WO2012008208A1 - Process for producing single-crystal sapphire, and single-crystal sapphire substrate - Google Patents

Process for producing single-crystal sapphire, and single-crystal sapphire substrate Download PDF

Info

Publication number
WO2012008208A1
WO2012008208A1 PCT/JP2011/060642 JP2011060642W WO2012008208A1 WO 2012008208 A1 WO2012008208 A1 WO 2012008208A1 JP 2011060642 W JP2011060642 W JP 2011060642W WO 2012008208 A1 WO2012008208 A1 WO 2012008208A1
Authority
WO
WIPO (PCT)
Prior art keywords
single crystal
crucible
aluminum oxide
sapphire
sapphire single
Prior art date
Application number
PCT/JP2011/060642
Other languages
French (fr)
Japanese (ja)
Inventor
智博 庄内
Original Assignee
昭和電工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 昭和電工株式会社 filed Critical 昭和電工株式会社
Publication of WO2012008208A1 publication Critical patent/WO2012008208A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/16Oxides
    • C30B29/20Aluminium oxides
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B15/00Single-crystal growth by pulling from a melt, e.g. Czochralski method
    • C30B15/02Single-crystal growth by pulling from a melt, e.g. Czochralski method adding crystallising materials or reactants forming it in situ to the melt
    • C30B15/04Single-crystal growth by pulling from a melt, e.g. Czochralski method adding crystallising materials or reactants forming it in situ to the melt adding doping materials, e.g. for n-p-junction

Definitions

  • the present invention relates to a method for producing a sapphire single crystal and a sapphire single crystal substrate.
  • a semiconductor light emitting device having a compound semiconductor layer such as a III-V group compound semiconductor layer is formed after a compound semiconductor layer is formed on a substrate made of a sapphire single crystal and a positive electrode, a negative electrode, and the like are further provided thereon.
  • the surface to be ground of the substrate is ground and polished, and then cut into an appropriate shape to prepare a light emitting element chip (Patent Document 1).
  • Patent Document 2 As a technique for growing a high-quality sapphire single crystal, a production method using a seed crystal with a low Si concentration (Patent Document 2), a production method with reduced zirconium (Zr) impurities in an alumina melt (Patent Document 3), etc. have been proposed. ing.
  • the sapphire single crystal substrate on which the compound semiconductor layers are stacked is obtained by cutting out a single crystal ingot manufactured by the Czochralski method (CZ method), for example.
  • CZ method Czochralski method
  • a sapphire single crystal is grown from an alumina melt, crystal defects and strain are generated in the sapphire single crystal due to slight fluctuations in manufacturing conditions.
  • a large-diameter sapphire ingot having a diameter of 100 mm or more requires precise control of impurity control, strain relaxation technology, temperature uniformity, temperature gradient, etc., and produces a crystal with few crystal defects, strain, and impurities throughout the ingot. Therefore, it is necessary to examine and optimize new breeding conditions.
  • the cause of bubble generation is mainly a specific metal element. Specifically, it has been derived that reduction measures for sodium (Na), barium (Ba), vanadium (V), and these compounds whose oxide decomposition temperatures are close to the melting point of sapphire are important issues.
  • An object of the present invention is to provide a method for manufacturing a sapphire single crystal substrate with few metal impurities and crystal defects (bubbles), and a sapphire single crystal substrate.
  • a heating step in a liquid phase held in a liquid state and a seed crystal attached to the melt of aluminum oxide in the crucible are pulled up while rotating, so that the diameter increases toward the lower side of the seed crystal.
  • a method for producing a sapphire single crystal [2] The method for producing a sapphire single crystal according to [1], wherein the heating step in the liquid phase is performed at a temperature higher than the melting point of aluminum oxide by 30 ° C. or more and 300 ° C. or less. . [3] The above item [1], wherein the melt in the heating step in the liquid phase is formed by melting the raw material of aluminum oxide in the crucible from the lower part to the upper part of the crucible. Or the manufacturing method of the sapphire single crystal as described in [2]. [4] The heating method in a solid phase in which the aluminum oxide raw material in the crucible is kept at a temperature lower than the melting point of aluminum oxide before the heating step in the liquid phase.
  • [1] The method for producing a sapphire single crystal according to any one of [3].
  • [5] The method for producing a sapphire single crystal as described in [4] above, wherein the heating step in the solid phase is performed at a temperature of 1200 ° C. or higher and lower than 2050 ° C.
  • [6] The above item [4] or [5], wherein the raw material of aluminum oxide in the crucible in the heating step in the solid phase is heated from the lower part to the upper part of the crucible.
  • a sapphire single crystal with few metal impurities and crystal defects (bubbles) can be obtained as compared with the case without this configuration, the surface processing yield can be improved, and the compound semiconductor is formed on the sapphire single crystal substrate.
  • a semiconductor light emitting device manufactured by forming a layer has improved light emitting characteristics and electrical characteristics.
  • FIG. 1 is a diagram illustrating an example of a single crystal pulling apparatus I.
  • the single crystal pulling apparatus I includes a heating furnace 10 for growing a sapphire ingot 30 made of a single crystal of sapphire.
  • the heating furnace 10 includes a heat insulating container 11.
  • the heat insulating container 11 has a columnar outer shape, and a columnar space is formed therein.
  • the heat insulating container 11 is configured by assembling parts made of a heat insulating material made of zirconia (ZrO 2 ), for example.
  • the heating furnace 10 includes a chamber 14 that accommodates the heat insulating container 11 in an internal space.
  • the heating furnace 10 includes a gas supply pipe 12 that is formed through the side surface of the chamber 14 and supplies gas from the outside of the chamber 14 to the inside of the heat insulating container 11 through the chamber 14.
  • a gas exhaust pipe 13 that is formed through the side surface of the chamber 14 and exhausts gas from the inside of the heat insulating container 11 to the outside through the chamber 14 is further provided.
  • the crucible 15 is arrange
  • the crucible 15 is made of, for example, iridium (Ir), and contains an alumina melt 35 formed by melting aluminum oxide.
  • the heating furnace 10 includes a metal heating coil 16.
  • the heating coil 16 is wound around a portion that is outside the side surface on the lower side of the heat insulating container 11 and inside the side surface on the lower side of the chamber 14.
  • the heating coil 16 faces the wall surface of the crucible 15 through the heat insulating container 11 and is arranged so as to be movable in the vertical direction.
  • the heating coil 16 is constituted by, for example, a hollow copper tube, wound spirally, and has a cylindrical shape when viewed as a whole.
  • the inner diameter on the upper side and the inner diameter on the lower side of the heating coil 16 are substantially the same.
  • the space formed in the inside by the wound heating coil 16 is cylindrical.
  • the central axis of the heating coil 16 passing through the cylindrical space is substantially perpendicular to the horizontal direction, that is, along the vertical direction.
  • the crucible 15 is disposed inside a cylindrical space formed by the heating coil 16. Then, the crucible 15 is placed at a site that is substantially at the center of the circular region formed by the heating coil 16.
  • the heating furnace 10 includes a lifting rod 17 that extends downward from above through through holes provided in the upper surfaces of the heat insulating container 11 and the chamber 14, respectively.
  • the pulling rod 17 is attached so as to be able to move in the vertical direction and rotate around the axis.
  • a sealing material (not shown) is provided between the through hole provided in the chamber 14 and the lifting rod 17.
  • a holding member 18 for attaching and holding a seed crystal 31 (see FIG. 2 described later) serving as a base for growing the sapphire ingot 30 is attached to an end portion on the vertically lower side of the pulling rod 17. Yes.
  • the single crystal pulling apparatus I includes a pulling drive unit 19 for pulling up the pulling bar 17 vertically upward and a rotation driving unit 20 for rotating the pulling bar 17.
  • the pulling drive unit 19 is constituted by a motor or the like, and the pulling speed of the pulling rod 17 can be adjusted.
  • the rotation drive unit 20 is also composed of a motor or the like so that the rotation speed of the lifting rod 17 can be adjusted.
  • the single crystal pulling apparatus I includes a gas supply unit 21 that supplies gas into the chamber 14 via the gas supply pipe 12.
  • the gas supply unit 21 supplies a mixed gas in which oxygen supplied from the O 2 source 22 and nitrogen as an example of an inert gas supplied from the N 2 source 23 are mixed.
  • the gas supply part 21 adjusts the oxygen concentration in mixed gas by changing the mixing ratio of oxygen and nitrogen. The flow rate of the mixed gas supplied into the chamber 14 is also adjusted.
  • the single crystal pulling apparatus I includes an exhaust unit 24 that exhausts gas from the inside of the chamber 14 via the gas exhaust pipe 13.
  • the exhaust unit 24 includes, for example, a vacuum pump or the like, and is capable of decompressing the chamber 14 and exhausting the gas supplied from the gas supply unit 21.
  • the single crystal pulling apparatus I includes a coil power supply 25 that supplies current to the heating coil 16.
  • the coil power supply 25 sets whether to supply current to the heating coil 16 and the amount of current to be supplied.
  • a weight detection unit 27 that detects the weight of the sapphire ingot 30 that grows on the lower side of the lifting rod 17 through the lifting rod 17 is provided.
  • the weight detection unit 27 includes, for example, a known weight sensor.
  • the single crystal pulling apparatus I includes a coil driving unit 28 that moves the heating coil 16 in the vertical direction. Instead of moving the heating coil 16 in the vertical direction, the crucible 15 may be moved in the vertical direction.
  • the single crystal pulling apparatus I includes a control unit 26 that controls the pulling drive unit 19, the rotation drive unit 20, the gas supply unit 21, the exhaust unit 24, the coil power supply 25, and the coil drive unit 28 described above. Further, the control unit 26 calculates the crystal diameter of the sapphire ingot 30 to be pulled up based on the weight signal output from the weight detection unit 27 and feeds it back to the coil power supply 25.
  • FIG. 2 shows an example of the configuration of the sapphire ingot 30 manufactured using the single crystal pulling apparatus I shown in FIG.
  • the sapphire ingot 30 includes a seed crystal 31 that is a base for growing the sapphire ingot 30, a shoulder portion 32 that extends under the seed crystal 31 and is integrated with the seed crystal 31, and a lower portion of the shoulder portion 32.
  • a straight body portion (body portion) 33 extending and integrated with the shoulder portion 32, and a tail portion 34 extending under the straight body portion 33 and integrated with the straight body portion 33 are provided.
  • a single crystal of sapphire grows in the c-axis direction from the upper seed crystal 31 side toward the lower tail portion 34 side.
  • the shoulder portion 32 has a shape in which the diameter gradually increases from the seed crystal 31 side toward the straight body portion 33 side.
  • the straight body portion 33 has a shape such that the diameters thereof are substantially the same from the top to the bottom.
  • the diameter of the straight body portion 33 is set to a value slightly larger than the diameter of the sapphire single crystal substrate 110 (see FIG. 4 described later) designed in advance.
  • the straight body portion 33 is a body portion. However, since it is cylindrical, it is called a straight body part.
  • the inventor has found that the generation of bubbles is due to the decomposition of a metal compound contained as an oxide and the like, and has found that crystal defects can be reduced by paying attention to the concentration of a specific element. That is, before the growth of the sapphire ingot 30, metal impurities that exist in the raw material aluminum oxide (alumina) and decompose at a temperature close to the crystal growth temperature of the sapphire ingot 30, such as sodium (Na) and barium (Ba). It is important to remove vanadium (V). Among these, it has been found that Na which is easily mixed into the alumina melt 35 and is present in a large amount in the environment is particularly important. Many of these metal impurities are contained as oxides. The cause of the bubble was derived from the fact that the gas in which these oxides were decomposed and evaporated was taken into the sapphire ingot 30 which is a sapphire single crystal.
  • the sapphire ingot 30 As one means for removing these metal compounds, it is effective to heat (bake) aluminum oxide (alumina) as a raw material of the sapphire ingot 30 at a high temperature before the sapphire ingot 30 is grown. Heating at a high temperature is desirably performed under reduced pressure. It is also a suitable method to promote convection by heating the crucible 15 with an upper and lower temperature difference. Na 2 O has a decomposition temperature of 1950 ° C., BaO has a boiling point of 2000 ° C., and V 2 O 5 has a decomposition temperature of 1750 ° C.
  • NaCl sodium chloride
  • NaCl sodium chloride
  • NaCl has a melting point of 801 ° C. and a boiling point of 1413 ° C. It can evaporate by heating in the state of the solid phase before a raw material melt
  • the heating temperature is preferably a temperature at which the three metal oxides start to decompose or evaporate, and considering that NaCl evaporates under reduced pressure, at least 1200 ° C. or higher, Desirably, it is 1750 degreeC or more. Since it is carried out in a solid phase, it is preferably less than the melting point (2050 ° C.) of aluminum oxide, desirably less than 2000 ° C., and even less than 1800 ° C. In the case of heating in a solid state, there is an advantage that decomposition products and evaporation products are easily released into the atmosphere.
  • the bubbles in the sapphire single crystal substrate 110 can be reduced along with the reduction of the metal impurity concentration of the sapphire single crystal substrate 110 (see FIG. 4 described later). It is considered that fine bubbles also affect the film quality of the group III compound semiconductor layer 100 (see FIG. 4 described later) epitaxially grown on the sapphire single crystal substrate 110.
  • the Na concentration in the large-diameter sapphire ingot 30 was reduced, and it was possible to stably grow a high-purity sapphire single crystal of less than 1 ppm. Furthermore, by optimizing the conditions, a Na concentration of less than 0.5 ppm was achieved.
  • FIG. 3 is a flowchart for explaining a procedure for manufacturing the sapphire ingot 30 shown in FIG. 2 using the single crystal pulling apparatus I shown in FIG.
  • a solid aluminum oxide (alumina) filled in the crucible 15 in the heating furnace 10 is heated (baked) and held at a temperature lower than the melting point (2050 ° C.).
  • the heating process at is performed (step 101).
  • a melting step for melting the aluminum oxide in the crucible 15 is executed (step 102).
  • fusing point of aluminum oxide is performed (step 103).
  • the shoulder crystal forming step of forming the shoulder portion 32 below the seed crystal 31 is performed by pulling up the seed crystal 31 while rotating the seed crystal 31 (step 105). Subsequently, in a state where the lower end portion of the shoulder portion 32 is in contact with the alumina melt 35, the shoulder portion 32 is pulled upward while rotating through the seed crystal 31, so that the straight body portion ( A straight body forming process (body forming process) for forming the body part 33 is executed (step 106).
  • the straight body portion 33 is pulled upward while rotating through the seed crystal 31 and the shoulder portion 32.
  • a tail forming process for forming the tail 34 below the straight body 33 is executed (step 107). Then, after the obtained sapphire ingot 30 is cooled, it is taken out of the heating furnace 10 to complete a series of manufacturing steps.
  • the sapphire ingot 30 is heat-treated to relieve strain caused by the temperature distribution in the ingot.
  • the heat treatment is performed under conditions of 1200 ° C. or higher and 3 hours or longer, preferably 1500 ° C. or higher and 5 hours or longer.
  • the temperature increase / decrease rate is 1.0 ° C./min to 10.0 ° C./min, preferably 2.0 ° C./min to 7.0 ° C./min.
  • the diameter (size) of the sapphire single crystal substrate 110 see FIG. 4 to be described later
  • the temperature is increased and the time is increased.
  • the sapphire ingot 30 obtained in this way is first cut at the boundary between the shoulder portion 32 and the straight body portion 33 and at the boundary between the straight body portion 33 and the tail portion 34, and the straight body portion 33 is cut out. It is.
  • the cut out straight body portion 33 is further cut in a direction orthogonal to the longitudinal direction of the sapphire ingot 30 by, for example, a multi-wire saw, and the surface is polished to become the sapphire single crystal substrate 110.
  • the main surface of the obtained sapphire single crystal substrate 110 is the C plane of the sapphire single crystal ((0001 ) Surface).
  • the main surface of the substrate may be processed with an off-angle from the C plane. In addition, it is possible to cut out other than the C plane.
  • the seed crystal 31 is attached to the holding member 18 of the pulling rod 17 and set at a predetermined position. At this time, the C plane ((0001) plane) of sapphire is exposed at the lower end of the seed crystal 31.
  • the crucible 15 is filled with a raw material of aluminum oxide, and the heat insulating container 11 is assembled using components made of a heat insulating material made of zirconia.
  • aluminum oxide as a raw material is powder or fine crystal pieces.
  • the Na concentration in the starting aluminum oxide is about 1 to 10 ppm. Furthermore, in order to increase the purity to less than 1 ppm, advanced techniques such as a purification treatment are required, the productivity is lowered, and the cost of raw materials is increased.
  • V and Ba in the raw material have a low concentration of less than 1 ppm, but the concentration may vary depending on the manufacturer, production time, and the like.
  • the inside of the heat insulation container 11 is pressure-reduced using the exhaust part 24 in the state which does not supply the gas from the gas supply part 21.
  • the pressure inside the heat insulating container 11 is reduced to 1 Pa or less, preferably 10 ⁇ 3 Pa or less, and more preferably 10 ⁇ 5 Pa or less.
  • the solid aluminum oxide filled in the crucible 15 is heated (baked) at a temperature of 1200 ° C. or higher and lower than the melting point of aluminum oxide (2050 ° C.). That is, since aluminum oxide does not dissolve, it becomes heating in the solid phase.
  • the temperature to heat exceeds 1800 degreeC
  • heating is performed from the lowermost end of the crucible 15 filled with the raw material aluminum oxide, and the raw material aluminum oxide is sequentially heated from the bottom to the top of the crucible 15. This promotes the volatilization of a metal compound such as NaCl and a metal formed by decomposition of the metal compound and a gas such as oxygen, which is preferable.
  • the crucible 15 is heated by the coil power supply 25 supplying a high-frequency alternating current (hereinafter referred to as a high-frequency current) to the heating coil 16.
  • a high-frequency current is supplied from the coil power supply 25 to the heating coil 16
  • the magnetic flux repeatedly generates and disappears around the heating coil 16.
  • the magnetic flux generated by the heating coil 16 crosses the crucible 15 through the heat insulating container 11
  • a magnetic field is generated on the wall surface of the crucible 15 so as to prevent the change of the magnetic field, thereby causing a vortex in the crucible 15. Electric current is generated.
  • the crucible 15 is heated, and accordingly, the aluminum oxide accommodated in the crucible 15 is heated.
  • the coil drive unit 28 moves the center position of the heating coil 16 in the vertical direction to the lower end of the crucible 15, and then the coil power supply 25 moves to the heating coil 16.
  • the energization is started and induction heating of the crucible 15 is started, and the heating coil 16 may be gradually moved upward by the coil driving unit 28.
  • the crucible 15 is most heated at a portion adjacent to the heating coil 16, but the temperature of the entire crucible 15 also rises due to heat conduction.
  • the heating step in the solid phase is preferably performed for at least 1 hour or more, preferably 2 hours or more. Considering productivity, less than 10 hours is desirable.
  • the aluminum oxide in the crucible 15 is completely melted to form an alumina melt 35. It is preferable that the melting of aluminum oxide is started from the lowermost end of the crucible 15 filled with the raw material aluminum oxide and the raw material aluminum oxide is melted sequentially from the bottom to the top of the crucible 15.
  • the coil driving unit 28 moves the center position in the vertical direction of the heating coil 16 to the lower end of the crucible 15 and then completely melts the aluminum oxide.
  • the heating coil 16 may be gradually moved upward by the coil driving unit 28 while the coil power source 25 supplies current to the heating coil 16.
  • the volatilization of the metal compound and the gas formed by decomposing the metal compound, such as oxygen is promoted.
  • the aluminum oxide is rapidly melted, it is left in the alumina melt 35 before the metal compound and the metal, gas such as oxygen generated by the decomposition of the metal compound are discharged. Therefore, it is necessary to spend at least 3 hours, preferably 10 hours or more, until aluminum oxide as a raw material is completely melted. Even in the melting step, it is preferable to keep the inside of the heat insulating container 11 in a reduced pressure state in order to promote the volatilization of the metal compound and the gas formed by decomposing the metal compound, such as oxygen. It is also desirable to flow an inert gas.
  • the alumina melt 35 is held at a temperature 30 ° C. to 300 ° C. higher than the melting point of aluminum oxide. If the heating temperature is lower than this temperature range, decomposition products and bubbles are difficult to escape, so that the treatment for several hours is not effective, and it is considered that heating for a long time is required, and the productivity is remarkably lowered. On the other hand, when the heating temperature is higher than this temperature range, damage to the heating furnace 10 such as the crucible 15 and the heat insulating container 11 increases, and there is a limit on the apparatus. At this time, aluminum oxide as a raw material is melted to form a liquid phase. The holding time is, for example, 2 to 20 hours.
  • the heating step in the liquid phase it is preferable to keep the inside of the heat insulating container 11 in a reduced pressure state in order to promote the volatilization of a metal compound, a metal formed by decomposing the metal compound, gas such as oxygen. It is also desirable to flow an inert gas.
  • the temperature and time in the solid-phase heating step and the liquid-phase heating step are the material of the crucible 15 containing the raw material aluminum oxide, and the metal compound as an impurity contained in the raw material aluminum oxide powder or crystal piece. What is necessary is just to change with the density
  • the gas supply unit 21 supplies a mixed gas in which nitrogen and oxygen are mixed at a predetermined ratio into the heat insulating container 11 using the O 2 source 22 and the N 2 source 23.
  • a mixed gas of oxygen and nitrogen For example, only nitrogen may be supplied.
  • the coil power supply 25 continues to supply a high-frequency current to the heating coil 16 to heat the alumina melt 35 via the crucible 15.
  • the pulling drive unit 19 lowers the pulling rod 17 to a position where the lower end of the seed crystal 31 attached to the holding member 18 contacts the alumina melt 35 in the crucible 15 and then stops the pulling rod 17. Pull up at the first pulling speed.
  • the rotation drive unit 20 rotates the pulling rod 17 at the first rotation speed.
  • the seed crystal 31 is pulled up while being rotated with its lower end immersed in the alumina melt 35, and a shoulder 32 that expands vertically downward is formed at the lower end of the seed crystal 31. It will be done.
  • the shoulder forming step is completed when the diameter of the shoulder 32 becomes approximately 120 mm. Bubbles are easily taken in as the diameter increases.
  • the gas supply unit 21 mixes nitrogen and oxygen at a predetermined ratio using the O 2 source 22 and the N 2 source 23, and the oxygen concentration is in the range of 0.6% to 3.0%.
  • the mixed gas set to 1 is supplied into the heat insulating container 11.
  • the coil power supply 25 continues to supply a high-frequency current to the heating coil 16 to heat the alumina melt 35 via the crucible 15.
  • the pulling drive unit 19 pulls the pulling rod 17 at the second pulling speed.
  • the second pulling speed may be the same as or different from the first pulling speed in the shoulder forming step.
  • the rotation drive unit 20 rotates the pulling rod 17 at the second rotation speed.
  • the second rotation speed may be the same speed as the first rotation speed in the shoulder forming step, or may be a different speed.
  • the shoulder portion 32 integrated with the seed crystal 31 is pulled up while being rotated with its lower end portion immersed in the alumina melt 35, so that the lower end portion of the shoulder portion 32 is preferably a cylindrical straight portion.
  • the body portion 33 is formed.
  • the diameter of the straight body part 33 should just be more than a predetermined aperture. In the straight body portion forming step, the lower end of the straight body portion 33 pulled up vertically is maintained in contact with the alumina melt 35.
  • the gas supply unit 21 mixes nitrogen and oxygen at a predetermined ratio using the O 2 source 22 and the N 2 source 23, and a mixed gas in which the oxygen concentration is set higher than that in the straight body forming step. It supplies in the heat insulation container 11. However, the oxygen concentration in the mixed gas in the tail forming step is set in the range of 1.0% to 5.0%.
  • the coil power supply 25 continues to supply a high-frequency current to the heating coil 16 to heat the alumina melt 35 via the crucible 15. Further, the pulling drive unit 19 pulls the pulling rod 17 at the third pulling speed.
  • the third pulling speed may be the same as the first pulling speed in the shoulder forming process or the second pulling speed in the straight body forming process, or may be a speed different from these.
  • the rotation drive unit 20 rotates the pulling rod 17 at the third rotation speed.
  • the third rotation speed may be the same as the first rotation speed in the shoulder forming process or the second rotation speed in the straight body forming process, or may be different from these. Also good. Note that the lower end of the tail 34 is kept in contact with the alumina melt 35 in the early stage of the tail formation step.
  • the pulling drive unit 19 increases the pulling speed of the pulling bar 17 and pulls the lifting bar 17 further upward, thereby lowering the lower end of the tail 34. Is pulled away from the alumina melt 35. Thereby, the sapphire ingot 30 shown in FIG. 2 is obtained.
  • a mixed gas in which oxygen and nitrogen are mixed is used.
  • the present invention is not limited to this.
  • a mixture of oxygen and argon as an example of an inert gas is used. It doesn't matter.
  • the crucible 15 is heated using a so-called electromagnetic induction heating method.
  • a resistance heating method may be adopted. In the case of a structure in which the crucible 15 can be rotated by the resistance heating method, it is desirable to rotate the crucible 15 for stirring in each heating step.
  • the sapphire single crystal substrate 110 is manufactured as described above.
  • the sapphire single crystal substrate 110 was visually observed for the presence or absence of bubbles with an optical microscope, and the presence or absence of bubbles was determined. At this time, the size of the observable bubbles was 1 ⁇ m or more.
  • the surface of the sapphire single crystal substrate 110 is used as a semiconductor light emitting device (LC), it is desirable that the surface of the sapphire single crystal substrate 110 be smoothed or unevenly processed in order to improve the crystallinity of the compound semiconductor layer and the luminous efficiency.
  • LC semiconductor light emitting device
  • the sapphire ingot 30 manufactured as described above has a very small generation of cracks and cracks in the step of cutting in the direction perpendicular to the longitudinal direction of the sapphire ingot 30 and the step of polishing the surface, and has good processing yield. It was rate.
  • a semiconductor light emitting device (LC) manufactured using the sapphire single crystal substrate 110 manufactured by the method for manufacturing the sapphire ingot 30 described above will be described.
  • a semiconductor light emitting element (LC) has a group III compound semiconductor layer formed on a sapphire single crystal substrate 110 (see FIG. 4 described later) having a diameter of 100 mm and a thickness of about 900 ⁇ m, and then a group III compound The back surface of the sapphire single crystal substrate 110 on which the semiconductor layer is formed is ground so as to have a predetermined thickness, is subjected to a lapping process, and is cut into a chip size.
  • the semiconductor light emitting device (LC) manufactured in the present embodiment has a sapphire single crystal substrate 110 and a compound semiconductor layer formed on the substrate.
  • the compound semiconductor constituting the compound semiconductor layer include a III-V group compound semiconductor, a II-VI group compound semiconductor, a IV-IV group compound semiconductor, and the like.
  • a III-V group compound semiconductor is preferable, and among these, a group III nitride compound semiconductor is preferable.
  • a semiconductor light emitting device (LC) having a compound semiconductor layer composed of a group III nitride compound semiconductor will be described below as an example.
  • FIG. 4 is a diagram illustrating an example of a semiconductor light emitting device (LC) manufactured in the present embodiment.
  • the semiconductor light emitting device (LC) has a base layer 130 and a group III compound semiconductor layer 100 on an intermediate layer 120 formed on a sapphire single crystal substrate 110.
  • the group III compound semiconductor layer 100 an n-type semiconductor layer 140, a light emitting layer 150, and a p-type semiconductor layer 160 are sequentially stacked. It is desirable to process the surface of the sapphire single crystal substrate 110 forming the semiconductor layer so as to arrange a large number of fine convex shapes because it has an effect of improving the light emission output.
  • a transparent positive electrode 170 is laminated on the p-type semiconductor layer 160, a positive electrode bonding pad 180 is formed thereon, and a negative electrode 190 is formed in the exposed region 140c formed in the n-type contact layer 140a of the n-type semiconductor layer 140.
  • a transparent positive electrode 170 is laminated on the p-type semiconductor layer 160, a positive electrode bonding pad 180 is formed thereon, and a negative electrode 190 is formed in the exposed region 140c formed in the n-type contact layer 140a of the n-type semiconductor layer 140.
  • the n-type semiconductor layer 140 formed on the base layer 130 includes an n-type contact layer 140a and an n-type cladding layer 140b.
  • the light emitting layer 150 has a structure in which barrier layers 150a and well layers 150b are alternately stacked.
  • a p-type cladding layer 160a and a p-type contact layer 160b are stacked.
  • the total thickness of the compound semiconductor layers (a combination of the intermediate layer 120, the base layer 130, and the group III compound semiconductor layer 100) formed on the sapphire single crystal substrate 110 is preferably 3 ⁇ m. More preferably, it is 5 ⁇ m or more, and more desirably 8 ⁇ m or more. The total thickness of these is preferably 15 ⁇ m or less.
  • the material of each layer constituting the semiconductor light emitting element (LC) will be described.
  • intermediate layer 120 In the present embodiment, it is preferable to provide an intermediate layer 120 that exhibits a buffer function on the sapphire single crystal substrate 110 when the group III compound semiconductor layer 100 is formed by metal organic chemical vapor deposition (MOCVD). .
  • the intermediate layer 120 preferably has a single crystal structure from the viewpoint of the buffer function.
  • the buffer function of the intermediate layer 120 acts effectively, and the base layer 130 and the group III compound semiconductor formed on the intermediate layer 120
  • the layer 100 is a crystal film having good orientation and crystallinity.
  • the intermediate layer 120 preferably contains Al, and particularly preferably contains AlN which is a group III nitride.
  • the material constituting the intermediate layer 120 is not particularly limited as long as it is a group III nitride compound semiconductor represented by the general formula AlGaInN. Furthermore, As and P may be contained as a group V. In the case where the intermediate layer 120 has a composition containing Al, it is preferably AlGaN, and the composition of Al among the group III elements is preferably 50% or more.
  • Underlayer 130 As a material used for the underlayer 130, a group III nitride (GaN-based compound semiconductor) containing Ga is used, and in particular, AlGaN or GaN can be preferably used.
  • the film thickness of the underlayer 130 is 0.1 ⁇ m or more, preferably 0.5 ⁇ m or more, and more preferably 1 ⁇ m or more.
  • the n-type semiconductor layer 140 includes an n-type contact layer 140a and an n-type cladding layer 140b.
  • a GaN-based compound semiconductor is used in the same manner as the base layer 130.
  • the gallium nitride compound semiconductor constituting the base layer 130 and the n-type contact layer 140a preferably has the same composition, and the total film thickness thereof is 0.1 ⁇ m to 20 ⁇ m, preferably 0.5 ⁇ m to 15 ⁇ m, The thickness is preferably set in the range of 1 ⁇ m to 12 ⁇ m. Since current flows in the n-type contact layer 140a, if it is thin, the resistance becomes high, which is not preferable in terms of electrical characteristics. On the other hand, when it is thick, the growth time and material cost increase, which is not preferable in terms of productivity and cost.
  • the n-type cladding layer 140b can be formed of AlGaN, GaN, GaInN, or the like. Alternatively, a heterojunction of these structures or a superlattice structure in which a plurality of layers are stacked may be used. In the case of using GaInN, it is desirable to make it larger than the GaInN band gap of the well layer 150b constituting the light emitting layer 150 described later.
  • the film thickness of the n-type cladding layer 140b is preferably in the range of 5 nm to 500 nm, more preferably 5 nm to 100 nm.
  • the light emitting layer 150 includes a barrier layer 150a made of a gallium nitride-based compound semiconductor and a well layer 150b made of a gallium nitride-based compound semiconductor containing indium, which are alternately stacked, and the n-type semiconductor layer 140 side and the p-type layer.
  • the barrier layers 150a are stacked in the order in which the barrier layers 150a are disposed on the type semiconductor layer 160 side.
  • the light emitting layer 150 includes six barrier layers 150a and five well layers 150b that are alternately and repeatedly stacked.
  • gallium indium nitride such as Ga 1-s In s N (0 ⁇ s ⁇ 0.4) can be used as a gallium nitride compound semiconductor containing indium.
  • a gallium nitride compound semiconductor such as Al c Ga 1-c N (0 ⁇ c ⁇ 0.3) having a larger band gap energy than the well layer 150b made of a gallium nitride compound semiconductor containing indium.
  • Al c Ga 1-c N (0 ⁇ c ⁇ 0.3
  • the p-type semiconductor layer 160 includes a p-type cladding layer 160a and a p-type contact layer 160b.
  • the p-type cladding layer 160a is preferably Al d Ga 1-d N (0 ⁇ d ⁇ 0.4).
  • the film thickness of the p-type cladding layer 160a is preferably 1 nm to 400 nm, more preferably 5 nm to 100 nm.
  • Examples of the p-type contact layer 160b include a gallium nitride compound semiconductor layer containing at least Al e Ga 1-e N (0 ⁇ e ⁇ 0.5).
  • the thickness of the p-type contact layer 160b is not particularly limited, but is preferably 10 nm to 500 nm, and more preferably 50 nm to 200 nm.
  • Transparent positive electrode 170 Examples of the material constituting the transparent positive electrode 170 include ITO (In 2 O 3 —SnO 2 ), AZO (ZnO—Al 2 O 3 ), IZO (In 2 O 3 —ZnO), and GZO (ZnO—Ga 2 O). Conventionally known materials such as 3 ) may be mentioned. Moreover, the structure of the transparent positive electrode 170 is not specifically limited, A conventionally well-known structure is employable. The transparent positive electrode 170 may be formed so as to cover almost the entire surface of the p-type semiconductor layer 160, or may be formed in a lattice shape or a tree shape.
  • the positive electrode bonding pad 180 as an electrode formed on the transparent positive electrode 170 is made of, for example, a conventionally known material such as Au, Al, Ni, or Cu.
  • the structure of the positive electrode bonding pad 180 is not particularly limited, and a conventionally known structure can be adopted.
  • the thickness of the positive electrode bonding pad 180 is in the range of 100 nm to 1,000 nm, preferably in the range of 300 nm to 500 nm.
  • the negative electrode 190 includes a group III compound semiconductor layer 100 (n-type semiconductor layer 140, n-type semiconductor layer 140) further formed on the intermediate layer 120 and the base layer 130 formed on the sapphire single crystal substrate 110.
  • the light emitting layer 150 and the p-type semiconductor layer 160 are formed so as to be in contact with the n-type contact layer 140a of the n-type semiconductor layer 140. Therefore, when forming the negative electrode 190, the p-type semiconductor layer 160, the light emitting layer 150, and the n-type semiconductor layer 140 are partially removed to form an exposed region 140c of the n-type contact layer 140a, and the negative electrode is formed thereon.
  • 190 is formed.
  • negative electrodes having various compositions and structures are well known, and these well-known negative electrodes can be used without any limitation, and can be provided by conventional means well known in this technical field.
  • an intermediate layer 120 made of a group III nitride is formed on a sapphire single crystal substrate 110 by activating and reacting a gas containing a group V element with a metal material. Subsequently, the base layer 130, the n-type semiconductor layer 140, the light emitting layer 150, and the p-type semiconductor layer 160 are sequentially stacked on the formed intermediate layer 120.
  • the intermediate layer 120 uses a sputtering method to activate the raw material that has been activated and reacted with the sapphire single crystal substrate 110. It is preferable to form a film on top.
  • the group V element is nitrogen
  • the nitrogen gas fraction in the gas when forming the intermediate layer 120 is in the range of 50% to 99% or less
  • the intermediate layer 120 is formed as a single crystal structure. .
  • the intermediate layer 120 having good crystallinity is formed on the sapphire single crystal substrate 110 as an oriented film having anisotropy in a short time.
  • a Group III nitride compound semiconductor with good crystallinity grows on the intermediate layer 120 as compared with the case where the intermediate layer 120 is not provided.
  • an underlying layer 130, an n-type semiconductor layer 140, a light-emitting layer 150, and a p-type semiconductor are formed thereon by metal organic chemical vapor deposition (MOCVD). It is preferable to sequentially form the layer 160.
  • MOCVD metal organic chemical vapor deposition
  • hydrogen (H 2 ) or nitrogen (N 2 ) is used as a carrier gas.
  • Trimethylgallium (TMG), triethylgallium (TEG), or the like is used as a Ga source that is a group III raw material.
  • TMG trimethylgallium
  • TMG triethylgallium
  • Al source trimethylaluminum (TMA), triethylaluminum (TEA), or the like is used.
  • TMI trimethylindium
  • TEI triethylindium
  • Ammonia NH 3
  • hydrazine N 2 H 4
  • Si silicon raw material
  • SiH 4 monosilane
  • Si 2 H 6 disilane
  • An organic germanium compound such as germane gas (GeH 4 ), tetramethyl germanium ((CH 3 ) 4 Ge), tetraethyl germanium ((C 2 H 5 ) 4 Ge) can be used as the Ge raw material.
  • the gallium nitride compound semiconductor may contain other elements in addition to Al, Ga, and In.
  • dopant elements such as Ge, Si, Mg, Ca, Zn, and Be can be given.
  • it is not limited to the element added intentionally, but may include impurities that are inevitably included depending on the film forming conditions, etc., and trace impurities that are included in the raw materials and reaction tube materials.
  • each layer of the n-type contact layer 140a and the n-type cladding layer 140b is formed by the sputtering method, and the light emitting layer 150 thereon is formed by the MOCVD method, and then the p-type
  • Each layer of the p-type cladding layer 160a and the p-type contact layer 160b constituting the semiconductor layer 160 may be formed by reactive sputtering.
  • the intermediate layer 120, the underlayer 130, and the group III compound semiconductor layer 100 are formed on the sapphire single crystal substrate 110 having a diameter of 100 mm and a thickness of about 900 ⁇ m, the p-type semiconductor layer 160 of the group III compound semiconductor layer 100 is formed.
  • a transparent positive electrode 170 is laminated thereon, and a positive electrode bonding pad 180 is formed thereon. Further, a wafer in which the negative electrode 190 is provided in the exposed region 140c formed in the n-type contact layer 140a of the n-type semiconductor layer 140 is formed.
  • the sapphire single crystal substrate 110 on which the compound semiconductor layer described above is formed is then ground and polished until the surface to be ground (back surface) of the sapphire single crystal substrate 110 has a predetermined thickness.
  • the wafer is attached to a commercially available grinder (not shown), and the thickness of the sapphire single crystal substrate 110 of the wafer is reduced from, for example, about 900 ⁇ m to about 120 ⁇ m by the grinding process.
  • the wafer whose thickness of the sapphire single crystal substrate 110 is adjusted is cut into a square of 350 ⁇ m square, for example, so that the intermediate layer 120, the base layer 130, and the group III compound semiconductor layer 100 are formed on the sapphire single crystal substrate 110.
  • a semiconductor light emitting device (LC) is formed.
  • the sapphire single crystal substrate 110 having a predetermined thickness cut out from the single crystal sapphire ingot 30 is used, and the group III compound semiconductor layer is epitaxially grown on the deposition surface. Done well.
  • a semiconductor light emitting device (LC) having such a sapphire single crystal substrate 110 and a group III compound semiconductor layer 100 has good light emission characteristics and electrical characteristics.
  • Example 1 A sapphire ingot 30 was produced using the single crystal pulling apparatus I (see FIG. 1) described in the embodiment.
  • Ir iridium
  • the heat insulating container 11 was depressurized to 0.1 Pa.
  • a heating process in the solid phase shown in FIG. 3 a high-frequency current was supplied to the heating coil 16 to maintain the heating at 1700 ° C., which is a temperature lower than the melting point (2050 ° C.) of aluminum oxide, for 2 hours.
  • Step 101 the temperature of the crucible 15 was raised to 2100 ° C.
  • Step 102 the temperature of the crucible 15 was maintained at 2150 ° C. for 4 hours, and the temperature at the bottom of the crucible 15 was increased by 20 ° C. relative to 2150 ° C. to promote convection ( Step 103).
  • the temperature of the crucible 15 is lowered to 2050 ° C., the pressure of the heat insulating container 11 is increased to atmospheric pressure, and the pulling up of the sapphire ingot 30 is started in a state where nitrogen gas is supplied (step 104). .
  • the shoulder portion 32 was formed (step 105), the straight body portion 33 having a diameter of about 100 mm was formed (step 106), and the sapphire ingot 30 having a length of about 20 cm was produced.
  • the sapphire ingot 30 was taken out from the single crystal pulling apparatus I and heat treated (annealed) at 1200 ° C. for 4 hours to remove the thermal strain of the sapphire ingot 30.
  • a plate having a thickness of about 1 mm was cut out from the sapphire ingot 30 and the front and back surfaces were polished to obtain a sapphire single crystal substrate 110 having a thickness of about 900 ⁇ m.
  • FIG. 5 shows the temperature, time and evaluation results in Examples 1 to 3 and Comparative Examples 1 to 3 in the heating step in the solid phase and the heating step in the liquid phase.
  • the evaluation results are the presence or absence of bubbles observed with an optical microscope, the concentration of Na, V, and Ba in the sapphire single crystal substrate 110 analyzed by the GD-MS method, the semiconductor light emitting device (LC ) Characteristics.
  • the characteristics of the semiconductor light emitting device are emission intensity Po (mW), forward voltage VF (V) when the forward current is 20 mA, and reverse current Ir ( ⁇ A) when the reverse voltage is 20 V.
  • emission intensity Po mW
  • forward voltage VF V
  • reverse current Ir ⁇ A
  • the diameter of the sapphire single crystal substrate 110 in Examples 1 to 3 and Comparative Examples 1 to 3 is 100 mm.
  • the semiconductor light emitting devices (LC) in Examples 1 to 3 and Comparative Examples 1 to 3 are manufactured under the conditions described in the embodiment and have the same shape.
  • the characteristic of a semiconductor light emitting element (LC) is an average value of the characteristic which took out and measured 20 semiconductor light emitting elements (LC) equally from the wafer surface in which the semiconductor light emitting element (LC) was formed.
  • the central wavelength ⁇ d of light emission of the semiconductor light emitting devices (LC) in Examples 1 to 3 and Comparative Examples 1 to 3 was 450 nm.
  • Example 1 In Example 1, no bubbles were observed, and Na, which is a metal impurity that easily generates crystal defects, was 0.3 ppm, and V and Ba were low in the detection limit of 0.1 ppm or less.
  • Example 2 the heating temperature in the solid phase was 2000 ° C. for 2 hours, and the heating temperature in the liquid phase was 2100 ° C. for 4 hours. Bubbles were not observed, and Na, which is a metal impurity that easily causes crystal defects, was 0.6 ppm, and V and Ba were low in the detection limit of 0.1 ppm or less.
  • Example 3 the heating step in the solid phase was eliminated, and the heating temperature in the liquid phase was changed to 2080 ° C. for 4 hours.
  • Comparative Example 1 does not provide a heating step in the solid phase and a heating step in the liquid phase. Bubbles were observed, and Na, which is a metal impurity that easily generates crystal defects, was 3 ppm, V was 0.5 ppm, and Ba was 0.4 ppm.
  • the comparative example 2 changed the conditions of the heating process in a solid phase at 1100 degreeC for 2 hours. There is no heating step in the liquid phase.
  • the semiconductor light emitting element (LC) also has a lower light emission output Po and a higher reverse current Ir as compared with the first to third embodiments.
  • bubbles observed in the sapphire single crystal substrate 110 are generated due to metal compounds such as oxides of Na, V, and Ba contained as impurities.
  • concentration of the metal compound contained as these impurities is heated at the temperature of the solid phase heating process heated at a temperature lower than the melting point of the raw material aluminum oxide and the melting point or higher before the sapphire ingot 30 is pulled up. It can be reduced by providing a heating step in the liquid phase. Note that it is possible to use only the heating process in the liquid phase without providing the heating process in the solid phase. Thereby, the characteristic of the semiconductor light emitting element (LC) formed in the sapphire single crystal substrate 110 improves by suppressing the crystal defect and bubble generation of the sapphire single crystal substrate 110.
  • LC semiconductor light emitting element
  • SYMBOLS 10 Heating furnace, 11 ... Thermal insulation container, 12 ... Gas supply pipe, 13 ... Gas discharge pipe, 14 ... Chamber, 15 ... Crucible, 16 ... Heating coil, 17 ... Lifting rod, 19 ... Drive part, 30 ... Sapphire ingot, DESCRIPTION OF SYMBOLS 31 ... Seed crystal, 32 ... Shoulder part, 33 ... Straight body part, 34 ... Tail part, 35 ... Alumina melt, 100 ... III group compound semiconductor layer, 110 ... Substrate, 120 ... Intermediate layer, 130 ... Underlayer, 140 ... n-type semiconductor layer, 150 ... light-emitting layer, 160 ... p-type semiconductor layer, 170 ... transparent positive electrode, 180 ... positive electrode bonding pad, 190 ... negative electrode, I ... single crystal pulling device, LC ... semiconductor light-emitting element

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

A process for producing a sapphire ingot includes: a heating step (S101) in the solid phase in which solid aluminum oxide (alumina) filled in a crucible in a heating furnace is heated and held at a temperature less than the melting point (2050°C); a melting step (S102) in which the aluminum oxide in the crucible is melted; a heating step (S103) in the liquid phase in which the aluminum oxide is heated and held at a temperature higher than the melting point thereof; a shoulder-part formation step (S105) in which a seed crystal is pulled up while being rotated to form a shoulder part beneath the seed crystal; and a straight-part formation step (S106) in which the shoulder-part is pulled up while being rotated via the seed crystal while the lower end part of the shoulder-part is kept in contact with the alumina melt to form a straight part beneath the shoulder part. Thus, a process for producing a single-crystal sapphire substrate with few metal impurities and crystal defects (air bubbles), and a single-crystal sapphire substrate are provided.

Description

サファイア単結晶の製造方法およびサファイア単結晶基板Sapphire single crystal manufacturing method and sapphire single crystal substrate
 本発明は、サファイア単結晶の製造方法およびサファイア単結晶基板に関する。 The present invention relates to a method for producing a sapphire single crystal and a sapphire single crystal substrate.
 一般に、III-V族化合物半導体層等の化合物半導体層を有する半導体発光素子は、サファイア単結晶等からなる基板上に化合物半導体層を成膜し、その上にさらに正極や負極等を設けた後、基板の被研削面を研削及び研磨し、その後、適当な形状に切断することにより発光素子チップとして調製される(特許文献1)。
 高品質のサファイア単結晶の育成技術について、Si濃度の低い種結晶を用いる製法(特許文献2)、アルミナ融液中のジルコニウム(Zr)不純物を低減した製法(特許文献3)等が、提案されている。
In general, a semiconductor light emitting device having a compound semiconductor layer such as a III-V group compound semiconductor layer is formed after a compound semiconductor layer is formed on a substrate made of a sapphire single crystal and a positive electrode, a negative electrode, and the like are further provided thereon. The surface to be ground of the substrate is ground and polished, and then cut into an appropriate shape to prepare a light emitting element chip (Patent Document 1).
As a technique for growing a high-quality sapphire single crystal, a production method using a seed crystal with a low Si concentration (Patent Document 2), a production method with reduced zirconium (Zr) impurities in an alumina melt (Patent Document 3), etc. have been proposed. ing.
特開2008-177525号公報JP 2008-177525 A 特開2008-260640号公報JP 2008-260640 A 特開2008-081370号公報JP 2008-081370 A
 ところで、化合物半導体層が積層されるサファイア単結晶基板は、例えば、チョクラルスキー法(CZ法)により製造された単結晶のインゴットを切り出して得られる。一般に、CZ法では、アルミナ融液からサファイア単結晶を成長させる際、製造条件のわずかな変動により、サファイア単結晶に結晶欠陥、歪が生じることが知られている。特に、直径100mm以上の大口径サファイアインゴットは、不純物の制御、歪緩和技術、温度の均一性、温度勾配などの精密制御が必要となり、インゴット全体にわたり結晶欠陥、歪、不純物の少ない結晶を作製することが困難である為、新しい育成条件の検討、最適化が必要である。
 中でも、気泡などの結晶欠陥の低減が重要である。特に、大口径基板は、結晶中に気泡を取り込みやすく、品質低下の大きな要因であった。また、気泡は、切断工程などで、割れ、クラックの原因にもなり、また、表面加工収率が低下する原因でもあった。発明者は、気泡の発生原因が、主に、特定の金属元素であることを見出した。具体的には、酸化物の分解温度がサファイアの融点に近いナトリウム(Na)、バリウム(Ba)、バナジウム(V)およびこれらの化合物の低減対策が重要な課題であることを導き出した。
 前記金属元素の中でNaは、原料である高純度アルミナに1~20ppm程度含まれるとともに、作業環境、人体に多く存在するため、原料を汚染する可能性がある。
 一方、結晶欠陥(気泡)、金属不純物が多いサファイア単結晶基板では、化合物半導体層をエピタキシャル成長させる工程において、良質な化合物半導体層を形成できない場合がある。すなわち、化合物半導体層の品質が、半導体発光素子の発光効率、電気特性に影響を及ぼすことになる。
 本発明の目的は、金属不純物、結晶欠陥(気泡)の少ないサファイア単結晶基板の製造方法およびサファイア単結晶基板を提供することにある。
By the way, the sapphire single crystal substrate on which the compound semiconductor layers are stacked is obtained by cutting out a single crystal ingot manufactured by the Czochralski method (CZ method), for example. In general, in the CZ method, it is known that when a sapphire single crystal is grown from an alumina melt, crystal defects and strain are generated in the sapphire single crystal due to slight fluctuations in manufacturing conditions. In particular, a large-diameter sapphire ingot having a diameter of 100 mm or more requires precise control of impurity control, strain relaxation technology, temperature uniformity, temperature gradient, etc., and produces a crystal with few crystal defects, strain, and impurities throughout the ingot. Therefore, it is necessary to examine and optimize new breeding conditions.
Among these, reduction of crystal defects such as bubbles is important. In particular, the large-diameter substrate was easy to entrap bubbles in the crystal, which was a major factor in quality degradation. In addition, air bubbles may cause cracks and cracks in the cutting process and the like, and also cause a reduction in surface processing yield. The inventor has found that the cause of bubble generation is mainly a specific metal element. Specifically, it has been derived that reduction measures for sodium (Na), barium (Ba), vanadium (V), and these compounds whose oxide decomposition temperatures are close to the melting point of sapphire are important issues.
Among the metal elements, Na is contained in the high-purity alumina, which is a raw material, in an amount of about 1 to 20 ppm, and is present in a large amount in the work environment and the human body.
On the other hand, in a sapphire single crystal substrate with many crystal defects (bubbles) and metal impurities, a high-quality compound semiconductor layer may not be formed in the step of epitaxially growing the compound semiconductor layer. That is, the quality of the compound semiconductor layer affects the light emission efficiency and electrical characteristics of the semiconductor light emitting device.
An object of the present invention is to provide a method for manufacturing a sapphire single crystal substrate with few metal impurities and crystal defects (bubbles), and a sapphire single crystal substrate.
 本発明によれば、下記[1]~[7]に係る発明が提供される。
  [1]チョクラルスキー法(CZ法)によるサファイア単結晶引き上げ装置において、ナトリウム(Na)濃度が1ppm以上である酸化アルミニウムの原料を、酸化アルミニウムの融点を超える温度で、るつぼ中で溶融した融液の状態で保持する液相での加熱工程と、前記るつぼ中の酸化アルミニウムの前記融液に付着させた種結晶を回転させながら引き上げることにより、当該種結晶の下方に向かって直径が大きくなる肩部を形成する肩部形成工程と、前記融液に付着させた前記肩部を回転させながら引き上げることにより、当該肩部の下方に円柱状の胴部を形成する胴部形成工程とを含むサファイア単結晶の製造方法。
  [2]前記液相での加熱工程は、酸化アルミニウムの融点より30℃以上且つ300℃以下の温度において高い温度で行われることを特徴とする前項[1]に記載のサファイア単結晶の製造方法。
  [3]前記液相での加熱工程における前記融液は、前記るつぼの下部から上部に向かって、当該るつぼ中の酸化アルミニウムの原料が溶融されて形成されたことを特徴とする前項[1]または[2]に記載のサファイア単結晶の製造方法。
  [4]前記液相での加熱工程の前に、前記るつぼ中の酸化アルミニウムの原料を、酸化アルミニウムの融点未満の温度で保持する固相での加熱工程をさらに含むことを特徴とする前項[1]ないし[3]のいずれか1項に記載のサファイア単結晶の製造方法。
  [5]前記固相での加熱工程は、1200℃以上且つ2050℃未満の温度で行われることを特徴とする前項[4]に記載のサファイア単結晶の製造方法。
  [6]前記固相での加熱工程での前記るつぼ中の酸化アルミニウムの原料は、当該るつぼの下部から上部に向かって昇温されたことを特徴とする前項[4]または[5]に記載のサファイア単結晶の製造方法。
  [7]前項[1]ないし[6]のいずれか1項に記載のサファイア単結晶の製造方法にて製造された、ナトリウム(Na)、バリウム(Ba)およびバナジウム(V)のそれぞれの濃度が、いずれも1ppm未満である直径100mm以上のサファイア単結晶基板。
According to the present invention, the following inventions [1] to [7] are provided.
[1] In a sapphire single crystal pulling apparatus using the Czochralski method (CZ method), a melt obtained by melting a raw material of aluminum oxide having a sodium (Na) concentration of 1 ppm or more in a crucible at a temperature exceeding the melting point of aluminum oxide. A heating step in a liquid phase held in a liquid state and a seed crystal attached to the melt of aluminum oxide in the crucible are pulled up while rotating, so that the diameter increases toward the lower side of the seed crystal. A shoulder forming step of forming a shoulder, and a barrel forming step of forming a cylindrical trunk under the shoulder by pulling up the shoulder attached to the melt while rotating. A method for producing a sapphire single crystal.
[2] The method for producing a sapphire single crystal according to [1], wherein the heating step in the liquid phase is performed at a temperature higher than the melting point of aluminum oxide by 30 ° C. or more and 300 ° C. or less. .
[3] The above item [1], wherein the melt in the heating step in the liquid phase is formed by melting the raw material of aluminum oxide in the crucible from the lower part to the upper part of the crucible. Or the manufacturing method of the sapphire single crystal as described in [2].
[4] The heating method in a solid phase in which the aluminum oxide raw material in the crucible is kept at a temperature lower than the melting point of aluminum oxide before the heating step in the liquid phase. [1] The method for producing a sapphire single crystal according to any one of [3].
[5] The method for producing a sapphire single crystal as described in [4] above, wherein the heating step in the solid phase is performed at a temperature of 1200 ° C. or higher and lower than 2050 ° C.
[6] The above item [4] or [5], wherein the raw material of aluminum oxide in the crucible in the heating step in the solid phase is heated from the lower part to the upper part of the crucible. Of producing a single crystal of sapphire.
[7] Concentrations of sodium (Na), barium (Ba), and vanadium (V) produced by the method for producing a sapphire single crystal described in any one of [1] to [6] above are , A sapphire single crystal substrate having a diameter of 100 mm or more, both of which are less than 1 ppm.
 本発明によれば、本構成を有しない場合と比べ、金属不純物、結晶欠陥(気泡)が少ないサファイア単結晶が得られ、表面加工収率の向上が図れるとともに、サファイア単結晶基板上に化合物半導体層を成膜して製造した半導体発光素子は、発光特性、電気特性が向上する。 According to the present invention, a sapphire single crystal with few metal impurities and crystal defects (bubbles) can be obtained as compared with the case without this configuration, the surface processing yield can be improved, and the compound semiconductor is formed on the sapphire single crystal substrate. A semiconductor light emitting device manufactured by forming a layer has improved light emitting characteristics and electrical characteristics.
単結晶引き上げ装置の一例を説明する図である。It is a figure explaining an example of a single crystal pulling device. 図1に示す単結晶引き上げ装置を用いて製造されるサファイアインゴットの構成の一例を示している。The example of a structure of the sapphire ingot manufactured using the single crystal pulling apparatus shown in FIG. 1 is shown. 図1に示す単結晶引き上げ装置を用いて、図2に示すサファイアインゴットを製造する手順を説明するためのフローチャートである。It is a flowchart for demonstrating the procedure which manufactures the sapphire ingot shown in FIG. 2 using the single crystal pulling apparatus shown in FIG. 本実施の形態で製造される半導体発光素子の一例を説明する図である。It is a figure explaining an example of the semiconductor light emitting element manufactured by this Embodiment. 実施例1~3および比較例1~3の、固相での加熱工程および液相での加熱工程における温度と時間および評価結果を示す。The temperature, time, and evaluation results in the heating step in the solid phase and the heating step in the liquid phase in Examples 1 to 3 and Comparative Examples 1 to 3 are shown.
 以下、本発明の実施の形態について詳細に説明する。尚、本発明は、以下の実施の形態に限定されるものではなく、その要旨の範囲内で種々変形して実施することができる。また、使用する図面は本実施の形態を説明するための一例であり、実際の大きさを表すものではない。 Hereinafter, embodiments of the present invention will be described in detail. In addition, this invention is not limited to the following embodiment, It can implement by changing variously within the range of the summary. The drawings used are examples for explaining the present embodiment and do not represent actual sizes.
<単結晶引き上げ装置I>
 本実施の形態では、100mm以上の大口径サファイア単結晶を育成できる所定の単結晶引き上げ装置(サファイア単結晶引き上げ装置)Iを使用し、CZ法によりサファイア単結晶のインゴット(サファイアインゴット30)を製造する。ここでは、サファイアインゴット30を製造することを、サファイア単結晶を製造すると表記する。
 図1は、単結晶引き上げ装置Iの一例を説明する図である。図1に示すように、単結晶引き上げ装置Iは、サファイアの単結晶からなるサファイアインゴット30を成長させるための加熱炉10を備える。加熱炉10は断熱容器11を備える。断熱容器11は円柱状の外形を有し、その内部には円柱状の空間が形成されている。断熱容器11は、例えば、ジルコニア(ZrO)製の断熱材からなる部品を組み立てて構成される。加熱炉10は、内部の空間に断熱容器11を収容するチャンバ14を備える。加熱炉10は、チャンバ14の側面に貫通形成され、チャンバ14の外部からチャンバ14を介して断熱容器11の内部にガスを供給するガス供給管12を備える。同じく、チャンバ14の側面に貫通形成され、断熱容器11の内部からチャンバ14を介して外部にガスを排出するガス排出管13をさらに備える。
<Single crystal pulling device I>
In the present embodiment, a predetermined single crystal pulling apparatus (sapphire single crystal pulling apparatus) I capable of growing a large-diameter sapphire single crystal of 100 mm or more is used, and a sapphire single crystal ingot (sapphire ingot 30) is manufactured by the CZ method. To do. Here, manufacturing the sapphire ingot 30 is expressed as manufacturing a sapphire single crystal.
FIG. 1 is a diagram illustrating an example of a single crystal pulling apparatus I. As shown in FIG. 1, the single crystal pulling apparatus I includes a heating furnace 10 for growing a sapphire ingot 30 made of a single crystal of sapphire. The heating furnace 10 includes a heat insulating container 11. The heat insulating container 11 has a columnar outer shape, and a columnar space is formed therein. The heat insulating container 11 is configured by assembling parts made of a heat insulating material made of zirconia (ZrO 2 ), for example. The heating furnace 10 includes a chamber 14 that accommodates the heat insulating container 11 in an internal space. The heating furnace 10 includes a gas supply pipe 12 that is formed through the side surface of the chamber 14 and supplies gas from the outside of the chamber 14 to the inside of the heat insulating container 11 through the chamber 14. Similarly, a gas exhaust pipe 13 that is formed through the side surface of the chamber 14 and exhausts gas from the inside of the heat insulating container 11 to the outside through the chamber 14 is further provided.
 断熱容器11の内側下方には、るつぼ15が、鉛直上方に向かって開口するように配置されている。るつぼ15は、例えばイリジウム(Ir)によって構成され、酸化アルミニウムを溶融してなるアルミナ融液35を収容する。 The crucible 15 is arrange | positioned so that it may open toward the vertically upward direction below the inner side of the heat insulation container 11. FIG. The crucible 15 is made of, for example, iridium (Ir), and contains an alumina melt 35 formed by melting aluminum oxide.
 加熱炉10は、金属製の加熱コイル16を備えている。加熱コイル16は、断熱容器11の下部側の側面外側であってチャンバ14の下部側の側面内側となる部位に巻き回されている。加熱コイル16は、断熱容器11を介して、るつぼ15の壁面と対向するとともに、上下方向に移動可能に配置されている。 The heating furnace 10 includes a metal heating coil 16. The heating coil 16 is wound around a portion that is outside the side surface on the lower side of the heat insulating container 11 and inside the side surface on the lower side of the chamber 14. The heating coil 16 faces the wall surface of the crucible 15 through the heat insulating container 11 and is arranged so as to be movable in the vertical direction.
 加熱コイル16は、例えば、中空状の銅管によって構成され、螺旋状に巻き回され、全体としてみたときに円筒状の形状を有している。本実施の形態では、加熱コイル16の上部側の内径と下部側の内径とがほぼ同一である。これにより、巻き回された加熱コイル16によってその内部に形成される空間が円柱状となっている。また、円柱状の空間を通る加熱コイル16の中心軸は、水平方向に対しほぼ垂直、すなわち鉛直方向に沿うようになっている。るつぼ15は、加熱コイル16によって形成される円柱状の空間の内側に配置されている。そして、るつぼ15は、加熱コイル16によって形成される円形状の領域のほぼ中央となる部位に置かれる。 The heating coil 16 is constituted by, for example, a hollow copper tube, wound spirally, and has a cylindrical shape when viewed as a whole. In the present embodiment, the inner diameter on the upper side and the inner diameter on the lower side of the heating coil 16 are substantially the same. Thereby, the space formed in the inside by the wound heating coil 16 is cylindrical. Further, the central axis of the heating coil 16 passing through the cylindrical space is substantially perpendicular to the horizontal direction, that is, along the vertical direction. The crucible 15 is disposed inside a cylindrical space formed by the heating coil 16. Then, the crucible 15 is placed at a site that is substantially at the center of the circular region formed by the heating coil 16.
 加熱炉10は、断熱容器11、チャンバ14それぞれの上面に設けられた貫通孔を介して上方から下方に伸びる引き上げ棒17を備えている。引き上げ棒17は、鉛直方向への移動および軸を中心とする回転が可能となるように取り付けられている。なお、チャンバ14に設けられた貫通孔と引き上げ棒17との間には、図示しないシール材が設けられている。そして、引き上げ棒17の鉛直下方側の端部には、サファイアインゴット30を成長させるための基となる種結晶31(後述する図2参照)を装着、保持させるための保持部材18が取り付けられている。 The heating furnace 10 includes a lifting rod 17 that extends downward from above through through holes provided in the upper surfaces of the heat insulating container 11 and the chamber 14, respectively. The pulling rod 17 is attached so as to be able to move in the vertical direction and rotate around the axis. A sealing material (not shown) is provided between the through hole provided in the chamber 14 and the lifting rod 17. A holding member 18 for attaching and holding a seed crystal 31 (see FIG. 2 described later) serving as a base for growing the sapphire ingot 30 is attached to an end portion on the vertically lower side of the pulling rod 17. Yes.
 単結晶引き上げ装置Iは、引き上げ棒17を鉛直上方に引き上げるための引き上げ駆動部19および引き上げ棒17を回転させるための回転駆動部20を備えている。ここで、引き上げ駆動部19はモータ等で構成されており、引き上げ棒17の引き上げ速度を調整できるようになっている。また、回転駆動部20もモータ等で構成されており、引き上げ棒17の回転速度を調整できるようになっている。
 単結晶引き上げ装置Iは、ガス供給管12を介してチャンバ14の内部にガスを供給するガス供給部21を備えている。本実施の形態において、ガス供給部21は、O源22から供給される酸素とN源23から供給される不活性ガスの一例としての窒素とを混合した混合ガスを供給する。そして、ガス供給部21は、酸素と窒素との混合比を可変することで、混合ガス中の酸素濃度を調整する。また、チャンバ14の内部に供給する混合ガスの流量の調整も行う。
The single crystal pulling apparatus I includes a pulling drive unit 19 for pulling up the pulling bar 17 vertically upward and a rotation driving unit 20 for rotating the pulling bar 17. Here, the pulling drive unit 19 is constituted by a motor or the like, and the pulling speed of the pulling rod 17 can be adjusted. The rotation drive unit 20 is also composed of a motor or the like so that the rotation speed of the lifting rod 17 can be adjusted.
The single crystal pulling apparatus I includes a gas supply unit 21 that supplies gas into the chamber 14 via the gas supply pipe 12. In the present embodiment, the gas supply unit 21 supplies a mixed gas in which oxygen supplied from the O 2 source 22 and nitrogen as an example of an inert gas supplied from the N 2 source 23 are mixed. And the gas supply part 21 adjusts the oxygen concentration in mixed gas by changing the mixing ratio of oxygen and nitrogen. The flow rate of the mixed gas supplied into the chamber 14 is also adjusted.
 単結晶引き上げ装置Iは、ガス排出管13を介してチャンバ14の内部からガスを排出する排気部24を備えている。排気部24は、例えば、真空ポンプ等を備え、チャンバ14内の減圧や、ガス供給部21から供給されたガスの排気をすることが可能である。
 単結晶引き上げ装置Iは、加熱コイル16に電流を供給するコイル電源25を備える。コイル電源25は、加熱コイル16への電流の供給の有無および供給する電流量を設定する。
 また、引き上げ棒17を介して引き上げ棒17の下部側に成長するサファイアインゴット30の重量を検出する重量検出部27を備える。この重量検出部27は、例えば、公知の重量センサ等を含んで構成される。
 さらに、単結晶引き上げ装置Iは、加熱コイル16を上下方向に移動させるコイル駆動部28を備えている。なお、加熱コイル16を上下方向に移動することに替えて、るつぼ15を上下方向に移動できるようにしてもよい。
The single crystal pulling apparatus I includes an exhaust unit 24 that exhausts gas from the inside of the chamber 14 via the gas exhaust pipe 13. The exhaust unit 24 includes, for example, a vacuum pump or the like, and is capable of decompressing the chamber 14 and exhausting the gas supplied from the gas supply unit 21.
The single crystal pulling apparatus I includes a coil power supply 25 that supplies current to the heating coil 16. The coil power supply 25 sets whether to supply current to the heating coil 16 and the amount of current to be supplied.
In addition, a weight detection unit 27 that detects the weight of the sapphire ingot 30 that grows on the lower side of the lifting rod 17 through the lifting rod 17 is provided. The weight detection unit 27 includes, for example, a known weight sensor.
Furthermore, the single crystal pulling apparatus I includes a coil driving unit 28 that moves the heating coil 16 in the vertical direction. Instead of moving the heating coil 16 in the vertical direction, the crucible 15 may be moved in the vertical direction.
 そして、単結晶引き上げ装置Iは、上述した引き上げ駆動部19、回転駆動部20、ガス供給部21、排気部24、コイル電源25、コイル駆動部28を制御する制御部26を備えている。また、制御部26は、重量検出部27から出力される重量信号に基づき、引き上げられるサファイアインゴット30の結晶直径の計算をおこない、コイル電源25にフィードバックする。 The single crystal pulling apparatus I includes a control unit 26 that controls the pulling drive unit 19, the rotation drive unit 20, the gas supply unit 21, the exhaust unit 24, the coil power supply 25, and the coil drive unit 28 described above. Further, the control unit 26 calculates the crystal diameter of the sapphire ingot 30 to be pulled up based on the weight signal output from the weight detection unit 27 and feeds it back to the coil power supply 25.
<サファイアインゴット30>
 図2は、図1に示す単結晶引き上げ装置Iを用いて製造されるサファイアインゴット30の構成の一例を示している。
 このサファイアインゴット30は、サファイアインゴット30を成長させるための基となる種結晶31と、種結晶31の下部に延在しこの種結晶31と一体化した肩部32と、肩部32の下部に延在し肩部32と一体化した直胴部(胴部)33と、直胴部33の下部に延在し直胴部33と一体化した尾部34とを備えている。本実施の形態では、このサファイアインゴット30においては、上方の種結晶31側から下方の尾部34側に向けてc軸方向にサファイアの単結晶が成長している。
<Sapphire Ingot 30>
FIG. 2 shows an example of the configuration of the sapphire ingot 30 manufactured using the single crystal pulling apparatus I shown in FIG.
The sapphire ingot 30 includes a seed crystal 31 that is a base for growing the sapphire ingot 30, a shoulder portion 32 that extends under the seed crystal 31 and is integrated with the seed crystal 31, and a lower portion of the shoulder portion 32. A straight body portion (body portion) 33 extending and integrated with the shoulder portion 32, and a tail portion 34 extending under the straight body portion 33 and integrated with the straight body portion 33 are provided. In the present embodiment, in this sapphire ingot 30, a single crystal of sapphire grows in the c-axis direction from the upper seed crystal 31 side toward the lower tail portion 34 side.
 ここで、肩部32は、種結晶31側から直胴部33側に向けて、徐々にその直径が拡大していく形状を有している。また、直胴部33は、上方から下方に向けてその直径がほぼ同じとなるような形状を有している。なお、直胴部33の直径は、予め設計されたサファイア単結晶基板110(後述する図4参照)の直径よりもわずかに大きな値に設定される。
 なお、直胴部33は胴部である。しかし、円柱状であることから直胴部と呼ぶ。
Here, the shoulder portion 32 has a shape in which the diameter gradually increases from the seed crystal 31 side toward the straight body portion 33 side. Further, the straight body portion 33 has a shape such that the diameters thereof are substantially the same from the top to the bottom. The diameter of the straight body portion 33 is set to a value slightly larger than the diameter of the sapphire single crystal substrate 110 (see FIG. 4 described later) designed in advance.
The straight body portion 33 is a body portion. However, since it is cylindrical, it is called a straight body part.
 発明者は、気泡発生は酸化物などとして含まれる金属化合物の分解によるものであることを見出し、特定の元素の濃度に着目することで、結晶欠陥を低減できることを導き出した。
 すなわち、サファイアインゴット30の育成前に、原料である酸化アルミニウム(アルミナ)中に存在し、サファイアインゴット30の結晶育成温度に近い温度で分解する金属不純物、例えば、ナトリウム(Na)、バリウム(Ba)、バナジウム(V)を除去することが重要である。この中でも、アルミナ融液35に混入しやすく、環境に多く存在するNaが、特に重要であることを見出した。なお、これらの金属不純物は多くは酸化物として含まれている。気泡の原因は、これらの酸化物が、分解、蒸発したガスが、サファイア単結晶であるサファイアインゴット30に取り込まれることによることを導き出した。
The inventor has found that the generation of bubbles is due to the decomposition of a metal compound contained as an oxide and the like, and has found that crystal defects can be reduced by paying attention to the concentration of a specific element.
That is, before the growth of the sapphire ingot 30, metal impurities that exist in the raw material aluminum oxide (alumina) and decompose at a temperature close to the crystal growth temperature of the sapphire ingot 30, such as sodium (Na) and barium (Ba). It is important to remove vanadium (V). Among these, it has been found that Na which is easily mixed into the alumina melt 35 and is present in a large amount in the environment is particularly important. Many of these metal impurities are contained as oxides. The cause of the bubble was derived from the fact that the gas in which these oxides were decomposed and evaporated was taken into the sapphire ingot 30 which is a sapphire single crystal.
 これらの金属化合物を除去する手段の1つとして、サファイアインゴット30の育成の前に、サファイアインゴット30の原料である酸化アルミニウム(アルミナ)を高温で加熱(ベーク)することが有効である。
 高温における加熱は減圧下で行うことが望ましい。また、るつぼ15の上部と下部に温度差をつけて加熱することにより、対流を促進させることも好適な方法である。
 NaOは、分解温度が1950℃、BaOは、沸点が2000℃、Vは、分解温度が1750℃である。よって、高温における加熱によって、これらの金属酸化物を、サファイアインゴット30の育成の前に分解または揮発させることで、サファイアインゴット30への気泡、金属の取り込みが抑制できる。
 一方、Naの源になる塩化ナトリウム(NaCl)は、環境や作業者から原料への混入される場合がある。NaClの融点は801℃、沸点は1413℃である。主に、原料が溶解する前の固相の状態で加熱することにより蒸発させ、サファイアインゴット30への取り込みを抑制できる。
As one means for removing these metal compounds, it is effective to heat (bake) aluminum oxide (alumina) as a raw material of the sapphire ingot 30 at a high temperature before the sapphire ingot 30 is grown.
Heating at a high temperature is desirably performed under reduced pressure. It is also a suitable method to promote convection by heating the crucible 15 with an upper and lower temperature difference.
Na 2 O has a decomposition temperature of 1950 ° C., BaO has a boiling point of 2000 ° C., and V 2 O 5 has a decomposition temperature of 1750 ° C. Therefore, by taking these metal oxides decompose or volatilize before the growth of the sapphire ingot 30 by heating at a high temperature, it is possible to suppress the incorporation of bubbles and metals into the sapphire ingot 30.
On the other hand, sodium chloride (NaCl), which is a source of Na, may be mixed into the raw material from the environment or an operator. NaCl has a melting point of 801 ° C. and a boiling point of 1413 ° C. It can evaporate by heating in the state of the solid phase before a raw material melt | dissolves mainly, and the uptake | capture to the sapphire ingot 30 can be suppressed.
 本方法の他に、原料である酸化アルミニウムの精製や前処理、断熱容器11を構成する断熱材の高純度化、チャンバ14内の雰囲気の清浄化など、不純物の混入を抑制する対策も有効である。 In addition to this method, it is also effective to take measures to suppress the mixing of impurities, such as refining and pretreatment of the raw material aluminum oxide, increasing the purity of the heat insulating material constituting the heat insulating container 11, and purifying the atmosphere in the chamber 14. is there.
 酸化アルミニウムが固相の状態で加熱する場合の加熱温度は、前記3つの金属酸化物が分解または蒸発し始める温度が望ましく、NaClが減圧下で蒸発すること考慮し、低くても1200℃以上、望ましくは、1750℃以上である。固相で行うため、酸化アルミニウムの融点(2050℃)未満、望ましくは、2000℃未満、さらに1800℃未満が好適である。固相の状態で加熱する場合は、分解物、蒸発物が雰囲気中に放出されやすい利点がある。 When the aluminum oxide is heated in a solid state, the heating temperature is preferably a temperature at which the three metal oxides start to decompose or evaporate, and considering that NaCl evaporates under reduced pressure, at least 1200 ° C. or higher, Desirably, it is 1750 degreeC or more. Since it is carried out in a solid phase, it is preferably less than the melting point (2050 ° C.) of aluminum oxide, desirably less than 2000 ° C., and even less than 1800 ° C. In the case of heating in a solid state, there is an advantage that decomposition products and evaporation products are easily released into the atmosphere.
 これらにより、サファイア単結晶基板110(後述する図4参照)の金属の不純物濃度の低減と伴に、サファイア単結晶基板110内の気泡が低減できることを見出した。微細な気泡も、サファイア単結晶基板110上にエピタキシャル成長されるIII族化合物半導体層100(後述する図4参照)の膜質に影響を及ぼすと考えられる。これらの方法により、大口径のサファイアインゴット30中のNa濃度が低下し、安定的に1ppm未満の高純度のサファイア単結晶の育成が可能となった。さらに、条件を適正化することにより、0.5ppm未満のNa濃度が達成された。 As a result, it has been found that the bubbles in the sapphire single crystal substrate 110 can be reduced along with the reduction of the metal impurity concentration of the sapphire single crystal substrate 110 (see FIG. 4 described later). It is considered that fine bubbles also affect the film quality of the group III compound semiconductor layer 100 (see FIG. 4 described later) epitaxially grown on the sapphire single crystal substrate 110. By these methods, the Na concentration in the large-diameter sapphire ingot 30 was reduced, and it was possible to stably grow a high-purity sapphire single crystal of less than 1 ppm. Furthermore, by optimizing the conditions, a Na concentration of less than 0.5 ppm was achieved.
<サファイアインゴット30を製造する手順>
 図3は、図1に示す単結晶引き上げ装置Iを用いて、図2に示すサファイアインゴット30を製造する手順を説明するためのフローチャートである。
 サファイアインゴット30の製造にあたっては、まず、加熱炉10内のるつぼ15内に充填された固体の酸化アルミニウム(アルミナ)を、融点(2050℃)未満の温度において加熱(ベーク)して保持する固相での加熱工程を実行する(ステップ101)。
 次いで、るつぼ15内の酸化アルミニウムを、融解する溶融工程を実行する(ステップ102)。
 そして、酸化アルミニウムの融点より高い温度において加熱(ベーク)しつつ保持する液相での加熱工程を実行する(ステップ103)。
 次に、酸化アルミニウムの融液すなわちアルミナ融液35に種結晶31の下端部を接触させる(ステップ104)。その状態で、種結晶31を回転させながら上方に引き上げることにより、種結晶31の下方に肩部32を形成する肩部形成工程を実行する(ステップ105)。
 引き続いて、アルミナ融液35に肩部32の下端部を接触させた状態で、種結晶31を介して肩部32を回転させながら上方に引き上げることにより、肩部32の下方に直胴部(胴部)33を形成する直胴部形成工程(胴部形成工程)を実行する(ステップ106)。
 さらに引き続いて、アルミナ融液35に直胴部33の下端部を接触させた状態で、種結晶31および肩部32を介して直胴部33を回転させながら上方に引き上げてアルミナ融液35から引き離すことにより、直胴部33の下方に尾部34を形成する尾部形成工程を実行する(ステップ107)。
 その後、得られたサファイアインゴット30が冷却された後に加熱炉10の外部に取り出され、一連の製造工程を完了する。
<Procedure for Producing Sapphire Ingot 30>
FIG. 3 is a flowchart for explaining a procedure for manufacturing the sapphire ingot 30 shown in FIG. 2 using the single crystal pulling apparatus I shown in FIG.
In manufacturing the sapphire ingot 30, first, a solid aluminum oxide (alumina) filled in the crucible 15 in the heating furnace 10 is heated (baked) and held at a temperature lower than the melting point (2050 ° C.). The heating process at is performed (step 101).
Next, a melting step for melting the aluminum oxide in the crucible 15 is executed (step 102).
And the heating process in the liquid phase hold | maintained while heating (baking) in the temperature higher than melting | fusing point of aluminum oxide is performed (step 103).
Next, the lower end portion of the seed crystal 31 is brought into contact with the aluminum oxide melt, that is, the alumina melt 35 (step 104). In this state, the shoulder crystal forming step of forming the shoulder portion 32 below the seed crystal 31 is performed by pulling up the seed crystal 31 while rotating the seed crystal 31 (step 105).
Subsequently, in a state where the lower end portion of the shoulder portion 32 is in contact with the alumina melt 35, the shoulder portion 32 is pulled upward while rotating through the seed crystal 31, so that the straight body portion ( A straight body forming process (body forming process) for forming the body part 33 is executed (step 106).
Subsequently, in a state where the lower end portion of the straight body portion 33 is in contact with the alumina melt 35, the straight body portion 33 is pulled upward while rotating through the seed crystal 31 and the shoulder portion 32. By performing the separation, a tail forming process for forming the tail 34 below the straight body 33 is executed (step 107).
Then, after the obtained sapphire ingot 30 is cooled, it is taken out of the heating furnace 10 to complete a series of manufacturing steps.
 次に、インゴット状態で、サファイアインゴット30の熱処理を行いインゴット内の温度分布によって生じた歪を緩和する。例えば、サファイアインゴット30が直径100mm相当であれば、1200℃以上で、3時間以上、望ましくは、1500℃以上で5時間以上の条件で熱処理を実施する。昇温、降温速度は、1.0℃/分~10.0℃/分、望ましくは2.0℃/分~7.0℃/分である。
 これらの条件は、サファイア単結晶基板110(後述する図4参照)の直径(サイズ)が大きくなれば、例えば、直径150mmになれば、温度を高く、時間を長くした条件が好適な範囲となる。
 次に、このようにして得られたサファイアインゴット30は、先ず、肩部32と直胴部33との境界および直胴部33と尾部34との境界においてそれぞれ切断され、直胴部33が切り出される。次に、切り出された直胴部33は、さらに、例えば、マルチワイヤーソーにより、サファイアインゴット30の長手方向と直交する方向に切断され、表面が研磨されてサファイア単結晶基板110となる。このとき、本実施の形態のサファイアインゴット30は、サファイア単結晶のc軸方向に結晶成長していることから、得られるサファイア単結晶基板110の主面は、サファイア単結晶のC面((0001)面)となる。
 なお、化合物半導体層の成長条件によっては、基板の主面をC面からオフ角を付けて加工しても良い。また、C面以外で切り出すことも可能である。
Next, in the ingot state, the sapphire ingot 30 is heat-treated to relieve strain caused by the temperature distribution in the ingot. For example, if the sapphire ingot 30 corresponds to a diameter of 100 mm, the heat treatment is performed under conditions of 1200 ° C. or higher and 3 hours or longer, preferably 1500 ° C. or higher and 5 hours or longer. The temperature increase / decrease rate is 1.0 ° C./min to 10.0 ° C./min, preferably 2.0 ° C./min to 7.0 ° C./min.
For these conditions, if the diameter (size) of the sapphire single crystal substrate 110 (see FIG. 4 to be described later) is increased, for example, if the diameter is 150 mm, the temperature is increased and the time is increased. .
Next, the sapphire ingot 30 obtained in this way is first cut at the boundary between the shoulder portion 32 and the straight body portion 33 and at the boundary between the straight body portion 33 and the tail portion 34, and the straight body portion 33 is cut out. It is. Next, the cut out straight body portion 33 is further cut in a direction orthogonal to the longitudinal direction of the sapphire ingot 30 by, for example, a multi-wire saw, and the surface is polished to become the sapphire single crystal substrate 110. At this time, since the sapphire ingot 30 of this embodiment is grown in the c-axis direction of the sapphire single crystal, the main surface of the obtained sapphire single crystal substrate 110 is the C plane of the sapphire single crystal ((0001 ) Surface).
Depending on the growth conditions of the compound semiconductor layer, the main surface of the substrate may be processed with an off-angle from the C plane. In addition, it is possible to cut out other than the C plane.
 では、上述した各工程について具体的に説明を行う。ただし、ここでは、ステップ101の固相での加熱工程の前に実行される準備工程から順を追って説明を行う。 Now, the above steps will be described in detail. However, here, the description will be given in order from the preparation process executed before the heating process in the solid phase of Step 101.
(準備工程)
 準備工程では、まず、引き上げ棒17の保持部材18に種結晶31を取り付け、所定の位置にセットする。このとき、種結晶31の下端にサファイアのC面((0001)面)が露出するようにする。次に、るつぼ15内に酸化アルミニウムの原料を充填し、ジルコニア製の断熱材からなる部品を用いて断熱容器11を組み立てる。なお、原料である酸化アルミニウムは、粉末または微細な結晶片である。原料の酸化アルミニウム中のNa濃度は、1~10ppm程度である。さらに、1ppm未満に純度をあげるためには、精製処理など高度な技術が必要で、生産性も低下し、原料のコストの上昇を招く。また、徹底したNa汚染対策を施した作業環境、作業方法の整備も、生産性の低下につながる。
 一方、原料中のV、Baは、1ppm未満の低濃度であるが、製造メーカー、製造時期などにより、濃度が変動する場合がある。
 そして、ガス供給部21からのガス供給を行わない状態で、排気部24を用いて断熱容器11内を減圧する。
 このとき、断熱容器11内は、1Pa以下、好ましくは10-3Pa以下、さらに好ましくは10-5Pa以下に減圧される。
(Preparation process)
In the preparation step, first, the seed crystal 31 is attached to the holding member 18 of the pulling rod 17 and set at a predetermined position. At this time, the C plane ((0001) plane) of sapphire is exposed at the lower end of the seed crystal 31. Next, the crucible 15 is filled with a raw material of aluminum oxide, and the heat insulating container 11 is assembled using components made of a heat insulating material made of zirconia. Note that aluminum oxide as a raw material is powder or fine crystal pieces. The Na concentration in the starting aluminum oxide is about 1 to 10 ppm. Furthermore, in order to increase the purity to less than 1 ppm, advanced techniques such as a purification treatment are required, the productivity is lowered, and the cost of raw materials is increased. In addition, the maintenance of work environments and work methods with thorough countermeasures against Na contamination also lead to a decrease in productivity.
On the other hand, V and Ba in the raw material have a low concentration of less than 1 ppm, but the concentration may vary depending on the manufacturer, production time, and the like.
And the inside of the heat insulation container 11 is pressure-reduced using the exhaust part 24 in the state which does not supply the gas from the gas supply part 21. FIG.
At this time, the pressure inside the heat insulating container 11 is reduced to 1 Pa or less, preferably 10 −3 Pa or less, and more preferably 10 −5 Pa or less.
(固相での加熱工程)
 次に、るつぼ15内に充填された固体の酸化アルミニウムを、1200℃以上且つ酸化アルミニウムの融点(2050℃)未満の温度において、加熱(ベーク)する。すなわち、酸化アルミニウムは溶解しないので固相における加熱となる。なお、加熱する温度が1800℃を超えると、サファイアインゴット30の原料である酸化アルミニウムの粉末または結晶片同士が融着し、金属化合物の分解および金属化合物の揮発を阻害する。よって、加熱する温度は、1200℃以上且つ1800℃未満が好ましい。
 また、固相での加熱工程において、原料である酸化アルミニウムを充填するるつぼ15の最下端から加熱をおこない、るつぼ15の下方から上方へと順次、原料の酸化アルミニウムの加熱を行うことが好ましい。これにより、NaClなどの金属化合物および金属化合物が分解してできた金属、酸素などのガスの揮発が促進され、好ましい。
(Heating process in solid phase)
Next, the solid aluminum oxide filled in the crucible 15 is heated (baked) at a temperature of 1200 ° C. or higher and lower than the melting point of aluminum oxide (2050 ° C.). That is, since aluminum oxide does not dissolve, it becomes heating in the solid phase. In addition, when the temperature to heat exceeds 1800 degreeC, the powder or crystal | crystallization piece of the aluminum oxide which is a raw material of the sapphire ingot 30 fuse | melts, and decomposition | disassembly of a metal compound and volatilization of a metal compound are inhibited. Therefore, the heating temperature is preferably 1200 ° C. or higher and lower than 1800 ° C.
Moreover, in the heating step in the solid phase, it is preferable that heating is performed from the lowermost end of the crucible 15 filled with the raw material aluminum oxide, and the raw material aluminum oxide is sequentially heated from the bottom to the top of the crucible 15. This promotes the volatilization of a metal compound such as NaCl and a metal formed by decomposition of the metal compound and a gas such as oxygen, which is preferable.
 るつぼ15の加熱は、コイル電源25が加熱コイル16に高周波の交流電流(以下の説明では高周波電流と呼ぶ。)を供給することで行われる。コイル電源25から加熱コイル16に高周波電流が供給されると、加熱コイル16の周囲において磁束が生成・消滅を繰り返す。そして、加熱コイル16で生じた磁束が、断熱容器11を介して、るつぼ15を横切ると、るつぼ15の壁面にはその磁界の変化をさまたげるような磁界が発生し、それによってるつぼ15内に渦電流が発生する。そして、るつぼ15は、渦電流(I)によってるつぼ15の表皮抵抗(R)に比例したジュール熱(W=IR)が発生し、るつぼ15が加熱されることになる。るつぼ15が加熱され、それに伴って、るつぼ15内に収容される酸化アルミニウムが加熱される。 The crucible 15 is heated by the coil power supply 25 supplying a high-frequency alternating current (hereinafter referred to as a high-frequency current) to the heating coil 16. When a high frequency current is supplied from the coil power supply 25 to the heating coil 16, the magnetic flux repeatedly generates and disappears around the heating coil 16. When the magnetic flux generated by the heating coil 16 crosses the crucible 15 through the heat insulating container 11, a magnetic field is generated on the wall surface of the crucible 15 so as to prevent the change of the magnetic field, thereby causing a vortex in the crucible 15. Electric current is generated. The crucible 15 generates Joule heat (W = I 2 R) proportional to the skin resistance (R) of the crucible 15 by the eddy current (I), and the crucible 15 is heated. The crucible 15 is heated, and accordingly, the aluminum oxide accommodated in the crucible 15 is heated.
 そして、るつぼ15の下方から上方へと加熱するには、コイル駆動部28により、加熱コイル16の上下方向の中心位置をるつぼ15の下端部に移動させたのち、コイル電源25から加熱コイル16に通電して、るつぼ15の誘導加熱を開始するとともに、コイル駆動部28により、徐々に加熱コイル16を上方に移動させればよい。
 なお、るつぼ15は、加熱コイル16に隣接した部分がもっとも加熱されるが、熱伝導により、るつぼ15全体の温度も上昇していく。
 固相での加熱工程は、少なくとも1時間以上、好ましくは2時間以上行うことが好ましい。生産性を考慮し、10時間未満が望ましい。
 なお、金属化合物および金属化合物が分解してできた金属、酸素などのガスの揮発を促進するため、断熱容器11内は減圧状態に保つのが好ましい。また、不活性ガスを流すことも望ましい。
In order to heat the crucible 15 from below to above, the coil drive unit 28 moves the center position of the heating coil 16 in the vertical direction to the lower end of the crucible 15, and then the coil power supply 25 moves to the heating coil 16. The energization is started and induction heating of the crucible 15 is started, and the heating coil 16 may be gradually moved upward by the coil driving unit 28.
The crucible 15 is most heated at a portion adjacent to the heating coil 16, but the temperature of the entire crucible 15 also rises due to heat conduction.
The heating step in the solid phase is preferably performed for at least 1 hour or more, preferably 2 hours or more. Considering productivity, less than 10 hours is desirable.
In addition, in order to promote volatilization of gas, such as a metal compound and the metal formed by the decomposition | disassembly of a metal compound, oxygen, it is preferable to maintain the inside of the heat insulation container 11 in a pressure-reduced state. It is also desirable to flow an inert gas.
(溶融工程)
 次いで、るつぼ15内の酸化アルミニウムを完全に融解させ、アルミナ融液35とする。
 原料である酸化アルミニウムを充填するるつぼ15の最下端から酸化アルミニウムの融解を開始させ、るつぼ15の下方から上方へと順次、原料の酸化アルミニウムの融解を行うことが好ましい。これには、固相での加熱工程が終了した後に、コイル駆動部28により、加熱コイル16の上下方向の中心位置をるつぼ15の下端部に移動させたのち、酸化アルミニウムを完全に融解させる温度にするための電流を、コイル電源25から加熱コイル16に通電するとともに、コイル駆動部28により、徐々に加熱コイル16を上方に移動させればよい。
 これにより、金属化合物および金属化合物が分解してできた金属、酸素などのガスの揮発が促進される。このとき、酸化アルミニウムを急速に融解させると、金属化合物および金属化合物が分解してできた金属、酸素などのガスが排出される前にアルミナ融液35中に取り残される。よって、原料である酸化アルミニウムを完全に融解させるまでに少なくとも3時間以上、好ましくは10時間以上をかける必要がある。
 なお、溶融工程においても、金属化合物および金属化合物が分解してできた金属、酸素などのガスの揮発を促進するため、断熱容器11内は減圧状態に保つのが好ましい。また、不活性ガスを流すことも望ましい。
(Melting process)
Next, the aluminum oxide in the crucible 15 is completely melted to form an alumina melt 35.
It is preferable that the melting of aluminum oxide is started from the lowermost end of the crucible 15 filled with the raw material aluminum oxide and the raw material aluminum oxide is melted sequentially from the bottom to the top of the crucible 15. For this purpose, after the heating step in the solid phase is completed, the coil driving unit 28 moves the center position in the vertical direction of the heating coil 16 to the lower end of the crucible 15 and then completely melts the aluminum oxide. The heating coil 16 may be gradually moved upward by the coil driving unit 28 while the coil power source 25 supplies current to the heating coil 16.
Thereby, the volatilization of the metal compound and the gas formed by decomposing the metal compound, such as oxygen, is promoted. At this time, if the aluminum oxide is rapidly melted, it is left in the alumina melt 35 before the metal compound and the metal, gas such as oxygen generated by the decomposition of the metal compound are discharged. Therefore, it is necessary to spend at least 3 hours, preferably 10 hours or more, until aluminum oxide as a raw material is completely melted.
Even in the melting step, it is preferable to keep the inside of the heat insulating container 11 in a reduced pressure state in order to promote the volatilization of the metal compound and the gas formed by decomposing the metal compound, such as oxygen. It is also desirable to flow an inert gas.
(液相での加熱工程)
 次いで、アルミナ融液35を、酸化アルミニウムの融点より30℃~300℃高い温度で保持する。加熱温度がこの温度範囲より低いと、分解物、気泡が抜けにくいため、数時間の処理では効果がなく、長時間の加熱が必要になると考えられ、生産性が著しく低下する。一方、加熱温度がこの温度範囲より高い場合は、るつぼ15、断熱容器11など加熱炉10の損傷が大きくなるため、装置上の限界が存在する。このとき、原料である酸化アルミニウムは溶融して液相となっている。保持する時間は、例えば2~20時間である。
 なお、液相での加熱工程においても、金属化合物、金属化合物が分解してできた金属、酸素などのガスの揮発を促進するため、断熱容器11内は減圧状態に保つのが好ましい。また、不活性ガスを流すことも望ましい。
(Heating process in liquid phase)
Next, the alumina melt 35 is held at a temperature 30 ° C. to 300 ° C. higher than the melting point of aluminum oxide. If the heating temperature is lower than this temperature range, decomposition products and bubbles are difficult to escape, so that the treatment for several hours is not effective, and it is considered that heating for a long time is required, and the productivity is remarkably lowered. On the other hand, when the heating temperature is higher than this temperature range, damage to the heating furnace 10 such as the crucible 15 and the heat insulating container 11 increases, and there is a limit on the apparatus. At this time, aluminum oxide as a raw material is melted to form a liquid phase. The holding time is, for example, 2 to 20 hours.
In the heating step in the liquid phase, it is preferable to keep the inside of the heat insulating container 11 in a reduced pressure state in order to promote the volatilization of a metal compound, a metal formed by decomposing the metal compound, gas such as oxygen. It is also desirable to flow an inert gas.
 なお、固相での加熱工程および液相での加熱工程における温度および時間は原料である酸化アルミニウムを入れるるつぼ15の材質および原料である酸化アルミニウムの粉末または結晶片に含まれる不純物としての金属化合物の濃度によって変更すればよい。 The temperature and time in the solid-phase heating step and the liquid-phase heating step are the material of the crucible 15 containing the raw material aluminum oxide, and the metal compound as an impurity contained in the raw material aluminum oxide powder or crystal piece. What is necessary is just to change with the density | concentration of.
(肩部形成工程)
 肩部形成工程では、ガス供給部21がO源22およびN源23を用いて窒素および酸素を所定の割合で混合させた混合ガスを断熱容器11内に供給する。ただし、肩部形成工程においては、後述するように、必ずしも酸素と窒素との混合ガスを供給する必要はなく、例えば窒素のみを供給するようにしても差し支えない。
 また、コイル電源25は、引き続き加熱コイル16に高周波電流の供給を行い、るつぼ15を介してアルミナ融液35を加熱する。
 さらに、引き上げ駆動部19は、保持部材18に取り付けられた種結晶31の下端がるつぼ15内のアルミナ融液35と接触する位置まで引き上げ棒17を下降させて停止させた後、引き上げ棒17を第1の引き上げ速度にて引き上げる。
 さらにまた、回転駆動部20は、引き上げ棒17を第1の回転速度で回転させる。
(Shoulder formation process)
In the shoulder forming step, the gas supply unit 21 supplies a mixed gas in which nitrogen and oxygen are mixed at a predetermined ratio into the heat insulating container 11 using the O 2 source 22 and the N 2 source 23. However, in the shoulder forming step, as described later, it is not always necessary to supply a mixed gas of oxygen and nitrogen. For example, only nitrogen may be supplied.
The coil power supply 25 continues to supply a high-frequency current to the heating coil 16 to heat the alumina melt 35 via the crucible 15.
Further, the pulling drive unit 19 lowers the pulling rod 17 to a position where the lower end of the seed crystal 31 attached to the holding member 18 contacts the alumina melt 35 in the crucible 15 and then stops the pulling rod 17. Pull up at the first pulling speed.
Furthermore, the rotation drive unit 20 rotates the pulling rod 17 at the first rotation speed.
 すると、種結晶31は、その下端部がアルミナ融液35に浸った状態で回転されつつ引き上げられることになり、種結晶31の下端には、鉛直下方に向かって拡開する肩部32が形成されていく。
 なお、所謂4インチ(直径100mm)のウェーハを得るためのサファイアインゴット30を製造する場合、肩部32の直径がほぼ120mm程度になった時点で、肩部形成工程を完了する。気泡は、直径が大きいほど取り込まれやすい。
Then, the seed crystal 31 is pulled up while being rotated with its lower end immersed in the alumina melt 35, and a shoulder 32 that expands vertically downward is formed at the lower end of the seed crystal 31. It will be done.
When manufacturing a sapphire ingot 30 for obtaining a so-called 4 inch (diameter 100 mm) wafer, the shoulder forming step is completed when the diameter of the shoulder 32 becomes approximately 120 mm. Bubbles are easily taken in as the diameter increases.
(直胴部形成工程)
 直胴部形成工程では、ガス供給部21がO源22およびN源23を用いて窒素および酸素を所定の割合で混合させ、酸素濃度を0.6%以上3.0%以下の範囲に設定した混合ガスを断熱容器11内に供給する。
 また、コイル電源25は、引き続き加熱コイル16に高周波電流の供給を行い、るつぼ15を介したアルミナ融液35を加熱する。
 さらに、引き上げ駆動部19は、引き上げ棒17を第2の引き上げ速度にて引き上げる。ここで第2の引き上げ速度は、肩部形成工程における第1の引き上げ速度と同じ速度であってもよいし、異なる速度であってもよい。
 さらにまた、回転駆動部20は、引き上げ棒17を第2の回転速度で回転させる。ここで、第2の回転速度は、肩部形成工程における第1の回転速度と同じ速度であってもよいし、異なる速度であってもよい。
(Straight body part forming process)
In the straight body forming step, the gas supply unit 21 mixes nitrogen and oxygen at a predetermined ratio using the O 2 source 22 and the N 2 source 23, and the oxygen concentration is in the range of 0.6% to 3.0%. The mixed gas set to 1 is supplied into the heat insulating container 11.
The coil power supply 25 continues to supply a high-frequency current to the heating coil 16 to heat the alumina melt 35 via the crucible 15.
Further, the pulling drive unit 19 pulls the pulling rod 17 at the second pulling speed. Here, the second pulling speed may be the same as or different from the first pulling speed in the shoulder forming step.
Furthermore, the rotation drive unit 20 rotates the pulling rod 17 at the second rotation speed. Here, the second rotation speed may be the same speed as the first rotation speed in the shoulder forming step, or may be a different speed.
 種結晶31と一体化した肩部32は、その下端部がアルミナ融液35に浸った状態で回転されつつ引き上げられることになるため、肩部32の下端部には、好ましくは円柱状の直胴部33が形成されていく。直胴部33の直径は、所定の口径以上であればよい。
 なお、直胴部形成工程において、鉛直上方に引き上げられる直胴部33の下端は、アルミナ融液35と接触した状態を維持している。
The shoulder portion 32 integrated with the seed crystal 31 is pulled up while being rotated with its lower end portion immersed in the alumina melt 35, so that the lower end portion of the shoulder portion 32 is preferably a cylindrical straight portion. The body portion 33 is formed. The diameter of the straight body part 33 should just be more than a predetermined aperture.
In the straight body portion forming step, the lower end of the straight body portion 33 pulled up vertically is maintained in contact with the alumina melt 35.
(尾部形成工程)
 尾部形成工程では、ガス供給部21がO源22およびN源23を用いて窒素および酸素を所定の割合で混合させ、酸素濃度を上記直胴部形成工程よりも高く設定した混合ガスを断熱容器11内に供給する。ただし、尾部形成工程における混合ガス中の酸素濃度は、1.0%以上且つ5.0%以下の範囲に設定される。
 また、コイル電源25は、引き続き加熱コイル16に高周波電流の供給を行い、るつぼ15を介してアルミナ融液35を加熱する。
 さらに、引き上げ駆動部19は、引き上げ棒17を第3の引き上げ速度にて引き上げる。ここで第3の引き上げ速度は、肩部形成工程における第1の引き上げ速度あるいは直胴部形成工程における第2の引き上げ速度と同じ速度であってもよいし、これらとは異なる速度であってもよい。
 さらにまた、回転駆動部20は、引き上げ棒17を第3の回転速度で回転させる。ここで、第3の回転速度は、肩部形成工程における第1の回転速度あるいは直胴部形成工程における第2の回転速度と同じ速度であってもよいし、これらとは異なる速度であってもよい。
 なお、尾部形成工程の序盤において、尾部34の下端は、アルミナ融液35と接触した状態を維持する。
 そして、予め定められた時間が経過した尾部形成工程の終盤において、引き上げ駆動部19は、引き上げ棒17の引き上げ速度を増速させて引き上げ棒17をさらに上方に引き上げさせることにより、尾部34の下端をアルミナ融液35から引き離す。これにより、図2に示すサファイアインゴット30が得られる。
(Tail formation process)
In the tail forming step, the gas supply unit 21 mixes nitrogen and oxygen at a predetermined ratio using the O 2 source 22 and the N 2 source 23, and a mixed gas in which the oxygen concentration is set higher than that in the straight body forming step. It supplies in the heat insulation container 11. However, the oxygen concentration in the mixed gas in the tail forming step is set in the range of 1.0% to 5.0%.
The coil power supply 25 continues to supply a high-frequency current to the heating coil 16 to heat the alumina melt 35 via the crucible 15.
Further, the pulling drive unit 19 pulls the pulling rod 17 at the third pulling speed. Here, the third pulling speed may be the same as the first pulling speed in the shoulder forming process or the second pulling speed in the straight body forming process, or may be a speed different from these. Good.
Furthermore, the rotation drive unit 20 rotates the pulling rod 17 at the third rotation speed. Here, the third rotation speed may be the same as the first rotation speed in the shoulder forming process or the second rotation speed in the straight body forming process, or may be different from these. Also good.
Note that the lower end of the tail 34 is kept in contact with the alumina melt 35 in the early stage of the tail formation step.
Then, at the final stage of the tail forming process after a predetermined time has elapsed, the pulling drive unit 19 increases the pulling speed of the pulling bar 17 and pulls the lifting bar 17 further upward, thereby lowering the lower end of the tail 34. Is pulled away from the alumina melt 35. Thereby, the sapphire ingot 30 shown in FIG. 2 is obtained.
 なお、本実施の形態では、酸素と窒素とを混合した混合ガスを用いていたが、これに限られるものではなく、例えば酸素と不活性ガスの一例としてのアルゴンとを混合したものを用いてもかまわない。
 また、本実施の形態では、所謂電磁誘導加熱方式を用いて、るつぼ15の加熱を行ったが、これに限られるものではなく、例えば抵抗加熱方式を採用するようにしても差し支えない。抵抗加熱方式で、るつぼ15を回転できる構造の場合は、各加熱工程において、撹拌のためにるつぼ15を回転することが望ましい。
In this embodiment, a mixed gas in which oxygen and nitrogen are mixed is used. However, the present invention is not limited to this. For example, a mixture of oxygen and argon as an example of an inert gas is used. It doesn't matter.
In the present embodiment, the crucible 15 is heated using a so-called electromagnetic induction heating method. However, the present invention is not limited to this. For example, a resistance heating method may be adopted. In the case of a structure in which the crucible 15 can be rotated by the resistance heating method, it is desirable to rotate the crucible 15 for stirring in each heating step.
 上述したようにして製造されたサファイアインゴット30から、前述したようにサファイア単結晶基板110が製造される。サファイア単結晶基板110は、光学顕微鏡により、気泡の有無を目視で観察して、気泡の有無が判断された。このとき、観察可能な気泡の大きさは、1μm以上であった。
 また、サファイア単結晶基板110の表面は、半導体発光素子(LC)として用いられる場合には、化合物半導体層の結晶性の向上、発光効率向上のため、平滑化または凹凸加工されることが望ましい。
 なお、上述したように製造されたサファイアインゴット30は、サファイアインゴット30の長手方向と直交する方向に切断する工程および表面を研磨する工程における割れやクラックなどの発生が非常に小さく、良好な加工収率であった。
From the sapphire ingot 30 manufactured as described above, the sapphire single crystal substrate 110 is manufactured as described above. The sapphire single crystal substrate 110 was visually observed for the presence or absence of bubbles with an optical microscope, and the presence or absence of bubbles was determined. At this time, the size of the observable bubbles was 1 μm or more.
In addition, when the surface of the sapphire single crystal substrate 110 is used as a semiconductor light emitting device (LC), it is desirable that the surface of the sapphire single crystal substrate 110 be smoothed or unevenly processed in order to improve the crystallinity of the compound semiconductor layer and the luminous efficiency.
Note that the sapphire ingot 30 manufactured as described above has a very small generation of cracks and cracks in the step of cutting in the direction perpendicular to the longitudinal direction of the sapphire ingot 30 and the step of polishing the surface, and has good processing yield. It was rate.
<半導体発光素子(LC)>
 次に、上述したサファイアインゴット30の製造方法により、製造されたサファイア単結晶基板110を用いて製造した半導体発光素子(LC)について説明する。
 本実施の形態において半導体発光素子(LC)は、直径100mm、厚さ約900μmのサファイア単結晶基板110(後述する図4参照)上にIII族化合物半導体層を成膜し、次いで、III族化合物半導体層を成膜したサファイア単結晶基板110の裏面を予め定めた厚さになるように研削し、ラッピング処理を経てたのち、チップの大きさに切断して形成される。
<Semiconductor light emitting device (LC)>
Next, a semiconductor light emitting device (LC) manufactured using the sapphire single crystal substrate 110 manufactured by the method for manufacturing the sapphire ingot 30 described above will be described.
In this embodiment mode, a semiconductor light emitting element (LC) has a group III compound semiconductor layer formed on a sapphire single crystal substrate 110 (see FIG. 4 described later) having a diameter of 100 mm and a thickness of about 900 μm, and then a group III compound The back surface of the sapphire single crystal substrate 110 on which the semiconductor layer is formed is ground so as to have a predetermined thickness, is subjected to a lapping process, and is cut into a chip size.
 次に、本実施の形態が適用される半導体発光素子(LC)の製造方法により製造される半導体発光素子(LC)の構成を説明する。本実施の形態において製造される半導体発光素子(LC)は、サファイア単結晶基板110と基板上に成膜された化合物半導体層とを有している。化合物半導体層を構成する化合物半導体としては、例えば、III-V族化合物半導体、II-VI族化合物半導体、IV-IV族化合物半導体等が挙げられる。本実施の形態では、III-V族化合物半導体が好ましく、中でも、III族窒化物化合物半導体が好ましい。以下に、III族窒化物化合物半導体から構成された化合物半導体層を有する半導体発光素子(LC)を例に挙げて説明する。 Next, the configuration of the semiconductor light emitting device (LC) manufactured by the method of manufacturing the semiconductor light emitting device (LC) to which the present embodiment is applied will be described. The semiconductor light emitting device (LC) manufactured in the present embodiment has a sapphire single crystal substrate 110 and a compound semiconductor layer formed on the substrate. Examples of the compound semiconductor constituting the compound semiconductor layer include a III-V group compound semiconductor, a II-VI group compound semiconductor, a IV-IV group compound semiconductor, and the like. In the present embodiment, a III-V group compound semiconductor is preferable, and among these, a group III nitride compound semiconductor is preferable. A semiconductor light emitting device (LC) having a compound semiconductor layer composed of a group III nitride compound semiconductor will be described below as an example.
 図4は、本実施の形態で製造される半導体発光素子(LC)の一例を説明する図である。
 図4に示すように、半導体発光素子(LC)は、サファイア単結晶基板110上に形成された中間層120の上に、下地層130とIII族化合物半導体層100とを有している。III族化合物半導体層100は、n型半導体層140、発光層150、p型半導体層160が順次積層されている。半導体層を形成するサファイア単結晶基板110表面を微細な凸形状を多数配置するように加工することは、発光出力向上に効果がある為、望ましい。
 さらに、p型半導体層160上に透明正極170が積層され、その上に正極ボンディングパッド180が形成されるとともに、n型半導体層140のn型コンタクト層140aに形成された露出領域140cに負極190が積層されている。
FIG. 4 is a diagram illustrating an example of a semiconductor light emitting device (LC) manufactured in the present embodiment.
As shown in FIG. 4, the semiconductor light emitting device (LC) has a base layer 130 and a group III compound semiconductor layer 100 on an intermediate layer 120 formed on a sapphire single crystal substrate 110. In the group III compound semiconductor layer 100, an n-type semiconductor layer 140, a light emitting layer 150, and a p-type semiconductor layer 160 are sequentially stacked. It is desirable to process the surface of the sapphire single crystal substrate 110 forming the semiconductor layer so as to arrange a large number of fine convex shapes because it has an effect of improving the light emission output.
Further, a transparent positive electrode 170 is laminated on the p-type semiconductor layer 160, a positive electrode bonding pad 180 is formed thereon, and a negative electrode 190 is formed in the exposed region 140c formed in the n-type contact layer 140a of the n-type semiconductor layer 140. Are stacked.
 ここで、下地層130上に成膜されたn型半導体層140は、n型コンタクト層140a及びn型クラッド層140bを有する。発光層150は、障壁層150a及び井戸層150bが交互に積層された構造を有する。p型半導体層160は、p型クラッド層160a及びp型コンタクト層160bが積層されている。
 本実施の形態では、サファイア単結晶基板110上に成膜された化合物半導体層(中間層120、下地層130及びIII族化合物半導体層100を合わせた層)の合計の厚さは、好ましくは3μm以上、さらに好ましくは5μm以上、さらに望ましくは8μm以上である。また、これらの合計の厚さは、好ましくは15μm以下がよい。
 次に、半導体発光素子(LC)を構成する各層の材料について説明する。
Here, the n-type semiconductor layer 140 formed on the base layer 130 includes an n-type contact layer 140a and an n-type cladding layer 140b. The light emitting layer 150 has a structure in which barrier layers 150a and well layers 150b are alternately stacked. In the p-type semiconductor layer 160, a p-type cladding layer 160a and a p-type contact layer 160b are stacked.
In the present embodiment, the total thickness of the compound semiconductor layers (a combination of the intermediate layer 120, the base layer 130, and the group III compound semiconductor layer 100) formed on the sapphire single crystal substrate 110 is preferably 3 μm. More preferably, it is 5 μm or more, and more desirably 8 μm or more. The total thickness of these is preferably 15 μm or less.
Next, the material of each layer constituting the semiconductor light emitting element (LC) will be described.
(中間層120)
 本実施の形態では、III族化合物半導体層100を有機金属化学気相成長法(MOCVD)により成膜する際に、バッファ機能を発揮する中間層120をサファイア単結晶基板110上に設けることが好ましい。特に、中間層120が単結晶構造であることは、バッファ機能の面から好ましい。単結晶構造を有する中間層120をサファイア単結晶基板110上に成膜した場合、中間層120のバッファ機能が有効に作用し、中間層120上に成膜される下地層130とIII族化合物半導体層100は、良好な配向性及び結晶性を持つ結晶膜となる。
 中間層120は、Alを含有することが好ましく、III族窒化物であるAlNを含むことが特に好ましい。中間層120を構成する材料としては、一般式AlGaInNで表されるIII族窒化物化合物半導体であれば特に限定されない。さらに、V族として、AsやPが含有されても良い。中間層120が、Alを含む組成の場合、AlGaNとすることが好ましく、III族元素の内Alの組成が50%以上であることが好ましい。
(Intermediate layer 120)
In the present embodiment, it is preferable to provide an intermediate layer 120 that exhibits a buffer function on the sapphire single crystal substrate 110 when the group III compound semiconductor layer 100 is formed by metal organic chemical vapor deposition (MOCVD). . In particular, the intermediate layer 120 preferably has a single crystal structure from the viewpoint of the buffer function. When the intermediate layer 120 having a single crystal structure is formed on the sapphire single crystal substrate 110, the buffer function of the intermediate layer 120 acts effectively, and the base layer 130 and the group III compound semiconductor formed on the intermediate layer 120 The layer 100 is a crystal film having good orientation and crystallinity.
The intermediate layer 120 preferably contains Al, and particularly preferably contains AlN which is a group III nitride. The material constituting the intermediate layer 120 is not particularly limited as long as it is a group III nitride compound semiconductor represented by the general formula AlGaInN. Furthermore, As and P may be contained as a group V. In the case where the intermediate layer 120 has a composition containing Al, it is preferably AlGaN, and the composition of Al among the group III elements is preferably 50% or more.
(下地層130)
 下地層130に用いる材料としては、Gaを含むIII族窒化物(GaN系化合物半導体)が用いられ、特に、AlGaN、又はGaNを好適に用いることができる。下地層130の膜厚は0.1μm以上、好ましくは0.5μm以上、さらに好ましくは1μm以上である。
(Underlayer 130)
As a material used for the underlayer 130, a group III nitride (GaN-based compound semiconductor) containing Ga is used, and in particular, AlGaN or GaN can be preferably used. The film thickness of the underlayer 130 is 0.1 μm or more, preferably 0.5 μm or more, and more preferably 1 μm or more.
(n型半導体層140)
 n型半導体層140は、n型コンタクト層140a及びn型クラッド層140bから構成される。n型コンタクト層140aとしては、下地層130と同様にGaN系化合物半導体が用いられる。また、下地層130及びn型コンタクト層140aを構成する窒化ガリウム系化合物半導体は同一組成であることが好ましく、これらの合計の膜厚を0.1μm~20μm、好ましくは0.5μm~15μm、さらに好ましくは1μm~12μmの範囲に設定することが好ましい。n型コンタクト層140aは、電流が流れるため、薄い場合、抵抗が高くなり電気特性上好ましくない。また、厚い場合は、成長時間、材料費が増大し、生産性、コスト面から、好ましくない。
(N-type semiconductor layer 140)
The n-type semiconductor layer 140 includes an n-type contact layer 140a and an n-type cladding layer 140b. As the n-type contact layer 140a, a GaN-based compound semiconductor is used in the same manner as the base layer 130. Further, the gallium nitride compound semiconductor constituting the base layer 130 and the n-type contact layer 140a preferably has the same composition, and the total film thickness thereof is 0.1 μm to 20 μm, preferably 0.5 μm to 15 μm, The thickness is preferably set in the range of 1 μm to 12 μm. Since current flows in the n-type contact layer 140a, if it is thin, the resistance becomes high, which is not preferable in terms of electrical characteristics. On the other hand, when it is thick, the growth time and material cost increase, which is not preferable in terms of productivity and cost.
 n型クラッド層140bは、AlGaN、GaN、GaInN等によって形成することが可能である。また、これらの構造のヘテロ接合や複数回積層した超格子構造としてもよい。GaInNとする場合には、後述する発光層150を構成する井戸層150bのGaInNのバンドギャップよりも大きくすることが望ましい。n型クラッド層140bの膜厚は、好ましくは5nm~500nm、より好ましくは5nm~100nmの範囲である。 The n-type cladding layer 140b can be formed of AlGaN, GaN, GaInN, or the like. Alternatively, a heterojunction of these structures or a superlattice structure in which a plurality of layers are stacked may be used. In the case of using GaInN, it is desirable to make it larger than the GaInN band gap of the well layer 150b constituting the light emitting layer 150 described later. The film thickness of the n-type cladding layer 140b is preferably in the range of 5 nm to 500 nm, more preferably 5 nm to 100 nm.
(発光層150)
 発光層150は、窒化ガリウム系化合物半導体からなる障壁層150aと、インジウムを含有する窒化ガリウム系化合物半導体からなる井戸層150bとが交互に繰り返して積層され、且つ、n型半導体層140側及びp型半導体層160側に障壁層150aが配される順で積層して形成される。本実施の形態では、発光層150は、6層の障壁層150aと5層の井戸層150bとが交互に繰り返して積層されている。
(Light emitting layer 150)
The light emitting layer 150 includes a barrier layer 150a made of a gallium nitride-based compound semiconductor and a well layer 150b made of a gallium nitride-based compound semiconductor containing indium, which are alternately stacked, and the n-type semiconductor layer 140 side and the p-type layer. The barrier layers 150a are stacked in the order in which the barrier layers 150a are disposed on the type semiconductor layer 160 side. In the present embodiment, the light emitting layer 150 includes six barrier layers 150a and five well layers 150b that are alternately and repeatedly stacked.
 井戸層150bには、インジウムを含有する窒化ガリウム系化合物半導体として、例えば、Ga1-sInN(0<s<0.4)等の窒化ガリウムインジウムを用いることができる。
 障壁層150aとしては、インジウムを含有した窒化ガリウム系化合物半導体からなる井戸層150bよりもバンドギャップエネルギーが大きいAlGa1-cN(0≦c≦0.3)等の窒化ガリウム系化合物半導体を好適に用いることができる。
For the well layer 150b, for example, gallium indium nitride such as Ga 1-s In s N (0 <s <0.4) can be used as a gallium nitride compound semiconductor containing indium.
As the barrier layer 150a, a gallium nitride compound semiconductor such as Al c Ga 1-c N (0 ≦ c ≦ 0.3) having a larger band gap energy than the well layer 150b made of a gallium nitride compound semiconductor containing indium. Can be suitably used.
(p型半導体層160)
 p型半導体層160は、p型クラッド層160a及びp型コンタクト層160bから構成される。p型クラッド層160aとしては、好ましくは、AlGa1-dN(0<d≦0.4)が挙げられる。p型クラッド層160aの膜厚は、好ましくは1nm~400nmであり、より好ましくは5nm~100nmである。
 p型コンタクト層160bとしては、少なくともAlGa1-eN(0≦e<0.5)を含んでなる窒化ガリウム系化合物半導体層が挙げられる。p型コンタクト層160bの膜厚は、特に限定されないが、10nm~500nmが好ましく、より好ましくは50nm~200nmである。
(P-type semiconductor layer 160)
The p-type semiconductor layer 160 includes a p-type cladding layer 160a and a p-type contact layer 160b. The p-type cladding layer 160a is preferably Al d Ga 1-d N (0 <d ≦ 0.4). The film thickness of the p-type cladding layer 160a is preferably 1 nm to 400 nm, more preferably 5 nm to 100 nm.
Examples of the p-type contact layer 160b include a gallium nitride compound semiconductor layer containing at least Al e Ga 1-e N (0 ≦ e <0.5). The thickness of the p-type contact layer 160b is not particularly limited, but is preferably 10 nm to 500 nm, and more preferably 50 nm to 200 nm.
(透明正極170)
 透明正極170を構成する材料としては、例えば、ITO(In-SnO)、AZO(ZnO-Al)、IZO(In-ZnO)、GZO(ZnO-Ga)等の従来公知の材料が挙げられる。また、透明正極170の構造は特に限定されず、従来公知の構造を採用することができる。透明正極170は、p型半導体層160上のほぼ全面を覆うように形成しても良く、格子状や樹形状に形成しても良い。
(Transparent positive electrode 170)
Examples of the material constituting the transparent positive electrode 170 include ITO (In 2 O 3 —SnO 2 ), AZO (ZnO—Al 2 O 3 ), IZO (In 2 O 3 —ZnO), and GZO (ZnO—Ga 2 O). Conventionally known materials such as 3 ) may be mentioned. Moreover, the structure of the transparent positive electrode 170 is not specifically limited, A conventionally well-known structure is employable. The transparent positive electrode 170 may be formed so as to cover almost the entire surface of the p-type semiconductor layer 160, or may be formed in a lattice shape or a tree shape.
(正極ボンディングパッド180)
 透明正極170上に形成される電極としての正極ボンディングパッド180は、例えば、従来公知のAu、Al、Ni、Cu等の材料から構成される。正極ボンディングパッド180の構造は特に限定されず、従来公知の構造を採用することができる。
 正極ボンディングパッド180の厚さは、100nm~1,000nmの範囲内であり、好ましくは300nm~500nmの範囲内である。
(Positive electrode bonding pad 180)
The positive electrode bonding pad 180 as an electrode formed on the transparent positive electrode 170 is made of, for example, a conventionally known material such as Au, Al, Ni, or Cu. The structure of the positive electrode bonding pad 180 is not particularly limited, and a conventionally known structure can be adopted.
The thickness of the positive electrode bonding pad 180 is in the range of 100 nm to 1,000 nm, preferably in the range of 300 nm to 500 nm.
(負極190)
 図4に示すように、負極190は、サファイア単結晶基板110上に成膜された中間層120及び下地層130の上にさらに成膜されたIII族化合物半導体層100(n型半導体層140、発光層150及びp型半導体層160)において、n型半導体層140のn型コンタクト層140aに接するように形成される。このため、負極190を形成する際は、p型半導体層160、発光層150及びn型半導体層140の一部を除去し、n型コンタクト層140aの露出領域140cを形成し、この上に負極190を形成する。
 負極190の材料としては、各種組成および構造の負極が周知であり、これら周知の負極を何ら制限無く用いることができ、この技術分野でよく知られた慣用の手段で設けることができる。
(Negative electrode 190)
As shown in FIG. 4, the negative electrode 190 includes a group III compound semiconductor layer 100 (n-type semiconductor layer 140, n-type semiconductor layer 140) further formed on the intermediate layer 120 and the base layer 130 formed on the sapphire single crystal substrate 110. The light emitting layer 150 and the p-type semiconductor layer 160 are formed so as to be in contact with the n-type contact layer 140a of the n-type semiconductor layer 140. Therefore, when forming the negative electrode 190, the p-type semiconductor layer 160, the light emitting layer 150, and the n-type semiconductor layer 140 are partially removed to form an exposed region 140c of the n-type contact layer 140a, and the negative electrode is formed thereon. 190 is formed.
As the material of the negative electrode 190, negative electrodes having various compositions and structures are well known, and these well-known negative electrodes can be used without any limitation, and can be provided by conventional means well known in this technical field.
 本実施の形態では、先ず、サファイア単結晶基板110上に、V族元素を含むガスと金属材料とをプラズマで活性化して反応させ、III族窒化物からなる中間層120を成膜する。続いて、成膜した中間層120上に、下地層130、n型半導体層140、発光層150、及びp型半導体層160を順次積層する。 In this embodiment, first, an intermediate layer 120 made of a group III nitride is formed on a sapphire single crystal substrate 110 by activating and reacting a gas containing a group V element with a metal material. Subsequently, the base layer 130, the n-type semiconductor layer 140, the light emitting layer 150, and the p-type semiconductor layer 160 are sequentially stacked on the formed intermediate layer 120.
 本実施の形態では、サファイア単結晶基板110上にIII族窒化物化合物半導体結晶をエピタキシャル成長させる際、中間層120は、スパッタ法を用いて、プラズマで活性化して反応した原料をサファイア単結晶基板110上に成膜することが好ましい。ここで、V族元素を窒素とし、中間層120を成膜する際のガス中における窒素のガス分率を50%~99%以下の範囲とするとともに、中間層120を単結晶構造として形成する。これにより、短時間で結晶性の良い中間層120が、異方性を持つ配向膜としてサファイア単結晶基板110上に成膜される。その結果、中間層120上に、中間層120を設けない場合と比較して、結晶性の良好なIII族窒化物化合物半導体が成長する。 In the present embodiment, when a group III nitride compound semiconductor crystal is epitaxially grown on the sapphire single crystal substrate 110, the intermediate layer 120 uses a sputtering method to activate the raw material that has been activated and reacted with the sapphire single crystal substrate 110. It is preferable to form a film on top. Here, the group V element is nitrogen, the nitrogen gas fraction in the gas when forming the intermediate layer 120 is in the range of 50% to 99% or less, and the intermediate layer 120 is formed as a single crystal structure. . Thereby, the intermediate layer 120 having good crystallinity is formed on the sapphire single crystal substrate 110 as an oriented film having anisotropy in a short time. As a result, a Group III nitride compound semiconductor with good crystallinity grows on the intermediate layer 120 as compared with the case where the intermediate layer 120 is not provided.
 本実施の形態では、中間層120をスパッタ法によって形成した後、その上に、有機金属化学気相成長法(MOCVD)によって、下地層130、n型半導体層140、発光層150及びp型半導体層160を順次成膜することが好ましい。
 MOCVD法では、キャリアガスとして、例えば、水素(H)又は窒素(N)等が用いられる。III族原料であるGa源として、トリメチルガリウム(TMG)、トリエチルガリウム(TEG)等が用いられる。Al源として、トリメチルアルミニウム(TMA)、トリエチルアルミニウム(TEA)等が用いられる。In源として、トリメチルインジウム(TMI)、トリエチルインジウム(TEI)等が用いられる。V族原料であるN源として、アンモニア(NH)、ヒドラジン(N)等が用いられる。
 ドーパントとしては、n型にはSi原料としてモノシラン(SiH)、ジシラン(Si)等が用いられる。Ge原料として、ゲルマンガス(GeH)、テトラメチルゲルマニウム((CHGe)、テトラエチルゲルマニウム((CGe)等の有機ゲルマニウム化合物を利用できる。
In this embodiment, after the intermediate layer 120 is formed by a sputtering method, an underlying layer 130, an n-type semiconductor layer 140, a light-emitting layer 150, and a p-type semiconductor are formed thereon by metal organic chemical vapor deposition (MOCVD). It is preferable to sequentially form the layer 160.
In the MOCVD method, for example, hydrogen (H 2 ) or nitrogen (N 2 ) is used as a carrier gas. Trimethylgallium (TMG), triethylgallium (TEG), or the like is used as a Ga source that is a group III raw material. As the Al source, trimethylaluminum (TMA), triethylaluminum (TEA), or the like is used. As the In source, trimethylindium (TMI), triethylindium (TEI), or the like is used. Ammonia (NH 3 ), hydrazine (N 2 H 4 ), or the like is used as an N source that is a group V raw material.
As the dopant, monosilane (SiH 4 ), disilane (Si 2 H 6 ), or the like is used as the Si raw material for the n-type. An organic germanium compound such as germane gas (GeH 4 ), tetramethyl germanium ((CH 3 ) 4 Ge), tetraethyl germanium ((C 2 H 5 ) 4 Ge) can be used as the Ge raw material.
 尚、窒化ガリウム系化合物半導体は、Al、Ga、In以外にも、他の元素を含有してもよい。例えば、Ge、Si、Mg、Ca、Zn、Be等のドーパント元素が挙げられる。さらに、意図的に添加した元素に限らず、成膜条件等に依存して必然的に含まれる不純物や、原料、反応管材質に含まれる微量不純物を含む場合もある。 In addition, the gallium nitride compound semiconductor may contain other elements in addition to Al, Ga, and In. For example, dopant elements such as Ge, Si, Mg, Ca, Zn, and Be can be given. Furthermore, it is not limited to the element added intentionally, but may include impurities that are inevitably included depending on the film forming conditions, etc., and trace impurities that are included in the raw materials and reaction tube materials.
 尚、下地層130をMOCVD法によって形成した後、n型コンタクト層140a及びn型クラッド層140bの各層をスパッタ法で形成し、その上の発光層150をMOCVD法で形成し、次いで、p型半導体層160を構成するp型クラッド層160a及びp型コンタクト層160bの各層を反応性スパッタ法で形成してもよい。 In addition, after forming the base layer 130 by the MOCVD method, each layer of the n-type contact layer 140a and the n-type cladding layer 140b is formed by the sputtering method, and the light emitting layer 150 thereon is formed by the MOCVD method, and then the p-type Each layer of the p-type cladding layer 160a and the p-type contact layer 160b constituting the semiconductor layer 160 may be formed by reactive sputtering.
 前述した直径100mm、厚さ約900μmを有するサファイア単結晶基板110上に中間層120、下地層130及びIII族化合物半導体層100を成膜した後、III族化合物半導体層100のp型半導体層160上に透明正極170が積層され、その上に正極ボンディングパッド180が形成される。さらに、n型半導体層140のn型コンタクト層140aに形成された露出領域140cに負極190が設けられたウェーハが形成される。 After the intermediate layer 120, the underlayer 130, and the group III compound semiconductor layer 100 are formed on the sapphire single crystal substrate 110 having a diameter of 100 mm and a thickness of about 900 μm, the p-type semiconductor layer 160 of the group III compound semiconductor layer 100 is formed. A transparent positive electrode 170 is laminated thereon, and a positive electrode bonding pad 180 is formed thereon. Further, a wafer in which the negative electrode 190 is provided in the exposed region 140c formed in the n-type contact layer 140a of the n-type semiconductor layer 140 is formed.
 前述した化合物半導体層を成膜したサファイア単結晶基板110は、その後、サファイア単結晶基板110の被研削面(裏面)を、予め定めた厚さになるまで研削及び研磨する。本実施の形態では、市販の研削機(図示せず)にウェーハを取り付け、研削工程により、ウェーハのサファイア単結晶基板110の厚さは、例えば、約900μmから約120μm迄減少する。 The sapphire single crystal substrate 110 on which the compound semiconductor layer described above is formed is then ground and polished until the surface to be ground (back surface) of the sapphire single crystal substrate 110 has a predetermined thickness. In the present embodiment, the wafer is attached to a commercially available grinder (not shown), and the thickness of the sapphire single crystal substrate 110 of the wafer is reduced from, for example, about 900 μm to about 120 μm by the grinding process.
 次いで、サファイア単結晶基板110の厚さが調整されたウェーハは、例えば、350μm角の正方形に切断することにより、サファイア単結晶基板110上に中間層120、下地層130及びIII族化合物半導体層100が成膜された半導体発光素子(LC)が形成される。 Next, the wafer whose thickness of the sapphire single crystal substrate 110 is adjusted is cut into a square of 350 μm square, for example, so that the intermediate layer 120, the base layer 130, and the group III compound semiconductor layer 100 are formed on the sapphire single crystal substrate 110. A semiconductor light emitting device (LC) is formed.
 上述したように、本実施の形態では、単結晶のサファイアインゴット30から切り出した所定の厚さのサファイア単結晶基板110を使用し、その被成膜面には、III族化合物半導体層のエピタキシャル成長が良好に行われる。そして、このようなサファイア単結晶基板110とIII族化合物半導体層100とを有する半導体発光素子(LC)は、発光特性、電気特性が良好である。 As described above, in the present embodiment, the sapphire single crystal substrate 110 having a predetermined thickness cut out from the single crystal sapphire ingot 30 is used, and the group III compound semiconductor layer is epitaxially grown on the deposition surface. Done well. A semiconductor light emitting device (LC) having such a sapphire single crystal substrate 110 and a group III compound semiconductor layer 100 has good light emission characteristics and electrical characteristics.
 以下、実施例に基づき本発明を更に詳細に説明する。但し、本発明は、その要旨を超えない限り、以下の実施例に限定されるものではない。 Hereinafter, the present invention will be described in more detail based on examples. However, the present invention is not limited to the following examples unless it exceeds the gist.
(実施例1)
 実施の形態において説明した単結晶引き上げ装置I(図1参照)を用いて、サファイアインゴット30を作製した。
 まず、準備工程として、イリジウム(Ir)のるつぼ15に高純度の酸化アルミニウムの原料(Na濃度=5ppm)を投入し、断熱容器11を0.1Paに減圧した。
 その後、図3に示した固相での加熱工程として、加熱コイル16に高周波電流を供給することにより、酸化アルミニウムの融点(2050℃)未満の温度である1700℃において、2時間、加熱保持した(ステップ101)。
 その後、図3に示した溶融工程として、るつぼ15の温度を、2100℃に上げて、酸化アルミニウムを溶融し、アルミナ融液35とした(ステップ102)。
 次いで、図3に示した液相での加熱工程として、るつぼ15の温度を2150℃に4時間、維持するとともに、るつぼ15下部の温度を2150℃に対して20℃上げて対流を促進した(ステップ103)。
Example 1
A sapphire ingot 30 was produced using the single crystal pulling apparatus I (see FIG. 1) described in the embodiment.
First, as a preparation step, a high-purity aluminum oxide raw material (Na concentration = 5 ppm) was introduced into an iridium (Ir) crucible 15 and the heat insulating container 11 was depressurized to 0.1 Pa.
Thereafter, as a heating process in the solid phase shown in FIG. 3, a high-frequency current was supplied to the heating coil 16 to maintain the heating at 1700 ° C., which is a temperature lower than the melting point (2050 ° C.) of aluminum oxide, for 2 hours. (Step 101).
Thereafter, as the melting step shown in FIG. 3, the temperature of the crucible 15 was raised to 2100 ° C. to melt the aluminum oxide to obtain the alumina melt 35 (step 102).
Next, as the heating process in the liquid phase shown in FIG. 3, the temperature of the crucible 15 was maintained at 2150 ° C. for 4 hours, and the temperature at the bottom of the crucible 15 was increased by 20 ° C. relative to 2150 ° C. to promote convection ( Step 103).
 その後、図3の種付け工程として、るつぼ15の温度を2050℃に下げ、断熱容器11の圧力を大気圧に上昇させ、窒素ガスを供給した状態でサファイアインゴット30の引き上げを開始した(ステップ104)。
 肩部32を形成(ステップ105)し、直径が約100mmの直胴部33を形成し(ステップ106)、長さ約20cmのサファイアインゴット30を作製した。
 単結晶引き上げ装置Iから、サファイアインゴット30を取り出し、1200℃で4時間、熱処理(アニール)して、サファイアインゴット30の熱歪を除去した。
 サファイアインゴット30から、厚さ約1mmの板を切り出し、表面、裏面を研磨し、厚さ約900μmのサファイア単結晶基板110を得た。
Thereafter, as the seeding step of FIG. 3, the temperature of the crucible 15 is lowered to 2050 ° C., the pressure of the heat insulating container 11 is increased to atmospheric pressure, and the pulling up of the sapphire ingot 30 is started in a state where nitrogen gas is supplied (step 104). .
The shoulder portion 32 was formed (step 105), the straight body portion 33 having a diameter of about 100 mm was formed (step 106), and the sapphire ingot 30 having a length of about 20 cm was produced.
The sapphire ingot 30 was taken out from the single crystal pulling apparatus I and heat treated (annealed) at 1200 ° C. for 4 hours to remove the thermal strain of the sapphire ingot 30.
A plate having a thickness of about 1 mm was cut out from the sapphire ingot 30 and the front and back surfaces were polished to obtain a sapphire single crystal substrate 110 having a thickness of about 900 μm.
 次に、光学顕微鏡にて、気泡の有無を観察した。また、グロー放電質量分析(GD-MS)法により、サファイア単結晶基板110中の不純物を分析した。
 図5は、実施例1~3および比較例1~3の、固相での加熱工程および液相での加熱工程における温度および時間と評価結果とを示す。
 評価結果は、光学顕微鏡において観察した気泡の有無、GD-MS法により分析したサファイア単結晶基板110中のNa、V、Baの濃度、サファイア単結晶基板110を用いて作製した半導体発光素子(LC)の特性である。なお半導体発光素子(LC)の特性は、発光強度Po(mW)、順方向電流が20mAにおける順方向電圧VF(V)、逆方向電圧20Vにおける逆方向電流Ir(μA)である。
 ここで、発光強度Poは大きいほど、順方向電圧VFは小さいほど、逆方向電流Irは小さいほど、半導体発光素子(LC)の特性がよいことになる。
 なお、光学顕微鏡による観察では、微細な気泡(例えば、1μm未満)は見出すことが困難であった。
Next, the presence or absence of bubbles was observed with an optical microscope. Further, impurities in the sapphire single crystal substrate 110 were analyzed by glow discharge mass spectrometry (GD-MS).
FIG. 5 shows the temperature, time and evaluation results in Examples 1 to 3 and Comparative Examples 1 to 3 in the heating step in the solid phase and the heating step in the liquid phase.
The evaluation results are the presence or absence of bubbles observed with an optical microscope, the concentration of Na, V, and Ba in the sapphire single crystal substrate 110 analyzed by the GD-MS method, the semiconductor light emitting device (LC ) Characteristics. The characteristics of the semiconductor light emitting device (LC) are emission intensity Po (mW), forward voltage VF (V) when the forward current is 20 mA, and reverse current Ir (μA) when the reverse voltage is 20 V.
Here, the larger the emission intensity Po, the smaller the forward voltage VF, and the smaller the reverse current Ir, the better the characteristics of the semiconductor light emitting element (LC).
Note that it was difficult to find fine bubbles (for example, less than 1 μm) by observation with an optical microscope.
 実施例1~3および比較例1~3におけるサファイア単結晶基板110の直径は、100mmである。
 なお、実施例1~3および比較例1~3における半導体発光素子(LC)は、実施の形態に記載した条件で作製され、同一の形状を有している。そして、半導体発光素子(LC)の特性は、半導体発光素子(LC)が形成されたウェーハ面から、均等に20個の半導体発光素子(LC)を取り出して測定した特性の平均値である。
 実施例1~3および比較例1~3における半導体発光素子(LC)の発光の中心波長λdは450nmであった。
The diameter of the sapphire single crystal substrate 110 in Examples 1 to 3 and Comparative Examples 1 to 3 is 100 mm.
The semiconductor light emitting devices (LC) in Examples 1 to 3 and Comparative Examples 1 to 3 are manufactured under the conditions described in the embodiment and have the same shape. And the characteristic of a semiconductor light emitting element (LC) is an average value of the characteristic which took out and measured 20 semiconductor light emitting elements (LC) equally from the wafer surface in which the semiconductor light emitting element (LC) was formed.
The central wavelength λd of light emission of the semiconductor light emitting devices (LC) in Examples 1 to 3 and Comparative Examples 1 to 3 was 450 nm.
 実施例1では、気泡は観測されず、結晶欠陥を発生させやすい金属不純物であるNaは0.3ppm、V、Baは検出限界0.1ppm以下と低濃度であった。
 そして、実施例1では、気泡が観測されず、Na、V、Baの濃度が低いこと、すなわち結晶欠陥が少ないことを反映して、半導体発光素子(LC)の特性は、発光出力Po=20mW、VF(20mA)=3.1V、Ir(20V)=0μAと良好であった。
In Example 1, no bubbles were observed, and Na, which is a metal impurity that easily generates crystal defects, was 0.3 ppm, and V and Ba were low in the detection limit of 0.1 ppm or less.
In Example 1, the characteristics of the semiconductor light emitting device (LC) reflect the fact that no bubbles are observed and the concentrations of Na, V, and Ba are low, that is, there are few crystal defects, and the light emission output Po = 20 mW. VF (20 mA) = 3.1 V and Ir (20 V) = 0 μA.
 実施例2は、固相での加熱温度を2000℃で2時間、液相での加熱温度を2100℃で4時間実施した。気泡は観測されず、結晶欠陥を発生させやすい金属不純物であるNaは0.6ppm、V、Baは検出限界0.1ppm以下と低濃度であった。半導体発光素子(LC)の特性は、発光出力Po=20mW、VF(20mA)=3.1V、Ir(20V)=0μAと良好であった。
 実施例3は、固相での加熱工程をなくし、液相での加熱温度を2080℃で4時間に変更した。気泡は観測されず、結晶欠陥を発生させやすい金属不純物であるNaは、0.9ppm、V、Baは検出限界0.1ppm以下と低濃度であった。半導体発光素子(LC)の特性は、発光出力Po=20mW、VF(20mA)=3.1V、Ir(20V)=1μAと良好であった。
In Example 2, the heating temperature in the solid phase was 2000 ° C. for 2 hours, and the heating temperature in the liquid phase was 2100 ° C. for 4 hours. Bubbles were not observed, and Na, which is a metal impurity that easily causes crystal defects, was 0.6 ppm, and V and Ba were low in the detection limit of 0.1 ppm or less. The characteristics of the semiconductor light emitting device (LC) were as follows: light emission output Po = 20 mW, VF (20 mA) = 3.1 V, and Ir (20 V) = 0 μA.
In Example 3, the heating step in the solid phase was eliminated, and the heating temperature in the liquid phase was changed to 2080 ° C. for 4 hours. No bubbles were observed, and Na, which is a metal impurity that easily causes crystal defects, was 0.9 ppm, and V and Ba were low in the detection limit of 0.1 ppm or less. The characteristics of the semiconductor light emitting device (LC) were as follows: light emission output Po = 20 mW, VF (20 mA) = 3.1 V, and Ir (20 V) = 1 μA.
 一方、比較例1は、固相での加熱工程および液相での加熱工程を設けていない。気泡が観測され、結晶欠陥を発生させやすい金属不純物であるNaは3ppm、Vは0.5ppm、Baは0.4ppmであった。半導体発光素子(LC)の特性は、発光出力Po=15mW、VF(20mA)=3.3V、Ir(20V)=4μAで、実施例1~3に比較して劣る結果であった。
 また、比較例2は、固相での加熱工程の条件を1100℃で2時間に変更した。液相での加熱工程を設けていない。気泡が観測され、結晶欠陥を発生させやすい金属不純物であるNaは2ppm、Vは0.2ppm、Baは0.4ppmであった。半導体発光素子(LC)の特性は、発光出力Po=16mW、VF(20mA)=3.2V、Ir(20V)=3μAで、実施例1~3に比較して劣る結果であった。
 比較例3は、固相での加熱工程はなく、液相での加熱工程の条件を2060℃で4時間に変更した。気泡が観測され、結晶欠陥を発生させやすい金属不純物であるNaは1.3ppm、V、Baは検出限界0.1ppm以下であった。半導体発光素子(LC)の特性は、発光出力Po=18mW、VF(20mA)=3.2V、Ir(20V)=2μAで、実施例1~3に比較して劣る結果であった。
On the other hand, Comparative Example 1 does not provide a heating step in the solid phase and a heating step in the liquid phase. Bubbles were observed, and Na, which is a metal impurity that easily generates crystal defects, was 3 ppm, V was 0.5 ppm, and Ba was 0.4 ppm. The characteristics of the semiconductor light emitting device (LC) were light emission output Po = 15 mW, VF (20 mA) = 3.3 V, and Ir (20 V) = 4 μA, which were inferior to Examples 1 to 3.
Moreover, the comparative example 2 changed the conditions of the heating process in a solid phase at 1100 degreeC for 2 hours. There is no heating step in the liquid phase. Bubbles were observed, and Na, which is a metal impurity that easily generates crystal defects, was 2 ppm, V was 0.2 ppm, and Ba was 0.4 ppm. The characteristics of the semiconductor light emitting device (LC) were light output Po = 16 mW, VF (20 mA) = 3.2 V, and Ir (20 V) = 3 μA, which were inferior to Examples 1 to 3.
In Comparative Example 3, there was no heating step in the solid phase, and the conditions of the heating step in the liquid phase were changed at 2060 ° C. for 4 hours. Bubbles were observed, and Na, which is a metal impurity that easily generates crystal defects, was 1.3 ppm, and V and Ba were detection limits of 0.1 ppm or less. The characteristics of the semiconductor light emitting device (LC) were light emission output Po = 18 mW, VF (20 mA) = 3.2 V, and Ir (20 V) = 2 μA, which were inferior to Examples 1 to 3.
 図5にまとめて示すように、実施例1~3では、気泡が観測されず、Na、V、Baの濃度が低く、半導体発光素子(LC)の特性も良好であった。
 これに対し、比較例1~3では、気泡の発生が観察されるとともに、Na、V、Baの濃度が、実施例1~3に比べて高い。また、半導体発光素子(LC)も、実施例1~3に比べ、発光出力Poが低く、逆方向電流Irが高くなっている。
As summarized in FIG. 5, in Examples 1 to 3, no bubbles were observed, the concentrations of Na, V, and Ba were low, and the characteristics of the semiconductor light emitting device (LC) were good.
On the other hand, in Comparative Examples 1 to 3, generation of bubbles is observed and the concentrations of Na, V, and Ba are higher than those in Examples 1 to 3. Further, the semiconductor light emitting element (LC) also has a lower light emission output Po and a higher reverse current Ir as compared with the first to third embodiments.
 以上説明したように、サファイア単結晶基板110に見られる気泡は、不純物として含まれるNa、V、Baの酸化物などの金属化合物に起因して発生する。そして、これらの不純物として含まれる金属化合物の濃度は、サファイアインゴット30を引き上げる前に、原料である酸化アルミニウムの融点未満の温度で加熱する固相での加熱工程と、融点以上の温度で加熱する液相での加熱工程とを設けることで、減少させることができる。
 なお、固相での加熱工程を設けず、液相での加熱工程だけを用いてもよい。
 これにより、サファイア単結晶基板110の結晶欠陥および気泡の発生を抑制することで、サファイア単結晶基板110に形成される半導体発光素子(LC)の特性が向上する。
As described above, bubbles observed in the sapphire single crystal substrate 110 are generated due to metal compounds such as oxides of Na, V, and Ba contained as impurities. And the density | concentration of the metal compound contained as these impurities is heated at the temperature of the solid phase heating process heated at a temperature lower than the melting point of the raw material aluminum oxide and the melting point or higher before the sapphire ingot 30 is pulled up. It can be reduced by providing a heating step in the liquid phase.
Note that it is possible to use only the heating process in the liquid phase without providing the heating process in the solid phase.
Thereby, the characteristic of the semiconductor light emitting element (LC) formed in the sapphire single crystal substrate 110 improves by suppressing the crystal defect and bubble generation of the sapphire single crystal substrate 110.
10…加熱炉、11…断熱容器、12…ガス供給管、13…ガス排出管、14…チャンバ、15…るつぼ、16…加熱コイル、17…引き上げ棒、19…駆動部、30…サファイアインゴット、31…種結晶、32…肩部、33…直胴部、34…尾部、35…アルミナ融液、100…III族化合物半導体層、110…基板、120…中間層、130…下地層、140…n型半導体層、150…発光層、160…p型半導体層、170…透明正極、180…正極ボンディングパッド、190…負極、I…単結晶引き上げ装置、LC…半導体発光素子 DESCRIPTION OF SYMBOLS 10 ... Heating furnace, 11 ... Thermal insulation container, 12 ... Gas supply pipe, 13 ... Gas discharge pipe, 14 ... Chamber, 15 ... Crucible, 16 ... Heating coil, 17 ... Lifting rod, 19 ... Drive part, 30 ... Sapphire ingot, DESCRIPTION OF SYMBOLS 31 ... Seed crystal, 32 ... Shoulder part, 33 ... Straight body part, 34 ... Tail part, 35 ... Alumina melt, 100 ... III group compound semiconductor layer, 110 ... Substrate, 120 ... Intermediate layer, 130 ... Underlayer, 140 ... n-type semiconductor layer, 150 ... light-emitting layer, 160 ... p-type semiconductor layer, 170 ... transparent positive electrode, 180 ... positive electrode bonding pad, 190 ... negative electrode, I ... single crystal pulling device, LC ... semiconductor light-emitting element

Claims (7)

  1.  チョクラルスキー法(CZ法)によるサファイア単結晶引き上げ装置において、
     ナトリウム(Na)濃度が1ppm以上である酸化アルミニウムの原料を、酸化アルミニウムの融点を超える温度で、るつぼ中で溶融した融液の状態で保持する液相での加熱工程と、
     前記るつぼ中の酸化アルミニウムの前記融液に付着させた種結晶を回転させながら引き上げることにより、当該種結晶の下方に向かって直径が大きくなる肩部を形成する肩部形成工程と、
     前記融液に付着させた前記肩部を回転させながら引き上げることにより、当該肩部の下方に円柱状の胴部を形成する胴部形成工程と
    を含むサファイア単結晶の製造方法。
    In the sapphire single crystal pulling device by the Czochralski method (CZ method),
    A heating step in a liquid phase in which a raw material of aluminum oxide having a sodium (Na) concentration of 1 ppm or more is maintained in a molten state melted in a crucible at a temperature exceeding the melting point of aluminum oxide;
    A shoulder forming step of forming a shoulder having a diameter increasing toward the bottom of the seed crystal by pulling up the seed crystal attached to the melt of aluminum oxide in the crucible while rotating;
    A method for producing a sapphire single crystal, comprising: a body forming step of forming a cylindrical body below the shoulder by pulling up the shoulder attached to the melt while rotating.
  2.  前記液相での加熱工程は、酸化アルミニウムの融点より30℃以上且つ300℃以下の温度において高い温度で行われることを特徴とする請求項1に記載のサファイア単結晶の製造方法。 2. The method for producing a sapphire single crystal according to claim 1, wherein the heating step in the liquid phase is performed at a temperature higher than the melting point of aluminum oxide by 30 ° C. or more and 300 ° C. or less.
  3.  前記液相での加熱工程における前記融液は、前記るつぼの下部から上部に向かって、当該るつぼ中の酸化アルミニウムの原料が溶融されて形成されたことを特徴とする請求項1または2に記載のサファイア単結晶の製造方法。 The melt in the heating step in the liquid phase is formed by melting a raw material of aluminum oxide in the crucible from the bottom to the top of the crucible. Of producing a single crystal of sapphire.
  4.  前記液相での加熱工程の前に、前記るつぼ中の酸化アルミニウムの原料を、酸化アルミニウムの融点未満の温度で保持する固相での加熱工程をさらに含むことを特徴とする請求項1ないし3のいずれか1項に記載のサファイア単結晶の製造方法。 4. The method according to claim 1, further comprising a heating step in a solid phase in which the raw material of aluminum oxide in the crucible is held at a temperature lower than the melting point of aluminum oxide before the heating step in the liquid phase. The manufacturing method of the sapphire single crystal of any one of these.
  5.  前記固相での加熱工程は、1200℃以上且つ2050℃未満の温度で行われることを特徴とする請求項4に記載のサファイア単結晶の製造方法。 The method for producing a sapphire single crystal according to claim 4, wherein the heating step in the solid phase is performed at a temperature of 1200 ° C or higher and lower than 2050 ° C.
  6.  前記固相での加熱工程での前記るつぼ中の酸化アルミニウムの原料は、当該るつぼの下部から上部に向かって昇温されたことを特徴とする請求項4または5に記載のサファイア単結晶の製造方法。 The sapphire single crystal production according to claim 4 or 5, wherein the temperature of the raw material of aluminum oxide in the crucible in the heating step in the solid phase is increased from the lower part to the upper part of the crucible. Method.
  7.  前記請求項1ないし6のいずれか1項に記載のサファイア単結晶の製造方法にて製造された、ナトリウム(Na)、バリウム(Ba)およびバナジウム(V)のそれぞれの濃度が、いずれも1ppm未満である直径100mm以上のサファイア単結晶基板。 Each of the concentrations of sodium (Na), barium (Ba) and vanadium (V) produced by the method for producing a sapphire single crystal according to any one of claims 1 to 6 is less than 1 ppm. A sapphire single crystal substrate having a diameter of 100 mm or more.
PCT/JP2011/060642 2010-07-16 2011-05-09 Process for producing single-crystal sapphire, and single-crystal sapphire substrate WO2012008208A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-161742 2010-07-16
JP2010161742A JP2012020916A (en) 2010-07-16 2010-07-16 Method for producing single-crystal sapphire, and single-crystal sapphire substrate

Publications (1)

Publication Number Publication Date
WO2012008208A1 true WO2012008208A1 (en) 2012-01-19

Family

ID=45469220

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/060642 WO2012008208A1 (en) 2010-07-16 2011-05-09 Process for producing single-crystal sapphire, and single-crystal sapphire substrate

Country Status (3)

Country Link
JP (1) JP2012020916A (en)
TW (1) TW201204881A (en)
WO (1) WO2012008208A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012106870A (en) * 2010-11-15 2012-06-07 Mitsubishi Materials Techno Corp Method of growing crystal
JP2013256424A (en) * 2012-06-14 2013-12-26 Sumitomo Metal Mining Co Ltd Apparatus for growing sapphire single crystal
JP2014162673A (en) * 2013-02-25 2014-09-08 Tokuyama Corp Sapphire single crystal core and manufacturing method of the same
CN103966661B (en) * 2014-04-08 2016-06-29 哈尔滨奥瑞德光电技术有限公司 A kind of kyropoulos prepares the growing method of sapphire single-crystal

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004284854A (en) * 2003-03-20 2004-10-14 Mitsubishi Materials Corp Crucible for single crystal pulling apparatus, and single crystal pulling apparatus
JP2008100903A (en) * 2006-09-19 2008-05-01 Sumitomo Chemical Co Ltd Alpha-alumina powder
JP2009132594A (en) * 2007-11-07 2009-06-18 Hitachi Chem Co Ltd Method for producing oxide single crystal
JP2009286650A (en) * 2008-05-28 2009-12-10 Sumco Corp Split heater and single crystal pulling device using the same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004284854A (en) * 2003-03-20 2004-10-14 Mitsubishi Materials Corp Crucible for single crystal pulling apparatus, and single crystal pulling apparatus
JP2008100903A (en) * 2006-09-19 2008-05-01 Sumitomo Chemical Co Ltd Alpha-alumina powder
JP2009132594A (en) * 2007-11-07 2009-06-18 Hitachi Chem Co Ltd Method for producing oxide single crystal
JP2009286650A (en) * 2008-05-28 2009-12-10 Sumco Corp Split heater and single crystal pulling device using the same

Also Published As

Publication number Publication date
TW201204881A (en) 2012-02-01
JP2012020916A (en) 2012-02-02

Similar Documents

Publication Publication Date Title
JP4611103B2 (en) Method for producing β-Ga2O3 crystal
TWI429797B (en) Group iii nitride semiconductor crystal substrate and semiconductor device
US10851474B2 (en) Thermal control for formation and processing of aluminum nitride
JP2007277055A (en) Method for manufacturing semiconductor crystal and semiconductor substrate
US11168411B2 (en) Impurity control during formation of aluminum nitride crystals and thermal treatment of aluminum nitride crystals
KR20060007366A (en) beta-GA2O3 SINGLE CRYSTAL GROWING METHOD, THIN-FILM SINGLE CRYSTAL GROWING METHOD, GA2O3 LIGHT-EMITTING DEVICE, AND ITS MANUFACTURING METHOD
JP2007277055A5 (en)
WO2011001905A1 (en) Method for producing sapphire single crystal, and sapphire single crystal obtained by the method
JP5729182B2 (en) Method for producing n-type group III nitride single crystal, n-type group III nitride single crystal and crystal substrate
KR102372706B1 (en) β-Ga₂O₃-BASED-SINGLE CRYSTAL SUBSTRATE
JP2016013934A (en) METHOD OF MANUFACTURING β-Ga2O3-BASED SINGLE CRYSTAL SUBSTRATE
WO2012008208A1 (en) Process for producing single-crystal sapphire, and single-crystal sapphire substrate
JP2014031300A (en) Gallium oxide substrate and manufacturing method of the same
WO2011065403A1 (en) Single-crystal sapphire for producing single-crystal sapphire substrate for led, single-crystal sapphire substrate for led, luminescent element, and processes for producing these
JP5857337B2 (en) Gallium oxide substrate and manufacturing method thereof
WO2012002089A1 (en) Method for producing sapphire single crystal, sapphire substrate, and semiconductor light emitting element
JP5899201B2 (en) Group 13 metal nitride manufacturing method and seed crystal substrate used therefor
US20110024742A1 (en) PROCESS FOR PRODUCING ZnO SINGLE CRYSTAL, SELF-SUPPORTING ZnO SINGLE-CRYSTAL WAFER OBTAINED BY THE SAME, SELF-SUPPORTING WAFER OF Mg-CONTAINING ZnO MIXED SINGLE CRYSTAL, AND PROCESS FOR PRODUCING Mg-CONTAINING ZnO MIXED SINGLE CRYSTAL FOR USE IN THE SAME
JP2010021439A (en) Group iii nitride semiconductor laminate structure, and manufacturing method thereof
JP2012030991A (en) Method for producing semiconductor light-emitting element, semiconductor light-emitting element, and sapphire single crystal substrate
JP2006135032A (en) Group iii nitride single-crystal wafer, method of manufacturing group iii nitride semiconductor device using it, and semiconductor device obtained thereby
JP2009234825A (en) METHOD FOR MANUFACTURING ZnO SINGLE CRYSTAL AND SELF-SUPPORTING WAFER OF ZnO SINGLE CRYSTAL OBTAINED BY IT
CN111560648A (en) ScAlMgO4Single crystal substrate and method for producing same
JP2017014029A (en) Manufacturing method of gallium nitride crystal, gallium nitride crystal, and gallium nitride crystal substrate
JP2009208970A (en) Method for manufacturing crystal, crystal growth device, crystal, and semiconductor device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11806540

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11806540

Country of ref document: EP

Kind code of ref document: A1