WO2012008314A1 - Method for producing carboxymethyl cellulose - Google Patents

Method for producing carboxymethyl cellulose Download PDF

Info

Publication number
WO2012008314A1
WO2012008314A1 PCT/JP2011/065089 JP2011065089W WO2012008314A1 WO 2012008314 A1 WO2012008314 A1 WO 2012008314A1 JP 2011065089 W JP2011065089 W JP 2011065089W WO 2012008314 A1 WO2012008314 A1 WO 2012008314A1
Authority
WO
WIPO (PCT)
Prior art keywords
carboxymethyl cellulose
salt
pulp
monohaloacetic acid
alkali agent
Prior art date
Application number
PCT/JP2011/065089
Other languages
French (fr)
Japanese (ja)
Inventor
榊原 誠
Original Assignee
花王株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 花王株式会社 filed Critical 花王株式会社
Publication of WO2012008314A1 publication Critical patent/WO2012008314A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08BPOLYSACCHARIDES; DERIVATIVES THEREOF
    • C08B11/00Preparation of cellulose ethers
    • C08B11/02Alkyl or cycloalkyl ethers
    • C08B11/04Alkyl or cycloalkyl ethers with substituted hydrocarbon radicals
    • C08B11/10Alkyl or cycloalkyl ethers with substituted hydrocarbon radicals substituted with acid radicals
    • C08B11/12Alkyl or cycloalkyl ethers with substituted hydrocarbon radicals substituted with acid radicals substituted with carboxylic radicals, e.g. carboxymethylcellulose [CMC]
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L1/00Compositions of cellulose, modified cellulose or cellulose derivatives
    • C08L1/08Cellulose derivatives
    • C08L1/26Cellulose ethers
    • C08L1/28Alkyl ethers
    • C08L1/286Alkyl ethers substituted with acid radicals, e.g. carboxymethyl cellulose [CMC]

Definitions

  • the present invention relates to a method for producing carboxymethyl cellulose.
  • Carboxymethylcellulose (hereinafter also referred to as “CMC”) is widely used as a thickener, a dispersant, an emulsifier, a protective colloid agent, a stabilizer, and the like.
  • this CMC is produced by a solvent method in which cellulose is treated with a large amount of alkaline water to activate it as alkali cellulose (arcelerization), and then dispersed in a water-containing organic solvent and reacted with monohaloacetic acid.
  • Patent Document 1 discloses a method for producing carboxymethyl cellulose or a salt thereof, which includes a step of reacting cellulose and alkali at a temperature of 20 to 50 ° C.
  • Patent Document 2 discloses a method for producing a cellulose derivative, in which a low crystalline powdery cellulose having a crystallinity of 50% or less is reacted with an organic halide compound in the presence of a base.
  • the present invention relates to a method for efficiently producing carboxymethyl cellulose having a high aqueous solution viscosity.
  • the present invention is a method for producing carboxymethyl cellulose, in which raw pulp is pulverized by a pulverizer, and then cellulose in the obtained pulverized product is reacted with monohaloacetic acid or a salt thereof and an alkali agent at 40 to 100 ° C.
  • the present invention relates to a method for producing carboxymethyl cellulose, comprising a step of mixing the monohaloacetic acid or a salt thereof and / or an alkaline agent with the raw material pulp before or during the pulverizing treatment of the raw material pulp.
  • carboxymethyl cellulose having a high aqueous solution viscosity can be efficiently produced.
  • the present invention is a method for producing carboxymethyl cellulose, in which raw pulp is pulverized by a pulverizer, and then cellulose in the obtained pulverized product is reacted with monohaloacetic acid or a salt thereof and an alkali agent at 40 to 100 ° C.
  • monohaloacetic acid or a salt thereof and / or an alkali agent By mixing the monohaloacetic acid or a salt thereof and / or an alkali agent with the raw material pulp before or during the pulverization treatment of the raw material pulp, carboxymethyl cellulose having a high aqueous solution viscosity can be produced efficiently and simply. .
  • Step 1 A step of mixing raw pulp with monohaloacetic acid or a salt thereof and pulverizing with a pulverizer (hereinafter also referred to as “pulverizing step”).
  • Step 2 A step of reacting the cellulose in the pulverized product obtained in Step 1 with monohaloacetic acid or a salt thereof and an alkali agent at 40 to 100 ° C. to obtain carboxymethyl cellulose (hereinafter also referred to as “reaction step”)
  • reaction step A step of reacting the cellulose in the pulverized product obtained in Step 1 with monohaloacetic acid or a salt thereof and an alkali agent at 40 to 100 ° C.
  • raw material pulp examples include cotton linter, rice straw pulp, and wood pulp. Specifically, linter pulp, N-wood pulp mainly composed of softwood, and L mainly composed of hardwood. Pulp and the like can be used.
  • the shape of the raw material pulp is not particularly limited, but in the production method of the present invention, the higher the degree of polymerization of the raw material pulp, the higher the degree of polymerization of carboxymethyl cellulose can be obtained. On the other hand, the degree of polymerization of the raw material pulp is lowered by processing such as pulverization. Therefore, from the viewpoint of obtaining carboxymethyl cellulose having a high degree of polymerization, the shape of the raw material pulp is preferably a chip shape.
  • a shredder for example, manufactured by Meiko Shokai Co., Ltd., trade name: “MSX2000-IVP440F” or a sheet pelletizer (for example, manufactured by Horai Co., Ltd., trade name: “SGG-220-”).
  • 3X3 a shredder
  • the diameter of the chip is preferably 0.6 to 100 mm, more preferably 0.8 to 30 mm, and more preferably 1 to 10 mm in terms of the number average of 100 long diameters (the longest length of one chip). Further preferred.
  • the average degree of polymerization of cellulose constituting the raw material pulp is preferably 1000 or more, more preferably 1200 or more, and further preferably 1500 or more, from the viewpoint of developing a high aqueous solution viscosity.
  • the upper limit of the average degree of polymerization is not particularly limited, but is preferably 5000 or less from the viewpoint of availability.
  • the average degree of polymerization of a cellulose means a viscosity average degree of polymerization, and specifically, it measures by the method as described in an Example.
  • crystallinity of cellulose means the crystallinity derived from the type I crystal structure of natural cellulose, and is calculated by the Segal method from the diffraction intensity value by the powder X-ray crystal diffraction spectrum method. , Defined by the following formula (1).
  • the crystallinity of the cellulose constituting the raw pulp is preferably more than 50% and 95% or less, more preferably 60 to 95%, still more preferably 70 to 95%, from the viewpoint of maintaining a high degree of polymerization. More preferably, it is 75 to 95%.
  • the alkali agent used in the present invention is preferably an alkali metal hydroxide or an alkaline earth metal hydroxide from the viewpoint of efficiently converting the hydroxyl groups of cellulose molecules constituting the raw material pulp into alcoholates.
  • Specific examples of the alkali metal hydroxide include sodium hydroxide, potassium hydroxide, lithium hydroxide and the like, and specific examples of the alkaline earth metal hydroxide include magnesium hydroxide and calcium hydroxide. Among these, an alkali metal hydroxide is preferable, and sodium hydroxide or potassium hydroxide is more preferable. There is no limitation on the form of the alkaline agent.
  • an aqueous solution is preferably used from the viewpoint of operation.
  • the concentration in the case of adding the alkaline agent in the form of an aqueous solution is not particularly limited, but since the reaction step described below is affected by the amount of water, the amount of water after the addition of the alkaline agent exceeded the suitable amount of water in the reaction step. In some cases, it is desirable to perform operations such as dehydration. Therefore, the concentration of the alkaline agent aqueous solution is preferably 10% by mass or more. On the other hand, from the viewpoint of easy availability, the concentration of the alkaline agent aqueous solution is preferably 75% by mass or less. From the above viewpoint, the concentration of the alkaline agent aqueous solution is preferably 10 to 75% by mass, more preferably 20 to 65% by mass, and still more preferably 30 to 55% by mass.
  • the molar equivalent ratio of the alkali agent to the anhydroglucose unit of the cellulose constituting the raw pulp is preferably 0.3 to 3 from the viewpoint of developing a high aqueous solution viscosity. More preferably 0.5 to 2, still more preferably 0.5 to 1.8, still more preferably 0.5 to 1.5, and still more preferably 0.5 to 1.2.
  • the number of moles of anhydroglucose units can be determined as a value obtained by dividing the dry weight of cellulose by the molecular weight 162 of anhydroglucose units.
  • the alkali agent is consumed for neutralization of monohaloacetic acid, so the molar equivalent ratio of the alkali agent to the anhydroglucose unit of the cellulose constituting the raw pulp (alkali agent / anhydroglucose unit) is high.
  • it is preferably 0.6 to 6, more preferably 1.0 to 4, and still more preferably 1 to 3.
  • the halogen atom in the monohaloacetic acid used in the present invention is preferably an iodine atom, a bromine atom or a chlorine atom, more preferably a bromine atom or a chlorine atom, still more preferably chlorine, for reasons of reactivity, versatility and ease of handling. Is an atom.
  • the metal capable of forming a salt of monohaloacetic acid is preferably lithium, potassium or sodium, more preferably potassium or sodium, and still more preferably sodium, from the viewpoint of expressing the water solubility of the resulting carboxymethyl cellulose and high aqueous solution viscosity. .
  • monohaloacetic acid or a salt thereof used in the present invention include monochloroacetic acid, monobromoacetic acid, sodium monochloroacetate, potassium monochloroacetate and the like, and monochloroacetic acid or sodium monochloroacetate is preferable.
  • Monohaloacetic acid or a salt thereof may be used in the form of a solid (powder) or may be used after being dissolved in water or a hydrophilic organic solvent described later.
  • the molar equivalent ratio of monohaloacetic acid or a salt thereof to anhydroglucose unit of cellulose constituting the raw pulp is preferably 0.3 to 3, from the viewpoint of developing a high aqueous solution viscosity, More preferably, it is 0.5 to 2.0, still more preferably 0.5 to 1.6, and still more preferably 0.6 to 1.0.
  • Said monohaloacetic acid or its salt, and an alkali agent can be used individually or in combination of 2 types or more, respectively.
  • the molar equivalent ratio of the alkali agent to the monohaloacetic acid used in the present invention is preferably 2 to 3, more preferably 2 to 2, for the reason that the reaction is carried out efficiently while suppressing side reactions. 0.5, more preferably 2 to 2.2, and even more preferably 2 to 2.1.
  • the molar equivalent ratio of the alkaline agent to the monohaloacetic acid salt used in the present invention is because the reaction is carried out efficiently while suppressing side reactions.
  • Step 1 Crushing step
  • raw pulp and monohaloacetic acid or a salt thereof are mixed and pulverized.
  • the raw pulp is pulverized by a pulverizer in the presence of monohaloacetic acid or a salt thereof and an alkali agent. More specifically, monohaloacetic acid or a salt thereof and an alkali agent are mixed before pulverization of the raw pulp or during pulverization, and pulverized.
  • Examples of the mixing and pulverizing method include the following (1) to (4).
  • Both monohaloacetic acid or a salt thereof and an alkaline agent are used as the raw material pulp.
  • Monohaloacetic acid or a salt thereof is mixed before or during pulverization of raw pulp, and an alkali agent can be obtained after the pulverization is completed.
  • One of monohaloacetic acid or a salt thereof, or an alkali agent is mixed with raw pulp before the raw pulp is pulverized, and the other is being pulverized during the pulverization How to mix with
  • the mixing and pulverizing method may be any of the above methods (1) to (4), but from the viewpoint of obtaining carboxymethyl cellulose having a high aqueous solution viscosity, the methods (1), (2) and (4), That is, a method having a step of pulverizing raw pulp with a pulverizer in the presence of monohaloacetic acid or a salt thereof and an alkali agent is preferable, and the method (4) is more preferable.
  • the order of adding the raw materials and the order of pulverization are not particularly limited. Monohaloacetic acid or a salt thereof may be added to the raw pulp and pulverized, then an alkali agent may be added, and further pulverized.
  • an alkaline agent may be added to the raw pulp and pulverized, and then the monohaloacetic acid or a salt thereof. And may be further pulverized.
  • the raw pulp, monohaloacetic acid or a salt thereof, and an alkali agent may be mixed at the same time and pulverized.
  • a method in which raw pulp and monohaloacetic acid or a salt thereof are mixed and pulverized, and then an alkali agent is added and further pulverized is preferable.
  • Examples of the pulverizer used in the present invention include those shown in Tables 16 and 4 on page 843 of “Chemical Engineering Handbook, Revised Sixth Edition” edited by the Chemical Engineering Society. More specific examples include roll mills such as high pressure compression roll mills and roll rotating mills; rigid roller mills such as ring roller mills, roller race mills or ball race mills; rolling ball mills, vibration ball mills, vibration rod mills, vibration tube mills, planets Container drive medium mill such as ball mill or centrifugal fluidization mill; medium agitation mill such as tower pulverizer, stirring tank mill, flow tank mill or annular mill; compaction shear mill such as high speed centrifugal roller mill or ang mill; A mortar, a stone mill, etc. are mentioned.
  • a container-driven medium mill or a medium agitating mill is preferable, a container-driven medium mill is more preferable, and a vibration ball mill, a vibration rod mill, or a vibration tube mill is more preferable.
  • the processing method may be either a batch type or a continuous type.
  • a material of a grinder and / or a medium For example, iron, stainless steel, an alumina, a zirconia, a silicon carbide, a silicon nitride, glass etc. are mentioned. Among these, iron, stainless steel, zirconia, silicon carbide, and silicon nitride are preferable from the viewpoint of mixing and grinding efficiency, and iron or stainless steel is more preferable from the viewpoint of industrial use. From the viewpoint of mixing and pulverization efficiency, when the pulverizer used is a vibration mill and the medium is a rod, the outer diameter of the rod is preferably 0.1 to 100 mm, more preferably 0.5 to 50 mm. Range.
  • the rod filling rate varies depending on the type of vibration mill, but is preferably in the range of 10 to 97%, more preferably 15 to 95%. If the filling rate of the rod is within this range, the contact frequency between the cellulose or the reactant and the rod can be improved, and the grinding efficiency can be improved without hindering the movement of the medium.
  • the rod filling rate refers to the apparent volume of the rod relative to the volume of the stirring section of the vibration mill.
  • the pulverization time depends on the pulverization conditions such as the size (volume) of the pulverizer, but is preferably about 3 to 3 hours, more preferably 5 to 60 minutes, from the viewpoint of obtaining carboxymethylcellulose having a high aqueous solution viscosity. Minutes are more preferred.
  • the temperature during pulverization is preferably 5 ° C. or more and less than 40 ° C., more preferably 5 to 38 ° C., and still more preferably 5 to 35 ° C., from the viewpoint of obtaining carboxymethyl cellulose having a high aqueous solution viscosity. As long as the object of the present invention is not impaired, there may be a portion where the temperature is locally increased during pulverization.
  • a step of impregnating the raw pulp with monohaloacetic acid or a salt thereof before the raw pulp is pulverized from the viewpoint of obtaining a carboxymethyl cellulose having a high aqueous solution viscosity by suppressing a decrease in the degree of polymerization.
  • a raw pulp and a solution of monohaloacetic acid or a salt thereof are mixed with a commonly used mixing and stirring device such as a Henschel mixer, an anchor blade, etc.
  • a method for removing the solvent can be used.
  • the solvent can be removed by a general method such as drying under reduced pressure.
  • the drying time under reduced pressure is preferably 6 to 48 hours, more preferably 8 to 24 hours.
  • the hydrophilic organic solvent those described later can be used.
  • the water content in the pulverization treatment step is preferably 10 parts by weight or more with respect to 100 parts by weight of the dry raw material pulp from the viewpoint of suppressing the decrease in the degree of polymerization and obtaining carboxymethyl cellulose having a high aqueous solution viscosity.
  • the water content is preferably 100 parts by weight or less with respect to 100 parts by weight of the dry raw material pulp from the viewpoint of pulverization efficiency and the water content in the reaction step described later in a suitable range.
  • the water content is preferably 10 to 100 parts by weight, more preferably 10 to 90 parts by weight, further preferably 15 to 80 parts by weight, and more preferably 20 to 60 parts by weight with respect to 100 parts by weight of the dry raw material pulp. Further preferred.
  • the water content in the pulverization process within the above range, aggregation of cellulose can be suppressed, and the subsequent reaction process can be performed while maintaining a good powder state, and further, a decrease in the polymerization degree of the raw material can be suppressed. It becomes possible.
  • the end point of the pulverization treatment of the raw material pulp is preferably the median diameter of cellulose and / or carboxymethyl cellulose in the pulverized product obtained from the viewpoint of reacting the pulverized product with monohaloacetic acid or a salt thereof and an alkali agent in the next step.
  • it can be pulverized to 1 to 800 ⁇ m, more preferably 10 to 500 ⁇ m, still more preferably 10 to 300 ⁇ m, and still more preferably 30 to 250 ⁇ m.
  • the method for measuring the median diameter is as described in Examples described later.
  • the obtained pulverized product is mainly composed of cellulose, but may partially react to become carboxymethylcellulose.
  • Step 2 Reaction step
  • the cellulose in the obtained pulverized product is reacted with monohaloacetic acid or a salt thereof and an alkali agent at 40 to 100 ° C. to obtain carboxymethylcellulose.
  • the reaction method include the following (i) to (ii).
  • an alkali agent is added and mixed to the obtained mixed pulverized product, and additional monohalo is added as necessary.
  • reaction When monohaloacetic acid or a salt thereof and an alkali agent are mixed before or during the pulverization treatment of the raw pulp, the reaction may be carried out as it is, but if necessary, additional monohaloacetic acid or a salt thereof. And / or an alkali agent can be added and mixed to carry out the reaction.
  • a mixer capable of mixing uniformly.
  • a mixer such as a so-called kneader used for kneading high-viscosity substances such as powders and resins as disclosed in paragraph [0016] of JP-A-2002-114801 is used as the reaction apparatus.
  • the mixer such as a kneader is not particularly limited as long as it can sufficiently stir.
  • the chemical engineering manual edited by “Chemical Engineering Handbook” revised 5th edition published by Maruzen Co., Ltd.
  • examples of the single-axis kneader include a ribbon mixer, a kneader, a botter, and a screw-type kneader
  • examples of the biaxial kneader include a double-arm kneader. It is more preferable that these mixers have a portion where the aqueous base solution can be dropped and dehydrated.
  • the reaction temperature is from 40 to 100 ° C., preferably from 40 to 80 ° C., more preferably from the viewpoint of allowing the reaction to proceed efficiently while suppressing side reactions and suppressing a decrease in the degree of polymerization of cellulose. ⁇ 70 ° C.
  • the reaction atmosphere in the reaction step is preferably carried out in an inert gas atmosphere from the viewpoint of suppressing a decrease in the degree of polymerization of cellulose and expressing a high aqueous solution viscosity.
  • the inert gas is preferably nitrogen, helium or argon, more preferably nitrogen or argon, still more preferably nitrogen.
  • stirring is preferably performed at 1 to 500 rpm, more preferably 2 to 200 rpm, and still more preferably 5 to 100 rpm.
  • the reaction time is preferably about 1 to 10 hours, more preferably about 2 to 8 hours.
  • the end point of the reaction can be taken as a standard when 95% by weight or more of the total amount of monohaloacetic acid or its salt has been consumed, and the progress of the reaction can be confirmed by high performance liquid chromatography (HPLC) or the like. it can.
  • HPLC high performance liquid chromatography
  • an aqueous solution of a hydrophilic solvent such as methanol is added to the obtained reaction product, and salts such as NaCl can be removed by filtration after stirring.
  • Carboxymethylcellulose is obtained as a filter cake, and can be washed with acetone and dehydrated efficiently.
  • hydrophilic organic solvent From the viewpoint of improving the mixing property of monohaloacetic acid or a salt thereof and raw pulp, a hydrophilic organic solvent may be used in the pulverization treatment step and / or the reaction step.
  • the hydrophilic organic solvent is preferably one that dissolves 100 g or more in 100 g of water at 25 ° C. from the viewpoint of the reactivity between the raw material pulp and monohaloacetic acid or a salt thereof.
  • the hydrophilic organic solvent that can be used in the method of the present invention is preferably a secondary or tertiary lower alcohol such as isopropanol or tert-butanol; diglyme such as 1,4-dioxane, ethylene glycol dimethyl ether or diethylene glycol dimethyl ether;
  • Examples include ether solvents such as triglyme; hydrophilic polar solvents such as dimethyl sulfoxide, more preferably secondary or tertiary lower alcohols such as isopropanol and tert-butanol, and more preferably isopropanol and tert-butanol.
  • Said hydrophilic organic solvent can be used individually or in combination of 2 or more types.
  • the amount of the hydrophilic organic solvent used in the reaction in the present invention is preferably 200 parts by weight or less, more preferably 150 parts by weight or less, still more preferably 100 parts by weight or less, and still more preferably with respect to 100 parts by weight of the dry raw material pulp. Is 50 parts by weight or less, more preferably 30 parts by weight or less.
  • the water content in the reaction step is preferably 100 with respect to 100 parts by weight of the dry raw material pulp from the viewpoint of efficiently alcoholating the hydroxyl groups of the cellulose molecules with an alkali agent and suppressing the aggregation of the pulverized product.
  • the amount is not more than parts by weight, more preferably 10 to 90 parts by weight, still more preferably 15 to 80 parts by weight, still more preferably 20 to 60 parts by weight.
  • carboxymethylcellulose having a high aqueous solution viscosity is obtained.
  • the obtained carboxymethyl cellulose may be a salt, and the salt is preferably an alkali metal salt such as sodium, potassium or lithium or an alkaline earth metal salt such as magnesium or calcium.
  • the viscosity of a 1% by weight aqueous solution of carboxymethylcellulose obtained by the method of the present invention (100 mol% neutralized product with sodium salt) (25 ° C.) is preferably 500 mPa ⁇ s or more, more preferably from the viewpoint of developing high viscosity.
  • it is preferably 10,000 mPa ⁇ s or less and more preferably 5000 mPa ⁇ s or less from the viewpoint of handleability.
  • the measuring method of the aqueous solution viscosity is as described in Examples described later.
  • Carboxymethyl cellulose obtained by the method of the present invention is useful as a thickener for cosmetics and the like.
  • the crystallinity of cellulose in raw pulp or pulverized material is measured using the raw pulp or pulverized material as a sample, and the X-ray diffraction intensity of the sample is determined by “Rigaku RINT 2500VC X” manufactured by Rigaku Corporation. -RAY diffractometer "(trade name) was measured under the following conditions and calculated based on the formula (1).
  • the measurement sample was prepared by compressing a pellet having an area of 320 mm 2 ⁇ thickness of 1 mm.
  • the X-ray scan speed was measured at 10 ° / min.
  • aqueous solution viscosity A 1% aqueous solution of carboxymethyl cellulose (100 mol% neutralized with sodium salt) was prepared, and a B-type viscometer (manufactured by Toki Sangyo Co., Ltd., trade name: “TVB-10M”) was used. 25 ° C., rotor: No. 3 (for measurement of 200 to 2000 mPa ⁇ s), 30 rpm, and 3 minutes. In addition, No. When the viscosity is less than 200 mPa ⁇ s when measured in No. 3, rotor: No. 1 and exceeding 2000 mPa ⁇ s, rotor: No. 4 is used.
  • Production Example 1 Manufacture of chip-like pulp
  • a commercially available cotton linter pulp sheet (manufactured by Shandong Takamitsu Chemical Co., Ltd., trade name: “PCS2400”, crystallinity 94%, water content 7.5% by weight) is used as a sheet pelletizer (manufactured by Horai Co., Ltd., trade name: “SGG- 220-3X3 ”) to form 3 mm square chips (average number of 100 pieces of long diameter (longest length of one chip)), and chip-like pulp (crystallinity 94%, average polymerization degree 2358, A water content of 7.3% by weight) was obtained.
  • Production Example 2 Manufacture of chip-like pulp
  • a commercially available wood pulp sheet (manufactured by Tenbeck, trade name: “Biofloc HV +”, crystallinity 74%, water content 6.7% by weight) is a sheet pelletizer (manufactured by Horai Co., Ltd., trade name: “SGG-220-3X3”). )
  • chips of 3 mm square average number of 100 pieces of long diameter (the longest length of one piece)
  • chip-like pulp crystallinity 74%, average polymerization degree 1506, water content 6) 0.7% by weight
  • Example 1 In a mortar, 100.0 g of pulp chips obtained in Production Example 1 as a dry weight (0.617Mol, anhydroglucose unit conversion) were charged, to which 30% sodium monochloroacetate (ClCH 2 CO 2 Na, hereinafter "SMCA Also, 167.8 g (0.432 mol) of an aqueous solution was added and mixed with stirring. After the mixture was dried at 60 ° C. under a nitrogen stream under reduced pressure conditions (about 70 kPa) for 12 hours, 20.0 g of ion-exchanged water was added and mixed to adjust the water content.
  • SMCA sodium monochloroacetate
  • the mixed pulverized product obtained above was charged into a 1 L kneader (trade name: “PNV-1 type” manufactured by Irie Shokai Co., Ltd.), the inside of the kneader was decompressed (about 50 kPa), and then returned to normal pressure with nitrogen. Performed 3 times and replaced with nitrogen. Then, it heated up at 60 degreeC and stirred for 3 hours.
  • the total amount of water derived from cellulose and other raw materials was 40 parts by weight with respect to 100 parts by weight of the dry raw material pulp. After confirming that 98% by weight or more of the added SMCA had been consumed, the product was cooled to room temperature and the product was removed from the kneader.
  • Example 2 Thirteen round rods with a diameter of 30 mm are placed in a pot of a vibrating rod mill (manufactured by Chuo Kako Co., Ltd., trade name: “MB-1”), and the chip-like pulp obtained in Production Example 1 is dried by weight. 100.0 g (0.617 mol, anhydroglucose unit conversion), ion-exchanged water 12.2 g, and SMCA powder 50.3 g (0.432 mol) were added under the conditions of a frequency of 1200 cpm, an amplitude of 8 mm, and a grinding time of 6 minutes. Mixed and pulverized.
  • MB-1 vibrating rod mill
  • Example 3 Carboxymethylcellulose was obtained in the same manner as in Example 2 except that the pulverization time after addition of the SMCA powder was 12 minutes and that pulverization was not performed after the addition of the aqueous sodium hydroxide solution.
  • the degree of substitution per unit of anhydroglucose of the obtained carboxymethyl cellulose was 0.46, and the 1% aqueous solution viscosity (25 ° C.) was 539 mPa ⁇ s.
  • Table 1 The results are shown in Table 1.
  • Example 4 40 weights with respect to 100 parts by weight of dry raw material pulp, using the chip-like pulp obtained in Production Example 2 as the chip-like pulp, and the total amount of water derived from cellulose and other raw materials in the pulverized product after mixing and pulverization
  • carboxymethylcellulose was obtained in the same manner as in Example 2 except that the amount of ion-exchanged water added before mixing and grinding was changed to 13.2 g.
  • the degree of substitution of the obtained carboxymethylcellulose per anhydroglucose unit was 0.50, and the 1% aqueous solution viscosity (25 ° C.) was 801 mPa ⁇ s.
  • Table 1 The results are shown in Table 1.
  • Example 5 12.1 g of ion-exchanged water, 107.8 g (0.926 mol) of SMCA powder, 39.4 g (0.486 mol) of 49.3% sodium hydroxide aqueous solution as an alkali agent, and beaded sodium hydroxide (Tosoh Corporation)
  • Carboxymethylcellulose was obtained in the same manner as in Example 2 except that 21.4 g (0.535 mol) manufactured by the company and trade name “Tosoh Pearl” was used.
  • the degree of substitution of the obtained carboxymethyl cellulose per anhydroglucose unit was 0.79, and the viscosity of a 1% aqueous solution (25 ° C.) was 750 mPa ⁇ s.
  • Table 1 The results are shown in Table 1.
  • Example 6 Thirteen round rods with a diameter of 30 mm are placed in a pot of a vibrating rod mill (manufactured by Chuo Kako Co., Ltd., trade name: “MB-1”), and the chip-like pulp obtained in Production Example 1 is dried by weight. 100.0 g (0.617 mol, converted to anhydroglucose unit) and 49.3% sodium hydroxide aqueous solution 38.6 g (0.475 mol) were added and mixed under conditions of a vibration frequency of 1200 cpm, an amplitude of 8 mm, and a pulverization time of 6 minutes. Crushed.
  • MB-1 vibrating rod mill
  • Comparative Example 1 Thirteen round rods with a diameter of 30 mm are placed in a pot of a vibrating rod mill (manufactured by Chuo Kako Co., Ltd., trade name: “MB-1”), and the chip-like pulp obtained in Production Example 1 is dried by weight. 100.0 g (0.617 mol, converted into anhydroglucose unit) was added, and the mixture was pulverized under conditions of a vibration frequency of 1200 cpm, an amplitude of 8 mm, and a pulverization time of 12 minutes, and powdered cellulose (crystallinity 78%, average polymerization degree 1216, The amount of water was 7.3% by weight and the particle size was 100 ⁇ m).
  • the total amount of water derived from cellulose and other raw materials was 40 parts by weight with respect to 100 parts by weight of dry powdered cellulose. Subsequent operations were carried out in the same manner as in Example 1, such as neutralization and washing, to obtain carboxymethylcellulose.
  • the degree of substitution of the obtained carboxymethylcellulose per anhydroglucose unit was 0.44, and the 1% aqueous solution viscosity (25 ° C.) was 343 mPa ⁇ s.
  • Table 1 The results are shown in Table 1.
  • the carboxymethyl cellulose of Comparative Example 1 obtained by adding monohaloacetic acid or a salt thereof and an alkali agent to the powdered cellulose obtained by pulverizing the raw material pulp and reacting it had a low aqueous solution viscosity.
  • the carboxymethyl cellulose of Examples 1 to 6 obtained by reacting a pulverized product obtained by adding monohaloacetic acid or a salt thereof and an alkaline agent before or during pulverization of the raw pulp was an aqueous solution. It has a high viscosity and is useful as a thickener.
  • the carboxymethyl cellulose having a high aqueous solution viscosity obtained by the method of the present invention is useful as a thickener for cosmetics and the like.

Abstract

Disclosed is a method for producing carboxymethyl cellulose, in which after starting material pulp is subjected to a crushing treatment using a crusher, cellulose in the material obtained by the crushing treatment is reacted with a monohaloacetic acid or a salt thereof and an alkaline agent at 40 to 100ºC, the method comprising a step of mixing the monohaloacetic acid or a salt thereof and/or the alkaline agent with the starting material pulp before or during the crushing treatment of the starting material pulp. According to this method, carboxymethyl cellulose, the aqueous solution of which has a high viscosity, can be efficiently produced.

Description

カルボキシメチルセルロースの製造方法Method for producing carboxymethylcellulose
 本発明は、カルボキシメチルセルロースの製造方法に関する。 The present invention relates to a method for producing carboxymethyl cellulose.
 カルボキシメチルセルロース(以下、「CMC」ともいう)は、増粘剤、分散剤、乳化剤、保護コロイド剤、安定化剤等として広範に利用されている。このCMCは、工業的には、セルロースを大量のアルカリ水で処理してアルカリセルロースとして活性化(アルセル化)した後、含水有機溶媒中に分散させてモノハロ酢酸と反応させる溶媒法により製造されている。
 特許文献1には、カルボキシメチルセルロース又はその塩類の製造方法であって、セルロースとアルカリとを温度20~50℃で反応させてアルカリセルロースを生成させる工程と、アルカリセルロースとモノクロロ酢酸との反応によりカルボキシメチルセルロースを生成させる工程とで構成されているカルボキシメチルセルロース又はその塩類の製造方法により、1重量%水溶液の粘度が20~1000(mPa・s)であるカルボキシメチルセルロースが開示されている。
 特許文献2には、結晶化度が50%以下の低結晶性の粉末セルロースを、塩基の存在下、有機ハライド化合物と反応させる、セルロース誘導体の製造方法が開示されている。
Carboxymethylcellulose (hereinafter also referred to as “CMC”) is widely used as a thickener, a dispersant, an emulsifier, a protective colloid agent, a stabilizer, and the like. Industrially, this CMC is produced by a solvent method in which cellulose is treated with a large amount of alkaline water to activate it as alkali cellulose (arcelerization), and then dispersed in a water-containing organic solvent and reacted with monohaloacetic acid. Yes.
Patent Document 1 discloses a method for producing carboxymethyl cellulose or a salt thereof, which includes a step of reacting cellulose and alkali at a temperature of 20 to 50 ° C. to produce alkali cellulose, and a reaction of alkali cellulose and monochloroacetic acid to produce carboxy. A carboxymethyl cellulose having a viscosity of 20 to 1000 (mPa · s) in a 1% by weight aqueous solution is disclosed by a method for producing carboxymethyl cellulose or a salt thereof comprising a step of producing methyl cellulose.
Patent Document 2 discloses a method for producing a cellulose derivative, in which a low crystalline powdery cellulose having a crystallinity of 50% or less is reacted with an organic halide compound in the presence of a base.
特開2000-34301号公報JP 2000-34301 A 国際公開2009/063856号パンフレットInternational Publication No. 2009/063856 Pamphlet
 しかしながら、特許文献1及び2に開示された方法では、水溶液粘度の高い、増粘剤として有用なカルボキシメチルセルロースを簡便に製造することが難しい。
 本発明は、水溶液粘度の高いカルボキシメチルセルロースを効率よく製造する方法に関する。
However, in the methods disclosed in Patent Documents 1 and 2, it is difficult to easily produce carboxymethylcellulose having a high aqueous solution viscosity and useful as a thickener.
The present invention relates to a method for efficiently producing carboxymethyl cellulose having a high aqueous solution viscosity.
 本発明は、原料パルプを粉砕機により粉砕処理した後に、得られた粉砕処理物中のセルロースを、モノハロ酢酸又はその塩及びアルカリ剤と40~100℃で反応させるカルボキシメチルセルロースの製造方法であって、該モノハロ酢酸もしくはその塩、及び/又はアルカリ剤を、該原料パルプの粉砕処理前又は粉砕処理中に該原料パルプと混合する工程を有する、カルボキシメチルセルロースの製造方法に関する。 The present invention is a method for producing carboxymethyl cellulose, in which raw pulp is pulverized by a pulverizer, and then cellulose in the obtained pulverized product is reacted with monohaloacetic acid or a salt thereof and an alkali agent at 40 to 100 ° C. The present invention relates to a method for producing carboxymethyl cellulose, comprising a step of mixing the monohaloacetic acid or a salt thereof and / or an alkaline agent with the raw material pulp before or during the pulverizing treatment of the raw material pulp.
 本発明の方法によれば、水溶液粘度の高いカルボキシメチルセルロースを効率的に製造することができる。 According to the method of the present invention, carboxymethyl cellulose having a high aqueous solution viscosity can be efficiently produced.
 本発明は、原料パルプを粉砕機により粉砕処理した後に、得られた粉砕処理物中のセルロースを、モノハロ酢酸又はその塩及びアルカリ剤と40~100℃で反応させるカルボキシメチルセルロースの製造方法であって、該モノハロ酢酸もしくはその塩、及び/又はアルカリ剤を、該原料パルプの粉砕処理前又は粉砕処理中に原料パルプと混合することにより、水溶液粘度の高いカルボキシメチルセルロースを効率よく、且つ簡便に製造できる。
 これは、モノハロ酢酸もしくはその塩、及び/又はアルカリ剤を、該原料パルプの粉砕処理前又は粉砕処理中に原料パルプと混合させることで、これらのモノハロ酢酸もしくはその塩、及び/又はアルカリ剤が原料パルプの粉砕衝撃の緩衝剤として働いて、原料パルプを構成するセルロースの重合度の低下を抑制しつつ原料パルプを粉砕することができ、その結果、得られるカルボキシメチルセルロースの水溶液粘度を高くすることができると考えられる。更に、原料パルプを構成するセルロースを構成する無水グルコース単位と、モノハロ酢酸もしくはその塩、及び/又はアルカリ剤との接触率を高めることができ、反応効率も向上すると考えられる。
The present invention is a method for producing carboxymethyl cellulose, in which raw pulp is pulverized by a pulverizer, and then cellulose in the obtained pulverized product is reacted with monohaloacetic acid or a salt thereof and an alkali agent at 40 to 100 ° C. By mixing the monohaloacetic acid or a salt thereof and / or an alkali agent with the raw material pulp before or during the pulverization treatment of the raw material pulp, carboxymethyl cellulose having a high aqueous solution viscosity can be produced efficiently and simply. .
This is because monohaloacetic acid or a salt thereof, and / or an alkaline agent is mixed with the raw pulp before or during the grinding treatment of the raw pulp, so that these monohaloacetic acid or a salt thereof and / or an alkaline agent are mixed. Working as a buffering agent for the pulverization impact of raw material pulp, it is possible to pulverize raw material pulp while suppressing a decrease in the degree of polymerization of cellulose constituting the raw material pulp, and as a result, increase the viscosity of the resulting aqueous solution of carboxymethyl cellulose. It is thought that you can. Furthermore, it is considered that the contact rate between the anhydroglucose unit constituting the cellulose constituting the raw pulp and the monohaloacetic acid or a salt thereof and / or the alkali agent can be increased, and the reaction efficiency is also improved.
 本発明は、水溶液粘度の高いカルボキシメチルセルロースを製造する観点から、モノハロ酢酸もしくはその塩、及び/又はアルカリ剤を、原料パルプの粉砕処理前又は粉砕処理中に該原料パルプと混合する工程を有するが、下記工程1と工程2とを有することが好ましい。
 工程1:原料パルプをモノハロ酢酸又はその塩と混合し、粉砕機により粉砕処理する工程(以下、「粉砕処理工程」ともいう)
 工程2:工程1で得られた粉砕処理物中のセルロースを、モノハロ酢酸又はその塩及びアルカリ剤と40~100℃で反応させ、カルボキシメチルセルロースを得る工程(以下、「反応工程」ともいう)
 以下、本発明の各工程、及び用いる各成分について詳細に説明する。
Although this invention has a process of mixing monohaloacetic acid or its salt, and / or an alkali agent with this raw material pulp before the grinding | pulverization process of a raw material pulp, or during a pulverization process from a viewpoint of manufacturing carboxymethylcellulose with high aqueous solution viscosity. It is preferable to have the following step 1 and step 2.
Step 1: A step of mixing raw pulp with monohaloacetic acid or a salt thereof and pulverizing with a pulverizer (hereinafter also referred to as “pulverizing step”).
Step 2: A step of reacting the cellulose in the pulverized product obtained in Step 1 with monohaloacetic acid or a salt thereof and an alkali agent at 40 to 100 ° C. to obtain carboxymethyl cellulose (hereinafter also referred to as “reaction step”)
Hereinafter, each process of this invention and each component to be used are demonstrated in detail.
[原料]
(原料パルプ)
 本発明に用いることができる原料パルプとしては、コットンリンター、稲わらパルプ、木材パルプが挙げられ、具体的には、リンターパルプ、針葉樹材を主としたN材パルプ、広葉樹材を主としたL材パルプ等を用いることができる。
 原料パルプの形状に特に限定はないが、本発明の製造方法においては、原料パルプの重合度が高いほど、高重合度のカルボキシメチルセルロースを得ることができる。一方、原料パルプの重合度は、粉砕等の処理によって低下する。よって、高重合度のカルボキシメチルセルロースを得る観点から、原料パルプの形状はチップ状が好ましい。原料パルプの形状をチップ状にするには、シュレッダー(例えば、株式会社明光商会製、商品名:「MSX2000-IVP440F」)やシートペレタイザー(例えば、株式会社ホーライ製、商品名:「SGG-220-3X3」)を用いることができる。チップの径としては、長径(1片のチップの内、最長の長さ)の100個の数平均で、0.6~100mmが好ましく、0.8~30mmが更に好ましく、1~10mmがより更に好ましい。
 原料パルプを構成するセルロースの平均重合度は、高い水溶液粘度を発現する観点から、好ましくは1000以上、より好ましくは1200以上、更に好ましくは1500以上である。平均重合度の上限は特に制限されないが、入手の容易さの観点から5000以下が好ましい。
 なお、本発明においてセルロースの平均重合度とは、粘度平均重合度のことをいい、具体的には、実施例に記載の方法で測定される。
[material]
(Raw pulp)
Examples of raw material pulp that can be used in the present invention include cotton linter, rice straw pulp, and wood pulp. Specifically, linter pulp, N-wood pulp mainly composed of softwood, and L mainly composed of hardwood. Pulp and the like can be used.
The shape of the raw material pulp is not particularly limited, but in the production method of the present invention, the higher the degree of polymerization of the raw material pulp, the higher the degree of polymerization of carboxymethyl cellulose can be obtained. On the other hand, the degree of polymerization of the raw material pulp is lowered by processing such as pulverization. Therefore, from the viewpoint of obtaining carboxymethyl cellulose having a high degree of polymerization, the shape of the raw material pulp is preferably a chip shape. In order to change the shape of the raw material pulp into chips, a shredder (for example, manufactured by Meiko Shokai Co., Ltd., trade name: “MSX2000-IVP440F”) or a sheet pelletizer (for example, manufactured by Horai Co., Ltd., trade name: “SGG-220-”). 3X3 ") can be used. The diameter of the chip is preferably 0.6 to 100 mm, more preferably 0.8 to 30 mm, and more preferably 1 to 10 mm in terms of the number average of 100 long diameters (the longest length of one chip). Further preferred.
The average degree of polymerization of cellulose constituting the raw material pulp is preferably 1000 or more, more preferably 1200 or more, and further preferably 1500 or more, from the viewpoint of developing a high aqueous solution viscosity. The upper limit of the average degree of polymerization is not particularly limited, but is preferably 5000 or less from the viewpoint of availability.
In addition, in this invention, the average degree of polymerization of a cellulose means a viscosity average degree of polymerization, and specifically, it measures by the method as described in an Example.
 セルロースには幾つかの結晶構造が知られており、アモルファス部と結晶部の全量に対する結晶部の割合から、一般に結晶化度が算出される。
 本発明において、「セルロースの結晶化度」とは、天然セルロースのI型結晶構造に由来する結晶化度を意味し、粉末X線結晶回折スペクトル法による回折強度値からSegal法により算出したもので、下記式(1)により定義される。
 セルロースの結晶化度(%)=〔(I22.6-I18.5)/I22.6〕×100 (1)
〔式中、I22.6は、X線回折におけるセルロースI型結晶の格子面(002面)(回折角2θ=22.6°)の回折強度を示し、及びI18.5は、アモルファス部(回折角2θ=18.5°)の回折強度を示す。〕
 通常、パルプの結晶化度を低下させる処理を行うと重合度も低下するため、平均重合度が高く結晶化度の低いパルプを入手することは困難である。よって、原料パルプを構成するセルロースの結晶化度は、高い重合度を維持する観点から、好ましくは50%を超え95%以下、より好ましくは60~95%、更に好ましくは70~95%、より更に好ましくは75~95%である。
Several crystal structures are known for cellulose, and the crystallinity is generally calculated from the ratio of the crystal part to the total amount of the amorphous part and the crystal part.
In the present invention, the “crystallinity of cellulose” means the crystallinity derived from the type I crystal structure of natural cellulose, and is calculated by the Segal method from the diffraction intensity value by the powder X-ray crystal diffraction spectrum method. , Defined by the following formula (1).
Cellulose crystallinity (%) = [(I 22.6 -I 18.5 ) / I 22.6 ] × 100 (1)
Wherein, I 22.6 represents the diffraction intensity of the lattice plane of cellulose I type crystal (002 plane) (diffraction angle 2 [Theta] = 22.6 °) in the X-ray diffraction, and I 18.5 is amorphous portion (angle of diffraction 2 [Theta] = 18.5 °). ]
Usually, when the treatment for reducing the crystallinity of the pulp is performed, the degree of polymerization is also reduced, so it is difficult to obtain a pulp having a high average degree of polymerization and a low crystallinity. Therefore, the crystallinity of the cellulose constituting the raw pulp is preferably more than 50% and 95% or less, more preferably 60 to 95%, still more preferably 70 to 95%, from the viewpoint of maintaining a high degree of polymerization. More preferably, it is 75 to 95%.
(アルカリ剤)
 本発明に用いられるアルカリ剤は、効率的に原料パルプを構成するセルロース分子の水酸基をアルコラート化する観点から、アルカリ金属水酸化物又はアルカリ土類金属水酸化物が好ましい。アルカリ金属水酸化物の具体例としては水酸化ナトリウム、水酸化カリウム、水酸化リチウム等が挙げられ、アルカリ土類金属水酸化物の具体例としては水酸化マグネシウム、水酸化カルシウム等が挙げられる。これらの中でも、好ましくはアルカリ金属水酸化物、更に好ましくは水酸化ナトリウム又は水酸化カリウムである。
 アルカリ剤の形態に限定はない。アルカリ剤としてアルカリ金属水酸化物又はアルカリ土類金属水酸化物を用いる場合は、操作上の観点から、水溶液を用いることが好ましい。
 アルカリ剤を水溶液の形態で添加する場合の濃度に特に限定はないが、後述する反応工程は水分量の影響を受けるため、アルカリ剤添加後の水分量が反応工程の好適な水分量を超えた場合は、脱水等の操作を行うことが望まれる。よって、アルカリ剤水溶液の濃度は10質量%以上であることが好ましい。一方、入手の容易さの観点から、アルカリ剤水溶液の濃度は75質量%以下が好ましい。以上の観点から、アルカリ剤水溶液の濃度は10~75質量%が好ましく、20~65質量%がより好ましく、30~55質量%が更に好ましい。
(Alkaline agent)
The alkali agent used in the present invention is preferably an alkali metal hydroxide or an alkaline earth metal hydroxide from the viewpoint of efficiently converting the hydroxyl groups of cellulose molecules constituting the raw material pulp into alcoholates. Specific examples of the alkali metal hydroxide include sodium hydroxide, potassium hydroxide, lithium hydroxide and the like, and specific examples of the alkaline earth metal hydroxide include magnesium hydroxide and calcium hydroxide. Among these, an alkali metal hydroxide is preferable, and sodium hydroxide or potassium hydroxide is more preferable.
There is no limitation on the form of the alkaline agent. When using an alkali metal hydroxide or alkaline earth metal hydroxide as the alkali agent, an aqueous solution is preferably used from the viewpoint of operation.
The concentration in the case of adding the alkaline agent in the form of an aqueous solution is not particularly limited, but since the reaction step described below is affected by the amount of water, the amount of water after the addition of the alkaline agent exceeded the suitable amount of water in the reaction step. In some cases, it is desirable to perform operations such as dehydration. Therefore, the concentration of the alkaline agent aqueous solution is preferably 10% by mass or more. On the other hand, from the viewpoint of easy availability, the concentration of the alkaline agent aqueous solution is preferably 75% by mass or less. From the above viewpoint, the concentration of the alkaline agent aqueous solution is preferably 10 to 75% by mass, more preferably 20 to 65% by mass, and still more preferably 30 to 55% by mass.
 モノハロ酢酸塩を用いる場合、原料パルプを構成するセルロースの無水グルコース単位に対するアルカリ剤のモル当量比(アルカリ剤/無水グルコース単位)は、高い水溶液粘度を発現させる観点から、好ましくは0.3~3、より好ましくは0.5~2、更に好ましくは0.5~1.8、より更に好ましくは0.5~1.5、より更に好ましくは0.5~1.2である。無水グルコース単位のモル数は、セルロースの乾燥重量を無水グルコース単位の分子量162で除した値として求めることができる。
 また、モノハロ酢酸を用いる場合、アルカリ剤はモノハロ酢酸の中和に消費されるため、原料パルプを構成するセルロースの無水グルコース単位に対するアルカリ剤のモル当量比(アルカリ剤/無水グルコース単位)は、高い水溶液粘度を発現する観点から、好ましくは0.6~6、より好ましくは1.0~4、更に好ましくは1~3である。
When monohaloacetate is used, the molar equivalent ratio of the alkali agent to the anhydroglucose unit of the cellulose constituting the raw pulp (alkali agent / anhydroglucose unit) is preferably 0.3 to 3 from the viewpoint of developing a high aqueous solution viscosity. More preferably 0.5 to 2, still more preferably 0.5 to 1.8, still more preferably 0.5 to 1.5, and still more preferably 0.5 to 1.2. The number of moles of anhydroglucose units can be determined as a value obtained by dividing the dry weight of cellulose by the molecular weight 162 of anhydroglucose units.
Further, when monohaloacetic acid is used, the alkali agent is consumed for neutralization of monohaloacetic acid, so the molar equivalent ratio of the alkali agent to the anhydroglucose unit of the cellulose constituting the raw pulp (alkali agent / anhydroglucose unit) is high. From the viewpoint of developing the aqueous solution viscosity, it is preferably 0.6 to 6, more preferably 1.0 to 4, and still more preferably 1 to 3.
(モノハロ酢酸又はその塩)
 本発明に用いられるモノハロ酢酸におけるハロゲン原子としては、反応性や汎用性及び取り扱い易さの理由から、好ましくはヨウ素原子、臭素原子又は塩素原子、より好ましくは臭素原子又は塩素原子、更に好ましくは塩素原子である。
 モノハロ酢酸の塩を形成しうる金属としては、得られるカルボキシメチルセルロースの水溶性、高い水溶液粘度を発現する観点から、好ましくはリチウム、カリウム又はナトリウム、より好ましくはカリウム又はナトリウム、更に好ましくはナトリウムである。
 本発明に用いられるモノハロ酢酸又はその塩の具体例としては、モノクロロ酢酸、モノブロモ酢酸、モノクロロ酢酸ナトリウム、モノクロロ酢酸カリウム等が挙げられ、モノクロロ酢酸又はモノクロロ酢酸ナトリウムが好ましい。
 モノハロ酢酸又はその塩は、固体(粉体)のまま使用してもよく、水又は後述する親水性有機溶媒に溶解させて使用してもよい。
 原料パルプを構成するセルロースの無水グルコース単位に対するモノハロ酢酸又はその塩のモル当量比(モノハロ酢酸又はその塩/無水グルコース単位)は、高い水溶液粘度を発現する観点から、好ましくは0.3~3、より好ましくは0.5~2.0、更に好ましくは0.5~1.6であり、より更に好ましくは、0.6~1.0である。
(Monohaloacetic acid or its salt)
The halogen atom in the monohaloacetic acid used in the present invention is preferably an iodine atom, a bromine atom or a chlorine atom, more preferably a bromine atom or a chlorine atom, still more preferably chlorine, for reasons of reactivity, versatility and ease of handling. Is an atom.
The metal capable of forming a salt of monohaloacetic acid is preferably lithium, potassium or sodium, more preferably potassium or sodium, and still more preferably sodium, from the viewpoint of expressing the water solubility of the resulting carboxymethyl cellulose and high aqueous solution viscosity. .
Specific examples of monohaloacetic acid or a salt thereof used in the present invention include monochloroacetic acid, monobromoacetic acid, sodium monochloroacetate, potassium monochloroacetate and the like, and monochloroacetic acid or sodium monochloroacetate is preferable.
Monohaloacetic acid or a salt thereof may be used in the form of a solid (powder) or may be used after being dissolved in water or a hydrophilic organic solvent described later.
The molar equivalent ratio of monohaloacetic acid or a salt thereof to anhydroglucose unit of cellulose constituting the raw pulp (monohaloacetic acid or a salt thereof / anhydroglucose unit) is preferably 0.3 to 3, from the viewpoint of developing a high aqueous solution viscosity, More preferably, it is 0.5 to 2.0, still more preferably 0.5 to 1.6, and still more preferably 0.6 to 1.0.
 上記のモノハロ酢酸又はその塩とアルカリ剤とは、各々単独で又は2種以上を組み合わせて用いることができる。
 本発明において使用されるモノハロ酢酸に対するアルカリ剤のモル当量比(アルカリ剤/モノハロ酢酸)は、副反応を抑制しながら効率的に反応させる理由から、好ましくは2~3、より好ましくは2~2.5、更に好ましくは2~2.2、より更に好ましくは2~2.1である。
 また、モノハロ酢酸の塩を用いる場合は、本発明において使用されるモノハロ酢酸塩に対するアルカリ剤のモル当量比(アルカリ剤/モノハロ酢酸塩)は、副反応を抑制しながら効率的に反応させる理由から、好ましくは1~2、より好ましくは1~1.5、更により好ましくは1~1.1、より更に好ましくは1~1.05である。
Said monohaloacetic acid or its salt, and an alkali agent can be used individually or in combination of 2 types or more, respectively.
The molar equivalent ratio of the alkali agent to the monohaloacetic acid used in the present invention (alkali agent / monohaloacetic acid) is preferably 2 to 3, more preferably 2 to 2, for the reason that the reaction is carried out efficiently while suppressing side reactions. 0.5, more preferably 2 to 2.2, and even more preferably 2 to 2.1.
When a salt of monohaloacetic acid is used, the molar equivalent ratio of the alkaline agent to the monohaloacetic acid salt used in the present invention (alkali agent / monohaloacetic acid salt) is because the reaction is carried out efficiently while suppressing side reactions. , Preferably 1 to 2, more preferably 1 to 1.5, still more preferably 1 to 1.1, still more preferably 1 to 1.05.
[工程1:粉砕処理工程]
 本発明の粉砕処理工程では、原料パルプとモノハロ酢酸又はその塩とを混合し粉砕処理する。本発明においては、好ましくは、原料パルプを、モノハロ酢酸又はその塩及びアルカリ剤の存在下、粉砕機により粉砕処理する。より具体的には、モノハロ酢酸又はその塩及びアルカリ剤を原料パルプの粉砕処理前又は粉砕処理中に混合し、粉砕処理する。
 混合粉砕する方法としては、次の(1)~(4)が挙げられる。
(1)モノハロ酢酸又はその塩、及びアルカリ剤の両方を原料パルプの粉砕処理前に原料パルプと混合し、粉砕処理する方法
(2)モノハロ酢酸又はその塩、及びアルカリ剤の両方を、原料パルプの粉砕処理中に、原料パルプの粉砕途中のものと混合する方法
(3)モノハロ酢酸又はその塩を、原料パルプの粉砕処理前又は粉砕処理中に混合し、粉砕処理終了後にアルカリ剤を得られた粉砕処理物と混合する方法
(4)モノハロ酢酸もしくはその塩、又はアルカリ剤の一方を、原料パルプの粉砕処理前に原料パルプと混合し、粉砕処理中に他方を原料パルプの粉砕途中のものと混合する方法
[Step 1: Crushing step]
In the pulverization process of the present invention, raw pulp and monohaloacetic acid or a salt thereof are mixed and pulverized. In the present invention, preferably, the raw pulp is pulverized by a pulverizer in the presence of monohaloacetic acid or a salt thereof and an alkali agent. More specifically, monohaloacetic acid or a salt thereof and an alkali agent are mixed before pulverization of the raw pulp or during pulverization, and pulverized.
Examples of the mixing and pulverizing method include the following (1) to (4).
(1) A method in which both monohaloacetic acid or a salt thereof and an alkali agent are mixed with a raw material pulp before pulverizing the raw material pulp and then pulverized. (2) Both monohaloacetic acid or a salt thereof and an alkaline agent are used as the raw material pulp. (3) Monohaloacetic acid or a salt thereof is mixed before or during pulverization of raw pulp, and an alkali agent can be obtained after the pulverization is completed. (4) One of monohaloacetic acid or a salt thereof, or an alkali agent is mixed with raw pulp before the raw pulp is pulverized, and the other is being pulverized during the pulverization How to mix with
 前記混合粉砕方法は上記(1)~(4)のいずれの方法であってもよいが、水溶液粘度の高いカルボキシメチルセルロースを得る観点から、前記(1)、(2)及び(4)の方法、即ち原料パルプを、モノハロ酢酸又はその塩、及びアルカリ剤の存在下、粉砕機により粉砕処理する工程を有する方法であることが好ましく、前記(4)の方法がより好ましい。
 この場合、原料の添加順序及び粉砕処理の順序は特に限定されない。原料パルプにモノハロ酢酸又はその塩を添加し粉砕処理した後、アルカリ剤を添加し、更に粉砕処理してもよく、また、原料パルプにアルカリ剤を添加し粉砕処理した後、モノハロ酢酸又はその塩を添加し、更に粉砕処理してもよい。原料パルプとモノハロ酢酸又はその塩とアルカリ剤とを同時に混合し、粉砕処理してもよい。これらの中では、水溶液粘度の高いカルボキシメチルセルロースを得る観点から、原料パルプとモノハロ酢酸又はその塩とを混合し粉砕処理した後、アルカリ剤を添加し更に粉砕処理する方法が好ましい。
The mixing and pulverizing method may be any of the above methods (1) to (4), but from the viewpoint of obtaining carboxymethyl cellulose having a high aqueous solution viscosity, the methods (1), (2) and (4), That is, a method having a step of pulverizing raw pulp with a pulverizer in the presence of monohaloacetic acid or a salt thereof and an alkali agent is preferable, and the method (4) is more preferable.
In this case, the order of adding the raw materials and the order of pulverization are not particularly limited. Monohaloacetic acid or a salt thereof may be added to the raw pulp and pulverized, then an alkali agent may be added, and further pulverized. Alternatively, an alkaline agent may be added to the raw pulp and pulverized, and then the monohaloacetic acid or a salt thereof. And may be further pulverized. The raw pulp, monohaloacetic acid or a salt thereof, and an alkali agent may be mixed at the same time and pulverized. Among these, from the viewpoint of obtaining carboxymethylcellulose having a high aqueous solution viscosity, a method in which raw pulp and monohaloacetic acid or a salt thereof are mixed and pulverized, and then an alkali agent is added and further pulverized is preferable.
 本発明に用いられる粉砕機としては、化学工学会編「化学工学便覧 改訂六版」843ページの表16・4に示されるものが挙げられる。より具体例には、高圧圧縮ロールミル、ロール回転ミル等のロールミル;リングローラーミル、ローラーレースミル又はボールレースミル等の堅型ローラーミル;転動ボールミル、振動ボールミル、振動ロッドミル、振動チューブミル、遊星ボールミル又は遠心流動化ミル等の容器駆動媒体ミル;塔式粉砕機、撹拌槽式ミル、流通槽式ミル又はアニュラー式ミル等の媒体撹拌式ミル;高速遠心ローラーミルやオングミル等の圧密せん断ミル;乳鉢、石臼等が挙げられる。
 これらの中では、生産性の観点から、容器駆動式媒体ミル又は媒体撹拌ミルが好ましく、特に容器駆動式媒体ミルがより好ましく、中でも振動ボールミル、振動ロッドミル又は振動チューブミルが更に好ましい。
 処理方法としては、バッチ式、連続式のどちらでもよい。
Examples of the pulverizer used in the present invention include those shown in Tables 16 and 4 on page 843 of “Chemical Engineering Handbook, Revised Sixth Edition” edited by the Chemical Engineering Society. More specific examples include roll mills such as high pressure compression roll mills and roll rotating mills; rigid roller mills such as ring roller mills, roller race mills or ball race mills; rolling ball mills, vibration ball mills, vibration rod mills, vibration tube mills, planets Container drive medium mill such as ball mill or centrifugal fluidization mill; medium agitation mill such as tower pulverizer, stirring tank mill, flow tank mill or annular mill; compaction shear mill such as high speed centrifugal roller mill or ang mill; A mortar, a stone mill, etc. are mentioned.
Among these, from the viewpoint of productivity, a container-driven medium mill or a medium agitating mill is preferable, a container-driven medium mill is more preferable, and a vibration ball mill, a vibration rod mill, or a vibration tube mill is more preferable.
The processing method may be either a batch type or a continuous type.
 粉砕機及び/又は媒体の材質としては、特に制限はなく、例えば、鉄、ステンレス、アルミナ、ジルコニア、炭化ケイ素、窒化ケイ素、ガラス等が挙げられる。これらの中では、混合及び粉砕の効率の観点から、鉄、ステンレス、ジルコニア、炭化ケイ素、窒化ケイ素が好ましく、更に工業的な利用の観点から、鉄又はステンレスがより好ましい。
 混合及び粉砕の効率の観点から、用いる粉砕機が振動ミルであって、媒体がロッドの場合には、ロッドの外径としては、好ましくは0.1~100mm、より好ましくは0.5~50mmの範囲である。
 ロッドの充填率は、振動ミルの機種により好適な充填率が異なるが、好ましくは10~97%、より好ましくは15~95%の範囲である。ロッドの充填率がこの範囲内であれば、セルロースや反応剤とロッドとの接触頻度が向上すると共に、媒体の動きを妨げずに、粉砕効率を向上させることができる。ここで、ロッドの充填率とは、振動ミルの撹拌部の容積に対するロッドの見かけの体積をいう。
There is no restriction | limiting in particular as a material of a grinder and / or a medium, For example, iron, stainless steel, an alumina, a zirconia, a silicon carbide, a silicon nitride, glass etc. are mentioned. Among these, iron, stainless steel, zirconia, silicon carbide, and silicon nitride are preferable from the viewpoint of mixing and grinding efficiency, and iron or stainless steel is more preferable from the viewpoint of industrial use.
From the viewpoint of mixing and pulverization efficiency, when the pulverizer used is a vibration mill and the medium is a rod, the outer diameter of the rod is preferably 0.1 to 100 mm, more preferably 0.5 to 50 mm. Range.
The rod filling rate varies depending on the type of vibration mill, but is preferably in the range of 10 to 97%, more preferably 15 to 95%. If the filling rate of the rod is within this range, the contact frequency between the cellulose or the reactant and the rod can be improved, and the grinding efficiency can be improved without hindering the movement of the medium. Here, the rod filling rate refers to the apparent volume of the rod relative to the volume of the stirring section of the vibration mill.
 粉砕時間は、粉砕機の大きさ(容積)等、粉砕条件によるが、水溶液粘度の高いカルボキシメチルセルロースを得る観点から、3分~3時間程度が好ましく、5~60分がより好ましく、5~30分が更に好ましい。
 粉砕時の温度は、水溶液粘度の高いカルボキシメチルセルロースを得る観点から、好ましくは5℃以上40℃未満、より好ましくは5~38℃であり、更に好ましくは5~35℃である。なお、本発明の目的を損なわない限り、粉砕時に局所的に温度が高くなる部分があってもよい。
The pulverization time depends on the pulverization conditions such as the size (volume) of the pulverizer, but is preferably about 3 to 3 hours, more preferably 5 to 60 minutes, from the viewpoint of obtaining carboxymethylcellulose having a high aqueous solution viscosity. Minutes are more preferred.
The temperature during pulverization is preferably 5 ° C. or more and less than 40 ° C., more preferably 5 to 38 ° C., and still more preferably 5 to 35 ° C., from the viewpoint of obtaining carboxymethyl cellulose having a high aqueous solution viscosity. As long as the object of the present invention is not impaired, there may be a portion where the temperature is locally increased during pulverization.
 また、重合度の低下を抑制して、水溶液粘度の高いカルボキシメチルセルロースを得る観点から、原料パルプの粉砕処理前に、原料パルプにモノハロ酢酸又はその塩を含浸させる工程を更に有することが好ましい。
 含浸方法としては、原料パルプとモノハロ酢酸又はその塩の溶液(溶媒は、水又は親水性有機溶媒液)とを、ヘンシェルミキサー、アンカー翼等の一般に用いられている混合撹拌装置で混合した後、溶媒を除去する方法を用いることができる。溶媒の除去方法としては、減圧乾燥等による一般的な方法により行うことができる。減圧乾燥時間は、好ましくは6~48時間、より好ましくは8~24時間である。親水性有機溶媒としては、後述するものを用いることができる。
Moreover, it is preferable to further include a step of impregnating the raw pulp with monohaloacetic acid or a salt thereof before the raw pulp is pulverized from the viewpoint of obtaining a carboxymethyl cellulose having a high aqueous solution viscosity by suppressing a decrease in the degree of polymerization.
As an impregnation method, a raw pulp and a solution of monohaloacetic acid or a salt thereof (the solvent is water or a hydrophilic organic solvent liquid) are mixed with a commonly used mixing and stirring device such as a Henschel mixer, an anchor blade, etc. A method for removing the solvent can be used. The solvent can be removed by a general method such as drying under reduced pressure. The drying time under reduced pressure is preferably 6 to 48 hours, more preferably 8 to 24 hours. As the hydrophilic organic solvent, those described later can be used.
(粉砕処理工程における水分量)
 本発明において、重合度の低下を抑制して、水溶液粘度の高いカルボキシメチルセルロースを得る観点から、粉砕処理工程における水分量は、乾燥原料パルプ100重量部に対して10重量部以上であることが好ましい。一方、粉砕効率の観点、及び後述する反応工程における水分量を好適な範囲にする観点から、該水分量は、乾燥原料パルプ100重量部に対して100重量部以下であることが好ましい。以上の観点から、水分量は乾燥原料パルプ100重量部に対して10~100重量部が好ましく、10~90重量部がより好ましく、15~80重量部が更に好ましく、20~60重量部がより更に好ましい。粉砕処理工程における水分量を上記の範囲にすることにより、セルロースの凝集が抑えられ、続く反応工程を良好な粉体状態を維持したまま行うことができ、更に原料の重合度の低下の抑制が可能となる。
(Water content in the grinding process)
In the present invention, the water content in the pulverization treatment step is preferably 10 parts by weight or more with respect to 100 parts by weight of the dry raw material pulp from the viewpoint of suppressing the decrease in the degree of polymerization and obtaining carboxymethyl cellulose having a high aqueous solution viscosity. . On the other hand, the water content is preferably 100 parts by weight or less with respect to 100 parts by weight of the dry raw material pulp from the viewpoint of pulverization efficiency and the water content in the reaction step described later in a suitable range. In view of the above, the water content is preferably 10 to 100 parts by weight, more preferably 10 to 90 parts by weight, further preferably 15 to 80 parts by weight, and more preferably 20 to 60 parts by weight with respect to 100 parts by weight of the dry raw material pulp. Further preferred. By setting the water content in the pulverization process within the above range, aggregation of cellulose can be suppressed, and the subsequent reaction process can be performed while maintaining a good powder state, and further, a decrease in the polymerization degree of the raw material can be suppressed. It becomes possible.
 原料パルプの粉砕処理の終点は、次の工程で粉砕処理物をモノハロ酢酸又はその塩及びアルカリ剤と反応させる観点から、得られる粉砕物中のセルロース及び/又はカルボキシメチルセルロースのメジアン径が、好ましくは1~800μm、より好ましくは10~500μm、更に好ましくは10~300μm、より更に好ましくは30~250μmに粉砕されることを目安にすることができる。前記メジアン径の測定方法は、後述する実施例に記載の通りである。
 得られた粉砕物は、セルロースを主体とするものであるが、部分的に反応して一部がカルボキシメチルセルロースになっていてもよい。
The end point of the pulverization treatment of the raw material pulp is preferably the median diameter of cellulose and / or carboxymethyl cellulose in the pulverized product obtained from the viewpoint of reacting the pulverized product with monohaloacetic acid or a salt thereof and an alkali agent in the next step. As a guide, it can be pulverized to 1 to 800 μm, more preferably 10 to 500 μm, still more preferably 10 to 300 μm, and still more preferably 30 to 250 μm. The method for measuring the median diameter is as described in Examples described later.
The obtained pulverized product is mainly composed of cellulose, but may partially react to become carboxymethylcellulose.
[工程2:反応工程]
 次に、得られた粉砕処理物中のセルロースを、モノハロ酢酸又はその塩及びアルカリ剤と40~100℃で反応させて、カルボキシメチルセルロースを得る。反応方法としては、次の(i)~(ii)が挙げられる。
(i)原料パルプの粉砕処理前又は粉砕処理中に、モノハロ酢酸又はその塩を混合した場合には、得られた混合粉砕物にアルカリ剤の添加混合を行い、更に必要に応じて追加のモノハロ酢酸又はその塩を添加混合して反応を行う方法。
(ii)原料パルプの粉砕処理前又は粉砕処理中に、モノハロ酢酸又はその塩及びアルカリ剤を混合した場合には、そのまま反応を行ってもよいが、必要に応じて追加のモノハロ酢酸又はその塩、及び/又はアルカリ剤を添加混合して反応を行うことができる。
[Step 2: Reaction step]
Next, the cellulose in the obtained pulverized product is reacted with monohaloacetic acid or a salt thereof and an alkali agent at 40 to 100 ° C. to obtain carboxymethylcellulose. Examples of the reaction method include the following (i) to (ii).
(I) When monohaloacetic acid or a salt thereof is mixed before or during pulverization of raw pulp, an alkali agent is added and mixed to the obtained mixed pulverized product, and additional monohalo is added as necessary. A method in which acetic acid or a salt thereof is added and mixed.
(Ii) When monohaloacetic acid or a salt thereof and an alkali agent are mixed before or during the pulverization treatment of the raw pulp, the reaction may be carried out as it is, but if necessary, additional monohaloacetic acid or a salt thereof. And / or an alkali agent can be added and mixed to carry out the reaction.
 反応工程では、均一に混合できる混合機を用いることが好ましい。例えば、特開2002-114801号公報の段落〔0016〕で開示しているような、粉体や樹脂等の高粘度物質の混錬に用いられる、いわゆるニーダー等の混合機を反応装置として使用するのが好ましい。ここで、ニーダー等の混合機としては、撹拌が十分できるものであれば特に限定されないが、例えば化学工学協会編「化学工学便覧」改訂五版(丸善株式会社発行)、917~919頁に記載されている混合機が挙げられる。具体的には、単軸型ニーダーとしては、リボンミキサー、コニーダー、ボテーター、スクリュー型ニーダー等が挙げられ、二軸型ニーダーとしては、双腕型ニーダー等が挙げられる。これらの混合機は、塩基水溶液の滴下や脱水ができるような部位を備えていることがより好ましい。
 反応温度は、副反応を抑制すると共に、セルロースの重合度の低下を抑制しつつ、反応を効率的に進行させる観点から、40~100℃であり、好ましくは40~80℃、より好ましくは50~70℃である。
 反応工程における反応雰囲気は、セルロースの重合度の低下を抑制し、高い水溶液粘度を発現する観点から、不活性ガス雰囲気下で反応を行うことが好ましい。不活性ガスとしては、好ましくは窒素、ヘリウム又はアルゴン、より好ましくは窒素又はアルゴン、更に好ましくは窒素である。
 本発明の方法では、粉砕物の分散性を良好にする観点から、好ましくは1~500rpm、より好ましくは2~200rpm、更に好ましくは5~100rpmで撹拌を行う。
 反応時間は、反応スケールにもよるが、好ましくは1~10時間、より好ましくは2~8時間程度である。
 反応の終点は、モノハロ酢酸又はその塩の全添加量の95重量%以上が消費された時点を目安とすることができ、高速液体クロマトグラフィー(HPLC)等で反応の進行状況を確認することができる。
 反応終了後、得られた反応物にメタノール等の親水性溶媒の水溶液を添加し、撹拌後にろ過することでNaCl等の塩類を除去することができる。カルボキシメチルセルロースはろ過ケーキ分として得られ、アセトン等で洗浄し、効率よく脱水することができる。
In the reaction step, it is preferable to use a mixer capable of mixing uniformly. For example, a mixer such as a so-called kneader used for kneading high-viscosity substances such as powders and resins as disclosed in paragraph [0016] of JP-A-2002-114801 is used as the reaction apparatus. Is preferred. Here, the mixer such as a kneader is not particularly limited as long as it can sufficiently stir. For example, the chemical engineering manual edited by “Chemical Engineering Handbook” revised 5th edition (published by Maruzen Co., Ltd.), pages 917 to 919 The mixing machine currently used is mentioned. Specifically, examples of the single-axis kneader include a ribbon mixer, a kneader, a botter, and a screw-type kneader, and examples of the biaxial kneader include a double-arm kneader. It is more preferable that these mixers have a portion where the aqueous base solution can be dropped and dehydrated.
The reaction temperature is from 40 to 100 ° C., preferably from 40 to 80 ° C., more preferably from the viewpoint of allowing the reaction to proceed efficiently while suppressing side reactions and suppressing a decrease in the degree of polymerization of cellulose. ~ 70 ° C.
The reaction atmosphere in the reaction step is preferably carried out in an inert gas atmosphere from the viewpoint of suppressing a decrease in the degree of polymerization of cellulose and expressing a high aqueous solution viscosity. The inert gas is preferably nitrogen, helium or argon, more preferably nitrogen or argon, still more preferably nitrogen.
In the method of the present invention, from the viewpoint of improving the dispersibility of the pulverized product, stirring is preferably performed at 1 to 500 rpm, more preferably 2 to 200 rpm, and still more preferably 5 to 100 rpm.
Although depending on the reaction scale, the reaction time is preferably about 1 to 10 hours, more preferably about 2 to 8 hours.
The end point of the reaction can be taken as a standard when 95% by weight or more of the total amount of monohaloacetic acid or its salt has been consumed, and the progress of the reaction can be confirmed by high performance liquid chromatography (HPLC) or the like. it can.
After completion of the reaction, an aqueous solution of a hydrophilic solvent such as methanol is added to the obtained reaction product, and salts such as NaCl can be removed by filtration after stirring. Carboxymethylcellulose is obtained as a filter cake, and can be washed with acetone and dehydrated efficiently.
(親水性有機溶媒)
 モノハロ酢酸又はその塩と原料パルプとの混合性を良好にする観点から、粉砕処理工程及び/又は反応工程において親水性有機溶媒を使用してもよい。
 親水性有機溶媒としては、原料パルプとモノハロ酢酸又はその塩との反応性の観点から、25℃で水100gに100g以上溶解するものが好ましい。本発明の方法に用いることができる親水性有機溶媒としては、好ましくはイソプロパノール、tert-ブタノール等の2級又は3級の低級アルコール;1,4-ジオキサン、エチレングリコールジメチルエーテル、ジエチレングリコールジメチルエーテル等のジグライム、トリグライム等のエーテル系溶剤;ジメチルスルホキシド等の親水性極性溶剤が挙げられ、より好ましくはイソプロパノール、tert-ブタノール等の2級又は3級の低級アルコール、更に好ましくはイソプロパノール、tert-ブタノールである。
 上記の親水性有機溶媒は、単独で又は2種以上を組み合わせて用いることができる。
(Hydrophilic organic solvent)
From the viewpoint of improving the mixing property of monohaloacetic acid or a salt thereof and raw pulp, a hydrophilic organic solvent may be used in the pulverization treatment step and / or the reaction step.
The hydrophilic organic solvent is preferably one that dissolves 100 g or more in 100 g of water at 25 ° C. from the viewpoint of the reactivity between the raw material pulp and monohaloacetic acid or a salt thereof. The hydrophilic organic solvent that can be used in the method of the present invention is preferably a secondary or tertiary lower alcohol such as isopropanol or tert-butanol; diglyme such as 1,4-dioxane, ethylene glycol dimethyl ether or diethylene glycol dimethyl ether; Examples include ether solvents such as triglyme; hydrophilic polar solvents such as dimethyl sulfoxide, more preferably secondary or tertiary lower alcohols such as isopropanol and tert-butanol, and more preferably isopropanol and tert-butanol.
Said hydrophilic organic solvent can be used individually or in combination of 2 or more types.
 本発明において反応時に用いられる親水性有機溶媒量は、乾燥原料パルプ100重量部に対して、好ましくは200重量部以下、より好ましくは150重量部以下、更に好ましくは100重量部以下、より更に好ましくは50重量部以下、より更に好ましくは30重量部以下である。親水性有機溶媒量を上記の範囲にすることにより、凝集が抑えられ、良好な粉体状態を維持したまま効率よく反応を進行させることができ、高い水溶液粘度のカルボキシメチルセルロースが得られる。 The amount of the hydrophilic organic solvent used in the reaction in the present invention is preferably 200 parts by weight or less, more preferably 150 parts by weight or less, still more preferably 100 parts by weight or less, and still more preferably with respect to 100 parts by weight of the dry raw material pulp. Is 50 parts by weight or less, more preferably 30 parts by weight or less. By setting the amount of the hydrophilic organic solvent in the above range, aggregation can be suppressed, the reaction can be allowed to proceed efficiently while maintaining a good powder state, and carboxymethylcellulose having a high aqueous solution viscosity can be obtained.
(反応工程における水分量)
 本発明において、アルカリ剤により、効率的にセルロース分子の水酸基をアルコラート化する観点と粉砕物の凝集抑制の観点から、反応工程における水分量は、乾燥原料パルプ100重量部に対して、好ましくは100重量部以下、より好ましくは10~90重量部、更に好ましくは15~80重量部、より更に好ましくは20~60重量部である。反応工程における水分量を上記の範囲にすることにより、セルロースの凝集が抑えられ、良好な粉体状態を維持したまま効率よく反応を進行させることができ、生成物の取扱い性にも優れる。
(Moisture content in the reaction process)
In the present invention, the water content in the reaction step is preferably 100 with respect to 100 parts by weight of the dry raw material pulp from the viewpoint of efficiently alcoholating the hydroxyl groups of the cellulose molecules with an alkali agent and suppressing the aggregation of the pulverized product. The amount is not more than parts by weight, more preferably 10 to 90 parts by weight, still more preferably 15 to 80 parts by weight, still more preferably 20 to 60 parts by weight. By setting the water content in the reaction step within the above range, aggregation of cellulose can be suppressed, the reaction can be efficiently advanced while maintaining a good powder state, and the handleability of the product is excellent.
[カルボキシメチルセルロース]
 本発明の方法により、水溶液粘度の高いカルボキシメチルセルロースが得られる。得られるカルボキシメチルセルロースは塩であってもよく、塩としては、ナトリウム、カリウム、リチウム等のアルカリ金属塩又はマグネシウム、カルシウム等のアルカリ土類金属塩が好ましい。
 本発明の方法により得られるカルボキシメチルセルロースの1重量%水溶液粘度(ナトリウム塩で100モル%中和品)(25℃)は、高い増粘性を発現させる観点から、好ましくは500mPa・s以上、より好ましくは700mPa・s以上、更に好ましくは800mPa・s以上、より更に好ましくは1000mPa・s以上、より更に好ましくは1100mPa・s以上、より更に好ましくは1750mPa・s以上、より更に好ましくは1800mPa・s以上である。上限は特にないが、取り扱い性の観点から、10000mPa・s以下が好ましく、5000mPa・s以下がより好ましい。水溶液粘度の測定方法は、後述する実施例に記載の通りである。なお、高い粘度のカルボキシメチルセルロースを得るには、重合度の高いセルロースを含む原料パルプを用いることが好ましい。
 本発明の方法により得られるカルボキシメチルセルロースは、化粧料等の増粘剤として有用である。
[Carboxymethylcellulose]
By the method of the present invention, carboxymethylcellulose having a high aqueous solution viscosity is obtained. The obtained carboxymethyl cellulose may be a salt, and the salt is preferably an alkali metal salt such as sodium, potassium or lithium or an alkaline earth metal salt such as magnesium or calcium.
The viscosity of a 1% by weight aqueous solution of carboxymethylcellulose obtained by the method of the present invention (100 mol% neutralized product with sodium salt) (25 ° C.) is preferably 500 mPa · s or more, more preferably from the viewpoint of developing high viscosity. Is at least 700 mPa · s, more preferably at least 800 mPa · s, even more preferably at least 1000 mPa · s, even more preferably at least 1100 mPa · s, even more preferably at least 1750 mPa · s, even more preferably at least 1800 mPa · s. is there. Although there is no particular upper limit, it is preferably 10,000 mPa · s or less and more preferably 5000 mPa · s or less from the viewpoint of handleability. The measuring method of the aqueous solution viscosity is as described in Examples described later. In order to obtain carboxymethylcellulose having a high viscosity, it is preferable to use a raw material pulp containing cellulose having a high degree of polymerization.
Carboxymethyl cellulose obtained by the method of the present invention is useful as a thickener for cosmetics and the like.
 製造例で得られたチップ状パルプ及びセルロースの結晶化度、平均重合度及び水分含量、チップ状パルプの粉砕物の粒径、並びに実施例で得られたカルボキシメチルセルロースの置換度及び水溶液粘度の測定は、下記の方法で行った。なお、「%」は「重量%」である。 Measurement of crystallinity, average polymerization degree and water content of chip-like pulp and cellulose obtained in Production Example, particle size of pulverized product of chip-like pulp, and degree of substitution and aqueous solution viscosity of carboxymethylcellulose obtained in Examples Was carried out by the following method. “%” Is “% by weight”.
(1)結晶化度の算出
 原料パルプ又は粉砕物中のセルロースの結晶化度は、原料パルプ又は粉砕物をサンプルとして用い、サンプルのX線回折強度を、株式会社リガク製の「Rigaku RINT 2500VC X-RAY diffractometer」(商品名)を用いて以下の条件で測定し、前記式(1)に基づいて算出した。
 測定条件は、X線源:Cu/Kα-radiation、管電圧:40kV、管電流:120mA、測定範囲:回折角2θ=5~45°で測定した。測定用サンプルは面積320mm2×厚さ1mmのペレットを圧縮し作製した。X線のスキャンスピードは10°/minで測定した。
(1) Calculation of crystallinity The crystallinity of cellulose in raw pulp or pulverized material is measured using the raw pulp or pulverized material as a sample, and the X-ray diffraction intensity of the sample is determined by “Rigaku RINT 2500VC X” manufactured by Rigaku Corporation. -RAY diffractometer "(trade name) was measured under the following conditions and calculated based on the formula (1).
The measurement conditions were X-ray source: Cu / Kα-radiation, tube voltage: 40 kV, tube current: 120 mA, measurement range: diffraction angle 2θ = 5 to 45 °. The measurement sample was prepared by compressing a pellet having an area of 320 mm 2 × thickness of 1 mm. The X-ray scan speed was measured at 10 ° / min.
(2)平均重合度の測定(銅-アンモニア法)
((i)測定用溶液の調製)
 メスフラスコ(100mL)に塩化第一銅0.5g、25%アンモニア水20~30mLを加え、完全に溶解した後に、水酸化第二銅1.0g、及び25%アンモニア水を加えて、メスフラスコの標線の一寸手前までの量とした。これを30~40分撹拌して、完全に溶解した。その後、精秤したパルプ(105℃、20kPaで12時間減圧乾燥したもの)を加え、メスフラスコの標線まで上記アンモニア水を満たした。空気が入らないように密封し、マグネチックスターラーで12時間撹拌して溶解した。同じように添加するパルプ量を20~500mgの範囲で変えて、異なる濃度の測定用溶液を調製した。
((ii)粘度平均重合度の測定)
 上記(i)で得られた測定用溶液(銅アンモニア水溶液)をウべローデ粘度計に入れ、恒温槽(20士0.1℃)中で1時間静置したのち、液の流下速度を測定した。種々のパルプ濃度(g/dL)の銅アンモニア溶液の流下時間(t(秒))とパルプ無添加の銅アンモニア水溶液の流下時間(t0(秒))から、下記式により、それぞれの濃度における還元粘度(ηsp/c)を以下の式より求めた。
  ηsp/c=(t/t0-1)/c
(式中、cはパルプ濃度(g/dL)である。)
 更に、還元粘度をc=0に外挿して固有粘度[η](dL/g)を求め、以下の式より粘度平均重合度(DPv)を求めた。
  DPv=2000×[η]
(式中、2000はセルロースに固有の係数である。)
(2) Measurement of average degree of polymerization (copper-ammonia method)
((I) Preparation of measurement solution)
After adding 0.5 g of cuprous chloride and 20-30 mL of 25% aqueous ammonia to a volumetric flask (100 mL) and completely dissolving, add 1.0 g of cupric hydroxide and 25% aqueous ammonia, and add a volumetric flask. The amount up to one inch before the marked line. This was stirred for 30-40 minutes to completely dissolve. Thereafter, precisely weighed pulp (dried under reduced pressure at 105 ° C. and 20 kPa for 12 hours) was added, and the ammonia water was filled up to the marked line of the volumetric flask. It sealed so that air might not enter, and it stirred with the magnetic stirrer for 12 hours, and melt | dissolved. Similarly, measurement solutions with different concentrations were prepared by changing the amount of pulp to be added in the range of 20 to 500 mg.
((Ii) Measurement of viscosity average degree of polymerization)
Put the measurement solution (copper ammonia aqueous solution) obtained in (i) above into an Ubbelohde viscometer and let it stand in a constant temperature bath (20 people 0.1 ° C) for 1 hour, then measure the flow rate of the liquid. did. From the flow time (t (seconds)) of the copper ammonia solution having various pulp concentrations (g / dL) and the flow time (t 0 (seconds)) of the copper ammonia aqueous solution without addition of the pulp, The reduced viscosity (η sp / c) was determined from the following formula.
η sp / c = (t / t 0 −1) / c
(Where c is the pulp concentration (g / dL))
Further, the reduced viscosity was extrapolated to c = 0 to determine the intrinsic viscosity [η] (dL / g), and the viscosity average degree of polymerization (DP v ) was determined from the following equation.
DP v = 2000 × [η]
(In the formula, 2000 is a coefficient specific to cellulose.)
(3)水分含量の測定
 パルプ中の水分含量は、ハロゲン水分計(メトラー・トレド株式会社製、商品名:「HG53」)を使用し、150℃にて測定を行った。2gのサンプルを用い、50秒間の重量変化率が1mg以下となる点を測定の終点とした。
(4)粉砕物の粒径の測定
 粒径は、レーザー回折/散乱式粒子径分布測定装置(株式会社堀場製作所製、商品名:「LA-950V2」)を用いて測定した。測定条件は、粒径測定前に超音波で1分間処理し、測定時の分散媒体として水を用い、体積基準のメジアン径を、温度25℃にて測定した。なお、用いた屈折率は、1.6である。
(3) Measurement of moisture content The moisture content in the pulp was measured at 150 ° C using a halogen moisture meter (trade name: “HG53” manufactured by METTLER TOLEDO Co., Ltd.). A 2 g sample was used, and the point at which the weight change rate for 50 seconds was 1 mg or less was taken as the end point of the measurement.
(4) Measurement of particle size of pulverized product The particle size was measured using a laser diffraction / scattering particle size distribution measuring device (manufactured by Horiba, Ltd., trade name: “LA-950V2”). The measurement conditions were ultrasonic treatment for 1 minute before particle size measurement, water was used as a dispersion medium during measurement, and the volume-based median diameter was measured at a temperature of 25 ° C. The refractive index used is 1.6.
(5)カルボキシメチルセルロースの置換度の測定
 カルボキシメチルセルロース試料を、マイクロウェーブ湿式灰化装置(PROLABO社製、商品名:「A-300」)を用いて硫酸-過酸化水素で湿式分解した後、原子吸光装置(株式会社日立製作所製、商品名:「Z-6100型」)を用いて原子吸光法によりNa含量(%)を測定し、下記式(2)により置換度を算出した。
 置換度(DS)=(162×Na含量(%))/(2300-80×Na含量(%)) (2)
 なお、置換度とは、カルボキシメチルセルロースのセルロース骨格を構成する無水グルコース単位あたりのカルボキシメチル基の平均数をいう。
(5) Measurement of degree of substitution of carboxymethylcellulose A carboxymethylcellulose sample was subjected to wet decomposition with sulfuric acid-hydrogen peroxide using a microwave wet ashing apparatus (product name: “A-300” manufactured by PROLABO), and then atomized. The Na content (%) was measured by atomic absorption method using a light absorption device (manufactured by Hitachi, Ltd., trade name: “Z-6100 type”), and the degree of substitution was calculated by the following formula (2).
Degree of substitution (DS) = (162 × Na content (%)) / (2300−80 × Na content (%)) (2)
The degree of substitution means the average number of carboxymethyl groups per anhydroglucose unit constituting the cellulose skeleton of carboxymethylcellulose.
(6)水溶液粘度の測定
 カルボキシメチルセルロースの1%水溶液(ナトリウム塩で100モル%中和)を調製し、B型粘度計(東機産業株式会社製、商品名:「TVB-10M」)を使用し、25℃、ローター:No.3(200~2000mPa・sの測定用)、30rpm、3分間の条件で測定を行った。なお、No.3で測定した際に、200mPa・s未満の粘度となる場合は、ローター:No.1を用い、2000mPa・sを超える場合は、ローター:No.4を用いる。
(6) Measurement of aqueous solution viscosity A 1% aqueous solution of carboxymethyl cellulose (100 mol% neutralized with sodium salt) was prepared, and a B-type viscometer (manufactured by Toki Sangyo Co., Ltd., trade name: “TVB-10M”) was used. 25 ° C., rotor: No. 3 (for measurement of 200 to 2000 mPa · s), 30 rpm, and 3 minutes. In addition, No. When the viscosity is less than 200 mPa · s when measured in No. 3, rotor: No. 1 and exceeding 2000 mPa · s, rotor: No. 4 is used.
製造例1
(チップ状パルプの製造)
 市販のコットンリンターパルプシート(山東高蜜化繊公司製、商品名:「PCS2400」、結晶化度94%、含水量7.5重量%)をシートペレタイザー(株式会社ホーライ製、商品名:「SGG-220-3X3」)にかけて3mm角のチップ状(長径(1片のチップの内、最長の長さ)の100個の数平均)にし、チップ状パルプ(結晶化度94%、平均重合度2358、含水量7.3重量%)を得た。
製造例2
(チップ状パルプの製造)
 市販の木材パルプシート(テンベック社製、商品名;「Biofloc HV+」、結晶化度74%、含水量6.7重量%)をシートペレタイザー(株式会社ホーライ製、商品名:「SGG-220-3X3」)にかけて3mm角のチップ状(長径(1片のチップの内、最長の長さ)の100個の数平均)にし、チップ状パルプ(結晶化度74%、平均重合度1506、含水量6.7重量%)を得た。
Production Example 1
(Manufacture of chip-like pulp)
A commercially available cotton linter pulp sheet (manufactured by Shandong Takamitsu Chemical Co., Ltd., trade name: “PCS2400”, crystallinity 94%, water content 7.5% by weight) is used as a sheet pelletizer (manufactured by Horai Co., Ltd., trade name: “SGG- 220-3X3 ") to form 3 mm square chips (average number of 100 pieces of long diameter (longest length of one chip)), and chip-like pulp (crystallinity 94%, average polymerization degree 2358, A water content of 7.3% by weight) was obtained.
Production Example 2
(Manufacture of chip-like pulp)
A commercially available wood pulp sheet (manufactured by Tenbeck, trade name: “Biofloc HV +”, crystallinity 74%, water content 6.7% by weight) is a sheet pelletizer (manufactured by Horai Co., Ltd., trade name: “SGG-220-3X3”). )) To form chips of 3 mm square (average number of 100 pieces of long diameter (the longest length of one piece)), and chip-like pulp (crystallinity 74%, average polymerization degree 1506, water content 6) 0.7% by weight).
実施例1
 乳鉢に、製造例1で得られたチップ状パルプを乾燥重量として100.0g(0.617mol、無水グルコース単位換算)仕込み、そこへ、30%モノクロロ酢酸ナトリウム(ClCH2CO2Na、以下「SMCA」ともいう)水溶液167.8g(0.432mol)を添加して撹拌混合した。混合物を60℃、窒素気流下、減圧条件(約70kPa)で12時間乾燥させた後、イオン交換水20.0gを添加して混合し、水分調整を行った。それを、振動ロッドミル(中央化工機株式会社製、商品名:「MB-1」)のポットに断面が直径30mmの円形のロッド13本と共に入れ、振動数1200cpm、振幅8mm、粉砕時間9分間の条件で混合粉砕した。更に49.2%水酸化ナトリウム水溶液38.6g(0.475mol)を添加して9分間混合粉砕した。得られた粉砕物の粒径は125μmであり、粉砕物の温度は35℃程度であった。
 上記で得られた混合粉砕物を1Lニーダー(株式会社入江商会製、商品名:「PNV-1型」)に仕込み、ニーダー内を減圧(約50kPa)し、次いで窒素で常圧まで戻す操作を3回行って窒素置換した。その後、60℃に昇温し3時間撹拌した。セルロース及びその他の原料由来の水分量の総和は、乾燥原料パルプ100重量部に対して40重量部であった。
 添加したSMCAの98重量%以上が消費されていることを確認して、室温まで冷却し、生成物をニーダーから取り出した。次に、生成物を70%メタノール水溶液1000mLに分散した後、酢酸2.6gを加えて余剰の水酸化ナトリウムを中和した。次に、70%メタノール水溶液3000mLを添加し、撹拌することで、副生塩及び未反応物等を溶出させた。得られたスラリーをろ過(東洋濾紙株式会社製、商品名:「定性濾紙No.2」)し、ろ過ケーキを、アセトン1000mLで洗浄し、乾燥して、カルボキシメチルセルロース117gを得た。得られたカルボキシメチルセルロースの無水グルコース単位当たりの置換度は0.47であり、1%水溶液粘度(25℃)は1961mPa・sであった。結果を表1に示す。
Example 1
In a mortar, 100.0 g of pulp chips obtained in Production Example 1 as a dry weight (0.617Mol, anhydroglucose unit conversion) were charged, to which 30% sodium monochloroacetate (ClCH 2 CO 2 Na, hereinafter "SMCA Also, 167.8 g (0.432 mol) of an aqueous solution was added and mixed with stirring. After the mixture was dried at 60 ° C. under a nitrogen stream under reduced pressure conditions (about 70 kPa) for 12 hours, 20.0 g of ion-exchanged water was added and mixed to adjust the water content. It is put into a pot of a vibrating rod mill (Chuo Kako Co., Ltd., trade name: “MB-1”) with 13 circular rods having a cross section of 30 mm in diameter, with a vibration frequency of 1200 cpm, an amplitude of 8 mm, and a grinding time of 9 minutes. The mixture was pulverized under the conditions. Further, 48.6% (0.475 mol) of a 49.2% aqueous sodium hydroxide solution was added and mixed and ground for 9 minutes. The particle size of the obtained pulverized product was 125 μm, and the temperature of the pulverized product was about 35 ° C.
The mixed pulverized product obtained above was charged into a 1 L kneader (trade name: “PNV-1 type” manufactured by Irie Shokai Co., Ltd.), the inside of the kneader was decompressed (about 50 kPa), and then returned to normal pressure with nitrogen. Performed 3 times and replaced with nitrogen. Then, it heated up at 60 degreeC and stirred for 3 hours. The total amount of water derived from cellulose and other raw materials was 40 parts by weight with respect to 100 parts by weight of the dry raw material pulp.
After confirming that 98% by weight or more of the added SMCA had been consumed, the product was cooled to room temperature and the product was removed from the kneader. Next, after the product was dispersed in 1000 mL of 70% aqueous methanol, 2.6 g of acetic acid was added to neutralize excess sodium hydroxide. Next, 3000 mL of 70% aqueous methanol solution was added and stirred to elute by-product salts, unreacted substances, and the like. The obtained slurry was filtered (trade name: “Qualitative filter paper No. 2” manufactured by Toyo Roshi Kaisha, Ltd.), and the filter cake was washed with 1000 mL of acetone and dried to obtain 117 g of carboxymethyl cellulose. The degree of substitution of the obtained carboxymethyl cellulose per anhydroglucose unit was 0.47, and the 1% aqueous solution viscosity (25 ° C.) was 1961 mPa · s. The results are shown in Table 1.
実施例2
 振動ロッドミル(中央化工機株式会社製、商品名:「MB-1」)のポットに断面が直径30mmの円形のロッド13本を入れ、そこへ製造例1で得られたチップ状パルプを乾燥重量として100.0g(0.617mol、無水グルコース単位換算)、イオン交換水12.2g、及びSMCA粉末50.3g(0.432mol)を添加し、振動数1200cpm、振幅8mm、粉砕時間6分間の条件で混合粉砕した。更に49.3%水酸化ナトリウム水溶液38.6g(0.475mol)を添加して6分間混合粉砕した。得られた粉砕物の粒径は189μmであり、粉砕物の温度は35℃程度であった。得られた粉砕物におけるセルロース及びその他の原料由来の水分量の総和は、乾燥原料パルプ100重量部に対して40重量部であった。
 その後の操作は実施例1と同様に行ってカルボキシメチルセルロースを得た。得られたカルボキシメチルセルロースの無水グルコース単位当たりの置換度は0.46であり、1%水溶液粘度(25℃)は1120mPa・sであった。結果を表1に示す。
Example 2
Thirteen round rods with a diameter of 30 mm are placed in a pot of a vibrating rod mill (manufactured by Chuo Kako Co., Ltd., trade name: “MB-1”), and the chip-like pulp obtained in Production Example 1 is dried by weight. 100.0 g (0.617 mol, anhydroglucose unit conversion), ion-exchanged water 12.2 g, and SMCA powder 50.3 g (0.432 mol) were added under the conditions of a frequency of 1200 cpm, an amplitude of 8 mm, and a grinding time of 6 minutes. Mixed and pulverized. Further, 48.6 g (0.475 mol) of a 49.3% aqueous sodium hydroxide solution was added and mixed and ground for 6 minutes. The particle size of the obtained pulverized product was 189 μm, and the temperature of the pulverized product was about 35 ° C. The total amount of water derived from cellulose and other raw materials in the obtained pulverized product was 40 parts by weight with respect to 100 parts by weight of the dry raw material pulp.
Subsequent operations were performed in the same manner as in Example 1 to obtain carboxymethylcellulose. The degree of substitution per unit of anhydroglucose of the obtained carboxymethylcellulose was 0.46, and the 1% aqueous solution viscosity (25 ° C.) was 1120 mPa · s. The results are shown in Table 1.
実施例3
 SMCA粉末添加後の粉砕時間を12分間とした点、水酸化ナトリウム水溶液添加後に粉砕を行わなかった点を除き、実施例2と同様の操作を行ってカルボキシメチルセルロースを得た。得られたカルボキシメチルセルロースの無水グルコース単位当たりの置換度は0.46であり、1%水溶液粘度(25℃)は539mPa・sであった。結果を表1に示す。
実施例4
 チップ状パルプとして製造例2で得られたチップ状パルプを用いた点、混合粉砕後における粉砕物におけるセルロース及びその他の原料由来の水分量の総和を、乾燥原料パルプ100重量部に対して40重量部とするために、混合粉砕前に添加するイオン交換水量を13.2gに変更した点を除き、実施例2と同様に行ってカルボキシメチルセルロースを得た。得られたカルボキシメチルセルロースの無水グルコース単位当たりの置換度は0.50であり、1%水溶液粘度(25℃)は801mPa・sであった。結果を表1に示す。
実施例5
 イオン交換水を12.1g、SMCA粉末を107.8g(0.926mol)、アルカリ剤として49.3%水酸化ナトリウム水溶液量を39.4g(0.486mol)及びビーズ状水酸化ナトリウム(東ソー株式会社製、商品名「トーソーパール」)21.4g(0.535mol)を用いた点を除き、実施例2と同様の操作を行ってカルボキシメチルセルロースを得た。得られたカルボキシメチルセルロースの無水グルコース単位当たりの置換度は0.79であり、1%水溶液粘度(25℃)は750mPa・sであった。結果を表1に示す。
Example 3
Carboxymethylcellulose was obtained in the same manner as in Example 2 except that the pulverization time after addition of the SMCA powder was 12 minutes and that pulverization was not performed after the addition of the aqueous sodium hydroxide solution. The degree of substitution per unit of anhydroglucose of the obtained carboxymethyl cellulose was 0.46, and the 1% aqueous solution viscosity (25 ° C.) was 539 mPa · s. The results are shown in Table 1.
Example 4
40 weights with respect to 100 parts by weight of dry raw material pulp, using the chip-like pulp obtained in Production Example 2 as the chip-like pulp, and the total amount of water derived from cellulose and other raw materials in the pulverized product after mixing and pulverization In order to obtain parts, carboxymethylcellulose was obtained in the same manner as in Example 2 except that the amount of ion-exchanged water added before mixing and grinding was changed to 13.2 g. The degree of substitution of the obtained carboxymethylcellulose per anhydroglucose unit was 0.50, and the 1% aqueous solution viscosity (25 ° C.) was 801 mPa · s. The results are shown in Table 1.
Example 5
12.1 g of ion-exchanged water, 107.8 g (0.926 mol) of SMCA powder, 39.4 g (0.486 mol) of 49.3% sodium hydroxide aqueous solution as an alkali agent, and beaded sodium hydroxide (Tosoh Corporation) Carboxymethylcellulose was obtained in the same manner as in Example 2 except that 21.4 g (0.535 mol) manufactured by the company and trade name “Tosoh Pearl” was used. The degree of substitution of the obtained carboxymethyl cellulose per anhydroglucose unit was 0.79, and the viscosity of a 1% aqueous solution (25 ° C.) was 750 mPa · s. The results are shown in Table 1.
実施例6
 振動ロッドミル(中央化工機株式会社製、商品名:「MB-1」)のポットに断面が直径30mmの円形のロッド13本を入れ、そこへ製造例1で得られたチップ状パルプを乾燥重量として100.0g(0.617mol、無水グルコース単位換算)、49.3%水酸化ナトリウム水溶液38.6g(0.475mol)を添加し、振動数1200cpm、振幅8mm、粉砕時間6分間の条件で混合粉砕した。更にイオン交換水12.2g、及びSMCA粉末50.3g(0.432mol)を添加して6分間混合粉砕した。得られた粉砕物におけるセルロース及びその他の原料由来の水分量の総和は、乾燥原料パルプ100重量部に対して40重量部であった。
 その後の操作は実施例1と同様に行ってカルボキシメチルセルロースを得た。得られたカルボキシメチルセルロースの無水グルコース単位当たりの置換度は0.55であり、1%水溶液粘度(25℃)は891mPa・sであった。結果を表1に示す。
Example 6
Thirteen round rods with a diameter of 30 mm are placed in a pot of a vibrating rod mill (manufactured by Chuo Kako Co., Ltd., trade name: “MB-1”), and the chip-like pulp obtained in Production Example 1 is dried by weight. 100.0 g (0.617 mol, converted to anhydroglucose unit) and 49.3% sodium hydroxide aqueous solution 38.6 g (0.475 mol) were added and mixed under conditions of a vibration frequency of 1200 cpm, an amplitude of 8 mm, and a pulverization time of 6 minutes. Crushed. Further, 12.2 g of ion-exchanged water and 50.3 g (0.432 mol) of SMCA powder were added and mixed and ground for 6 minutes. The total amount of water derived from cellulose and other raw materials in the obtained pulverized product was 40 parts by weight with respect to 100 parts by weight of the dry raw material pulp.
Subsequent operations were performed in the same manner as in Example 1 to obtain carboxymethylcellulose. The degree of substitution of the obtained carboxymethyl cellulose per anhydroglucose unit was 0.55, and the 1% aqueous solution viscosity (25 ° C.) was 891 mPa · s. The results are shown in Table 1.
比較例1
 振動ロッドミル(中央化工機株式会社製、商品名:「MB-1」)のポットに断面が直径30mmの円形のロッド13本を入れ、そこへ製造例1で得られたチップ状パルプを乾燥重量として100.0g(0.617mol、無水グルコース単位換算)を添加し、振動数1200cpm、振幅8mm、粉砕時間12分間の条件で粉砕し、粉末セルロース(結晶化度78%、平均重合度1216、含水量7.3重量%、粒径100μm)を得た。
 1Lニーダー(株式会社入江商会製、商品名:「PNV-1型」)に、上記で得られた粉末セルロース、イオン交換水12.2g、及びSMCA粉末50.3g(0.432mol)を添加し、1.5時間撹拌した。そこへ49.3%水酸化ナトリウム水溶液38.6g(0.475mol)を1時間かけて滴下し、更に30分間撹拌した。ニーダー内を減圧(約50kPa)し、次いで窒素で常圧まで戻す操作を3回行って窒素置換した。その後、60℃に昇温し3時間撹拌した。セルロース及びその他の原料由来の水分量の総和は、乾燥粉末セルロース100重量部に対して40重量部であった。
 その後の操作は実施例1と同様に中和、洗浄等を行い、カルボキシメチルセルロースを得た。得られたカルボキシメチルセルロースの無水グルコース単位当たりの置換度は0.44であり、1%水溶液粘度(25℃)は343mPa・sであった。結果を表1に示す。
Comparative Example 1
Thirteen round rods with a diameter of 30 mm are placed in a pot of a vibrating rod mill (manufactured by Chuo Kako Co., Ltd., trade name: “MB-1”), and the chip-like pulp obtained in Production Example 1 is dried by weight. 100.0 g (0.617 mol, converted into anhydroglucose unit) was added, and the mixture was pulverized under conditions of a vibration frequency of 1200 cpm, an amplitude of 8 mm, and a pulverization time of 12 minutes, and powdered cellulose (crystallinity 78%, average polymerization degree 1216, The amount of water was 7.3% by weight and the particle size was 100 μm).
To 1 L kneader (manufactured by Irie Shokai Co., Ltd., trade name: “PNV-1 type”), the powdered cellulose obtained above, 12.2 g of ion-exchanged water, and 50.3 g (0.432 mol) of SMCA powder were added. For 1.5 hours. Thereto, 38.6 g (0.475 mol) of a 49.3% aqueous sodium hydroxide solution was added dropwise over 1 hour, and the mixture was further stirred for 30 minutes. The inside of the kneader was depressurized (about 50 kPa), and then the operation of returning to normal pressure with nitrogen was performed three times to perform nitrogen substitution. Then, it heated up at 60 degreeC and stirred for 3 hours. The total amount of water derived from cellulose and other raw materials was 40 parts by weight with respect to 100 parts by weight of dry powdered cellulose.
Subsequent operations were carried out in the same manner as in Example 1, such as neutralization and washing, to obtain carboxymethylcellulose. The degree of substitution of the obtained carboxymethylcellulose per anhydroglucose unit was 0.44, and the 1% aqueous solution viscosity (25 ° C.) was 343 mPa · s. The results are shown in Table 1.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 原料パルプを粉砕した粉末セルロースにモノハロ酢酸又はその塩及びアルカリ剤を添加して反応させて得られた比較例1のカルボキシメチルセルロースは水溶液粘度が低かった。これに対し、原料パルプの粉砕処理前又は粉砕処理中にモノハロ酢酸又はその塩及びアルカリ剤を添加して得られた粉砕処理物を反応させて得られた実施例1~6のカルボキシメチルセルロースは水溶液粘度が高く、増粘剤として有用である。 The carboxymethyl cellulose of Comparative Example 1 obtained by adding monohaloacetic acid or a salt thereof and an alkali agent to the powdered cellulose obtained by pulverizing the raw material pulp and reacting it had a low aqueous solution viscosity. In contrast, the carboxymethyl cellulose of Examples 1 to 6 obtained by reacting a pulverized product obtained by adding monohaloacetic acid or a salt thereof and an alkaline agent before or during pulverization of the raw pulp was an aqueous solution. It has a high viscosity and is useful as a thickener.
 本発明の方法により得られる水溶液粘度の高いカルボキシメチルセルロースは、化粧料等の増粘剤として有用である。 The carboxymethyl cellulose having a high aqueous solution viscosity obtained by the method of the present invention is useful as a thickener for cosmetics and the like.

Claims (13)

  1.  原料パルプを粉砕機により粉砕処理した後に、得られた粉砕処理物中のセルロースを、モノハロ酢酸又はその塩及びアルカリ剤と40~100℃で反応させるカルボキシメチルセルロースの製造方法であって、該モノハロ酢酸もしくはその塩、及び/又はアルカリ剤を、該原料パルプの粉砕処理前又は粉砕処理中に該原料パルプと混合する工程を有する、カルボキシメチルセルロースの製造方法。 A process for producing carboxymethyl cellulose, wherein cellulose in a pulverized product obtained is pulverized by a pulverizer and then reacted with monohaloacetic acid or a salt thereof and an alkali agent at 40 to 100 ° C. Or the manufacturing method of carboxymethylcellulose which has the process of mixing the salt and / or alkali agent with this raw material pulp before the grinding | pulverization process of this raw material pulp, or during a grinding process.
  2.  粉砕処理前の原料パルプを構成するセルロースの平均重合度が1000~5000である、請求項1に記載のカルボキシメチルセルロースの製造方法。 2. The method for producing carboxymethyl cellulose according to claim 1, wherein an average degree of polymerization of cellulose constituting the raw pulp before pulverization is 1000 to 5000.
  3.  原料パルプとモノハロ酢酸又はその塩とを混合し粉砕処理する工程を有する、請求項1又は2に記載のカルボキシメチルセルロースの製造方法。 The method for producing carboxymethyl cellulose according to claim 1, comprising a step of mixing raw material pulp and monohaloacetic acid or a salt thereof and pulverizing the mixture.
  4.  原料パルプとモノハロ酢酸又はその塩とを混合し粉砕処理した後、アルカリ剤を添加し更に粉砕処理する、請求項1~3のいずれかに記載のカルボキシメチルセルロースの製造方法。 The method for producing carboxymethyl cellulose according to any one of claims 1 to 3, wherein the raw pulp and monohaloacetic acid or a salt thereof are mixed and pulverized, and then an alkali agent is added and further pulverized.
  5.  粉砕処理前の原料パルプにモノハロ酢酸又はその塩を含浸させる工程を更に有する、請求項1~4のいずれかに記載のカルボキシメチルセルロースの製造方法。 The method for producing carboxymethyl cellulose according to any one of claims 1 to 4, further comprising a step of impregnating the raw pulp before pulverization with monohaloacetic acid or a salt thereof.
  6.  原料パルプを構成するセルロースの無水グルコース単位に対するモノハロ酢酸又はその塩のモル当量比(モノハロ酢酸又はその塩/無水グルコース単位)が0.3~3である、請求項1~5のいずれかに記載のカルボキシメチルセルロースの製造方法。 6. The molar equivalent ratio of monohaloacetic acid or a salt thereof (monohaloacetic acid or a salt thereof / anhydroglucose unit) to anhydroglucose unit of cellulose constituting the raw pulp is 0.3 to 3. Of producing carboxymethylcellulose.
  7.  粉砕機が容器駆動式媒体ミルである、請求項1~6のいずれかに記載のカルボキシメチルセルロースの製造方法。 The method for producing carboxymethyl cellulose according to any one of claims 1 to 6, wherein the pulverizer is a container-driven medium mill.
  8.  粉砕処理物をモノハロ酢酸又はその塩及びアルカリ剤と反応させる際、水分量が乾燥原料パルプ100重量部に対して100重量部以下である、請求項1~7のいずれかに記載のカルボキシメチルセルロースの製造方法。 The carboxymethyl cellulose according to any one of claims 1 to 7, wherein when the ground product is reacted with monohaloacetic acid or a salt thereof and an alkali agent, the water content is 100 parts by weight or less with respect to 100 parts by weight of the dry raw material pulp. Production method.
  9.  モノハロ酢酸又はその塩が、モノクロロ酢酸ナトリウム又はモノクロロ酢酸カリウムである、請求項1~8のいずれかに記載のカルボキシメチルセルロースの製造方法。 The method for producing carboxymethyl cellulose according to any one of claims 1 to 8, wherein the monohaloacetic acid or a salt thereof is sodium monochloroacetate or potassium monochloroacetate.
  10.  アルカリ剤が、アルカリ金属水酸化物又はアルカリ土類金属水酸化物である、請求項1~9のいずれかに記載のカルボキシメチルセルロースの製造方法。 The method for producing carboxymethyl cellulose according to any one of claims 1 to 9, wherein the alkali agent is an alkali metal hydroxide or an alkaline earth metal hydroxide.
  11. モノハロ酢酸に対するアルカリ剤のモル当量比(アルカリ剤/モノハロ酢酸)が2~3である、請求項1~8及び請求項10のいずれかに記載のカルボキシメチルセルロースの製造方法。 The method for producing carboxymethyl cellulose according to any one of claims 1 to 8 and 10, wherein the molar equivalent ratio of the alkali agent to monohaloacetic acid (alkali agent / monohaloacetic acid) is 2 to 3.
  12.  モノハロ酢酸塩に対するアルカリ剤のモル当量比(アルカリ剤/モノハロ酢酸塩)が1~2である、請求項1~10のいずれかに記載のカルボキシメチルセルロースの製造方法。 The method for producing carboxymethyl cellulose according to any one of claims 1 to 10, wherein the molar equivalent ratio of the alkali agent to the monohaloacetate (alkali agent / monohaloacetate) is 1 to 2.
  13.  得られたカルボキシメチルセルロースの1重量%水溶液の粘度(25℃)が、500~5000mPa・sである、請求項1~12のいずれかに記載のカルボキシメチルセルロースの製造方法。 13. The method for producing carboxymethyl cellulose according to claim 1, wherein the viscosity (25 ° C.) of the obtained 1% by weight aqueous solution of carboxymethyl cellulose is 500 to 5000 mPa · s.
PCT/JP2011/065089 2010-07-15 2011-06-30 Method for producing carboxymethyl cellulose WO2012008314A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010160965 2010-07-15
JP2010-160965 2010-07-15

Publications (1)

Publication Number Publication Date
WO2012008314A1 true WO2012008314A1 (en) 2012-01-19

Family

ID=45469318

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/065089 WO2012008314A1 (en) 2010-07-15 2011-06-30 Method for producing carboxymethyl cellulose

Country Status (2)

Country Link
JP (1) JP2012036375A (en)
WO (1) WO2012008314A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013256640A (en) * 2012-05-16 2013-12-26 Kao Corp Method for producing cellulose ether

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102775503B (en) * 2012-08-14 2014-06-18 常熟威怡科技有限公司 Preparation method of high-salt resistance high-viscosity sodium carboxymethylcellulose
JP6228707B1 (en) * 2016-12-21 2017-11-08 日本製紙株式会社 Acid-type carboxymethylated cellulose nanofiber and method for producing the same
JP6737864B2 (en) * 2018-12-04 2020-08-12 第一工業製薬株式会社 Chemically modified cellulose fiber and method for producing the same

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50100181A (en) * 1974-01-09 1975-08-08
JPS51116889A (en) * 1975-04-07 1976-10-14 Daicel Chem Ind Ltd Method for preparing an alkali metal salt of carboxymethyl-cellulose e ther having improved flowing characteristics
JPS5324415A (en) * 1976-08-12 1978-03-07 Sanyo Kokusaku Pulp Co Ltd Production of water-absorbing cellulosic fiber
JPS5731901A (en) * 1980-08-06 1982-02-20 Shikishima Boseki Kk Production of polysaccharide glycolic acid salt
JPH0965890A (en) * 1995-08-30 1997-03-11 Showa Denko Kk Production of cellulose derivative
JPH09188703A (en) * 1996-01-09 1997-07-22 Dai Ichi Kogyo Seiyaku Co Ltd Carboxymethylcellulose alkali salt

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50100181A (en) * 1974-01-09 1975-08-08
JPS51116889A (en) * 1975-04-07 1976-10-14 Daicel Chem Ind Ltd Method for preparing an alkali metal salt of carboxymethyl-cellulose e ther having improved flowing characteristics
JPS5324415A (en) * 1976-08-12 1978-03-07 Sanyo Kokusaku Pulp Co Ltd Production of water-absorbing cellulosic fiber
JPS5731901A (en) * 1980-08-06 1982-02-20 Shikishima Boseki Kk Production of polysaccharide glycolic acid salt
JPH0965890A (en) * 1995-08-30 1997-03-11 Showa Denko Kk Production of cellulose derivative
JPH09188703A (en) * 1996-01-09 1997-07-22 Dai Ichi Kogyo Seiyaku Co Ltd Carboxymethylcellulose alkali salt

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013256640A (en) * 2012-05-16 2013-12-26 Kao Corp Method for producing cellulose ether

Also Published As

Publication number Publication date
JP2012036375A (en) 2012-02-23

Similar Documents

Publication Publication Date Title
JP5887196B2 (en) Method for producing alkali cellulose
JP5887197B2 (en) Method for producing alkali cellulose
KR101542486B1 (en) Method for producing cellulose ether derivative
JP5237618B2 (en) Method for producing hydroxypropyl cellulose
CN102781966B (en) The manufacture method of Poise C-80M and Cationized hydroxyalkylcellulosand
EP2210905B1 (en) Method for producing cellulose ether derivative
JP2012012553A (en) Method of producing carboxymethylcellulose
JP2015052104A (en) Method for producing cationized cellulose derivative
WO2011052733A1 (en) Production method for cationic hydroxypropyl cellulose
WO2012008314A1 (en) Method for producing carboxymethyl cellulose
JP5814565B2 (en) Method for producing cellulose ether and hydroxyalkylated cellulose ether
JP6307240B2 (en) Method for producing hydroxyalkyl cellulose
JP2013133398A (en) Method for producing carboxymethylcellulose
JP2016130285A (en) Production method of powdery hydroxyalkyl cellulose
JP2017128629A (en) Process for producing hydroxypropyl cellulose
JP2018076424A (en) Method for producing cellulose derivative aqueous solution
JP5237612B2 (en) Method for producing cellulose derivative
JP6227914B2 (en) Method for improving the reaction selectivity of alkylene oxides
JP6279869B2 (en) Method for producing cationized hydroxyalkyl cellulose
JP2014201582A (en) Method for improving dissolution rate of powder-water soluble polysaccharide to water system solvent
JP2015227413A (en) Method for manufacturing glycerol cellulose

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11806644

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11806644

Country of ref document: EP

Kind code of ref document: A1