WO2012010059A1 - 生物质低温裂解高温气化工艺及其设备 - Google Patents

生物质低温裂解高温气化工艺及其设备 Download PDF

Info

Publication number
WO2012010059A1
WO2012010059A1 PCT/CN2011/076921 CN2011076921W WO2012010059A1 WO 2012010059 A1 WO2012010059 A1 WO 2012010059A1 CN 2011076921 W CN2011076921 W CN 2011076921W WO 2012010059 A1 WO2012010059 A1 WO 2012010059A1
Authority
WO
WIPO (PCT)
Prior art keywords
temperature
gasification
biomass
syngas
furnace
Prior art date
Application number
PCT/CN2011/076921
Other languages
English (en)
French (fr)
Inventor
陈义龙
唐宏明
张岩丰
Original Assignee
武汉凯迪控股投资有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to SG2013004445A priority Critical patent/SG187570A1/en
Application filed by 武汉凯迪控股投资有限公司 filed Critical 武汉凯迪控股投资有限公司
Priority to AU2011282076A priority patent/AU2011282076B2/en
Priority to CA2805912A priority patent/CA2805912C/en
Priority to RU2013107365/05A priority patent/RU2526387C1/ru
Priority to KR1020137004300A priority patent/KR101472859B1/ko
Priority to AP2013006725A priority patent/AP3671A/xx
Priority to JP2013519946A priority patent/JP5606624B2/ja
Priority to MX2013000835A priority patent/MX2013000835A/es
Priority to EP11809247.7A priority patent/EP2597138B1/en
Priority to BR112013001313-3A priority patent/BR112013001313B1/pt
Publication of WO2012010059A1 publication Critical patent/WO2012010059A1/zh
Priority to ZA2013/00483A priority patent/ZA201300483B/en
Priority to US13/745,859 priority patent/US8999022B2/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J3/00Production of combustible gases containing carbon monoxide from solid carbonaceous fuels
    • C10J3/58Production of combustible gases containing carbon monoxide from solid carbonaceous fuels combined with pre-distillation of the fuel
    • C10J3/60Processes
    • C10J3/64Processes with decomposition of the distillation products
    • C10J3/66Processes with decomposition of the distillation products by introducing them into the gasification zone
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J3/00Production of combustible gases containing carbon monoxide from solid carbonaceous fuels
    • C10J3/46Gasification of granular or pulverulent flues in suspension
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J3/00Production of combustible gases containing carbon monoxide from solid carbonaceous fuels
    • C10J3/46Gasification of granular or pulverulent flues in suspension
    • C10J3/48Apparatus; Plants
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J3/00Production of combustible gases containing carbon monoxide from solid carbonaceous fuels
    • C10J3/72Other features
    • C10J3/721Multistage gasification, e.g. plural parallel or serial gasification stages
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J3/00Production of combustible gases containing carbon monoxide from solid carbonaceous fuels
    • C10J3/72Other features
    • C10J3/82Gas withdrawal means
    • C10J3/84Gas withdrawal means with means for removing dust or tar from the gas
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/09Details of the feed, e.g. feeding of spent catalyst, inert gas or halogens
    • C10J2300/0903Feed preparation
    • C10J2300/0906Physical processes, e.g. shredding, comminuting, chopping, sorting
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/09Details of the feed, e.g. feeding of spent catalyst, inert gas or halogens
    • C10J2300/0913Carbonaceous raw material
    • C10J2300/0916Biomass
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/09Details of the feed, e.g. feeding of spent catalyst, inert gas or halogens
    • C10J2300/0913Carbonaceous raw material
    • C10J2300/094Char
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/09Details of the feed, e.g. feeding of spent catalyst, inert gas or halogens
    • C10J2300/0953Gasifying agents
    • C10J2300/0973Water
    • C10J2300/0976Water as steam
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/12Heating the gasifier
    • C10J2300/123Heating the gasifier by electromagnetic waves, e.g. microwaves
    • C10J2300/1238Heating the gasifier by electromagnetic waves, e.g. microwaves by plasma
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/18Details of the gasification process, e.g. loops, autothermal operation
    • C10J2300/1861Heat exchange between at least two process streams
    • C10J2300/1884Heat exchange between at least two process streams with one stream being synthesis gas
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/18Details of the gasification process, e.g. loops, autothermal operation
    • C10J2300/1861Heat exchange between at least two process streams
    • C10J2300/1892Heat exchange between at least two process streams with one stream being water/steam
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/141Feedstock
    • Y02P20/145Feedstock the feedstock being materials of biological origin

Definitions

  • the present invention relates to a technique for converting a combustible material into a clean and efficient syngas, and more particularly to a biomass low temperature cracking high temperature gasification process and apparatus therefor.
  • the gasification technology of combustible materials has developed rapidly at the end of the 20th century. Especially the technology for gasification of coal has been quite mature.
  • researchers have successfully developed a wide applicability to coal, high gasification efficiency and pollution. Less coal gasification process.
  • the technology of gasification of biomass such as branches, straw, straw or other agricultural and forestry wastes is a new technology for comprehensive utilization of energy in this century.
  • the existing biomass gasification technology mainly includes fixed bed gasification process. , Fluidized bed gasification process, two-stage gas production process, etc. These are all direct gasification processes.
  • the most important feature of the direct gasification process is to use the heat released by the combustion of some biomass to provide energy for the gasification reaction.
  • the oxidant used in the gasification reaction is generally air, oxygen-enriched air, or a combination of oxygen-enriched air and water vapor.
  • Recent studies and experiments have shown that the above-mentioned biomass direct gasification process has the following defects:
  • the composition and calorific value of biomass fuel are extremely unstable, the ignition point is low, the ignition reaction is fast, and the deflagration phenomenon is easy to occur.
  • the localized area of the gasification furnace super temperature coke fouling is formed, and the operating temperature of the gasification furnace is extremely difficult to control.
  • the operating temperature of the gasifier is mostly designed to be 800 ⁇ 1200 °C, and the biomass fuel that undergoes gasification reaction in this temperature zone will produce a large amount of tar that is difficult to remove. Excessive tar accumulates and sticks in equipment and pipelines. The knot can cause pipe blockage and equipment contamination.
  • the ash produced by the biomass fuel gasification reaction contains a large amount of alkali metal oxides such as K and Na, which generally account for 20-40% of the ash weight, and these alkali metal oxides will be higher than 80 CTC. Gasification is mixed with the syngas produced, which not only affects the quality of the syngas, but also adheres to the equipment and piping together with the tar, causing serious corrosion to equipment and pipelines.
  • the object of the present invention is to provide a low temperature pyrolysis high temperature gasification process for biomass, which is easy to control, low in energy consumption and low in investment, high in cold gas efficiency, large in calorific value of syngas produced, and capable of eradicating tar and alkali metal compounds. And its equipment.
  • the low temperature pyrolysis high temperature gasification process designed by the invention utilizes superheated steam as an oxidant and an energy carrier, and sequentially performs low temperature cracking and high temperature gasification of biomass fuel in different temperature regions.
  • the process of processing and ultimately generating a net syngas. includes the following steps:
  • the generated coke-containing ash slag is first cooled and cooled, and generally cooled to below 15 CTC, and the coke component is separated. Coke is used to produce syngas in the next step, and the ash containing alkali metal oxide is sent to the ash slag for comprehensive utilization.
  • the heat of the high-temperature superheated steam should always be maintained in the gasifier
  • the operating temperature inside is 1200-1600 °C
  • the crude syngas and coke are gasified in the process of full contact with high temperature superheated steam to form the initial syngas. Since the operating temperature in the gasifier is higher than the formation temperature of the tar-like substance, the raw syngas and the coke raw material are completely vaporized, and the resulting syngas contains no tar component.
  • the generated syngas is sequentially cooled and cooled, dust is removed, acid gas is removed, and dehydration drying treatment is performed.
  • cooling and cooling are the requirements for the process of preparing synthesis gas.
  • a large amount of sensible heat can be recovered for comprehensive utilization.
  • the dust can be removed from the dust carried in the initial syngas, and the dust concentration of the syngas is preferably less than 50 mg/Nm 3 . Removal of the acid gas removes harmful gases such as H 2 S, COS, HCL, NH 3 , HCN, etc. in the initial synthesis gas.
  • the purified syngas is then dehydrated and dried to obtain a net syngas for downstream industrial applications.
  • the particle size of the biomass fuel is preferably controlled to be 20 mm x 20 mm or less, and the weight content of moisture in the biomass fuel is preferably less than 40%.
  • the balance of size and moisture content ensures that the cracking reaction of all biomass fuels and superheated steam is uniform, smooth and sufficient.
  • the operating temperature of the cracking furnace is easy to control, and no excessive temperature coking is formed in the cracking furnace.
  • step 1) it is preferable to provide a nitrogen atmosphere at the feed port of the cracking furnace to prevent the risk of fire and explosion from the leakage of the crude syngas in the cracking furnace.
  • the preferred cracking furnace operating temperature is 500-650 ° C
  • the operating pressure is 105-109 Kpa
  • the low-temperature superheated steam injection speed is 35-50 m/s
  • the crude syngas is in the cracking furnace.
  • the residence time is 15 ⁇ 20s
  • the crude syngas extraction speed is 15 ⁇ 20m/s.
  • the operating temperature of the cracking furnace is much lower than the sublimation temperature of about 80 CTC of the alkali metal oxide, the inclusion of alkali metal oxide in the crude syngas is completely eliminated.
  • the lower extraction speed of the crude syngas prevents it from carrying ash accumulation at the cracker exit and flue.
  • the preferred gasifier operating temperature is 1200 ⁇ 1400 ° C
  • the operating pressure is 105-109 Kpa
  • the high-temperature superheated steam is injected at a speed of 35-50 m/s
  • the initial syngas is in the gasifier.
  • the residence time is 15 ⁇ 20s
  • the initial syngas extraction speed is 15 ⁇ 20m/s.
  • the gasifier is also operated under normal pressure, no additional pressure equipment is required, and the investment cost is low.
  • the higher injection speed of high temperature superheated steam can increase the disturbance, contact and mixing with the crude syngas and coke.
  • the generated preliminary syngas is first cooled to 260 to 320 ° C, and then purified. Since the temperature of the initial syngas is as high as 1200 ⁇ 1400 °C, the cooling and cooling is beneficial to the subsequent dedusting, deacidification and drying treatment, and the sensible heat in the syngas can be fully recovered to realize the comprehensive utilization of waste heat.
  • the biomass pyrolysis pyrolysis gasification equipment designed to achieve the above process is mainly composed of a combination of a cracking furnace and a gasifier, a low temperature plasma torch heater, a high temperature plasma torch heater, a water storage tank and a water pump, and a heat exchanger. to make. among them:
  • the water storage tank is connected to the feed water input end of the heat exchanger through a water pump, and the steam output end of the heat exchanger is simultaneously connected with the inlet of the low temperature plasma torch heater and the inlet of the high temperature plasma torch heater.
  • the exhaust port of the low temperature plasma torch heater is connected to a water vapor nozzle of the cracking furnace, and the exhaust port of the high temperature plasma torch heater is connected to a water vapor nozzle of the gasifier.
  • An outlet of the cracking furnace is connected to an inlet of the gasifier, and a slag outlet of the cracking furnace is connected to a slag opening of the slag cooler, and a slag outlet of the slag cooler and a ash separator
  • the feed ports are connected, and the gas outlet of the gasifier is connected to the gas input end of the heat exchanger, and the gas output end of the heat exchanger is sequentially connected in series with the dust remover, the acid removal tower and the dryer.
  • the plasma torch heater has the characteristics of ultra-high temperature heating, fast heat and mass transfer, high thermal efficiency, adjustable thermal power, etc., it can output the water in the water storage tank efficiently, continuously and stably.
  • Superheated steam, superheated steam as both an oxidant and an energy carrier ensures that the cracking furnace and gasifier are always stable and reliable.
  • the heat exchanger can effectively recover a large amount of sensible heat carried by the initial syngas, which can preheat the water in the water storage tank into saturated steam and then send it to the plasma torch heater to reduce the plasma torch heater. The energy consumption, while achieving the comprehensive utilization of thermal energy.
  • a nitrogen gas protection device is connected to the feed port of the cracking furnace.
  • nitrogen is also supplied to the feed port, and the formed nitrogen sealing layer can prevent the leakage of the crude syngas in the cracking furnace and prevent the outside air from entering the cracking furnace. This eliminates the risk of fire and explosion and ensures the quality of the raw syngas.
  • the coke outlet of the ash separator is connected to the carbon inlet of the gasifier through a coke conveyor.
  • the coke can be directly conveyed to the gasifier by a screw feeding device, which can reduce the intermediate manual conveying link and improve the continuity and stability of the gasifier operation.
  • the water vapor nozzle of the cracking furnace and the water vapor nozzle of the gasifier are along the height of the respective furnace body There are 2 ⁇ 4 layers arranged in the direction, and each layer is uniformly tangentially distributed in the circumferential direction. In this way, the superheated steam is sprayed in multiple layers, and the temperature field in the cracking furnace and the gasifier in the height direction can be kept stable and uniform at all times, and the superheated steam is sufficiently contacted with the reactants.
  • the invention carefully studies and analyzes the inherent characteristics of moisture, ash, volatile matter and ash melting point in the biomass, and combines the operating characteristics of the cracking furnace and the gasifier to abandon the traditional oxidant air or oxygen-enriched air, and then utilizes
  • the superheated steam is classified into different temperature conditions for low temperature cracking and high temperature gasification of biomass fuel, and its advantages are mainly reflected in the following aspects:
  • superheated steam is both an oxidizing medium and an energy carrier, so that no air or oxygen-enriched air is required, and a high-energy air separation device is omitted in the process. Reduce the energy consumption of the entire process and the total investment in the project.
  • the pyrolysis and gasification two-stage process has no combustion reaction of biomass fuel, which effectively solves the problem of local coking in the furnace during the conventional gasification process, and the processes at all levels are very easy to control.
  • the obtained syngas has a high ratio of H 2 /CO, and the content of the effective gas (CO+H 2 ) is high, which can reach more than 85%, thereby greatly increasing the calorific value of the syngas. , to broaden the use of syngas.
  • the biomass reaction device is composed of a cracking furnace and a gasification furnace.
  • the biomass is firstly cracked into coarse syngas and coke, and the crude syngas and coke are gasified at a high temperature. Because the temperature setting is highly targeted, the crude syngas does not contain alkali metal compounds, and the tar and coke can all be converted into the initial syngas, and the carbon conversion rate is high, effectively overcoming the syngas carrying impurities to the equipment and pipes.
  • the problem of dirt and corrosion, and the subsequent purification process of syngas is simpler and more reliable.
  • the superheated steam generated by the plasma torch heater outside the cracking furnace and the gasifier provides all the energy required for cracking and gasification, and the thermal energy of the biomass fuel can be completely converted into the chemical energy of the synthesis gas, and the two-stage process is transformed.
  • the efficiency of cold gas can be increased by about 8% compared with the traditional gasification process, reaching more than 88%.
  • the plasma torch heater has high thermal efficiency and adjustable input power.
  • the temperature of the superheated steam can be conveniently adjusted by adjusting the power of the plasma torch heater to maintain The cracking furnace and gasifier operate stably, ensuring stable production and quality of the initial syngas.
  • FIG. 1 is a schematic view showing the connection structure of the biomass low temperature pyrolysis high temperature gasification equipment of the present invention.
  • the biomass cryogenic pyrolysis high temperature gasification apparatus shown in the drawings mainly includes a belt conveyor for biomass transportation.
  • the output end of the belt conveyor 1 is placed at the upper inlet of the intermediate hopper 2, and the lower outlet of the intermediate hopper 2 is connected to the raw material inlet of the screw feeder 3, the raw material outlet of the screw feeder 3 and the feed port of the cracking furnace 5 Connected.
  • the cracking furnace 5 is a key equipment for the primary treatment of biomass fuel. It adopts an air or water-cooled jacketed atmospheric pressure insulated shell structure and has good high temperature insulation performance.
  • the feed port of the cracking furnace 5 is arranged at the top or the top thereof, and can be set to two to four according to the capacity, to ensure uniform input of the biomass fuel, and to maintain the relative stability of the flue gas field in the furnace.
  • a nitrogen gas protection device 4 is also connected to the feed port of the cracking furnace 5, and the formed nitrogen sealing layer can effectively block the raw syngas and the air.
  • the gas outlet of the cracking furnace 5 may be disposed at the upper portion thereof or at the lower portion thereof, and connected to the gas inlet of the gasification furnace 9 through a pipe, and the generated raw synthesis gas is sent to the gasification furnace 9.
  • the slag discharge port of the cracking furnace 5 is in the form of solid slag discharge, arranged at the bottom thereof, and one or two slags can be arranged according to the capacity. These slag discharge ports are connected to the slag inlet of the slag cooler 6 for cooling the coke-containing ash residue.
  • the slag outlet of the slag cooler 6 is connected to the feed port of the ash separator 7, for separating coke.
  • the coke outlet of the carbon-carbon separator 7 is directly connected to the carbon inlet of the gasification furnace 9 through the coke conveyor 19, which can reduce the inefficient manual feeding operation and meet the needs of the continuous and stable operation of the gasification furnace 9. .
  • the gasifier 9 is a key equipment for secondary treatment of biomass fuel. It also uses an air or water-cooled jacketed atmospheric pressure insulated housing structure to ensure excellent high temperature insulation performance.
  • the carbon inlet of the gasifier 9 is disposed at the top or the top thereof, and one or two can be arranged according to the capacity to ensure that the coke raw material can be uniformly input, and the relative flow field of the flue gas in the furnace is maintained.
  • the slag discharge port of the gasification furnace 9 is in the form of liquid slag discharge, and is arranged at the bottom thereof, and one or two can be set according to the capacity.
  • the gas outlet of the gasifier 9 may be disposed at the upper portion thereof or at the lower portion thereof, through the pipe and the heat.
  • the gas input ends of the exchanger 11 are connected, and the gas output end of the heat exchanger 11 is sequentially connected in series with the dust remover 12, the acid removal tower 13 and the dryer 14, and the output of the dryer 14 is connected to the gas storage cabinet 15.
  • the superheated steam injected into the cracking furnace 5 and the gasification furnace 9 is converted by soft water or demineralized water in the water storage tank 17.
  • the output of the water storage tank 17 is connected to the feed water input end of the heat exchanger 11 via a water pump 16.
  • the heat exchanger 11 is generally selected from a waste pot, and the steam output end of the heat exchanger 11 is simultaneously connected to the inlet of the low temperature plasma torch heater 8 and the inlet of the high temperature plasma torch heater 10, and the row of the low temperature plasma torch heater 8
  • the steam port is connected to the water vapor nozzle of the cracking furnace 5 through a pipe, and the steam exhaust port of the high temperature plasma torch heater 10 is connected to the water vapor nozzle of the gasification furnace 9 through a pipe.
  • the water vapor nozzles of the cracking furnace 5 and the water vapor nozzles of the gasification furnace 9 are arranged in two to four layers along the height direction of the respective furnace bodies, and each layer is uniformly tangentially distributed in the circumferential direction. In this way, the flow field of the superheated water vapor injected into the furnace body is uniform and stable, and no dead angle is left, which ensures sufficient contact and mixing of the superheated steam with the material.
  • the equipment is also provided with a ash storage tank 18, and the solid ash separated by the ash separator 7 and the liquid slag discharged from the gasification furnace 9 can be sent to the ash sump 18 for storage by manual or mechanical means.
  • the crushed biomass fuel is transferred to the cracking furnace 5 via the belt conveyor 1, the intermediate hopper 2 and the screw feeder 3, and nitrogen gas is supplied to the feed port of the cracking furnace 5 through the nitrogen gas protecting device 4.
  • nitrogen gas is supplied to the feed port of the cracking furnace 5 through the nitrogen gas protecting device 4.
  • the particle size is controlled below 20mmx20mm and the water content is less than 40%.
  • biomass fuels of yellow straw straw, straw, thatch, corn stalk, etc.
  • the demineralized water in the water storage tank 17 is sent to the feed water input end of the heat exchanger 11 by the water pump 16, and exchanges heat with the preliminary syngas from the gas input end of the heat exchanger 11, and the demineralized water absorbs the syngas.
  • Sensible heat producing 0.4 ⁇ 0.6 MPa saturated steam, which is simultaneously sent from the steam output end of the heat exchanger 11 to the low temperature plasma torch heater 8 and the high temperature plasma torch heater 10, and is heated to a superheat at different temperatures. steam.
  • the low temperature superheated steam of 500 ⁇ 800 °C generated by the low temperature plasma torch heater 8 enters from the water vapor nozzle of the cracking furnace 5, and keeps the operating temperature in the cracking furnace 5 at 500 ⁇ 650 ° C, and operates
  • the pressure is 105 ⁇ 109Kpa, and the low-temperature superheated steam is injected at a speed of 35 ⁇ 50m/s.
  • the biomass fuel is in full contact with the low-temperature superheated steam, and the crude syngas and coke-containing ash are cracked to form coarse syngas.
  • the residence time of the gas in the cracking furnace 5 is 15-20 s, and the extraction speed of the crude syngas is 15-20 m/s.
  • the raw synthesis gas produced by the cracking furnace 5 at a temperature of 500 to 650 ° C is introduced into the gas from the inlet of the gasification furnace 9 through a pipe.
  • the coke-containing ash residue generated by the cracking furnace 5 having a temperature of 500 to 650 ° C enters from the slag discharge port of the cracking furnace 5
  • the slag cooler 6 is cooled by heat energy to a temperature below 15 CTC, and the coke therein is separated by a ash separator 7.
  • the separated coke is supplied from the carbon inlet of the gasification furnace 9 through the coke conveyor 19, and the separated ash is sent to the ash storage 18.
  • the high temperature superheated steam of 1200 ⁇ 1600 °C generated by the high temperature plasma torch heater 10 enters from the water vapor nozzle of the gasifier 9 to maintain the operating temperature in the gasifier 9 at 1200 ⁇ 1400 °C.
  • the operating pressure is 105 ⁇ 109Kpa, and the high-temperature superheated steam is injected at a speed of 35 ⁇ 50m/s, so that the crude syngas and coke are in full contact with the high-temperature superheated steam, gasification produces the syngas, and the initial synthesis is controlled.
  • the residence time of the gas in the gasifier 9 is 15 to 20 s, and the extraction velocity of the preliminary synthesis gas is 15 to 20 m/s.
  • the liquid ash generated by the gasification furnace 9 having a temperature of 1200 to 1400 ° C is discharged through the slag discharge port and sent to the ash sump 18 for comprehensive utilization.
  • the preliminary synthesis gas produced by the gasification furnace 9 at a temperature of 1200 to 1400 ° C enters the gas input end of the heat exchanger 11 through a pipe, and is cooled by the demineralized water to a temperature of 260 to 320 ° C, from the heat exchanger 11
  • the gas output end enters the dust remover 12, and the dust carried in the preliminary synthesis gas is captured by the dust remover 12, and the dust concentration of the initial synthesis gas at the outlet of the dust remover 12 is less than 50 mg/Nm 3 .
  • the preliminary synthesis gas subjected to the dust removal treatment enters the acid removal tower 13, and the harmful gas such as H 2 S, COS, HCL, Gu 3 and HCN in the preliminary synthesis gas is removed in the acid removal tower 13 .
  • the main components and characteristics of the net syngas produced by the present invention are shown in Table 1 after repeated tests and data detection. It can be seen from Table 1 that the net synthesis gas produced by the present invention has a CO+H 2 content of up to 90%, a H 2 /CO ratio of greater than or equal to 1, and a syngas heat value (LHV) of 12.5 to 13.4 MJ/ Nm 3 , with a cold gas efficiency of around 88%, has a good commercial prospect and is very suitable for industrial applications such as biomass gasification combined cycle power generation and biomass liquid fuel production.
  • LHV syngas heat value

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Organic Chemistry (AREA)
  • Processing Of Solid Wastes (AREA)

Abstract

一种生物质低温裂解高温气化工艺及其设备。该工艺利用过热水蒸汽作为氧化剂和能量载体,首先在500-800°C的温度区域对生物质进行低温裂解,然后在1200-1600°C的温度下对获得的粗合成气和焦炭进行高温气化,获得不含焦油成分的合成气,最后对生成的合成气依次进行冷却、除尘、脱酸和干燥处理;其设备主要由裂解炉(5)和气化炉(9)、低温等离子炬加热器(8)和高温等离子炬加热器(10)、储水箱(17)和输水泵(16)以及热交换器(11)组成。

Description

生物质低温裂解高温气化工艺及其设备 技术领域
本发明涉及将可燃物料转变成清洁高效合成气的技术, 具体地指一种生物质低温裂 解高温气化工艺及其设备。
背景技术
可燃物料气化技术在二十世纪末得到了快速发展, 特别是对燃煤进行气化的技术已 经相当成熟, 科研人员已成功地开发出了对煤种适用性广、 气化效率高、 产生污染少的 煤气化工艺。 而对树枝、 秸秆、 稻草或其他农林废弃物等生物质进行气化的技术则是本 世纪出现的一种综合利用能源的新技术, 已有的生物质气化技术主要包括固定床气化工 艺、 流化床气化工艺、 两段式制气工艺等等, 这些都属于直接气化工艺。 直接气化工艺 最主要的特点是利用部分生物质燃烧放出的热量为气化反应提供能源, 气化反应所采用 的氧化剂一般是空气、 富氧空气、 或富氧空气与水蒸汽的组合中的一种。 近期的研究和 实验表明: 上述生物质直接气化工艺存在如下几方面的缺陷:
一、 生物质燃料的成份和热值极不稳定、 着火点低、 着火反应快, 容易发生爆燃现 象, 在气化炉局部区域形成超温结焦结垢, 气化炉的运行温度极难控制。
二、 当以空气作为氧化剂时, 由于空气中存在大量不发生反应的 N2成份, 会导致合 成气中的 N2含量偏高、 有效气体(CO+H2)含量偏低、 H2/CO比例下降, 合成气的热值 偏低且不稳定, 一般只能维持在 5000KJ/Nm3以下, 难以满足后续的工业利用。
三、 当以富氧空气作为氧化剂时, 虽然可以减少合成气中的 N2含量, 但需要附设体 积庞大且能耗极高的空气分离装置, 这样将大幅增加整个气化工艺的成本。
四、当以富氧空气与水蒸汽的组合作为氧化剂时,虽然可以减少合成气中的 N2含量、 增加合成气中的1¾含量,但水蒸汽作为反应介质仍需要消耗大量的热能,与分离空气的 能耗累积, 同样会大幅增加整个气化工艺的投资。
五、 需要自燃约 15~20%的生物质来提供气化反应的能量, 而燃烧产生大量的 C02, 从而降低合成气中有效气体 (CO+H2) 的含量。 并且, 高温合成气连同混杂于其中的空 气将带走大量的显热, 这样热能转化成化学能的比例将大幅下降, 导致整个气化工艺的 冷煤气效率较低, 一般情况在 70%以下, 最好状况也不会超过 80%。 六、气化炉的运行温度大多设计为 800~1200°C, 而在该温度区域进行气化反应的生 物质燃料将产生大量难以清除的焦油, 过多的焦油在设备和管道中累积和粘结, 可造成 管道堵塞和设备污染。
七、 生物质燃料气化反应所产生的灰份中含有大量的 K、 Na等碱金属氧化物, 一般 占灰份重量的 20~40%,而这些碱金属氧化物在温度高于 80CTC时会气化混杂于所产生的 合成气中, 不仅影响合成气的品质, 而且与焦油一起粘附在设备和管道中, 对设备和管 道腐蚀严重。
鉴于上述生物质直接气化工艺所存在的若干致命缺陷, 目前还难以将其应用于实际 生产中。 如何使生物质燃料的气化工艺从研究试验阶段转化为实际商业利用, 是本领域 科研人员一直在努力攻克的难题。
发明内容
本发明的目的就是要提供一种工艺易于控制、 能耗和投资低廉、 冷煤气效率高、 所 产生合成气的热值大、 且能根除焦油和碱金属化合物的生物质低温裂解高温气化工艺及 其设备。
为实现上述目的, 本发明所设计的生物质低温裂解高温气化工艺, 是利用过热水蒸 汽作为氧化剂和能量载体、 在不同温度区域内依次对生物质燃料进行低温裂解和高温气 化两级处理、 最终生成净合成气的过程。 该工艺包括如下步骤:
1 ) 将破碎好的生物质燃料投入到裂解炉内, 同时向裂解炉内喷入低温过热水蒸汽, 低温过热水蒸汽的热量应能始终保持裂解炉内的运行温度为 500~800°C, 使生物质燃料 在与低温过热水蒸汽充分接触的过程中快速发生裂解反应,生成粗合成气和含焦炭灰渣。 由于裂解炉的运行温度低于 K、 Na等碱金属氧化物的升华温度, 因此这些碱金属氧化物 只能存在于所生成的含焦炭灰渣中, 所生成的粗合成气中不含或仅含微量的碱金属氧化 物。
2)对所生成的含焦炭灰渣先进行冷却降温, 一般降温到 15CTC以下即可, 再将其中 的焦炭成份分离出来。 焦炭用于下一步生产合成气, 含碱金属氧化物的灰渣则送入灰渣 库, 可进行综合利用。
3 )将所生成的粗合成气和所分离出的焦炭输送到气化炉内, 同时向气化炉内喷入高 温过热水蒸汽, 高温过热水蒸汽的热量应能始终保持气化炉内的运行温度为 1200-1600 °C , 使粗合成气和焦炭在与高温过热水蒸汽充分接触的过程中发生气化反应, 生成初合成气。 由于气化炉内的运行温度高于焦油类物质的形成温度, 因此粗合成气和 焦炭原料将被完全气化, 所生成的初合成气中不含焦油组份。
4)对所生成的初合成气依次进行冷却降温、清除粉尘、脱除酸性气体和脱水干燥处 理。 冷却降温一方面是制取合成气工艺上的需要, 另一方面可以回收大量显热进行综合 利用。 清除粉尘可以将初合成气中携带的粉尘捕获出来, 最好使初合成气含尘浓度小于 50mg/Nm3。 脱除酸性气体可以除去初合成气中的 H2S、 COS、 HCL、 NH3、 HCN等有害 气体。净化后的初合成气再经过脱水干燥处理, 即可获得净合成气, 供下游的工业应用。
上述步骤 1 ) 中, 生物质燃料的粒径优选控制在 20mmx20mm以下, 生物质燃料中 水份的重量含量优选小于 40%。 尺寸和水份含量均衡可以确保所有生物质燃料与过热水 蒸汽的裂解反应均匀、 平稳、 充分, 裂解炉的运行温度易于控制, 在裂解炉内不会形成 超温结焦。
上述步骤 1 ) 中, 最好在裂解炉的进料口处设置氮气保护气氛, 以防止裂解炉内的 粗合成气外泄引发火灾和爆炸的危险。
上述步骤 1 )中, 优选的裂解炉内运行温度为 500~650°C、运行压力为 105~109Kpa、 低温过热水蒸汽的喷入速度为 35~50m/s、粗合成气在裂解炉内的停留时间为 15~20s、粗 合成气的引出速度为 15~20m/s。 这样, 裂解炉在常压状态运行, 无需特殊压力设备, 投 资成本低廉。 裂解炉内的生物质燃料在与粗合成气和低温过热水蒸汽充分接触的过程中 能够快速实现干燥、 挥发份析出、 裂解等变化, 工艺简单可靠。 且由于裂解炉的运行温 度远低于碱金属氧化物 80CTC左右的升华温度, 完全杜绝了粗合成气中的碱金属氧化物 夹杂。 粗合成气较低的引出速度可防止其携带灰渣在裂解炉出口和烟道粘结累积。
上述步骤 3 )中, 优选的气化炉运行温度为 1200~1400°C、运行压力为 105~109Kpa、 高温过热水蒸汽的喷入速度为 35~50m/s、初合成气在气化炉内的停留时间为 15~20s、初 合成气的引出速度为 15~20m/s。 这样, 气化炉也在常压状态运行, 无需另设压力设备, 投资成本低廉。 高温过热水蒸汽较高的喷入速度可以加大其与粗合成气和焦炭的扰动、 接触、 混合。 且由于气化炉的运行温度适中, 粗合成气和焦炭在与高温过热水蒸汽充分 接触的过程中既能够完全气化、 获得不含焦油的初合成气, 又能够尽量降低热能消耗、 大幅提高气化炉运行的性价比。 上述步骤 4) 中, 先将所生成的初合成气冷却降温至 260~320°C, 再进行净化处理。 由于初合成气引出时的温度高达 1200~1400°C, 冷却降温既有利于后续的除尘、 脱酸和 干燥处理, 又可以充分回收初合成气中的显热, 实现余热综合利用。
为实现上述工艺而设计的生物质低温裂解高温气化设备, 主要由裂解炉和气化炉、 低温等离子炬加热器和高温等离子炬加热器、 储水箱和输水泵、 以及热交换器等部件组 合而成。 其中:
所述储水箱通过输水泵与热交换器的给水输入端相连, 所述热交换器的蒸汽输出端 同时与低温等离子炬加热器的进汽口和高温等离子炬加热器的进汽口相连, 所述低温等 离子炬加热器的排汽口与裂解炉的水蒸汽喷嘴相连, 所述高温等离子炬加热器的排汽口 与气化炉的水蒸汽喷嘴相连。
所述裂解炉的出气口与气化炉的进气口相连, 所述裂解炉的排渣口与冷渣器的进渣 口相连, 所述冷渣器的出渣口与灰炭分离器的进料口相连, 所述气化炉的出气口与热交 换器的气体输入端相连, 所述热交换器的气体输出端依次与除尘器、 除酸塔和干燥器串 联。
由于等离子炬加热器具有可超高温加热、 传热传质快、 热效率高、 热功率可调等特 点, 用其加热储水箱中的水时, 能够高效、 连续、 稳定地输出符合工艺要求温度的过热 水蒸汽, 过热水蒸汽既作为氧化剂又作为能量载体, 可确保裂解炉和气化炉始终维持稳 定可靠的运行。 而热交换器的设置可以有效回收初合成气所携带的大量显热, 这些显热 可将储水箱中的水预热成饱和蒸汽, 再送入等离子炬加热器处理, 这样可以降低等离子 炬加热器的能耗, 同时实现热能的综合利用。
进一步地, 所述裂解炉的进料口处连接有氮气保护装置。 在从裂解炉的进料口投放 生物质燃料时, 也向该进料口输送氮气, 所形成的氮气密封层既可防止裂解炉内的粗合 成气外泄, 又可阻止外界空气进入裂解炉, 从而杜绝火灾和爆炸的危险, 并确保粗合成 气的品质。
再进一步地, 所述灰炭分离器的焦炭出口通过焦炭输送机与气化炉的进炭口相连。 例如可以用螺旋送料装置直接将焦炭输送至气化炉, 这样可以减少中间人工输送环节, 提高气化炉运行的连续性和稳定性。
更进一步地, 所述裂解炉的水蒸汽喷嘴和气化炉的水蒸汽喷嘴沿各自炉体的高度方 向布置有 2~4层, 每层沿圆周方向均匀切向分布。 这样, 过热水蒸汽分多层喷入, 能够 始终维持裂解炉和气化炉内沿高度方向的温度场稳定、 均匀, 确保过热水蒸汽与反应物 充分接触。
本发明在仔细研究和分析生物质中水份、 灰份、 挥发份和灰熔点等固有特性的基础 上, 结合裂解炉和气化炉的运行特点, 摒弃传统氧化剂空气或富氧空气, 转而利用过热 水蒸汽在不同的温度条件下分级对生物质燃料进行低温裂解和高温气化, 其优点主要体 现在如下几方面:
其一, 采用过热水蒸汽对生物质燃料分级裂解和气化, 过热水蒸汽既是氧化介质又 是能量载体, 这样不需要空气或富氧空气, 工艺中省略了高能耗的空气分离装置, 大幅 降低了整个工艺的能耗及工程总投资。
其二, 裂解和气化两级工艺中均无生物质燃料的燃烧反应, 有效解决了传统气化过 程中炉内燃料爆燃而产生局部结焦的难题, 各级工艺非常易于掌控。 且因为无需空气或 富氧空气参入反应, 所得合成气中 H2/CO的比例高, 有效气体 (CO+H2) 的含量高, 可 达到 85%以上, 从而可大幅提高合成气的热值, 拓宽合成气的用途。
其三, 生物质反应装置由裂解炉和气化炉组成, 生物质首先被低温裂解成粗合成气 和焦炭, 粗合成气和焦炭再被高温气化。 由于温度设定的针对性极强, 粗合成气中不含 碱金属化合物, 其中的焦油和焦炭可全部转化为初合成气, 碳转化率高, 有效克服了合 成气携带杂质对设备、 管道沾污和腐蚀的难题, 且可使合成气的后续净化流程更加简单 可靠。
其四, 由等离子炬加热器在裂解炉和气化炉外部产生的过热水蒸汽提供裂解和气化 所需要的全部能量, 生物质燃料的热能可全部转化为合成气的化学能, 两级工艺转化的 冷煤气效率可比传统气化工艺提高 8%左右, 达到 88%以上。
其五, 等离子炬加热器的热效率高、 输入功率可调, 当生物质燃料的成份发生变化 时, 通过调整等离子炬加热器的功率, 即可方便地调节过热水蒸汽的温度区域, 从而维 持裂解炉和气化炉运行稳定, 确保初合成气的产量和品质稳定。
试验表明, 本发明的工艺及设备能够有效气化各种生物质燃料, 适合于生物质气化 联合循环发电和制取生物质液体燃料等工业应用。 附图说明
图 1为本发明的生物质低温裂解高温气化设备的连接结构示意图。
具体实施方式
以下结合附图和具体实施例对本发明的设备和工艺作进一步的详细描述: 图中所示的生物质低温裂解高温气化设备, 主要包括用于生物质输送的皮带传送机
1、 中间料斗 2和螺旋给料机 3, 用于容纳生物质进行裂解和气化反应的裂解炉 5和气化 炉 9, 用于给裂解炉 5和气化炉 9提供过热水蒸汽的低温等离子炬加热器 8和高温等离 子炬加热器 10, 用于给低温等离子炬加热器 8和高温等离子炬加热器 10提供水源的储 水箱 17和输水泵 16, 用于热能综合利用的热交换器 11, 以及用于合成气后续净化处理 的除尘器 12、 除酸塔 13和干燥器 14。
皮带传送机 1的输出端置于中间料斗 2的上方进口处, 中间料斗 2的下方出口与螺 旋给料机 3的原料进口相连, 螺旋给料机 3的原料出口与裂解炉 5的进料口相连。
裂解炉 5是对生物质燃料进行一级处理的关键设备, 其采用空气或水冷夹套式常压 绝热壳体结构, 具有良好的高温绝热性能。 裂解炉 5的进料口布置在其上部或顶部, 按 照容量大小可设置二至四个, 以确保生物质燃料能够均匀投入, 维持炉内烟气流场的相 对稳定。 裂解炉 5的进料口处还连接有氮气保护装置 4, 所形成的氮气密封层可有效阻 隔粗合成气和空气。 裂解炉 5的出气口可以设置在其上部, 也可以设置在其下部, 通过 管道与气化炉 9的进气口相连, 将所生成的粗合成气输送至气化炉 9中。 裂解炉 5的排 渣口采用固态排渣形式, 布置在其底部, 按照容量大小可设置一至二个, 这些排渣口与 冷渣器 6的进渣口相连, 用以冷却含焦炭灰渣。 冷渣器 6的出渣口则与灰炭分离器 7的 进料口相连, 用于分离焦炭。 作为优选的方案, 灰炭分离器 7的焦炭出口直接通过焦炭 输送机 19与气化炉 9的进炭口相连,这样可以减少低效率的人工送料操作,满足气化炉 9连续稳定运行的需要。
气化炉 9是对生物质燃料进行二级处理的关键设备, 其也采用空气或水冷夹套式常 压绝热壳体结构, 确保优良的高温绝热性能。 气化炉 9的进炭口设置在其上部或顶部, 按照容量大小可以布置一至二个, 以确保焦炭原料能够均匀投入, 维持炉内烟气流场的 相对稳定。 气化炉 9的排渣口采用液态排渣形式, 布置在其底部, 按照容量大小可设置 一至二个。 气化炉 9的出气口可以设置在其上部, 也可以设置在其下部, 通过管道与热 交换器 11的气体输入端相连, 热交换器 11的气体输出端则依次与除尘器 12、除酸塔 13 和干燥器 14串联, 干燥器 14的输出端与储气柜 15相连。
喷入裂解炉 5和气化炉 9中的过热水蒸汽是由储水箱 17中的软水或除盐水加热转变 而成的。储水箱 17的输出端通过输水泵 16与热交换器 11的给水输入端相连。热交换器 11通常选用废锅, 热交换器 11的蒸汽输出端同时与低温等离子炬加热器 8的进汽口和 高温等离子炬加热器 10的进汽口相连,低温等离子炬加热器 8的排汽口通过管道与裂解 炉 5的水蒸汽喷嘴相连,高温等离子炬加热器 10的排汽口通过管道与气化炉 9的水蒸汽 喷嘴相连。 作为较佳的结构, 裂解炉 5的水蒸汽喷嘴和气化炉 9的水蒸汽喷嘴沿各自炉 体的高度方向布置有 2~4层, 每层沿圆周方向均匀切向分布。 这样, 喷入炉体内的过热 水蒸汽流场均匀、 稳定, 且不留死角, 可确保过热水蒸汽与物料的充分接触和混合。
本设备还附设有灰渣库 18,可通过人工或机械的方式将灰炭分离器 7所分离出的固 态灰渣、 气化炉 9所排出的液态渣送至灰渣库 18储存。
上述生物质低温裂解高温气化设备在实际运行时的工艺过程概括如下:
A)将破碎好的生物质燃料经由皮带传送机 1、中间料斗 2和螺旋给料机 3输送到裂 解炉 5内,同时通过氮气保护装置 4向裂解炉 5的进料口处输入氮气。对于灰秸秆类(树 枝、 树根) 生物质燃料而言, 控制其粒径在 20mmx20mm以下、 含水量小于 40%。 对于 黄秸秆类 (稻草、 麦秆、 茅草、 玉米秆等) 生物质燃料而言, 其粒径要求可适当放宽。
B )储水箱 17中的除盐水由输水泵 16送入热交换器 11的给水输入端, 与从热交换 器 11 的气体输入端进来的初合成气进行热交换, 除盐水吸收初合成气的显热, 生产 0.4~0.6Mpa的饱和蒸汽, 该饱和蒸汽由热交换器 11 的蒸汽输出端同时输送到低温等离 子炬加热器 8和高温等离子炬加热器 10中, 被加热成不同温度的过热水蒸汽。
C)低温等离子炬加热器 8所产生的 500~800°C的低温过热水蒸汽从裂解炉 5的水蒸 汽喷嘴进入其内, 保持裂解炉 5内的运行温度为 500~650°C、 运行压力为 105~109Kpa、 低温过热水蒸汽的喷入速度为 35~50m/s, 使生物质燃料与低温过热水蒸汽充分接触, 裂 解生成粗合成气和含焦炭灰渣, 且控制粗合成气在裂解炉 5内的停留时间为 15~20s、 粗 合成气的引出速度为 15~20m/s。
D)裂解炉 5所产生的温度为 500~650°C的粗合成气通过管道从气化炉 9的进气口输 入其内。 裂解炉 5所产生的温度为 500~650°C的含焦炭灰渣则从裂解炉 5的排渣口进入 冷渣器 6,经热能回收后降温到 15CTC以下,再通过灰炭分离器 7将其中的焦炭分离出来。 所分离出的焦炭通过焦炭输送机 19从气化炉 9的进炭口输入其内,所分离出的灰渣则送 入灰渣库 18。
E) 高温等离子炬加热器 10所产生的 1200~1600°C的高温过热水蒸汽从气化炉 9的 水蒸汽喷嘴进入其内, 保持气化炉 9 内的运行温度为 1200~1400°C、 运行压力为 105~109Kpa、高温过热水蒸汽的喷入速度为 35~50m/s,使粗合成气和焦炭与高温过热水 蒸汽充分接触,气化生成初合成气,且控制初合成气在气化炉 9内的停留时间为 15~20s、 初合成气的引出速度为 15~20m/s。
F)气化炉 9所产生的温度为 1200~1400°C的液态灰渣通过其排渣口排出, 送入灰渣 库 18综合利用。气化炉 9所产生的温度为 1200~1400°C的初合成气则通过管道进入热交 换器 11的气体输入端, 被除盐水冷却降温至 260~320°C后, 从热交换器 11的气体输出 端进入除尘器 12, 初合成气中携带的粉尘被除尘器 12捕获, 除尘器 12出口处初合成气 的含尘浓度小于 50mg/Nm3
G)经过除尘处理的初合成气进入除酸塔 13,在除酸塔 13中除去初合成气中的 H2S、 COS、 HCL、 顧3、 HCN等有害气体。
H) 经过除酸处理的初合成气再进入干燥器 14, 除去其中的水份, 即可获得净合成 气, 净合成气通过管道输送至储气柜 15中保存, 供下游的工业应用。
经过多次试验和数据检测,本发明所制取的净合成气的主要成份及特性如表 1所示。 由表 1可见,本发明所制取净合成气的 CO+H2含量最高可达 90%, H2/CO的比值大于或 等于 1, 合成气的热值 (LHV) 为 12.5~13.4 MJ/Nm3, 冷煤气效率在 88%左右, 具有良 好的商业前景, 非常适于生物质气化联合循环发电和制取生物质液体燃料等工业应用。
表 1 :
Figure imgf000010_0001
5 CH2 % (vol) 5-6
6 CnHm % (vol) <2
7 合成气热值 (LHV) MJ/Nm3 12.5-13.4
8 冷煤气效率 % -88.0

Claims

权利 要求书
1 .一种生物质低温裂解高温气化工艺,它是利用过热水蒸汽作为氧化剂和能量载体、 在不同温度区域内依次对生物质燃料进行低温裂解和高温气化两级处理、 最终生成净合 成气的过程, 其特征在于: 该工艺包括如下步骤:
1 ) 将破碎好的生物质燃料投入到裂解炉内, 同时向裂解炉内喷入低温过热水蒸汽, 保持裂解炉内的运行温度为 500~800 °C, 使生物质燃料在与低温过热水蒸汽充分接触的 过程中发生裂解反应, 生成粗合成气和含焦炭灰渣;
2 )对所生成的含焦炭灰渣依次进行冷却降温和分离处理,使其中的焦炭成份分离出 来;
3 )将所生成的粗合成气和所分离出的焦炭输送到气化炉内, 同时向气化炉内喷入高 温过热水蒸汽, 保持气化炉内的运行温度为 1200~1600 °C, 使粗合成气和焦炭在与高温 过热水蒸汽充分接触的过程中发生气化反应, 生成初合成气;
4 )对所生成的初合成气依次进行冷却降温、清除粉尘、脱除酸性气体和脱水干燥处 理, 即可获得净合成气。
2.根据权利要求 1所述的生物质低温裂解高温气化工艺,其特征在于:所述步骤 1 ) 中, 生物质燃料的粒径控制在 20mmx20mm 以下, 生物质燃料中水份的重量含量小于 40%。
3. 根据权利要求 1或 2所述的生物质低温裂解高温气化工艺, 其特征在于: 所述步 骤 1 ) 中, 裂解炉的进料口处设有氮气保护气氛。
4. 根据权利要求 1或 2所述的生物质低温裂解高温气化工艺, 其特征在于: 所述步 骤 1 ) 中, 保持裂解炉内的运行温度为 500~650 °C、 运行压力为 105~109Kpa、 低温过热 水蒸汽的喷入速度为 35~50m/s、粗合成气在裂解炉内的停留时间为 15~20s、粗合成气的 引出速度为 15~20m/s。
5. 根据权利要求 1或 2所述的生物质低温裂解高温气化工艺, 其特征在于: 所述步 骤 3) 中, 保持气化炉内的运行温度为 1200 1400 °C、 运行压力为 105~109Kpa、 高温过 热水蒸汽的喷入速度为 35~50m/s、初合成气在气化炉内的停留时间为 15~20s、初合成气 的引出速度为 15~20m/s。
6. 根据权利要求 1或 2所述的生物质低温裂解高温气化工艺, 其特征在于: 所述步 骤 4) 中, 将所生成的初合成气冷却降温至 260~320°C。
7.一种为实现权利要求 1所述工艺而设计的生物质低温裂解高温气化设备,包括裂 解炉 (5)和气化炉 (9)、 低温等离子炬加热器(8)和高温等离子炬加热器(10)、 储水 箱 (17) 和输水泵 (16)、 以及热交换器 (11), 其特征在于:
所述储水箱 (17) 通过输水泵 (16) 与热交换器 (11) 的给水输入端相连, 所述热 交换器(11) 的蒸汽输出端同时与低温等离子炬加热器(8) 的进汽口和高温等离子炬加 热器 (10) 的进汽口相连, 所述低温等离子炬加热器 (8) 的排汽口与裂解炉 (5) 的水 蒸汽喷嘴相连, 所述高温等离子炬加热器(10) 的排汽口与气化炉(9) 的水蒸汽喷嘴相 连;
所述裂解炉 (5) 的出气口与气化炉 (9) 的进气口相连, 所述裂解炉 (5) 的排渣口 与冷渣器(6) 的进渣口相连, 所述冷渣器(6) 的出渣口与灰炭分离器(7) 的进料口相 连, 所述气化炉(9)的出气口与热交换器(11)的气体输入端相连, 所述热交换器(11) 的气体输出端依次与除尘器 (12)、 除酸塔 (13) 和干燥器 (14) 串联。
8. 根据权利要求 7所述的生物质低温裂解高温气化设备, 其特征在于: 所述裂解炉 (5) 的进料口处连接有氮气保护装置 (4)。
9. 根据权利要求 7或 8所述的生物质低温裂解高温气化设备, 其特征在于: 所述灰 炭分离器 (7) 的焦炭出口通过焦炭输送机 (19) 与气化炉 (9) 的进炭口相连。
10. 根据权利要求 7或 8所述的生物质低温裂解高温气化设备, 其特征在于: 所述 裂解炉(5)的水蒸汽喷嘴和气化炉(9)的水蒸汽喷嘴沿各自炉体的高度方向布置有 2~4 层, 每层沿圆周方向均匀切向分布。
PCT/CN2011/076921 2010-07-20 2011-07-06 生物质低温裂解高温气化工艺及其设备 WO2012010059A1 (zh)

Priority Applications (12)

Application Number Priority Date Filing Date Title
AP2013006725A AP3671A (en) 2010-07-20 2011-07-06 Method and apparatus for low-temperature biomass pyrolysis and high-temperature biomass gasification
AU2011282076A AU2011282076B2 (en) 2010-07-20 2011-07-06 Method and apparatus for low-temperature biomass pyrolysis and high-temperature biomass gasification
CA2805912A CA2805912C (en) 2010-07-20 2011-07-06 Method and apparatus for low-temperature biomass pyrolysis and high-temperature biomass gasification
RU2013107365/05A RU2526387C1 (ru) 2010-07-20 2011-07-06 Способ и устройство для низкотемпературного пиролиза биомассы и высокотемпературной газификации биомассы
KR1020137004300A KR101472859B1 (ko) 2010-07-20 2011-07-06 저온 바이오매스 열분해 및 고온 바이오매스 가스화기 및 방법
SG2013004445A SG187570A1 (en) 2010-07-20 2011-07-06 Method and apparatus for low-temperature biomass pyrolysis and high-temperature biomass gasification
JP2013519946A JP5606624B2 (ja) 2010-07-20 2011-07-06 低温バイオマス熱分解並びに高温バイオマスガス化方法および装置
BR112013001313-3A BR112013001313B1 (pt) 2010-07-20 2011-07-06 método e aparelho para pirólise de biomassa a baixa temperatura e gaseificação de biomassa a alta temperatura
EP11809247.7A EP2597138B1 (en) 2010-07-20 2011-07-06 Method and apparatus for low-temperature biomass pyrolysis and high-temperature biomass gasification
MX2013000835A MX2013000835A (es) 2010-07-20 2011-07-06 Metodo y aparato para pirolisis de biomasa a baja temperatura y gasificacion de biomasa a alta temperatura.
ZA2013/00483A ZA201300483B (en) 2010-07-20 2013-01-18 Method and apparatus for low-temperature biomass pyrolysis and high-temperature biomass gasification
US13/745,859 US8999022B2 (en) 2010-07-20 2013-01-20 Method and system for producing synthetic gas from biomass

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201010234090.2 2010-07-20
CN2010102340902A CN101906325B (zh) 2010-07-20 2010-07-20 生物质低温裂解高温气化工艺及其设备

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/745,859 Continuation-In-Part US8999022B2 (en) 2010-07-20 2013-01-20 Method and system for producing synthetic gas from biomass

Publications (1)

Publication Number Publication Date
WO2012010059A1 true WO2012010059A1 (zh) 2012-01-26

Family

ID=43261913

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2011/076921 WO2012010059A1 (zh) 2010-07-20 2011-07-06 生物质低温裂解高温气化工艺及其设备

Country Status (15)

Country Link
US (1) US8999022B2 (zh)
EP (1) EP2597138B1 (zh)
JP (1) JP5606624B2 (zh)
KR (1) KR101472859B1 (zh)
CN (1) CN101906325B (zh)
AP (1) AP3671A (zh)
AU (1) AU2011282076B2 (zh)
BR (1) BR112013001313B1 (zh)
CA (1) CA2805912C (zh)
MX (1) MX2013000835A (zh)
MY (1) MY160733A (zh)
RU (1) RU2526387C1 (zh)
SG (1) SG187570A1 (zh)
WO (1) WO2012010059A1 (zh)
ZA (1) ZA201300483B (zh)

Families Citing this family (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9698439B2 (en) 2008-02-19 2017-07-04 Proton Power, Inc. Cellulosic biomass processing for hydrogen extraction
US8303676B1 (en) * 2008-02-19 2012-11-06 Proton Power, Inc. Conversion of C-O-H compounds into hydrogen for power or heat generation
CN101906326B (zh) * 2010-07-20 2013-03-13 武汉凯迪控股投资有限公司 生物质双炉连体裂解气化工艺及其设备
CN101906325B (zh) * 2010-07-20 2013-09-04 阳光凯迪新能源集团有限公司 生物质低温裂解高温气化工艺及其设备
CN102226112A (zh) * 2011-06-03 2011-10-26 徐州燃控科技股份有限公司 微波气流床两段式生物质气化工艺
CN102559273B (zh) * 2011-12-29 2014-03-05 武汉凯迪工程技术研究总院有限公司 一种微波等离子生物质气化固定床气化炉及工艺
CN102559272B (zh) * 2011-12-29 2014-05-14 武汉凯迪工程技术研究总院有限公司 一种微波等离子生物质气流床气化炉及工艺
TWI472380B (zh) * 2012-07-04 2015-02-11 Univ Nat Ilan Waste disposal method
US10005961B2 (en) 2012-08-28 2018-06-26 Proton Power, Inc. Methods, systems, and devices for continuous liquid fuel production from biomass
CN103045307B (zh) * 2012-12-21 2014-09-24 中国科学院过程工程研究所 一种制备无焦油富氢气体的热解气化方法及热解气化装置
CN103074113B (zh) * 2013-02-26 2014-05-07 昆明理工大学 生物质与煤共制燃气的方法
CN103614165A (zh) * 2013-11-27 2014-03-05 上海应用技术学院 阶梯链条式生物质气化炉
AT516178B1 (de) * 2014-09-16 2016-03-15 Ame Handelsgesellschaft M B H Verfahren und Vorrichtung zur Erzeugung von Synthesegas aus kohlenstoffhaltigen Abfallstoffen
EP3239274B1 (en) * 2014-12-24 2020-06-24 Takahashi Seisakusho Inc. Water gas generation system and method for supplying combustion gas to said system
CN104711003B (zh) * 2015-03-13 2016-06-01 东南大学 一种带焦炭分离的单床自热式生物质制油装置与方法
CN106544060A (zh) * 2015-09-22 2017-03-29 神华集团有限责任公司 含碳物料反应系统、方法
AT518753A2 (de) * 2016-06-13 2017-12-15 Gs Gruber-Schmidt Gmbh Vergasung biogener Stoffe in einem Schachtreaktor mit Hilfe von Mikrowellen Plasma
CN106381164B (zh) * 2016-11-25 2018-11-13 刘绥成 生物质资源处理方法
CN107355262A (zh) * 2017-07-31 2017-11-17 赫普热力发展有限公司 一种火电厂调峰发电系统及发电控制方法
NL2019552B1 (en) * 2017-09-14 2019-03-27 Torrgas Tech B V Process to prepare a char product and a syngas mixture
IT201800004367A1 (it) * 2018-04-10 2019-10-10 Procedimento per la produzione di combustibile da materiale contenente carbonio
AT521210A1 (de) * 2018-04-18 2019-11-15 Gs Gruber Schmidt Kohlendioxid und Wasserdampf Plasma Vergasung von biogenen Reststoffen zur Erzeugung von Syngas für Dimethylether
CN108626710A (zh) * 2018-05-09 2018-10-09 中冶华天南京工程技术有限公司 一种燃煤生物质耦合发电系统
CN111829002B (zh) * 2019-04-22 2022-09-13 高平 一种汽化炉
WO2020235725A1 (ko) * 2019-05-23 2020-11-26 한국생산기술연구원 저속 열분해를 통해 생성된 바이오 오일 포집 방법 및 장치
CN110591745B (zh) * 2019-10-14 2024-04-26 西北大学 一种热解-气化一体化装置及工艺
CN111089302A (zh) * 2019-12-11 2020-05-01 杭州三得农业科技有限公司 一种分布式低温等离子管式加速器秸秆制肥机
KR102382262B1 (ko) * 2020-10-28 2022-04-04 에이티이 주식회사 분할 온도컨트롤과 냉각설비를 구비한 바이오차 제조 장치 및 제조 방법
CN115246628B (zh) * 2021-08-09 2024-02-27 江苏美东环境科技有限公司 用于有机危废等离子气化熔融炉出口合成气的净化方法
BR102022005707A2 (pt) * 2022-03-25 2023-10-03 Evandro Jose Lopes Processo integrado de pirólise e gaseificação de resíduos e seus derivados e o equipamento para sua realização
AT526208A1 (de) * 2022-06-08 2023-12-15 Gs Gruber Schmidt Gmbh Verfahren zur Erzeugung von Synthesegas aus Biokohle und biogener Feinteile mit Hilfe elektrischer Energie
FR3137102A1 (fr) * 2022-06-27 2023-12-29 Bioeb Gaz de synthèse obtenu à partir de cellulose
CN115449402A (zh) * 2022-09-13 2022-12-09 北京航天迈未科技有限公司 一种固体有机物的处理系统及处理方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0921182A1 (en) * 1997-12-05 1999-06-09 Gibros Pec B.V. Method for processing waste or biomass material
US20080307703A1 (en) * 2007-04-24 2008-12-18 Dietenberger Mark A Method and apparatus to protect synthesis gas via flash pyrolysis and gasification in a molten liquid
CN101503177A (zh) * 2009-01-12 2009-08-12 江阴市尚疯新能源技术开发有限公司 用生物质为燃料二氧化碳热循环制氢气的方法
CN101906325A (zh) * 2010-07-20 2010-12-08 武汉凯迪控股投资有限公司 生物质低温裂解高温气化工艺及其设备
CN201737906U (zh) * 2010-07-20 2011-02-09 武汉凯迪控股投资有限公司 生物质低温裂解高温气化设备

Family Cites Families (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2580767A (en) * 1948-10-01 1952-01-01 American Gas Ass Process for manufacturing oil gas
US2878262A (en) * 1956-10-18 1959-03-17 Pure Oil Co Hydrocarbon pyrolysis process
US4264435A (en) * 1978-04-05 1981-04-28 The Dow Chemical Company Crude oil cracking using partial combustion gases
GB2072216A (en) * 1980-03-18 1981-09-30 British Gas Corp Treatment of hydrocarbon feedstocks
US4930429A (en) * 1988-08-11 1990-06-05 Ahlstromforetagen Svenska Ab Apparatus and process for generating steam from wet fuel
DE59205475D1 (de) * 1991-11-29 1996-04-04 Noell En Und Entsorgungstechni Verfahren zur thermischen Verwertung von Abfallstoffen
DE684116T1 (de) * 1993-12-09 1996-08-29 Science Technical And Product Verfahren zum wiederverarbeiten von gummiabfällen.
RU2079051C1 (ru) * 1994-06-23 1997-05-10 Институт химической физики в Черноголовке РАН Способ переработки твердых бытовых отходов
JP3773302B2 (ja) * 1995-10-03 2006-05-10 株式会社荏原製作所 熱回収システム及び発電システム
JP4454045B2 (ja) * 1996-09-04 2010-04-21 株式会社荏原製作所 旋回溶融炉及び二段ガス化装置
FR2777802B1 (fr) * 1998-04-22 2000-06-23 Elf Exploration Prod Procede regeneratif de desacidification d'un gaz renfermant du co2 ainsi que des hydrocarbures liquides, a l'aide d'un liquide absorbant a base de methyldiethanolamine activee
CA2349608A1 (en) * 1998-11-05 2000-05-18 Ebara Corporation Electric generating system by gasification of combustibles
US6767375B1 (en) * 1999-08-25 2004-07-27 Larry E. Pearson Biomass reactor for producing gas
WO2004048851A1 (en) * 2002-11-25 2004-06-10 David Systems Technology, S.L. Integrated plasma-frequency induction process for waste treatment, resource recovery and apparatus for realizing same
JP4276973B2 (ja) * 2004-03-23 2009-06-10 財団法人電力中央研究所 バイオマス発電システム
JP4696969B2 (ja) * 2006-02-28 2011-06-08 日立造船株式会社 ガス化装置
GB0604907D0 (en) * 2006-03-10 2006-04-19 Morgan Everett Ltd Pyrolysis apparatus and method
KR101424614B1 (ko) * 2006-04-11 2014-08-01 서모 테크놀로지스 엘엘씨 고체 탄소물질의 합성가스 발생 방법 및 장치
KR101171922B1 (ko) * 2006-10-26 2012-08-07 질레코 인코포레이티드 바이오매스 처리방법
DE102007012452B4 (de) * 2007-03-15 2014-01-16 SynCraft Enegineering GmbH Vergaser
AU2008294831B2 (en) * 2007-09-04 2012-02-02 Air Products And Chemicals, Inc. Quenching vessel
TWI410485B (zh) * 2008-04-07 2013-10-01 Enrestec Inc 連續式蒸汽裂解方法
RU2382887C1 (ru) * 2009-01-19 2010-02-27 Леонид Васильевич Степанов Парогазовая установка
US20100273899A1 (en) * 2009-04-22 2010-10-28 Range Fuels, Inc. Integrated, high-efficiency processes for biomass conversion to synthesis gas
US8778038B2 (en) * 2009-04-24 2014-07-15 Syngas Technology, Llc Method for controlling the peak temperature of a fluid gasification zone
US20100319255A1 (en) * 2009-06-18 2010-12-23 Douglas Struble Process and system for production of synthesis gas
CN101906324B (zh) * 2010-07-20 2013-04-03 武汉凯迪控股投资有限公司 生物质水蒸汽间接气化工艺及其设备
CN101906326B (zh) * 2010-07-20 2013-03-13 武汉凯迪控股投资有限公司 生物质双炉连体裂解气化工艺及其设备
US8367741B2 (en) * 2011-05-19 2013-02-05 Rentech, Inc. Biomass high efficiency hydrothermal reformer

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0921182A1 (en) * 1997-12-05 1999-06-09 Gibros Pec B.V. Method for processing waste or biomass material
US20080307703A1 (en) * 2007-04-24 2008-12-18 Dietenberger Mark A Method and apparatus to protect synthesis gas via flash pyrolysis and gasification in a molten liquid
CN101503177A (zh) * 2009-01-12 2009-08-12 江阴市尚疯新能源技术开发有限公司 用生物质为燃料二氧化碳热循环制氢气的方法
CN101906325A (zh) * 2010-07-20 2010-12-08 武汉凯迪控股投资有限公司 生物质低温裂解高温气化工艺及其设备
CN201737906U (zh) * 2010-07-20 2011-02-09 武汉凯迪控股投资有限公司 生物质低温裂解高温气化设备

Also Published As

Publication number Publication date
JP2013531122A (ja) 2013-08-01
AU2011282076B2 (en) 2014-11-06
AP3671A (en) 2016-04-15
JP5606624B2 (ja) 2014-10-15
US20130125464A1 (en) 2013-05-23
KR20130054356A (ko) 2013-05-24
CA2805912C (en) 2019-04-09
AU2011282076A1 (en) 2013-02-28
KR101472859B1 (ko) 2014-12-15
CN101906325B (zh) 2013-09-04
EP2597138A4 (en) 2014-01-29
MY160733A (en) 2017-03-15
CA2805912A1 (en) 2012-01-26
RU2526387C1 (ru) 2014-08-20
EP2597138A1 (en) 2013-05-29
ZA201300483B (en) 2013-09-25
AP2013006725A0 (en) 2013-02-28
SG187570A1 (en) 2013-03-28
EP2597138B1 (en) 2018-10-24
CN101906325A (zh) 2010-12-08
RU2013107365A (ru) 2014-08-27
US8999022B2 (en) 2015-04-07
BR112013001313B1 (pt) 2018-12-26
MX2013000835A (es) 2013-05-20

Similar Documents

Publication Publication Date Title
WO2012010059A1 (zh) 生物质低温裂解高温气化工艺及其设备
WO2012010051A1 (zh) 生物质水蒸汽间接气化工艺及其设备
WO2012010058A1 (zh) 生物质双炉连体裂解气化工艺及其设备
WO2011063579A1 (zh) 带余热利用的生物质三段式气流床及其气化方法
WO2010063205A1 (zh) 利用生物质制造合成气的高温气化工艺方法及系统
CN201770674U (zh) 生物质水蒸气间接气化设备
CN201770675U (zh) 生物质双炉连体裂解气化设备
KR20140080453A (ko) 열 교환기가 구비된 순환 유동층 가스화기
CN201737906U (zh) 生物质低温裂解高温气化设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11809247

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013519946

Country of ref document: JP

Kind code of ref document: A

Ref document number: 2805912

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 2013/00653

Country of ref document: TR

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: MX/A/2013/000835

Country of ref document: MX

WWE Wipo information: entry into national phase

Ref document number: 2011809247

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20137004300

Country of ref document: KR

Kind code of ref document: A

Ref document number: 2013107365

Country of ref document: RU

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2011282076

Country of ref document: AU

Date of ref document: 20110706

Kind code of ref document: A

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112013001313

Country of ref document: BR

REG Reference to national code

Ref country code: BR

Ref legal event code: B01E

Ref document number: 112013001313

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112013001313

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20130118