WO2012008622A1 - Expandable mobile vehicle - Google Patents

Expandable mobile vehicle Download PDF

Info

Publication number
WO2012008622A1
WO2012008622A1 PCT/JP2011/066778 JP2011066778W WO2012008622A1 WO 2012008622 A1 WO2012008622 A1 WO 2012008622A1 JP 2011066778 W JP2011066778 W JP 2011066778W WO 2012008622 A1 WO2012008622 A1 WO 2012008622A1
Authority
WO
WIPO (PCT)
Prior art keywords
turning
wheel
mobile vehicle
vehicle
vehicle body
Prior art date
Application number
PCT/JP2011/066778
Other languages
French (fr)
Japanese (ja)
Inventor
廣瀬 茂男
岳史 青木
Original Assignee
国立大学法人東京工業大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人東京工業大学 filed Critical 国立大学法人東京工業大学
Priority to JP2012524623A priority Critical patent/JPWO2012008622A1/en
Publication of WO2012008622A1 publication Critical patent/WO2012008622A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D49/00Tractors
    • B62D49/06Tractors adapted for multi-purpose use
    • B62D49/0678Tractors of variable track width or wheel base
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G3/00Resilient suspensions for a single wheel
    • B60G3/02Resilient suspensions for a single wheel with a single pivoted arm
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D31/00Superstructures for passenger vehicles
    • B62D31/003Superstructures for passenger vehicles compact cars, e.g. city cars
    • B62D31/006Superstructures for passenger vehicles compact cars, e.g. city cars foldable
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D49/00Tractors
    • B62D49/08Tractors having means for preventing overturning or tipping
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D61/00Motor vehicles or trailers, characterised by the arrangement or number of wheels, not otherwise provided for, e.g. four wheels in diamond pattern
    • B62D61/06Motor vehicles or trailers, characterised by the arrangement or number of wheels, not otherwise provided for, e.g. four wheels in diamond pattern with only three wheels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2300/00Indexing codes relating to the type of vehicle
    • B60G2300/07Off-road vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2300/00Indexing codes relating to the type of vehicle
    • B60G2300/12Cycles; Motorcycles
    • B60G2300/122Trikes

Definitions

  • the present invention relates to a deployable mobile vehicle.
  • the wheel stack condition under running restrictions such as rough terrain that is, the function of returning from a state where the wheel slips into the ground surface when the vehicle runs on a fragile ground surface such as sand, and the storage restriction to the spacecraft etc.
  • a deployable mobile vehicle having an efficient stowability below is known (Japanese Patent Laid-Open No. 10-297557).
  • the present invention provides a deployable mobile vehicle having a stable posture on rough terrain and a function of returning from a fall, and having efficient storage.
  • a vehicle body a first wheel disposed in front of or behind the vehicle body, and a pair of turns each having one end rotatably attached to the left and right side surfaces of the vehicle body.
  • a deployment type movement comprising: a frame; a second wheel provided at the other end of each of the pair of turning frames; and a control device for controlling a turning angle of each of the pair of turning frames.
  • a vehicle is provided.
  • each turning axis of the turning frame is inclined toward the first wheel with respect to a horizontal axis perpendicular to the front-rear direction of the vehicle body when projected onto a horizontal plane.
  • each turning axis of the turning frame is inclined toward the first wheel with respect to a horizontal axis perpendicular to the longitudinal direction of the vehicle body when projected onto the horizontal plane. Therefore, when each turning frame turns to the first wheel side, each second wheel is arranged in the vicinity of the first wheel, and as a result, the deployable mobile vehicle is housed in a space having a smaller volume as a whole. It becomes possible.
  • each of the pair of turning frames includes a parallel link mechanism, and the axial direction of the axle of the second wheel is constant regardless of the turning angle of the turning frame.
  • a deployable mobile vehicle is provided. That is, according to the third aspect of the present invention, since the axial direction of the axle of the second wheel is constant regardless of the turning angle of the turning frame, the turning frame is disposed below the vehicle body. Even when traveling, efficient traveling with low resistance becomes possible.
  • the turning frame includes a parallel link mechanism
  • the deployable mobile vehicle includes an opening / closing angle changing mechanism that changes an opening / closing angle formed by a turning axis of the turning frame and the parallel link mechanism.
  • the deployment type mobile vehicle characterized by further comprising is provided.
  • the opening / closing angle changing mechanism is an opening / closing link, one end of the opening / closing link is connected to a push rod extending and contracting from the vehicle body, and the other end is the parallel link mechanism.
  • a deployable mobile vehicle characterized by being connected to an intermediate portion of one link.
  • FIG. 1 is a perspective view of a deployable mobile vehicle according to an aspect of the present invention.
  • FIG. 2 is a plan view of the unfolded state of the unfolded mobile vehicle shown in FIG.
  • FIG. 3 is a plan view of the unfolded mobile vehicle shown in FIG. 1 in a stored state.
  • FIG. 4 is a side view of the deployable mobile vehicle shown in FIG. 1 when traveling on the ramp.
  • FIG. 5 is a rear view of the deployable mobile vehicle shown in FIG.
  • FIG. 6 is a side view of the deployable mobile vehicle shown in FIG. 1 when traveling on rough terrain.
  • FIG. 1 is a perspective view of a deployable mobile vehicle according to an aspect of the present invention.
  • FIG. 2 is a plan view of the unfolded state of the unfolded mobile vehicle shown in FIG.
  • FIG. 3 is a plan view of the unfolded mobile vehicle shown in FIG. 1 in a stored state.
  • FIG. 4 is a side view of the deployable mobile vehicle shown in FIG.
  • FIG. 7 is a diagram showing a return operation from the stack state of the deployable mobile vehicle shown in FIG.
  • FIG. 8 is a continuous side view showing a return operation from the overturned state of the deployable mobile vehicle shown in FIG.
  • FIG. 9 shows another return operation from the overturned state of the deployable mobile vehicle shown in FIG.
  • FIG. 10 is a diagram for explaining the trajectory of the second wheel of the deployable mobile vehicle shown in FIG.
  • FIG. 11 is a plan view of a deployable mobile vehicle according to another aspect of the present invention.
  • FIG. 12 is a perspective view of a deployable mobile vehicle according to still another aspect of the present invention.
  • FIG. 13 is a plan view of the unfolded state of the unfolded mobile vehicle shown in FIG. FIG.
  • FIG. 14 is a partial perspective view for explaining the turning frame and the drive mechanism of the deployable mobile vehicle shown in FIG.
  • FIG. 15 is a plan view of the turning frame and its driving mechanism shown in FIG.
  • FIG. 16 is a perspective view of a deployed state of another posture of the deployable mobile vehicle shown in FIG.
  • FIG. 17 is a plan view of the deployable mobile vehicle in the posture shown in FIG. 18 is a perspective view of the unfolded mobile vehicle shown in FIG. 12 in a stored state.
  • FIG. 19 is a plan view of the deployable mobile vehicle in the stored state shown in FIG.
  • FIG. 20 is a block diagram showing an outline of a deployable mobile vehicle according to each aspect of the present invention.
  • FIG. 1 is a perspective view of a deployable mobile vehicle 1 according to an aspect of the present invention.
  • the deployable mobile vehicle 1 has both a vehicle body 2 and an axle of a first wheel 3 that is fixed to the vehicle body 2 and protrudes forward from the left and right side front portions of the vehicle body 2 and is disposed perpendicular to the front-rear direction. And a pair of support frames 4 to be supported.
  • a pair of turning frames 5 are attached to the left and right rear portions of the vehicle body 2 so as to be turnable with respect to the vehicle body 2.
  • each turning frame 5 is attached to the vehicle body 2 via a bearing and can be freely turned by an internal turning motor.
  • a turning angle control device (not shown) is arranged inside the vehicle body 2 and controls the turning angles of the turning frames 5 independently.
  • the other end 5 b of each turning frame 5 supports the axle of the second wheel 6.
  • the vehicle body 2 can be equipped with devices such as a camera and various sensors on its upper surface, and a protective frame 7 is provided for protecting these devices from collisions such as when the deployable mobile vehicle 1 falls.
  • Yes. 2 is a plan view of the unfolded state of the deployable mobile vehicle 1 shown in FIG. 1
  • FIG. 3 is a plan view of the unfolded state of the deployable mobile vehicle 1 shown in FIG.
  • the turning axis ⁇ that is the center when the turning frame 5 is turned is relative to the horizontal axis ⁇ that is perpendicular to the front-rear direction of the vehicle body 2 when projected onto the horizontal plane.
  • the first wheel 3 is inclined toward the first wheel 3 side, that is, forward by an angle ⁇ . “When projected onto a horizontal plane” means that the pivot axis ⁇ does not have to be on the horizontal plane.
  • the horizontal axis ⁇ is on a horizontal plane, in other words, is an axis perpendicular to both the front-rear direction and a perpendicular to the flat upper surface or lower surface of the vehicle body 2.
  • the turning angle control device includes a turning frame between a deployed position where the second wheel 6 is disposed farthest from the first wheel 3 and a storage position where the second wheel 6 is disposed closest to the first wheel 3.
  • the turning angle of 5 is controlled.
  • the state of the deployable mobile vehicle 1 in which the turning angle is in the deployed position is referred to as a deployed state (FIG. 2), and the state of the deployable mobile vehicle 1 in which the turning angle is in the retracted position is referred to as a retracted state (FIG. 3).
  • the axle of the second wheel 6 is arranged in parallel with the axle of the first wheel 3, and is in a state suitable for traveling.
  • the deployable mobile vehicle 1 in the retracted state of the deployable mobile vehicle 1, the deployable mobile vehicle 1 is compact as a whole compared to the expanded state, and the deployable mobile vehicle 1 can be stored in a smaller volume space. This is a state suitable for transporting the mobile vehicle 1 and the like.
  • one end portion 5a is positioned on the corresponding turning axis line ⁇ , while the other end portion 5b is corresponding to the corresponding turning axis line.
  • the turning frame 5 needs to be formed so as not to be positioned on ⁇ . Accordingly, the swivel frame 5 in the embodiment shown in FIG. 1 has a shape that is an S-shaped extension.
  • the 2nd wheel 6 is a drive wheel which incorporated the drive motor in itself.
  • the first wheel 3 is a driven wheel, it may be a drive wheel like the second wheel 6.
  • the first wheel 3 may be arranged behind the vehicle body 2.
  • the support frame 4 may be fixed to the vehicle main body 2, or a rotation motor may be disposed in the vehicle main body 2 so as to be rotatable with respect to the vehicle main body 2.
  • FIG. 4 is a side view of the deployable mobile vehicle 1 shown in FIG. When climbing up or down the ramp, the turning angle of the turning frame 5 is controlled to move both the second wheels 6 below the vehicle body 2 so that the vehicle body 2 can always be kept horizontal. It becomes possible.
  • FIG. 4 is a side view of the deployable mobile vehicle 1 shown in FIG. When climbing up or down the ramp, the turning angle of the turning frame 5 is controlled to move both the second wheels 6 below the vehicle body 2 so that the vehicle body 2 can always be kept horizontal. It becomes possible.
  • FIG. 4 is a side view of the deployable mobile vehicle
  • FIG. 5 is a rear view of the deployable mobile vehicle 1 shown in FIG.
  • the turning angle of the turning frame 5 is controlled so that the second wheel 6 on the mountain side of the slope is above the vehicle body 2 and the second wheel 6 on the slope Tanikawa is on the vehicle body 2.
  • the vehicle main body 2 can always be kept horizontal.
  • FIG. 6 is a side view of the deployable mobile vehicle 1 shown in FIG. 1 when traveling on rough terrain. When traveling on rough terrain with many irregularities, the turning angle of the turning frame 5 is controlled and both the second wheels 6 are moved below the vehicle body 2 to increase the vehicle height.
  • FIG. 7 is a diagram illustrating a return operation from the stack state of the deployable mobile vehicle 1 illustrated in FIG. 1. Even if the vehicle main body 2 rides on the convex portion and becomes stuck in the rough terrain, the turning angle of the turning frame 5 is controlled to move both the second wheels 6 below the vehicle main body 2. By doing so, it becomes possible to increase the vehicle height and start traveling again.
  • FIG. 8 is a continuous side view showing a return operation from the overturned state of the deployable mobile vehicle 1 shown in FIG. 1, that is, posture deformation. When the unfoldable mobile vehicle 1 falls while traveling, it is possible to return and start traveling again by the procedure shown in FIGS. 8A to 8D.
  • FIG. 9 shows another return operation from the overturned state of the deployable mobile vehicle 1 shown in FIG. That is, when the deployable mobile vehicle 1 is in a fallen state as shown in FIG. 8A, for example, one turning frame 5 and the corresponding second wheel 6 are used.
  • the turning angle of the turning frame 5 is controlled and both the second wheels 6 are rotated upward. However, one turning frame 5 and the corresponding second wheel 6 are moved to the vehicle body 2.
  • the deployable mobile vehicle 1 can rotate in the lateral direction and return to the traveling state (deployed state). Therefore, in the return operation shown in FIG. 8, the unfoldable mobile vehicle 1 rises forward or backward, whereas in the return operation shown in FIG. Roll over and get up.
  • the axle of the second wheel 6 is arranged in parallel with the axle of the first wheel 3, so that the resistance when the deployable mobile vehicle 1 travels. There are few, and it is in a state suitable for driving. However, depending on the turning angle of the turning frame 5, the axle of the second wheel 6 is not arranged in parallel with the axle of the first wheel 3. That is, in FIG.
  • the direction of the axle of the second wheel 6 depends on the turning angle of the turning frame 5 as shown in the track of the second wheel 6 of the deployable mobile vehicle 1 shown in FIG. Has changed.
  • the axle of the second wheel 6 has a trajectory that forms part of a conical side surface with the point X as the center. Accordingly, the axle of the second wheel 6 is not parallel to the axle of the first wheel 3 except when the deployable mobile vehicle 1 is in the deployed state.
  • the axle of the second wheel 6 draws such a trajectory, so that when the second wheel 6 is brought into contact with the traveling surface and deformed in posture, the propulsive force generated by the movement direction of the turning frame 5 and the rotation of the second wheel 6 is reduced.
  • the central wheel that is, the left and right wheels other than the first wheel 3, that is, the second wheel 6, with respect to the traveling direction, as in the traveling shown in FIGS.
  • FIG. 11 A plan view of the deployable mobile vehicle 10 according to another aspect of the present invention is shown in FIG. Since the deployable mobile vehicle 10 shown in FIG. 11 is the same as the deployable mobile vehicle 1 shown in FIG. 1 except for the configuration of the turning frame 5, description thereof will be omitted.
  • the turning frame 15 of the deployable mobile vehicle 10 is formed by a parallel link mechanism including three connecting links having substantially the same shape as the turning frame 5.
  • the axle of the second wheel 6 can always be kept parallel to the axle of the first wheel 3 regardless of the turning angle of the turning frame 15. That is, as shown in FIG. 8, during the deformation of the posture of the deployable mobile vehicle, it is possible to always maintain the axial direction of the axles of all the wheels constant.
  • the deployable mobile vehicle has one first wheel and two second wheels, but may have a different number of wheels.
  • each turning axis of the turning frame does not need to be arranged parallel to the horizontal plane of the vehicle body, has a predetermined angle with respect to the horizontal plane, and gives a camber angle to the second wheel in the running state. It is good. Furthermore, in the deployable mobile vehicle shown in FIG.
  • FIG. 12 is a perspective view of a deployable mobile vehicle 20 according to still another aspect of the present invention
  • FIG. 13 is a plan view of the deployable mobile vehicle shown in FIG. 12 in a deployed state.
  • the configuration of the first wheel 3 and the second wheel 6 of the deployable mobile vehicle 20 shown in FIG. 12 is the same as that of the deployable mobile vehicle 1 shown in FIG. 1 which is the first aspect of the present invention.
  • the deployable mobile vehicle 20 includes a vehicle body 22 and a support member 24.
  • the support member 24 includes a rod that is fixed to the front surface of the vehicle main body 22 and protrudes forward, and supports the axle of the first wheel 3 from both sides by a U-shaped member provided at the tip of the rod.
  • the support frame 4 of the deployable mobile vehicle 1 of the first aspect may be used.
  • the vehicle body 22 has a substantially rectangular parallelepiped shape.
  • the deployable mobile vehicle 1 of the first aspect has a side surface substantially perpendicular to the turning axis ⁇ of the turning frame 5 that is inclined forward by an angle ⁇ as shown in FIG.
  • the vehicle main body 22 of this aspect has a side surface parallel to the traveling direction of the vehicle and perpendicular to the traveling surface.
  • a pair of turning frames 25 are attached to the left and right side rear portions of the vehicle body 22 so as to be turnable with respect to the vehicle body 22.
  • the vehicle body 22 can be equipped with devices such as a camera and various sensors on the upper surface thereof as in the case of the deployable mobile vehicle 1 of the first aspect. You may provide the protection frame 7 for protecting from a collision. Since the deployable mobile vehicle 20 is significantly different from the deployable mobile vehicle 1 of the first aspect with respect to the turning frame and its drive mechanism, it will be described in detail below. FIG.
  • FIG. 14 is a partial perspective view for explaining the turning frame 25 and its driving mechanism 40 of the deployable mobile vehicle 20 shown in FIG. 12, and FIG. 15 is the turning frame 25 and its driving mechanism shown in FIG. FIG.
  • the vehicle main body 22 is omitted for illustration.
  • the turning frame 25 includes an outer link 31 disposed far from the vehicle body 22, an inner link 32 disposed closer to the vehicle body 22, and the outer link 31 and the inner link 32 closer to the vehicle body 22.
  • a proximal link 33 connecting each end and the side of the vehicle main body 22; a distal link 34 connecting each end of the outer link 31 and the inner link 32 far from the vehicle main body 22 and the second wheel 6; have.
  • each distal link 34 supports the axle of the second wheel 6.
  • the axle of the second wheel 6 is supported so as to be perpendicular to the traveling direction when the deployable mobile vehicle 20 goes straight, that is, parallel to the axle of the first wheel 3.
  • the axle of the second wheel 6 supported by the distal link 34 is always perpendicular to a certain direction, that is, a traveling direction regardless of the turning angle of the turning frame 25 due to the structure of the parallel link mechanism. It arrange
  • the drive mechanism 40 for driving the turning frame 25 will be described.
  • the drive mechanism 40 is controlled by a control device (not shown) disposed inside the vehicle main body 22.
  • the drive mechanism 40 turns the turning frame 25 and changes the shape of the parallel link mechanism.
  • the drive mechanism 40 includes a wave gear device 41, a turning motor 42, a push rod 43, a ball screw 44, a rotation motor 46 that rotates the ball screw 44 via a timing belt 45, and an axis line by rotation of the ball screw 44. And a nut member 47 that slides in the direction.
  • the wave gear device 41 is a well-known mechanism. Inside the wave generator, which is not shown, a wave generator that is an elliptical cam, the inner circumference of the wave generator ellipse is circumscribed and teeth are formed on the outer circumference.
  • the wave gear device 41 has a push rod 43 passing through the center thereof. Accordingly, a corresponding hole is also provided for the wave generator.
  • the turning motor 42 is attached at a position eccentric with respect to the wave gear device 41, and the rotation of the turning motor 42 is transmitted to the wave generator via the timing belt in the wave gear device 41.
  • control of the parallel link mechanism of the turning frame 25 will be described.
  • the ball screw 44 slides the nut member 47 in the axial direction corresponding to the rotation direction.
  • One end of the push rod 43 is attached to the nut member 47 in parallel with the ball screw 44 via a bearing. Therefore, the push rod 43 can rotate around its axis along with the turning of the turning frame 25.
  • the push rod 43 extends through the opening provided at the center of the wave gear device 41 toward the outside of the vehicle main body 22.
  • the push rod 43 is supported so as not to inhibit the sliding of the push rod 43 in the axial direction and the rotation around the axial line. Accordingly, the push rod 43 also moves in the axial direction in accordance with the sliding of the nut member 47.
  • the other end of the push rod 43 is rotatably connected to one end of the opening / closing link 35.
  • the other end of the opening / closing link 35 is rotatably connected to an intermediate portion of the outer link 31, preferably in the vicinity of the proximal link 33, so as not to interfere with the inner link 32.
  • the inner link 32 and the proximal link 33 are configured and connected so as not to interfere with the push rod 43 and the opening / closing link 35.
  • the rotation axes at the connecting portions at both ends of the opening / closing link 35 are parallel to the rotation axes at the connecting portions of the links of the turning frame 25. Therefore, the open / close link 35 can change the shape of the parallelogram formed by the parallel link mechanism, that is, the parallel link mechanism can swing.
  • an angle formed by the turning axis ⁇ of the turning frame 25 and the outer link 31 or the inner link 32 is referred to as an opening / closing angle ⁇ (FIG. 15).
  • the opening / closing angle ⁇ is changed by the action of the opening / closing link 35. That is, when the push rod 43 slides in a direction protruding outward with respect to the vehicle body 22, the opening / closing angle ⁇ is reduced.
  • the opening / closing angle ⁇ increases.
  • the opening / closing angle ⁇ can be controlled independently of the turning angle of the turning frame 25 in the range of 0 to 90 degrees.
  • the locus forms a conical surface.
  • the above-described drive mechanism 40 is disposed with respect to the left and right turning frames 25, respectively. Since each drive mechanism 40 can drive the turning motor 42 independently, the turning angles of the left and right turning frames 25 can be changed independently.
  • the rotation motor 46, the timing belt 45, and the ball screw 44 are used in common. That is, the timing belt 45 is wound around the central portion of the ball screw 44, and the screws are formed in opposite directions from the central portion in the left-right direction. Therefore, the opening / closing angle ⁇ of the left and right turning frames 25 is always the same.
  • each drive mechanism 40 may have the rotation motor 46, the timing belt 45, and the ball screw 44 separately, so that the opening / closing angle ⁇ of the left and right turning frames 25 may be controlled independently.
  • 16 is a perspective view of the deployed mobile vehicle 20 shown in FIG. 12 in a deployed state in another posture
  • FIG. 17 is a plan view of the deployed mobile vehicle 20 in the posture shown in FIG. .
  • the deployable mobile vehicle 20 in the posture shown in FIG. 12 or FIG. 13 has a wide interval between the second wheels 6 and can travel stably, but can travel in a narrow place such as between obstacles. Is not suitable. Therefore, as shown in FIGS. 16 and 17, by setting the opening / closing angle ⁇ to about 90 degrees, it is possible to travel in a narrow place.
  • FIG. 18 is a perspective view of the unfolded mobile vehicle shown in FIG. 12, and FIG. 19 is a plan view of the unfolded mobile vehicle shown in FIG.
  • the deployable mobile vehicle 20 in this state is generally compact compared to the unfolded state, and can be stored in a smaller volume space. Therefore, this is a state suitable for transporting the open-type moving vehicle 1 or the like. Further, in the retracted state, the deployable mobile vehicle 20 of this aspect differs from the deployable mobile vehicle 1 of the first aspect as shown in FIG. 3 in that the axles of all wheels are parallel. Therefore, the deployable mobile vehicle 20 of this aspect can smoothly run even in this state.
  • FIG. 20 is a block diagram showing an outline of a deployable mobile vehicle according to each aspect of the present invention.
  • the vehicle main body 51 includes a control device 52, various sensors 53, and drive mechanisms 54 and 55.
  • the control device 52 controls a drive mechanism 54 including a turning motor and a rotation motor to control a turning angle and an opening / closing angle. Further, the control device 52 controls the drive mechanism including the drive motor in the second wheel 6 via the electric cable 56.
  • the control device 52 may be controlled based on inputs from various sensors 53. That is, as described above with reference to FIGS. 4 to 9, the deployable mobile vehicle receives signals from the various sensors 53 so that a stable posture can be maintained according to the state of the traveling surface, that is, unevenness and inclination. Based on this, it is controlled by the control device 52. While the invention has been described in connection with preferred embodiments thereof, those skilled in the art will recognize that various modifications and changes can be made without departing from the scope of the claims set out below.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • Motorcycle And Bicycle Frame (AREA)

Abstract

The disclosed expandable mobile vehicle (1) is provided with: a vehicle body (2); a first wheel (3) disposed towards the front or rear of the vehicle body (2); a pair of rotating frames (5), one end (5a) of each being rotatably attached to the left or right side of the vehicle body (2), respectively; a second wheel (6) provided on the other end (5b) of each rotating frame (5); and a rotation-angle control device that controls the rotation angle of each rotating frame (5). The rotating frames (5) are formed such that the axis of rotation (α) of each rotating frame (5), when projected onto the horizontal plane, is angled towards the first wheel (3) with respect to a horizontal axis (β) perpendicular to the forwards/backwards direction of the vehicle body (2), and the other end (5b) of each rotating frame (5) does not lie on the corresponding axis of rotation (α).

Description

展開型移動車両Deployable mobile vehicle
 本発明は、展開型移動車両に関する。 The present invention relates to a deployable mobile vehicle.
 不整地等の走行制約下における車輪のスタック状態、すなわち、車両が砂地等の脆弱な地表面で走行する際に車輪が地表面に滑り込んだ状態からの復帰機能、及び宇宙機等への収納制約下における効率的な収納性を備えた展開型移動車両が公知である(特開平10−297557号公報)。 The wheel stack condition under running restrictions such as rough terrain, that is, the function of returning from a state where the wheel slips into the ground surface when the vehicle runs on a fragile ground surface such as sand, and the storage restriction to the spacecraft etc. A deployable mobile vehicle having an efficient stowability below is known (Japanese Patent Laid-Open No. 10-297557).
 特開平10−297557号公報に記載の展開型移動車両によれば、スタック状態になった車輪を走行面に垂直な軸線周りに回転させることによって、スタック状態から復帰することが可能であるが、車両が転倒した場合の復帰機能、すなわち起き上がり機能は備えていない。
 本発明は、一態様において、不整地での安定な姿勢の保持と転倒時からの復帰機能を備え且つ効率的な収納性を備えた展開型移動車両を提供する。
According to the deployable mobile vehicle described in JP-A-10-297557, it is possible to return from the stacked state by rotating the wheel in the stacked state around an axis perpendicular to the traveling surface. It does not have a return function when the vehicle falls, that is, a rising function.
In one aspect, the present invention provides a deployable mobile vehicle having a stable posture on rough terrain and a function of returning from a fall, and having efficient storage.
 本発明の1番目の態様では車両本体と、該車両本体の前方又は後方に配置された第1車輪と、一方の端部が前記車両本体の左右側面にそれぞれ旋回可能に取り付けられた一対の旋回フレームと、前記一対の旋回フレームの他方の端部にそれぞれ設けられた第2車輪と、前記一対の旋回フレームの旋回角をそれぞれ制御する制御装置と、を具備することを特徴とする展開型移動車両が提供される。
 また、本発明の2番目の態様では、前記旋回フレームの各旋回軸線が、水平面に投影したときに前記車両本体の前後方向に対して垂直な水平軸線に対して前記第1車輪側に傾斜しており、これら旋回フレームの他方の端部がそれぞれ対応する前記旋回軸線上に位置しないように形成されていることを特徴とする展開型移動車両が提供される。
 すなわち、本発明の2番目の態様によれば、旋回フレームの各旋回軸線が、水平面に投影したときに車両本体の前後方向に対して垂直な水平軸線に対して第1車輪側に傾斜していることによって、各旋回フレームを第1車輪側に旋回した際に、各第2車輪が第1車輪近傍に配置され、その結果、全体としてより小さい体積の空間内に展開型移動車両を収納することが可能となる。また、走行中に展開型移動車両が裏返しに転倒してしまっても、旋回フレームを旋回させることによって車両本体を反転させ、正常な体勢に復帰することが可能となる。従って、請求項1に記載の発明では、不整地での安定な姿勢の保持と転倒時からの復帰機能を備え且つ効率的な収納性を備えるという効果を奏する。
 本発明の3番目の態様では、前記一対の旋回フレームがそれぞれ並列リンク機構を備え、前記旋回フレームの前記旋回角にかかわらず、前記第2車輪の車軸の軸線方向が一定であることを特徴とする展開型移動車両が提供される。
 すなわち、本発明の3番目の態様によれば、旋回フレームの旋回角にかかわらず、第2車輪の車軸の軸線方向が一定であることから、旋回フレームが車両本体の下方に配置された状態で走行する際にも抵抗の小さい効率的な走行が可能となる。
 本発明の4番目の態様では、前記旋回フレームが平行リンク機構を備え、当該展開型移動車両が、前記旋回フレームの旋回軸線と前記平行リンク機構とが成す開閉角度を変更する開閉角度変更機構をさらに具備することを特徴とする展開型移動車両が提供される。
 本発明の5番目の態様では、前記開閉角度変更機構が開閉リンクであり、該開閉リンクの一方の端部が前記車両本体から伸縮するプッシュロッドに連結され、他方の端部が前記平行リンク機構の1つのリンクの中間部分に連結されていることを特徴とする展開型移動車両が提供される。
According to a first aspect of the present invention, a vehicle body, a first wheel disposed in front of or behind the vehicle body, and a pair of turns each having one end rotatably attached to the left and right side surfaces of the vehicle body. A deployment type movement comprising: a frame; a second wheel provided at the other end of each of the pair of turning frames; and a control device for controlling a turning angle of each of the pair of turning frames. A vehicle is provided.
In the second aspect of the present invention, each turning axis of the turning frame is inclined toward the first wheel with respect to a horizontal axis perpendicular to the front-rear direction of the vehicle body when projected onto a horizontal plane. Thus, there is provided a deployable mobile vehicle characterized in that the other ends of the turning frames are formed so as not to be positioned on the corresponding turning axes.
That is, according to the second aspect of the present invention, each turning axis of the turning frame is inclined toward the first wheel with respect to a horizontal axis perpendicular to the longitudinal direction of the vehicle body when projected onto the horizontal plane. Therefore, when each turning frame turns to the first wheel side, each second wheel is arranged in the vicinity of the first wheel, and as a result, the deployable mobile vehicle is housed in a space having a smaller volume as a whole. It becomes possible. Further, even if the deployable mobile vehicle falls overside down while traveling, it is possible to reverse the vehicle body by turning the turning frame and return to a normal posture. Therefore, the invention described in claim 1 has the effect of providing a stable posture on uneven terrain, a function of returning from a fall, and efficient storage.
In a third aspect of the present invention, each of the pair of turning frames includes a parallel link mechanism, and the axial direction of the axle of the second wheel is constant regardless of the turning angle of the turning frame. A deployable mobile vehicle is provided.
That is, according to the third aspect of the present invention, since the axial direction of the axle of the second wheel is constant regardless of the turning angle of the turning frame, the turning frame is disposed below the vehicle body. Even when traveling, efficient traveling with low resistance becomes possible.
In a fourth aspect of the present invention, the turning frame includes a parallel link mechanism, and the deployable mobile vehicle includes an opening / closing angle changing mechanism that changes an opening / closing angle formed by a turning axis of the turning frame and the parallel link mechanism. Furthermore, the deployment type mobile vehicle characterized by further comprising is provided.
In a fifth aspect of the present invention, the opening / closing angle changing mechanism is an opening / closing link, one end of the opening / closing link is connected to a push rod extending and contracting from the vehicle body, and the other end is the parallel link mechanism. There is provided a deployable mobile vehicle characterized by being connected to an intermediate portion of one link.
 各態様によれば、不整地での安定な姿勢の保持と転倒時からの復帰機能を備え且つ効率的な収納性を備えるという共通の効果を奏する。 According to each aspect, there is a common effect of having a stable posture on rough terrain, a function of returning from a fall, and efficient storage.
 本発明の目的、特徴及び利点は、添付図面に関連した以下の実施形態の説明により一層明らかになろう。
 図1は、本発明の一態様による展開型移動車両の斜視図である。
 図2は、図1に示された展開型移動車両の展開状態の平面図である。
 図3は、図1に示された展開型移動車両の収納状態の平面図である。
 図4は、図1に示された展開型移動車両の傾斜路走行時の側面図である。
 図5は、図1に示された展開型移動車両の傾斜路走行時の背面図である。
 図6は、図1に示された展開型移動車両の不整地走行時の側面図である。
 図7は、図1に示された展開型移動車両のスタック状態からの復帰動作を示す図である。
 図8は、図1に示された展開型移動車両の転倒状態からの復帰動作を示す連続的な側面図である。
 図9は、図1に示された展開型移動車両の転倒状態からの別の復帰動作を示すである。
 図10は、図1に示された展開型移動車両の第2車輪の軌道を説明する図である。
 図11は、本発明の別の態様による展開型移動車両の平面図である。
 図12は、本発明のさらに別の態様による展開型移動車両の斜視図である。
 図13は、図12に示された展開型移動車両の展開状態の平面図である。
 図14は、図12に示された展開型移動車両の旋回フレーム及びその駆動機構を説明する部分斜視図である。
 図15は、図14に示された旋回フレーム及びその駆動機構の平面図である。
 図16は、図12に示された展開型移動車両の別の姿勢の展開状態の斜視図である。
 図17は、図16に示された姿勢の展開型移動車両の平面図である。
 図18は、図12に示された展開型移動車両の収納状態の斜視図である。
 図19は、図18に示された収納状態の展開型移動車両の平面図である。
 図20は、本発明の各態様による展開型移動車両の概略を示すブロック図である。
Objects, features and advantages of the present invention will become more apparent from the following description of embodiments with reference to the accompanying drawings.
FIG. 1 is a perspective view of a deployable mobile vehicle according to an aspect of the present invention.
FIG. 2 is a plan view of the unfolded state of the unfolded mobile vehicle shown in FIG.
FIG. 3 is a plan view of the unfolded mobile vehicle shown in FIG. 1 in a stored state.
FIG. 4 is a side view of the deployable mobile vehicle shown in FIG. 1 when traveling on the ramp.
FIG. 5 is a rear view of the deployable mobile vehicle shown in FIG.
FIG. 6 is a side view of the deployable mobile vehicle shown in FIG. 1 when traveling on rough terrain.
FIG. 7 is a diagram showing a return operation from the stack state of the deployable mobile vehicle shown in FIG.
FIG. 8 is a continuous side view showing a return operation from the overturned state of the deployable mobile vehicle shown in FIG.
FIG. 9 shows another return operation from the overturned state of the deployable mobile vehicle shown in FIG.
FIG. 10 is a diagram for explaining the trajectory of the second wheel of the deployable mobile vehicle shown in FIG.
FIG. 11 is a plan view of a deployable mobile vehicle according to another aspect of the present invention.
FIG. 12 is a perspective view of a deployable mobile vehicle according to still another aspect of the present invention.
FIG. 13 is a plan view of the unfolded state of the unfolded mobile vehicle shown in FIG.
FIG. 14 is a partial perspective view for explaining the turning frame and the drive mechanism of the deployable mobile vehicle shown in FIG.
FIG. 15 is a plan view of the turning frame and its driving mechanism shown in FIG.
FIG. 16 is a perspective view of a deployed state of another posture of the deployable mobile vehicle shown in FIG.
FIG. 17 is a plan view of the deployable mobile vehicle in the posture shown in FIG.
18 is a perspective view of the unfolded mobile vehicle shown in FIG. 12 in a stored state.
FIG. 19 is a plan view of the deployable mobile vehicle in the stored state shown in FIG.
FIG. 20 is a block diagram showing an outline of a deployable mobile vehicle according to each aspect of the present invention.
 以下、図面を参照しながら本発明の実施の形態を詳細に説明する。なお、図面において、同一又は類似の構成要素には共通の参照番号を付す。
 図1は、本発明の一態様による展開型移動車両1の斜視図である。展開型移動車両1は、車両本体2と、車両本体2に固定され且つ車両本体2の左右側面前部から前方へ突出し、前後方向に対して垂直に配置された第1車輪3の車軸を両側から支持する一対の支持フレーム4とを有する。また、車両本体2の左右側面後部には、一対の旋回フレーム5が、車両本体2に対して旋回可能に取り付けられている。すなわち、各旋回フレーム5の一方の端部5aは車両本体2に対してベアリングを介して取り付けられ、内部の旋回モータによって自在に旋回可能となっている。車両本体2の内部には図示しない旋回角制御装置が配置され、各旋回フレーム5の旋回角をそれぞれ独立に制御している。各旋回フレーム5の他方の端部5bは、第2車輪6の車軸を支持している。さらに車両本体2は、その上面にカメラや各種センサー等の機器を搭載可能となっており、これら機器を展開型移動車両1の転倒時等の衝突から保護するための保護フレーム7が設けられている。
 図2は、図1に示された展開型移動車両1の展開状態の平面図であり、図3は、図1に示された展開型移動車両1の収納状態の平面図である。図2及び図3から明らかなように、旋回フレーム5の旋回の際に中心となる旋回軸線αは、水平面に投影したときに車両本体2の前後方向に対して垂直な水平軸線βに対して、第1車輪3側、すなわち前方に向かって角度θだけ傾斜している。「水平面に投影したときに」ということは、つまり、旋回軸線αは水平面上になくてもよい。また、水平軸線βは、水平面上にあり、言い換えると、前後方向と車両本体2の平坦な上面又は下面に対する垂線との両方に垂直な軸線である。
 旋回角制御装置は、第2車輪6が第1車輪3から最も遠くに配置された展開位置と、第2車輪6が第1車輪3から最も近くに配置された収納位置との間で旋回フレーム5の旋回角を制御している。旋回角が展開位置にある展開型移動車両1の状態を展開状態(図2)と称し、旋回角が収納位置にある展開型移動車両1の状態を収納状態(図3)と称す。展開型移動車両1の展開状態においては、第2車輪6の車軸は、第1車輪3の車軸と平行に配置された状態となり、走行に適した状態である。また、展開型移動車両1の収納状態においては、展開状態にくらべて全体的にコンパクトになり、より小さい体積の空間内に展開型移動車両1を収納することが可能となることから、展開型移動車両1の運搬等に適した状態である。
 展開型移動車両1の展開状態又は収納状態を実現するためには、一方の端部5aがそれぞれ対応する旋回軸線α上に位置するのに対して、他方の端部5bがそれぞれ対応する旋回軸線α上に位置しないように、旋回フレーム5が形成される必要がある。従って、図1に示された実施形態における旋回フレーム5は、S字型を引き延ばしたような形状をしている。
 なお、第2車輪6は、それ自体に駆動モータを内蔵した駆動輪である。これに対して、第1車輪3は従動輪であるが、第2車輪6と同様に駆動輪であってもよい。また、第1車輪3は、車両本体2の後方に配置されていてもよい。さらに、支持フレーム4は、車両本体2に固定されていてもよく、または、車両本体2内に回転モータを配置し、車両本体2に対して回動可能にしてもよい。
 図4は、図1に示された展開型移動車両1の傾斜路走行時の側面図である。傾斜路を登る際又は降りる際に、旋回フレーム5の旋回角を制御して、両方の第2車輪6を車両本体2の下方へ移動させることによって、車両本体2を常に水平に維持することが可能となる。また、図5は、図1に示された展開型移動車両1の傾斜路走行時の背面図である。傾斜路を横断する際に、旋回フレーム5の旋回角を制御して、傾斜路の山側の第2車輪6を車両本体2の上方へ且つ傾斜路の谷川の第2車輪6を車両本体2の下方へ移動させることによって、車両本体2を常に水平に維持することが可能となる。車両本体2を常に水平に維持することによって、車両本体2に搭載したカメラによる安定した撮影や、安定した状態での各種センサーの測定等を行うことが可能となる。
 図6は、図1に示された展開型移動車両1の不整地走行時の側面図である。凹凸の多い不整地を走行する際に、旋回フレーム5の旋回角を制御して、両方の第2車輪6を車両本体2の下方へ移動させることによって、車高を高くし、車両本体2が凸部に乗り上げて走行不能となるスタック状態を防止することが可能となる。図7は、図1に示された展開型移動車両1のスタック状態からの復帰動作を示す図である。不整地において、車両本体2が凸部に乗り上げて走行不能となるスタック状態になったとしても、旋回フレーム5の旋回角を制御して、両方の第2車輪6を車両本体2の下方へ移動させることによって、車高を高くし、再度走行を開始することが可能となる。
 図8は、図1に示された展開型移動車両1の転倒状態からの復帰動作、すなわち姿勢変形を示す連続的な側面図である。展開型移動車両1が走行中に転倒してしまった場合、図8の(A)から(D)に示される手順によって、復帰し、再度走行を開始することが可能となる。すなわち、転倒状態になったとしても(A)、旋回フレーム5の旋回角をそれぞれ制御して、第2車輪6を車両本体2の上方へ回転移動させ(B)、第2車輪6が接地後、さらに旋回フレーム5の旋回を行い、又は、第2車輪6を回転させることによって(C)、走行状態(展開状態)に復帰することが可能となる。
 図9は、図1に示された展開型移動車両1の転倒状態からの別の復帰動作を示すである。すなわち、展開型移動車両1が、例えば図8の(A)に示される転倒状態になった場合、一方の旋回フレーム5及び対応する第2車輪6を用いる。図8(A)においては、旋回フレーム5の旋回角を制御して、両方の第2車輪6を上方へ回転移動させたが、一方の旋回フレーム5及び対応する第2車輪6を車両本体2の下方、すなわち路面方向へ移動させる。それによって、展開型移動車両1は横方向へ回転し、走行状態(展開状態)に復帰することが可能となる。従って、図8に示された復帰動作おいては、展開型移動車両1が前転又は後転して起き上がるのに対して、図9に示された復帰動作においては、展開型移動車両1が横転して起き上がる。
 ところで、図1に示された展開型移動車両1の展開状態において、第2車輪6の車軸は、第1車輪3の車軸と平行に配置された状態となり、展開型移動車両1の走行時に抵抗が少なく、走行に適した状態である。しかし、旋回フレーム5の旋回角によっては、第2車輪6の車軸が、第1車輪3の車軸と平行に配置されていない状態となる。すなわち、図10において、図1に示された展開型移動車両1の第2車輪6の軌道が示されているように、旋回フレーム5の旋回角に応じて、第2車輪6の車軸の向きが変化している。詳細には、第2車輪6の車軸は、点Xを中心とする円錐側面の一部を形成するような軌道を描いている。従って、展開型移動車両1が展開状態にある場合以外は、第2車輪6の車軸は第1車輪3の車軸と平行ではない。
 第2車輪6の車軸がこうした軌道を描くことによって、第2車輪6を走行面に接地させて姿勢変形をする場合に、旋回フレーム5の運動方向と第2車輪6の回転により生じる推進力の方向とが略一致するため、旋回フレーム5の旋回運動を滑らかに行うことができるという効果を奏する。すなわち、図8に示された転倒状態からの復帰動作中CからDへ姿勢変形する過程において、第2車輪6が接地しながら展開状態へ徐々に移行し、最終的に展開状態に移行する。本実施形態における機構によれば、この過程において、第2車輪6の回転により生じる推進力が旋回フレーム5の展開を積極的に助けるという補助効果を奏する。
 さらに、本実施形態における機構によれば、図4乃至6に示された走行時のように、中心の車輪、すなわち第1車輪3以外の左右の車輪、すなわち第2車輪6が進行方向に対して平行でない、車輪の前端が内側に入ったトウイン(toe−in)状態で走行することができる。一般に、トウイン(toe−in)状態の車輪は操舵性を向上する効果があり、不整地においてこのトウイン(toe−in)状態となる本実施形態における機構は、不整地における走行性能を向上するという効果を奏する。
 本発明の別の態様による展開型移動車両10の平面図を図11に示す。図11に示された展開型移動車両10は、旋回フレーム5の構成以外は、図1に示された展開型移動車両1と同じであるので説明は省略する。展開型移動車両10の旋回フレーム15は、旋回フレーム5と略同様の形状をした3本の連接リンクからなる並列リンク機構によって形成される。それによって、旋回フレーム15の旋回角に依らず、第2車輪6の車軸は常に第1車輪3の車軸と平行な状態を維持することが可能となる。すなわち、図8に示されるような、展開型移動車両の姿勢変形中において、すべての車輪の車軸の軸線方向を常に一定に維持することが可能となる。
 上述の実施形態では、展開型移動車両が1つの第1車輪と2つの第2車輪とを有していたが、それぞれ異なる数の車輪を有していてもよい。また、旋回フレームの各旋回軸線は、上述のように車体水平面に平行に配置する必要はなく、水平面に対して所定の角度を有し、走行状態の第2車輪にキャンバー角を与えるような構成としてもよい。さらに、図11に示された展開型移動車両では、旋回フレームを並行リンクで構成することで第2車輪の車軸の軸線方向を常に一定にしていたが、旋回フレームの旋回角と第2車輪の車軸の軸線方向との間で最適な関係を誘導し、その関係を実現するリンク系によって構成してもよい。
 次に、本発明のさらに別の態様による展開型移動車両について説明する。図12は、本発明のさらに別の態様による展開型移動車両20の斜視図であり、図13は、図12に示された展開型移動車両の展開状態の平面図である。
 図12に示された展開型移動車両20の第1車輪3及び第2車輪6の構成は、本発明の第1の態様である図1に示された展開型移動車両1のものと同じである。展開型移動車両20は、車両本体22と支持部材24とを有する。支持部材24は、車両本体22の前面に固定され且つ前方へ突出するロッドを備え、ロッド先端に設けられたコの字型の部材によって、第1車輪3の車軸を両側から支持する。支持部材24の代わりに、第1態様の展開型移動車両1の支持フレーム4を用いてもよい。
 また、車両本体22は、略直方体の形状である。この点について、第1態様の展開型移動車両1は、図2に示されるように前方に向かって角度θだけ傾斜した旋回フレーム5の旋回軸線αに対して略垂直な側面を有していたが、本態様の車両本体22は、車両の進行方向に対して平行且つ走行面に垂直な側面を有している。車両本体22のこの左右側面後部には、一対の旋回フレーム25が、車両本体22に対して旋回可能に取り付けられている。また、車両本体22は、第1態様の展開型移動車両1と同様に、その上面にカメラや各種センサー等の機器を搭載可能となっており、これら機器を展開型移動車両20の転倒時等の衝突から保護するための保護フレーム7を設けてもよい。
 展開型移動車両20は、旋回フレーム及びその駆動機構について、第1態様の展開型移動車両1と大きく異なるので以下詳述する。図14は、図12に示された展開型移動車両20の旋回フレーム25及びその駆動機構40を説明する部分斜視図であり、図15は、図14に示された旋回フレーム25及びその駆動機構40の平面図である。なお、図14において、説明のために車両本体22は省略して描かれている。
 旋回フレーム25は、車両本体22から遠い方に配置された外側リンク31と、車両本体22から近い方に配置された内側リンク32と、外側リンク31及び内側リンク32の車両本体22から近い方のそれぞれの端部並びに車両本体22側面を連結する近位リンク33と、外側リンク31及び内側リンク32の車両本体22から遠い方のそれぞれの端部並びに第2車輪6を連結する遠位リンク34とを有している。外側リンク31及び内側リンク32と、近位リンク33及び遠位リンク34とはそれぞれ平行になるように配置されていることから、これらリンクは平行リンク機構を構成している。各遠位リンク34は、第2車輪6の車軸を支持している。第2車輪6の車軸は、展開型移動車両20が直進する場合に進行方向に対して垂直となるように、すなわち第1車輪3の車軸と平行となるように支持される。また、遠位リンク34によって支持された第2車輪6の車軸は、平行リンク機構の構造に起因して、旋回フレーム25の旋回角によらず、常に一定の方向、すなわち進行方向に対して垂直となるように配置される。
 次に、旋回フレーム25を駆動させるための駆動機構40について説明する。駆動機構40は、車両本体22の内部に配置された図示しない制御装置によって制御される。駆動機構40は、旋回フレーム25を旋回させると共に平行リンク機構の形状を変化させる。駆動機構40は、波動歯車装置41と、旋回モータ42と、プッシュロッド43と、ボールねじ44と、タイミングベルト45を介してボールねじ44を回転させる回転モータ46と、ボールねじ44の回転によって軸線方向に摺動するナット部材47とを有している。
 波動歯車装置41は、公知の機構であり、その図示しない内部に、楕円状のカムであるウェーブジェネレータと、ウェーブジェネレータの楕円の長軸部分にその内周が外接し外周に歯が形成された可撓性のフレクスプラインと、フレクスプラインの外周の歯と噛合する歯を内周に有する剛体リング状部材であるサーキュラスプラインとを有している。ウェーブジェネレータが旋回モータ42によって順回転又は逆回転することによって、その回転力がフレクスプラインを介してサーキュラスプラインに伝達され、最終的に平行リンク機構を含む旋回フレーム25全体を旋回させる。
 波動歯車装置41は、その中心においてプッシュロッド43が貫通している。従って、ウェーブジェネレータに対しても対応する穴が設けられている。このため、旋回モータ42は、波動歯車装置41に対して偏心した位置に取り付けられ、波動歯車装置41内でタイミングベルトを介して旋回モータ42の回転をウェーブジェネレータに伝達している。
 続いて、旋回フレーム25の平行リンク機構の制御について説明する。回転モータ46を順回転又は逆回転させることによって、その回転力はタイミングベルト45を介してボールねじ44へと伝達される。ボールねじ44が、その回転方向に応じた軸線方向にナット部材47を摺動させる。ナット部材47には、プッシュロッド43の一方の端部がベアリングを介してボールねじ44と平行に取り付けられている。従って、プッシュロッド43は、旋回フレーム25の旋回と共にその軸線周りに回転可能である。さらにプッシュロッド43は、波動歯車装置41の中心に設けられた開口を貫通して車両本体22の外側に向かって延びている。波動歯車装置41の中心の開口では、プッシュロッド43の軸線方向の摺動及び軸線周りの回転を阻害しないようにプッシュロッド43が支持されている。従って、ナット部材47の摺動に応じてプッシュロッド43も軸線方向に移動する。
 プッシュロッド43の他方の端部は、開閉リンク35の一方の端部に対して回転可能に連結されている。開閉リンク35の他方の端部は、内側リンク32と干渉しないようにその端部の外側を通って、外側リンク31の中間部分、好ましくは近位リンク33近傍に回転可能に連結されている。言い換えると、内側リンク32及び近位リンク33は、プッシュロッド43及び開閉リンク35と干渉しないように、構成され且つ連結されている。開閉リンク35の両端の連結部における回転軸線は、旋回フレーム25の各リンクの連結部における回転軸線と平行である。従って、開閉リンク35によって、平行リンク機構がなす平行四辺形の形状を変更させること、すなわち平行リンク機構にその揺動運動をさせることが可能となる。
 ここで、旋回フレーム25の旋回軸線αと外側リンク31又は内側リンク32とが成す角を開閉角度γと称する(図15)。開閉角度γが大きいほど第2車輪6間の間隔が小さく、開閉角度γが小さいほど第2車輪6間の間隔が大きい。回転モータ46を回転させることによって、プッシュロッド43をその軸線方向に摺動させると、開閉リンク35の作用によって開閉角度γが変化する。すなわち、プッシュロッド43が車両本体22に対して外側に突出する方向に摺動することによって、開閉角度γは小さくなる。一方、プッシュロッド43が車両本体22に対して内側に引っ込む方向に摺動することによって、開閉角度γは大きくなる。この開閉角度γは、0~90度の範囲で、旋回フレーム25の旋回角とは独立して制御可能である。
 例えば、開閉角度γを一定に保ったまま、旋回フレーム25を旋回させると、その軌跡は円錐面を形成する。
 本態様において、上述の駆動機構40は、左右の旋回フレーム25に対してそれぞれ配置されている。各駆動機構40は、旋回モータ42を独立に駆動しうることから、左右の旋回フレーム25の旋回角は独立に変更可能である。一方、回転モータ46とタイミングベルト45とボールねじ44は共通に使用されている。すなわち、タイミングベルト45は、ボールねじ44の中央部分に対して巻かれており、その中央部分から左右方向にねじが互いに逆方向に形成されている。従って、左右の旋回フレーム25の開閉角度γは常に同一である。しかしながら、各駆動機構40が、回転モータ46とタイミングベルト45とボールねじ44とをそれぞれ別々に有することによって、左右の旋回フレーム25の開閉角度γが独立に制御されるようにしてもよい。
 図16は、図12に示された展開型移動車両20の別の姿勢の展開状態の斜視図であり、図17は、図16に示された姿勢の展開型移動車両20の平面図である。図12又は図13に示された姿勢の展開型移動車両20は、第2車輪6間の間隔が広く、安定した走行をすることができるものの、障害物の間等の狭小な場所の走行には適さない。そこで、図16及び図17に示されるように、開閉角度γを90度程度とすることによって、狭小な場所での走行が可能となる。
 図18は、図12に示された展開型移動車両の収納状態の斜視図であり、図19は、図18に示された収納状態の展開型移動車両の平面図である。この状態の展開型移動車両20は、展開状態にくらべて全体的にコンパクトになり、より小さい体積の空間内に収納可能となる。従って、これは、開型移動車両1の運搬等に適した状態である。さらに、収納状態において、本態様の展開型移動車両20は、図3に示されるような第1態様の展開型移動車両1と異なり、全ての車輪の車軸が平行となっている。従って、本態様の展開型移動車両20は、この状態においても滑らかな走行が可能となる。
 なお、当然のことながら、本態様の展開型移動車両20においても、第1態様の展開型移動車両1と同様に、図4乃至6に示された走行や、図7乃至図9に示された復帰動作を行うことが可能である。すなわち、本態様の展開型移動車両20においても、第1態様の展開型移動車両1と同様の利点を有する。
 本実施形態では、開閉角度γを変更するために開閉リンク35を使用したが、その他の平行リンク機構を揺動させるような開閉角度変更機構によって開閉角度γを変更するようにしてもよい。展開型移動車両20が1つの第1車輪と2つの第2車輪とを有していたが、それぞれ異なる数の車輪を有していてもよい。
 図20は、本発明の各態様による展開型移動車両の概略を示すブロック図である。車両本体51は、制御装置52と、各種センサー53と、駆動機構54、55とを有している。制御装置52は、旋回モータや回転モータを含む駆動機構54を制御して旋回角や開閉角を制御する。また、制御装置52は、電気ケーブル56を介して第2車輪6内の駆動モータを含む駆動機構を制御する。制御装置52の制御の際には、各種センサー53からの入力に基づいて制御されてもよい。すなわち、図4乃至9を参照しながら上述したように、走行面の状態、すなわち凹凸や傾斜等に応じて安定した姿勢を維持できるように、展開型移動車両は、各種センサー53からの信号に基づいて制御装置52によって制御される。
 以上、本発明をその好適な実施形態に関連して説明したが、後述する請求の範囲の開示範囲から逸脱することなく様々な修正及び変更を為し得ることは、当業者に理解されよう。
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. In the drawings, the same or similar components are denoted by common reference numerals.
FIG. 1 is a perspective view of a deployable mobile vehicle 1 according to an aspect of the present invention. The deployable mobile vehicle 1 has both a vehicle body 2 and an axle of a first wheel 3 that is fixed to the vehicle body 2 and protrudes forward from the left and right side front portions of the vehicle body 2 and is disposed perpendicular to the front-rear direction. And a pair of support frames 4 to be supported. A pair of turning frames 5 are attached to the left and right rear portions of the vehicle body 2 so as to be turnable with respect to the vehicle body 2. That is, one end portion 5a of each turning frame 5 is attached to the vehicle body 2 via a bearing and can be freely turned by an internal turning motor. A turning angle control device (not shown) is arranged inside the vehicle body 2 and controls the turning angles of the turning frames 5 independently. The other end 5 b of each turning frame 5 supports the axle of the second wheel 6. Furthermore, the vehicle body 2 can be equipped with devices such as a camera and various sensors on its upper surface, and a protective frame 7 is provided for protecting these devices from collisions such as when the deployable mobile vehicle 1 falls. Yes.
2 is a plan view of the unfolded state of the deployable mobile vehicle 1 shown in FIG. 1, and FIG. 3 is a plan view of the unfolded state of the deployable mobile vehicle 1 shown in FIG. As apparent from FIGS. 2 and 3, the turning axis α that is the center when the turning frame 5 is turned is relative to the horizontal axis β that is perpendicular to the front-rear direction of the vehicle body 2 when projected onto the horizontal plane. The first wheel 3 is inclined toward the first wheel 3 side, that is, forward by an angle θ. “When projected onto a horizontal plane” means that the pivot axis α does not have to be on the horizontal plane. The horizontal axis β is on a horizontal plane, in other words, is an axis perpendicular to both the front-rear direction and a perpendicular to the flat upper surface or lower surface of the vehicle body 2.
The turning angle control device includes a turning frame between a deployed position where the second wheel 6 is disposed farthest from the first wheel 3 and a storage position where the second wheel 6 is disposed closest to the first wheel 3. The turning angle of 5 is controlled. The state of the deployable mobile vehicle 1 in which the turning angle is in the deployed position is referred to as a deployed state (FIG. 2), and the state of the deployable mobile vehicle 1 in which the turning angle is in the retracted position is referred to as a retracted state (FIG. 3). In the deployed state of the deployable mobile vehicle 1, the axle of the second wheel 6 is arranged in parallel with the axle of the first wheel 3, and is in a state suitable for traveling. Further, in the retracted state of the deployable mobile vehicle 1, the deployable mobile vehicle 1 is compact as a whole compared to the expanded state, and the deployable mobile vehicle 1 can be stored in a smaller volume space. This is a state suitable for transporting the mobile vehicle 1 and the like.
In order to realize the unfolded state or the stowed state of the deployable mobile vehicle 1, one end portion 5a is positioned on the corresponding turning axis line α, while the other end portion 5b is corresponding to the corresponding turning axis line. The turning frame 5 needs to be formed so as not to be positioned on α. Accordingly, the swivel frame 5 in the embodiment shown in FIG. 1 has a shape that is an S-shaped extension.
In addition, the 2nd wheel 6 is a drive wheel which incorporated the drive motor in itself. On the other hand, although the first wheel 3 is a driven wheel, it may be a drive wheel like the second wheel 6. Further, the first wheel 3 may be arranged behind the vehicle body 2. Further, the support frame 4 may be fixed to the vehicle main body 2, or a rotation motor may be disposed in the vehicle main body 2 so as to be rotatable with respect to the vehicle main body 2.
FIG. 4 is a side view of the deployable mobile vehicle 1 shown in FIG. When climbing up or down the ramp, the turning angle of the turning frame 5 is controlled to move both the second wheels 6 below the vehicle body 2 so that the vehicle body 2 can always be kept horizontal. It becomes possible. FIG. 5 is a rear view of the deployable mobile vehicle 1 shown in FIG. When traversing the slope, the turning angle of the turning frame 5 is controlled so that the second wheel 6 on the mountain side of the slope is above the vehicle body 2 and the second wheel 6 on the slope Tanikawa is on the vehicle body 2. By moving downward, the vehicle main body 2 can always be kept horizontal. By keeping the vehicle body 2 always horizontal, it is possible to perform stable photographing with a camera mounted on the vehicle body 2, measurement of various sensors in a stable state, and the like.
FIG. 6 is a side view of the deployable mobile vehicle 1 shown in FIG. 1 when traveling on rough terrain. When traveling on rough terrain with many irregularities, the turning angle of the turning frame 5 is controlled and both the second wheels 6 are moved below the vehicle body 2 to increase the vehicle height. It is possible to prevent a stuck state where the vehicle runs on the convex portion and cannot travel. FIG. 7 is a diagram illustrating a return operation from the stack state of the deployable mobile vehicle 1 illustrated in FIG. 1. Even if the vehicle main body 2 rides on the convex portion and becomes stuck in the rough terrain, the turning angle of the turning frame 5 is controlled to move both the second wheels 6 below the vehicle main body 2. By doing so, it becomes possible to increase the vehicle height and start traveling again.
FIG. 8 is a continuous side view showing a return operation from the overturned state of the deployable mobile vehicle 1 shown in FIG. 1, that is, posture deformation. When the unfoldable mobile vehicle 1 falls while traveling, it is possible to return and start traveling again by the procedure shown in FIGS. 8A to 8D. That is, even if the vehicle falls over (A), the turning angle of the turning frame 5 is controlled to rotate the second wheel 6 upwardly of the vehicle body 2 (B). Further, it is possible to return to the traveling state (deployed state) by further turning the turning frame 5 or rotating the second wheel 6 (C).
FIG. 9 shows another return operation from the overturned state of the deployable mobile vehicle 1 shown in FIG. That is, when the deployable mobile vehicle 1 is in a fallen state as shown in FIG. 8A, for example, one turning frame 5 and the corresponding second wheel 6 are used. In FIG. 8A, the turning angle of the turning frame 5 is controlled and both the second wheels 6 are rotated upward. However, one turning frame 5 and the corresponding second wheel 6 are moved to the vehicle body 2. Is moved downward, that is, in the road surface direction. As a result, the deployable mobile vehicle 1 can rotate in the lateral direction and return to the traveling state (deployed state). Therefore, in the return operation shown in FIG. 8, the unfoldable mobile vehicle 1 rises forward or backward, whereas in the return operation shown in FIG. Roll over and get up.
By the way, in the deployed state of the deployable mobile vehicle 1 shown in FIG. 1, the axle of the second wheel 6 is arranged in parallel with the axle of the first wheel 3, so that the resistance when the deployable mobile vehicle 1 travels. There are few, and it is in a state suitable for driving. However, depending on the turning angle of the turning frame 5, the axle of the second wheel 6 is not arranged in parallel with the axle of the first wheel 3. That is, in FIG. 10, the direction of the axle of the second wheel 6 depends on the turning angle of the turning frame 5 as shown in the track of the second wheel 6 of the deployable mobile vehicle 1 shown in FIG. Has changed. Specifically, the axle of the second wheel 6 has a trajectory that forms part of a conical side surface with the point X as the center. Accordingly, the axle of the second wheel 6 is not parallel to the axle of the first wheel 3 except when the deployable mobile vehicle 1 is in the deployed state.
The axle of the second wheel 6 draws such a trajectory, so that when the second wheel 6 is brought into contact with the traveling surface and deformed in posture, the propulsive force generated by the movement direction of the turning frame 5 and the rotation of the second wheel 6 is reduced. Since the directions substantially coincide with each other, there is an effect that the turning motion of the turning frame 5 can be smoothly performed. That is, in the process of posture deformation from C to D during the return operation from the overturned state shown in FIG. 8, the second wheel 6 gradually transitions to the deployed state while being grounded, and finally transitions to the deployed state. According to the mechanism in the present embodiment, in this process, there is an auxiliary effect that the propulsive force generated by the rotation of the second wheel 6 positively helps the deployment of the turning frame 5.
Furthermore, according to the mechanism in the present embodiment, the central wheel, that is, the left and right wheels other than the first wheel 3, that is, the second wheel 6, with respect to the traveling direction, as in the traveling shown in FIGS. It is possible to travel in a toe-in state in which the front end of the wheel is inward. In general, a wheel in a toe-in state has an effect of improving the steering performance, and the mechanism in the present embodiment that is in a toe-in state on rough terrain improves traveling performance on rough terrain. There is an effect.
A plan view of the deployable mobile vehicle 10 according to another aspect of the present invention is shown in FIG. Since the deployable mobile vehicle 10 shown in FIG. 11 is the same as the deployable mobile vehicle 1 shown in FIG. 1 except for the configuration of the turning frame 5, description thereof will be omitted. The turning frame 15 of the deployable mobile vehicle 10 is formed by a parallel link mechanism including three connecting links having substantially the same shape as the turning frame 5. As a result, the axle of the second wheel 6 can always be kept parallel to the axle of the first wheel 3 regardless of the turning angle of the turning frame 15. That is, as shown in FIG. 8, during the deformation of the posture of the deployable mobile vehicle, it is possible to always maintain the axial direction of the axles of all the wheels constant.
In the above-described embodiment, the deployable mobile vehicle has one first wheel and two second wheels, but may have a different number of wheels. Further, as described above, each turning axis of the turning frame does not need to be arranged parallel to the horizontal plane of the vehicle body, has a predetermined angle with respect to the horizontal plane, and gives a camber angle to the second wheel in the running state. It is good. Furthermore, in the deployable mobile vehicle shown in FIG. 11, the axis direction of the axle of the second wheel is always constant by configuring the turning frame with parallel links, but the turning angle of the turning frame and the second wheel It may be configured by a link system that induces an optimal relationship with the axial direction of the axle and realizes the relationship.
Next, a deployable mobile vehicle according to still another aspect of the present invention will be described. FIG. 12 is a perspective view of a deployable mobile vehicle 20 according to still another aspect of the present invention, and FIG. 13 is a plan view of the deployable mobile vehicle shown in FIG. 12 in a deployed state.
The configuration of the first wheel 3 and the second wheel 6 of the deployable mobile vehicle 20 shown in FIG. 12 is the same as that of the deployable mobile vehicle 1 shown in FIG. 1 which is the first aspect of the present invention. is there. The deployable mobile vehicle 20 includes a vehicle body 22 and a support member 24. The support member 24 includes a rod that is fixed to the front surface of the vehicle main body 22 and protrudes forward, and supports the axle of the first wheel 3 from both sides by a U-shaped member provided at the tip of the rod. Instead of the support member 24, the support frame 4 of the deployable mobile vehicle 1 of the first aspect may be used.
The vehicle body 22 has a substantially rectangular parallelepiped shape. In this regard, the deployable mobile vehicle 1 of the first aspect has a side surface substantially perpendicular to the turning axis α of the turning frame 5 that is inclined forward by an angle θ as shown in FIG. However, the vehicle main body 22 of this aspect has a side surface parallel to the traveling direction of the vehicle and perpendicular to the traveling surface. A pair of turning frames 25 are attached to the left and right side rear portions of the vehicle body 22 so as to be turnable with respect to the vehicle body 22. Further, the vehicle body 22 can be equipped with devices such as a camera and various sensors on the upper surface thereof as in the case of the deployable mobile vehicle 1 of the first aspect. You may provide the protection frame 7 for protecting from a collision.
Since the deployable mobile vehicle 20 is significantly different from the deployable mobile vehicle 1 of the first aspect with respect to the turning frame and its drive mechanism, it will be described in detail below. FIG. 14 is a partial perspective view for explaining the turning frame 25 and its driving mechanism 40 of the deployable mobile vehicle 20 shown in FIG. 12, and FIG. 15 is the turning frame 25 and its driving mechanism shown in FIG. FIG. In FIG. 14, the vehicle main body 22 is omitted for illustration.
The turning frame 25 includes an outer link 31 disposed far from the vehicle body 22, an inner link 32 disposed closer to the vehicle body 22, and the outer link 31 and the inner link 32 closer to the vehicle body 22. A proximal link 33 connecting each end and the side of the vehicle main body 22; a distal link 34 connecting each end of the outer link 31 and the inner link 32 far from the vehicle main body 22 and the second wheel 6; have. Since the outer link 31 and the inner link 32, and the proximal link 33 and the distal link 34 are arranged so as to be parallel to each other, these links constitute a parallel link mechanism. Each distal link 34 supports the axle of the second wheel 6. The axle of the second wheel 6 is supported so as to be perpendicular to the traveling direction when the deployable mobile vehicle 20 goes straight, that is, parallel to the axle of the first wheel 3. In addition, the axle of the second wheel 6 supported by the distal link 34 is always perpendicular to a certain direction, that is, a traveling direction regardless of the turning angle of the turning frame 25 due to the structure of the parallel link mechanism. It arrange | positions so that it may become.
Next, the drive mechanism 40 for driving the turning frame 25 will be described. The drive mechanism 40 is controlled by a control device (not shown) disposed inside the vehicle main body 22. The drive mechanism 40 turns the turning frame 25 and changes the shape of the parallel link mechanism. The drive mechanism 40 includes a wave gear device 41, a turning motor 42, a push rod 43, a ball screw 44, a rotation motor 46 that rotates the ball screw 44 via a timing belt 45, and an axis line by rotation of the ball screw 44. And a nut member 47 that slides in the direction.
The wave gear device 41 is a well-known mechanism. Inside the wave generator, which is not shown, a wave generator that is an elliptical cam, the inner circumference of the wave generator ellipse is circumscribed and teeth are formed on the outer circumference. It has a flexible flex spline and a circular spline that is a rigid ring-shaped member having teeth on the inner circumference that mesh with the teeth on the outer circumference of the flex spline. When the wave generator is rotated forward or backward by the swing motor 42, the rotational force is transmitted to the circular spline through the flex spline, and finally the entire swing frame 25 including the parallel link mechanism is swung.
The wave gear device 41 has a push rod 43 passing through the center thereof. Accordingly, a corresponding hole is also provided for the wave generator. For this reason, the turning motor 42 is attached at a position eccentric with respect to the wave gear device 41, and the rotation of the turning motor 42 is transmitted to the wave generator via the timing belt in the wave gear device 41.
Next, control of the parallel link mechanism of the turning frame 25 will be described. By rotating the rotary motor 46 forward or backward, the rotational force is transmitted to the ball screw 44 via the timing belt 45. The ball screw 44 slides the nut member 47 in the axial direction corresponding to the rotation direction. One end of the push rod 43 is attached to the nut member 47 in parallel with the ball screw 44 via a bearing. Therefore, the push rod 43 can rotate around its axis along with the turning of the turning frame 25. Furthermore, the push rod 43 extends through the opening provided at the center of the wave gear device 41 toward the outside of the vehicle main body 22. In the opening at the center of the wave gear device 41, the push rod 43 is supported so as not to inhibit the sliding of the push rod 43 in the axial direction and the rotation around the axial line. Accordingly, the push rod 43 also moves in the axial direction in accordance with the sliding of the nut member 47.
The other end of the push rod 43 is rotatably connected to one end of the opening / closing link 35. The other end of the opening / closing link 35 is rotatably connected to an intermediate portion of the outer link 31, preferably in the vicinity of the proximal link 33, so as not to interfere with the inner link 32. In other words, the inner link 32 and the proximal link 33 are configured and connected so as not to interfere with the push rod 43 and the opening / closing link 35. The rotation axes at the connecting portions at both ends of the opening / closing link 35 are parallel to the rotation axes at the connecting portions of the links of the turning frame 25. Therefore, the open / close link 35 can change the shape of the parallelogram formed by the parallel link mechanism, that is, the parallel link mechanism can swing.
Here, an angle formed by the turning axis α of the turning frame 25 and the outer link 31 or the inner link 32 is referred to as an opening / closing angle γ (FIG. 15). The larger the opening / closing angle γ, the smaller the interval between the second wheels 6, and the smaller the opening / closing angle γ, the larger the interval between the second wheels 6. When the push rod 43 is slid in the axial direction by rotating the rotary motor 46, the opening / closing angle γ is changed by the action of the opening / closing link 35. That is, when the push rod 43 slides in a direction protruding outward with respect to the vehicle body 22, the opening / closing angle γ is reduced. On the other hand, when the push rod 43 slides in the direction retracting inward with respect to the vehicle body 22, the opening / closing angle γ increases. The opening / closing angle γ can be controlled independently of the turning angle of the turning frame 25 in the range of 0 to 90 degrees.
For example, when the turning frame 25 is turned while the opening / closing angle γ is kept constant, the locus forms a conical surface.
In this embodiment, the above-described drive mechanism 40 is disposed with respect to the left and right turning frames 25, respectively. Since each drive mechanism 40 can drive the turning motor 42 independently, the turning angles of the left and right turning frames 25 can be changed independently. On the other hand, the rotation motor 46, the timing belt 45, and the ball screw 44 are used in common. That is, the timing belt 45 is wound around the central portion of the ball screw 44, and the screws are formed in opposite directions from the central portion in the left-right direction. Therefore, the opening / closing angle γ of the left and right turning frames 25 is always the same. However, each drive mechanism 40 may have the rotation motor 46, the timing belt 45, and the ball screw 44 separately, so that the opening / closing angle γ of the left and right turning frames 25 may be controlled independently.
16 is a perspective view of the deployed mobile vehicle 20 shown in FIG. 12 in a deployed state in another posture, and FIG. 17 is a plan view of the deployed mobile vehicle 20 in the posture shown in FIG. . The deployable mobile vehicle 20 in the posture shown in FIG. 12 or FIG. 13 has a wide interval between the second wheels 6 and can travel stably, but can travel in a narrow place such as between obstacles. Is not suitable. Therefore, as shown in FIGS. 16 and 17, by setting the opening / closing angle γ to about 90 degrees, it is possible to travel in a narrow place.
18 is a perspective view of the unfolded mobile vehicle shown in FIG. 12, and FIG. 19 is a plan view of the unfolded mobile vehicle shown in FIG. The deployable mobile vehicle 20 in this state is generally compact compared to the unfolded state, and can be stored in a smaller volume space. Therefore, this is a state suitable for transporting the open-type moving vehicle 1 or the like. Further, in the retracted state, the deployable mobile vehicle 20 of this aspect differs from the deployable mobile vehicle 1 of the first aspect as shown in FIG. 3 in that the axles of all wheels are parallel. Therefore, the deployable mobile vehicle 20 of this aspect can smoothly run even in this state.
As a matter of course, also in the deployable mobile vehicle 20 of this aspect, as shown in the deployable mobile vehicle 1 of the first aspect, the travel shown in FIGS. It is possible to perform a return operation. That is, the deployable mobile vehicle 20 of this aspect also has the same advantages as the deployable mobile vehicle 1 of the first aspect.
In the present embodiment, the opening / closing link 35 is used to change the opening / closing angle γ, but the opening / closing angle γ may be changed by an opening / closing angle changing mechanism that swings other parallel link mechanisms. Although the unfoldable moving vehicle 20 has one first wheel and two second wheels, it may have a different number of wheels.
FIG. 20 is a block diagram showing an outline of a deployable mobile vehicle according to each aspect of the present invention. The vehicle main body 51 includes a control device 52, various sensors 53, and drive mechanisms 54 and 55. The control device 52 controls a drive mechanism 54 including a turning motor and a rotation motor to control a turning angle and an opening / closing angle. Further, the control device 52 controls the drive mechanism including the drive motor in the second wheel 6 via the electric cable 56. When the control device 52 is controlled, it may be controlled based on inputs from various sensors 53. That is, as described above with reference to FIGS. 4 to 9, the deployable mobile vehicle receives signals from the various sensors 53 so that a stable posture can be maintained according to the state of the traveling surface, that is, unevenness and inclination. Based on this, it is controlled by the control device 52.
While the invention has been described in connection with preferred embodiments thereof, those skilled in the art will recognize that various modifications and changes can be made without departing from the scope of the claims set out below.
 1  展開型移動車両
 2  車両本体
 3  第1車輪
 4  支持フレーム
 5  旋回フレーム
 6  第2車輪
 7  保護フレーム
 α  旋回軸線
 β  水平軸線
DESCRIPTION OF SYMBOLS 1 Unfolding type mobile vehicle 2 Vehicle main body 3 1st wheel 4 Support frame 5 Turning frame 6 2nd wheel 7 Protective frame α Turning axis β Horizontal axis

Claims (5)

  1.  車両本体と、
     該車両本体の前方又は後方に配置された第1車輪と、
     一方の端部が前記車両本体の左右側面にそれぞれ旋回可能に取り付けられた一対の旋回フレームと、
     前記一対の旋回フレームの他方の端部にそれぞれ設けられた第2車輪と、
     前記一対の旋回フレームの旋回角をそれぞれ制御する制御装置と、
     を具備することを特徴とする展開型移動車両。
    A vehicle body,
    A first wheel disposed in front of or behind the vehicle body;
    A pair of swivel frames, one end of which is pivotably attached to the left and right side surfaces of the vehicle body;
    A second wheel provided at each of the other ends of the pair of turning frames;
    A control device for respectively controlling the turning angles of the pair of turning frames;
    A deployable mobile vehicle characterized by comprising:
  2.  前記旋回フレームの各旋回軸線が、水平面に投影したときに前記車両本体の前後方向に対して垂直な水平軸線に対して前記第1車輪側に傾斜しており、これら旋回フレームの他方の端部がそれぞれ対応する前記旋回軸線上に位置しないように形成されていることを特徴とする請求項1に記載の展開型移動車両。 Each turning axis of the turning frame is inclined toward the first wheel with respect to a horizontal axis perpendicular to the front-rear direction of the vehicle body when projected on a horizontal plane, and the other end of these turning frames The unfoldable mobile vehicle according to claim 1, wherein the vehicle is formed so as not to be positioned on the corresponding turning axis.
  3.  前記一対の旋回フレームがそれぞれ並列リンク機構を備え、前記旋回フレームの前記旋回角にかかわらず、前記第2車輪の車軸の軸線方向が一定であることを特徴とする請求項2に記載の展開型移動車両。 The unfolded type according to claim 2, wherein each of the pair of turning frames includes a parallel link mechanism, and the axial direction of the axle of the second wheel is constant regardless of the turning angle of the turning frame. Moving vehicle.
  4.  前記旋回フレームが平行リンク機構を備え、当該展開型移動車両が、前記旋回フレームの旋回軸線と前記平行リンク機構とが成す開閉角度を変更する開閉角度変更機構をさらに具備することを特徴とする請求項1に記載の展開型移動車両。 The turning frame includes a parallel link mechanism, and the deployable mobile vehicle further includes an opening / closing angle changing mechanism that changes an opening / closing angle formed by a turning axis of the turning frame and the parallel link mechanism. Item 2. The deployable mobile vehicle according to Item 1.
  5.  前記開閉角度変更機構が開閉リンクであり、該開閉リンクの一方の端部が前記車両本体から伸縮するプッシュロッドに連結され、他方の端部が前記平行リンク機構の1つのリンクの中間部分に連結されていることを特徴とする請求項4に記載の展開型移動車両。 The opening / closing angle changing mechanism is an opening / closing link, and one end of the opening / closing link is connected to a push rod extending and contracting from the vehicle body, and the other end is connected to an intermediate portion of one link of the parallel link mechanism. The deployable mobile vehicle according to claim 4, wherein
PCT/JP2011/066778 2010-07-16 2011-07-15 Expandable mobile vehicle WO2012008622A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012524623A JPWO2012008622A1 (en) 2010-07-16 2011-07-15 Deployable mobile vehicle

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-161495 2010-07-16
JP2010161495 2010-07-16

Publications (1)

Publication Number Publication Date
WO2012008622A1 true WO2012008622A1 (en) 2012-01-19

Family

ID=45469602

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/066778 WO2012008622A1 (en) 2010-07-16 2011-07-15 Expandable mobile vehicle

Country Status (2)

Country Link
JP (1) JPWO2012008622A1 (en)
WO (1) WO2012008622A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE202014009768U1 (en) * 2014-12-10 2016-03-11 Isel Facility GmbH Vehicle for transportation of persons and loads
WO2016092266A1 (en) * 2014-12-09 2016-06-16 Nobebop Limited Chassis with high movement suspension
WO2020020885A1 (en) * 2018-07-25 2020-01-30 Bauhaus-Universität Weimar Self-propelled implement
US20220410992A1 (en) * 2021-06-23 2022-12-29 The Regents Of The University Of Michigan Shape-Adaptive Robot For Off-Road High-Speed Applications
WO2023228580A1 (en) * 2022-05-26 2023-11-30 株式会社Ihiアグリテック Work machine

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3797597A (en) * 1972-12-01 1974-03-19 Rineman H Folding motorized vehicle
JPH09501630A (en) * 1993-08-19 1997-02-18 デ オリベイラ,フェルナンド ホセ ネリー System to be applied to universal ground vehicles with traction means attached to articulated arms
JPH09142347A (en) * 1995-11-24 1997-06-03 Mitsubishi Heavy Ind Ltd Rough terrain moving device
US5697464A (en) * 1993-11-18 1997-12-16 Gojak; Albert Ivan Ride-on vehicle for golf club bag and the like
JPH10297557A (en) * 1997-04-25 1998-11-10 Tokyo Inst Of Technol Expansion traveling vehicle
JP2006327244A (en) * 2005-05-23 2006-12-07 Viewtec Japan Co Ltd Three-wheeled motorcycle
JP2009107468A (en) * 2007-10-30 2009-05-21 Ihi Corp Traveling vehicle
JP2009120101A (en) * 2007-11-16 2009-06-04 Ihi Corp Locomotive robot and its moving method

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3797597A (en) * 1972-12-01 1974-03-19 Rineman H Folding motorized vehicle
JPH09501630A (en) * 1993-08-19 1997-02-18 デ オリベイラ,フェルナンド ホセ ネリー System to be applied to universal ground vehicles with traction means attached to articulated arms
US5697464A (en) * 1993-11-18 1997-12-16 Gojak; Albert Ivan Ride-on vehicle for golf club bag and the like
JPH09142347A (en) * 1995-11-24 1997-06-03 Mitsubishi Heavy Ind Ltd Rough terrain moving device
JPH10297557A (en) * 1997-04-25 1998-11-10 Tokyo Inst Of Technol Expansion traveling vehicle
JP2006327244A (en) * 2005-05-23 2006-12-07 Viewtec Japan Co Ltd Three-wheeled motorcycle
JP2009107468A (en) * 2007-10-30 2009-05-21 Ihi Corp Traveling vehicle
JP2009120101A (en) * 2007-11-16 2009-06-04 Ihi Corp Locomotive robot and its moving method

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016092266A1 (en) * 2014-12-09 2016-06-16 Nobebop Limited Chassis with high movement suspension
CN107000516A (en) * 2014-12-09 2017-08-01 诺贝博有限公司 Chassis with high mobile suspension
DE202014009768U1 (en) * 2014-12-10 2016-03-11 Isel Facility GmbH Vehicle for transportation of persons and loads
WO2020020885A1 (en) * 2018-07-25 2020-01-30 Bauhaus-Universität Weimar Self-propelled implement
US20220410992A1 (en) * 2021-06-23 2022-12-29 The Regents Of The University Of Michigan Shape-Adaptive Robot For Off-Road High-Speed Applications
WO2023228580A1 (en) * 2022-05-26 2023-11-30 株式会社Ihiアグリテック Work machine

Also Published As

Publication number Publication date
JPWO2012008622A1 (en) 2013-09-09

Similar Documents

Publication Publication Date Title
WO2012008622A1 (en) Expandable mobile vehicle
KR101835901B1 (en) A vehicle having variable track
JP5666166B2 (en) Traveling robot
JP5413771B2 (en) Step-over wheels and wheel type robots
CN102202921B (en) In amtrack or relevant to amtrack improvement
CN101583530B (en) Tracked robotic crawler having a moveable arm
JP3543223B2 (en) Camber control suspension
US20090149113A1 (en) Rolling and Flipping Vehicle
JP2005111595A (en) Crawler type traveling robot
JP5467423B2 (en) Step-over wheels and wheel type robots
NO321573B1 (en) Vehicle toy comprising an anti-tipping mechanism.
EP3691959B1 (en) Couplable automotive road vehicle with compact steering and suspension
JP2006264510A (en) Automobile
JP2008254588A (en) Traveling device and mobile robot
JP2580542B2 (en) Flexible crawler with rice ball mechanism
US8430713B2 (en) Three wheeled toy vehicle
JP2007161105A (en) Mobile robot
JP2016097787A (en) Travelling device
JP2010536659A (en) Amphibious vehicle
JP4868129B2 (en) Tow angle variable device and toe angle / camber angle variable device
JP2006264511A (en) Steering device of automobile
JP5220478B2 (en) Bicycle with posture maintenance device
JP2003154802A (en) Wheel with rotor
JP2022066855A (en) Wheel and vehicle
JP6916052B2 (en) Electric vehicle

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11806948

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012524623

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11806948

Country of ref document: EP

Kind code of ref document: A1