WO2012011760A2 - Procédé de production d'un précurseur de matière active d'anode pour un accumulateur au lithium, précurseur de matière active d'anode pour un accumulateur au lithium produit au moyen du procédé et procédé de préparation d'un oxyde composite métal lithium au moyen du précurseur de matière active d'anode et oxyde composite métal lithium pour matière active d'anode pour un accumulateur au lithium préparé au moyen du procédé correspondant - Google Patents

Procédé de production d'un précurseur de matière active d'anode pour un accumulateur au lithium, précurseur de matière active d'anode pour un accumulateur au lithium produit au moyen du procédé et procédé de préparation d'un oxyde composite métal lithium au moyen du précurseur de matière active d'anode et oxyde composite métal lithium pour matière active d'anode pour un accumulateur au lithium préparé au moyen du procédé correspondant Download PDF

Info

Publication number
WO2012011760A2
WO2012011760A2 PCT/KR2011/005400 KR2011005400W WO2012011760A2 WO 2012011760 A2 WO2012011760 A2 WO 2012011760A2 KR 2011005400 W KR2011005400 W KR 2011005400W WO 2012011760 A2 WO2012011760 A2 WO 2012011760A2
Authority
WO
WIPO (PCT)
Prior art keywords
active material
metal
secondary battery
lithium
lithium secondary
Prior art date
Application number
PCT/KR2011/005400
Other languages
English (en)
Korean (ko)
Other versions
WO2012011760A3 (fr
Inventor
김직수
최문호
고광안
신종승
최동귀
유종열
Original Assignee
주식회사 에코프로
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 에코프로 filed Critical 주식회사 에코프로
Publication of WO2012011760A2 publication Critical patent/WO2012011760A2/fr
Publication of WO2012011760A3 publication Critical patent/WO2012011760A3/fr

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • C01G53/006Compounds containing, besides nickel, two or more other elements, with the exception of oxygen or hydrogen
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • C01G53/40Nickelates
    • C01G53/42Nickelates containing alkali metals, e.g. LiNiO2
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/50Solid solutions
    • C01P2002/52Solid solutions containing elements as dopants
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/80Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70
    • C01P2002/85Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70 by XPS, EDX or EDAX data
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/03Particle morphology depicted by an image obtained by SEM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/30Particle morphology extending in three dimensions
    • C01P2004/32Spheres
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/51Particles with a specific particle size distribution
    • C01P2004/52Particles with a specific particle size distribution highly monodisperse size distribution
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/61Micrometer sized, i.e. from 1-100 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/12Surface area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention is a method for producing a lithium secondary battery positive electrode active material precursor, a lithium secondary battery positive electrode active material precursor prepared by this, and a method for producing a lithium metal composite oxide for a lithium secondary battery positive electrode active material using the positive electrode active material precursor, thereby
  • the present invention relates to a lithium metal composite oxide for a lithium secondary battery cathode active material.
  • Nickel cadmium accumulators have been used as secondary batteries consistent with this purpose.
  • Lithium secondary batteries have been put into practical use as nickel-hydrogen accumulators and nonaqueous electrolyte secondary batteries as batteries having higher energy density.
  • LiCoO 2 for the positive electrode and carbon for the negative electrode.
  • LiCoO 2 is an excellent material having stable charge and discharge characteristics, excellent electronic conductivity, high stability, and flat discharge voltage characteristics. However, Co has low reserves, is expensive, and toxic to humans.
  • LiNiO 2 having a layered structure such as LiCoO 2 exhibits a large discharge capacity but has not been commercialized due to problems in cycle life, thermal instability, and safety at high temperatures.
  • LiNi x Co 1-x O 2 (x 1,2) or LiNi 1-xy Co x Mn y O 2 (0 ⁇ x ⁇ 0.5, 0 ⁇ y ⁇ 0.5).
  • a positive electrode active material of the composition has been attempted but not satisfactory enough to solve the problems mentioned above.
  • LiNi x Co 1-x O 2 may improve structural instability. This is because a stable trivalent metal ion such as Al stabilizes the hexagonal structure as it moves or disperses between NiO 2 layers during charge and discharge.
  • Li x [Ni 1-yz Co y Al z ] O 2 (0.96 ⁇ x ⁇ 1.05, 0 ⁇ y ⁇ 0.2, 0 ⁇ z ⁇ 0.1) and (hereinafter NCA) having such composition and structure have high thermal stability and high It has cycle life, high discharge voltage by cobalt, and stability of layered structure by aluminum. NCA has the highest capacity among the cathode active materials for lithium secondary batteries currently on the market.
  • NCA is expensive due to high process costs and difficult to synthesize, which limits the rapid increase in production and demand.
  • NCA not only partially substitutes cobalt, another transition metal, in the nickel site at the exact position of LiNiO 2 , which is a layered high-capacity cathode active material, but also has Ni +2 + or + 4-valent ions. It is a cathode active material doped with aluminum, which is a Group 13 metal having stable + trivalent ions to prevent oxidation and to provide structural stability.
  • the pH range for forming hydroxides of the metals is a very important factor for obtaining uniform particles of the metal complex hydroxide to be co-precipitated.
  • the pH reaction zone in which the metal hydroxides of nickel (Ni) and cobalt (Co), which are main components, are well formed is a strong basic region (pH> 10), and the pH reaction zone in which the metal hydroxide of aluminum doped for structural stability is well formed.
  • the silver is in the neutral region (pH 7-9), and the reaction occurs in the strong basic solution of pH 11-12, which is the co-precipitation region of nickel and cobalt as the main component in the coprecipitation reaction of the metal complex hydroxide containing nickel cobalt aluminum,
  • step (b) introducing a metal element M into the nickel cobalt composite hydroxide obtained in step (a); and the lithium secondary battery cathode active material precursor prepared by the preparation method is represented by the following [Formula 1] .
  • M is a Group 13 metal element, any one selected from B, Al, Ga, In, Tl, or a combination of two or more, and 0 ⁇ y ⁇ 0.25, 0 ⁇ z ⁇ 0.15)
  • the concentration of metal ions in the metal mixture solution containing the nickel-containing compound and cobalt-containing compound of step (a) is 1 to 3M
  • the mixing ratio of the metal and the complexing agent is 1: 0.1 to 2.5
  • the reactor internal temperature is 30 to 60 °C
  • pH is characterized in that the stirring at 200 to 1000 rpm while maintaining a 10 to 13.
  • a solution containing a metal element M and a coprecipitation agent is mixed
  • a method of manufacturing a secondary battery cathode active material precursor, a lithium secondary battery cathode active material precursor prepared thereby, a method of manufacturing a lithium metal composite oxide for a lithium secondary battery cathode active material using the cathode active material precursor and a lithium secondary battery cathode active material produced thereby The lithium metal composite oxide particles are prepared, and the resulting particles are washed and dried.
  • the solution containing the metal element M is an aqueous metal salt solution or metal acid containing the metal element M
  • the coprecipitation agent is a base or an acidic solution.
  • the present invention also provides a lithium secondary battery cathode active material precursor prepared by the method for producing a lithium secondary battery cathode active material precursor of the present invention.
  • M is a Group 13 metal element, any one selected from B, Al, Ga, In, Tl, or a combination of two or more, 0.96 ⁇ x ⁇ 1.05, 0 ⁇ y ⁇ 0.25, 0 ⁇ z ⁇ 0.15 being)
  • step (i) the lithium secondary battery cathode active material precursor prepared by the manufacturing method and the lithium compound are mixed in a ratio of 1: 0.96 to 1: 1.05, and in step (ii), 650 under an oxygen atmosphere. To 850 ° C.
  • the present invention also provides a lithium metal composite oxide prepared by the method for producing a lithium metal composite oxide of the present invention.
  • the present invention it is possible to manufacture a large amount of low-cost lithium metal composite oxide for a lithium secondary battery cathode active material having a simple process and low process cost by reducing a lead time and increasing a process yield.
  • the composite oxide has a small amount of fine powder and high uniformity, which enables high capacity and high performance of the cathode active material.
  • 10 to 12 are graphs of EDS measurement data for (a) SEM photographs of particle cross sections and (b) EDS intensity ratios by metal elements, and (c) molar ratios by metal elements according to one embodiment of the present invention.
  • FIG. 13 is a graph of the initial capacity of the battery using a positive electrode active material according to an embodiment of the present invention.
  • the present invention provides a method for preparing a cathode active material precursor, which is a prior material of a cathode active material, and provides a method for finally obtaining a cathode active material by reacting a precursor prepared by this method.
  • the method for preparing a lithium secondary battery positive electrode active material precursor of the present invention comprises (a) a metal mixed solution containing a nickel-containing compound and a cobalt-containing compound, an aqueous ammonia solution as a complexing agent, and an alkaline aqueous solution providing a hydroxyl group as a pH adjusting agent.
  • a metal mixed solution containing a nickel-containing compound and a cobalt-containing compound, an aqueous ammonia solution as a complexing agent, and an alkaline aqueous solution providing a hydroxyl group as a pH adjusting agent Mixing to prepare nickel cobalt composite hydroxide by a coprecipitation method; (b) introducing the metal element M into the nickel cobalt composite hydroxide obtained in step (a), and the prepared nickel cobalt metal composite hydroxide is represented by the following [Formula 1].
  • M is a Group 13 metal element, any one selected from B, Al, Ga, In, Tl, or a combination of two or more, and 0 ⁇ y ⁇ 0.25, 0 ⁇ z ⁇ 0.15)
  • a co-precipitation method is performed by mixing a metal mixed solution containing a nickel-containing compound and a cobalt-containing compound, an aqueous ammonia solution as a complexing agent, and an alkaline aqueous solution providing a hydroxyl group as a pH adjusting agent with a solvent. precipitation method) to prepare nickel cobalt composite hydroxide.
  • the coprecipitation method is a method in which different ions are precipitated simultaneously in an aqueous solution or a non-aqueous solution.
  • the nickel cobalt mixed metal reacts with the nickel cobalt mixed metal, a complexing agent, and a precipitant continuously supplied to the reactor, and the metal complex hydroxide Ni a Co It is to prepare b (OH) 2 .
  • anions of the nickel and cobalt metal salt is a sulfate (SO 4 -2), nitrate (NO 3 -) and the like can be used, hydrochloride (Cl - -) and nitrate (COO).
  • the concentration of metal ions in the metal mixture solution containing the nickel-containing compound and the cobalt-containing compound is preferably 1 to 3M. If the concentration of metal ion is less than 1M, the productivity is poor due to the small amount of material produced. If the concentration of metal ion is more than 3M, the metal salt may precipitate in the storage tank or the input pipe, so it must be heated to a high temperature. This is because the concentration of is difficult to control the co-precipitated particles because the reaction can proceed quickly.
  • the complexing agents generally include ammonia water (NH 4 OH), ammonium sulfate ((NH 4 ) 2 SO 4 ), ammonium nitrate (NH 4 NO 3 ), and first ammonium phosphate ((NH 4 ) 2 HPO 4 ). It can be used, Preferably ammonia water is used. Ammonia generated in the complexing agent serves to control the shape of the metal complex hydroxide formed.
  • the pH adjusting agent may be an aqueous alkali solution such as lithium hydroxide (LiOH), sodium hydroxide (NaOH) and potassium hydroxide (KOH).
  • the pH adjusting agent serves as a precipitating agent, and serves to maintain a pH suitable for coprecipitation in the mixed aqueous solution.
  • the mixing ratio of the metal and the complexing agent in the metal mixture solution is 1: 0.1 to 2.5, the reactor internal temperature is preferably maintained at 30 to 60 °C, more preferably 45 to 55 °C. It is preferable to stir at 200 to 1000 rpm for 5 to 20 hours while maintaining the pH at 10 to 13.
  • the reactor can use a volume of 1 ⁇ 1,000L, preferably characterized by using a reactor of 50 ⁇ 500L.
  • the reactor used in the present invention may use a continuous reactor (CSTR, Continuous Stirring Tank Reactor) and a batch type (Batch Type Tank Reactor), respectively.
  • Continuous reactors have the advantage of productivity, and batch reactors have the advantage of no reactor stabilization time and free form exchange.
  • nickel cobalt composite hydroxide which is a spherical secondary particle in which fine primary particles are aggregated.
  • the mass production is possible because the Group 13 element can produce more than twice the yield and yield 95% or more than the composite hydroxide co-precipitated simultaneously.
  • step (b) is a step of introducing a metal element M into the nickel cobalt composite hydroxide obtained in the step (a), a wet manufacturing method is used.
  • the nickel cobalt composite hydroxide particles obtained in step (a) and a solution containing a metal element M and a coprecipitation are mixed to produce nickel cobalt composite hydroxide particles, and the resulting nickel cobalt composite hydroxide particles are washed and dried.
  • a metal salt as a metal raw material
  • a basic solution as a coprecipitation agent a metal acid as a metal raw material and an acidic solution as a coprecipitation agent.
  • the metal element M is a Group 13 metal element, any one selected from B, Al, Ga, In, Tl, or a combination of two or more thereof.
  • the solution containing the metal element M is an aqueous metal salt solution or metal acid containing the metal element M.
  • the coprecipitation agent is a basic solution
  • the coprecipitation agent is an acid solution.
  • aluminum raw materials used are aluminum sulfate (Al 2 (SO 4 ) 3 ), aluminum nitrate Al (NO 3 ) 3 , aluminum chloride (AlCl 3 ) and aluminum acetate ( Aluminum metal salts such as Al (COO) 3 ) and metal acids such as sodium aluminate (NaAlO 2 ) can be used.
  • the concentration of the metal raw material solution is preferably 1 to 3M.
  • a metal salt is used as a metal raw material
  • the coprecipitation agent is lithium hydroxide (LiOH), which functions to maintain a pH suitable for coprecipitation in the mixed aqueous solution as a pH adjusting agent using an alkaline solution, Sodium hydroxide (NaOH), potassium hydroxide (KOH) and the like can be used.
  • the pH range of the reaction is preferably 8 to 12, more preferably 9 to 11.5. If the pH is higher than 11.5, the aluminum hydroxide is difficult to co-precipitate. If the pH is lower than 9, the coagulation phenomenon of nickel cobalt metal mixed hydroxide occurs, which makes it difficult to control the desired particle size.
  • Wet manufacturing method 2 is a case in which a metal acid is used as a metal raw material, and the coprecipitation agent adjusts the pH using an acid solution and maintains a suitable pH for coprecipitation to occur, such as sulfuric acid (H 2 SO 4 ) and nitric acid (HNO 3 ). Hydrochloric acid (HCl), phosphoric acid (H 3 PO 4 ), acetic acid (CH 3 COOH), and the like, and the pH is preferably in the range of 6-9.
  • the materials in the reactor are reacted with stirring at a speed of 200 to 1000 rpm, and the reaction time is preferably synthesized at 30 minutes to 10 hours to prepare a slurry.
  • the slurry formed by the wet manufacturing method is filtered and washed with high purity distilled water, and then dried in a vacuum oven at 100 to 130 ° C. for 10 to 15 hours to obtain nickel cobalt metal complex hydroxide.
  • the nickel cobalt metal composite hydroxide thus obtained is spherical secondary particles in which fine primary particles are aggregated.
  • a lithium metal composite oxide for a cathode active material is prepared by using the cathode active material precursor prepared by the method for preparing a lithium secondary battery cathode active material precursor described above.
  • the method for producing a lithium metal composite oxide for a positive electrode active material includes (i) mixing a lithium secondary battery positive electrode active material precursor prepared by the above-described manufacturing method and a lithium compound to prepare a lithium metal composite hydroxide, and (ii) the lithium metal Calcining the composite hydroxide to obtain a lithium metal composite oxide; wherein the prepared lithium metal composite oxide is represented by the following [Formula 2].
  • M is a Group 13 metal element, any one selected from B, Al, Ga, In, Tl, or a combination of two or more, 0.96 ⁇ x ⁇ 1.05, 0 ⁇ y ⁇ 0.25, 0 ⁇ z ⁇ 0.15 being)
  • step (i) the obtained dried metal complex hydroxide is heat-treated at 400 to 600 ° C. for 6 to 15 hours to obtain nickel cobalt metal complex hydroxide doped with metal element M.
  • the lithium compound lithium hydroxide (LiOH), lithium nitrate (LiNO 3) and the like, but lithium carbonate (LiCO 3), it is not limited thereto.
  • the lithium secondary battery cathode active material precursor prepared before and the lithium compound in a ratio of 1: 0.96 to 1: 1.05. If the x value in the formula (2) is less than 0.96, the capacity of the final positive electrode active material is lowered, which is not preferable. If the value exceeds 1.05, unreacted LiOH is formed and the capacity is lowered.
  • the lithium metal complex hydroxide obtained in the step (i) is calcined at 650 to 850 °C in an oxygen atmosphere to the desired lithium metal of formula (2) A composite oxide can be obtained.
  • a method of producing a doping hetero-metal element M after doping after the co-precipitation reaction of nickel and cobalt as main elements By using this method, the lead time can be reduced by more than 2 times and the process yield can be significantly increased to 95% or more. Therefore, a large amount of low-cost metal composite oxide for lithium secondary battery cathode active material can be manufactured.
  • a 2.0 M nickel sulfate hexahydrate (NiSO 4 .6H 2 O) and cobalt sulfate heptahydrate (CoSO 4 ⁇ 7H 2 O) metal mixed solution was prepared such that the Ni: Co molar ratio was 84.5: 15.5.
  • 28% ammonia water as the complexing agent and 25% sodium hydroxide solution as the pH adjuster were used.
  • a continuous reactor with a volume of 90 L filled with 1M aqueous ammonia solution was used and the pH of the initial solution was in the range of 11-12.
  • the prepared 2.0 M nickel cobalt metal mixture solution, 28% aqueous ammonia and 25% sodium hydroxide solution was continuously added at the same time using a metering pump while stirring at a speed of 600 rpm.
  • the temperature in the reactor was maintained at 50 ° C while the metal mixture solution was added at a rate of 7 L / hr and ammonia water at 0.5 L / hr.
  • Sodium hydroxide was continuously reacted while adjusting the input amount to maintain the pH in the reactor at 11-12. Was performed.
  • the reactor residence time was 8 hours. Slurry, a reaction product discharged through the reactor overflow in a continuous reaction, was collected.
  • the slurry produced in the batch type reactor having a volume of 90 L was collected at 90%, the temperature was maintained at 50 ° C., and the rotational speed was 600 rpm while the molar ratio of aluminum and the nickel cobalt metal mixture solution was 5 mol%.
  • a 2.0 M aqueous aluminum nitrate (Al (NO 3 ) 3 ) solution and a 25% sodium hydroxide solution as co-precipitation were added at the same time.
  • the addition rate of the aluminum nitrate solution was 2L / hr and sodium hydroxide was reacted for 1 hour while adjusting the input amount to maintain the pH in the reactor 10 ⁇ 11.5.
  • the slurry solution in the reactor was filtered and washed with distilled water of high purity, and dried in a vacuum oven at 110 °C for 12 hours to obtain a nickel cobalt aluminum metal complex hydroxide.
  • the composition of the obtained nickel cobalt aluminum metal composite hydroxide was Ni 0.8 Co 0.15 Al 0.05 (OH) 2 .
  • the composition of the calcined lithium metal composite oxide was Li (Ni 0.8 Co 0.15 Al 0.05 ) O 2 , and the total yield was 97.2%.
  • the 90L batch type reactor was filled with 19% 1M aqueous ammonia solution and the temperature was maintained at 50 ° C.
  • the pH of the initial solution ranges from 11-12.
  • 90% of the reactor volume was filled with a slurry containing nickel cobalt metal hydroxide, and the input of the raw material solution was stopped.
  • Ni 0.8 Co 0.15 Al 0.05 (OH) 2 was obtained.
  • Lithium metal composite oxide Li (Ni 0.8 Co 0.15 Al 0.05 ) O 2 was obtained in the same manner as in Example 1.3, with a yield of 94.6%.
  • Example 2.1 It proceeded in the same manner as in Example 2.1.
  • the collected hydroxide was filtered and washed with distilled water of high purity, and dried in a vacuum oven at 110 ° C. for 12 hours to obtain a nickel / cobalt metal complex hydroxide [Ni0.84Co0.16 (OH) 2].
  • Aluminum isopropoxide (Al (Oi-Pr) 3 ) corresponding to Al / (Ni + Co) 0.05 was mixed with the obtained nickel cobalt hydroxide and mixed using a high speed mixer. The mixture was placed in a Cordilite crucible (Sega) and heat treated at 400 ° C., 5 hours, 550 ° C., and 8 hours under an air stream.
  • the chemical composition of the plastic is water lithium metal composite oxide is an O 2 Li (Ni 0 .8 Co 0 .15 Al 0 .05), total yield is 97.5%
  • Example 4.2 In the introduction of aluminum in Example 4.2, the aluminum raw material was carried out in the same manner as in Example 4 except that aluminum hydroxide (Al (OH) 3 ) was used instead of aluminum isopropoxide (Al (Oi-Pr) 3). A lithium metal composite oxide Li [Ni 0.8 Co 0.15 Al 0.05 ) O 2 was obtained in a yield of 97.1%.
  • Al (OH) 3 aluminum hydroxide
  • Al (Oi-Pr) 3 aluminum isopropoxide
  • Nickel cobalt hydroxide was synthesized in the same manner as in Example 2. Taken out of the reactor slurry 110 °C then washed with distilled water filtered and highly purified, and dried 12 hours in a vacuum oven nickel / cobalt metal complex hydroxide [Ni 0 .84 Co 0 .16 ( OH) 2] to give the
  • Al (OH) 3 aluminum hydroxide
  • LiOH ⁇ H 2 O lithium hydroxide
  • the chemical composition of the plastic is water lithium metal composite oxide is an O 2 Li (Ni 0 .8 Co 0 .15 Al 0 .05), the total yield was 96.8%.
  • the metal mixture solution was 2.5L / hr, ammonia water was added at a rate of 0.2L / hr, sodium hydroxide was continuously reacted while adjusting the input amount to maintain the pH in the reactor 10.6 ⁇ 11.6 Was performed.
  • Reactor residence time is 17 hours.
  • the slurry which is a reaction product discharged through the reactor overflow as a continuous reaction, was filtered and washed with high purity distilled water, and then dried in a vacuum oven at 110 ° C. for 12 hours to form nickel cobalt aluminum metal composite hydroxide Ni 0.8 Co 0.15 Al 0.05 (OH ) 2 was obtained.
  • the chemical composition of the resulting lithium metal composite oxide was Li (Ni 0.8 Co 0.15 Al 0.05 ) O 2 , the total yield was 89.8%.
  • the lithium metal composite oxide Li (Ni 0.8 Co 0.15 Al 0.05 was obtained in the same manner as in Comparative Example 1 in a total yield of 80.1%. ) O 2 was synthesized.
  • Example 1 the hydroxide synthesis process time of Examples 1 to 6 after aluminum was introduced into the nickel cobalt composite hydroxide was 10 hours or less, compared to Comparative Examples 1 and 2 in which aluminum was simultaneously introduced in the hydroxide synthesis step, and the process time was 50. Improved to less than% was confirmed that the production capacity of the metal complex hydroxide is more than doubled. In addition, it can be seen that the total process yield of the lithium metal composite oxides of Examples 1 to 6 was also improved to 97.5% (Example 4), which is significantly greater than that of Comparative Examples 1 and 2.
  • Powder XRD X-Ray Diffraction
  • the aluminum-incorporated lithium metal composite oxide obtained in Examples 1 to 6 was 1.1 or more on all of the I 003 / I 104 planes, and the R factor was 0.43 or less, and was compared in a single phase without impurities. Compared with Examples 1 and 2, it was confirmed that the composite layer was composed of a desired layered structure by showing structural features equal to or higher than those of Examples 1 and 2.
  • the particle size distributions of all the lithium metal composite oxides prepared in Examples 1 to 6 and Comparative Examples 1 and 2 were measured by a particle size analyzer, and are shown in Table 3 below. All of D10 of Examples 1 to 6, which applied the manufacturing process of post-incorporation of dissimilar metal aluminum, were 4.0 ⁇ m or more, and had much more uniform and less fine particles than Comparative Examples 1 to 2 using the co-precipitation method. In addition, it was found that the fine particles and the particles were agglomerated less than Comparative Examples 1 to 2 because the D90 was small.
  • FIGS. 13 to 15 Particle cross-sectional SEM of nickel cobalt aluminum metal composite oxide synthesized in Example 1, Example 2 and Comparative Example 1 and its cross section EDS (Energy Dispersive Spectrometry) measurement to compare the data for Example 1, Example 2 and Examples 1 are shown in FIGS. 13 to 15, respectively. As shown in FIGS. 13 to 15, it was confirmed that aluminum, which is a dissimilar metal, was uniformly doped to the inside of the particle.
  • the slurry was prepared by mixing the positive electrode active material synthesized in Examples 1 to 6 and Comparative Examples 1 to 2 with carbon black and PVDF [vinylidene fluoride] (PVDF) and NMP as an organic solvent in a weight ratio of 94: 3: 3. It was.
  • the slurry was applied to an Al foil having a thickness of 20 ⁇ m and then dried to prepare a positive electrode.
  • Coin half cell (CR2016) was assembled using a porous polyethylene film (CellGard 2502) as a metal lithium and a separator as a cathode along with the anode, and 1.1M LiPF 6 EC / EMC / DEC solution was used as an electrolyte. .
  • the present invention it is possible to manufacture a large amount of low-cost lithium metal composite oxide for a lithium secondary battery cathode active material having a simple process and low process cost by reducing a lead time and increasing a process yield.
  • the composite oxide has a small amount of fine powder and high uniformity, which enables high capacity and high performance of the cathode active material.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

La présente invention concerne un procédé de production d'un précurseur de matière d'anode dans un accumulateur au lithium, ledit procédé comprenant les étapes qui consistent à: (a) préparer un oxyde composite nickel-cobalt par coprécipitation et mélange avec une solution d'une solution de métaux mélangés qui comprend des composés incluant le nickel et des composés comprenant le cobalt, une solution aqueuse d'ammoniaque en tant qu'agent complexant et une solution aqueuse alcaline qui comprend un groupe hydroxyle en tant qu'agent de régulation du pH; (b) introduire un élément métallique M dans l'oxyde composite cobalt-nickel préparé dans l'étape (a), ledit précurseur de matière active d'anode dans l'accumulateur au lithium étant représenté par la formule chimique 1 donnée ci-dessous et l'oxyde composite de métal lithium pour la matière active d'anode dans l'accumulateur au lithium étant représenté par la formule chimique 2 donnée ci-dessous. [Formule chimique 1] [Ni1-y-zCoyMz](OH)2 (Dans la formule chimique 1, M représente un élément métallique du groupe 13 et se présente seul ou sous forme d'une combinaison d'au moins deux éléments sélectionnés dans un groupe comprenant: B, Al, Ga, In et Tl, et 0≤y≤0.25, 0≤z≤0.15). [Formule chimique 2] Lix[Ni1 -y- zCoyMz]O2 (Dans la formule chimique 2, M représente un élément métallique du groupe 13 et se présente seul ou sous forme d'une combinaison d'au moins deux éléments sélectionnés dans le groupe comprenant: B, Al, Ga, In et Tl, et 0.96≤x≤1.05, 0≤y≤0.25, 0≤z≤0.15).
PCT/KR2011/005400 2010-07-21 2011-07-21 Procédé de production d'un précurseur de matière active d'anode pour un accumulateur au lithium, précurseur de matière active d'anode pour un accumulateur au lithium produit au moyen du procédé et procédé de préparation d'un oxyde composite métal lithium au moyen du précurseur de matière active d'anode et oxyde composite métal lithium pour matière active d'anode pour un accumulateur au lithium préparé au moyen du procédé correspondant WO2012011760A2 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020100070451A KR101313575B1 (ko) 2010-07-21 2010-07-21 리튬 이차 전지 양극활물질 전구체의 제조방법, 이에 의하여 제조된 리튬 이차전지 양극활물질 전구체, 및 상기 리튬 이차전지 양극활물질 전구체를 이용한 리튬 이차전지 양극활물질의 제조방법, 이에 의하여 제조된 리튬 이차전지 양극활물질
KR10-2010-0070451 2010-07-21

Publications (2)

Publication Number Publication Date
WO2012011760A2 true WO2012011760A2 (fr) 2012-01-26
WO2012011760A3 WO2012011760A3 (fr) 2012-05-31

Family

ID=45497311

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2011/005400 WO2012011760A2 (fr) 2010-07-21 2011-07-21 Procédé de production d'un précurseur de matière active d'anode pour un accumulateur au lithium, précurseur de matière active d'anode pour un accumulateur au lithium produit au moyen du procédé et procédé de préparation d'un oxyde composite métal lithium au moyen du précurseur de matière active d'anode et oxyde composite métal lithium pour matière active d'anode pour un accumulateur au lithium préparé au moyen du procédé correspondant

Country Status (2)

Country Link
KR (1) KR101313575B1 (fr)
WO (1) WO2012011760A2 (fr)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110808369A (zh) * 2019-09-19 2020-02-18 宜宾光原锂电材料有限公司 一种低钠硫镍钴铝三元前驱体的制备方法
CN112194193A (zh) * 2020-08-27 2021-01-08 浙江美都海创锂电科技有限公司 一种高镍四元锂离子电池正极前驱体材料的制备方法
CN114180646A (zh) * 2020-09-15 2022-03-15 中国石油化工股份有限公司 正极材料前驱体及其制备方法和正极材料及其应用

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101541347B1 (ko) * 2012-07-09 2015-08-04 주식회사 엘지화학 양극 활물질 및 이를 포함하는 리튬 이차전지
KR101868663B1 (ko) * 2014-09-17 2018-06-18 주식회사 엘지화학 리튬 이차 전지용 양극활물질 및 이를 포함하는 리튬 이차전지
KR102292385B1 (ko) 2014-11-19 2021-08-23 삼성에스디아이 주식회사 리튬 이차 전지용 양극 활물질, 이의 제조 방법 및 이를 포함하는 리튬 이차 전지
KR101632887B1 (ko) * 2014-12-24 2016-06-24 주식회사 포스코 리튬 이차 전지용 양극 활물질 전구체 및 이의 제조 방법, 양극 활물질 및 이를 포함하는 리튬 이차 전지
KR20160083616A (ko) * 2014-12-31 2016-07-12 삼성에스디아이 주식회사 리튬이차전지용 양극 활물질의 전구체, 그 제조방법, 리튬이차전지용 양극 활물질, 그 제조방법, 및 상기 양극 활물질을 포함하는 리튬이차전지
CN104733724A (zh) * 2015-03-31 2015-06-24 南通瑞翔新材料有限公司 高镍型锂离子二次电池正极材料及其制备方法
KR101892225B1 (ko) * 2015-12-24 2018-08-27 주식회사 포스코 리튬 이차 전지용 양극 활물질 전구체 및 이의 제조 방법, 양극 활물질 및 이의 제조 방법, 상기 양극 활물질을 포함하는 리튬 이차 전지
KR101826612B1 (ko) * 2017-06-07 2018-02-07 주식회사 엘 앤 에프 양극 활물질, 및 이를 포함하는 리튬 이차 전지
KR102299253B1 (ko) * 2018-09-12 2021-09-07 주식회사 포스코 양극 활물질, 이의 제조 방법, 및 이를 포함하는 리튬 이차 전지
KR102221418B1 (ko) * 2019-10-15 2021-03-02 주식회사 에코프로비엠 리튬 복합 산화물 전구체, 이의 제조 방법 및 이를 이용하여 제조된 리튬 복합 산화물
KR20220013166A (ko) * 2020-07-24 2022-02-04 주식회사 엘지화학 양극 활물질 전구체 및 이의 제조 방법

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100261508B1 (ko) * 1997-10-30 2000-07-15 김순택 리튬복합산화물,그제조방법및그것을활물질로하는양극을채용한리튬이온이차전지
KR20030093166A (ko) * 2003-11-18 2003-12-06 선양국 표면처리된 리튬이차전지용 양극활물질 및 그 제조방법
KR20060128814A (ko) * 2006-11-28 2006-12-14 한양대학교 산학협력단 리튬이차전지용 고용량, 고안전성 층상 양극 활물질의 제조방법 및 그 제조물
KR100959589B1 (ko) * 2008-04-03 2010-05-27 주식회사 엘지화학 리튬 복합 전이금속 산화물 제조용 신규 전구체

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1173966A (ja) * 1997-07-01 1999-03-16 Matsushita Electric Ind Co Ltd 非水電解質二次電池およびその正極活物質の製造法
JP5103923B2 (ja) * 2007-02-08 2012-12-19 住友金属鉱山株式会社 非水系電解質二次電池用正極活物質、その製造方法及びそれを用いた非水系電解質二次電池

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100261508B1 (ko) * 1997-10-30 2000-07-15 김순택 리튬복합산화물,그제조방법및그것을활물질로하는양극을채용한리튬이온이차전지
KR20030093166A (ko) * 2003-11-18 2003-12-06 선양국 표면처리된 리튬이차전지용 양극활물질 및 그 제조방법
KR20060128814A (ko) * 2006-11-28 2006-12-14 한양대학교 산학협력단 리튬이차전지용 고용량, 고안전성 층상 양극 활물질의 제조방법 및 그 제조물
KR100959589B1 (ko) * 2008-04-03 2010-05-27 주식회사 엘지화학 리튬 복합 전이금속 산화물 제조용 신규 전구체

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110808369A (zh) * 2019-09-19 2020-02-18 宜宾光原锂电材料有限公司 一种低钠硫镍钴铝三元前驱体的制备方法
CN112194193A (zh) * 2020-08-27 2021-01-08 浙江美都海创锂电科技有限公司 一种高镍四元锂离子电池正极前驱体材料的制备方法
CN114180646A (zh) * 2020-09-15 2022-03-15 中国石油化工股份有限公司 正极材料前驱体及其制备方法和正极材料及其应用
CN114180646B (zh) * 2020-09-15 2024-01-26 中国石油化工股份有限公司 正极材料前驱体及其制备方法和正极材料及其应用

Also Published As

Publication number Publication date
KR20120009779A (ko) 2012-02-02
KR101313575B1 (ko) 2013-10-02
WO2012011760A3 (fr) 2012-05-31

Similar Documents

Publication Publication Date Title
WO2012011760A2 (fr) Procédé de production d'un précurseur de matière active d'anode pour un accumulateur au lithium, précurseur de matière active d'anode pour un accumulateur au lithium produit au moyen du procédé et procédé de préparation d'un oxyde composite métal lithium au moyen du précurseur de matière active d'anode et oxyde composite métal lithium pour matière active d'anode pour un accumulateur au lithium préparé au moyen du procédé correspondant
WO2015012648A1 (fr) Particules polycristallines à base d'oxyde de lithium et de manganèse, leur procédé de préparation, et matériau actif d'anode les contenant
WO2016060451A1 (fr) Matériau actif de cathode de batterie au lithium à structure poreuse et procédé de préparation associé
WO2012093797A2 (fr) Matière active d'anode à gradient de concentration dans la particule totale pour batterie secondaire au lithium, son procédé de préparation, et batterie secondaire au lithium comprenant cette matière
WO2017150945A1 (fr) Précurseur de matière active d'électrode positive pour batterie secondaire et matière active d'électrode positive préparée à l'aide de celui-ci
WO2020106024A1 (fr) Matériau actif d'électrode positive pour batterie secondaire au lithium et son procédé de préparation
WO2011087309A2 (fr) Procédé permettant de préparer un précurseur de matériau actif d'électrode positive pour une batterie rechargeable au lithium ayant une couche de gradient de concentration et de préparer un matériau actif positif à l'aide d'un réacteur discontinu, et précurseur de matériau actif d'électrode positive pour une batterie rechargeable au lithium et matériau actif positif préparés par le procédé
WO2017057900A1 (fr) Matériau actif de cathode pour pile rechargeable et pile rechargeable le comprenant
WO2018101808A1 (fr) Précurseur de matériau actif de nickel pour pile rechargeable au lithium et son procédé de fabrication, matériau actif de nickel pour pile rechargeable au lithium fabriqué à l'aide dudit procédé, et pile rechargeable au lithium ayant une cathode contenant ledit matériau actif de nickel
WO2016068594A1 (fr) Matériau actif d'anode pour batterie rechargeable au lithium, son procédé de fabrication, et batterie rechargeable au lithium comprenant un matériau actif d'anode
WO2012011785A2 (fr) Procédé de production d'une matière active d'anode utile pour un accumulateur au lithium, matière active d'anode pour un accumulateur au lithium produite au moyen du procédé et accumulateur au lithium utilisant ladite matière active d'anode
WO2009145471A1 (fr) Nouveau précurseur pour la production d'un oxyde de métal de transition composite au lithium
WO2011081422A9 (fr) Oxyde composite de lithium et procédé de production de celui-ci
WO2021080374A1 (fr) Procédé de préparation de précurseur de matériau actif d'électrode positive, et précurseur de matériau actif d'électrode positive associé
WO2011126182A1 (fr) Procédé de production de matériau actif de cathode pour batterie secondaire comprenant un oxyde métallique composite, et matériau actif de cathode pour batterie secondaire comprenant un oxyde métallique composite produit au moyen dudit procédé
WO2017095153A1 (fr) Matériau actif de cathode pour accumulateur et accumulateur comprenant celui-ci
WO2016068681A1 (fr) Précurseur d'oxyde de métal de transition, procédé de préparation de celui-ci, oxyde de métal de transition composite au lithium, électrode positive comprenant celui-ci, et batterie secondaire
WO2020055198A1 (fr) Procédé de fabrication de matériau d'électrode positive pour batterie secondaire au lithium et matériau d'électrode positive pour batterie secondaire au lithium fabriqué grâce à ce dernier
WO2021132762A1 (fr) Matériau actif d'électrode positive, son procédé de fabrication, et batterie secondaire au lithium dotée d'électrode positive comportant ledit matériau
WO2019103461A2 (fr) Précurseur de matériau actif de cathode, son procédé de fabrication, et matériau actif de cathode, cathode et batterie secondaire fabriqués en y ayant recours
WO2021187963A1 (fr) Procédé de préparation d'un précurseur de matériau actif de cathode pour batterie secondaire au lithium, précurseur de matériau actif de cathode, matériau actif de cathode préparé à l'aide de celui-ci, cathode et batterie secondaire au lithium
WO2020235909A1 (fr) Matériau actif de cathode pour batterie secondaire au sodium dopé au calcium, et batterie secondaire au sodium le comprenant
WO2022080710A1 (fr) Précurseur de métal de transition composite pour matériau actif de cathode, et matériau actif de cathode de batterie secondaire préparé à partir de celui-ci
WO2012124970A2 (fr) Procédé de fabrication pour un matériau anodique pour une batterie secondaire au lithium et matériau anodique pour une telle batterie fabriqué par celui-ci
WO2016089176A1 (fr) Matériau actif de cathode, son procédé de préparation et batterie rechargeable au lithium le comprenant

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11809887

Country of ref document: EP

Kind code of ref document: A2

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11809887

Country of ref document: EP

Kind code of ref document: A2