WO2012008125A1 - 動画像符号化装置、動画像復号装置、動画像符号化方法及び動画像復号方法 - Google Patents

動画像符号化装置、動画像復号装置、動画像符号化方法及び動画像復号方法 Download PDF

Info

Publication number
WO2012008125A1
WO2012008125A1 PCT/JP2011/003907 JP2011003907W WO2012008125A1 WO 2012008125 A1 WO2012008125 A1 WO 2012008125A1 JP 2011003907 W JP2011003907 W JP 2011003907W WO 2012008125 A1 WO2012008125 A1 WO 2012008125A1
Authority
WO
WIPO (PCT)
Prior art keywords
intra prediction
prediction
encoding
image
unit
Prior art date
Application number
PCT/JP2011/003907
Other languages
English (en)
French (fr)
Inventor
守屋 芳美
関口 俊一
杉本 和夫
亮史 服部
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=45469144&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2012008125(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Priority to US13/810,072 priority Critical patent/US9462271B2/en
Priority to CA2805328A priority patent/CA2805328A1/en
Priority to KR1020157012081A priority patent/KR20150059797A/ko
Priority to JP2012524443A priority patent/JP5656998B2/ja
Priority to SG2013002779A priority patent/SG187062A1/en
Priority to KR1020137003840A priority patent/KR20130069726A/ko
Priority to KR1020147035797A priority patent/KR101562158B1/ko
Priority to BR112013000516-5A priority patent/BR112013000516B1/pt
Priority to CN201180034748.8A priority patent/CN103004201B/zh
Priority to MX2013000525A priority patent/MX2013000525A/es
Priority to KR1020147009217A priority patent/KR20140049095A/ko
Priority to KR1020147022240A priority patent/KR101529452B1/ko
Priority to EP11806461.7A priority patent/EP2595386A4/en
Priority to RU2013106507/08A priority patent/RU2533649C1/ru
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to TW105108792A priority patent/TWI565307B/zh
Priority to TW105137835A priority patent/TW201709742A/zh
Priority to TW100124551A priority patent/TWI533676B/zh
Publication of WO2012008125A1 publication Critical patent/WO2012008125A1/ja
Priority to HK13110333.0A priority patent/HK1183189A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/50Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using predictive coding
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/189Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the adaptation method, adaptation tool or adaptation type used for the adaptive coding
    • H04N19/196Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the adaptation method, adaptation tool or adaptation type used for the adaptive coding being specially adapted for the computation of encoding parameters, e.g. by averaging previously computed encoding parameters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/44Decoders specially adapted therefor, e.g. video decoders which are asymmetric with respect to the encoder
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/90Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using coding techniques not provided for in groups H04N19/10-H04N19/85, e.g. fractals
    • H04N19/91Entropy coding, e.g. variable length coding [VLC] or arithmetic coding
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/102Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the element, parameter or selection affected or controlled by the adaptive coding
    • H04N19/103Selection of coding mode or of prediction mode
    • H04N19/105Selection of the reference unit for prediction within a chosen coding or prediction mode, e.g. adaptive choice of position and number of pixels used for prediction
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/102Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the element, parameter or selection affected or controlled by the adaptive coding
    • H04N19/103Selection of coding mode or of prediction mode
    • H04N19/11Selection of coding mode or of prediction mode among a plurality of spatial predictive coding modes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/169Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding
    • H04N19/182Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding the unit being a pixel
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/169Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding
    • H04N19/186Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding the unit being a colour or a chrominance component
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/189Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the adaptation method, adaptation tool or adaptation type used for the adaptive coding
    • H04N19/196Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the adaptation method, adaptation tool or adaptation type used for the adaptive coding being specially adapted for the computation of encoding parameters, e.g. by averaging previously computed encoding parameters
    • H04N19/198Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the adaptation method, adaptation tool or adaptation type used for the adaptive coding being specially adapted for the computation of encoding parameters, e.g. by averaging previously computed encoding parameters including smoothing of a sequence of encoding parameters, e.g. by averaging, by choice of the maximum, minimum or median value
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/46Embedding additional information in the video signal during the compression process
    • H04N19/463Embedding additional information in the video signal during the compression process by compressing encoding parameters before transmission
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/50Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using predictive coding
    • H04N19/593Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using predictive coding involving spatial prediction techniques
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/90Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using coding techniques not provided for in groups H04N19/10-H04N19/85, e.g. fractals
    • H04N19/96Tree coding, e.g. quad-tree coding

Definitions

  • the present invention relates to a moving image encoding device, a moving image decoding device, a moving image encoding method, and a moving image decoding method that perform intra prediction processing or intra prediction processing to perform predictive encoding.
  • FIG. 15 is an explanatory diagram illustrating an intra prediction mode when the luminance block size is 4 ⁇ 4 pixels.
  • the luminance block size is 4 ⁇ 4 pixels
  • nine intra prediction modes from mode 0 to mode 8 are defined.
  • mode 2 is an intra prediction mode related to average value prediction, and is a mode in which pixels in an encoding target block are predicted by an average value of adjacent pixels in the upper and left blocks.
  • the modes other than mode 2 are intra prediction modes related to directionality prediction.
  • Mode 0 is an intra prediction mode related to vertical prediction, and a prediction image is generated by repeating adjacent pixels in the upper block in the vertical direction. For example, mode 0 is selected when the encoding target block has a vertical stripe pattern.
  • Mode 1 is an intra prediction mode related to horizontal prediction, and a prediction image is generated by repeating adjacent pixels of the left block in the horizontal direction.
  • modes 3 to 8 a predicted image is generated by generating an interpolation pixel in a predetermined direction (direction indicated by an arrow) using adjacent pixels of the upper block or the left block.
  • the luminance block size to which the intra prediction is applied can be selected from 4 ⁇ 4 pixels, 8 ⁇ 8 pixels, and 16 ⁇ 16 pixels, and in the case of 8 ⁇ 8 pixels, 4 ⁇ 4 pixels.
  • nine intra prediction modes are defined.
  • 16 ⁇ 16 pixels in addition to intra prediction modes related to average value prediction, vertical direction prediction, and horizontal direction prediction, four intra prediction modes called plane prediction are defined.
  • the intra prediction mode related to the planar prediction is a mode in which a pixel generated by interpolating an adjacent pixel of the upper block and an adjacent pixel of the left block in an oblique direction is used as a prediction value.
  • Patent Document 1 discloses a technique that can reduce the amount of code related to the intra prediction mode by using a frequency information table that counts the frequency of occurrence of the intra prediction mode. It is necessary to prepare a frequency information table.
  • the conventional video encoding apparatus is configured as described above, if the number of selectable directional prediction modes is increased, the probability that the edge direction matches the direction indicated by the prediction mode increases, and the prediction efficiency is improved. Can be increased. However, if the number of selectable directional prediction modes is increased, there is a problem that the code amount of information related to the intra prediction mode increases.
  • the present invention has been made to solve the above-described problems, and an object of the present invention is to provide a moving picture coding apparatus and a moving picture coding method capable of suppressing an increase in the code amount of information related to the intra prediction mode. And Another object of the present invention is to obtain a moving picture decoding apparatus and a moving picture decoding method that can be applied to the above moving picture encoding apparatus and moving picture encoding method.
  • the same intra prediction parameter as that used when performing the intra prediction process on the encoding target block of the luminance signal.
  • the intra prediction parameter generation unit uses the same intra prediction parameter as the luminance signal as the intra prediction parameter used when the intra prediction process for the encoding target block of the color difference signal is performed.
  • a variable length encoding flag indicating whether or not prediction processing is being performed It is obtained by the.
  • the prediction image generation means when the predicted image generating means generates a predicted image of the color difference signal, the same intra prediction parameter as the intra prediction parameter used when performing the intra prediction process on the encoding target block of the luminance signal is used.
  • the intra-prediction process for the encoding target block of the chrominance signal is performed, or the intra-prediction process for the encoding target block of the chrominance signal is performed by applying the average prediction, and the variable-length encoding means
  • the prediction image generation means performs the intra prediction process for the current block to be encoded using the same intra prediction parameter as the luminance signal. Because it is configured to variable-length encode the flag indicating whether or not Without decreasing the prediction efficiency, there is an effect that it is possible to reduce the amount of codes according to the intra prediction mode of the color difference signals.
  • luminance is 4x4 pixel.
  • FIG. 1 is a block diagram showing a moving picture coding apparatus according to Embodiment 1 of the present invention.
  • the block dividing unit 1 divides the input image into blocks having a coding block size determined by the coding control unit 2 (blocks of prediction processing units), A process of outputting an encoding target block that is a block of a prediction processing unit is performed.
  • the block dividing unit 1 constitutes a block dividing unit.
  • the encoding control unit 2 determines the encoding block size and encodes the encoding target block output from the block dividing unit 1 from one or more selectable intra encoding modes and inter encoding modes. The process of determining the encoding mode with the highest is performed. In addition, when the coding mode having the highest coding efficiency is the intra coding mode, the coding control unit 2 sets the intra prediction parameter used when performing the intra prediction process on the current block in the intra coding mode. When the coding mode having the highest coding efficiency is determined to be the inter coding mode, the inter prediction parameter used when performing the inter prediction process for the current block in the inter coding mode is executed. To do.
  • the encoding control unit 2 performs a process of determining a prediction difference encoding parameter to be given to the transform / quantization unit 7 and the inverse quantization / inverse transform unit 8.
  • the encoding control unit 2 constitutes an encoding control unit.
  • the changeover switch 3 outputs the block to be coded output from the block dividing unit 1 to the intra prediction unit 4, and the coding control unit If the coding mode determined by 2 is the inter coding mode, a process of outputting the coding target block output from the block division unit 1 to the motion compensation prediction unit 5 is performed.
  • the intra prediction unit 4 refers to the locally decoded image stored in the intra prediction memory 10 and uses the intra prediction parameter determined by the encoding control unit 2 to output the encoding target block output from the changeover switch 3.
  • the intra prediction process is performed on the image to generate an intra predicted image (predicted image).
  • the changeover switch 3, the intra prediction unit 4, and the intra prediction memory 10 constitute a predicted image generation unit.
  • the motion compensated prediction unit 5 searches the motion vector by comparing the encoding target block output from the changeover switch 3 with the locally decoded image after filtering stored in the motion compensated prediction frame memory 12, and the motion vector Using the inter prediction parameters determined by the encoding control unit 2, an inter prediction process (motion compensation prediction process) is performed on the encoding target block to generate an inter prediction image.
  • an inter prediction process motion compensation prediction process
  • the subtraction unit 6 subtracts the intra prediction image generated by the intra prediction unit 4 or the inter prediction image generated by the motion compensation prediction unit 5 from the encoding target block output from the block division unit 1, A process of outputting a prediction difference signal (difference image) as a subtraction result to the transform / quantization unit 7 is performed.
  • the transform / quantization unit 7 refers to the prediction difference encoding parameter determined by the encoding control unit 2 and performs orthogonal transform processing (for example, DCT (discrete cosine transform)) on the prediction difference signal output from the subtraction unit 6.
  • the inverse quantization / inverse transform unit 8 refers to the prediction difference encoding parameter determined by the encoding control unit 2 and inversely quantizes the compressed data output from the transform / quantization unit 7, and the prediction difference
  • inverse orthogonal transform processing is performed on the transform coefficient that is compressed data after inverse quantization, and a local decoded prediction difference signal corresponding to the prediction difference signal output from the subtraction unit 6 is calculated.
  • the addition unit 9 includes the local decoded prediction difference signal calculated by the inverse quantization / inverse conversion unit 8, the intra prediction image generated by the intra prediction unit 4, or the inter prediction image generated by the motion compensation prediction unit 5. And a process of calculating a locally decoded image corresponding to the encoding target block output from the block dividing unit 1 is performed.
  • the intra prediction memory 10 is a recording medium that stores the locally decoded image calculated by the adding unit 9.
  • the loop filter unit 11 performs a predetermined filtering process on the local decoded image calculated by the adding unit 9 and performs a process of outputting the local decoded image after the filtering process.
  • the motion compensated prediction frame memory 12 is a recording medium that stores a locally decoded image after filtering processing.
  • variable length coding unit 13 outputs the compressed data output from the transform / quantization unit 7, the output signal of the coding control unit 2 (coding mode, intra prediction parameter or inter prediction parameter, prediction difference coding parameter),
  • the motion vector output from the motion compensation prediction unit 5 (when the encoding mode is the inter encoding mode) is subjected to variable length encoding to generate a bit stream.
  • the variable length coding unit 13 uses the intra determined by the coding control unit 2 among the prediction direction vectors related to the plurality of direction predictions in the intra prediction process.
  • variable length coding of the prediction parameter the prediction direction vector closest to the prediction direction vector indicated by the intra prediction parameter of the encoding target block determined by the encoding control unit 2 is specified, and the specified prediction direction representative vector Is encoded with variable length, and an index representing the difference between the prediction direction vector and the prediction direction representative vector indicated by the intra prediction parameter of the encoded block is variable length encoded.
  • the variable length encoding unit 13 constitutes variable length encoding means.
  • a block division unit 1 an encoding control unit 2, a changeover switch 3, an intra prediction unit 4, a motion compensation prediction unit 5, a subtraction unit 6, transform / quantization, which are components of the moving image encoding device.
  • FIG. 3 is a flowchart showing the processing contents (moving image coding method) of the moving image coding apparatus according to Embodiment 1 of the present invention.
  • FIG. 2 is a block diagram showing the inside of the variable length coding unit 13 of the moving picture coding apparatus according to Embodiment 1 of the present invention.
  • the variable length encoding unit 13 includes an intra prediction parameter variable length encoding unit 13a as one of the constituent elements.
  • the intra prediction parameter prediction value calculation unit 21 of the intra prediction parameter variable length encoding unit 13a calculates the encoding target block from the intra prediction parameter of the encoded block adjacent to the encoding target block output from the block division unit 1. The process which calculates the predicted value of the intra prediction parameter of is implemented.
  • the intra-prediction parameter binarization index calculation unit 22 matches the prediction value calculated by the intra-prediction parameter prediction value calculation unit 21 and the intra-prediction parameter of the block to be encoded with the index of the prediction direction representative vector. In addition to the flag indicating the determination result, if they match, the intra prediction parameter including the difference value between the prediction direction vector and the prediction direction representative vector indicated by the intra prediction parameter of the encoded block If a binary index is calculated, and if they do not match, a process for calculating an intra prediction parameter binarization index including the index of the prediction direction representative vector and the difference value is performed in addition to a flag indicating the determination result. .
  • the entropy coding unit 23 performs variable-length coding such as arithmetic coding on the intra prediction parameter binarization index calculated by the intra prediction parameter binarization index calculation unit 22 and outputs an intra prediction parameter codeword To implement.
  • FIG. 10 is a block diagram showing a moving picture decoding apparatus according to Embodiment 1 of the present invention.
  • the variable length decoding unit 31 receives a bit stream generated by the moving image encoding apparatus
  • the variable length decoding unit 31 receives compressed data, an encoding mode, and an intra prediction parameter (the encoding mode is an intra encoding mode) from the bit stream.
  • an intra prediction parameter the encoding mode is an intra encoding mode
  • inter prediction parameters when the coding mode is the inter coding mode
  • prediction differential coding parameters and motion vectors are subjected to variable length decoding. .
  • variable length decoding unit 31 performs variable length decoding of the index of the prediction direction representative vector as variable length decoding of the intra prediction parameter, and decodes the decoded block (the moving image in FIG. 1).
  • An index representing a difference between a prediction direction vector and a prediction direction representative vector indicated by an intra prediction parameter of a block corresponding to an “encoded block” of the image encoding device is variable-length decoded, and the index of the prediction direction representative vector and the above-described index Processing for determining the intra prediction parameter from the index representing the difference is performed.
  • the variable length decoding unit 31 constitutes a variable length decoding unit.
  • the inverse quantization / inverse transform unit 32 refers to the prediction difference encoding parameter variable length decoded by the variable length decoding unit 31 and inversely quantizes the compressed data variable length decoded by the variable length decoding unit 31.
  • a decoding prediction corresponding to the prediction difference signal output from the subtraction unit 6 of FIG. 1 is performed by referring to the prediction difference encoding parameter and performing an inverse orthogonal transform process on the transform coefficient that is the compressed data after the inverse quantization.
  • a process for calculating a differential signal is performed.
  • the inverse quantization / inverse transform unit 32 constitutes an inverse quantization means.
  • the changeover switch 33 outputs the intra-prediction parameter variable-length decoded by the variable-length decoding unit 31 to the intra-prediction unit 34 if the coding mode variable-length decoded by the variable-length decoding unit 31 is the intra-coding mode. If the encoding mode variable-length decoded by the variable-length decoding unit 31 is an inter-coding mode, a process of outputting the inter prediction parameters and motion vectors variable-length decoded by the variable-length decoding unit 31 to the motion compensation unit 35 carry out.
  • the intra prediction unit 34 performs an intra prediction process on the decoding target block using the intra prediction parameter output from the changeover switch 33 while referring to the decoded image stored in the intra prediction memory 37, and performs the intra prediction process. A process of generating (predicted image) is performed.
  • the changeover switch 33, the intra prediction unit 34, and the intra prediction memory 37 constitute a predicted image generation unit.
  • the motion compensation unit 35 uses the motion vector and the inter prediction parameter output from the changeover switch 33 while referring to the decoded image after filtering stored in the motion compensated prediction frame memory 39, and performs inter prediction on the decoding target block.
  • a process motion compensation prediction process
  • the addition unit 36 adds the decoded prediction difference signal calculated by the inverse quantization / inverse conversion unit 32 and the intra prediction image generated by the intra prediction unit 34 or the inter prediction image generated by the motion compensation unit 35. Then, a process of calculating a decoded image corresponding to the encoding target block output from the block dividing unit 1 in FIG. 1 is performed.
  • the intra prediction memory 37 is a recording medium that stores the decoded image calculated by the addition unit 36.
  • the loop filter unit 38 performs a predetermined filtering process on the decoded image calculated by the adding unit 36 and performs a process of outputting the decoded image after the filtering process.
  • the motion compensated prediction frame memory 39 is a recording medium that stores the decoded image after the filtering process.
  • variable length decoding unit 31 the variable length decoding unit 31, the inverse quantization / inverse conversion unit 32, the changeover switch 33, the intra prediction unit 34, the motion compensation unit 35, the addition unit 36, and the intra prediction that are components of the video decoding device.
  • each of the memory 37, the loop filter unit 38, and the motion compensation prediction frame memory 39 is configured by dedicated hardware (for example, a semiconductor integrated circuit on which a CPU is mounted, a one-chip microcomputer, or the like).
  • FIG. 12 is a flowchart showing the processing contents (moving image decoding method) of the moving image decoding apparatus according to Embodiment 1 of the present invention.
  • FIG. 11 is a block diagram showing the inside of the variable length decoding unit 31 of the moving picture decoding apparatus according to Embodiment 1 of the present invention.
  • the variable length decoding unit 31 incorporates an intra prediction parameter variable length decoding unit 31a as one of the components.
  • the entropy decoding unit 41 of the intra prediction parameter variable length decoding unit 31a performs a process of variable length decoding the intra prediction parameter binarization index from the intra prediction parameter codeword.
  • the intra prediction parameter prediction value calculation unit 42 performs a process of calculating the prediction value of the intra prediction parameter of the decoding target block from the intra prediction parameter of the decoded block adjacent to the decoding target block.
  • the intra prediction parameter index calculation unit 43 indicates that the flag included in the intra prediction parameter binarization index variable-length decoded by the entropy decoding unit 41 indicates that the prediction value matches the index of the prediction direction representative vector. Then, the prediction value calculated by the intra prediction parameter prediction value calculation unit 42 and the prediction direction vector and the prediction direction representative vector indicated by the intra prediction parameter of the decoded block included in the intra prediction parameter binarization index are included. If the intra prediction parameter is calculated from the difference value and the flag indicates that the prediction value and the index of the prediction direction representative vector do not match, the prediction value calculated by the intra prediction parameter prediction value calculation unit 42 And its intra prediction parameter binarization And index of the prediction direction representative vectors contained in index, carries out a process of calculating the intra prediction parameter from the above difference value.
  • each frame image of a video is used as an input image, motion compensation prediction is performed between adjacent frames, and the obtained prediction difference signal is subjected to compression processing by orthogonal transformation / quantization, and then A moving picture coding apparatus that performs variable length coding to generate a bit stream and a moving picture decoding apparatus that decodes a bit stream output from the moving picture coding apparatus will be described.
  • the moving picture coding apparatus in FIG. 1 performs intra-frame / inter-frame adaptive coding by dividing a video signal into blocks of various sizes in response to local changes in the spatial and temporal directions of the video signal. It is characterized by that.
  • a video signal has a characteristic that the complexity of the signal changes locally in space and time.
  • a small image such as a picture with a uniform signal characteristic in a relatively wide image area such as the sky or a wall, or a picture containing a person or fine texture, on a video frame.
  • a pattern having a complicated texture pattern in the region may be mixed.
  • Even when viewed temporally, the change in the pattern of the sky and the wall locally in the time direction is small, but because the outline of the moving person or object moves rigidly or non-rigidly in time, the temporal change Is big.
  • the encoding process generates a prediction difference difference signal with small signal power and entropy by temporal and spatial prediction, and reduces the overall code amount. If it can be applied uniformly, the code amount of the parameter can be reduced. On the other hand, if the same prediction parameter is applied to a large image region with respect to an image signal pattern having a large temporal and spatial change, the number of prediction differential signals increases because prediction errors increase. . Therefore, in a region where the temporal and spatial changes are large, the block size for performing the prediction process by applying the same prediction parameter is reduced, the amount of parameter data used for prediction is increased, and the power and entropy of the prediction difference signal are increased. It is desirable to reduce
  • the first embodiment in order to perform coding adapted to the general characteristics of such a video signal, first, prediction processing or the like is started from a predetermined maximum block size, and the video signal region is divided hierarchically. In addition, the prediction process and the encoding process of the prediction difference are adapted for each divided area.
  • the video signal format to be processed by the moving image encoding apparatus of FIG. 1 is a color video signal in an arbitrary color space such as a YUV signal composed of a luminance signal and two color difference signals, or an RGB signal output from a digital image sensor.
  • the video frame is an arbitrary video signal including a horizontal / vertical two-dimensional digital sample (pixel) sequence such as a monochrome image signal or an infrared image signal.
  • the gradation of each pixel may be 8 bits, or a gradation such as 10 bits or 12 bits.
  • a processing data unit corresponding to each frame of the video signal is referred to as a “picture”.
  • “picture” is described as a video frame signal that is sequentially scanned (progressive scan).
  • the video signal is an interlaced signal
  • “picture” is a unit constituting a video frame. It may be a field image signal.
  • the encoding control unit 2 determines the size of the maximum encoding block used for encoding the picture to be encoded (current picture) and the upper limit of the number of hierarchies into which the maximum encoding block is divided (FIG. 3). Step ST1).
  • the size of the maximum coding block for example, the same size may be determined for all the pictures according to the resolution of the video signal of the input image, or the local motion of the video signal of the input image
  • the size difference may be quantified as a parameter, and a small size may be determined for a picture with high motion, while a large size may be determined for a picture with little motion.
  • the block dividing unit 1 divides the picture into the picture of the input image with the maximum coding block size determined by the coding control unit 2, and outputs each divided picture.
  • the encoding control unit 2 divides each image area of the maximum encoding block size into encoding target blocks having the encoding block size hierarchically until reaching the upper limit of the number of division hierarchies previously determined. Then, the encoding mode for each encoding target block is determined (step ST2).
  • FIG. 4 is an explanatory diagram showing an example in which the maximum coding block is hierarchically divided into a plurality of coding target blocks.
  • the maximum coding block is a coding target block whose luminance component indicated as “0th layer” has a size of (L 0 , M 0 ).
  • the encoding target block is obtained by hierarchically dividing the maximum encoding block as a starting point to a predetermined depth separately defined by a quadtree structure.
  • the encoding target block is an image area of size (L n , M n ).
  • the encoding modes selectable by the encoding target block B n as represented by m (B n).
  • the encoding mode m (B n ) may be configured to use an individual mode for each color component, or common to all color components. It may be configured to use a mode.
  • description will be made assuming that it indicates a coding mode for a luminance component of a coding block of a YUV signal and 4: 2: 0 format.
  • the coding mode m (B n ) includes one or more intra coding modes (collectively referred to as “INTRA”), one or more inter coding modes (collectively referred to as “INTER”),
  • the encoding control unit 2 selects an encoding mode having the highest encoding efficiency for the encoding target block Bn from all the encoding modes available in the picture or a subset thereof. select.
  • the encoding target block Bn is divided into one or a plurality of prediction processing units (partitions) by the block dividing unit 1 as shown in FIG.
  • a partition belonging to the encoding target block B n is denoted as P i n (i is a partition number in the nth layer).
  • How the partitioning of the encoding target block Bn is performed is included as information in the encoding mode m ( Bn ). All partitions P i n are subjected to prediction processing according to the coding mode m (B n ), but individual prediction parameters can be selected for each partition P i n .
  • the encoding control unit 2 generates a block division state as illustrated in FIG. 5 for the maximum encoding block, and identifies the encoding target block.
  • the shaded area in FIG. 5A shows the distribution of the partitions after the division
  • FIG. 5B shows the situation where the encoding mode m (B n ) is assigned by the hierarchical division in a quadtree graph. Yes. Nodes surrounded by ⁇ in FIG. 5B are nodes (encoding target blocks) to which the encoding mode m (B n ) is assigned. Detailed processing of layer division / coding mode determination in the coding control unit 2 will be described later.
  • Change-over switch 3 and the coding control unit 2 coding mode m which is determined by (B n) is an intra coding mode (m (B n) ⁇ INTRA), output from the block dividing unit 1
  • the encoding target block Bn is output to the intra prediction unit 4.
  • the encoding mode m (B n ) determined by the encoding control unit 2 is the inter encoding mode (when m (B n ) ⁇ INTER)
  • the block B n is output to the motion compensation prediction unit 5.
  • the intra prediction unit 4 has the coding mode m (B n ) determined by the coding control unit 2 in the intra coding mode (when m (B n ) ⁇ INTRA), and the block to be coded is switched from the changeover switch 3.
  • B n is received (step ST3)
  • the encoding target block B is referred to by using the intra prediction parameter determined by the encoding control unit 2 while referring to the local decoded image stored in the intra prediction memory 10. and implementing intra prediction process for each partition P i n in the n, it generates an intra prediction image P INTRAi n (step ST4).
  • intra prediction parameters used for generating the intra prediction image P INTRAi n is a variable from the encoding control unit 2
  • the data is output to the long encoding unit 13 and multiplexed into the bit stream. Details of processing contents of the intra prediction unit 4 will be described later.
  • the motion compensation prediction unit 5 is the encoding mode m (B n ) determined by the encoding control unit 2 is an inter coding mode (when m (B n ) ⁇ INTER), and the object to be encoded is selected from the changeover switch 3.
  • each partition P i n in the encoding target block B n is compared with the locally decoded image after the filtering process stored in the motion compensated prediction frame memory 12, and the motion vector is compared. to explore its using the motion vector and coding inter-prediction parameters determined by the control unit 2, implemented inter prediction processing for each partition P i n in the encoding target block B n, the inter prediction image generating a P INTERi n (step ST5).
  • the inter prediction parameters used for generating the inter prediction image P INTERi n the variable from the encoding control unit 2
  • the data is output to the long encoding unit 13 and multiplexed into the bit stream.
  • the motion vector searched by the motion compensation prediction unit 5 is also output to the variable length encoding unit 13 and multiplexed into the bit stream.
  • Subtraction unit 6 upon receiving the encoding target block B n from the block dividing unit 1 from its partition P i n in the encoding target block B n, the intra prediction image P INTRAi n generated by the intra prediction unit 4, or subtracts the inter prediction image P INTERi n generated by the motion compensation prediction unit 5, and outputs the prediction difference signal e i n a subtraction result to the transform and quantization unit 7 (step ST6).
  • the transform / quantization unit 7 When receiving the prediction difference signal e i n from the subtraction unit 6, the transform / quantization unit 7 refers to the prediction difference encoding parameter determined by the encoding control unit 2 and is orthogonal to the prediction difference signal e i n . Transformation processing (for example, DCT (discrete cosine transformation) or orthogonal transformation processing such as KL transformation in which a base design is made in advance for a specific learning sequence) is performed to calculate a transformation coefficient. In addition, the transform / quantization unit 7 refers to the prediction difference encoding parameter, quantizes the transform coefficient, and performs the inverse quantization / inverse transform unit 8 and the variable length on the compressed data that is the transform coefficient after quantization. It outputs to the encoding part 13 (step ST7).
  • the inverse quantization / inverse transform unit 8 When receiving the compressed data from the transform / quantization unit 7, the inverse quantization / inverse transform unit 8 refers to the prediction difference encoding parameter determined by the encoding control unit 2 and dequantizes the compressed data. .
  • the inverse quantization / inverse transform unit 8 refers to the prediction differential encoding parameter and performs inverse orthogonal transform processing (for example, inverse DCT, inverse KL transform) on the transform coefficient that is the compressed data after inverse quantization. And a local decoded prediction difference signal corresponding to the prediction difference signal e i n output from the subtraction unit 6 is calculated (step ST8).
  • the adding unit 9 Upon receiving the local decoded prediction difference signal from the inverse quantization / inverse transform unit 8, the adding unit 9 receives the local decoded prediction difference signal and the intra predicted image P INTRAi n generated by the intra prediction unit 4 or motion compensation. by adding the inter prediction image P INTERi n generated by the prediction unit 5, the local decoded partition image, or as a collection of the local decoded partition image, the encoding target block B n output from the block dividing unit 1 A corresponding local decoded image is calculated (step ST9). The adding unit 9 outputs the locally decoded image to the loop filter unit 11 and stores the locally decoded image in the intra prediction memory 10. This locally decoded image becomes an image signal for subsequent intra prediction.
  • the loop filter unit 11 When the loop filter unit 11 receives the local decoded image from the adding unit 9, the loop filter unit 11 performs a predetermined filtering process on the local decoded image and stores the local decoded image after the filtering process in the motion compensated prediction frame memory 12. (Step ST10).
  • the filtering process by the loop filter unit 11 may be performed in units of the maximum encoded block or individual encoded blocks of the input local decoded image, or a local decoded image corresponding to a macroblock for one screen is input. After being done, it may be performed for one screen at a time.
  • variable length encoding unit 13 When the variable length encoding unit 13 completes the processes of steps ST3 to ST9 for all the encoding target blocks Bn (steps ST11 and ST12), the variable length encoding unit 13 and the encoding control are performed.
  • a stream is generated (step ST13). Details of processing contents of the variable length coding unit 13 will be described later.
  • FIG. 6 is an explanatory diagram showing an example of each partition P i n-selectable intra prediction parameters of the encoding target block B n (intra prediction mode). 6 shows the intra prediction mode and the prediction direction vector indicated by the intra prediction mode. In the example of FIG. 6, the relative angle between the prediction direction vectors decreases as the number of selectable intra prediction modes increases. Designed to be
  • Intra prediction unit 4 as described above, with reference to the intra prediction parameters partitions P i n, to implement intra prediction processing for the partition P i n, but to generate an intra prediction image P INTRAi n, where in, on the basis of the intra prediction parameters (intra prediction mode) for the luminance signal partitions P i n, described intra process of generating an intra prediction signal of the luminance signal.
  • the pixel (2 ⁇ l i n +1) pieces of coded upper partition adjacent to the partition P i n as pixels used for predicting a pixel (2 ⁇ m i n) pieces of the left partition
  • the number of pixels used for prediction may be more or less than the pixels shown in FIG.
  • pixels for one row or one column adjacent to each other are used for prediction, but pixels of two rows, two columns, or more may be used for prediction.
  • the index value of the intra prediction mode for the partition P i n is 2 (average value prediction)
  • the average value of the adjacent pixels of the upper partition and the adjacent pixels of the left partition is predicted as the predicted value of the pixels in the partition P i n Generate an image.
  • the integer pixel When the reference pixel is at the integer pixel position, the integer pixel is set as the prediction value of the prediction target pixel. When the reference pixel is not at the integer pixel position, an interpolation pixel generated from the integer pixel adjacent to the reference pixel is selected. Predicted value. In the example of FIG. 7, since the reference pixel is not located at the integer pixel position, an average value of two pixels adjacent to the reference pixel is set as a predicted value. Note that an interpolation pixel may be generated not only from two adjacent pixels but also from two or more adjacent pixels, and used as a predicted value. In a similar procedure, to generate a predicted pixel for all the pixels of the luminance signal in the partition P i n outputs an intra prediction image P INTRAi n. Incidentally, the intra prediction parameters used for generating the intra prediction image P INTRAi n is outputted to the variable length coding unit 13 for multiplexing the bitstream.
  • the intra processing performed based on the intra prediction parameters (intra prediction mode), the variable intra prediction parameter used to generate the intra-prediction image
  • the data is output to the long encoding unit 13.
  • Variable length coding unit 13 calculates a predicted value of intra prediction parameters partitions P i n to be encoded Then, predictive encoding is performed using the predicted value. That is, the intra prediction parameter prediction value calculation unit 21 of the intra prediction parameter variable length encoding unit 13a constituting a part of the variable length encoding unit 13 performs coding based on the intra prediction parameters of the encoded peripheral partitions. The prediction value of the intra prediction parameter of the partition P i n to be converted is calculated.
  • FIG. 8 is an explanatory diagram showing an example of encoded peripheral partition used for calculating the predicted value of intra prediction parameters partitions P i n.
  • the left partition P i n (A), above (B), upper right (C), are used intra prediction parameters partition the upper left (D) for the calculation of the predicted value.
  • FIG. 6 The process in which the intra prediction parameter prediction value calculation part 21 calculates a prediction value is demonstrated to the case where the number of intra prediction modes is 17 types shown in FIG. 6 as an example.
  • 17 types of intra prediction modes include an average value prediction mode and 16 types of direction prediction modes.
  • FIG. 9 is an explanatory diagram showing an example of prediction direction vectors in 16 types of directional prediction modes excluding index values and average value predictions in 17 types of intra prediction modes. It is assumed that a prediction direction representative vector indicating a representative direction out of 16 types of prediction direction vectors is determined in advance. In the following description, a case where nine prediction direction vectors “0” to “8” shown in FIG. 9 are predetermined as prediction direction representative vectors will be described as an example.
  • the intra prediction parameter prediction value calculation unit 21 calculates a prediction direction representative index from the intra prediction mode of the encoded peripheral partition used for calculation of the prediction value.
  • the prediction direction representative index of the directionality prediction mode is an index of the prediction direction representative vector having the smallest relative angle with respect to the prediction direction vector indicated by the directionality prediction mode. That is, the index value of the prediction direction representative vector whose direction is close to that of the prediction direction vector indicated by the directionality prediction mode.
  • the prediction direction representative index in the average value prediction mode is the index value of itself (average value prediction mode).
  • FIG. 9 shows prediction direction representative indexes of 17 types of intra prediction modes. Furthermore, a prediction direction difference index is assigned to an intra prediction mode index having the same prediction direction representative index.
  • the left peripheral partition partition P i n used for calculating the predicted value (A), in the case where a partition above (B), upper right (C), top left (D), the partition A, B, C, D
  • the prediction direction representative index is set to m A , m B , m C , and m D , respectively, statistics values such as mode values, minimum values, and medians of m A , m B , m C , and m D are preliminarily stored.
  • the determined statistical value is set as a predicted value pm p .
  • the prediction direction representative index drawning direction of the prediction direction representative vectors represent a lower left oblique 8 in the example of 9, as the predicted value pm p partitions P i n.
  • a prediction direction representative index of one partition determined in advance from among the A, B, C, and D partitions may be used as the predicted value pm p .
  • a prediction direction representative index (for example, an index in the average value prediction mode) determined in advance may be used as the prediction value pm p without using the prediction direction representative index of the peripheral partition. Then, the calculated prediction value pm p is output to the intra prediction parameter binarization index calculation unit 22.
  • Intra prediction parameters binarization index calculation unit 22 receives a coded partition P i n intra prediction parameters with m p (index of an intra prediction mode) the predicted value pm p, intra prediction parameters binarization index Calculate dm p .
  • m p index of an intra prediction mode
  • rm p be the prediction direction representative index of the intra prediction mode mp.
  • the prediction direction difference index of the intra prediction mode m p is set to dr p , and the processing based on the following expression is further performed on the intra prediction parameter binarization index dm p .
  • the first bit is a flag bit indicating whether the prediction direction representative index rm p of the intra prediction mode matches the prediction value pm p ( In the above calculation formula, “0” is assigned if they match, and “1” is assigned if they do not match).
  • 2 ⁇ (k + 1) bits of the intra prediction parameters binarization index dm p becomes the bits representing the prediction direction difference index value .
  • the entropy encoding unit 23 converts the intra prediction parameter binarization index dm p output from the intra prediction parameter binarization index calculation unit 22 for each prediction direction representative index rm p and each prediction direction difference index. Depending on the situation, the context is switched to perform Huffman coding such as arithmetic coding.
  • the intra prediction parameter codeword that is the encoding result is multiplexed into a bitstream by a bitstream multiplexing unit (not shown) of the variable length encoding unit 13.
  • coding 1 encodes a representative prediction direction vector (prediction direction representative) from prediction direction vectors of a plurality of directional predictions when encoding intra prediction parameters.
  • Vector and the intra prediction parameters are represented by an index of the prediction direction representative vector (prediction direction representative index) and an index representing the difference from the prediction direction representative vector (prediction direction difference index), and the probability for each index.
  • Huffman coding such as arithmetic coding according to the model, coding can be performed with a reduced code amount.
  • variable length decoding unit 31 receives the bitstream generated by the moving picture encoding device in FIG. 1, the variable length decoding unit 31 performs variable length decoding processing on the bitstream (step ST21 in FIG. 12), and a picture of one frame or more.
  • the frame size information is decoded in sequence units or picture units.
  • the variable length decoding unit 31 determines the maximum coding block size and the upper limit of the number of divided layers determined by the coding control unit 2 of the moving picture coding apparatus in FIG. 1 in the same procedure as the moving picture coding apparatus. (Step ST22). For example, when the maximum encoding block size is determined according to the resolution of the video signal, the maximum encoding block size is determined based on the decoded frame size information in the same procedure as the moving image encoding apparatus. When the maximum encoding block size and the upper limit of the number of division layers are multiplexed on the bit stream on the moving image encoding device side, values decoded from the bit stream are used. As shown in FIG.
  • the moving image encoding apparatus is configured to encode an encoding mode and a conversion / conversion in units of encoding target blocks obtained by hierarchically dividing a maximum encoding block into a plurality of encoding target blocks starting from a starting point.
  • the compressed data obtained by quantization is multiplexed into a bit stream.
  • the variable length decoding unit 31 that has received the bit stream decodes the division state of the maximum coding block included in the coding mode in the determined maximum coding block unit. Based on the decoded division state, a decoding target block (a block corresponding to the “encoding target block” of the moving image encoding apparatus in FIG. 1) is identified hierarchically (step ST23).
  • variable length decoding unit 31 decodes the encoding mode assigned to the encoding target block. Based on the information included in the decoded encoding mode, the encoding target block is further divided into one or more prediction processing units, and the prediction parameter assigned to the prediction processing unit is decoded (step ST24).
  • the variable length decoding unit 31 is included in the decoding target block (encoding target block), and the prediction process
  • the intra prediction parameter is decoded for each of one or more partitions as a unit. Decoding the intra prediction parameters is based on the intra prediction parameters decoded partition near the same procedure as the video encoding apparatus calculates a predicted value of intra prediction parameters partitions P i n is decoded, the prediction Decode using the value.
  • the entropy decoding unit 41 in the intra prediction parameter variable length decoding unit 31a that constitutes a part of the variable length decoding unit 31 inputs the intra prediction parameter codeword included in the bitstream, and the intra prediction The intra prediction parameter binarization index is variable-length decoded from the parameter codeword.
  • the intra prediction parameter prediction value calculation unit 42 performs the same procedure as the intra prediction parameter prediction value calculation unit 21 of the video encoding device, and determines the decoding target block from the intra prediction parameters of the decoded blocks adjacent to the decoding target block. A prediction value of the intra prediction parameter is calculated.
  • the intra prediction parameter index calculation unit 43 calculates an intra prediction parameter from the intra prediction parameter binarization index variable-length decoded by the entropy decoding unit 41 and the prediction value calculated by the intra prediction parameter prediction value calculation unit 42. To do. Hereinafter, a method for calculating the intra prediction parameter will be described.
  • the intra prediction parameter index calculation unit 43 calculates a prediction direction representative index and a prediction direction difference index in order to calculate an intra prediction parameter index.
  • intra prediction parameter binarization index be dm p .
  • the prediction value pm p is set as the prediction direction representative index value rm p .
  • the first bit of the intra-prediction parameter binarization index dm p is “1”
  • 2 to (k + 1) bits are subsequently decoded
  • the value RM p obtained by decoding 2 to (n + 1) bits is
  • the prediction direction representative index value rm p is calculated by the equation.
  • the intra prediction parameter index calculation unit 43 decodes the second to (k + 1) th bits, and the first bit is “1”. In this case, the (n + 2) to (n + k + 1) -th bits are decoded, and the decoded value is set as a prediction direction difference index dr p .
  • the intra prediction parameter index is decoded based on the prediction direction representative index and the prediction direction difference index, similarly to the video encoding device.
  • the variable length decoding unit 31 includes one or more partitions that are included in the decoding target block (encoding target block) and serve as a prediction processing unit. Inter prediction parameters are decoded every time.
  • the variable length decoding unit 31 further divides the partition serving as the prediction processing unit into one or a plurality of partitions serving as the transform processing unit based on the information of the transform block size included in the prediction differential encoding parameter.
  • the compressed data (transformed / transformed transform coefficient) is decoded for each partition (step ST24).
  • variable-length decoded by the variable-length decoding unit 31 is an intra-encoding mode (when m (B n ) ⁇ INTRA)
  • the changeover switch 33 is changed by the variable-length decoding unit 31.
  • the variable length decoded intra prediction parameter is output to the intra prediction unit 34.
  • variable length decoded coding mode m (B n) is if the inter coding mode by the variable length decoding unit 31, variable length decoding by the variable length decoding unit 31
  • the inter prediction parameter and the motion vector thus output are output to the motion compensation unit 35.
  • the intra prediction unit 34 is an intra coding mode when the coding mode m (B n ) variable-length decoded by the variable length decoding unit 31 is m (B n ) ⁇ INTRA, and the intra prediction is performed from the changeover switch 33.
  • the intra prediction parameters output from the changeover switch 33 while referring to the local decoded image stored in the intra prediction memory 37 in the same procedure as the intra prediction unit 4 in FIG. using, by implementing the intra prediction process for each partition P i n the decoding target block B n, it generates an intra prediction image P INTRAi n (step ST26).
  • the motion compensation unit 35 encodes from the changeover switch 33 when the encoding mode m (B n ) variable-length decoded by the variable-length decoding unit 31 is an inter encoding mode (when m (B n ) ⁇ INTER).
  • the motion vector output from the changeover switch 33 and the inter prediction parameter are used while referring to the decoded image after the filtering process stored in the motion compensated prediction frame memory 39. , by carrying out inter-prediction process for the decoding target block to generate an inter prediction image P INTERi n (step ST27).
  • the inverse quantization / inverse conversion unit 32 When receiving the compressed data and the prediction difference encoding parameter from the variable length decoding unit 31, the inverse quantization / inverse conversion unit 32 performs the prediction difference encoding in the same procedure as the inverse quantization / inverse conversion unit 8 of FIG. With reference to the parameters, the compressed data is inversely quantized, and with reference to the prediction differential encoding parameter, the inverse orthogonal transform process is performed on the transform coefficient that is the compressed data after the inverse quantization. The decoded prediction difference signal corresponding to the prediction difference signal output from the subtraction unit 6 is calculated (step ST28).
  • Addition unit 36 decodes the prediction difference signal calculated by the inverse quantization and inverse transform unit 32, an intra prediction image P INTRAi n generated by the intra prediction unit 34 or, inter prediction generated by the motion compensation unit 35 by adding the image P INTERi n, as a collection of one or more of the decoded partition image included in the decoding target block, and outputs the decoded image to the loop filter unit 38, a memory 37 for intra prediction the decoded image (Step ST29). This decoded image becomes an image signal for subsequent intra prediction.
  • step ST30 When the processing of steps ST23 to ST29 for all the decoding target blocks Bn is completed (step ST30), the loop filter unit 11 performs a predetermined filtering process on the decoded image output from the adding unit 36, The decoded image after the filtering process is stored in the motion compensated prediction frame memory 39 (step ST31). This decoded image becomes a reference image for motion compensation prediction and also becomes a reproduced image.
  • variable length decoding unit 31 of the moving picture decoding apparatus in FIG. 10 selects a representative prediction direction vector (prediction direction representative vector) selected from the prediction direction vectors of a plurality of directional predictions. ) And the index (prediction direction difference index) representing the difference from the prediction direction representative vector are entropy-decoded by arithmetic decoding or the like according to each probability model, thereby reducing the code amount. Intra prediction parameters can be correctly decoded.
  • the variable length coding unit 13 of the moving picture coding apparatus performs block division among prediction direction vectors related to a plurality of direction predictions in intra prediction processing.
  • a prediction direction vector prediction direction representative vector
  • the index of the prediction direction representative vector is variable length coded and the difference between the prediction direction vector and the prediction direction representative vector indicated by the intra prediction parameter of the encoded block Since the index indicating the variable length coding is configured, a selectable direction prediction mode is selected. Greater numbers, an effect that it is possible to suppress an increase in code amount of information relating to the intra prediction mode.
  • variable length decoding unit 31 of the moving picture decoding apparatus performs variable length decoding of the index of the prediction direction representative vector as variable length decoding of the intra prediction parameter, and intra of the decoded block.
  • the index representing the difference between the prediction direction vector indicated by the prediction parameter and the prediction direction representative vector is variable-length decoded, and the intra prediction parameter is determined from the index representing the prediction direction representative vector and the index representing the difference. Therefore, there is an effect that the encoded bitstream can be correctly decoded by reducing the code amount of the intra prediction parameter without reducing the prediction efficiency.
  • the intra prediction unit 4 of the moving image encoding apparatus handles the luminance signal and the color difference signal in the video signal in the same manner, and performs the intra prediction process for the encoding target block of the luminance signal and the encoding of the color difference signal. Intra prediction processing for the target block is performed independently. For this reason, the variable length coding unit 13 performs the intra prediction process for the intra prediction process used for the encoding target block of the luminance signal and the intra prediction process for the coding target block of the color difference signal. Intra prediction parameters used in the above are individually variable-length coded and multiplexed into a bitstream.
  • the characteristics of the luminance signal encoding target block and the color difference signal encoding target block are approximate, and the intra prediction parameters used when performing the intra prediction processing on both of the encoding target blocks.
  • the intra prediction parameters multiplexed in the bit stream are redundant.
  • the intra prediction unit 4 when the intra prediction unit 4 generates a color difference signal prediction image, for example, the characteristics of the luminance signal encoding target block and the color difference signal encoding target block are approximated.
  • the intra prediction process for the coding target block of the color difference signal using the same intra prediction parameter as the intra prediction parameter used when the intra prediction process for the coding target block of the luminance signal is performed, An example of reducing intra prediction parameters multiplexed in a stream will be described.
  • FIG. 13 is an explanatory diagram showing an example of the partition P i n the luminance signal and color difference signals.
  • Intra prediction unit 4 of the moving picture coding apparatus includes, as shown in FIG. 13 (a), if the luminance signal partitions P i n (Y) there is an edge, also the color difference signals (Cb, Cr) The intra prediction parameter applied by the luminance signal is applied as it is as the intra prediction parameter of the chrominance signal to generate an intra prediction image.
  • FIG. 13 (b) even if there is an edge in the luminance signal of the partition P i n (Y), there is no edge in the case of the edge of the gray scale, color difference signals (Cb, Cr) There is also. In such a case, the intra prediction image is generated by applying the average value prediction without applying the intra prediction parameter of the luminance signal.
  • the prediction residual becomes large in the pixels in the region where the edge boundary is blurred or broken, and the amount of code related to the prediction residual increases. Therefore, in order to avoid the occurrence of a situation in which the amount of code related to the prediction residual increases, as shown in FIG. 14, the same intra prediction parameters as the intra prediction parameters used when the intra prediction process is performed on the coding target block of the luminance signal.
  • a prediction image is generated by performing intra prediction processing on a coding target block of a color difference signal using a prediction parameter, and then a smoothing filter is applied to the prediction image so as to blur an edge.
  • the predicted image after the filter process is a predicted image of the color difference signal.
  • the variable-length coding unit 13 performs variable-length coding on the intra prediction parameter applied to the luminance signal and multiplexes it into the bitstream, as in the first embodiment, but the intra-prediction applied to the color difference signal.
  • the parameters are as follows. That is, the variable length coding unit 13 does not perform variable length coding on the intra prediction parameter itself applied in the chrominance signal, and uses the same intra prediction parameter as the luminance signal instead of the intra prediction parameter.
  • a 1-bit flag indicating whether intra prediction processing is performed on the current block to be encoded or whether average value prediction is applied is entropy-encoded by arithmetic encoding or the like.
  • a 1-bit flag is multiplexed into the bitstream as an intra prediction parameter applied in the color difference signal. If necessary, when a smoothing filter is applied to a predicted image, a 1-bit flag indicating whether or not the smoothing filter is applied is entropy-encoded by arithmetic encoding or the like.
  • the intra prediction unit 4 generates the intra prediction image by applying the average value prediction when the intra prediction parameter of the luminance signal is not applied when the prediction image of the color difference signal is generated.
  • a prediction image may be generated by applying a mode (directional prediction mode) corresponding to a plurality of representative prediction direction vectors such as horizontal prediction and vertical prediction.
  • An image obtained by applying a smoothing filter to a predicted image generated by applying the directionality prediction mode may be used as a predicted image of a color difference signal.
  • the variable length decoding unit 31 of the moving picture decoding apparatus in FIG. 10 performs variable length decoding of a 1-bit flag from the bitstream as an intra prediction parameter applied with the color difference signal.
  • the intra prediction unit 34 indicates that the flag variable-length decoded by the variable-length decoding unit 31 is performing intra prediction processing on the encoding target block of the color difference signal using the same intra prediction parameters as the luminance signal. 1, similarly to the intra prediction unit 4 in FIG. 1, using the same intra prediction parameters as the luminance signal, intra prediction processing is performed on the decoding target block (encoding target block) of the chrominance signal to predict the chrominance signal. Generate an image.
  • the intra prediction process is not performed on the encoding target block of the color difference signal using the same intra prediction parameter as the luminance signal.
  • average prediction is applied, and intra prediction processing is performed on the decoding target block of the color difference signal to generate a prediction image of the color difference signal.
  • horizontal prediction or vertical prediction
  • horizontal prediction is applied to perform intra prediction processing on the decoding target block of the color difference signal. It implements and produces
  • the intra prediction unit 34 indicates that the flag is applied with the smoothing filter. If the same intra prediction parameter as the luminance signal is used, intra prediction processing is performed on the decoding target block of the color difference signal to generate a prediction image of the color difference signal, and then a smoothing filter is applied to the prediction image. Make a call. In this case, the predicted image after the filter process is a predicted image of the color difference signal.
  • the intra prediction process for the encoding target block of the luminance signal is performed.
  • Intra prediction processing is performed, and the intra prediction unit 4 uses the same intra prediction parameters as the luminance signal as the intra prediction parameters used when the variable length encoding unit 13 performs the intra prediction processing for the encoding target block of the color difference signal.
  • variable-length coding a flag indicating an effect that may be without decreasing the prediction efficiency, to reduce the amount of codes according to the intra prediction mode of the color difference signals.
  • the intra prediction unit 4 of the video encoding device performs the intra prediction process on the encoding target block of the color difference signal to generate the prediction image of the color difference signal, Since the smoothing filter is applied to the predicted image, the prediction efficiency can be improved and the code amount of the residual signal can be reduced.
  • variable length decoding unit 31 of the video decoding device performs variable length decoding of the flag from the bitstream
  • the intra prediction unit 34 stores the flag variable length decoded by the variable length decoding unit 31. If the same intra prediction parameter as that of the luminance signal is used to indicate that intra prediction processing is performed on the encoding target block of the chrominance signal, the decoding of the chrominance signal is performed using the same intra prediction parameter as that of the luminance signal. Intra prediction processing for the target block (coding target block) is performed to generate a color difference signal prediction image, and the flag uses the same intra prediction parameters as the luminance signal, and intra prediction for the color difference signal encoding target block is performed.
  • average value prediction is applied to the decoding target block of the color difference signal. Since the intra-prediction process is performed to generate the prediction image of the color difference signal, the encoded bitstream is correctly generated by reducing the code amount of the intra prediction parameter of the color difference signal without reducing the prediction efficiency. The effect which can be decoded is produced.
  • the intra prediction unit 34 of the video decoding device performs intra prediction processing on the decoding target block of the color difference signal to generate a predicted image of the color difference signal, and then performs the prediction. Since the smoothing filter is applied to the image, it is possible to increase the prediction efficiency and reduce the amount of code related to the residual signal, thereby correctly decoding the encoded bitstream.
  • the moving picture coding apparatus, the moving picture decoding apparatus, the moving picture coding method, and the moving picture decoding method according to the present invention have the code amount according to the intra prediction mode of the chrominance signal without reducing the prediction efficiency. Therefore, a moving picture coding apparatus, a moving picture decoding apparatus, a moving picture coding method, a moving picture decoding method, and the like that perform predictive coding by performing intra prediction processing or inter prediction processing, etc. Suitable for use in.
  • 1 block division unit (block division unit), 2 encoding control unit (encoding control unit), 3 changeover switch (prediction image generation unit), 4 intra prediction unit (prediction image generation unit), 5 motion compensation prediction unit, 6 Subtraction unit (quantization means), 7 transformation / quantization unit (quantization means), 8 inverse quantization / inverse transformation unit, 9 addition unit, 10 intra prediction memory (prediction image generation unit), 11 loop filter unit, 12 motion compensation prediction frame memory, 13 variable length coding unit (variable length coding means), 13a intra prediction parameter variable length coding unit, 21 intra prediction parameter prediction value calculation unit, 22 intra prediction parameter binarization index calculation unit , 23 Entropy encoding unit, 31 Variable length decoding unit (variable length decoding means), 31a Intra prediction parameter variable length recovery Unit, 32 inverse quantization / inverse transform unit (inverse quantization unit), 33 changeover switch (prediction image generation unit), 34 intra prediction unit (prediction image generation unit), 35 motion compensation unit, 36 addition unit, 37 intra prediction Memory (predicted image generating means), 38 loop filter

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Computing Systems (AREA)
  • Theoretical Computer Science (AREA)
  • Compression Or Coding Systems Of Tv Signals (AREA)

Abstract

 イントラ予測部4が、色差信号の予測画像を生成する際、輝度信号の符号化対象ブロックに対するイントラ予測処理を実施する際に用いるイントラ予測パラメータと同じイントラ予測パラメータを用いて、色差信号の符号化対象ブロックに対するイントラ予測処理を実施し、あるいは、平均値予測を適用して、色差信号の符号化対象ブロックに対するイントラ予測処理を実施し、可変長符号化部13が、イントラ予測部4が輝度信号と同じイントラ予測パラメータを用いているか否かを示すフラグを可変長符号化する。

Description

動画像符号化装置、動画像復号装置、動画像符号化方法及び動画像復号方法
 この発明は、イントラ予測処理又はインター予測処理を実施して予測符号化を実施する動画像符号化装置、動画像復号装置、動画像符号化方法及び動画像復号方法に関するものである。
 動画像符号化装置が実施するイントラ予測処理のうち、AVC/H.264符号化方式におけるイントラ予測モードについて説明する。
 輝度のイントラ予測モードでは、複数の予測モードの中から、ブロック単位に1つの予測モードを選択することができる。
 図15は輝度のブロックサイズが4×4画素の場合のイントラ予測モードを示す説明図である。
 輝度のブロックサイズが4×4画素の場合には、モード0からモード8の9つのイントラ予測モードが規定されている。
 図15の例では、白丸が符号化対象のブロック内の画素であり、黒丸が予測に用いる画素であって、符号化済みの隣接ブロック内の画素である。
 ただし、モード2は平均値予測に係るイントラ予測モードであり、上と左のブロックの隣接画素の平均値で、符号化対象ブロック内の画素を予測するモードである。モード2以外のモードは方向性予測に係るイントラ予測モードである。
 モード0は垂直方向予測に係るイントラ予測モードであり、上のブロックの隣接画素を垂直方向に繰り返すことにより、予測画像を生成する。例えば、符号化対象ブロックが縦縞模様のときにはモード0が選択される。
 また、モード1は水平方向予測に係るイントラ予測モードであり、左のブロックの隣接画素を水平方向に繰り返すことにより、予測画像を生成する。
 モード3からモード8は、上のブロック又は左のブロックの隣接画素を用いて、所定の方向(矢印で示す方向)に補間画素を生成することにより、予測画像を生成する。
 ここで、イントラ予測を適用する輝度のブロックサイズは、4×4画素、8×8画素、16×16画素の中から選択することができ、8×8画素の場合には、4×4画素と同様に、9つのイントラ予測モードが規定されている。
 これに対し、16×16画素の場合には、平均値予測、垂直方向予測及び水平方向予測に係るイントラ予測モードに加えて、平面予測と呼ばれる4つのイントラ予測モードが規定されている。
 平面予測に係るイントラ予測モードは、上のブロックの隣接画素と左のブロックの隣接画素を斜め方向に内挿補間して生成した画素を予測値とするモードである。
 なお、ブロックサイズが4×4画素又は8×8画素の場合の方向性予測モードでは、予め定められている方向(例えば、45度の方向)で予測値を生成するため、ブロック内のオブジェクトの境界(エッジ)の方向が、予測モードが示す方向と一致すれば、予測効率が高くなって符号量を削減することができる。
 ただし、ブロック内のオブジェクトのエッジの方向が、予測モードが示す方向と一致しなければ、予測効率が低下するため、符号量を削減することができない。
 以下の特許文献1には、イントラ予測モードの発生頻度をカウントしている頻度情報テーブルを使用すれば、イントラ予測モードに係る符号量を削減することができる技術を開示しているが、予め、頻度情報テーブルを用意する必要がある。
国際公開第2008/123254号公報
 従来の動画像符号化装置は以上のように構成されているので、選択可能な方向性予測のモード数を増やせば、エッジの方向と予測モードが示す方向が一致する確率が高まり、予測効率を高めることができる。しかし、選択可能な方向性予測のモード数を増やせば、イントラ予測モードに係る情報の符号量が増加してしまうなどの課題があった。
 この発明は上記のような課題を解決するためになされたもので、イントラ予測モードに係る情報の符号量の増加を抑えることができる動画像符号化装置及び動画像符号化方法を得ることを目的とする。
 また、この発明は、上記の動画像符号化装置及び動画像符号化方法に適用することができる動画像復号装置及び動画像復号方法を得ることを目的とする。
 この発明に係る動画像符号化装置は、予測画像生成手段が、色差信号の予測画像を生成する際、輝度信号の符号化対象ブロックに対するイントラ予測処理を実施する際に用いるイントラ予測パラメータと同じイントラ予測パラメータを用いて、色差信号の符号化対象ブロックに対するイントラ予測処理を実施し、あるいは、平均値予測を適用して、色差信号の符号化対象ブロックに対するイントラ予測処理を実施し、可変長符号化手段が、色差信号の符号化対象ブロックに対するイントラ予測処理を実施する際に用いるイントラ予測パラメータとして、予測画像生成手段が輝度信号と同じイントラ予測パラメータを用いて、色差信号の符号化対象ブロックに対するイントラ予測処理を実施しているか否かを示すフラグを可変長符号化するようにしたものである。
 この発明によれば、予測画像生成手段が、色差信号の予測画像を生成する際、輝度信号の符号化対象ブロックに対するイントラ予測処理を実施する際に用いるイントラ予測パラメータと同じイントラ予測パラメータを用いて、色差信号の符号化対象ブロックに対するイントラ予測処理を実施し、あるいは、平均値予測を適用して、色差信号の符号化対象ブロックに対するイントラ予測処理を実施し、可変長符号化手段が、色差信号の符号化対象ブロックに対するイントラ予測処理を実施する際に用いるイントラ予測パラメータとして、予測画像生成手段が輝度信号と同じイントラ予測パラメータを用いて、色差信号の符号化対象ブロックに対するイントラ予測処理を実施しているか否かを示すフラグを可変長符号化するように構成したので、予測効率を低下させることなく、色差信号のイントラ予測モードに係る符号量を削減することができる効果がある。
この発明の実施の形態1による動画像符号化装置を示す構成図である。 この発明の実施の形態1による動画像符号化装置の可変長符号化部13の内部を示す構成図である。 この発明の実施の形態1による動画像符号化装置の処理内容(動画像符号化方法)を示すフローチャートである。 最大符号化ブロックが階層的に複数の符号化対象ブロックに分割される例を示す説明図である。 (a)は分割後のパーティションの分布を示し、(b)は階層分割によって符号化モードm(B)が割り当てられる状況を示す説明図である。 符号化対象ブロックB内の各パーティションP が選択可能なイントラ予測パラメータ(イントラ予測モード)の一例を示す説明図である。 =m =4の場合のパーティションP 内の画素の予測値を生成する際に用いる画素の一例を示す説明図である。 パーティションP のイントラ予測パラメータの予測値の算出に用いる符号化済み周辺パーティションの一例を示す説明図である。 17種類のイントラ予測モードのインデックス値と平均値予測を除く、16種類の方向性予測モードの予測方向ベクトルの一例を示す説明図である。 この発明の実施の形態1による動画像復号装置を示す構成図である。 この発明の実施の形態1による動画像復号装置の可変長復号部31の内部を示す構成図である。 この発明の実施の形態1による動画像復号装置の処理内容(動画像復号方法)を示すフローチャートである。 輝度信号及び色差信号のパーティションP の一例を示す説明図である。 フィルタ処理前後の予測画像を示す説明図である。 輝度のブロックサイズが4×4画素の場合のイントラ予測モードを示す説明図である。
 以下、この発明をより詳細に説明するために、この発明を実施するための形態について、添付の図面に従って説明する。
実施の形態1.
 図1はこの発明の実施の形態1による動画像符号化装置を示す構成図である。
 図1において、ブロック分割部1は入力画像を示す映像信号を入力すると、その入力画像を符号化制御部2により決定された符号化ブロックサイズのブロック(予測処理単位のブロック)に分割して、予測処理単位のブロックである符号化対象ブロックを出力する処理を実施する。なお、ブロック分割部1はブロック分割手段を構成している。
 符号化制御部2は符号化ブロックサイズを決定するとともに、選択可能な1以上のイントラ符号化モード及びインター符号化モードの中から、ブロック分割部1から出力される符号化対象ブロックに対する符号化効率が最も高い符号化モードを決定する処理を実施する。
 また、符号化制御部2は符号化効率が最も高い符号化モードがイントラ符号化モードである場合、そのイントラ符号化モードで符号化対象ブロックに対するイントラ予測処理を実施する際に用いるイントラ予測パラメータを決定し、符号化効率が最も高い符号化モードがインター符号化モードである場合、そのインター符号化モードで符号化対象ブロックに対するインター予測処理を実施する際に用いるインター予測パラメータを決定する処理を実施する。
 さらに、符号化制御部2は変換・量子化部7及び逆量子化・逆変換部8に与える予測差分符号化パラメータを決定する処理を実施する。
 なお、符号化制御部2は符号化制御手段を構成している。
 切換スイッチ3は符号化制御部2により決定された符号化モードがイントラ符号化モードであれば、ブロック分割部1から出力された符号化対象ブロックをイントラ予測部4に出力し、符号化制御部2により決定された符号化モードがインター符号化モードであれば、ブロック分割部1から出力された符号化対象ブロックを動き補償予測部5に出力する処理を実施する。
 イントラ予測部4はイントラ予測用メモリ10に格納されている局所復号画像を参照しながら、符号化制御部2により決定されたイントラ予測パラメータを用いて、切換スイッチ3から出力された符号化対象ブロックに対するイントラ予測処理を実施してイントラ予測画像(予測画像)を生成する処理を実施する。
 なお、切換スイッチ3、イントラ予測部4及びイントラ予測用メモリ10から予測画像生成手段が構成されている。
 動き補償予測部5は切換スイッチ3から出力された符号化対象ブロックと動き補償予測フレームメモリ12に格納されているフィルタリング処理後の局所復号画像を比較して動きベクトルを探索し、その動きベクトルと符号化制御部2により決定されたインター予測パラメータを用いて、その符号化対象ブロックに対するインター予測処理(動き補償予測処理)を実施してインター予測画像を生成する処理を実施する。
 減算部6はブロック分割部1より出力された符号化対象ブロックから、イントラ予測部4により生成されたイントラ予測画像、または、動き補償予測部5により生成されたインター予測画像を減算して、その減算結果である予測差分信号(差分画像)を変換・量子化部7に出力する処理を実施する。
 変換・量子化部7は符号化制御部2により決定された予測差分符号化パラメータを参照して、減算部6から出力された予測差分信号に対する直交変換処理(例えば、DCT(離散コサイン変換)や、予め特定の学習系列に対して基底設計がなされているKL変換等の直交変換処理)を実施して変換係数を算出するとともに、その予測差分符号化パラメータを参照して、その変換係数を量子化し、量子化後の変換係数である圧縮データ(差分画像の量子化係数)を逆量子化・逆変換部8及び可変長符号化部13に出力する処理を実施する。
 なお、減算部6及び変換・量子化部7から量子化手段が構成されている。
 逆量子化・逆変換部8は符号化制御部2により決定された予測差分符号化パラメータを参照して、変換・量子化部7から出力された圧縮データを逆量子化するとともに、その予測差分符号化パラメータを参照して、逆量子化後の圧縮データである変換係数に対する逆直交変換処理を実施して、減算部6から出力された予測差分信号に相当する局所復号予測差分信号を算出する処理を実施する。
 加算部9は逆量子化・逆変換部8により算出された局所復号予測差分信号と、イントラ予測部4により生成されたイントラ予測画像、または、動き補償予測部5により生成されたインター予測画像とを加算して、ブロック分割部1から出力された符号化対象ブロックに相当する局所復号画像を算出する処理を実施する。
 イントラ予測用メモリ10は加算部9により算出された局所復号画像を格納する記録媒体である。
 ループフィルタ部11は加算部9により算出された局所復号画像に対して、所定のフィルタリング処理を実施して、フィルタリング処理後の局所復号画像を出力する処理を実施する。
 動き補償予測フレームメモリ12はフィルタリング処理後の局所復号画像を格納する記録媒体である。
 可変長符号化部13は変換・量子化部7から出力された圧縮データと、符号化制御部2の出力信号(符号化モード、イントラ予測パラメータ又はインター予測パラメータ、予測差分符号化パラメータ)と、動き補償予測部5から出力された動きベクトル(符号化モードがインター符号化モードである場合)とを可変長符号化してビットストリームを生成する処理を実施する。
 ただし、可変長符号化部13は、符号化モードがイントラ符号化モードである場合、イントラ予測処理における複数の方向性予測に係る予測方向ベクトルの中で、符号化制御部2により決定されたイントラ予測パラメータの可変長符号化として、符号化制御部2により決定された符号化対象ブロックのイントラ予測パラメータが示す予測方向ベクトルと方向が最も近い予測方向ベクトルを特定し、その特定した予測方向代表ベクトルのインデックスを可変長符号化するとともに、符号化済みブロックのイントラ予測パラメータが示す予測方向ベクトルと予測方向代表ベクトルの差分を表すインデックスを可変長符号化する。
 なお、可変長符号化部13は可変長符号化手段を構成している。
 図1の例では、動画像符号化装置の構成要素であるブロック分割部1、符号化制御部2、切換スイッチ3、イントラ予測部4、動き補償予測部5、減算部6、変換・量子化部7、逆量子化・逆変換部8、加算部9、イントラ予測用メモリ10、ループフィルタ部11、動き補償予測フレームメモリ12及び可変長符号化部13のそれぞれが専用のハードウェア(例えば、CPUを実装している半導体集積回路や、ワンチップマイコンなど)で構成されているものを想定しているが、動画像符号化装置がコンピュータで構成される場合、ブロック分割部1、符号化制御部2、切換スイッチ3、イントラ予測部4、動き補償予測部5、減算部6、変換・量子化部7、逆量子化・逆変換部8、加算部9、ループフィルタ部11及び可変長符号化部13の処理内容を記述しているプログラムをコンピュータのメモリに格納し、当該コンピュータのCPUが当該メモリに格納されているプログラムを実行するようにしてもよい。
 図3はこの発明の実施の形態1による動画像符号化装置の処理内容(動画像符号化方法)を示すフローチャートである。
 図2はこの発明の実施の形態1による動画像符号化装置の可変長符号化部13の内部を示す構成図である。
 可変長符号化部13は、構成要素の1つとして、イントラ予測パラメータ可変長符号化部13aを内蔵している。
 イントラ予測パラメータ可変長符号化部13aのイントラ予測パラメータ予測値算出部21はブロック分割部1から出力された符号化対象ブロックに隣接している符号化済みブロックのイントラ予測パラメータから、符号化対象ブロックのイントラ予測パラメータの予測値を算出する処理を実施する。
 イントラ予測パラメータ二値化インデックス算出部22はイントラ予測パラメータ予測値算出部21により算出された予測値と、符号化対象ブロックのイントラ予測パラメータから、その予測値と予測方向代表ベクトルのインデックスが一致しているか否かを判定し、一致していれば、その判定結果を示すフラグの他に、符号化済みブロックのイントラ予測パラメータが示す予測方向ベクトルと予測方向代表ベクトルの差分値を含むイントラ予測パラメータ二値化インデックスを算出し、一致していなければ、その判定結果を示すフラグの他に、予測方向代表ベクトルのインデックスと上記差分値を含むイントラ予測パラメータ二値化インデックスを算出する処理を実施する。
 エントロピー符号化部23はイントラ予測パラメータ二値化インデックス算出部22により算出されたイントラ予測パラメータ二値化インデックスを算術符号化などの可変長符号化を行って、イントラ予測パラメータ符号語を出力する処理を実施する。
 図10はこの発明の実施の形態1による動画像復号装置を示す構成図である。
 図10において、可変長復号部31は動画像符号化装置により生成されたビットストリームを入力すると、そのビットストリームから圧縮データ、符号化モード、イントラ予測パラメータ(符号化モードがイントラ符号化モードである場合)、インター予測パラメータ(符号化モードがインター符号化モードである場合)、予測差分符号化パラメータ及び動きベクトル(符号化モードがインター符号化モードである場合)を可変長復号する処理を実施する。
 ただし、可変長復号部31は符号化モードがイントラ符号化モードである場合、イントラ予測パラメータの可変長復号として、予測方向代表ベクトルのインデックスを可変長復号するとともに、復号済みブロック(図1の動画像符号化装置の「符号化済みブロック」に相当するブロック)のイントラ予測パラメータが示す予測方向ベクトルと予測方向代表ベクトルの差分を表すインデックスを可変長復号し、その予測方向代表ベクトルのインデックスと上記差分を表すインデックスから、そのイントラ予測パラメータを決定する処理を実施する。
 なお、可変長復号部31は可変長復号手段を構成している。
 逆量子化・逆変換部32は可変長復号部31により可変長復号された予測差分符号化パラメータを参照して、可変長復号部31により可変長復号された圧縮データを逆量子化するとともに、その予測差分符号化パラメータを参照して、逆量子化後の圧縮データである変換係数に対する逆直交変換処理を実施して、図1の減算部6から出力された予測差分信号に相当する復号予測差分信号を算出する処理を実施する。なお、逆量子化・逆変換部32は逆量子化手段を構成している。
 切換スイッチ33は可変長復号部31により可変長復号された符号化モードがイントラ符号化モードであれば、可変長復号部31により可変長復号されたイントラ予測パラメータをイントラ予測部34に出力し、可変長復号部31により可変長復号された符号化モードがインター符号化モードであれば、可変長復号部31により可変長復号されたインター予測パラメータ及び動きベクトルを動き補償部35に出力する処理を実施する。
 イントラ予測部34はイントラ予測用メモリ37に格納されている復号画像を参照しながら、切換スイッチ33から出力されたイントラ予測パラメータを用いて、復号対象ブロックに対するイントラ予測処理を実施してイントラ予測画像(予測画像)を生成する処理を実施する。
 なお、切換スイッチ33、イントラ予測部34及びイントラ予測用メモリ37から予測画像生成手段が構成されている。
 動き補償部35は動き補償予測フレームメモリ39に格納されているフィルタリング処理後の復号画像を参照しながら、切換スイッチ33から出力された動きベクトルとインター予測パラメータを用いて、復号対象ブロックに対するインター予測処理(動き補償予測処理)を実施してインター予測画像を生成する処理を実施する。
 加算部36は逆量子化・逆変換部32により算出された復号予測差分信号と、イントラ予測部34により生成されたイントラ予測画像、または、動き補償部35により生成されたインター予測画像とを加算して、図1のブロック分割部1から出力された符号化対象ブロックに相当する復号画像を算出する処理を実施する。
 イントラ予測用メモリ37は加算部36により算出された復号画像を格納する記録媒体である。
 ループフィルタ部38は加算部36により算出された復号画像に対して、所定のフィルタリング処理を実施して、フィルタリング処理後の復号画像を出力する処理を実施する。
 動き補償予測フレームメモリ39はフィルタリング処理後の復号画像を格納する記録媒体である。
 図10の例では、動画像復号装置の構成要素である可変長復号部31、逆量子化・逆変換部32、切換スイッチ33、イントラ予測部34、動き補償部35、加算部36、イントラ予測用メモリ37、ループフィルタ部38及び動き補償予測フレームメモリ39のそれぞれが専用のハードウェア(例えば、CPUを実装している半導体集積回路や、ワンチップマイコンなど)で構成されているものを想定しているが、動画像復号装置がコンピュータで構成される場合、可変長復号部31、逆量子化・逆変換部32、切換スイッチ33、イントラ予測部34、動き補償部35、加算部36及びループフィルタ部38の処理内容を記述しているプログラムをコンピュータのメモリに格納し、当該コンピュータのCPUが当該メモリに格納されているプログラムを実行するようにしてもよい。
 図12はこの発明の実施の形態1による動画像復号装置の処理内容(動画像復号方法)を示すフローチャートである。
 図11はこの発明の実施の形態1による動画像復号装置の可変長復号部31の内部を示す構成図である。
 可変長復号部31には、構成要素の1つとして、イントラ予測パラメータ可変長復号部31aを内蔵している。
 イントラ予測パラメータ可変長復号部31aのエントロピー復号部41はイントラ予測パラメータ符号語からイントラ予測パラメータ二値化インデックスを可変長復号する処理を実施する。
 イントラ予測パラメータ予測値算出部42は復号対象ブロックに隣接している復号済みブロックのイントラ予測パラメータから、復号対象ブロックのイントラ予測パラメータの予測値を算出する処理を実施する。
 イントラ予測パラメータインデックス算出部43はエントロピー復号部41により可変長復号されたイントラ予測パラメータ二値化インデックスに含まれているフラグが予測値と予測方向代表ベクトルのインデックスが一致している旨を示していれば、イントラ予測パラメータ予測値算出部42により算出された予測値と、そのイントラ予測パラメータ二値化インデックスに含まれている復号済みブロックのイントラ予測パラメータが示す予測方向ベクトルと予測方向代表ベクトルの差分値とから、イントラ予測パラメータを算出し、そのフラグが予測値と予測方向代表ベクトルのインデックスが一致していない旨を示していれば、イントラ予測パラメータ予測値算出部42により算出された予測値と、そのイントラ予測パラメータ二値化インデックスに含まれている予測方向代表ベクトルのインデックスと、上記差分値とからイントラ予測パラメータを算出する処理を実施する。
 次に動作について説明する。
 この実施の形態1では、映像の各フレーム画像を入力画像として、近接フレーム間で動き補償予測を実施して、得られた予測差分信号に対して直交変換・量子化による圧縮処理を施し、その後、可変長符号化を行ってビットストリームを生成する動画像符号化装置と、その動画像符号化装置から出力されるビットストリームを復号する動画像復号装置について説明する。
 図1の動画像符号化装置は、映像信号の空間・時間方向の局所的な変化に適応して、映像信号を多様なサイズのブロックに分割して、フレーム内・フレーム間適応符号化を行うことを特徴としている。
 一般的に、映像信号は、空間・時間的に信号の複雑さが局所的に変化する特性を有している。空間的に見ると、ある映像フレーム上では、例えば、空や壁などのような比較的広い画像領域中で均一な信号特性を有する絵柄もあれば、人物や細かいテクスチャを含む絵画など、小さい画像領域内で複雑なテクスチャパターンを有する絵柄も混在することがある。
 時間的に見ても、空や壁は局所的に時間方向の絵柄の変化は小さいが、動く人物や物体は、その輪郭が時間的に剛体・非剛体の運動をするため、時間的な変化が大きい。
 符号化処理は、時間・空間的な予測によって、信号電力やエントロピーの小さい予測差分差信号を生成して、全体の符号量を削減する処理を行うが、予測に用いるパラメータをできるだけ大きな画像信号領域に均一に適用できれば、当該パラメータの符号量を小さくすることができる。
 一方、時間的・空間的に変化の大きい画像信号パターンに対して、同一の予測パラメータを大きな画像領域に適用すると、予測の誤りが増えてしまうため、予測差分信号の符号量が増加してしまう。
 したがって、時間的・空間的に変化が大きい領域では、同一の予測パラメータを適用して予測処理を行うブロックサイズを小さくして、予測に用いるパラメータのデータ量を増やし、予測差分信号の電力・エントロピーを低減する方が望ましい。
 この実施の形態1では、このような映像信号の一般的な性質に適応した符号化を行うため、最初に所定の最大ブロックサイズから予測処理等を開始し、階層的に映像信号の領域を分割し、分割した領域毎に予測処理や、その予測差分の符号化処理を適応化させる構成をとるようにしている。
 図1の動画像符号化装置が処理対象とする映像信号フォーマットは、輝度信号と2つの色差信号からなるYUV信号や、ディジタル撮像素子から出力されるRGB信号等の任意の色空間のカラー映像信号のほか、モノクロ画像信号や赤外線画像信号など、映像フレームが水平・垂直2次元のディジタルサンプル(画素)列から構成される任意の映像信号とする。
 ただし、各画素の諧調は、8ビットでもよいし、10ビットや12ビットなどの諧調でもよい。
 以下の説明では、便宜上、特に断らない限り、入力画像の映像信号はYUV信号であるとし、かつ、2つの色差成分U,Vが輝度成分Yに対して、サブサンプルされた4:2:0フォーマットの信号を扱う場合について述べる。
 また、映像信号の各フレームに対応する処理データ単位を「ピクチャ」と称する。
 この実施の形態1では、「ピクチャ」は順次走査(プログレッシブスキャン)された映像フレーム信号として説明を行うが、映像信号がインタレース信号である場合、「ピクチャ」は映像フレームを構成する単位であるフィールド画像信号であってもよい。
 最初に、図1の動画像符号化装置の処理内容を説明する。
 まず、符号化制御部2は、符号化対象となるピクチャ(カレントピクチャ)の符号化に用いる最大符号化ブロックのサイズと、最大符号化ブロックを階層分割する階層数の上限を決定する(図3のステップST1)。
 最大符号化ブロックのサイズの決め方としては、例えば、入力画像の映像信号の解像度に応じて、すべてのピクチャに対して同一のサイズを定めてもよいし、入力画像の映像信号の局所的な動きの複雑さの違いをパラメータとして定量化して、動きの激しいピクチャには、小さいサイズを定める一方、動きが少ないピクチャには、大きいサイズを定めるようにしてもよい。
 分割階層数の上限の決め方としては、例えば、入力画像の映像信号の動きが激しい場合には、階層数を深くして、より細かい動きが検出できるように設定し、動きが少ない場合には、階層数を抑えるように設定するなどの方法がある。
 ブロック分割部1は、入力画像の映像信号を入力すると、符号化制御部2により決定された最大符号化ブロックサイズで、入力画像のピクチャに分割し、分割後の各ピクチャを出力する。
 また、符号化制御部2は、最大符号化ブロックサイズの画像領域毎に、先に定めた分割階層数の上限に至るまで、階層的に符号化ブロックサイズを有する符号化対象ブロックに分割して、各符号化対象ブロックに対する符号化モードを決定する(ステップST2)。
 ここで、図4は最大符号化ブロックが階層的に複数の符号化対象ブロックに分割される例を示す説明図である。
 図4において、最大符号化ブロックは、「第0階層」と記されている輝度成分が(L,M)のサイズを有する符号化対象ブロックである。
 最大符号化ブロックを出発点として、4分木構造で別途定める所定の深さまで、階層的に分割を行うことによって符号化対象ブロックを得るようにしている。
 深さnにおいては、符号化対象ブロックはサイズ(L,M)の画像領域である。
 ただし、LとMは、同じであってもよいし、異なっていてもよいが、図4では、L=Mのケースを示している。
 以降、符号化制御部2により決定される符号化ブロックサイズは、符号化対象ブロックの輝度成分におけるサイズ(L,M)と定義する。
 4分木分割を行うため、常に、(Ln+1,Mn+1)=(L/2,M/2)が成立する。
 なお、RGB信号など、全ての色成分が同一サンプル数を有するカラー映像信号(4:4:4フォーマット)では、全ての色成分のサイズが(L,M)になるが、4:2:0フォーマットを扱う場合、対応する色差成分の符号化ブロックサイズは(L/2,M/2)になる。
 以降、第n階層の符号化対象ブロックをBで表し、符号化対象ブロックBで選択可能な符号化モードをm(B)で表すものとする。
 複数の色成分からなるカラー映像信号の場合、符号化モードm(B)は、色成分毎に、それぞれ個別のモードを用いるように構成されてもよいし、すべての色成分に対し共通のモードを用いるように構成されてもよい。以降、特に断らない限り、YUV信号、4:2:0フォーマットの符号化ブロックの輝度成分に対する符号化モードを指すものとして説明を行う。
 符号化モードm(B)には、1つないし複数のイントラ符号化モード(総称して「INTRA」と称する)と、1つないし複数のインター符号化モード(総称して、「INTER」と称する)とがあり、符号化制御部2は、当該ピクチャで利用可能な全ての符号化モード、または、そのサブセットの中から、符号化対象ブロックBに対する符号化効率が最も高い符号化モードを選択する。
 さらに、符号化対象ブロックBは、図4に示すように、ブロック分割部1によって、1つないし複数の予測処理単位(パーティション)に分割される。
 以降、符号化対象ブロックBに属するパーティションをP (iは、第n階層におけるパーティション番号)と表記する。
 符号化対象ブロックBのパーティション分割が、どのようになされているかは、符号化モードm(B)の中に情報として含まれる。
 パーティションP は、すべて符号化モードm(B)に従って予測処理が行われるが、パーティションP 毎に、個別の予測パラメータを選択することができる。
 符号化制御部2は、最大符号化ブロックに対して、例えば、図5に示すようなブロック分割状態を生成して、符号化対象ブロックを特定する。
 図5(a)の斜線部分は、分割後のパーティションの分布を示しており、図5(b)は階層分割によって符号化モードm(B)が割り当てられる状況を4分木グラフで示している。
 図5(b)の□で囲まれているノードは、符号化モードm(B)が割り当てられたノード(符号化対象ブロック)である。
 符号化制御部2における階層分割・符号化モード判定の詳細な処理は後述する。
 切換スイッチ3は、符号化制御部2により決定された符号化モードm(B)がイントラ符号化モードである場合(m(B)∈INTRAの場合)、ブロック分割部1から出力された符号化対象ブロックBをイントラ予測部4に出力する。
 一方、符号化制御部2により決定された符号化モードm(B)がインター符号化モードである場合(m(B)∈INTERの場合)、ブロック分割部1から出力された符号化対象ブロックBを動き補償予測部5に出力する。
 イントラ予測部4は、符号化制御部2により決定された符号化モードm(B)がイントラ符号化モードであり(m(B)∈INTRAの場合)、切換スイッチ3から符号化対象ブロックBを受けると(ステップST3)、イントラ予測用メモリ10に格納されている局所復号画像を参照しながら、符号化制御部2により決定されたイントラ予測パラメータを用いて、その符号化対象ブロックB内の各パーティションP に対するイントラ予測処理を実施して、イントラ予測画像PINTRAi を生成する(ステップST4)。
 なお、画像復号装置がイントラ予測画像PINTRAi と全く同じイントラ予測画像を生成する必要があるため、イントラ予測画像PINTRAi の生成に用いられたイントラ予測パラメータは、符号化制御部2から可変長符号化部13に出力されて、ビットストリームに多重化される。
 イントラ予測部4の処理内容の詳細は後述する。
 動き補償予測部5は、符号化制御部2により決定された符号化モードm(B)がインター符号化モードであり(m(B)∈INTERの場合)、切換スイッチ3から符号化対象ブロックBを受けると(ステップST3)、その符号化対象ブロックB内の各パーティションP と動き補償予測フレームメモリ12に格納されているフィルタリング処理後の局所復号画像を比較して動きベクトルを探索し、その動きベクトルと符号化制御部2により決定されたインター予測パラメータを用いて、その符号化対象ブロックB内の各パーティションP に対するインター予測処理を実施して、インター予測画像PINTERi を生成する(ステップST5)。
 なお、画像復号装置がインター予測画像PINTERi と全く同じインター予測画像を生成する必要があるため、インター予測画像PINTERi の生成に用いられたインター予測パラメータは、符号化制御部2から可変長符号化部13に出力されて、ビットストリームに多重化される。
 また、動き補償予測部5により探索された動きベクトルも可変長符号化部13に出力されて、ビットストリームに多重化される。
 減算部6は、ブロック分割部1から符号化対象ブロックBを受けると、その符号化対象ブロックB内のパーティションP から、イントラ予測部4により生成されたイントラ予測画像PINTRAi 、または、動き補償予測部5により生成されたインター予測画像PINTERi を減算して、その減算結果である予測差分信号e を変換・量子化部7に出力する(ステップST6)。
 変換・量子化部7は、減算部6から予測差分信号e を受けると、符号化制御部2により決定された予測差分符号化パラメータを参照して、その予測差分信号e に対する直交変換処理(例えば、DCT(離散コサイン変換)や、予め特定の学習系列に対して基底設計がなされているKL変換等の直交変換処理)を実施して、変換係数を算出する。
 また、変換・量子化部7は、その予測差分符号化パラメータを参照して、その変換係数を量子化し、量子化後の変換係数である圧縮データを逆量子化・逆変換部8及び可変長符号化部13に出力する(ステップST7)。
 逆量子化・逆変換部8は、変換・量子化部7から圧縮データを受けると、符号化制御部2により決定された予測差分符号化パラメータを参照して、その圧縮データを逆量子化する。
 また、逆量子化・逆変換部8は、その予測差分符号化パラメータを参照して、逆量子化後の圧縮データである変換係数に対する逆直交変換処理(例えば、逆DCT、逆KL変換など)を実施して、減算部6から出力された予測差分信号e に相当する局所復号予測差分信号を算出する(ステップST8)。
 加算部9は、逆量子化・逆変換部8から局所復号予測差分信号を受けると、その局所復号予測差分信号と、イントラ予測部4により生成されたイントラ予測画像PINTRAi 、または、動き補償予測部5により生成されたインター予測画像PINTERi とを加算して、局所復号パーティション画像、あるいは、その局所復号パーティション画像の集まりとして、ブロック分割部1から出力された符号化対象ブロックBに相当する局所復号画像を算出する(ステップST9)。
 なお、加算部9は、その局所復号画像をループフィルタ部11に出力するとともに、その局所復号画像をイントラ予測用メモリ10に格納する。
 この局所復号画像が、以降のイントラ予測用の画像信号になる。
 ループフィルタ部11は、加算部9から局所復号画像を受けると、その局所復号画像に対して、所定のフィルタリング処理を実施して、フィルタリング処理後の局所復号画像を動き補償予測フレームメモリ12に格納する(ステップST10)。
 なお、ループフィルタ部11によるフィルタリング処理は、入力される局所復号画像の最大符号化ブロックあるいは個々の符号化ブロック単位で行ってもよいし、1画面分のマクロブロックに相当する局所復号画像が入力された後に1画面分まとめて行ってもよい。
 可変長符号化部13は、全ての符号化対象ブロックBに対するステップST3~ST9の処理が完了すると(ステップST11、ST12)、変換・量子化部7から出力された圧縮データと、符号化制御部2から出力された符号化モードm(B)と、符号化制御部2から出力されたイントラ予測パラメータ(符号化モードがイントラ符号化モードである場合)又はインター予測パラメータ(符号化モードがインター符号化モードである場合)と、動き補償予測部5から出力された動きベクトル(符号化モードがインター符号化モードである場合)とを可変長符号化して、それらの符号化結果を示すビットストリームを生成する(ステップST13)。
 可変長符号化部13の処理内容の詳細は後述する。
 次に、イントラ予測部4の処理内容を詳細に説明する。
 図6は符号化対象ブロックB内の各パーティションP が選択可能なイントラ予測パラメータ(イントラ予測モード)の一例を示す説明図である。
 図6では、イントラ予測モードと、そのイントラ予測モードが示す予測方向ベクトルを示しており、図6の例では、選択可能なイントラ予測モードの個数が増えるに従って、予測方向ベクトル同士の相対角度が小さくなるように設計されている。
 イントラ予測部4は、上述したように、パーティションP のイントラ予測パラメータを参照して、そのパーティションP に対するイントラ予測処理を実施して、イントラ予測画像PINTRAi を生成するが、ここでは、パーティションP の輝度信号に対するイントラ予測パラメータ(イントラ予測モード)に基づいて、輝度信号のイントラ予測信号を生成するイントラ処理について説明する。
 パーティションP のサイズをl ×m 画素とする。
 図7はl =m =4の場合のパーティションP 内の画素の予測値を生成する際に用いる画素の一例を示す説明図である。
 図7では、パーティションP に隣接している符号化済みの上パーティションの画素(2×l +1)個と、左パーティションの画素(2×m )個を予測に用いる画素としているが、予測に用いる画素は、図7に示す画素より多くても少なくてもよい。
 また、図7では、隣接している1行又は1列分の画素を予測に用いているが、2行又は2列、あるいは、それ以上の画素を予測に用いてもよい。
 パーティションP に対するイントラ予測モードのインデックス値が2(平均値予測)の場合には、上パーティションの隣接画素と左パーティションの隣接画素の平均値をパーティションP 内の画素の予測値として予測画像を生成する。
 イントラ予測モードのインデックス値が2(平均値予測)以外の場合には、インデックス値が示す予測方向ベクトルυ=(dx,dy)に基づいて、パーティションP 内の画素の予測値を生成する。
 予測値を生成する画素(予測対象画素)のパーティションP 内の相対座標(パーティションの左上画素を原点とする)を(x,y)とすると、予測に用いる参照画素の位置は、下記のLと隣接画素の交点になる。

Figure JPOXMLDOC01-appb-I000001
 参照画素が整数画素位置にある場合には、その整数画素を予測対象画素の予測値とし、参照画素が整数画素位置にない場合には、参照画素に隣接する整数画素から生成される補間画素を予測値とする。
 図7の例では、参照画素は整数画素位置にないので、参照画素に隣接する2画素の平均値を予測値とする。なお、隣接する2画素のみではなく、隣接する2画素以上の画素から補間画素を生成して予測値としてもよい。
 同様の手順で、パーティションP 内の輝度信号の全ての画素に対する予測画素を生成してイントラ予測画像PINTRAi を出力する。
 なお、イントラ予測画像PINTRAi の生成に用いられたイントラ予測パラメータは、ビットストリームに多重化するために可変長符号化部13に出力される。
 パーティションP の色差信号に対しても、輝度信号と同様の手順で、イントラ予測パラメータ(イントラ予測モード)に基づくイントラ処理を実施し、イントラ予測画像の生成に用いられたイントラ予測パラメータを可変長符号化部13に出力する。
 次に、可変長符号化部13の処理内容を詳細に説明する。
 可変長符号化部13は、イントラ予測パラメータを可変長符号化する際、周辺の符号化済みパーティションのイントラ予測パラメータに基づき、符号化対象のパーティションP のイントラ予測パラメータの予測値を算出し、その予測値を用いて予測符号化を行う。
 即ち、可変長符号化部13の一部を構成しているイントラ予測パラメータ可変長符号化部13aのイントラ予測パラメータ予測値算出部21は、符号化済み周辺のパーティションのイントラ予測パラメータに基づき、符号化対象であるパーティションP のイントラ予測パラメータの予測値を算出する。
 ここで、図8はパーティションP のイントラ予測パラメータの予測値の算出に用いる符号化済み周辺パーティションの一例を示す説明図である。
 図8の例では、パーティションP の左(A)、上(B)、右上(C)、左上(D)のパーティションのイントラ予測パラメータを予測値の算出に用いている。
 イントラ予測パラメータ予測値算出部21が予測値を算出する処理を、イントラ予測モード数が図6に示す17種類の場合を例にして説明する。
 図6において、17種類のイントラ予測モードは、平均値予測モードと16種類の方向性予測モードからなる。
 図9は17種類のイントラ予測モードのインデックス値と平均値予測を除く、16種類の方向性予測モードの予測方向ベクトルの一例を示す説明図である。16種類の予測方向ベクトルの中から代表的な方向を示す予測方向代表ベクトルを予め決めおくものとする。
 以下の説明では、図9に示す“0”から“8”の9方向の予測方向ベクトルを予測方向代表ベクトルとして予め決めた場合を例に説明する。
 イントラ予測パラメータ予測値算出部21は、予測値の算出に用いる符号化済み周辺パーティションのイントラ予測モードから予測方向代表インデックスを算出する。
 ただし、方向性予測モードの予測方向代表インデックスは、その方向性予測モードが示す予測方向ベクトルに対する相対角度が最も小さい予測方向代表ベクトルのインデックスとする。
 即ち、方向性予測モードが示す予測方向ベクトルと方向が近い予測方向代表ベクトルのインデックス値である。なお、平均値予測モードの予測方向代表インデックスは、自身(平均値予測モード)のインデックス値とする。
 図9は17種類のイントラ予測モードの予測方向代表インデックスを示している。さらに、同じ予測方向代表インデックスを有するイントラ予測モードインデックスに対して、予測方向差分インデックスを割り当てている。
 次に、符号化済み周辺パーティションのイントラ予測モードの予測方向代表インデックスに基づき、符号化対象であるパーティションP のイントラ予測パラメータの予測値を算出する処理について説明する。
 例えば、予測値の算出に用いる周辺パーティションがパーティションP の左(A)、上(B)、右上(C)、左上(D)のパーティションである場合、パーティションA,B,C,Dの予測方向代表インデックスをそれぞれm,m,m,mとしたときに、m,m,m,mの最頻値や最小値、メディアンなどの統計値の中から予め決められた統計値を予測値pmとする。あるいは、周囲のパーティションの予測方向ベクトルの向きに応じて、例えば、パーティションCの予測方向ベクトルの向きが左斜め下の場合(図9の例では、イントラ予測モードインデックスが8、10、16の場合)、エッジの連続性から考えて、パーティションP の予測方向ベクトルの向きも左斜め下になる確率が高いことから、予測方向代表ベクトルの向きが左斜め下を表す予測方向代表インデックス(図9の例では8)を、パーティションP の予測値pmとする。あるいは、A、B、C、Dのパーティションの中から予め決められた1つのパーティションの予測方向代表インデックスを予測値pmとしてもよい。あるいは、周辺パーティションの予測方向代表インデックスを用いずに、予め決められた予測方向代表インデックス(例えば平均値予測モードのインデックス)を予測値pmとしてもよい。
 そして、算出した予測値pmをイントラ予測パラメータ二値化インデックス算出部22に出力する。
 イントラ予測パラメータ二値化インデックス算出部22は、符号化対象であるパーティションP のイントラ予測パラメータ(イントラ予測モードのインデックス)mと予測値pmを入力し、イントラ予測パラメータ二値化インデックスdmを算出する。
 以下、イントラ予測パラメータ二値化インデックスの算出方法について説明する。
 イントラ予測モードmの予測方向代表インデックスをrmとする。

Figure JPOXMLDOC01-appb-I000002

 ただし、mは予測方向代表インデックスの個数であり、図9の例では、m=9,n=3である。
 次に、イントラ予測モードmの予測方向差分インデックスをdrとして、上記のイントラ予測パラメータ二値化インデックスdmに対して、さらに、下式に基づく処理を行う。

Figure JPOXMLDOC01-appb-I000003
 ただし、lは同じ予測方向代表インデックスを有するイントラ予測モードの個数であり、図9の例では、イントラ予測モードが平均値予測の場合には、l=1,k=0、イントラ予測モードが平均値予測以外の場合には、l=2,k=1である。
 上記の算出方法で求めたイントラ予測パラメータ二値化インデックスdmは、1ビット目が、イントラ予測モードの予測方向代表インデックスrmと予測値pmが一致しているか否かを示すフラグビット(上記の算出式では、一致している場合は“0”、一致していない場合は“1”を割り当てている)である。
 イントラ予測モードの予測方向代表インデックスrmと予測値pmが一致している場合、イントラ予測パラメータ二値化インデックスdmの2~(k+1)ビットが、予測方向差分インデックス値を表すビットになる。
 一方、イントラ予測モードの予測方向代表インデックスrmと予測値pmが一致していない場合、イントラ予測パラメータ二値化インデックスdmの2~(n+1)ビットが、予測方向代表インデックス値を表すビットになり、(n+2)~(n+k+1)ビットが、予測方向差分インデックス値を表すビットになる。
 以上の処理により算出されたイントラ予測パラメータ二値化インデックスdmは、エントロピー符号化部23に出力される。
 エントロピー符号化部23は、イントラ予測パラメータ二値化インデックス算出部22から出力されたイントラ予測パラメータ二値化インデックスdmを、予測方向代表インデックスrmと予測方向差分インデックス毎に、それぞれの確率モデルに応じて、コンテキストを切り替えて算術符号化などのハフマン符号化を行う。
 その符号化結果であるイントラ予測パラメータ符号語は、可変長符号化部13のビットストリーム多重化部(図示せず)でビットストリームに多重化される。
 図1の動画像符号化装置の可変長符号化部13は、イントラ予測パラメータを符号化する際に、複数の方向性予測の予測方向ベクトルの中から、代表的な予測方向ベクトル(予測方向代表ベクトル)を選択し、イントラ予測パラメータを予測方向代表ベクトルのインデックス(予測方向代表インデックス)と、予測方向代表ベクトルからの差分を表すインデックス(予測方向差分インデックス)で表して、それぞれのインデックス毎に確率モデルに応じた算術符号化などのハフマン符号化を行うことで、符号量を削減して符号化することができる。
 次に、図10の動画像復号装置の処理内容を具体的に説明する。
 可変長復号部31は、図1の動画像符号化装置により生成されたビットストリームを入力すると、そのビットストリームに対する可変長復号処理を実施して(図12のステップST21)、1フレーム以上のピクチャから構成されるシーケンス単位、あるいは、ピクチャ単位にフレームサイズの情報を復号する。
 即ち、可変長復号部31は、図1の動画像符号化装置の符号化制御部2により決定された最大符号化ブロックサイズ及び分割階層数の上限を動画像符号化装置と同様の手順で決定する(ステップST22)。
 例えば、最大符号化ブロックサイズが映像信号の解像度に応じて決められた場合には、復号したフレームサイズ情報に基づいて、動画像符号化装置と同様の手順で最大符号化ブロックサイズを決定する。
 最大符号化ブロックサイズ及び分割階層数上限が、動画像符号化装置側でビットストリームに多重化された場合には、ビットストリームから復号した値を用いる。
 動画像符号化装置は、図4で示されるように、最大符号化ブロックを出発点に階層的に複数の符号化対象ブロックに分割して得られる符号化対象ブロック単位に符号化モードや変換・量子化して得られる圧縮データをビットストリームに多重化する。
 当該ビットストリームを受け取った可変長復号部31は、決定された最大符号化ブロック単位に符号化モードに含まれる最大符号化ブロックの分割状態を復号する。復号された分割状態に基づき、階層的に復号対象ブロック(図1の動画像符号化装置の「符号化対象ブロック」に相当するブロック)を特定する(ステップST23)。
 次に、可変長復号部31は、符号化対象ブロックに割り当てられている符号化モードを復号する。復号した符号化モードに含まれる情報に基づき、符号化対象ブロックをさらに1つないし複数の予測処理単位に分割し、予測処理単位に割り当てられている予測パラメータを復号する(ステップST24)。
 可変長復号部31は、復号対象ブロック(符号化対象ブロック)に割り当てられている符号化モードがイントラ符号化モードである場合、復号対象ブロック(符号化対象ブロック)に含まれており、予測処理単位となる1つ以上のパーティション毎にイントラ予測パラメータを復号する。
 イントラ予測パラメータの復号は、動画像符号化装置側と同じ手順で周辺の復号済みパーティションのイントラ予測パラメータに基づき、復号対象であるパーティションP のイントラ予測パラメータの予測値を算出し、その予測値を用いて復号する。
 即ち、可変長復号部31の一部を構成しているイントラ予測パラメータ可変長復号部31a内のエントロピー復号部41は、ビットストリームに含まれているイントラ予測パラメータ符号語を入力し、そのイントラ予測パラメータ符号語からイントラ予測パラメータ二値化インデックスを可変長復号する。
 イントラ予測パラメータ予測値算出部42は、動画像符号化装置のイントラ予測パラメータ予測値算出部21と同じ手順で、復号対象ブロックに隣接している復号済みブロックのイントラ予測パラメータから、復号対象ブロックのイントラ予測パラメータの予測値を算出する。
 イントラ予測パラメータインデックス算出部43は、エントロピー復号部41により可変長復号されたイントラ予測パラメータ二値化インデックスと、イントラ予測パラメータ予測値算出部42により算出された予測値とから、イントラ予測パラメータを算出する。
 以下、イントラ予測パラメータの算出方法を説明する。
 イントラ予測パラメータインデックス算出部43は、イントラ予測パラメータインデックスを算出するために、予測方向代表インデックスと予測方向差分インデックスを算出する。
 イントラ予測パラメータ二値化インデックスをdmとする。
 イントラ予測パラメータ二値化インデックスdmの1ビット目が“0”の場合、予測値pmを予測方向代表インデックス値rmとする。
 イントラ予測パラメータ二値化インデックスdmの1ビット目が“1”の場合、続いて、2~(k+1)ビットを復号し、2~(n+1)ビットを復号した値RMに対して、下式により予測方向代表インデックス値rmを算出する。

Figure JPOXMLDOC01-appb-I000004
 次に、イントラ予測パラメータインデックス算出部43は、イントラ予測パラメータ二値化インデックスdmの1ビット目が“0”の場合、2~(k+1)ビット目を復号し、1ビット目が“1”の場合には、(n+2)~(n+k+1)ビット目を復号し、その復号した値を予測方向差分インデックスdrとする。
 動画像復号装置においても、動画像符号化装置と同様に、予測方向代表インデックスと予測方向差分インデックスに基づき、イントラ予測パラメータインデックスを復号する。
 可変長復号部31は、符号化モードに割り当てられている符号化モードがインター符号化モードの場合、復号対象ブロック(符号化対象ブロック)に含まれており、予測処理単位となる1つ以上パーティション毎にインター予測パラメータを復号する。
 可変長復号部31は、予測処理単位となるパーティションを、更に予測差分符号化パラメータに含まれる変換ブロックサイズの情報に基づき、変換処理単位となる1つないし複数のパーティションに分割され、変換処理単位となるパーティション毎に圧縮データ(変換・量子化後の変換係数)を復号する(ステップST24)。
 切換スイッチ33は、可変長復号部31により可変長復号された符号化モードm(B)がイントラ符号化モードであれば(m(B)∈INTRAの場合)、可変長復号部31により可変長復号されたイントラ予測パラメータをイントラ予測部34に出力する。
 一方、可変長復号部31により可変長復号された符号化モードm(B)がインター符号化モードであれば(m(B)∈INTERの場合)、可変長復号部31により可変長復号されたインター予測パラメータ及び動きベクトルを動き補償部35に出力する。
 イントラ予測部34は、可変長復号部31により可変長復号された符号化モードm(B)がイントラ符号化モードであり(m(B)∈INTRAの場合)、切換スイッチ33からイントラ予測パラメータを受けると(ステップST25)、図1のイントラ予測部4と同様の手順で、イントラ予測用メモリ37に格納されている局所復号画像を参照しながら、切換スイッチ33から出力されたイントラ予測パラメータを用いて、復号対象ブロックB内の各パーティションP に対するイントラ予測処理を実施して、イントラ予測画像PINTRAi を生成する(ステップST26)。
 動き補償部35は、可変長復号部31により可変長復号された符号化モードm(B)がインター符号化モードであり(m(B)∈INTERの場合)、切換スイッチ33から符号化対象ブロックBを受けると(ステップST25)、動き補償予測フレームメモリ39に格納されているフィルタリング処理後の復号画像を参照しながら、切換スイッチ33から出力された動きベクトルとインター予測パラメータを用いて、復号対象ブロックに対するインター予測処理を実施してインター予測画像PINTERi を生成する(ステップST27)。
 逆量子化・逆変換部32は、可変長復号部31から圧縮データ及び予測差分符号化パラメータを受けると、図1の逆量子化・逆変換部8と同様の手順で、その予測差分符号化パラメータを参照して、その圧縮データを逆量子化するとともに、その予測差分符号化パラメータを参照して、逆量子化後の圧縮データである変換係数に対する逆直交変換処理を実施して、図1の減算部6から出力された予測差分信号に相当する復号予測差分信号を算出する(ステップST28)。
 加算部36は、逆量子化・逆変換部32により算出された復号予測差分信号と、イントラ予測部34により生成されたイントラ予測画像PINTRAi 、または、動き補償部35により生成されたインター予測画像PINTERi とを加算して、復号対象ブロック内に含まれる1つないし複数の復号パーティション画像の集まりとして、復号画像をループフィルタ部38に出力するとともに、その復号画像をイントラ予測用メモリ37に格納する(ステップST29)。
 この復号画像が、以降のイントラ予測用の画像信号になる。
 ループフィルタ部11は、全ての復号対象ブロックBに対するステップST23~ST29の処理が完了すると(ステップST30)、加算部36から出力された復号画像に対して、所定のフィルタリング処理を実施して、フィルタリング処理後の復号画像を動き補償予測フレームメモリ39に格納する(ステップST31)。
 この復号画像が、動き補償予測用の参照画像となり、また、再生画像となる。
 図10の動画像復号装置の可変長復号部31は、イントラ予測パラメータを復号する際に、複数の方向性予測の予測方向ベクトルの中から選択された代表的な予測方向ベクトル(予測方向代表ベクトル)のインデックスと、予測方向代表ベクトルからの差分を表すインデックス(予測方向差分インデックス)とをそれぞれの確率モデルに応じた算術復号などによりエントロピー復号することで、符号量を削減して符号化されたイントラ予測パラメータを正しく復号することができる。
 以上で明らかなように、この実施の形態1によれば、動画像符号化装置の可変長符号化部13が、イントラ予測処理における複数の方向性予測に係る予測方向ベクトルの中で、ブロック分割部1から出力された符号化対象ブロックに隣接している符号化済みブロックのイントラ予測パラメータが示す予測方向ベクトルと方向が最も近い予測方向ベクトル(予測方向代表ベクトル)を特定し、符号化制御部2により決定されたイントラ予測パラメータの可変長符号化として、その予測方向代表ベクトルのインデックスを可変長符号化するとともに、符号化済みブロックのイントラ予測パラメータが示す予測方向ベクトルと予測方向代表ベクトルの差分を表すインデックスを可変長符号化するように構成したので、選択可能な方向性予測のモード数を増やしても、イントラ予測モードに係る情報の符号量の増加を抑えることができる効果を奏する。
 また、この実施の形態1によれば、動画像復号装置の可変長復号部31が、イントラ予測パラメータの可変長復号として、予測方向代表ベクトルのインデックスを可変長復号するとともに、復号済みブロックのイントラ予測パラメータが示す予測方向ベクトルと予測方向代表ベクトルの差分を表すインデックスを可変長復号して、その予測方向代表ベクトルのインデックスと上記差分を表すインデックスから、そのイントラ予測パラメータを決定するように構成したので、予測効率を低下させることなくイントラ予測パラメータの符号量を削減して符号化されたビットストリームを正しく復号することができる効果を奏する。
実施の形態2.
 上記実施の形態1では、動画像符号化装置のイントラ予測部4が、映像信号における輝度信号と色差信号を同様に取り扱い、輝度信号の符号化対象ブロックに対するイントラ予測処理と、色差信号の符号化対象ブロックに対するイントラ予測処理とを別個独立に実施している。
 このため、可変長符号化部13は、輝度信号の符号化対象ブロックに対するイントラ予測処理を実施する際に用いているイントラ予測パラメータと、色差信号の符号化対象ブロックに対するイントラ予測処理を実施する際に用いているイントラ予測パラメータとを個別に可変長符号化してビットストリームに多重化するようにしている。
 この場合、例えば、輝度信号の符号化対象ブロックと色差信号の符号化対象ブロックとの特徴が近似しており、双方の符号化対象ブロックに対するイントラ予測処理を実施する際に用いているイントラ予測パラメータがほぼ同じであれば、ビットストリームに多重化しているイントラ予測パラメータが冗長的となる。
 そこで、この実施の形態2では、イントラ予測部4が、色差信号の予測画像を生成する際、例えば、輝度信号の符号化対象ブロックと色差信号の符号化対象ブロックとの特徴が近似している場合、その輝度信号の符号化対象ブロックに対するイントラ予測処理を実施する際に用いるイントラ予測パラメータと同じイントラ予測パラメータを用いて、色差信号の符号化対象ブロックに対するイントラ予測処理を実施することで、ビットストリームに多重化するイントラ予測パラメータを削減する例を説明する。
 具体的には、以下の通りである。
 図13は輝度信号及び色差信号のパーティションP の一例を示す説明図である。
 動画像符号化装置のイントラ予測部4は、図13(a)に示すように、パーティションP の輝度信号(Y)にエッジがある場合、色差信号(Cb,Cr)に対しても同様のエッジが存在することが多いという特徴を利用して、輝度信号で適用されたイントラ予測パラメータを色差信号のイントラ予測パラメータとしてそのまま適用し、イントラ予測画像を生成する。
 ただし、図13(b)に示すように、パーティションP の輝度信号(Y)にエッジがあっても、グレースケールのエッジである場合、色差信号(Cb,Cr)にはエッジがないこともある。
 このような場合には、輝度信号のイントラ予測パラメータを適用せずに、平均値予測を適用して、イントラ予測画像を生成するようにする。
 また、図13(c)に示すように、パーティションP の輝度信号(Y)にエッジがある場合でも、色差信号(Cb,Cr)では、エッジの境界がぼけていたり、切れていたりすることもある。
 このような場合には、エッジの境界がぼけていたり、切れていたりする領域の画素で予測残差が大きくなって、予測残差に係る符号量が増えるおそれがある。
 そこで、予測残差に係る符号量が増える状況の発生を避けるため、図14に示すように、輝度信号の符号化対象ブロックに対するイントラ予測処理を実施する際に用いているイントラ予測パラメータと同じイントラ予測パラメータを用いて、色差信号の符号化対象ブロックに対するイントラ予測処理を実施することで予測画像を生成したのち、エッジをぼかすように、その予測画像に対して、平滑化フィルタをかけるようにする。
 この場合、フィルタ処理後の予測画像が、色差信号の予測画像となる。
 可変長符号化部13は、輝度信号で適用されたイントラ予測パラメータについては、上記実施の形態1と同様に、可変長符号化してビットストリームに多重化するが、色差信号で適用されたイントラ予測パラメータについては次のようにする。
 即ち、可変長符号化部13は、色差信号で適用されたイントラ予測パラメータ自体は可変長符号化せずに、そのイントラ予測パラメータの代わりに、輝度信号と同じイントラ予測パラメータを用いて、色差信号の符号化対象ブロックに対するイントラ予測処理を実施しているか、平均値予測を適用しているかを示す1ビットのフラグを算術符号化などによりエントロピー符号化する。
 これにより、色差信号で適用されたイントラ予測パラメータとして、1ビットのフラグがビットストリームに多重化される。
 なお、必要に応じて、予測画像に対して平滑化フィルタをかける場合、平滑化フィルタをかけているか否かを示す1ビットのフラグを算術符号化などによりエントロピー符号化する。
 ここでは、イントラ予測部4が、色差信号の予測画像を生成する際、輝度信号のイントラ予測パラメータを適用しない場合、平均値予測を適用して、イントラ予測画像を生成するものについて示したが、平均値予測に加えて、水平予測や垂直予測など、複数の代表的な予測方向ベクトルに対応するモード(方向性予測モード)を適用して予測画像を生成するようにしてもよい。
 また、方向性予測モードを適用して生成された予測画像に対して平滑化フィルタをかけた画像を色差信号の予測画像としてもよい。
 図10の動画像復号装置の可変長復号部31は、色差信号で適用されたイントラ予測パラメータとして、ビットストリームから1ビットのフラグを可変長復号する。
 イントラ予測部34は、可変長復号部31により可変長復号されたフラグが、輝度信号と同じイントラ予測パラメータを用いて、色差信号の符号化対象ブロックに対するイントラ予測処理を実施している旨を示している場合、図1のイントラ予測部4と同様に、輝度信号と同じイントラ予測パラメータを用いて、色差信号の復号対象ブロック(符号化対象ブロック)に対するイントラ予測処理を実施して色差信号の予測画像を生成する。
 一方、そのフラグが、平均値予測を適用している旨を示している場合(輝度信号と同じイントラ予測パラメータを用いて、色差信号の符号化対象ブロックに対するイントラ予測処理を実施していない旨を示している場合)、図1のイントラ予測部4と同様に、平均値予測を適用して、色差信号の復号対象ブロックに対するイントラ予測処理を実施して色差信号の予測画像を生成する。
 また、そのフラグが、水平予測(あるいは、垂直予測)を適用している旨を示している場合、水平予測(あるいは、垂直予測)を適用して、色差信号の復号対象ブロックに対するイントラ予測処理を実施して色差信号の予測画像を生成する。
 イントラ予測部34は、可変長復号部31により、平滑化フィルタをかけているか否かを示す1ビットのフラグが可変長復号された場合、そのフラグが、平滑化フィルタをかけている旨を示していれば、輝度信号と同じイントラ予測パラメータを用いて、色差信号の復号対象ブロックに対するイントラ予測処理を実施して色差信号の予測画像を生成したのち、その予測画像に対して、平滑化フィルタをかけるようにする。
 この場合、フィルタ処理後の予測画像が、色差信号の予測画像となる。
 以上で明らかなように、この実施の形態2によれば、動画像符号化装置のイントラ予測部4が、色差信号の予測画像を生成する際、輝度信号の符号化対象ブロックに対するイントラ予測処理を実施する際に用いるイントラ予測パラメータと同じイントラ予測パラメータを用いて、色差信号の符号化対象ブロックに対するイントラ予測処理を実施し、あるいは、平均値予測を適用して、色差信号の符号化対象ブロックに対するイントラ予測処理を実施し、可変長符号化部13が、色差信号の符号化対象ブロックに対するイントラ予測処理を実施する際に用いるイントラ予測パラメータとして、イントラ予測部4が輝度信号と同じイントラ予測パラメータを用いて、色差信号の符号化対象ブロックに対するイントラ予測処理を実施しているか否かを示すフラグを可変長符号化するように構成したので、予測効率を低下させることなく、色差信号のイントラ予測モードに係る符号量を削減することができる効果を奏する。
 また、この実施の形態2によれば、動画像符号化装置のイントラ予測部4が、色差信号の符号化対象ブロックに対するイントラ予測処理を実施して、色差信号の予測画像を生成してから、その予測画像に対して平滑化フィルタをかけるように構成したので、予測効率を高めて、残差信号の符号量を削減することができる効果を奏する。
 この実施の形態2によれば、動画像復号装置の可変長復号部31が、ビットストリームからフラグを可変長復号し、イントラ予測部34が、可変長復号部31により可変長復号されたフラグが、輝度信号と同じイントラ予測パラメータを用いて、色差信号の符号化対象ブロックに対するイントラ予測処理を実施している旨を示している場合、輝度信号と同じイントラ予測パラメータを用いて、色差信号の復号対象ブロック(符号化対象ブロック)に対するイントラ予測処理を実施して色差信号の予測画像を生成し、そのフラグが、輝度信号と同じイントラ予測パラメータを用いて、色差信号の符号化対象ブロックに対するイントラ予測処理を実施していない旨を示している場合、平均値予測を適用して、色差信号の復号対象ブロックに対するイントラ予測処理を実施して色差信号の予測画像を生成するように構成したので、予測効率を低下させることなく、色差信号のイントラ予測パラメータの符号量を削減して符号化されたビットストリームを正しく復号することができる効果を奏する。
 また、この実施の形態2によれば、動画像復号装置のイントラ予測部34が、色差信号の復号対象ブロックに対するイントラ予測処理を実施して、色差信号の予測画像を生成してから、その予測画像に対して平滑化フィルタをかけるように構成したので、予測効率を高めて、残差信号に係る符号量を削減して符号化されたビットストリームを正しく復号することができる効果を奏する。
 以上のように、この発明に係る動画像符号化装置、動画像復号装置、動画像符号化方法及び動画像復号方法は、予測効率を低下させることなく、色差信号のイントラ予測モードに係る符号量を削減することができるようにしたので、イントラ予測処理又はインター予測処理を実施して予測符号化を実施する動画像符号化装置、動画像復号装置、動画像符号化方法及び動画像復号方法などに用いるのに適している。
 1 ブロック分割部(ブロック分割手段)、2 符号化制御部(符号化制御手段)、3 切換スイッチ(予測画像生成手段)、4 イントラ予測部(予測画像生成手段)、5 動き補償予測部、6 減算部(量子化手段)、7 変換・量子化部(量子化手段)、8 逆量子化・逆変換部、9 加算部、10 イントラ予測用メモリ(予測画像生成手段)、11 ループフィルタ部、12 動き補償予測フレームメモリ、13 可変長符号化部(可変長符号化手段)、13a イントラ予測パラメータ可変長符号化部、21 イントラ予測パラメータ予測値算出部、22 イントラ予測パラメータ二値化インデックス算出部、23 エントロピー符号化部、31 可変長復号部(可変長復号手段)、31a イントラ予測パラメータ可変長復号部、32 逆量子化・逆変換部(逆量子化手段)、33 切換スイッチ(予測画像生成手段)、34 イントラ予測部(予測画像生成手段)、35 動き補償部、36 加算部、37 イントラ予測用メモリ(予測画像生成手段)、38 ループフィルタ部、39 動き補償予測フレームメモリ、41 エントロピー復号部、42 イントラ予測パラメータ予測値算出部、43 イントラ予測パラメータインデックス算出部。

Claims (6)

  1.  輝度信号及び色差信号からなる入力画像を予測処理単位のブロックに分割して、予測処理単位のブロックである符号化対象ブロックを出力するブロック分割手段と、上記ブロック分割手段から出力される符号化対象ブロックに対するイントラ予測処理を実施する際に用いるイントラ予測パラメータを決定する符号化制御手段と、上記符号化制御手段により決定されたイントラ予測パラメータを用いて、上記ブロック分割手段から出力された符号化対象ブロックに対するイントラ予測処理を実施して、輝度信号及び色差信号の予測画像を生成する予測画像生成手段と、上記予測画像生成手段により生成された予測画像と上記ブロック分割手段から出力された符号化対象ブロックの差分画像を量子化し、上記差分画像の量子化係数を出力する量子化手段と、上記量子化手段から出力された量子化係数及び上記符号化制御手段により決定されたイントラ予測パラメータを可変長符号化してビットストリームを生成する可変長符号化手段とを備え、
     上記予測画像生成手段は、色差信号の予測画像を生成する際、輝度信号の符号化対象ブロックに対するイントラ予測処理を実施する際に用いるイントラ予測パラメータと同じイントラ予測パラメータを用いて、色差信号の符号化対象ブロックに対するイントラ予測処理を実施し、あるいは、平均値予測を適用して、色差信号の符号化対象ブロックに対するイントラ予測処理を実施し、
     上記可変長符号化手段は、色差信号の符号化対象ブロックに対するイントラ予測処理を実施する際に用いるイントラ予測パラメータとして、上記予測画像生成手段が輝度信号と同じイントラ予測パラメータを用いて、色差信号の符号化対象ブロックに対するイントラ予測処理を実施しているか否かを示すフラグを可変長符号化することを特徴とする動画像符号化装置。
  2.  予測画像生成手段は、色差信号の符号化対象ブロックに対するイントラ予測処理を実施して、色差信号の予測画像を生成してから、上記予測画像に対して平滑化フィルタをかけることを特徴とする請求項1記載の動画像符号化装置。
  3.  ビットストリームから量子化係数及びイントラ予測パラメータを可変長復号する可変長復号手段と、上記可変長復号手段により可変長復号された量子化係数を逆量子化する逆量子化手段と、上記可変長復号手段により可変長復号されたイントラ予測パラメータを用いて、復号対象ブロックに対するイントラ予測処理を実施して、輝度信号及び色差信号の予測画像を生成する予測画像生成手段と、上記予測画像生成手段により生成された予測画像と上記逆量子化手段の逆量子化結果が示す差分画像を加算して復号画像を得る画像加算手段とを備え、
     上記可変長復号手段は、上記ビットストリームからフラグを可変長復号し、
     上記予測画像生成手段は、上記可変長復号手段により可変長復号されたフラグが、輝度信号と同じイントラ予測パラメータを用いて、色差信号の符号化対象ブロックに対するイントラ予測処理を実施している旨を示している場合、輝度信号と同じイントラ予測パラメータを用いて、色差信号の復号対象ブロックに対するイントラ予測処理を実施して色差信号の予測画像を生成し、上記フラグが、輝度信号と同じイントラ予測パラメータを用いて、色差信号の符号化対象ブロックに対するイントラ予測処理を実施していない旨を示している場合、平均値予測を適用して、色差信号の復号対象ブロックに対するイントラ予測処理を実施して色差信号の予測画像を生成することを特徴とする動画像復号装置。
  4.  予測画像生成手段は、色差信号の復号対象ブロックに対するイントラ予測処理を実施して、色差信号の予測画像を生成してから、上記予測画像に対して平滑化フィルタをかけることを特徴とする請求項3記載の動画像復号装置。
  5.  ブロック分割手段が、輝度信号及び色差信号からなる入力画像を予測処理単位のブロックに分割して、予測処理単位のブロックである符号化対象ブロックを出力するブロック分割処理ステップと、符号化制御手段が、上記ブロック分割処理ステップによって出力される符号化対象ブロックに対するイントラ予測処理を実施する際に用いるイントラ予測パラメータを決定する符号化制御処理ステップと、予測画像生成手段が、上記符号化制御処理ステップで決定されたイントラ予測パラメータを用いて、上記ブロック分割処理ステップによって出力された符号化対象ブロックに対するイントラ予測処理を実施して、輝度信号及び色差信号の予測画像を生成する予測画像生成処理ステップと、量子化手段が、上記予測画像生成処理ステップで生成された予測画像と上記ブロック分割処理ステップによって出力された符号化対象ブロックの差分画像を量子化し、上記差分画像の量子化係数を出力する量子化処理ステップと、可変長符号化手段が、上記量子化処理ステップによって出力された量子化係数及び上記符号化制御処理ステップで決定されたイントラ予測パラメータを可変長符号化してビットストリームを生成する可変長符号化処理ステップとを備え、
     上記可変長符号化手段が、色差信号の予測画像を生成する際、輝度信号の符号化対象ブロックに対するイントラ予測処理を実施する際に用いるイントラ予測パラメータと同じイントラ予測パラメータを用いて、色差信号の符号化対象ブロックに対するイントラ予測処理を実施し、あるいは、平均値予測を適用して、色差信号の符号化対象ブロックに対するイントラ予測処理を実施し、
     上記可変長符号化手段が、色差信号の符号化対象ブロックに対するイントラ予測処理を実施する際に用いるイントラ予測パラメータとして、上記可変長符号化手段が輝度信号と同じイントラ予測パラメータを用いて、色差信号の符号化対象ブロックに対するイントラ予測処理を実施しているか否かを示すフラグを可変長符号化することを特徴とする動画像符号化方法。
  6.  可変長復号手段が、ビットストリームから量子化係数及びイントラ予測パラメータを可変長復号する可変長復号処理ステップと、逆量子化手段が、上記可変長復号処理ステップで可変長復号された量子化係数を逆量子化する逆量子化処理ステップと、予測画像生成手段が、上記可変長復号処理ステップで可変長復号されたイントラ予測パラメータを用いて、復号対象ブロックに対するイントラ予測処理を実施して、輝度信号及び色差信号の予測画像を生成する予測画像生成処理ステップと、画像加算手段が、上記予測画像生成処理ステップで生成された予測画像と上記逆量子化処理ステップでの逆量子化結果が示す差分画像を加算して復号画像を得る画像加算処理ステップとを備え、
     上記可変長復号手段が、上記ビットストリームからフラグを可変長復号し、
     上記予測画像生成手段が、上記フラグが、輝度信号と同じイントラ予測パラメータを用いて、色差信号の符号化対象ブロックに対するイントラ予測処理を実施している旨を示している場合、輝度信号と同じイントラ予測パラメータを用いて、色差信号の復号対象ブロックに対するイントラ予測処理を実施して色差信号の予測画像を生成し、上記フラグが、輝度信号と同じイントラ予測パラメータを用いて、色差信号の符号化対象ブロックに対するイントラ予測処理を実施していない旨を示している場合、平均値予測を適用して、色差信号の復号対象ブロックに対するイントラ予測処理を実施して色差信号の予測画像を生成することを特徴とする動画像復号方法。
PCT/JP2011/003907 2010-07-15 2011-07-07 動画像符号化装置、動画像復号装置、動画像符号化方法及び動画像復号方法 WO2012008125A1 (ja)

Priority Applications (18)

Application Number Priority Date Filing Date Title
CN201180034748.8A CN103004201B (zh) 2010-07-15 2011-07-07 运动图像编码装置、运动图像解码装置、运动图像编码方法以及运动图像解码方法
RU2013106507/08A RU2533649C1 (ru) 2010-07-15 2011-07-07 Устройство кодирования движущихся изображений, устройство декодирования движущихся изображений, способ кодирования движущихся изображений и способ декодирования движущихся изображений
KR1020157012081A KR20150059797A (ko) 2010-07-15 2011-07-07 동영상 부호화 장치, 동영상 복호 장치, 동영상 부호화 방법 및 동영상 복호 방법
JP2012524443A JP5656998B2 (ja) 2010-07-15 2011-07-07 動画像復号装置及び動画像復号方法
SG2013002779A SG187062A1 (en) 2010-07-15 2011-07-07 Moving image encoding device, moving image decoding device, moving image coding method, and moving image decoding method
KR1020137003840A KR20130069726A (ko) 2010-07-15 2011-07-07 동영상 부호화 장치, 동영상 복호 장치, 동영상 부호화 방법 및 동영상 복호 방법
KR1020147035797A KR101562158B1 (ko) 2010-07-15 2011-07-07 동영상 부호화 장치, 동영상 복호 장치, 동영상 부호화 방법 및 동영상 복호 방법
KR1020147009217A KR20140049095A (ko) 2010-07-15 2011-07-07 동영상 부호화 장치, 동영상 복호 장치, 동영상 부호화 방법 및 동영상 복호 방법
MX2013000525A MX2013000525A (es) 2010-07-15 2011-07-07 Dispositivo codificador de imagen movil, dispositivo descodificador de imagen movil, metodo de codificacion de imagen movil y metodo de descodificacion de imagen movil.
US13/810,072 US9462271B2 (en) 2010-07-15 2011-07-07 Moving image encoding device, moving image decoding device, moving image coding method, and moving image decoding method
BR112013000516-5A BR112013000516B1 (pt) 2010-07-15 2011-07-07 Dispositivo e método de codificação de imagem em movimento, e, dispositivo e método de decodificação de imagem em movimento
KR1020147022240A KR101529452B1 (ko) 2010-07-15 2011-07-07 동영상 복호 장치 및 동영상 복호 방법
EP11806461.7A EP2595386A4 (en) 2010-07-15 2011-07-07 VIDEO ENCODING DEVICE, VIDEO DECODING DEVICE, VIDEO ENCODING METHOD, AND VIDEO DECODING METHOD
CA2805328A CA2805328A1 (en) 2010-07-15 2011-07-07 Moving image encoding device, moving image decoding device, moving image coding method, and moving image decoding method
TW100124551A TWI533676B (zh) 2010-07-15 2011-07-12 動畫像編碼裝置、動畫像解碼裝置、動畫像編碼方法、動畫像解碼方法及記憶媒體
TW105108792A TWI565307B (zh) 2010-07-15 2011-07-12 動畫像編碼裝置、動畫像解碼裝置、動畫像編碼方法、動畫像解碼方法及記憶媒體
TW105137835A TW201709742A (zh) 2010-07-15 2011-07-12 動畫像解碼裝置及動畫像解碼方法
HK13110333.0A HK1183189A1 (zh) 2010-07-15 2013-09-05 運動圖像編碼裝置、運動圖像解碼裝置、運動圖像編碼方法以及運動圖像解碼方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010160647 2010-07-15
JP2010-160647 2010-07-15

Publications (1)

Publication Number Publication Date
WO2012008125A1 true WO2012008125A1 (ja) 2012-01-19

Family

ID=45469144

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/003907 WO2012008125A1 (ja) 2010-07-15 2011-07-07 動画像符号化装置、動画像復号装置、動画像符号化方法及び動画像復号方法

Country Status (13)

Country Link
US (1) US9462271B2 (ja)
EP (1) EP2595386A4 (ja)
JP (3) JP5656998B2 (ja)
KR (5) KR20150059797A (ja)
CN (5) CN105847791B (ja)
BR (1) BR112013000516B1 (ja)
CA (1) CA2805328A1 (ja)
HK (5) HK1224116A1 (ja)
MX (1) MX2013000525A (ja)
RU (4) RU2580073C2 (ja)
SG (2) SG187062A1 (ja)
TW (3) TWI565307B (ja)
WO (1) WO2012008125A1 (ja)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012096150A1 (ja) * 2011-01-12 2012-07-19 三菱電機株式会社 動画像符号化装置、動画像復号装置、動画像符号化方法及び動画像復号方法
JP2013541303A (ja) * 2011-01-07 2013-11-07 メディア テック シンガポール ピーティーイー.リミテッド 改良されたイントラ予測モード符号化の方法及び装置
JP2014500692A (ja) * 2010-12-23 2014-01-09 サムスン エレクトロニクス カンパニー リミテッド 映像予測単位についてのイントラ予測モード符号化方法及び装置、並びに映像予測単位についてのイントラ予測モード復号化方法及び装置
JP2014522193A (ja) * 2012-01-20 2014-08-28 華為技術有限公司 符号化または復号化のための方法および装置
JP2014225928A (ja) * 2014-09-05 2014-12-04 株式会社Jvcケンウッド 画像符号化装置、画像符号化方法、及び画像符号化プログラム、並びに、送信装置、送信方法、及び送信プログラム
JP2015144484A (ja) * 2015-03-31 2015-08-06 株式会社Jvcケンウッド 画像復号装置、画像復号方法、及び画像復号プログラム、並びに、受信装置、受信方法、及び受信プログラム
JP5839144B1 (ja) * 2015-09-09 2016-01-06 株式会社Jvcケンウッド 画像符号化装置、画像符号化方法、及び画像符号化プログラム、並びに、送信装置、送信方法、及び送信プログラム
JP5839143B1 (ja) * 2015-09-09 2016-01-06 株式会社Jvcケンウッド 画像符号化装置、画像符号化方法、及び画像符号化プログラム、並びに、送信装置、送信方法、及び送信プログラム
JP5839145B1 (ja) * 2015-09-09 2016-01-06 株式会社Jvcケンウッド 画像符号化装置、画像符号化方法、及び画像符号化プログラム、並びに、送信装置、送信方法、及び送信プログラム
JP2016005210A (ja) * 2014-06-19 2016-01-12 三菱電機株式会社 端末装置及びデータ管理装置
JP2016054509A (ja) * 2015-11-09 2016-04-14 株式会社Jvcケンウッド 画像符号化装置
TWI563826B (ja) * 2011-06-23 2016-12-21 Jvc Kenwood Corp
RU2708295C1 (ru) * 2013-03-29 2019-12-05 ДжейВиСи КЕНВУД КОРПОРЕЙШН Устройство и способ декодирования изображения для декодирования информации, относящейся к режиму внутрикадрового предсказания

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5918903B2 (ja) 2012-04-12 2016-05-18 テレフオンアクチーボラゲット エルエム エリクソン(パブル) 拡張データの処理
JP6341426B2 (ja) * 2012-09-10 2018-06-13 サン パテント トラスト 画像復号化方法および画像復号化装置
US20140185928A1 (en) * 2012-12-28 2014-07-03 Shai Ben NUN Hardware-supported huffman coding of images
CN103313055B (zh) * 2013-06-03 2016-04-20 电子科技大学 一种基于分割的色度帧内预测方法、及视频编码解码方法
US9967594B2 (en) * 2013-06-28 2018-05-08 Mozilla Corporation Probability modeling of intra prediction modes
WO2016074147A1 (en) * 2014-11-11 2016-05-19 Mediatek Singapore Pte. Ltd. Separated coding tree for luma and chroma
KR102411911B1 (ko) * 2015-12-24 2022-06-22 삼성전자주식회사 프레임 레이트 변환 장치 및 그 프레임 레이트 변환 방법
US10284844B1 (en) 2018-07-02 2019-05-07 Tencent America LLC Method and apparatus for video coding
JP7418152B2 (ja) * 2018-12-17 2024-01-19 キヤノン株式会社 画像符号化装置、画像符号化方法、画像復号装置、画像復号方法
JP6899053B2 (ja) * 2019-06-24 2021-07-07 Kddi株式会社 画像復号装置、画像復号方法及びプログラム
WO2021032112A1 (en) 2019-08-19 2021-02-25 Beijing Bytedance Network Technology Co., Ltd. Initialization for counter-based intra prediction mode
WO2021032110A1 (en) * 2019-08-19 2021-02-25 Beijing Bytedance Network Technology Co., Ltd. Counter-based intra prediction mode
US11475601B2 (en) * 2019-10-21 2022-10-18 Google Llc Image decoding during bitstream interruptions

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007150913A (ja) * 2005-11-29 2007-06-14 Matsushita Electric Ind Co Ltd 画像符号化装置
JP2009111691A (ja) * 2007-10-30 2009-05-21 Hitachi Ltd 画像符号化装置及び符号化方法、画像復号化装置及び復号化方法

Family Cites Families (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100579232C (zh) * 1997-10-23 2010-01-06 三菱电机株式会社 图像译码装置和图像译码方法
CA2265089C (en) * 1998-03-10 2007-07-10 Sony Corporation Transcoding system using encoding history information
EP1146745B1 (en) * 2000-03-08 2019-09-04 Mitsubishi Denki Kabushiki Kaisha Coding device and coding method
RU2003126484A (ru) * 2001-01-30 2005-03-10 Кабусики Кайся Офис Ноа (Jp) Способ и система для сжигания информации движущегося изображения
CN100566420C (zh) * 2002-07-15 2009-12-02 株式会社日立制作所 动态图像的编码方法
JP4617644B2 (ja) * 2003-07-18 2011-01-26 ソニー株式会社 符号化装置及び方法
US7830959B2 (en) * 2003-12-26 2010-11-09 Electronics And Telecommunications Research Institute Apparatus and method for performing intra prediction for image decoder
JP2006054846A (ja) * 2004-07-12 2006-02-23 Sony Corp 符号化方法、符号化装置、復号方法、復号装置およびそれらのプログラム
JP2006074474A (ja) * 2004-09-02 2006-03-16 Toshiba Corp 動画像符号化装置、動画像符号化方法および動画像符号化プログラム
RU2287909C2 (ru) * 2004-12-15 2006-11-20 Московский технический университет связи и информатики Способ преобразования цифрового сигнала изображения и устройство для его реализации
EP1753242A2 (en) * 2005-07-18 2007-02-14 Matsushita Electric Industrial Co., Ltd. Switchable mode and prediction information coding
US20090034857A1 (en) * 2005-07-22 2009-02-05 Mitsubishi Electric Corporation Image encoder and image decoder, image encoding method and image decoding method, image encoding program and image decoding program, and computer readable recording medium recorded with image encoding program and computer readable recording medium recorded with image decoding program
US20090123066A1 (en) * 2005-07-22 2009-05-14 Mitsubishi Electric Corporation Image encoding device, image decoding device, image encoding method, image decoding method, image encoding program, image decoding program, computer readable recording medium having image encoding program recorded therein,
CA2610276C (en) * 2005-07-22 2013-01-29 Mitsubishi Electric Corporation Image encoder and image decoder, image encoding method and image decoding method, image encoding program and image decoding program, and computer readable recording medium recorded with image encoding program and computer readable recording medium recorded with image decoding program
KR20070077609A (ko) 2006-01-24 2007-07-27 삼성전자주식회사 인트라 예측 모드 결정 방법 및 장치
JP4707118B2 (ja) 2007-03-28 2011-06-22 株式会社Kddi研究所 動画像符号化装置および動画像復号装置のイントラ予測方式
JP2010135864A (ja) 2007-03-29 2010-06-17 Toshiba Corp 画像符号化方法及び装置並びに画像復号化方法及び装置
US8345968B2 (en) * 2007-06-28 2013-01-01 Mitsubishi Electric Corporation Image encoding device, image decoding device, image encoding method and image decoding method
JP5137532B2 (ja) * 2007-11-16 2013-02-06 キヤノン株式会社 画像符号化装置及び画像符号化方法
KR101291196B1 (ko) * 2008-01-25 2013-07-31 삼성전자주식회사 영상의 부호화, 복호화 방법 및 장치
KR101591825B1 (ko) * 2008-03-27 2016-02-18 엘지전자 주식회사 비디오 신호의 인코딩 또는 디코딩 방법 및 장치
KR101361005B1 (ko) 2008-06-24 2014-02-13 에스케이 텔레콤주식회사 인트라 예측 방법 및 장치와 그를 이용한 영상부호화/복호화 방법 및 장치
JP4793424B2 (ja) 2008-11-04 2011-10-12 三菱電機株式会社 画像符号化装置、画像符号化方法、画像復号装置、画像復号方法、および通信装置
JP2010177809A (ja) * 2009-01-27 2010-08-12 Toshiba Corp 動画像符号化装置および動画像復号装置
JP5158003B2 (ja) * 2009-04-14 2013-03-06 ソニー株式会社 画像符号化装置と画像符号化方法およびコンピュータ・プログラム

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007150913A (ja) * 2005-11-29 2007-06-14 Matsushita Electric Ind Co Ltd 画像符号化装置
JP2009111691A (ja) * 2007-10-30 2009-05-21 Hitachi Ltd 画像符号化装置及び符号化方法、画像復号化装置及び復号化方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2595386A4 *

Cited By (49)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11070811B2 (en) 2010-12-23 2021-07-20 Samsung Electronics Co., Ltd. Method and device for encoding intra prediction mode for image prediction unit, and method and device for decoding intra prediction mode for image prediction unit
JP2014500692A (ja) * 2010-12-23 2014-01-09 サムスン エレクトロニクス カンパニー リミテッド 映像予測単位についてのイントラ予測モード符号化方法及び装置、並びに映像予測単位についてのイントラ予測モード復号化方法及び装置
JP2016105619A (ja) * 2010-12-23 2016-06-09 サムスン エレクトロニクス カンパニー リミテッド 映像予測単位についてのイントラ予測モード符号化方法及び装置、並びに映像予測単位についてのイントラ予測モード復号化方法及び装置
US10021384B2 (en) 2010-12-23 2018-07-10 Samsung Electronics Co., Ltd. Method and device for encoding intra prediction mode for image prediction unit, and method and device for decoding intra prediction mode for image prediction unit
US10630986B2 (en) 2010-12-23 2020-04-21 Samsung Electronics Co., Ltd. Method and device for encoding intra prediction mode for image prediction unit, and method and device for decoding intra prediction mode for image prediction unit
US11509899B2 (en) 2010-12-23 2022-11-22 Samsung Electronics Co., Ltd. Method and device for encoding intra prediction mode for image prediction unit, and method and device for decoding intra prediction mode for image prediction unit
JP2013541303A (ja) * 2011-01-07 2013-11-07 メディア テック シンガポール ピーティーイー.リミテッド 改良されたイントラ予測モード符号化の方法及び装置
US8755435B2 (en) 2011-01-07 2014-06-17 Mediatek Inc. Method and apparatus of improved intra prediction mode coding
US10205944B2 (en) 2011-01-12 2019-02-12 Mistubishi Electric Corporation Image encoding device, image decoding device, image encoding method, and image decoding method for generating a prediction image
WO2012096150A1 (ja) * 2011-01-12 2012-07-19 三菱電機株式会社 動画像符号化装置、動画像復号装置、動画像符号化方法及び動画像復号方法
US10931946B2 (en) 2011-01-12 2021-02-23 Mitsubishi Electric Corporation Image encoding device, image decoding device, image encoding method, and image decoding method for generating a prediction image
US9628797B2 (en) 2011-01-12 2017-04-18 Mitsubishi Electric Corporation Image encoding device, image decoding device, image encoding method, and image decoding method for generating a prediction image
JP2014132766A (ja) * 2011-01-12 2014-07-17 Mitsubishi Electric Corp 画像符号化装置及び画像復号装置
US9609326B2 (en) 2011-01-12 2017-03-28 Mitsubishi Electric Corporation Image encoding device, image decoding device, image encoding method, and image decoding method for generating a prediction image
JP2017077036A (ja) * 2011-01-12 2017-04-20 三菱電機株式会社 符号化データ
JPWO2012096150A1 (ja) * 2011-01-12 2014-06-09 三菱電機株式会社 動画像符号化装置、動画像復号装置、動画像符号化方法及び動画像復号方法
US9299133B2 (en) 2011-01-12 2016-03-29 Mitsubishi Electric Corporation Image encoding device, image decoding device, image encoding method, and image decoding method for generating a prediction image
JP2016042731A (ja) * 2011-01-12 2016-03-31 三菱電機株式会社 画像符号化装置、画像復号装置、画像符号化方法、画像復号方法およびビットストリーム
JP2016042732A (ja) * 2011-01-12 2016-03-31 三菱電機株式会社 画像符号化装置、画像復号装置、画像符号化方法、画像復号方法およびビットストリーム
JP2017118571A (ja) * 2011-01-12 2017-06-29 三菱電機株式会社 符号化データ
US9736478B2 (en) 2011-01-12 2017-08-15 Mitsubishi Electric Corporation Image encoding device, image decoding device, image encoding method, and image decoding method for generating a prediction image
JP2017118572A (ja) * 2011-01-12 2017-06-29 三菱電機株式会社 符号化データ
JP5478740B2 (ja) * 2011-01-12 2014-04-23 三菱電機株式会社 動画像符号化装置、動画像復号装置、動画像符号化方法及び動画像復号方法
US9414073B2 (en) 2011-01-12 2016-08-09 Mitsubishi Electric Corporation Image encoding device, image decoding device, image encoding method, and image decoding method for generating a prediction image
JP2015084573A (ja) * 2011-01-12 2015-04-30 三菱電機株式会社 画像符号化装置及び画像復号装置
US10009607B2 (en) 2011-06-23 2018-06-26 JVS KENWOOD Corporation Picture coding device, picture coding method and picture coding program
TWI563826B (ja) * 2011-06-23 2016-12-21 Jvc Kenwood Corp
US10412384B2 (en) 2011-06-23 2019-09-10 JVC Kenwood Corporation Picture coding device, picture coding method, picture coding program
US10869033B2 (en) 2011-06-23 2020-12-15 JVC Kenwood Corporation Picture coding device, picture coding method, picture coding program
JP2016181908A (ja) * 2012-01-20 2016-10-13 華為技術有限公司Huawei Technologies Co.,Ltd. 符号化または復号化のための方法および装置
JP2014522193A (ja) * 2012-01-20 2014-08-28 華為技術有限公司 符号化または復号化のための方法および装置
US9503729B2 (en) 2012-01-20 2016-11-22 Huawei Technologies Co., Ltd. Encoding or decoding method and apparatus
US9351001B2 (en) 2012-01-20 2016-05-24 Huawei Technologies Co., Ltd. Encoding or decoding method and apparatus
US9325993B2 (en) 2012-01-20 2016-04-26 Huawei Technologies Co., Ltd. Encoding or decoding method and apparatus
US9743080B2 (en) 2012-01-20 2017-08-22 Huawei Technologies Co., Ltd. Encoding or decoding method and apparatus
US9906789B2 (en) 2012-01-20 2018-02-27 Huawei Technologies Co., Ltd. Encoding or decoding method and apparatus
US9124900B2 (en) 2012-01-20 2015-09-01 Huawei Technologies Co., Ltd. Encoding or decoding method and apparatus
JP2017085600A (ja) * 2012-01-20 2017-05-18 華為技術有限公司Huawei Technologies Co.,Ltd. 符号化または復号化のための方法および装置
RU2708295C1 (ru) * 2013-03-29 2019-12-05 ДжейВиСи КЕНВУД КОРПОРЕЙШН Устройство и способ декодирования изображения для декодирования информации, относящейся к режиму внутрикадрового предсказания
RU2708506C1 (ru) * 2013-03-29 2019-12-09 ДжейВиСи КЕНВУД КОРПОРЕЙШН Устройство и способ декодирования изображения для декодирования информации, относящейся к режиму внутрикадрового предсказания
RU2708295C9 (ru) * 2013-03-29 2021-03-03 ДжейВиСи КЕНВУД КОРПОРЕЙШН Устройство и способ декодирования изображения для декодирования информации, относящейся к режиму внутрикадрового предсказания
RU2708506C9 (ru) * 2013-03-29 2020-10-16 ДжейВиСи КЕНВУД КОРПОРЕЙШН Устройство и способ декодирования изображения для декодирования информации, относящейся к режиму внутрикадрового предсказания
JP2016005210A (ja) * 2014-06-19 2016-01-12 三菱電機株式会社 端末装置及びデータ管理装置
JP2014225928A (ja) * 2014-09-05 2014-12-04 株式会社Jvcケンウッド 画像符号化装置、画像符号化方法、及び画像符号化プログラム、並びに、送信装置、送信方法、及び送信プログラム
JP2015144484A (ja) * 2015-03-31 2015-08-06 株式会社Jvcケンウッド 画像復号装置、画像復号方法、及び画像復号プログラム、並びに、受信装置、受信方法、及び受信プログラム
JP5839145B1 (ja) * 2015-09-09 2016-01-06 株式会社Jvcケンウッド 画像符号化装置、画像符号化方法、及び画像符号化プログラム、並びに、送信装置、送信方法、及び送信プログラム
JP5839144B1 (ja) * 2015-09-09 2016-01-06 株式会社Jvcケンウッド 画像符号化装置、画像符号化方法、及び画像符号化プログラム、並びに、送信装置、送信方法、及び送信プログラム
JP5839143B1 (ja) * 2015-09-09 2016-01-06 株式会社Jvcケンウッド 画像符号化装置、画像符号化方法、及び画像符号化プログラム、並びに、送信装置、送信方法、及び送信プログラム
JP2016054509A (ja) * 2015-11-09 2016-04-14 株式会社Jvcケンウッド 画像符号化装置

Also Published As

Publication number Publication date
KR20150014981A (ko) 2015-02-09
KR20130069726A (ko) 2013-06-26
HK1222072A1 (zh) 2017-06-16
SG10201504903RA (en) 2015-07-30
KR101529452B1 (ko) 2015-06-18
HK1224115A1 (zh) 2017-08-11
KR20150059797A (ko) 2015-06-02
US9462271B2 (en) 2016-10-04
CA2805328A1 (en) 2012-01-19
HK1183189A1 (zh) 2013-12-13
CN105847792B (zh) 2018-12-07
KR101562158B1 (ko) 2015-10-20
RU2533649C1 (ru) 2014-11-20
TW201625004A (zh) 2016-07-01
JP2015222973A (ja) 2015-12-10
CN105847791A (zh) 2016-08-10
TW201210351A (en) 2012-03-01
JP5656998B2 (ja) 2015-01-21
HK1224116A1 (zh) 2017-08-11
RU2665237C1 (ru) 2018-08-28
CN103004201B (zh) 2016-04-13
EP2595386A4 (en) 2015-02-18
TW201709742A (zh) 2017-03-01
KR20140110076A (ko) 2014-09-16
TWI533676B (zh) 2016-05-11
JP5782169B2 (ja) 2015-09-24
RU2013106507A (ru) 2014-10-20
TWI565307B (zh) 2017-01-01
RU2016105489A (ru) 2017-08-23
RU2632170C2 (ru) 2017-10-02
HK1222071A1 (zh) 2017-06-16
CN105657419A (zh) 2016-06-08
CN105847791B (zh) 2018-11-27
KR20140049095A (ko) 2014-04-24
CN103004201A (zh) 2013-03-27
CN105763875A (zh) 2016-07-13
CN105763875B (zh) 2019-05-14
MX2013000525A (es) 2013-03-22
BR112013000516B1 (pt) 2022-06-14
BR112013000516A2 (pt) 2016-05-17
JPWO2012008125A1 (ja) 2013-09-05
SG187062A1 (en) 2013-02-28
EP2595386A1 (en) 2013-05-22
CN105657419B (zh) 2019-03-01
US20130114700A1 (en) 2013-05-09
CN105847792A (zh) 2016-08-10
RU2014134202A (ru) 2015-12-27
RU2580073C2 (ru) 2016-04-10
JP2015015772A (ja) 2015-01-22

Similar Documents

Publication Publication Date Title
JP5782169B2 (ja) 動画像符号化装置及び動画像符号化方法
JP6851429B2 (ja) 画像復号装置、画像復号方法、画像符号化装置及び画像符号化方法
US11831893B2 (en) Image coding device, image decoding device, image coding method, and image decoding method
JP2012023609A (ja) 動画像符号化装置、動画像復号装置、動画像符号化方法及び動画像復号方法
JP2013098715A (ja) 動画像符号化装置、動画像復号装置、動画像符号化方法及び動画像復号方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11806461

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012524443

Country of ref document: JP

ENP Entry into the national phase

Ref document number: 2805328

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 13810072

Country of ref document: US

Ref document number: MX/A/2013/000525

Country of ref document: MX

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2011806461

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2013106507

Country of ref document: RU

Kind code of ref document: A

Ref document number: 20137003840

Country of ref document: KR

Kind code of ref document: A

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112013000516

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112013000516

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20130108