no connection, joined between the parts.
  • the absorber according to the invention is therefore extremely simple, extremely reliable, and in particular does not exhibit the sealing problems encountered with the absorbers of the prior art constituted by the assembly of several parts.
  • the absorber according to the invention is also of a lower cost.
  • the absorber according to the invention is also fundamentally distinguished from the absorbers of the prior art in that it consists of a specific material, namely a solid nanocomposite material comprising a polymer matrix in which nano-objects are incorporated.
  • Such a nanocomposite material is totally compatible with the extrusion process and it makes it possible to impart to the absorber all the desired properties, for example thermal, mechanical, magnetic or other properties.
  • the choice of the polymer of the matrix and / or nano-objects makes it possible to easily and specifically adjust the properties of the nanocomposite material with a view to its implementation in a solar thermal collector absorber.
  • the nanocomposite material used may have as desired all the desired specific properties, such as improved magnetic and thermal properties, particularly with respect to a plastic charged with carbon black while remaining compatible with the extrusion process.
  • the absorber according to the invention is generally provided, on its upper face, capable of being exposed to solar radiation with a coating made of a material transparent to radiation having a wavelength in the range. wavelength of the solar spectrum and a reflectivity, preferably a high reflectivity, to the radiation having a wavelength greater than the range of wavelength of the solar spectrum.
  • this coating comprises only one layer of a transparent material instead of a stack of layers for the absorbers of the prior art manufactured for example copper.
  • the invention further relates to a solar thermal collector comprising an absorber according to the invention as described above and a cover transparent to solar radiation on said absorber (on the side exposed to solar radiation).
  • the sensor according to the invention inherently has all the advantageous properties, already listed above, of the absorber according to the invention which constitutes the fundamental element of this sensor.
  • the transparent cover of the sensor according to the invention may be coated on its underside (that is to say the face facing the absorber) with a coating made of a material transparent to radiation having a length of wave in the wavelength range of the solar spectrum and reflectivity to radiation having a wavelength greater than the wavelength range of the solar spectrum.
  • said transparent material may be chosen from transparent conductive oxides or OTC, such as indium tin oxide or ITO, and zinc oxide doped with aluminum or ZnO: Al.
  • said coating made of a transparent material comprises a single layer, preferably a single layer of zinc oxide doped with aluminum or ZnO: Al.
  • the solar thermal collector according to the invention inherently possesses all the advantageous properties due to the absorber.
  • the sensor according to the invention when it comprises, both on the lower face of its transparent cover and on the upper face of the absorber, a coating made of a material transparent to radiation having a wavelength in the range of The wavelength of the solar spectrum and a reflectivity to the radiation having a wavelength greater than the wavelength range of the solar spectrum, sees its thermal and optical properties, and especially its solar spectrum absorption capabilities, optimized. .
  • the invention also relates to a process for preparing the absorber as described above, in which the extrusion of a melt of the solid nanocomposite material is continuously carried out, and is formed successively and in a single step. the first end chamber, the channels, and the second end chamber of the absorber.
  • the method according to the invention eliminates in particular the most expensive steps of the processes of the prior art such as thermoforming and welding.
  • the first end chamber, the channels and the second end chamber of the absorber can be formed using a single extrusion head or die.
  • absorbers can be formed in series and continuously.
  • a fluid can be injected into the molten nanocomposite material in order to define the cavities, channels, and chambers of the absorber.
  • the injected fluid may be selected from gases such as air, argon, nitrogen, and mixtures thereof; and liquids such as oils, for example silicone, mineral, synthetic, semi-synthetic oils, and mixtures thereof.
  • the extrusion after the extrusion is deposited, for example by a physical vapor deposition process ("PVD") on the upper face of the absorber or absorbers, may be exposed to radiation solar, a coating in one radiation - transparent material having a wavelength in the wavelength range of the solar spectrum and a reflectivity to radiation having a wavelength greater than the wavelength range of the solar spectrum.
  • PVD physical vapor deposition process
  • this coating may be in a transparent conductive oxide, such as indium tin oxide (ITO) or zinc oxide doped with aluminum or ZnO: Al.
  • ITO indium tin oxide
  • ZnO zinc oxide doped with aluminum or ZnO: Al.
  • the coating made of a transparent material comprises a single layer, preferably a single layer of zinc oxide doped with aluminum or ZnO: Al.
  • the method according to the invention comprises a final step during which the heat transfer fluid inlets and outlets are drilled in the absorber or the absorbers, then the fluid is drained, and finally connections are welded to said inlets. and heat transfer fluid outlets.
  • Figure 1 is a schematic vertical sectional view of a solar thermal collector.
  • Figure 2 is a schematic view of a solar thermal collector absorber of the prior art.
  • Figure 3 is a schematic vertical sectional view of a tube of a absorber of the prior art provided on its upper face with a stack of layers forming a selective spectral coating.
  • FIG. 4 is a schematic view of a solar thermal collector absorber according to the invention.
  • FIG. 5 is a graph which represents the absorption spectrum of a nanocomposite material comprising a polyamide matrix in which carbon nanotubes are dispersed at a rate of 0.1% by weight.
  • FIG. 6 is a schematic view of a specific extrusion head or die for implementing the method according to the invention for preparing an absorber according to the invention.
  • Figure 7 is a cross-sectional view of the cylindrical part of the second zone of the extrusion head or die of Figure 6.
  • Figure 8 shows schematically for each of the positions of the inner cylinder of the cylindrical part of Figure 7 the corresponding extruded profiles obtained.
  • Figure 9 shows the continuous and series extrusion of five absorbers according to the invention.
  • Figure 10 is a graph that gives the total reflectivity of an aluminum doped zinc oxide coating.
  • the abscissa is the wavelength (in microns) and the ordinate is the total reflectivity.
  • Figure 11 is a graph which represents the reflectance as a function of the wavelength of light (in ym).
  • Reflectance is the ratio of reflected and incident solar energy.
  • the solar energy is absorbed by the absorber material, beyond which there is a re-emission caused by the heating of the material.
  • Figure 12 is a graph which shows in continuous line the solar spectrum seen as a distribution of the energy density as a function of the wavelength, and in broken line the distribution of the energy density according to the length of the re-emission of the absorber caused by its heating at different temperatures, namely 100 ° C, 200 ° C and 300 ° C.
  • the absorber according to the invention as shown in FIG. 4 has a structure similar to that of a conventional absorber such as has already been described above and as shown in particular in FIG. the fundamental difference, however, that the absorber according to the invention is formed by a single piece, element, extruded block (41) of a solid nanocomposite material comprising a polymer matrix in which nano-objects are incorporated.
  • This material can also be called simply "polymer-nanocomposite”.
  • the absorber according to the invention like the conventional absorbers, comprises channels (42) each having a first end (43) and a second end (44), the first ends (43) of the channels opening to the interior of a first end chamber (45) and the second ends (44) of channels opening into a second end chamber (46).
  • These channels (42) and these first and second end chambers (45, 46) are defined in one and the same extruded part (41).
  • the absorber according to the invention consists entirely of a single element extruded in a nanocomposite material (41) which integrates the channels (42) and the zones, volumes, chambers, reserve input ( 45) and outlet (46) of heat transfer fluid.
  • the shapes of this element (41) are obtained in a single step, by extrusion, without using other thermoforming and welding steps.
  • the channels (42) may have a circular cross section with a diameter generally of 1 to 7 mm, or a polygonal cross section, for example square or rectangular.
  • the length of the channels (42) is generally between 0.5 and 4 m.
  • the channels (42) are generally arranged parallel to each other with a spacing between the channels, from 0.1 to 3 mm.
  • the channels (42) are generally 4 to 20, for example 8 as shown in FIG. 4.
  • the thickness of the absorber is generally 0.5 to 1.5 mm and the width of the absorber is generally 0.1 to 1 m.
  • the absorber according to the invention is made of a nanocomposite material with a polymer matrix.
  • nanocomposite materials with a polymer matrix are multiphase materials, in particular two-phase materials, which comprise a polymer matrix forming a first phase in which nano-objects or nanostructures such as nanoparticles forming at least a second phase are dispersed.
  • reinforcement phase or charge generally denotes reinforcement phase or charge.
  • the nanocomposites are so called because at least one of the dimensions of the objects such as particles forming the reinforcing phase or charge is at the nanoscale, namely generally less than or equal to 100 nm, for example from one nanometer to one or a few tens of nanometers, for example 100 nm.
  • these objects and particles are called nano-objects or nanoparticles.
  • the nanocomposite materials allow, generally for relatively low charge rates, namely less than 10% by weight, and even less than 1% by weight, to obtain a significant improvement in the properties of the material, whether it be mechanical, electrical, thermal, magnetic, optical or other properties.
  • the polymer of the matrix of the nanocomposite material which constitutes the absorber according to the invention is generally chosen from thermoplastic polymers.
  • thermoplastic polymer There is no limitation as to the nature of this thermoplastic polymer.
  • polyolefins such as polyethylenes, polypropylenes, polymers and copolymers of cyclic olefins; polystyrenes; polyamides; polyesters such as polycarbonates, poly ((meth) acrylates), poly (ethylene terephthalate) s or PETs, poly (ethylene naphthalate) s; and their mixtures.
  • polyolefins such as polyethylenes, polypropylenes, polymers and copolymers of cyclic olefins; polystyrenes; polyamides; polyesters such as polycarbonates, poly ((meth) acrylates), poly (ethylene terephthalate) s or PETs, poly (ethylene naphthalate) s; and their mixtures.
  • Particularly preferred polymers are polyamides, optionally filled with glass fibers to provide mechanical reinforcement and avoid creep.
  • Glass fibers have dimensions much larger than nano-objects or nanostructures and should not be confused with them.
  • nano-objects is generally meant any object that is alone or related to a nanostructure of which at least one dimension is less than or equal to 100 nm, for example, from one nanometer to one or a few tens of nanometers and up to 100 nm.
  • nano-objects can be, for example, nanoparticles, nanowires, nanocrystals, nanotubes, for example single-walled carbon nanotubes (CNTs) ("SWCNT” or “Single Walled Carbon Nanotube” in English) or multiwall (“MWCNT”). or “Multi Walled Carbon Nanotube” in English), or a mixture thereof.
  • CNTs single-walled carbon nanotubes
  • MWCNT multiwall
  • Multi Walled Carbon Nanotube in English
  • nanostructure is generally meant an architecture consisting of an assembly of nano-objects that are organized with a functional logic and that are structured in a space ranging from cubic nanometer to cubic micrometer.
  • the nano-objects or nanostructures are generally chosen from nano-objects and nanostructures that improve the thermal, and / or mechanical and / or magnetic and / or electrical and / or optical properties of the nanocomposite material. solid and / or confer such properties to the solid nanocomposite material.
  • the material constituting these nano-objects or nanostructures is not particularly limited and may be chosen from carbon, metal metals and alloys, metal oxides, organic polymers; and mixtures thereof.
  • Preferred nano-objects are in particular carbon nanotubes ("CNT” or “Carbon nanotubes” in the English language) whether single-walled carbon nanotubes ("SWCNT” or “Single Walled Carbon Nanotubes” in English) or multiwall (“MWCNT” or “Multi Walled Carbon Nanotubes” in English), and nanoparticles of metals and alloys.
  • CNT carbon nanotubes
  • SWCNT single-walled carbon nanotubes
  • MWCNT Multi Walled Carbon Nanotubes
  • Nanostructures can be constructions, assemblies whose bricks are nano-objects.
  • the nanostructures may for example be carbon nanotubes "decorated” with platinum nanoparticles, copper, gold, iron; Silicon nanowires “decorated” with gold, nickel, platinum, iron, etc.
  • the ZnO-Ni nanostructure which is a three-dimensional structure of ZnO terminated by nickel nanospheres.
  • the core-filament nanostructures in particular the core-filament nanostructures with a core consisting of alumina, more precisely by a particle of a nanoparticles. alumina, and filaments consisting of carbon nanotubes.
  • Nanostructures of this type impart good thermal properties to the material, i.e. the polymer matrix, in which they are dispersed. In other words, nanostructures of this type provide a significant improvement in the thermal properties of the material for a minimal addition of nanostructures.
  • the nanocomposite material may contain only one type of nano-object or nanostructure or it may contain at the same time several types of nano-objects and / or nanostructures which may differ in their shape and / or the material constituting them and / or their size. In the case where several types of nano-objects or nanostructures are present, they can each confer a property to the material and / or improve a property of this material.
  • the material can include nano-objects such as mineral and / or organic fillers such as carbon nanotubes to improve its thermomechanical properties, and other nano-objects that make the material magnetic.
  • nano-objects such as mineral and / or organic fillers such as carbon nanotubes to improve its thermomechanical properties, and other nano-objects that make the material magnetic.
  • the composite material may contain both carbon nanotubes ("NTC") and magnetic nanoparticles, for example particles of Fe 2 O 3 , Fe 3 O 4 , AgMn, in the proportions indicated above, by example less than or equal to 1% by weight.
  • NTC carbon nanotubes
  • magnetic nanoparticles for example particles of Fe 2 O 3 , Fe 3 O 4 , AgMn, in the proportions indicated above, by example less than or equal to 1% by weight.
  • the content of nano-objects and / or nanostructures may be less than or equal to 10% by weight, preferably less than or equal to 5% by weight.
  • nano-objects and / or nanostructures are distributed homogeneously in the nanocomposite material.
  • a nanocomposite material with a polymer matrix that is particularly suitable for producing the absorber according to the invention is described in the documents FR-A1-2 934 600 and WO-A1-2010 / 012813 at the description of which we can refer. These documents describe a nanocomposite material in which nano-objects and / or nanostructures are distributed homogeneously, especially at low concentrations as mentioned above. .
  • the quality of the dispersion of the nano-objects and / or nanostructures in the matrix is generally essential and it is therefore recommended to use a high-performance dispersion method such as that described. in the aforementioned documents FR-A1-2 934 600 and WO-Al-2010/012813.
  • agglomerates or capsules are prepared in which nano-objects and / or nanostructures coated with macromolecules of polysaccharides are homogeneously distributed, said macromolecules forming in at least a part of each of them.
  • agglomerates a gel by crosslinking with positive ions.
  • a nanocomposite material is then prepared by incorporating said agglomerates into a polymer matrix. For this purpose, it is possible, for example, to mechanically mix the prepared agglomerates with the polymer, then to dry the mixture and then to treat it by a plastics processing process such as extrusion.
  • extrusion consists in merging n-materials and mixing them along a screw or a twin-screw with a temperature profile and an optimized rotation speed to obtain an optimal mix.
  • a die that shapes the mixture before complete solidification.
  • the shape can be a ring, a film or have any type of profile.
  • Incorporation of nano-objects or nanostructures in the polymer matrix can of course be done by a method, such as a plastics process, in which the nano-objects or nanostructures are not in the form of agglomerates.
  • the preferred homogeneous distribution of the nano-objects, nanostructures in the material of the absorber according to the invention guarantees the improvement of the properties (mechanical, electrical, thermal, magnetic, optical, etc.) of this material because of the nano -objects even at lower concentrations.
  • a nanocomposite comprising a polyamide matrix in which are homogeneously dispersed (process described in documents FR-A1-2 934 600 and WO-A1-2010 / 012813) carbon nanotubes at a rate of 0.1% by weight.
  • the mass has a much higher thermal conductivity than a commercially available polymer (for example, a conductivity 3 to 5 times greater) and, on the other hand, a maximum absorption of the solar spectrum. This absorption is about 96% for the nanocomposite as shown in FIG. 5, whereas it is only a few percent for the polyamide alone without carbon nanotubes.
  • the absorber according to the invention is prepared in a single step by an extrusion process. According to the invention, it is advantageous to use an extruder of a type already mentioned above, which is fed with the only nanocomposite material already prepared, or which is fed on the one hand with nano-objects or nanostructures. for example in the form of agglomerates, and secondly with the polymer.
  • a specific extrusion head or die which allows the melted nanocomposite stream to be shaped before it solidifies and to prepare in a single step, and continuously, the various parts of the absorber.
  • the extrusion head then successively comprises three zones (63, 64, 65) in the direction of flow of the nanocomposite material flow and outlet means (66) for collecting the extruded absorbers.
  • the first zone (63) may be defined as a flow zone, laminar flow, of the inlet flow of molten nanocomposite material;
  • the second zone (64) can be defined as a zone of separation of the flow and possibly of injection of a fluid; and
  • the third zone (65) can be defined as a flow convergence zone and final shaping and shaping of the absorber or absorbers.
  • the first zone or laminar flow zone (63) generates a laminar flow of the sensor width, for example about 1 m, and a thickness, for example 15 mm, which is greater than the final thickness of the sensor. the absorber.
  • This first zone (63) generally has walls (67) which diverge from said inlet fitting (61) to subsequently form a duct (68) of the desired width and thickness indicated above.
  • This duct (68) is generally from 5 cm to 15 cm long, sufficient to establish a laminar flow.
  • the laminar flow thus formed then enters the second zone (64) or separation zone of the flow and possible injection of a fluid.
  • the second zone (64) comprises a cylindrical piece (69) arranged along the width of the duct, channel (68) of the extrusion head, whose main axis is substantially perpendicular to the direction of the laminar flow in the channel, leads.
  • This cylindrical piece (69) passes through the side walls (610, 611) of said channel, leads (68) and extends beyond side walls (610, 611) of said channel (68), the bases (612, 613) of said cylindrical piece (69) are therefore located outside said channel, beyond the side walls (610, 611) of this one.
  • (69) is placed transversely in the channel, in which flows the flow, laminar flow of molten nanocomposite material.
  • This cylindrical piece (69) is arranged to separate the flow, laminar flow into two equal parts which flows respectively above and below the cylindrical piece (69), respectively between the upper wall of the channel, leads and the upper wall of the cylindrical piece, and between the bottom wall of the channel and the cylindrical piece.
  • the cylindrical piece (69) comprises two concentric hollow cylinders (71, 72: see Figure 7). With the aid of these hollow and concentric cylinders, it is possible to inject a fluid into the stream of molten nanocomposite material in order to define the hollow spaces of the absorber and possibly to provide the internal surfaces of the absorber. a coating giving it interesting properties.
  • the third zone (65) is a convergence zone of the flow of nanocomposite material and of the final dimensions and shapes of the absorber, namely generally a width of 1 m and a thickness of 7 mm.
  • the section of the channel, led, in this third zone thus decreases progressively from the second zone (64) to the output means (66), this reduction in section being essentially due to a decrease in the thickness of the channel, leads.
  • the cylindrical piece disposed in the second zone of the head, extrusion die is shown in Figure 7, it comprises two concentric cylinders, namely a first fixed outer cylinder (71) and a second inner cylinder (72) rotatable .
  • the outer side wall (73) of the first outer cylinder or cylinder (71) is the outer wall of the cylindrical part.
  • the inner side wall (74) of the outer cylinder (71) is in contact with the outer side wall (75) of the inner cylinder (72), and the inner side wall (76) of the inner cylinder (72) defines a channel (77). ) in the center of the cylindrical piece.
  • the base (613) of the two cylinders can be pierced with a through orifice which can be connected to a supply pipe in a fluid ( 614).
  • the outer cylinder (71) is fixed and its side wall is pierced by a window (78) on the side of the cylindrical piece (69) opposite the first zone (63).
  • This window (78) is generally in the form of a rectangle whose length is arranged in the direction of the width of the duct, in which flows the flow of molten nanocomposite material.
  • This window (78) generally corresponds to 80 cm and its width or height to 5 mm.
  • the inner cylinder (72) is rotatable within the outer cylinder (71).
  • This rotational movement can be produced by means of a motor (615), which drives in rotation a shaft integral with the base (612) of the inner cylinder (72) which is not pierced by the connected through orifice to the fluid supply line (614).
  • This shaft is generally located along the main axis of the cylindrical part.
  • the side wall of the inner cylinder (72) is pierced by an orifice, a window or a series of several orifices which are, at each of these positions, arranged longitudinally in the direction of the axis of the cylindrical piece which merges with the main axis of the inner (72) and outer (71) cylinders.
  • apertures, windows or series of orifices may be provided as described in FIG. 7 respectively in three positions (712, 713, 714) spaced apart around the circumference of the inner cylinder.
  • Position 3 (713) is spaced 90 ° from position 2 (712) on the circumference of the inner cylinder in a clockwise direction
  • position 4 (714) is spaced 90 ° from the position 3 (713) on the circumference of the inner cylinder in a clockwise direction.
  • Other spacing angles could be provided.
  • One or more positions 1 may be defined on the circumference of the inner cylinder in which the wall of the cylinder is solid and is not pierced with orifices, windows or series of orifices. In this or these position (s) 1, the passage of a fluid in the channel in the center of the cylindrical part is prohibited.
  • This position 1 may be a position (715) spaced 90 ° from position 4 (714) on the circumference of the inner cylinder in a clockwise direction.
  • the positions 1, 2, 3, and 4 are therefore evenly distributed with 90 ° spacings on the circumference of the inner cylinder (72).
  • the number of positions at which windows, orifices or series of orifices are made in the wall of the inner cylinder (72) is generally 3, for an absorber according to the invention, as shown in FIG. 7, but this number could be different and go for example from 3 to 9 for other configurations of the absorber.
  • windows or series of orifices (79, 710, 711) provided at the various positions 2, 3, 4 (712, 713, 714) in the side wall of the inner cylinder (72) are in coincidence with the window (78) provided in the side wall of the outer cylinder (71), the passage of the fluid in the channel in the center of the cylindrical part by said orifices (79, 710, 711) and then by said window (78) is rendered possible and the fluid can be injected into the stream, flow, flow of molten nanocomposite material in the direction of this flow.
  • the injected fluid may be selected from gases such as air, argon, nitrogen, and mixtures thereof; and liquids such as oils, for example silicone, mineral, synthetic, semi-synthetic oils, and mixtures thereof.
  • the orifices, windows or series of orifices provided in each of said positions 2, 3, 4 are preferably provided in such a way that each of these orifices, windows or series of orifices has a profile allowing by injecting a fluid into the stream, flow, of melted nanocomposite material the formation of cavities corresponding to the different hollow volumes of the absorber that it is desired to prepare.
  • the inner cylinder (72) be pierced by a window (79, 711) shaped elongated rectangle whose length generally corresponds to the internal width of the end chambers of the absorber and whose width or height corresponds to the internal height of the first and second end chambers.
  • the inner cylinder is pierced by holes (710) arranged in a row, these orifices having a shape, for example the shape of a square, and a dimension corresponding to the shape and dimension internal channels of the absorber.
  • the extrusion of a complete absorber generally amounts to performing a complete revolution of the inner cylinder (72) in a counter-clockwise direction.
  • Figure 9 thus shows the continuous and series extrusion of five absorbers.
  • the absorber (s) extruded (s), and before the cutting step can deposit a selective coating (47: see Figure 4)) on the upper face of the absorber or absorbers which is the face that will be exposed to solar radiation.
  • This coating is made of a radiation - transparent material having a wavelength in the wavelength range of the solar spectrum and a reflectivity to radiation having a wavelength greater than the wavelength range of the solar spectrum.
  • this coating comprises only a single layer of a transparent material instead of a stack of layers for the absorbers of the prior art made for example of copper (FIG. 3), which again leads to significant gains in cost and time.
  • This coating may be, for example, a coating of a conventionally used ITO substitute, which is a zinc oxide doped with aluminum (ZnO: Al).
  • this coating comprises only one layer of ZnO: Al.
  • Such a coating can be deposited by a physical vapor deposition process ("Physical Vapor Deposition” or "PVD” in English).
  • the absorber according to the invention is integrated in a solar thermal collector which is substantially similar to that of FIG.
  • Such a solar thermal collector comprises a transparent cover.
  • This transparent cover consists of a transparent thermoplastic polymer which is generally chosen from polyolefins: polymers and copolymers of cyclic olefins ("COP", “COC”);polystyrenes; polyesters such as polycarbonates (“PC”), poly ((meth) acrylates) such as poly (methyl methacrylate) (“PMMA”), poly (ethylene terephthalate) s (“PET”), poly (ethylene naphthalate) s (“PEN”); and their mixtures.
  • polyolefins polymers and copolymers of cyclic olefins ("COP”, “COC”);polystyrenes; polyesters such as polycarbonates (“PC”), poly ((meth) acrylates) such as poly (methyl methacrylate) (“PMMA”), poly (ethylene terephthalate) s (“PET”), poly (ethylene naphthalate) s (“PEN”); and their mixtures.
  • PC polycarbonates
  • PMMA poly
  • the transparent cover is usually prepared by extrusion or injection.
  • the underside of the transparent plate cover is generally coated with a transparent conductive oxide ("OTC"), which has a good transparency on all the wavelengths of the solar spectrum, namely typically between 300 nm and about 1300-1500 nm, and which also has significant reflectivity for wavelengths greater than 1300-1500 nm in order to avoid energy losses due to the phenomenon of radiation due to the heating of the sensor.
  • OTC transparent conductive oxide
  • the ideal reflectivity spectrum for coating the cover of a solar thermal collector is shown in Figures 11 and 12.
  • This wavelength (cut-off wavelength) (FIGS. 11 and 12) must be adjustable according to the equilibrium temperature of the sensor which will impose the minimum wavelength from which the sensor returns. emits by radiation.
  • the cut-off wavelength can be adjusted by adjusting the deposition conditions that will modify the optical characteristics of the OTC layer.
  • the coating currently used is based on indium tin oxide (ITO); however, other less expensive materials may be employed, such as, for example, aluminum-doped zinc oxide (ZnO: Al) whose reflectivity spectrum is shown in Figure 10.
  • ITO indium tin oxide
  • ZnO aluminum-doped zinc oxide
  • the upper face of the transparent cover may optionally receive an anti-reflection and / or anti-UV coating which is generally also deposited by a physical vapor deposition process.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Thermal Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • General Engineering & Computer Science (AREA)
  • Nanotechnology (AREA)
  • Manufacturing & Machinery (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Composite Materials (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)
  • Extrusion Moulding Of Plastics Or The Like (AREA)

Abstract

Absorbeur de capteur solaire thermique comprenant des canaux avec chacun une première extrémité et une seconde extrémité, les premières extrémités des canaux débouchant à l'intérieur d'une première chambre d'extrémité,et les secondes extrémités des canaux débouchant à l'intérieur d'une seconde chambre d'extrémité, dans lequel ledit absorbeur est constitué par une seule pièce extrudée d'un matériau nanocomposite solide comprenant une matrice polymère dans laquelle sont incorporés des nano-objets et/ou des nanostructures. Capteur solaire thermique comprenant ledit absorbeur et une couverture transparente au rayonnement solaire sur ledit absorbeur. Procédé de préparation dudit absorbeur.

Description

ABSORBEUR DE CAPTEUR SOLAIRE THERMIQUE, CAPTEUR LE COMPRENANT, ET PROCÉDÉ POUR SA PRÉPARATION.
DESCRIPTION
DOMAINE TECHNIQUE
L' invention concerne un absorbeur pour capteur solaire thermique.
L'invention concerne, en outre, un capteur solaire comprenant cet absorbeur.
L' invention a trait également à un procédé de préparation dudit absorbeur.
Le domaine technique de l'invention peut être défini de manière générale comme celui des capteurs solaires thermiques.
ÉTAT DE LA TECHNIQUE ANTÉRIEURE
Un capteur solaire thermique comme celui représenté sur la Figure 1, comprend en tant qu'élément essentiel un absorbeur (1) dans lequel circule un fluide caloporteur, tel que de l'eau glycolée. L' absorbeur (1) est placé dans un coffret ou boîtier (2), généralement en acier, sous une couverture transparente (3), généralement en verre.
Le coffret (2) est généralement doublé intérieurement par un isolant thermique, généralement de la laine minérale (4) .
L' absorbeur (1) comprend comme cela est représenté sur les Figures 1 et 2, des canaux (5, 21), de section circulaire ou autre, généralement disposés parallèlement les uns aux autres. L'ensemble de ces canaux (5, 21) forme la partie centrale ou corps de l'absorbeur (22). Les premières extrémités (23) des canaux (21) sont reliées à une première pièce d'extrémité creuse (24) formant un volume d'entrée pour le fluide caloporteur et les secondes extrémités (25) des canaux (21) sont reliées à une seconde pièce d'extrémité creuse (26) formant un volume de sortie pour le fluide caloporteur qui circule dans les canaux (5, 21) .
L'absorbeur (1) constitue la partie active du capteur thermique.
L'absorbeur (1) doit présenter des propriétés optiques très particulières : il doit en effet absorber (6) au maximum le spectre solaire (7) tout en limitant au maximum les pertes par rayonnement c'est-à-dire la ré-émission de photons (8) induite par 1 ' échauffement de l'absorbeur.
L'absorption du spectre solaire par l'absorbeur est une propriété qui est caractérisée par le coefficient d'absorption s, qui doit donc être le plus grand possible, tandis que la ré-émission des photons est une propriété qui est caractérisée par l'émissivité
L'émissivité d'un matériau est le rapport entre l'énergie qu'il rayonne et celle qu'un corps noir rayonnerait à la même température. C'est donc une mesure de la capacité d'un corps à absorber et à ré¬ émettre l'énergie rayonnée . Le corps noir absorbe et ré-émet toute l'énergie (ε=1) . Dans le cas de l'absorbeur, on souhaite une émissivité la plus faible possible, souvent déterminée à 10°C. Globalement, le bilan énergétique du capteur prend en compte l'énergie solaire (7), l'énergie absorbée par l'absorbeur (6), l'énergie ré-émise par irradiation (corps noir) (8), et l'énergie réfléchie par la face inférieure de la couverture ( 9) , pour donner finalement l'énergie perdue par le capteur (10) .
Afin de doter l'absorbeur de ces propriétés optiques, l'absorbeur est pourvu sur sa surface supérieure, généralement métallique, d'un revêtement spectral sélectif (11) qui limite l'énergie ré-émise par irradiation par l'absorbeur.
Dans les capteurs les plus courants, et comme cela est montré sur la Figure 3, le matériau utilisé pour l'absorbeur et notamment pour les tubes, canaux, de l'absorbeur (31) qui transportent le fluide caloporteur, est un métal bon conducteur thermique tel que le cuivre ou l'aluminium sur lequel on dépose un traitement spectral sélectif généralement constitué d'un empilement (32) de deux ou trois couches, voire plus, pour obtenir de bonnes performances tant en ce qui concerne le coefficient d'absorption que l'émissivité ε¾·
Ces couches sont généralement des couches en cermet avec différentes teneurs en métal ou avec un gradient et une couche anti-reflet.
Cette même structure est utilisée dans le cas de substrats en plastique qui ne présentent pas d'absorption intrinsèque.
Des capteurs solaires thermiques associant une base en plastique et un ou plusieurs traitements de surface ont fait l'objet au cours des 25 dernières années de plusieurs brevets et demandes de brevet.
Dans la plupart de ces brevets et demandes de brevets est décrit un absorbeur en plastique revêtu d'une ou de plusieurs couches spécifiques qui permettent d'assurer la sélectivité spectrale.
Le document US-A-4 , 112 , 921 décrit des capteurs solaires thermiques dans lesquels l'utilisation de verre et de métal est presque totalement éliminée, ce qui permet notamment de réduire le coût et le poids du capteur. L' absorbeur est constitué par des matériaux de conductivité thermique très faible tels que des matières plastiques.
Le document US-A-4, 556, 048 décrit des capteurs solaires thermiques dans lesquels la surface de la résine de polyoléfine qui constitue l' absorbeur, reçoit un traitement en deux couches permettant de réaliser une absorption sélective du rayonnement solaire. La première couche appliquée sur la surface est principalement constituée d'une résine acrylique thermoplastique, ou d'une résine alkyde, d'une résine polyoléfine chlorée, d'une résine époxy, et d'une poudre métallique.
Cette première couche a pour effet de réduire le rayonnement infrarouge.
La seconde couche qui a des propriétés d' absorption sélective du rayonnement solaire est principalement constituée par un oxyde métallique et au moins une résine choisie parmi les résines acryliques, les résines fluorées, le résines uréthanes, et les résines alkydes. Le document CN-A-101158513 décrit un absorbeur et son procédé de préparation. Cet absorbeur comprend des tubes circulaires qui sont disposés sur la même surface et reliés entre eux par des ailettes, une plaque supérieure formant couvercle et une plaque inférieure formant support. Une couche absorbant l'énergie solaire est disposée sur la paroi interne des tubes et une couche réfléchissante est prévue sur la plaque inférieure pour accroître le nombre de photons transmis dans l' absorbeur.
Le document US-A1-2002/0002972 décrit un capteur solaire comprenant plusieurs éléments réfléchissants identiques, disposés en rangées, qui concentrent le rayonnement solaire incident sur une canalisation de fluide caloporteur. La surface réfléchissante est revêtue d'une couche réfléchissante telle qu'une couche d'aluminium déposée sous vide.
Les éléments réfléchissants peuvent être préparés par moulage, notamment dans un moule à compression d'un matériau comprenant des silicates hydratés d'aluminium.
Le document US-A-4 , 060 , 070 décrit l'utilisation d'un matériau polymère tel que le polypropylène ou le polyéthylène, chargé en noir de carbone pour fabriquer un absorbeur de capteur solaire.
Cet absorbeur comporte un corps principal qui est préparé par extrusion du polymère pour définir ainsi une plaque de base et plusieurs tubes creux parallèles espacés. La plaque est fixée à chacune de ses extrémités à un collecteur en plastique extrudé comprenant éventuellement des adaptateurs tubulaires. L'assemblage des tubes et des collecteurs est réalisé par chauffage, par exemple par induction.
Le document FR-A-2 498 614 concerne un produit pour réaliser un échangeur de chaleur d'un capteur solaire qui est constitué par un mélange d' éthylène propylène diène monomère (EPDM) , de noir de carbone, de silice précipitée destinée à faciliter l'extrusion du produit ou d'une autre charge minérale renforçante, d'un plastifiant compatible avec l'EPDM, d'un système de vulcanisation, d'un agent de couplage pour la silice ou la charge minérale et l'EPDM.
Le document WO-A1-01/34698 décrit un mélange élastomère, en particulier à base d'EPM ou de EPDM auquel sont ajoutés un composant thermiquement conducteur tel que du graphite, du noir de carbone, de l'oxyde de calcium, et un agent de réticulation . Ce mélange élastomère sert à la fabrication par extrusion de tuyaux pour absorbeurs et échangeurs de chaleur.
Le document FR-A-2 430 578 concerne un absorbeur pour capteur solaire qui est réalisé en un matériau généralement transparent ou translucide, qui laisse passer au moins 50% du rayonnement solaire. En outre, le fluide caloporteur contient un pigment dispersé et/ou un colorant dissous susceptible d'absorber l'énergie solaire.
Le document US-A-4 , 161 , 942 a trait à un capteur d'énergie solaire comprenant un ou plusieurs tubes disposés en hélice sur lesquels est fixé un revêtement de transfert thermique. Le revêtement de transfert thermique comprend du noir de carbone et du plâtre de Paris . Le document US-A-4, 376, 801 concerne un revêtement sélectif pour les surfaces exposées à l'énergie solaire d'un capteur solaire, qui comprend un composé organique ou une substance ayant une masse moléculaire élevée et une forte teneur en carbone, tel qu'un pétrole, une huile, graisse, ou cire, végétale ou animale qui est pyrolysée pour donner un vernis pigmenté au noir de carbone.
Le document DE-A1-3228274 a trait à un procédé pour fabriquer une couche absorbante sélective sur la surface d'un capteur solaire métallique dans lequel du noir de carbone avec une taille de particules de 10 à 300 nm est dispersé dans un liant et cette dispersion est appliquée avec un solvant adéquat sur ladite surface puis séchée.
De manière générale, les absorbeurs sont traditionnellement préparés par un procédé (Figure 2) consistant à extruder deux pièces (27, 28) formant chacune la moitié du corps à canaux (22) de l'absorbeur c'est-à-dire les demi-absorbeurs (27, 28) puis à les assembler avec les deux autres pièces d'extrémité (29, 210) dans lesquelles sont définies les chambres d'extrémité (24, 26) de l'absorbeur, c'est-à-dire les chambres creuses dans lesquelles débouchent les canaux de l'absorbeur. L'absorbeur est donc préparé en assemblant quatre pièces, à savoir les deux pièces (27, 28) qui constituent le corps à canaux de l'absorbeur, la pièce (29) qui constitue la première partie d'extrémité et enfin la pièce (210) qui constitue la seconde partie d'extrémité. Ce procédé est long, complexe, coûteux, et peu fiable .
En effet, il met en œuvre des étapes complexes et coûteuses telles que des étapes de thermoformage et de soudage.
Les absorbeurs obtenus par ce procédé présentent notamment des problèmes d'étanchéité surtout au niveau des liaisons entre les pièces constituant les parties d'extrémité, et le corps à canaux.
II existe donc un besoin pour un absorbeur de capteur solaire thermique qui puisse être préparé par un procédé simple, présentant un nombre limité d'étapes, fiable, reproductible, et d'une durée et d'un coût réduits.
II existe encore un besoin pour un absorbeur qui soit de même simple, fiable, d'un faible coût et dont les propriétés et notamment les propriétés thermiques et optiques puissent être aisément optimisées .
Le but de la présente invention est de fournir un absorbeur de capteur solaire et un procédé de préparation de cet absorbeur, qui répondent aux besoins mentionnés plus haut.
Le but de la présnte invention est encore de fournir un absorbeur de capteur solaire et un procédé de préparation de cet absorbeur qui ne présentent pas les défauts, inconvénients, limitations et désavantages, des absorbeurs et procédés de préparation d' absorbeurs de l'art antérieur et qui résolvent les problèmes des absorbeurs et procédés de l'art antérieur . EXPOSÉ DE L' INVENTION
Ce but et d'autres encore, sont atteints, conformément à l'invention, par un absorbeur de capteur solaire thermique comprenant des canaux avec chacun une première extrémité et une seconde extrémité, les premières extrémités des canaux débouchant à l'intérieur d'une première chambre d'extrémité, et les secondes extrémités des canaux débouchant à l'intérieur d'une seconde chambre d'extrémité, dans lequel ledit absorbeur est constitué par une seule pièce extrudée d'un matériau nanocomposite solide comprenant une matrice polymère dans laquelle sont incorporés des nano-objets et/ou des nanostructures .
Avantageusement, le polymère de la matrice peut être choisi parmi les polymères thermoplastiques comme les polyoléfines telles que les polyéthylènes et les polypropylènes ; les polymères et les copolymères d' oléfines cycliques ; les polystyrènes ; les polyamides ; les polyesters tels que les polycarbonates , les poly ( (meth) acrylate) s, les poly ( téréphtalate d'éthylène)s ou PETs, les poly (naphtalate d' éthylène) s ; et leurs mélanges.
Avantageusement, la teneur en nano-objets et/ou en nanostructures peut être inférieure ou égale à 5% en masse, de préférence inférieure ou égale à 1 ~6 en masse, de préférence encore est de 10 ppm à 0,5 % en masse de la masse du matériau nanocomposite.
Avantageusement, les nano-objets peuvent être choisis parmi les nanotubes, les nanofils, les nanoparticules, les nanocristaux, et les mélanges de ceux-ci .
Avantageusement, les nano-objets et/ou les nanostructures peuvent être fonctionnalisés, notamment chimiquement.
Avantageusement, les nano-objets et/ou nanostructures sont choisis parmi les nano-objets et/ou nanostructures qui confèrent des propriétés thermiques et/ou électriques et/ou magnétiques et/ou optiques au matériau nanocomposite ; et parmi les nano-objets et/ou nanostructures qui améliorent les propriétés thermiques et/ou électriques et/ou magnétiques et/ou optiques du matériau nanocomposite.
Avantageusement, le matériau constituant les nano-objets et/ou nanostructures peut être choisi parmi le carbone ; les métaux tels que l'or, le cuivre, le manganèse ou l'aluminium ; les alliages métalliques tels que les alliages de cuivre, d'or, de manganèse ou d'aluminium ; les oxydes métalliques tels que les oxydes de terres rares éventuellement dopés; les polymères organiques ; et les matériaux comprenant plusieurs matériaux parmi les matériaux précités.
Avantageusement, les nano-objets peuvent être des nanotubes de carbone ; des nanoparticules de métaux tels que le cuivre, l'or, le manganèse ou l'aluminium ; des nanoparticules d'alliages métalliques tels que les alliages de cuivre, d'or, de manganèse ou d'aluminium ; des nanoparticules d'oxydes métalliques ; des nanoparticules magnétiques telles que des nanoparticules d'AgMn, de Fe2Û3 ou de Fe3Û4 ; ou un mélange de ceux-ci. Avantageusement, des nanotubes de carbone et des nanoparticules magnétiques sont incorporés dans la matrice polymère.
Avantageusement, les nanostructures peuvent être des nanostructures cœur-filament, en particulier des nanostructures cœur-filament avec un cœur constitué d'alumine et des filaments constitués de nanotubes de carbone .
Des nanostructures de ce type confèrent de bonnes propriétés thermiques au matériau, c'est-à-dire à la matrice polymère, dans lequel elles sont dispersées. En d'autres termes, des nanostructures de ce type apportent une amélioration significative des propriétés thermiques du matériau pour un ajout minimal de nanostructures.
Avantageusement, les nano-objets et/ou nanostructures peuvent être répartis de manière homogène dans la matrice polymère.
Avantageusement, la face supérieure de l'absorbeur, susceptible d'être exposée au rayonnement solaire est pourvue d'un revêtement en un matériau transparent aux rayonnements ayant une longueur d' onde dans la gamme de longueur d'onde du spectre solaire et une réflectivité aux rayonnements ayant une longueur d'onde supérieure à la gamme de longueur d'onde du spectre solaire.
Avantageusement, ledit matériau transparent peut être choisi parmi les oxydes transparents conducteurs ou OTC, tels que l'oxyde d' indium et d' étain ou ITO, et l'oxyde de zinc dopé à l'aluminium ou ZnO : Al. Avantageusement, ledit revêtement en un matériau transparent comprend une seule couche, de préférence une seule couche d'oxyde de zinc dopé à l'aluminium ou ZnO : Al.
L'absorbeur selon l'invention n'a jamais été décrit dans l'art antérieur.
L'absorbeur selon l'invention ne présente pas les inconvénients des absorbeurs de l'art antérieur et résout les problèmes des absorbeurs de l'art antérieur.
En effet, l'absorbeur selon l'invention se distingue fondamentalement des absorbeurs de l'art antérieur tout d' abord en ce qu' il est constitué par une seule et unique pièce extrudée.
Un tel absorbeur dans lequel la totalité, l'ensemble de l'absorbeur, à savoir des canaux, des chambres d'extrémité ou volumes d'entrée et de sortie connectés auxdits canaux est intégralement constitué par une seule pièce extrudée « monobloc » n'a jamais été décrit ni suggéré dans l'art antérieur.
Du fait que l'absorbeur selon l'invention est constitué par une seule pièce extrudée en un matériau unique, et non par plusieurs pièces assemblées par exemple par soudage, l'absorbeur selon l'invention ne présente aucune liaison, joint entre les pièces. L'absorbeur selon l'invention est donc extrêmement simple, extrêmement fiable, et en particulier ne présente pas les problèmes d'étanchéité rencontrés avec les absorbeurs de l'art antérieur constitués par l'assemblage de plusieurs pièces.
L'absorbeur selon l'invention est également d'un coût plus faible. L'absorbeur selon l'invention se distingue également fondamentalement des absorbeurs de l'art antérieur en ce qu'il est constitué d'un matériau spécifique, à savoir un matériau nanocomposite solide comprenant une matrice polymère dans laquelle sont incorporés des nano-objets.
Un tel matériau nanocomposite est totalement compatible avec le procédé d'extrusion et il permet de communiquer à l'absorbeur toutes les propriétés souhaitées par exemple thermiques, mécaniques, magnétiques ou autres.
Le choix du polymère de la matrice et/ou des nano-objets permet d'ajuster facilement et spécifiquement les propriétés du matériau nanocomposite en vue de sa mise en œuvre dans un absorbeur de capteur solaire thermique.
Le matériau nanocomposite utilisé peut présenter à volonté toutes les propriétés spécifiques voulues, telles que des propriétés magnétiques et thermiques améliorées, notamment par rapport à un plastique chargé en noir de carbone tout en restant compatible avec le procédé d'extrusion.
On a vu plus haut que l'absorbeur selon l'invention, est généralement pourvu, sur sa face supérieure, susceptible d'être exposée au rayonnement solaire d'un revêtement en un matériau transparent aux rayonnements ayant une longueur d' onde dans la gamme de longueur d'onde du spectre solaire et une réflectivité, de préférence une réflectivité importante, aux rayonnements ayant une longueur d'onde supérieure à la gamme de longueur d'onde du spectre solaire. En général, et grâce au fait que l'absorbeur est constitué d'un matériau nanocomposite solide, ce revêtement ne comporte qu'une seule couche en un matériau transparent au lieu d'un empilement de couches pour les absorbeurs de l'art antérieur fabriqués par exemple en cuivre.
L'invention concerne, en outre, un capteur solaire thermique comprenant un absorbeur selon l'invention tel que décrit plus haut et une couverture transparente au rayonnement solaire sur ledit absorbeur (du côté exposé au rayonnement solaire) .
Le capteur selon l'invention possède de manière inhérente toutes les propriétés avantageuses, déjà énumérées plus haut, de l'absorbeur selon l'invention qui constitue l'élément fondamental de ce capteur.
Avantageusement, la couverture transparente du capteur selon l'invention peut être revêtue sur sa face inférieure (c'est-à-dire la face qui fait face à l'absorbeur) d'un revêtement en un matériau transparent aux rayonnements ayant une longueur d'onde dans la gamme de longueur d' onde du spectre solaire et une réflectivité aux rayonnements ayant une longueur d' onde supérieure à la gamme de longueur d' onde du spectre solaire .
Avantageusement, ledit matériau transparent peut être choisi parmi les oxydes transparents conducteurs ou OTC, tels que l'oxyde d' indium et d' étain ou ITO, et l'oxyde de zinc dopé à l'aluminium ou ZnO : Al.
Avantageusement, ledit revêtement en un matériau transparent comprend une seule couche, de préférence une seule couche d'oxyde de zinc dopé à l'aluminium ou ZnO : Al.
Le capteur solaire thermique selon l'invention possède de manière inhérente toutes les propriétés avantageuses dues à l'absorbeur.
Le capteur selon l'invention, lorsqu'il comprend, aussi bien sur la face inférieure de sa couverture transparente que sur la face supérieure de l'absorbeur, un revêtement en un matériau transparent aux rayonnements ayant une longueur d'onde dans la gamme de longueur d' onde du spectre solaire et une réflectivité aux rayonnements ayant une longueur d' onde supérieure à la gamme de longueur d' onde du spectre solaire, voit ses propriétés thermiques et optiques, et notamment ses capacités d'absorption du spectre solaire, optimisées.
L'invention concerne, en outre, un procédé de préparation de l'absorbeur tel que décrit plus haut, dans lequel on réalise en continu l' extrusion d'une masse fondue du matériau nanocomposite solide, et on forme successivement et en une seule étape la première chambre d'extrémité, les canaux, et la deuxième chambre d'extrémité de l'absorbeur.
La préparation par une technique d' extrusion en continu et en une seule étape de la totalité, l'ensemble d'un absorbeur, à savoir des canaux, des chambres d'extrémité ou volumes d'entrée et de sortie connectés auxdits canaux, ledit absorbeur étant finalement intégralement constitué par une seule pièce extrudée, n'a jamais été décrite dans l'art antérieur. Le procédé selon l'invention ne comporte qu'une seule étape et il est donc beaucoup plus simple, beaucoup plus rapide et beaucoup moins coûteux, beaucoup plus fiable, que les procédés de l'art antérieur qui font généralement intervenir l'assemblage de plusieurs pièces fabriquées séparément.
Le procédé selon l'invention élimine notamment les étapes les plus coûteuses des procédés de l'art antérieur telles que le thermoformage et le soudage.
Avantageusement, la première chambre d'extrémité, les canaux et la deuxième chambre d'extrémité de l'absorbeur peuvent être formés à l'aide d'une seule et même tête ou filière d'extrusion.
Avantageusement, on peut former en série et en continu plusieurs absorbeurs.
On réalise de la sorte des gains supplémentaires en termes de coût et de temps.
Avantageusement, lors de l'extrusion, on peut injecter un fluide dans le matériau nanocomposite fondu afin de définir les espaces creux, canaux, et chambres de l'absorbeur.
Avantageusement, le fluide injecté peut être choisi parmi les gaz tels que l'air, l'argon, l'azote, et leurs mélanges; et les liquides tels que les huiles, par exemple les huiles silicones, minérales, synthétiques, semi-synthétiques, et leurs mélanges.
Avantageusement, à l'issue de l'extrusion, on dépose, par exemple par un procédé de dépôt physique en phase vapeur (« PVD ») , sur la face supérieure de l'absorbeur ou des absorbeurs, susceptible d'être exposée au rayonnement solaire, un revêtement en un matériau transparent aux rayonnements ayant une longueur d' onde dans la gamme de longueur d' onde du spectre solaire et une réflectivité aux rayonnements ayant une longueur d' onde supérieure à la gamme de longueur d'onde du spectre solaire.
Avantageusement, ce revêtement peut être en un oxyde transparent conducteur, tel que l'oxyde d' indium et d' étain (ITO) ou l'oxyde de zinc dopé à l'aluminium ou ZnO : Al.
Avantageusement, le revêtement en un matériau transparent comprend une seule couche, de préférence une seule couche d'oxyde de zinc dopé à l'aluminium ou ZnO : Al.
Avantageusement, le procédé selon l'invention comprend une étape finale au cours de laquelle on perce des entrées et sorties de fluide caloporteur dans l'absorbeur ou les absorbeurs, puis on effectue éventuellement une vidange du fluide, et enfin on soude des connections auxdites entrées et sorties de fluide caloporteur.
L' invention sera mieux comprise à la lecture de la description détaillée qui va suivre faite en relation avec les dessins joints dans lesquels : BRÈVE DESCRIPTION DES DESSINS
La Figure 1 est une vue schématique en coupe verticale d'un capteur solaire thermique.
La Figure 2 est une vue schématique d'un absorbeur de capteur solaire thermique de l'art antérieur. La Figure 3 est une vue schématique en coupe verticale d'un tube d'un absorbeur de l'art antérieur pourvu sur sa face supérieure d'un empilement de couches formant un revêtement spectral sélectif.
- La Figure 4 est une vue schématique d'un absorbeur de capteur solaire thermique selon 1 ' invention .
La Figure 5 est un graphique qui représente le spectre d'absorption d'un matériau nanocomposite comprenant une matrice de polyamide dans laquelle sont dispersés des nanotubes de carbone à raison de 0,1 % en masse .
En ordonnée est portée l'absorption (en %) , et en abscisse est portée la longueur d'onde (en microns) .
- La Figure 6 est une vue schématique d'une tête ou filière d'extrusion spécifique pour la mise en œuvre du procédé selon l'invention pour préparer un absorbeur selon l'invention.
La Figure 7 est une vue en coupe transversale de la pièce cylindrique de la deuxième zone de la tête ou filière d'extrusion de la Figure 6.
La Figure 8 représente de manière schématique pour chacune des positions du cylindre intérieur de la pièce cylindrique de la Figure 7 les profils extrudés correspondants obtenus.
La Figure 9 montre l'extrusion en continu et série de cinq absorbeurs selon l'invention.
La Figure 10 est un graphique qui donne la réflectivité totale d'un revêtement en oxyde de zinc dopé à aluminium. En abscisse est portée la longueur d'onde (en microns) et en ordonnée est portée la réflectivité totale .
La Figure 11 est un graphique qui représente la réflectance en fonction de la longueur d'onde de la lumière (en ym) .
La réflectance correspond au rapport entre l'énergie solaire réfléchie et incidente.
En-dessous de 1,4 ym de longueur d'onde, l'énergie solaire est absorbée par le matériau de l'absorbeur, au-delà il y a une ré-émission provoquée par 1 ' échauffement du matériau.
La Figure 12 est un graphique qui représente en trait continu le spectre solaire vu comme une répartition de la densité d'énergie en fonction de la longueur d'onde, et en trait interrompu la distribution de la densité d'énergie en fonction de la longueur d'onde, de la ré-émission de l'absorbeur provoquée par son échauffement à différentes températures, à savoir 100°C, 200°C et 300°C.
En ordonnée est portée la densité d'énergie (en GW/m2) , et en abscisse est portée la longueur d'onde (en ym) . EXPOSÉ DÉTAILLÉ DE MODES DE RÉALISATION PARTICULIERS
L'absorbeur selon l'invention tel qu'il est représenté sur la Figure 4 présente une structure analogue à celle d'un absorbeur classique tel qu'il a déjà été décrit plus haut et tel qu'il est représenté notamment sur la Figure 2 à la différence fondamentale toutefois que l'absorbeur selon l'invention est constitué par une seule pièce, élément, bloc extrudé (41) en un matériau nanocomposite solide comprenant une matrice polymère dans laquelle sont incorporés des nano-obj ets .
Ce matériau peut être aussi appelé plus simplement « polymère-nanocomposite ».
L'absorbeur selon l'invention, à l'instar des absorbeurs classiques, comprend des canaux (42) avec chacun une première extrémité (43) et une seconde extrémité (44), les premières extrémités (43) des canaux débouchant à l'intérieur d'une première chambre d'extrémité (45) et les secondes extrémités (44) des canaux débouchant à l'intérieur d'une seconde chambre d'extrémité (46) . Ces canaux (42) et ces premières et secondes chambres d'extrémité (45, 46) sont définis dans une seule même pièce extrudée (41) .
En d'autres termes, l'absorbeur selon l'invention est constitué intégralement d'un seul élément extrudé en un matériau nanocomposite (41) qui intègre les canaux (42) et les zones, volumes, chambres, de réserve d'entrée (45) et de sortie (46) de fluide caloporteur. Les formes de cet élément (41) sont obtenues en une seule étape, par extrusion, sans faire appel à d'autres étapes de thermoformage et de soudage.
Les canaux (42) peuvent avoir une section transversale circulaire avec un diamètre généralement de 1 à 7 mm, ou une section transversale polygonale, par exemple carrée ou rectangulaire.
La longueur des canaux (42) est généralement comprise entre 0,5 et 4 m. Les canaux (42) sont généralement disposés parallèlement les uns aux autres avec un espacement entre les canaux, de 0,1 à 3 mm.
Les canaux (42) sont généralement au nombre de 4 à 20, par exemple de 8 comme représenté sur la Figure 4.
L'épaisseur de l'absorbeur est généralement de 0,5 à 1,5 mm et la largeur de l'absorbeur est généralement de 0,1 à 1 m.
Selon l'invention, et comme on l'a indiqué plus haut, l'absorbeur selon l'invention est fabriqué en un matériau nanocomposite à matrice polymère.
Rappelons que les matériaux nanocomposites à matrice polymère sont des matériaux multiphasiques , en particulier biphasiques, qui comportent une matrice polymère formant une première phase dans laquelle sont dispersés des nano-objets ou nanostructures tels que des nanoparticules formant au moins une deuxième phase que l'on dénomme généralement phase de renfort ou charge .
Les nanocomposites sont appelés ainsi car au moins une des dimensions des objets tels que des particules formant la phase de renfort ou charge est à l'échelle nanométrique, à savoir généralement inférieure ou égale à 100 nm, par exemple de un nanomètre à une ou quelques dizaines de nanomètres, par exemple 100 nm.
En conséquence, ces objets et particules sont dénommés nano-objets ou nanoparticules.
Les matériaux nanocomposites permettent, généralement pour des taux de charge relativement faibles, à savoir inférieurs à 10% en poids, et même inférieurs à 1% en poids, d'obtenir une amélioration significative des propriétés du matériau, qu' il s'agisse des propriétés mécaniques, électriques, thermiques, magnétiques, optiques ou autres ....
Le polymère de la matrice du matériau nanocomposite qui constitue l'absorbeur selon l'invention, est généralement choisi parmi les polymères thermoplastiques.
Il n'y a aucune limitation quant à la nature de ce polymère thermoplastique.
Il peut être choisi parmi les polyoléfines tels que les polyéthylènes , les polypropylènes , les polymères et les copolymères d' oléfines cycliques ; les polystyrènes ; les polyamides ; les polyesters tels que les polycarbonates , les poly ( (meth) acrylate) s, les poly ( téréphtalate d'éthylène)s ou PETs, les poly (naphtalate d'éthylène)s ; et leurs mélanges. Ces polymères sont facilement disponibles dans le commerce et l'absorbeur selon l'invention peut être fabriqué en utilisant simplement des polymères de qualité commerciale .
Des polymères particulièrement préférés sont les polyamides, éventuellement chargés en fibres de verre pour assurer un renfort mécanique et éviter les fluages.
Les fibres de verre ont des dimensions très supérieures aux nano-objets ou nanostructures et ne doivent pas être confondues avec ceux-ci.
Par « nano-objets », on entend généralement tout objet seul ou lié à une nanostructure dont au moins une dimension est inférieure ou égale à 100 nm, par exemple de un nanomètre à une ou quelques dizaines de nanomètres et jusqu'à 100 nm.
Ces nano-objets peuvent être par exemple des nanoparticules , des nanofils, des nanocristaux, des nanotubes par exemple des nanotubes de carbone (CNT) monoparoi (« SWCNT » ou « Single Walled Carbon Nanotube » en langue anglaise) ou multiparoi (« MWCNT » ou « Multi Walled Carbon Nanotube » en langue anglaise), ou un mélange de ceux-ci.
Par « nanostructure », on entend généralement une architecture constituée d'un assemblage de nano- objets qui sont organisés avec une logique fonctionnelle et qui sont structurés dans un espace allant du nanomètre cube au micromètre cube.
Comme on l'a mentionné plus haut, les nano- objets ou nanostructures sont généralement choisis parmi les nano-objets et nanostructures qui améliorent les propriétés thermiques, et/ou mécaniques et/ou magnétiques et/ou électriques et/ou optiques du matériau nanocomposite solide et/ou confèrent de telles propriétés au matériau nanocomposite solide.
Le matériau constituant ces nano-objets ou nanostructures n'est pas particulièrement limité et peut être choisi parmi le carbone, les métaux et alliages métalliques, les oxydes métalliques, les polymères organiques ; et les mélanges de ceux-ci.
Des nano-objets préférés sont notamment les nanotubes de carbone (« CNT » ou « Carbon Nanotubes » en langue anglaise) que ce soient les nanotubes de carbone monoparoi (« SWCNT » ou « Single Walled Carbon Nanotubes » en langue anglaise) ou multiparoi (« MWCNT » ou « Multi Walled Carbon Nanotubes » en langue anglaise) , et les nanoparticules de métaux et alliages .
Les nanostructures peuvent être des constructions, assemblages dont les briques sont les nano-obj ets .
Les nanostructures peuvent être par exemple des nanotubes de carbone « décorés » de nanoparticules de platine, de cuivre, d'or, de fer ; des nanofils de silicium « décorés » d'or, de nickel, de platine, de fer etc.
Parmi les nanostructures, on peut aussi citer notamment la nanostructure ZnO-Ni qui est une structure tridimensionnelle de ZnO terminée par des nanosphères de nickel.
Parmi les nanostructures, on peut également citer, comme on l'a déjà indiqué plus haut, les nanostructures cœur-filament, en particulier les nanostructures cœur-filament avec un cœur constitué d'alumine, plus exactement par une particule d'une poudre d'alumine, et des filaments constitués de nanotubes de carbone.
Des nanostructures de ce type confèrent de bonnes propriétés thermiques au matériau, c'est-à-dire à la matrice polymère, dans lequel elles sont dispersées. En d'autres termes, des nanostructures de ce type apportent une amélioration significative des propriétés thermiques du matériau pour un ajout minimal de nanostructures.
Le matériau nanocomposite peut ne contenir qu'un seul type de nano-objet ou nanostructure ou bien il peut contenir à la fois plusieurs types de nano- objets et/ou nanostructures qui peuvent différer par leur forme et/ou le matériau les constituant et/ou leur taille. Dans le cas où plusieurs types de nano-objets ou nanostructures sont présents, ils peuvent chacun conférer une propriété au matériau et/ou améliorer une propriété de ce matériau.
Ainsi, le matériau peut-il comprendre des nano- objets comme des charges minérales et/ou organiques telles que des nanotubes de carbone pour améliorer ses propriétés thermomécaniques, et d'autres nano-objets qui rendent le matériau magnétique.
Par exemple, le matériau composite pourra contenir à la fois des nanotubes de carbone (« NTC ») et des nanoparticules magnétiques, par exemple des particules de Fe2Û3, Fe3Û4, AgMn, dans les proportions indiquées plus haut, par exemple inférieures ou égales à 1% en poids.
Généralement, la teneur en nano-objets et/ou en nanostructures peut être inférieure ou égale à 10% en masse, de préférence inférieure ou égale à 5
de préférence encore inférieure ou égale à 1 ~6 en masse, mieux de 10 ppm à 0,1% en masse de la masse du matériau nanocomposite .
II est préférable que les nano-objets et/ou nanostructures soient répartis de manière homogène dans le matériau nanocomposite.
Un matériau nanocomposite à matrice polymère convenant particulièrement bien pour fabriquer l'absorbeur selon l'invention est décrit dans les documents FR-A1-2 934 600 et WO-A1-2010/012813 à la description desquels on pourra se référer. Ces documents décrivent un matériau nanocomposite dans lequel des nano-objets et/ou des nanostructures sont répartis de manière homogène notamment à de faibles concentrations telles que mentionnées plus haut. .
En effet pour garantir l'effet « nano », la qualité de la dispersion des nano-objets et/ou des nanostructures dans la matrice est généralement essentielle et il est donc recommandé d'utiliser un procédé performant de dispersion tel que celui qui est décrit dans les documents FR-A1-2 934 600 et WO-Al-2010/012813 précités.
Dans le procédé décrit dans ces documents, on prépare des agglomérats ou capsules, éventuellement lyophilisés, dans lesquels sont répartis de manière homogène des nano-objets et/ou nanostructures enrobés par des macromolécules de polysaccharides , lesdites macromolécules formant dans au moins une partie de chacun des agglomérats, un gel par réticulation avec des ions positifs. On prépare ensuite un matériau nanocomposite en incorporant lesdits agglomérats dans une matrice polymère. Pour cela, on peut par exemple mélanger mécaniquement les agglomérats préparés avec le polymère puis sécher le mélange puis le traiter par un procédé de plasturgie tel que l'extrusion.
Rappelons que l'extrusion consiste à mettre en fusion n-matériaux et à les malaxer le long d'une vis ou d'une bi-vis avec un profil de température et une vitesse de rotation optimisés pour obtenir un mélange optimal. Au bout de cette bi-vis ou mono-vis, se trouve une filière qui met en forme le mélange avant sa solidification complète. La forme peut être un jonc, un film ou avoir tout type de profil.
L'incorporation des nano-objets ou nanostructures dans la matrice polymère peut bien évidemment se faire par un procédé, tel qu'un procédé de plasturgie, dans lequel les nano-objets ou nanostructures ne sont pas sous la forme d'agglomérats.
La répartition homogène préférée des nano- objets, nanostructures dans le matériau de l'absorbeur selon l'invention, garantit l'amélioration des propriétés (mécaniques, électriques, thermiques, magnétiques, optiques....) de ce matériau du fait des nano-objets même à de plus faibles concentrations.
Ainsi, un nanocomposite comprenant une matrice de polyamide dans laquelle sont dispersés de manière homogène (procédé décrit dans les documents FR-A1-2 934 600 et WO-A1-2010/012813) des nanotubes de carbone à raison de 0,1% en masse présente d'une part une conductivité thermique bien supérieure à celle d'un polymère de qualité commerciale (par exemple, une conductivité 3 à 5 fois supérieure), et d'autre part, une absorption maximale du spectre solaire. Cette absorption est pour le nanocomposite d'environ 96% comme le montre la Figure 5 alors qu'elle n'est que de quelques pourcents pour le polyamide seul sans nanotubes de carbone.
L'absorbeur selon l'invention est préparé en une seule étape par un procédé d'extrusion. Selon l'invention, on met en œuvre de manière avantageuse une extrudeuse d'un type déjà mentionné plus haut, qui est alimentée avec le seul matériau nanocomposite déjà préparé, ou bien qui est alimentée d'une part avec les nano-objets ou nanostructures par exemple sous la forme d'agglomérats, et d'autre part avec le polymère.
A la sortie de l' extrudeuse, on recueille un flux de matériau nanocomposite fondu.
A la sortie de l' extrudeuse d'un type tel que décrit plus haut, est disposée une tête ou filière d'extrusion spécifique qui permet de mettre en forme le flux de nanocomposite fondu avant sa solidification et de préparer en une seule étape, et en continu, les diverses parties de l'absorbeur.
Cette tête ou filière d'extrusion spécifique est représentée sur la Figure 6.
Elle comporte tout d'abord un raccord d'entrée, généralement de forme circulaire (61), connecté à la sortie de l' extrudeuse, par exemple à la zone bi-vis, qui reçoit un flux (62) de matériau nanocomposite fondu en provenance de l' extrudeuse, et qui assure l'alimentation de la tête ou filière d'extrusion par un flux généralement circulaire de matériau nanocomposite fondu.
La tête d'extrusion comporte ensuite successivement trois zones (63, 64, 65) dans le sens d'écoulement du flux de matériau nanocomposite et des moyens de sortie (66) pour recueillir les absorbeurs extrudés. La première zone (63) peut être définie comme une zone de mise au flux, écoulement laminaire, du flux d'entrée de matériau nanocomposite fondu ; la deuxième zone (64) peut être définie comme une zone de séparation du flux et éventuellement d'injection d'un fluide ; et la troisième zone (65) peut être définie comme une zone de convergence de flux et de mise aux cotes et formes finales de l'absorbeur ou des absorbeurs .
La première zone ou zone de mise au flux laminaire (63) génère un flux laminaire de la largeur du capteur, par exemple environ 1 m, et d'une épaisseur, par exemple de 15 mm, qui est supérieure à l'épaisseur finale de l'absorbeur.
Cette première zone (63) présente généralement des parois (67) qui divergent depuis ledit raccord d'entrée (61) pour former ensuite un conduit (68) de la largeur et de l'épaisseur voulues indiquées plus haut. Ce conduit (68) a généralement une longueur de 5 cm à 15 cm, suffisante pour établir un flux, écoulement, laminaire .
Le flux laminaire ainsi formé pénètre ensuite dans la seconde zone (64) ou zone de séparation du flux et d'injection éventuelle d'un fluide.
La seconde zone (64) comprend une pièce cylindrique (69) disposée selon la largeur du conduit, canal (68) de la tête d'extrusion, dont l'axe principal est sensiblement perpendiculaire au sens de l'écoulement laminaire dans le canal, conduit. Cette pièce cylindrique (69) traverse les parois latérales (610, 611) dudit canal, conduit (68) et s'étend au-delà des parois latérales (610, 611) dudit canal (68), les bases (612, 613) de ladite pièce cylindrique (69) sont donc situées à l'extérieur dudit canal, au-delà des parois latérales (610, 611) de celui-ci.
En d'autres termes, cette pièce cylindrique
(69) est placée transversalement dans le canal, conduit dans lequel circule le flux, écoulement laminaire de matériau nanocomposite fondu.
Cette pièce cylindrique (69) est placée de manière à séparer le flux, écoulement laminaire en deux parties égales qui s'écoule respectivement au-dessus et au-dessous de la pièce cylindrique (69), respectivement entre la paroi supérieure du canal, conduit et la paroi supérieure de la pièce cylindrique, et entre la paroi inférieure du canal et la pièce cylindrique.
La pièce cylindrique (69) comprend deux cylindres creux concentriques (71, 72 : voir Figure 7) . A l'aide de ces cylindres creux et concentriques, il est possible d'injecter un fluide dans le flux, courant, de matériau nanocomposite fondu afin de définir les espaces creux de l'absorbeur et éventuellement de munir les surfaces internes de l'absorbeur d'un revêtement lui conférant des propriétés intéressantes.
La troisième zone (65) est une zone de convergence du flux de matériau nanocomposite et de mise aux cotes et formes finales de l'absorbeur, à savoir généralement une largeur de 1 m et une épaisseur de 7 mm. La section du canal, conduit, dans cette troisième zone diminue donc progressivement depuis la seconde zone (64) jusqu'aux moyens de sortie (66), cette diminution de section étant essentiellement due à une diminution de l'épaisseur du canal, conduit.
La pièce cylindrique disposée dans la deuxième zone de la tête, filière d'extrusion est représentée sur la Figure 7, elle comprend deux cylindres concentriques, à savoir un premier cylindre extérieur fixe (71) et un second cylindre intérieur (72) mobile en rotation.
La paroi latérale externe (73) du premier cylindre ou cylindre extérieur (71) n'est autre que la paroi externe de la pièce cylindrique. La paroi latérale interne (74) du cylindre extérieur (71) est en contact avec la paroi latérale externe (75) du cylindre intérieur (72), et la paroi latérale interne (76) du cylindre intérieur (72) définit un canal (77) au centre de la pièce cylindrique.
A une extrémité de la pièce cylindrique et dudit canal (77) au centre de la pièce cylindrique, la base (613) des deux cylindres peut être percée d'un orifice traversant qui peut être relié à une canalisation d'alimentation en un fluide (614).
Le cylindre extérieur (71) est fixe et sa paroi latérale est percée d'une fenêtre (78) du côté de la pièce cylindrique (69) opposé à la première zone (63) .
Cette fenêtre (78) a généralement la forme d'un rectangle dont la longueur est disposée dans le sens de la largeur du canal, conduit, dans lequel s'écoule le flux de matériau nanocomposite fondu.
La longueur de cette fenêtre (78) correspond généralement à 80 cm et sa largeur ou hauteur à 5 mm. Le cylindre intérieur (72) est mobile en rotation à l'intérieur du cylindre extérieur (71) .
Ce mouvement de rotation peut être produit à l'aide d'un moteur (615), qui entraîne en rotation un arbre solidaire de la base (612) du cylindre intérieur (72) qui n'est pas percé par l'orifice traversant relié à la canalisation d'alimentation en fluide (614) . Cet arbre est généralement situé suivant l'axe principal de la pièce cylindrique.
En des positions espacées sur sa circonférence, la paroi latérale du cylindre intérieur (72) est percée par un orifice, une fenêtre ou une série de plusieurs orifices qui sont, à chacune de ces positions, disposés longitudinalement dans la direction de l'axe de la pièce cylindrique qui se confond avec l'axe principal des cylindres intérieur (72) et extérieur (71) .
Par exemple, des orifices, fenêtres ou séries d'orifices (79, 710, 711) pourront être prévus comme cela est décrit sur la Figure 7 respectivement en trois positions (712, 713, 714) espacées sur la circonférence du cylindre intérieur. La position 3 (713) est espacée de 90° de la position 2 (712) sur la circonférence du cylindre intérieur, dans le sens des aiguilles d'une montre, et la position 4 (714) est espacée de 90° de la position 3 (713) sur la circonférence du cylindre intérieur dans le sens des aiguilles d'une montre. D'autres angles d'espacement pourraient être prévus.
On peut définir une ou plusieurs position (s) 1 sur la circonférence du cylindre intérieur dans laquelle la paroi du cylindre est pleine et n'est pas percée d'orifices, fenêtres ou séries d'orifices. Dans cette ou ces position (s) 1, le passage d'un fluide se trouvant dans le canal au centre de la pièce cylindrique est interdit.
Cette position 1 peut être une position (715) espacée de 90° de la position 4 (714) sur la circonférence du cylindre intérieur dans le sens des aiguilles d'une montre. Sur la Figure 7, les positions 1, 2, 3, et 4 sont donc réparties régulièrement avec des espacements de 90° sur la circonférence du cylindre intérieur (72) .
Le nombre de positions auxquelles des fenêtres, orifices ou séries d'orifices sont pratiqués dans la paroi du cylindre intérieur (72) est généralement de 3, pour un absorbeur selon l'invention, comme montré sur la Figure 7, mais ce nombre pourrait être différent et aller par exemple de 3 à 9 pour d'autres configurations de l' absorbeur.
Lors de la rotation du cylindre intérieur (72), par exemple dans le sens contraire des aiguilles d'une montre, on peut mettre la partie de la paroi du cylindre intérieur non pourvue d'orifices (position (s) 1), et les orifices, fenêtres ou série d'orifices (79, 710, 711) prévus aux diverses positions 2, 3, 4 (712, 713, 714) dans la paroi latérale du cylindre intérieur (72) successivement en coïncidence avec la fenêtre (78) prévue dans la paroi latérale du cylindre extérieur (71).
Lorsque les orifices, fenêtres ou série d'orifices (79, 710, 711) prévus aux diverses positions 2, 3, 4 (712, 713, 714) dans la paroi latérale du cylindre intérieur (72) sont en coïncidence avec la fenêtre (78) prévue dans la paroi latérale du cylindre extérieur (71), le passage du fluide se trouvant dans le canal au centre de la pièce cylindrique par lesdits orifices (79, 710, 711) puis par ladite fenêtre (78) est rendu possible et le fluide peut être injecté dans le courant, flux, écoulement de matériau nanocomposite fondu dans le sens de cet écoulement.
En injectant un fluide dans le courant, flux, écoulement de matériau nanocomposite fondu dans le sens de cet écoulement, on peut ainsi former dans ce courant de nanocomposite fondu des cavités remplies dudit fluide, ces cavités correspondant aux différents volumes creux de l'absorbeur que l'on souhaite préparer .
Le fluide injecté peut être choisi parmi les gaz tels que l'air, l'argon, l'azote, et leurs mélanges; et les liquides tels que les huiles, par exemple les huiles silicones, minérales, synthétiques semi-synthétiques, et leurs mélanges.
Lorsque c'est la partie de la paroi du cylindre intérieur non pourvue d'orifices (position 1), qui se trouve en coïncidence avec la fenêtre (78) dans la paroi latérale du cylindre extérieur (71) alors le passage du fluide se trouvant dans le canal au centre de la pièce cylindrique par ladite fenêtre (78) n'est pas possible et le fluide n'est pas injecté dans le courant, flux, de matériau nanocomposite fondu. Aucune cavité n'est alors formée dans le matériau nanocomposite fondu. Dans cette position 1, on forme les parties pleines, par exemple d'extrémité de 1 ' absorbeur . Les orifices, fenêtres ou séries d'orifices prévus en chacune desdites positions 2, 3, 4 sont de préférence prévus de façon à ce que chacun de ces orifices, fenêtres ou série d'orifices ait un profil permettant par injection d'un fluide dans le courant, flux, de matériau nanocomposite fondu la formation de cavités correspondant aux différents volumes creux de l'absorbeur que l'on souhaite préparer.
Ainsi, par exemple dans les positions 2 et 4 (712, 714) le cylindre intérieur (72) peut-il être percé d'une fenêtre (79, 711) en forme de rectangle allongé dont la longueur correspond généralement à la largeur interne des chambres d'extrémités de l'absorbeur et dont la largeur ou hauteur correspond à la hauteur interne des premières et secondes chambres d'extrémité. Dans la position 3 (713), le cylindre intérieur est percé par des orifices (710) disposés selon une rangée, ces orifices ayant une forme, par exemple la forme d'un carré, et une dimension correspondant à la forme et à la dimension interne des canaux de l'absorbeur.
L'extrusion d'un absorbeur complet revient généralement à exécuter un tour complet du cylindre intérieur (72) dans le sens contraire des aiguilles d'une montre.
Sur la Figure 8, on a représenté de manière schématique pour chacune des positions du cylindre intérieur (positions 1, 2, 3, 4) se trouvant en coïncidence avec la fenêtre (78) dans la paroi du cylindre extérieur, les différents profils extrudés correspondants obtenus. La position 1 permet d' extruder la partie pleine de l'absorbeur (81), la position 2 permet d' extruder la première chambre d'extrémité (82) à la première extrémité des canaux, la position 3 permet d' extruder le corps des canaux (83), et la position 4 permet d' extruder la seconde chambre d'extrémité (84) à la seconde extrémité des canaux.
Plusieurs absorbeurs peuvent être extrudés en série et en continu en faisant défiler successivement les positions 1, 2, 3, 4 du cylindre intérieur devant la fenêtre du cylindre extérieur selon le cycle suivant : 1234, 1234, 1234,....
La Figure 9 montre ainsi l'extrusion en continu et en série de cinq absorbeurs.
Une fois le ou les absorbeur(s) extrudé(s), et avant l'étape de découpe, on peut effectuer un dépôt d'un revêtement sélectif (47 : voir Figure 4)) sur la face supérieure du ou des absorbeurs qui est la face qui sera exposée au rayonnement solaire.
Ce revêtement est en un matériau transparent aux rayonnements ayant une longueur d' onde dans la gamme de longueur d' onde du spectre solaire et une réflectivité aux rayonnements ayant une longueur d' onde supérieure à la gamme de longueur d' onde du spectre solaire.
En général, ce revêtement ne comporte qu'une seule couche en un matériau transparent au lieu d'un empilement de couches pour les absorbeurs de l'art antérieur fabriqués par exemple en cuivre (Figure 3) , ce qui conduit là-encore à des gains importants en coût et en temps . Ce revêtement peut être, par exemple, un revêtement d'un substitut de l'ITO classiquement utilisé, qui est un oxyde de zinc dopé à l'aluminium (ZnO : Al) .
De préférence, ce revêtement ne comporte qu'une seule couche de ZnO : Al .
Les caractéristiques de réflectivité de ce revêtement sont illustrées sur le graphique de la Figure 10.
Un tel revêtement peut être déposé par un procédé de dépôt physique en phase vapeur (« Physical Vapour Déposition » ou « PVD » en langue anglaise) .
Ensuite une étape de découpe permet de séparer, isoler, chaque absorbeur pour terminer sa fabrication.
On pourra par exemple réaliser une opération de perçage des entrées et sorties de l' absorbeur, puis éventuellement une vidange du fluide, par exemple du nano-fluide et enfin un soudage des connections.
L' absorbeur selon l'invention est intégré dans un capteur solaire thermique qui est sensiblement analogue à celui de la Figure 1.
Un tel capteur solaire thermique comprend une couverture transparente.
Cette couverture transparente est constituée d'un polymère thermoplastique transparent qui est généralement choisi parmi les polyoléfines : les polymères et les copolymères d' oléfines cycliques (« COP » ; « COC ») ; les polystyrènes; les polyesters tels que les polycarbonates (« PC ») , les poly ( (meth) acrylate) s comme le poly (méthacrylate de méthyle) (« PMMA ») , les poly ( téréphtalate d'éthylène)s (« PET ») , les poly (naphtalate d'éthylène)s (« PEN ») ; et leurs mélanges.
La couverture transparente est généralement préparée par extrusion ou injection.
La face inférieure de la couverture, plaque, transparente est généralement revêtue par un oxyde transparent conducteur (« OTC ») , qui présente une bonne transparence sur l'ensemble des longueurs d'onde du spectre solaire, à savoir typiquement entre 300 nm et environ 1300-1500 nm, et qui présente également une réflectivité importante pour des longueurs d' onde supérieures à 1300-1500 nm afin d'éviter les pertes énergétiques liées au phénomène de rayonnement dû à 1 ' échauffement du capteur. Le spectre de réflectivité idéal pour le revêtement de la couverture d'un capteur solaire thermique est montré sur les Figures 11 et 12.
Cette longueur d'onde (longueur d'onde de coupure) (Figures 11 et 12) doit pouvoir être ajustée en fonction de la température d'équilibre du capteur qui va imposer la longueur d'onde minimale à partir de laquelle le capteur ré-émet par rayonnement.
Expérimentalement, on peut ajuster la longueur d'onde de coupure en jouant sur les conditions de dépôts qui vont modifier les caractéristiques optiques de la couche d'OTC.
Le revêtement utilisé couramment est à base d'oxyde d' indium et d' étain (ITO); cependant d'autres matériaux moins onéreux peuvent être employés, comme par exemple l'oxyde de zinc dopé à l'aluminium (ZnO : Al) dont le spectre de réflectivité est présenté sur la Figure 10. La face supérieure de la couverture transparente peut éventuellement recevoir un revêtement anti-reflet et/ou anti-UV qui est généralement également déposé par un procédé de dépôt physique en phase vapeur.

Claims

REVENDICATIONS
1. Absorbeur de capteur solaire thermique comprenant des canaux (42) avec chacun une première extrémité (43) et une seconde extrémité (44), les premières extrémités (43) des canaux (42) débouchant à l'intérieur d'une première chambre d'extrémité (45), et les secondes extrémités (44) des canaux débouchant à l'intérieur d'une seconde chambre d'extrémité (46), dans lequel ledit absorbeur est constitué par une seule pièce extrudée (41) d'un matériau nanocomposite solide comprenant une matrice polymère dans laquelle sont incorporés des nano-objets et/ou des nanostructures .
2. Absorbeur selon la revendication 1, dans lequel le polymère de la matrice est choisi parmi les polymères thermoplastiques comme les polyoléfines telles que les polyéthylènes et les polypropylènes ; les polymères et les copolymères d' oléfines cycliques ; les polystyrènes ; les polyamides ; les polyesters tels que les polycarbonates , les poly ( (meth) acrylate) s, les poly ( téréphtalate d'éthylène)s ou PETs, les poly (naphtalate d' éthylène) s ; et leurs mélanges.
3. Absorbeur selon la revendication 1, dans lequel la teneur en nano-objets en nano-objets et/ou en nanostructures est inférieure ou égale à 5~6 en masse, de préférence inférieure ou égale à 1% en masse, de préférence encore est de 10 ppm à 0,5% en masse de la masse du matériau nanocomposite.
4. Absorbeur selon l'une quelconque des revendications précédentes, dans lequel les nano-objets sont choisis parmi les nanotubes, les nanofils, les nanoparticules , les nanocristaux, et les mélanges de ceux-ci.
5. Absorbeur selon l'une quelconque des revendications précédentes, dans lequel les nano-objets et/ou les nanostructures sont fonctionnalisés, notamment chimiquement.
6. Absorbeur selon l'une quelconque de revendications précédentes, dans lequel les nano-objets et/ou nanostructures sont choisis parmi les nano-objets et/ou nanostructures qui confèrent des propriétés thermiques et/ou électriques et/ou magnétiques et/ou optiques au matériau nanocomposite ; et parmi les nano- objets et/ou les nanostructures qui améliorent les propriétés thermiques et/ou électriques et/ou magnétiques et/ou optiques du matériau nanocomposite.
7. Absorbeur selon l'une quelconque des revendications précédentes, dans lequel le matériau constituant les nano-objets et/ou nanostructures est choisi parmi le carbone ; les métaux tels que l'or, le cuivre, le manganèse ou l'aluminium ; les alliages métalliques tels que les alliages de cuivre, d'or, de manganèse ou d'aluminium ; les oxydes métalliques tels que les oxydes de terres rares éventuellement dopés; les polymères organiques ; et les matériaux comprenant plusieurs matériaux parmi les matériaux précités.
8. Absorbeur selon l'une quelconque des revendications précédentes, dans lequel les nano-objets sont des nanotubes de carbone ; des nanoparticules de métaux tels que le cuivre, l'or, le manganèse ou l'aluminium ; des nanoparticules d'alliages métalliques tels que les alliages de cuivre, d'or, de manganèse ou d'aluminium ; des nanoparticules d'oxydes métalliques ; des nanoparticules magnétiques telles que des nanoparticules d'AgMn, de Fe2Û3 ou de Fe3Û4 ; ou un mélange de ceux-ci.
9. Absorbeur selon la revendication 8, dans lequel des nanotubes de carbone et des nanoparticules magnétiques sont incorporés dans la matrice polymère.
10. Absorbeur selon l'une quelconque des revendications 1 à 8, dans lequel les nanostructures sont des nanostructures cœur-filament, en particulier des nanostructures cœur-filament avec un cœur constitué d'alumine et des filaments constitués de nanotubes de carbone .
11. Absorbeur selon l'une quelconque des revendications précédentes, dans lequel les nano-objets et/ou nanostructures sont répartis de manière homogène dans la matrice polymère.
12. Absorbeur selon l'une quelconque des revendications précédentes, dans lequel la face supérieure de l' absorbeur, susceptible d'être exposée au rayonnement solaire est pourvue d'un revêtement (47) en un matériau transparent aux rayonnements ayant une longueur d' onde dans la gamme de longueur d' onde du spectre solaire et une réflectivité aux rayonnements ayant une longueur d' onde supérieure à la gamme de longueur d'onde du spectre solaire.
13. Absorbeur selon la revendication 12, dans lequel ledit matériau transparent (47) est choisi parmi les oxydes transparents conducteurs ou OTC, tels que l'oxyde d' indium et d' étain ou ITO, et l'oxyde de zinc dopé à l'aluminium ou ZnO : Al.
14. Absorbeur selon la revendication 12 ou 13, dans lequel ledit revêtement (47) en un matériau transparent comprend une seule couche, de préférence une seule couche d'oxyde de zinc dopé à l'aluminium ou ZnO : Al.
15. Capteur solaire thermique comprenant un absorbeur selon l'une quelconque des revendications 1 à 14, et une couverture transparente au rayonnement solaire sur ledit absorbeur.
16. Capteur selon la revendication 15, dans lequel la couverture transparente est revêtue sur sa face inférieure d'un revêtement en un matériau transparent aux rayonnements ayant une longueur d' onde dans la gamme de longueur d'onde du spectre solaire et une réflectivité aux rayonnements ayant une longueur d' onde supérieure à la gamme de longueur d' onde du spectre solaire.
17. Capteur selon la revendication 16, dans lequel le matériau transparent est choisi parmi les oxydes transparents conducteurs ou OTC tels que l'oxyde d' indium et d' étain ou ITO, et l'oxyde de zinc dopé à l'aluminium ou ZnO : Al.
18. Capteur selon la revendication 16 ou 17, dans lequel ledit revêtement en un matériau transparent comprend une seule couche, de préférence une seule couche d'oxyde de zinc dopé à l'aluminium ou ZnO : Al.
19. Procédé de préparation d'un absorbeur selon l'une quelconque des revendications 1 à 14, dans lequel on réalise en continu l'extrusion d'une masse fondue du matériau nanocomposite solide et on forme successivement et en une seule étape la première chambre d'extrémité, les canaux et la deuxième chambre d'extrémité de l' absorbeur.
20. Procédé selon la revendication 19, dans lequel la première chambre d'extrémité, les canaux et la deuxième chambre d'extrémité de l' absorbeur sont formés à l'aide d'une seule et même tête ou filière d' extrusion .
21. Procédé selon l'une quelconque des revendications 19 et 20, dans lequel on forme successivement en série et en continu plusieurs absorbeurs .
22. Procédé selon l'une quelconque des revendications 19 à 21, dans lequel lors de l'extrusion on injecte un fluide dans le matériau nanocomposite fondu.
23. Procédé selon la revendication 22, dans lequel le fluide injecté est choisi parmi les gaz tels que l'air, l'argon, l'azote, et leurs mélanges ; et les liquides tels que les huiles, par exemple les huiles silicones, minérales, synthétiques, semi-synthétiques, et leurs mélanges.
24. Procédé selon l'une quelconque des revendications 19 à 23, dans lequel à l'issue de l'extrusion on dépose sur la face supérieure de l'absorbeur ou des absorbeurs, susceptible d'être exposée au rayonnement solaire, un revêtement en un matériau transparent aux rayonnements ayant une longueur d'onde dans la gamme de longueur d'onde du spectre solaire et une réflectivité aux rayonnements ayant une longueur d' onde supérieure à la gamme de longueur d'onde du spectre solaire.
25. Procédé selon la revendication 24, dans lequel le matériau transparent est choisi parmi les oxydes transparents conducteurs, tels que l'oxyde d' indium et d' étain (ITO), et l'oxyde de zinc dopé à l'aluminium ou ZnO : Al.
26. Procédé selon la revendication 24 ou 25, dans lequel le revêtement en un matériau transparent comprend une seule couche, de préférence une seule couche d'oxyde de zinc dopé à l'aluminium ou ZnO : Al.
27. Procédé selon l'une quelconque des revendications 19 à 26, qui comprend une étape finale au cours de laquelle on perce des entrées et sorties de fluide caloporteur dans l'absorbeur ou les absorbeurs, puis on effectue éventuellement une vidange du fluide, et enfin on soude des connections auxdites entrées et sorties de fluide caloporteur.
PCT/EP2011/061436 2010-07-28 2011-07-06 Absorbeur de capteur solaire thermique, capteur le comprenant, et procédé pour sa préparation WO2012013466A2 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP11729331.6A EP2598811A2 (fr) 2010-07-28 2011-07-06 Absorbeur de capteur solaire thermique, capteur le comprenant, et procédé pour sa préparation

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1056222A FR2963411B1 (fr) 2010-07-28 2010-07-28 Absorbeur de capteur solaire thermique, capteur le comprenant, et procede pour sa preparation.
FR1056222 2010-07-28

Publications (2)

Publication Number Publication Date
WO2012013466A2 true WO2012013466A2 (fr) 2012-02-02
WO2012013466A3 WO2012013466A3 (fr) 2012-09-13

Family

ID=43640089

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2011/061436 WO2012013466A2 (fr) 2010-07-28 2011-07-06 Absorbeur de capteur solaire thermique, capteur le comprenant, et procédé pour sa préparation

Country Status (3)

Country Link
EP (1) EP2598811A2 (fr)
FR (1) FR2963411B1 (fr)
WO (1) WO2012013466A2 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018002797A1 (fr) 2016-06-28 2018-01-04 Sabic Global Technologies B.V. Collecteur thermique solaire

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DK2678617T3 (da) * 2011-02-22 2019-09-02 Savo Solar Oy Fremgangsmåde til fremstilling af en varmeabsorber til en solvarmefanger

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4060070A (en) 1976-01-22 1977-11-29 Solar Industries, Inc. Solar heating
US4112921A (en) 1977-04-25 1978-09-12 Calmac Manufacturing Corporation Method and system for utilizing a flexible tubing solar collector
US4161942A (en) 1977-12-27 1979-07-24 Monk Robert J Solar energy collector
FR2430578A1 (fr) 1978-07-06 1980-02-01 Degussa Absorbeur pour capteur solaire
FR2498614A1 (fr) 1981-01-27 1982-07-30 Sorelec Produit notamment pour realiser un echangeur de chaleur d'un capteur solaire
US4376801A (en) 1982-05-19 1983-03-15 Reynolds Metals Company Selective coating for solar collectors
DE3228274A1 (de) 1982-07-29 1984-02-09 Metallgesellschaft Ag, 6000 Frankfurt Herstellungsverfahren fuer eine selektiv absorbierende schicht
US4556048A (en) 1982-08-18 1985-12-03 Matsushita Electric Industrial Co., Ltd. Solar heat collector
WO2001034698A1 (fr) 1999-11-08 2001-05-17 Phoenix Ag Melange elastomere a haute conductibilite thermique
US20020002972A1 (en) 1999-12-29 2002-01-10 Lawrence S. Blake Solar heating reflecting element suitable for molding
CN101158513A (zh) 2007-11-08 2008-04-09 王斌 一种太阳能集热板及其制作方法
WO2010012813A1 (fr) 2008-07-31 2010-02-04 Commissariat A L'energie Atomique Capsules ou agglomérats gélifies, lyophilises, de nanoobjets ou nanostructures, matériaux nanocomposites a matrice polymère les comprenant, et leurs procédés de préparation.

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2553574A1 (de) * 1975-11-28 1977-06-08 Roehm Gmbh Verfahren zur herstellung von waermeaustauschern aus kunststoff
AU4054078A (en) * 1977-12-09 1980-04-17 Beasley Ind Solar heater panesl
EP1537445B1 (fr) * 2002-09-05 2012-08-01 Nanosys, Inc. Nanocomposites
ES2392217T3 (es) * 2008-03-07 2012-12-05 Tsing Hua University Colector solar y sistema de calentamiento solar que lo utiliza

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4060070A (en) 1976-01-22 1977-11-29 Solar Industries, Inc. Solar heating
US4112921B1 (fr) 1977-04-25 1985-03-19
US4112921A (en) 1977-04-25 1978-09-12 Calmac Manufacturing Corporation Method and system for utilizing a flexible tubing solar collector
US4161942A (en) 1977-12-27 1979-07-24 Monk Robert J Solar energy collector
FR2430578A1 (fr) 1978-07-06 1980-02-01 Degussa Absorbeur pour capteur solaire
FR2498614A1 (fr) 1981-01-27 1982-07-30 Sorelec Produit notamment pour realiser un echangeur de chaleur d'un capteur solaire
US4376801A (en) 1982-05-19 1983-03-15 Reynolds Metals Company Selective coating for solar collectors
DE3228274A1 (de) 1982-07-29 1984-02-09 Metallgesellschaft Ag, 6000 Frankfurt Herstellungsverfahren fuer eine selektiv absorbierende schicht
US4556048A (en) 1982-08-18 1985-12-03 Matsushita Electric Industrial Co., Ltd. Solar heat collector
WO2001034698A1 (fr) 1999-11-08 2001-05-17 Phoenix Ag Melange elastomere a haute conductibilite thermique
US20020002972A1 (en) 1999-12-29 2002-01-10 Lawrence S. Blake Solar heating reflecting element suitable for molding
CN101158513A (zh) 2007-11-08 2008-04-09 王斌 一种太阳能集热板及其制作方法
WO2010012813A1 (fr) 2008-07-31 2010-02-04 Commissariat A L'energie Atomique Capsules ou agglomérats gélifies, lyophilises, de nanoobjets ou nanostructures, matériaux nanocomposites a matrice polymère les comprenant, et leurs procédés de préparation.
FR2934600A1 (fr) 2008-07-31 2010-02-05 Commissariat Energie Atomique Capsules ou agglomerats gelifies de nanoobjets ou nanostructures, materiaux nanocomposites a matrice polymere les comprenant, et leurs procedes de preparation.

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018002797A1 (fr) 2016-06-28 2018-01-04 Sabic Global Technologies B.V. Collecteur thermique solaire

Also Published As

Publication number Publication date
FR2963411A1 (fr) 2012-02-03
FR2963411B1 (fr) 2012-09-14
WO2012013466A3 (fr) 2012-09-13
EP2598811A2 (fr) 2013-06-05

Similar Documents

Publication Publication Date Title
WO2005084902A1 (fr) Objet synthetique multicouche
FR2852087A1 (fr) Capteur solaire pour chauffe-eau
WO1998057095A1 (fr) Conteneur, notamment pour reservoir de gaz liquefie sous pression, et son procede de fabrication
WO2012013466A2 (fr) Absorbeur de capteur solaire thermique, capteur le comprenant, et procédé pour sa préparation
EP3134247B1 (fr) Procédé de fabrication d'un accumulateur de pression
Hao et al. Photothermal strategies for ice accretion prevention and ice removal
WO2016166326A1 (fr) Procede de preparation de la coque interne d'un reservoir composite de type iv pour le stockage de fluide sous pression
EP0239439A1 (fr) Procédé de fabrication d'une structure tubulaire stratifiée pour le renfort d'une pièce en matériau composite, et pièce ainsi obtenue
EP1682463B1 (fr) Procede de fabrication d objets composites utilisant du graphite et de la vermiculite expanses
EP1149014B1 (fr) Cadre de cycle en materiau thermoplastique et procede de fabrication associe
CA2419433C (fr) Procede de fabrication d'une piece de revolution par rotomoulage et piece obtenue
WO2020030875A1 (fr) Conformateur a structure en reseau alveolaire pour la densification d'une preforme fibreuse par voie gazeuse
FR3085744A1 (fr) Echangeur thermique flexible comprenant un assemblage de sondes thermiques flexibles
FR2952323A1 (fr) Segment incurve a paroi multicouche en matiere plastique pour l'assemblage de tubes
EP0532415B1 (fr) Corps isolant à haute rigidité diélectrique et procédé d'obtention d'un tel corps
WO2009090221A1 (fr) Procédé et dispositif de moulage d'une pièce en matériau composite
EP3374686B1 (fr) Reservoir de stockage d'hydrogene à hydrure metallique
CA2773044A1 (fr) Procede de fabrication d'une bielle metallique renforcee par des fibres, et bielle ainsi obtenue
EP2861412B1 (fr) Procede pour obtenir un corps d'une forme donnee a partir d'un fil ou analogue
LU102744B1 (fr) Ensemble de moule pour la fabrication d'un réservoir de véhicule automobile
EP1066946B1 (fr) Procédé de fabrication de pièces optiques pour éclairage ou signalisation de véhicules automobiles
FR2928199A1 (fr) Structure en filet destinee a assurer le maintien et la protection d'un faisceau de cables et/ou de tuyaux equipant un vehicule automobile
CA2619414A1 (fr) Objets multicouches et methode de realisation
FR2494180A1 (fr) Procede de fabrication de tubes ou profiles curvilignes ou feuilles de materiau plastique a conductibilite thermique elevee anisotrope
FR2722725A1 (fr) Procede pour realiser des pieces en au moins deux nattieres thermoplastiques

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11729331

Country of ref document: EP

Kind code of ref document: A2

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2011729331

Country of ref document: EP