WO2012006925A1 - 多级压缩气体发动机及机动车 - Google Patents

多级压缩气体发动机及机动车 Download PDF

Info

Publication number
WO2012006925A1
WO2012006925A1 PCT/CN2011/076345 CN2011076345W WO2012006925A1 WO 2012006925 A1 WO2012006925 A1 WO 2012006925A1 CN 2011076345 W CN2011076345 W CN 2011076345W WO 2012006925 A1 WO2012006925 A1 WO 2012006925A1
Authority
WO
WIPO (PCT)
Prior art keywords
impeller
compressed gas
stage
gas engine
chamber
Prior art date
Application number
PCT/CN2011/076345
Other languages
English (en)
French (fr)
Inventor
丛洋
Original Assignee
Cong Yang
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201010518219.2A external-priority patent/CN102278144B/zh
Priority to US13/810,646 priority Critical patent/US20130199169A1/en
Priority to MX2013000546A priority patent/MX2013000546A/es
Priority to JP2013518939A priority patent/JP2013536344A/ja
Priority to EA201390129A priority patent/EA201390129A1/ru
Priority to SG2013004221A priority patent/SG187135A1/en
Priority to EP11806267.8A priority patent/EP2594747A1/en
Priority to KR1020137003875A priority patent/KR20130142995A/ko
Application filed by Cong Yang filed Critical Cong Yang
Priority to CA2805143A priority patent/CA2805143A1/en
Priority to BR112013001182A priority patent/BR112013001182A2/pt
Priority to MA35659A priority patent/MA34466B1/fr
Priority to AU2011278887A priority patent/AU2011278887A1/en
Publication of WO2012006925A1 publication Critical patent/WO2012006925A1/zh
Priority to ZA2013/00331A priority patent/ZA201300331B/en
Priority to NO20130167A priority patent/NO20130167A1/no

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D13/00Combinations of two or more machines or engines
    • F01D13/02Working-fluid interconnection of machines or engines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01BMACHINES OR ENGINES, IN GENERAL OR OF POSITIVE-DISPLACEMENT TYPE, e.g. STEAM ENGINES
    • F01B17/00Reciprocating-piston machines or engines characterised by use of uniflow principle
    • F01B17/02Engines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D1/00Non-positive-displacement machines or engines, e.g. steam turbines
    • F01D1/02Non-positive-displacement machines or engines, e.g. steam turbines with stationary working-fluid guiding means and bladed or like rotor, e.g. multi-bladed impulse steam turbines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D1/00Non-positive-displacement machines or engines, e.g. steam turbines
    • F01D1/18Non-positive-displacement machines or engines, e.g. steam turbines without stationary working-fluid guiding means
    • F01D1/22Non-positive-displacement machines or engines, e.g. steam turbines without stationary working-fluid guiding means traversed by the working-fluid substantially radially
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D9/00Stators
    • F01D9/02Nozzles; Nozzle boxes; Stator blades; Guide conduits, e.g. individual nozzles

Definitions

  • the present invention relates to an engine that belongs to the field of machinery. It can be installed on a variety of power machinery, especially suitable for installation in motor vehicles.
  • An engine that uses fuel as an energy source consumes a large amount of fuel, and emits a large amount of exhaust gas, hot gas, and pollutes the environment.
  • human beings are eager for an engine that does not require fuel consumption and eliminates exhaust gas, hot gas emissions, and pollution.
  • the applicant of the present invention has proposed a Chinese patent entitled "Air Engine, That is, an Engine Using Wind Power to Replace Fuel Energy", and the publication is CN1828046.
  • the invention discloses a blast engine and a motor vehicle, comprising at least one impeller chamber, an impeller installed in the impeller chamber, and a jet system for injecting compressed gas into the impeller chamber.
  • the main feature of the invention is that the impeller chamber is arranged An air inlet for receiving an external airflow and a jet system.
  • the inventive ventilating engine is installed on a power-driven mechanical machine (especially a motor vehicle), and the wind-impedance airflow that the power machinery encounters during driving can be directly utilized by providing an air inlet that receives the external airflow resistance. Change resistance to power.
  • compressed gas is used as the main power, no fuel consumption, no exhaust gas, hot gas discharge, no pollution.
  • the invention is called a combined blast engine and a motor vehicle.
  • the main feature of the invention is that a multi-stage compressed gas engine and a wind-resistant engine with independent structures are respectively provided, and the impeller can be targeted according to the high flow rate of the compressed gas and relatively concentrated, and the flow velocity of the wind-resistant airflow is low and relatively dispersed.
  • the blades are optimally designed to allow the compressed gas and the airflow to be better matched.
  • the technical problem to be solved by the present invention is to further improve the use efficiency of the compressed gas.
  • a multistage compressed gas engine comprising an impeller and at least one impeller chamber provided with an impeller, the impeller comprising a first impeller and a second impeller, the first impeller and the second impeller having a plurality of serrations on a circumferential surface thereof And a side plate on both sides of the blade tooth, the side plates between the blade teeth and the blade teeth on the circumferential surface of the impeller constitute a plurality of working chambers, the inner surface of the impeller chamber in which the impeller is mounted and the Each working chamber constitutes a plurality of air chambers capable of injecting a gas relative to the seal, and the impeller chamber on which the first impeller is mounted is correspondingly provided with a first-stage compressed gas injection hole for injecting a compressed gas onto the blades of the first impeller and a first stage compressed gas discharge hole for discharging compressed gas temporarily stored in each working chamber of the first impeller, and an impeller chamber provided with the second impeller is correspondingly provided for spraying on the blade teeth of the second impeller a
  • a compressed gas engine comprising at least two stages of compressed gas engines, each stage of the compressed gas engine comprising at least one impeller chamber, at least one impeller mounted in the impeller chamber through a rotating shaft, and the impeller is provided with a blade tooth, each The impeller chamber is provided with at least one air inlet and at least one air outlet, wherein the exhaust port on the front stage impeller chamber communicates with the air inlet on the rear stage impeller chamber, and each stage impeller outputs power through the rotating shaft.
  • a motor vehicle includes a transmission shaft and a multi-stage compressed gas engine, the multi-stage compressed gas engine including an impeller and at least one impeller chamber provided with an impeller, the impeller including a first impeller and a second impeller, the first impeller And a plurality of blade teeth and side plates on both sides of the blade teeth on the circumferential surface of the second impeller, and the side plates between the blade teeth and the blade teeth on the circumferential surface of the impeller constitute a plurality of working chambers,
  • the inner surface of the impeller chamber in which the impeller is disposed and the working chambers form a plurality of air chambers capable of sealingly injecting gas
  • the impeller chamber on which the first impeller is mounted is correspondingly provided with a blade tooth for the first impeller a first stage compressed gas injection hole for injecting a compressed gas and a first stage compressed gas discharge hole for discharging a compressed gas temporarily stored in each working chamber of the first impeller, and an impeller chamber of the second impeller a second compressed gas injection hole for
  • the at least one impeller chamber includes a first independent impeller chamber and a second impeller chamber, the first impeller is correspondingly disposed in the first impeller chamber, and the second impeller is correspondingly disposed in the second impeller chamber .
  • the at least one impeller chamber is an impeller chamber, and the first impeller and the second impeller are integrally processed connected structures, and the first impeller and the second impeller are installed in the impeller chamber.
  • first impeller and the second impeller have different diameters
  • the impeller chamber has different sizes of inner diameters matching the installed first impeller and the second impeller to make the impeller chamber
  • the inner surface is capable of relatively sealing the compressed gas within the working chamber of the first impeller and the compressed gas within the working chamber of the second impeller.
  • first impeller and the second impeller are mounted coaxially on the same power output shaft.
  • the diameter of the second impeller is larger than the diameter of the first impeller.
  • the thickness of the second impeller is greater than the thickness of the first impeller.
  • the diameter of the first-stage compressed gas ejection hole is 2 to 10 times the diameter of the first-stage compressed gas injection hole
  • the diameter of the second compressed gas discharge hole is the second compressed gas injection hole. 2 to 10 times the diameter, the diameter of the second compressed gas injection hole is not smaller than the diameter of the first-stage compressed gas injection hole.
  • At least an inner surface of the impeller chamber corresponding to the first impeller is provided with a jet introduction groove provided along the rotating circumferential surface and communicating with the first-stage compressed gas injection hole.
  • the length of the jet introduction groove is greater than the distance between two adjacent blade teeth.
  • an inner surface of the impeller chamber is provided with an exhaust gas outlet groove parallel to the axis of the rotating shaft, and the exhaust gas outlet groove is connected to the compressed gas discharge hole.
  • the distance between the end of the jet introduction groove and the adjacent exhaust gas outlet groove is greater than the distance between two adjacent blade teeth.
  • the "multi-stage compressed gas engine” may be a two-stage or two-stage compressed gas engine in which the compressed gas is discharged to the first-stage impeller and then enters the next-stage impeller to continue work.
  • the first impeller and the second impeller communicate with each other.
  • the compressed gas energy of the compressed gas to the first impeller can be continuously injected into the second impeller to achieve secondary work, thereby improving the energy utilization rate of the compressed gas.
  • the compressed gas engine with a bilaterally symmetrical structure can make the compression of the compressed gas engine work better.
  • the length of the jet introduction groove is at least greater than the distance between two adjacent blade teeth, and two or more blade teeth can be simultaneously worked by one intake hole to improve the dynamic performance of the engine.
  • the gas after the work of the impeller can be smoothly discharged in time.
  • FIG. 1 is a schematic structural view of a multi-stage compressed gas engine.
  • FIG. 2 is a schematic structural view of the first stage compressed gas engine of FIG. 1.
  • Figure 3 is an enlarged schematic view showing a partial structure of the impeller chamber of Figure 2;
  • FIG. 4 is a schematic structural view of another multi-stage compressed gas engine.
  • Fig. 5 is a schematic structural view of still another multi-stage compressed gas engine.
  • Embodiment 1 A motor vehicle, as shown in FIGS. 1 to 3, includes a left-side compressed gas engine, a right-side compressed gas engine, and a transmission shaft 19, and the left and right compressed gas engines have a bilaterally symmetric structure.
  • a first stage compressed gas engine 1 and a second stage compressed gas engine 2 are included.
  • the first stage compressed gas engine 1 includes a first impeller 20 and a first impeller chamber 15, and a second stage compressed gas
  • the engine 2 includes a second impeller 26 and a second impeller chamber 25.
  • the first stage compressed gas engine 1 has the same structure as the second stage compressed gas engine 2 except for the dimensional reference.
  • the first stage compressed gas engine 1 and the second stage compressed gas engine 2 are coaxially mounted on the same rotating shaft 3, and the power generated by the compressed gas engines on the left and right sides drives the transmission shaft of the motor vehicle via the rotating shaft 3 and the clutch 5.
  • the first stage compressed gas engine 1 includes a first impeller chamber 15 and is installed through the rotating shaft 3.
  • a first impeller 20 in an impeller chamber 15 is provided with three sets of symmetrically disposed first stage compressed gas injection holes 11 and three for arranging compressed gas onto the teeth 16 of the first impeller 20.
  • the first stage compressed gas discharge hole 12 is symmetrically disposed, and the first stage compressed gas injection hole 11 is provided with a nozzle 17 having a plurality of equally disposed blade teeth 16 on the circumferential surface of the first impeller 20 and located at the blade teeth 16
  • the side plates 23 on both sides, the side plates 23 between the blade teeth 16 and the blade teeth on the circumferential surface of the first impeller 20 constitute a plurality of working chambers 24, and the first impeller chamber 15 of the first impeller 20 is mounted.
  • the inner surface and each of the working chambers 24 constitute a plurality of air chambers capable of injecting gas from the first-stage compressed gas injection holes 11 in a relatively sealed manner, and the working chamber 24 in which the compressed gas is temporarily stored is rotated to the first-stage compressed gas discharge holes 12 At the position, the compressed gas in the working chamber 24 passes through the first stage compressed gas.
  • the body discharge hole 12 is sprayed outward to work, further pushing the impeller 20 to rotate.
  • the first stage compressed gas discharge hole 12 on the first impeller chamber 15 communicates with the second stage compressed gas injection hole 21 on the second impeller chamber 25.
  • the first impeller 20 of the first stage compressed gas engine 1 has a small diameter
  • the second impeller 26 of the second stage compressed gas engine 2 has a large diameter to increase the blade tip of the second stage compressed gas engine 2.
  • the diameter of the first-stage compressed gas discharge hole 12 is 2 to 10 times that of the first-stage compressed gas injection hole 11
  • the diameter of the second-stage compressed gas discharge hole 22 is the second-stage compressed gas injection hole. 2 to 10 times 21 can be flexibly set as needed.
  • a jet introduction groove 13 provided along the rotating circumferential surface and communicating with the first-stage compressed gas inlet port 11 is opened on the inner surface of the impeller chamber 15 to approach the inlet.
  • the air introduction slot at the air port 11 is deep and wide, and the air introduction slot when the air inlet 11 is far away is shallow and narrow (Fig. 3), and the length of the air introduction slot 13 is larger than the distance L between two adjacent blade teeth 16 (
  • the reference numeral 18) is such that the compressed gas which is led out from the air introducing groove 13 can simultaneously act on two or more of the blade teeth 16, and can act on the desired leaf tooth portion according to a preset lead-out path. Produces stronger thrust.
  • two nozzles 17 are mounted on the same jet introduction groove 13 in this embodiment.
  • An exhaust gas discharge groove 14 parallel to the axis of the rotation shaft is opened on the inner surface of the first impeller chamber 15, and the exhaust gas discharge groove 14 communicates with the first stage compressed gas discharge hole 12.
  • the width of the exhaust gas outlet groove 14 substantially coincides with the width of the first impeller 20.
  • the gas just injected is prevented from being directly discharged from the exhaust gas discharge groove 14, and the distance between the end of the gas injection introduction groove 13 and the nearest exhaust gas discharge groove 14 should be larger than the distance between two adjacent leaf teeth L. .
  • the compressed gas is first injected into the first stage compressed gas engine 1, and is decompressed and stabilized by the first stage compressed gas engine 1 to enter the second stage compressed gas engine 2.
  • the first stage compressed gas engine 1 serves both decompression and voltage stabilization, and fully utilizes the energy generated during the release of the compressed gas.
  • the first stage compressed gas engine 1 simultaneously provides partial power.
  • the second stage compressed gas engine 2 provides the main power.
  • Embodiment 2 Another compressed gas engine, as shown in FIG. 4, includes a two-stage compressed gas engine on the left side and a two-stage compressed gas engine on the right side.
  • the two-stage compressed gas engine on the left side is the first stage compressed gas engine 100
  • the two-stage compressed gas engine on the right side is the second compressed gas engine 200.
  • the first stage compressed gas engine 100 and the second compressed gas engine 200 have the same structure and are bilaterally symmetrical.
  • the first stage compressed gas engine 100 and the second compressed gas engine 200 are coaxially mounted on the rotating shaft 118 and connected by a bearing 108 and a spline sleeve 117.
  • the two-stage compressed gas engines (100, 200) on the left and right sides generate power through the shaft 118 for driving the drive shaft of the motor vehicle.
  • the first stage compressed gas engine 100 includes an impeller chamber 103, a first impeller 104 and a second impeller 102 that are mounted in the impeller chamber 103 via a rotating shaft 118.
  • the impeller chamber 103 has inner diameters of different sizes that match the diameters of the installed first impeller 104 and second impeller 102 to enable the inner surface of the impeller chamber 103 to relatively seal within the working chamber 109 of the first impeller 104.
  • the compressed gas and the compressed gas within the working chamber 116 of the second impeller 102 is the first stage compressed gas engine 100.
  • the impeller chamber 103 is provided with a first-stage compressed gas injection hole 106 for injecting compressed gas into the first impeller 104, a first-stage compressed gas injection hole 111 for discharging compressed gas from the first impeller 104, and a second
  • the impeller 102 sprays the second compressed gas injection hole 114 of the compressed gas, and the second compressed gas discharge hole 101 that discharges the compressed gas from the second impeller 102.
  • the first stage compressed gas injection hole 111 communicates with the second compressed gas injection hole 114 via the pipe 112 for injecting the compressed gas discharged from the first impeller 104 into the second impeller 102 to continue work.
  • the rotating peripheral surface of the first impeller 104 has a plurality of equally disposed blade teeth 110 and a side plate 107 located on the right side of the blade teeth 110.
  • the second impeller 102 has a plurality of equally spaced blade teeth 115 on the rotating circumferential surface thereof.
  • the side plate 105 located on the left side of the blade tooth 115 and the side plate 113 located on the right side of the blade tooth 115 isolate the air path of the first impeller 104 and the second impeller 102 through the side plate 113.
  • the structure of the blade teeth 110 on the first impeller 104 and the blade teeth 115 on the second impeller 102 are the same as in the first embodiment.
  • the side plates (107, 113) between the blade teeth 110 and the front and rear blade teeth 110 on the rotating circumferential surface of the first impeller 104 constitute a plurality of working chambers 109, and the inner surface of the impeller chamber 103 of the first impeller 104 is disposed.
  • Each of the working chambers 109 constitutes a plurality of gas chambers that can seal the injected compressed gas.
  • the side plates (105, 113) between the blade teeth 115 and the front and rear blade teeth 115 on the rotating circumferential surface of the second impeller 102 constitute a plurality of working chambers 116, and the inner surface of the impeller chamber 103 of the second impeller 102 is mounted.
  • Each of the working chambers 116 constitutes a plurality of gas chambers capable of sealingly injecting gas from the second compressed gas injection holes 114.
  • the diameter of the first impeller 104 is smaller than the diameter of the second impeller 102 to increase the force receiving area of the blade teeth on the second impeller 102.
  • the diameter of the first-stage compressed gas discharge hole 119 is 2 to 10 times that of the first-stage compressed gas injection hole 106, and the diameter of the second compressed gas discharge hole 101 is the second compressed gas injection hole 121. 2 ⁇ 10 times, can be flexibly set according to needs.
  • the rotational speed of the compressed gas engine is required to be high (3000-15000 rpm)
  • the first impeller 104 and the second impeller 102 are separately processed, it is difficult to ensure the concentricity of the two impellers due to the error in machining accuracy (coaxial performance) ), and the processing technology is complicated and the processing cost is high.
  • the first impeller 104 and the second impeller 102 are integrally formed into a connected structure.
  • the second compressed gas engine 200 includes an impeller chamber 205, a third impeller 204, and a fourth impeller 202.
  • the second compressed gas engine 200 has a structure similar to that of the first stage compressed gas engine 100, and the structure of the first stage compressed gas engine 200 is opposite to that of the first stage compressed gas engine 100 (omitted).
  • the compressed gas is first injected into the first stage compressed gas engine 100, and is depressurized and stabilized by the first stage compressed gas engine 100 to enter the second stage compressed gas engine 200.
  • the first stage compressed gas engine 100 serves both decompression and stabilization, and utilizes the energy generated during the release of the compressed gas.
  • the first stage compressed gas engine 100 provides partial power.
  • the second stage compressed gas engine 200 provides primary power.
  • the first impeller 104 is injected from the first stage compressed gas injection hole 106 into the blade teeth 110 of the first impeller 104, and the injected compressed gas is temporarily stored in each working chamber 109.
  • the compressed gas in the working chamber 109 is injected outward through the first-stage compressed gas discharge hole 111 to further promote the first
  • the impeller 104 is rotated.
  • the first stage compressed gas discharge hole 111 on the impeller chamber 103 communicates with the second compressed gas injection hole 114, the compressed gas discharged from the first stage compressed gas discharge hole 111 passes through the second compressed gas injection hole. 114 continues to push the blade teeth 115 of the second impeller 102 to perform work.
  • the injected compressed gas is temporarily stored in each working chamber 116.
  • the working chamber 116 temporarily storing the compressed gas When the working chamber 116 temporarily storing the compressed gas is rotated to the position where the second compressed gas discharge hole 101 is located, the compressed gas in the working chamber 116 is passed through the second The compressed gas discharge hole 101 is externally sprayed to work, and further pushes the second impeller 102 to perform work.
  • a multi-stage compressed gas engine includes a two-stage compressed gas engine on the left side and a two-stage compressed gas engine on the right side.
  • the two-stage compressed gas engine on the left side is the first stage compressed gas engine 300
  • the two-stage compressed gas engine on the right side is the second compressed gas engine 400.
  • the first stage compressed gas engine 300 and the second compressed gas engine 400 have the same structure and are bilaterally symmetrical.
  • the first stage compressed gas engine 300 and the second compressed gas engine 400 are coaxially mounted on the rotating shaft 318 and connected by a bearing 308 and a spline sleeve 317.
  • the power generated by the two-stage compressed gas engine on the left and right sides is output through the rotating shaft 318 for driving the transmission shaft of the motor vehicle.
  • the first stage compressed gas engine 300 includes an impeller chamber 303, a first impeller 304 and a second impeller 302 that are mounted in the impeller chamber 303 via a rotating shaft 318.
  • the impeller chamber 303 has an inner diameter that coincides with the diameters of the installed first impeller 304 and second impeller 302 such that the inner surface of the impeller chamber 303 can relatively seal the working chambers of the first impeller 304 and the second impeller 302 (309 , 316) compressed gas.
  • the impeller chamber 303 is provided with a first-stage compressed gas injection hole 306 for injecting compressed gas into the first impeller 304, a first-stage compressed gas injection hole 311 for discharging compressed gas from the first impeller 304, and a second
  • the impeller 302 injects the second compressed gas injection hole 314 of the compressed gas, and the second compressed gas discharge hole 301 that discharges the compressed gas from the second impeller 302.
  • the first stage compressed gas injection hole 311 communicates with the second compressed gas injection hole 314 via the pipe 312 for injecting the compressed gas sprayed from the first impeller 304 into the second impeller 302 to continue work.
  • the rotating peripheral surface of the first impeller 304 has a plurality of equally disposed blade teeth 310 and a side plate 307 located on the right side of the blade teeth 310.
  • the rotating surface of the second impeller 302 has a plurality of equally spaced blade teeth 315.
  • the side plate 305 located on the left side of the blade tooth 315 and the side plate 313 located on the right side of the blade tooth 315 isolate the gas path of the first impeller 304 and the second impeller 302 by the side plate 313.
  • the structure of the blade teeth 310 on the first impeller 304 and the blade teeth 315 on the second impeller 302 are the same as in the first embodiment.
  • the side plates (307, 313) between the blade teeth 310 and the front and rear blade teeth 310 on the rotating circumferential surface of the first impeller 304 constitute a plurality of working chambers 309, and the inner surface of the impeller chamber 303 of the first impeller 304 is disposed.
  • Each of the working chambers 309 constitutes a plurality of gas chambers that can seal the injected compressed gas.
  • the side plates (305, 313) between the blade teeth 315 and the front and rear blade teeth 315 on the rotating circumferential surface of the second impeller 302 constitute a plurality of working chambers 316, and the inner surface of the impeller chamber 303 of the second impeller 302 is mounted.
  • Each of the working chambers 316 constitutes a plurality of gas chambers capable of sealingly injecting gas from the second compressed gas injection holes 314.
  • first impeller 204 and the second impeller 202 have the same width, but the first impeller 204 and the second impeller 202 have different diameters, wherein the second impeller The diameter of 202 is larger than the diameter of the first impeller 204 by increasing the diameter of the second impeller 202 to increase the force receiving area of the blade teeth on the second impeller 102.
  • the impeller chamber 103 has inner diameters of different sizes that match the diameters of the first impeller 104 and the second impeller 102 that are mounted.
  • the diameters of the first impeller 304 and the second impeller 302 are the same, the inner diameter of the first impeller 304 and the second impeller 302 are the same in the impeller chamber 303, and the width of the second impeller 302 is greater than that of the first impeller 304.
  • the width is increased by increasing the width of the second impeller 302 to increase the force receiving area of the blade teeth on the second impeller 302.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)
  • Supercharger (AREA)

Abstract

一种多级压缩气体发动机,包括叶轮和装设叶轮的至少一个叶轮室(103)。叶轮包括第一叶轮(104)和第二叶轮(102)。第一和第二叶轮(104,102)周面上的叶齿(115,110)与叶齿(115,110)两侧的侧板(105,107,113)之间构成复数个工作腔(109,116)。叶轮室(103)的内表面与各工作腔(109,116)之间构成能够相对密封喷入气体的复数个气室。装设第一叶轮(104)的叶轮室上开设有第一压缩气体喷入孔(106)和第一压缩气体喷出孔(111)。装设第二叶轮(102)的叶轮室上开设有第二压缩气体喷入孔(114)和第二压缩气体排出孔(101)。第一压缩气体喷出孔(111)连通第二压缩气体喷入孔(114)。还提供了一种装有上述压缩气体发动机的机动车。

Description

多级压缩气体发动机及机动车 技术领域
本发明涉及一 种发动机, 属于机械领域。 可 安装在各种动力机械上,尤其适合于安装在机动车上。
背景技术
用燃料作为能源的发动机需要消耗大量的燃料,且又排放大量的废气、热气,污染环境。为了节省燃料能源,保护地球环境,人类更渴望一种无需燃料消耗,杜绝废气、热气排放、无污染的发动机。
本发明的申请人提出了发明名称为“风气发动机即采用风力气压取代燃料能源的发动机”、公开号为CN1828046的中国专利。该发明公开了一种风气发动机及机动车,包括至少一个叶轮室、装设在叶轮室内的叶轮和用于将压缩气体喷入叶轮室的喷气系统,该发明的主要特点在于在叶轮室上设置了用于接收外部风阻气流的进风口和设置喷气系统。使用时,该发明的风气发动机安装在能够行驶的动力机械上(特别是机动车),通过设置接收外部风阻气流的进风口,可以将动力机械在行驶过程中所遇到的风阻气流直接加以利用,变阻力为动力。通过设置喷气系统,采用压缩气体作为主动力,无燃料消耗,无废气、热气排放、无污染。
进一步地,发明人又提出了一种申请号为200780030483.8、 发明名称为组合式风气发动机及机动车。该发明的主要特点是分别设置独立结构的多级压缩气体发动机和风阻发动机,可根据压缩气体的流速高、相对集中,而风阻气流的流速低、相对分散的特点,分别有针对性地对叶轮、叶片进行优化设计,以使压缩气体和风阻气流能够更好地配合使用。
但是,这种新型的以压缩气体作为动力的新能源汽车仍还有大量的技术工作要做。
技术问题
本发明所要解决的技术问题是进一步提高压缩气体的使用效率。
技术解决方案
实现上述目的的技术方案:
一种多级压缩气体发动机,包括叶轮和装设叶轮的至少一个叶轮室,所述叶轮包括第一叶轮和第二叶轮,所述第一叶轮和第二叶轮的周面上均具有复数个叶齿和位于叶齿两侧的侧板,所述叶轮的周面上的叶齿与叶齿之间的两侧侧板构成复数个工作腔,所述装设叶轮的叶轮室的内表面与所述各工作腔构成能够相对密封喷入气体的复数个气室,装设第一叶轮的叶轮室上对应开设有用于向第一叶轮的叶齿上喷射压缩气体的第一级压缩气体喷入孔和用于喷出暂存在所述第一叶轮的各工作腔内的压缩气体的第一级压缩气体排出孔,装设第二叶轮的叶轮室上对应开设有用于向第二叶轮的叶齿上喷射压缩气体的第二压缩气体喷入孔和用于排出暂存在所述第二叶轮的各工作腔内的压缩气体的第二压缩气体排出孔,所述第一级压缩气体喷出孔的输出接第二压缩气体喷入孔。
一种压缩气体发动机,包括至少两级压缩气体发动机,每一级压缩气体发动机包括至少一个叶轮室、通过转轴装设于所述叶轮室内的至少一个叶轮,所述叶轮上设置叶齿,每一级叶轮室上开设有至少一个进气口和至少一个排气口,其中前一级叶轮室上的排气口与后一级叶轮室上的进气口相通,每一级叶轮通过转轴输出动力。
一种机动车,包括传动轴和多级压缩气体发动机,所述多级压缩气体发动机包括叶轮和装设叶轮的至少一个叶轮室,所述叶轮包括第一叶轮和第二叶轮,所述第一叶轮和第二叶轮的周面上均具有复数个叶齿和位于叶齿两侧的侧板,所述叶轮的周面上的叶齿与叶齿之间的两侧侧板构成复数个工作腔,所述装设叶轮的叶轮室的内表面与所述各工作腔构成能够相对密封喷入气体的复数个气室,装设第一叶轮的叶轮室上对应开设有用于向第一叶轮的叶齿上喷射压缩气体的第一级压缩气体喷入孔和用于喷出暂存在所述第一叶轮的各工作腔内的压缩气体的第一级压缩气体排出孔,装设第二叶轮的叶轮室上对应开设有用于向第二叶轮的叶齿上喷射压缩气体的第二压缩气体喷入孔和用于排出暂存在所述第二叶轮的各工作腔内的压缩气体的第二压缩气体排出孔,所述第一级压缩气体喷出孔的输出接第二压缩气体喷入孔,所述多级压缩气体发动机输出的动力传动机动车的传动轴。
进一步地,所述至少一个叶轮室包括各自独立的第一叶轮室和第二叶轮室,所述第一叶轮对应装设在第一叶轮室内,所述第二叶轮对应装设在第二叶轮室内。
进一步地,所述至少一个叶轮室为一个叶轮室,所述第一叶轮和第二叶轮为整体加工而成的连体结构,所述第一叶轮和第二叶轮装设在所述叶轮室内。
进一步地,所述第一叶轮的和第二叶轮具有不同尺寸的直径,所述叶轮室内具有与所装设的第一叶轮的和第二叶轮相吻合的不同尺寸的内径,以使叶轮室的内表面能够相对密封第一叶轮的工作腔内的压缩气体和第二叶轮的工作腔内的压缩气体。
进一步地,所述第一叶轮和第二叶轮装共轴装设在同一动力输出轴上。
进一步地,所述第二叶轮的直径大于所述第一叶轮的直径。
进一步地,所述第二叶轮的厚度大于所述第一叶轮的厚度。
进一步地,所述第一级压缩气体喷出孔的直径是第一级压缩气体喷入孔的直径的2~10倍,所述第二压缩气体排出孔的直径是第二压缩气体喷入孔的直径的2~10倍,所述第二压缩气体喷入孔的直径不小于所述第一级压缩气体喷出孔的直径。
进一步地,至少在第一叶轮所对应的叶轮室的内表面上开设有沿转动周面设置的、与所述第一级压缩气体喷入孔相通的喷气导入槽。
进一步地,所述喷气导入槽的长度大于两个相邻叶齿之间的距离。
进一步地,所述叶轮室的内表面上开设有与转轴轴线平行的排气导出槽,所述排气导出槽连接压缩气体排出孔。
进一步地,所述喷气导入槽末端与相邻的排气导出槽之间的距离大于两个相邻叶齿之间的距离。
一种左右对称装设有上述多级压缩气体发动机的压缩气体发动机,所述对称的左右多级压缩气体发动机共轴装设在同一动力输出轴上。
在本发明中,“多级压缩气体发动机”可以是两级或两级以上的压缩气体发动机,其中,压缩气体对前一级叶轮作功后排出并进入下一级叶轮继续作功。
有益效果
采用上述技术方案,本发明有益的技术效果在于:
通过设置第一叶轮和第二叶轮,第一叶轮和第二叶轮之间前后相通。一是可以将压缩气体对第一叶轮作功后的压缩气体能量继续喷入第二叶轮实现二次作功,提高了压缩气体的能量利用率。二是通过二次作功,不但提高了压缩气体的能量利用率,同时又起到了很好的消音作用。三是由于第一叶轮和第二叶轮这种前后级结构,可以不需要减压罐,只需通过第一叶轮即可实现压缩气体的减压、稳压作用,大大减少了压缩气体减压、稳压过程中的能量损失。
采用左右对称结构的压缩气体发动机,能够使压缩气体发动机工作时的受力均衡性更好。
通过设置喷气导入槽,喷气导入槽的长度至少大于两个相邻叶齿间距离,可以通过一个进气孔同时对两个以上的叶齿作功,提高发动机的动力性能。
通过设置排气导出槽,可以顺利地将对叶轮作功后的气体及时地排出。
通过将喷气导入槽末端与最近的排气导出槽之间的距离设置成大于两个相邻的叶齿间距离,可以防止刚喷入的气体直接从排气导出槽排出。
附图说明
图1是一种多级压缩气体发动机的结构示意图。
图2是图1中第一级压缩气体发动机的结构示意图。
图3是图2中叶轮室的局部结构放大示意图。
图4是另一种多级压缩气体发动机的结构示意图。
图5是又一种多级压缩气体发动机的结构示意图。
本发明的实施方式
下面结合附图与具体实施方式对本发明作进一步详细的描述:
实施例一、一种机动车,如图1至图3所示,包括左侧压缩气体发动机、右侧压缩气体发动机和传动轴19,左右两侧压缩气体发动机呈左右对称结构。以左侧压缩气体发动机为例,包括第一级压缩气体发动机1和第二级压缩气体发动机2,第一级压缩气体发动机1包括第一叶轮20和第一叶轮室15,第二级压缩气体发动机2包括第二叶轮26和第二叶轮室25。除尺寸参考不同外,第一级压缩气体发动机1与第二级压缩气体发动机2的结构相同。第一级压缩气体发动机1与第二级压缩气体发动机2共轴装设在同一转轴3上,左右两侧压缩气体发动机产生的动力经转轴3、离合器5传动机动车的传动轴。
下面以第一级压缩气体发动机1为例详细描述压缩气体发动机的结构:再结合图2和图3所示,第一级压缩气体发动机1包括第一叶轮室15、通过转轴3装设于第一叶轮室15内的第一叶轮20,第一叶轮室15上开设有三组对称设置的用于向第一叶轮20的叶齿16上喷射压缩气体的第一级压缩气体喷入孔11和三组对称设置的第一级压缩气体排出孔12,第一级压缩气体喷入孔11上装设喷嘴17,第一叶轮20的周面上具有复数个等分设置的叶齿16和位于叶齿16两侧的侧板23,第一叶轮20的周面上的叶齿16与叶齿之间的两侧侧板23构成复数个工作腔24,装设第一叶轮20的第一叶轮室15的内表面与各工作腔24构成能够相对密封从第一级压缩气体喷入孔11喷入气体的复数个气室,当暂存有压缩气体的工作腔24转动到第一级压缩气体排出孔12所在的位置时,工作腔24内的压缩气体经第一级压缩气体排出孔12向外喷射作功,进一步推动叶轮20动转。第一叶轮室15上的第一级压缩气体排出孔12与第二叶轮室25上的第二级压缩气体喷入孔21相通。
第一级压缩气体发动机1的第一叶轮20的直径小,第二级压缩气体发动机2的第二叶轮26直径大,以增大第二级压缩气体发动机2的叶齿叶面。为了使气体顺畅,第一级压缩气体排出孔12的直径是第一级压缩气体喷入孔11的2至10倍,第二级压缩气体排出孔22的直径是第二级压缩气体喷入孔21的2至10倍,可根据需要灵活设置。
如图2和图3所示,为了提高动力性能,在叶轮室15的内表面上开设有沿转动周面设置的、与第一级压缩气体进气口11相通的喷气导入槽13,接近进气口11时的喷气导入槽深而宽,远离进气口11时的喷气导入槽浅而窄(图3),喷气导入槽13的长度大于两个相邻叶齿16之间的距离L(标号18),使得从喷气导入槽13导出的压缩气体一是能够同时作用于二个或两个以上的叶齿16上,二是能够按照预设的导出路径作用在希望的叶齿部位,以产生更强的推力。另外,为了加大喷气力度,本实施例同一喷气导入槽13上装设两个喷嘴17。
在第一叶轮室15的内表面上开设有与转轴轴线平行的排气导出槽14,排气导出槽14与第一级压缩气体排出孔12相通。为了更好的排气,排气导出槽14的宽度与第一叶轮20的宽度基本相一致。
为了防止漏气,避免刚喷入的气体直接从排气导出槽14排出,喷气导入槽13末端与最近的排气导出槽14之间的距离应大于两个相邻叶齿之间的距离L。
工作时,压缩气体先喷入第一级压缩气体发动机1,经第一级压缩气体发动机1减压、稳压后进入第二级压缩气体发动机2。第一级压缩气体发动机1既起减压、稳压作用,又将释放压缩气体过程中产生的能量充分利用起来,第一级压缩气体发动机1同时提供部分动力。第二级压缩气体发动机2提供主动力。
实施例二、另一种压缩气体发动机,如图4所示,包括左侧的两级压缩气体发动机和右侧的两级压缩气体发动机。左侧的两级压缩气体发动机是第一级压缩气体发动机100,右侧的两级压缩气体发动机是第二压缩气体发动机200。第一级压缩气体发动机100和第二压缩气体发动机200结构相同,呈左右对称结构。第一级压缩气体发动机100与第二压缩气体发动机200共轴装设在转轴118上,通过轴承108和花键套117连接。左右两侧的两级压缩气体发动机(100、200),产生的动力经转轴118输出,用于传动机动车的传动轴。
以第一级压缩气体发动机100为例,第一级压缩气体发动机100包括叶轮室103、通过转轴118装设于叶轮室103内的第一叶轮104和第二叶轮102。叶轮室103内具有与所装设的第一叶轮104和第二叶轮102的直径相吻合的不同尺寸的内径,以使叶轮室103的内表面能够相对密封第一叶轮104的工作腔109内的压缩气体和第二叶轮102的工作腔116内的压缩气体。叶轮室103上分别设置有向第一叶轮104喷入压缩气体的第一级压缩气体喷入孔106、从第一叶轮104喷出压缩气体的第一级压缩气体喷出孔111、向第二叶轮102喷入压缩气体的第二压缩气体喷入孔114、从第二叶轮102排出压缩气体的第二压缩气体排出孔101。第一级压缩气体喷出孔111经管道112连通第二压缩气体喷入孔114,用以将从第一叶轮104喷出的压缩气体喷入第二叶轮102继续作功。
第一叶轮104的转动周面上具有复数个等分设置的叶齿110和位于叶齿110右侧的侧板107,第二叶轮102的转动周面上具有复数个等分设置的叶齿115、位于叶齿115左侧的侧板105和位于叶齿115右侧的侧板113,通过侧板113将第一叶轮104和第二叶轮102的气路隔离。第一叶轮104上的叶齿110结构和第二叶轮102上的叶齿115结构同实施例一。第一叶轮104的转动周面上的叶齿110与前后叶齿110之间的两侧侧板(107、113)构成复数个工作腔109,装设第一叶轮104的叶轮室103的内表面与各工作腔109构成能够相对密封喷入的压缩气体的复数个气室。第二叶轮102的转动周面上的叶齿115与前后叶齿115之间的两侧侧板(105、113)构成复数个工作腔116,装设第二叶轮102的叶轮室103的内表面与各工作腔116构成能够相对密封从第二压缩气体喷入孔114喷入气体的复数个气室。
第一叶轮104的直径小于第二叶轮102的直径,以增大第二叶轮102上的叶齿的受力面积。为了使气体顺畅,第一级压缩气体排出孔119的直径是第一级压缩气体喷入孔106的2~10倍,第二压缩气体排出孔101的直径是第二压缩气体喷入孔121的2~10倍,可根据需要灵活设置。
特别地,由于压缩气体发动机的转速要求高(3000-15000转/分钟),若是单独加工第一叶轮104和第二叶轮102,由于加工精度的误差,难以保证两者的同心度(共轴性能),而且加工工艺复杂,加工成本高。为了提高叶轮的同心度、简化加工工艺,第一叶轮104和第二叶轮102采用整体加工而成的连体结构。
第二压缩气体发动机200包括叶轮室205、第三叶轮204和第四叶轮202。第二压缩气体发动机200除了标号与第一级压缩气体发动机100不同外,第一级压缩气体发动机200的结构与第一级压缩气体发动机100的结构相(从略)。
工作时,压缩气体先喷入第一级压缩气体发动机100,经第一级压缩气体发动机100减压、稳压后进入第二级压缩气体发动机200。第一级压缩气体发动机100既起减压、稳压作用,又将释放压缩气体过程中产生的能量充分利用起来,第一级压缩气体发动机100提供部分动力。第二级压缩气体发动机200提供主动力。具体地说,从第一级压缩气体喷入孔106向第一叶轮104的叶齿110上喷入压缩气体推动第一叶轮104,同时喷入的压缩气体暂存于各工作腔109中,当暂存有压缩气体的工作腔109转动到第一级压缩气体排出孔111所在的位置时,工作腔109内的压缩气体经第一级压缩气体排出孔111向外喷射作功,进一步推动第一叶轮104动转。与此同时,由于叶轮室103上的第一级压缩气体排出孔111与第二压缩气体喷入孔114相通,从第一级压缩气体排出孔111排出的压缩气体经第二压缩气体喷入孔114继续推动第二叶轮102的叶齿115转动作功。同时,喷入的压缩气体暂存于各工作腔116中,当暂存有压缩气体的工作腔116转动到第二压缩气体排出孔101所在的位置时,工作腔116内的压缩气体经第二压缩气体排出孔101向外喷射作功,进一步推动第二叶轮102转动作功。
实施例三、又一种多级压缩气体发动机,如图5所示,包括左侧的两级压缩气体发动机和右侧的两级压缩气体发动机。左侧的两级压缩气体发动机是第一级压缩气体发动机300,右侧的两级压缩气体发动机是第二压缩气体发动机400。第一级压缩气体发动机300和第二压缩气体发动机400结构相同,呈左右对称结构。第一级压缩气体发动机300与第二压缩气体发动机400共轴装设在转轴318上,通过轴承308和花键套317连接。左右两侧的两级压缩气体发动机产生的动力经转轴318输出,用于传动机动车的传动轴。
以第一级压缩气体发动机300为例,第一级压缩气体发动机300包括叶轮室303、通过转轴318装设于叶轮室303内的第一叶轮304和第二叶轮302。叶轮室303具有与装设的第一叶轮304和第二叶轮302的直径相吻合的内径,以使叶轮室303的内表面能够相对密封第一叶轮304和第二叶轮302的工作腔内(309、316)的压缩气体。叶轮室303上分别设置有向第一叶轮304喷入压缩气体的第一级压缩气体喷入孔306、从第一叶轮304喷出压缩气体的第一级压缩气体喷出孔311、向第二叶轮302喷入压缩气体的第二压缩气体喷入孔314、从第二叶轮302排出压缩气体的第二压缩气体排出孔301。第一级压缩气体喷出孔311经管道312连通第二压缩气体喷入孔314,用以将从第一叶轮304喷出的压缩气体喷入第二叶轮302继续作功。
第一叶轮304的转动周面上具有复数个等分设置的叶齿310和位于叶齿310右侧的侧板307,第二叶轮302的转动周面上具有复数个等分设置的叶齿315、位于叶齿315左侧的侧板305和位于叶齿315右侧的侧板313,通过侧板313将第一叶轮304和第二叶轮302的气路隔离。第一叶轮304上的叶齿310结构和第二叶轮302上的叶齿315结构同实施例一。第一叶轮304的转动周面上的叶齿310与前后叶齿310之间的两侧侧板(307、313)构成复数个工作腔309,装设第一叶轮304的叶轮室303的内表面与各工作腔309构成能够相对密封喷入的压缩气体的复数个气室。第二叶轮302的转动周面上的叶齿315与前后叶齿315之间的两侧侧板(305、313)构成复数个工作腔316,装设第二叶轮302的叶轮室303的内表面与各工作腔316构成能够相对密封从第二压缩气体喷入孔314喷入气体的复数个气室。
本实施例与实施例二的不同之处在于:在实施例二中,第一叶轮204和第二叶轮202的宽度相同,但第一叶轮204和第二叶轮202的直径不同,其中第二叶轮202的直径大于第一叶轮204的直径,通过增大第二叶轮202直径的途径,以增大第二叶轮102上的叶齿的受力面积。叶轮室103内具有与所装设的第一叶轮104和第二叶轮102的直径相吻合的不同尺寸的内径。而在本实施例中,第一叶轮304和第二叶轮302的直径相同,叶轮室303内装设第一叶轮304和第二叶轮302的内径相同,第二叶轮302的宽度大于第一叶轮304的宽度,通过增大第二叶轮302宽度的途径,以增大第二叶轮302上的叶齿的受力面积。
以上内容是结合具体的实施方式对本发明所作的进一步详细说明,不能认定本发明的具体实施只局限于这些说明。对于本发明所属技术领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干简单推演或替换,都应当视为属于本发明的保护范围。

Claims (20)

  1. 多级压缩气体发动机,包括叶轮和装设叶轮的至少一个叶轮室,其特征在于:所述叶轮包括第一叶轮和第二叶轮,所述第一叶轮和第二叶轮的周面上均具有复数个叶齿和位于叶齿两侧的侧板,所述叶轮的周面上的叶齿与叶齿之间的两侧侧板构成复数个工作腔,所述装设叶轮的叶轮室的内表面与所述各工作腔构成能够相对密封喷入气体的复数个气室,装设第一叶轮的叶轮室上对应开设有第一压缩气体喷入孔和第一压缩气体排出孔,装设第二叶轮的叶轮室上对应开设有第二压缩气体喷入孔和第二压缩气体排出孔,所述第一压缩气体喷出孔的输出接第二压缩气体喷入孔。
  2. 根据权利要求1所述的多级压缩气体发动机,其特征在于:所述至少一个叶轮室包括各自独立的第一叶轮室和第二叶轮室,所述第一叶轮对应装设在第一叶轮室内,所述第二叶轮对应装设在第二叶轮室内。
  3. 根据权利要求1所述的多级压缩气体发动机,其特征在于:所述至少一个叶轮室为一个叶轮室,所述第一叶轮和第二叶轮为整体加工而成的连体结构,所述第一叶轮和第二叶轮装设在所述叶轮室内。
  4. 根据权利要求3所述的多级压缩气体发动机,其特征在于:所述第一叶轮的和第二叶轮具有不同尺寸的直径,所述叶轮室内具有与所装设的第一叶轮的和第二叶轮相吻合的不同尺寸的内径,以使叶轮室的内表面能够相对密封第一叶轮的工作腔内的压缩气体和第二叶轮的工作腔内的压缩气体。
  5. 根据权利要求1-4任意一项权利要求所述的多级压缩气体发动机,其特征在于:所述第一叶轮和第二叶轮装共轴装设在同一动力输出轴上。
  6. 根据权利要求1-4任意一项权利要求所述的多级压缩气体发动机,其特征在于:所述第二叶轮的直径大于所述第一叶轮的直径。
  7. 根据权利要求1-4任意一项权利要求所述的多级压缩气体发动机,其特征在于:所述第二叶轮的厚度大于所述第一叶轮的厚度。
  8. 根据权利要求1-4任意一项权利要求所述的多级压缩气体发动机,其特征在于:所述第一压缩气体喷出孔的直径是第一压缩气体喷入孔的直径的2~10倍,所述第二压缩气体排出孔的直径是第二压缩气体喷入孔的直径的2~10倍,所述第二压缩气体喷入孔的直径不小于所述第一压缩气体喷出孔的直径。
  9. 根据权利要求1-4任意一项权利要求所述的多级压缩气体发动机,其特征在于:至少在第一叶轮所对应的叶轮室的内表面上开设有沿转动周面设置的、与所述第一压缩气体喷入孔相通的喷气导入槽。
  10. 根据权利要求9所述的多级压缩气体发动机,其特征在于:所述喷气导入槽的长度大于两个相邻叶齿之间的距离。
  11. 根据权利要求1-4任意一项权利要求所述的多级压缩气体发动机,其特征在于:所述叶轮室的内表面上开设有与转轴轴线平行的排气导出槽,所述排气导出槽连接压缩气体排出孔。
  12. 根据权利要求9所述的多级压缩气体发动机,其特征在于:所述叶轮室的内表面上开设有与转轴轴线平行的排气导出槽,所述排气导出槽连接压缩气体排出孔。
  13. 根据权利要求11所述的多级压缩气体发动机,其特征在于:所述喷气导入槽末端与相邻的排气导出槽之间的距离大于两个相邻叶齿之间的距离。
  14. 一种压缩气体发动机,包括左右对称的多级压缩气体发动机,所述多级压缩气体发动机采用权利要求1-4任意一项所述的结构,所述左右对称的多级压缩气体发动机共轴装设在同一动力输出轴上。
  15. 一种装有权利要求1-4任意一项权利要求所述的多级压缩气体发动机的机动车,所述多级压缩气体发动机输出的动力传动机动车的传动轴。
  16. 一种压缩气体发动机,包括至少两级压缩气体发动机,每一级压缩气体发动机包括至少一个叶轮室、通过转轴装设于所述叶轮室内的至少一个叶轮,所述叶轮上设置叶齿,每一级叶轮室上开设有至少一个进气口和至少一个排气口,其中前一级叶轮室上的排气口与后一级叶轮室上的进气口相通,每一级叶轮通过转轴输出动力。
  17. 根据权利要求16所述的压缩气体发动机,其特征在于:至少在用于接入压缩气体的第一级压缩气体发动机进气口的叶轮室的内表面上开设有沿转动周面设置的、与所述进气口相通的喷气导入槽。
  18. 根据权利要求17所述的压缩气体发动机,其特征在于:在用于连接排气口的叶轮室的内表面上开设有与转轴轴线平行的排气槽。
  19. 根据权利要求18所述的压缩气体发动机,其特征在于:所述喷气导入槽的长度至少大于两个相邻叶齿之间的距离,所述喷气导入槽末端与最近的排气槽之间的距离大于两个相邻叶齿之间的距离。
  20. 一种装有权利要求16-19任意一项所述压缩气体发动机的机动车,所述各级叶轮通过转轴输出的动力传动机动车的传动轴。
PCT/CN2011/076345 2010-07-16 2011-06-24 多级压缩气体发动机及机动车 WO2012006925A1 (zh)

Priority Applications (13)

Application Number Priority Date Filing Date Title
AU2011278887A AU2011278887A1 (en) 2010-07-16 2011-06-24 Multistage compressed gas engine and motor vehicle
KR1020137003875A KR20130142995A (ko) 2010-07-16 2011-06-24 다단 압축 가스 엔진 및 자동차
JP2013518939A JP2013536344A (ja) 2010-07-16 2011-06-24 多段圧縮ガスエンジン及び自動車
EA201390129A EA201390129A1 (ru) 2010-07-16 2011-06-24 Многоступенчатый двигатель на сжатом газе и автотранспортное средство
SG2013004221A SG187135A1 (en) 2010-07-16 2011-06-24 Multistage compressed gas engine and motor vehicle
EP11806267.8A EP2594747A1 (en) 2010-07-16 2011-06-24 Multistage compressed gas engine and motor vehicle
CA2805143A CA2805143A1 (en) 2010-07-16 2011-06-24 Multistage compressed gas engine and motor vehicle
US13/810,646 US20130199169A1 (en) 2010-07-16 2011-06-24 Multistage compressed gas engine and motor vehicle
MX2013000546A MX2013000546A (es) 2010-07-16 2011-06-24 Motor de gas comprimido multietapas y vehiculo motor.
BR112013001182A BR112013001182A2 (pt) 2010-07-16 2011-06-24 motor a gás comprimido com múltiplos estágios e veículo a motor
MA35659A MA34466B1 (fr) 2010-07-16 2011-06-24 Moteur à gaz comprimé à plusieurs étages et véhicule à moteur
ZA2013/00331A ZA201300331B (en) 2010-07-16 2013-01-14 Multistage compressed gas engine and motor vehicle
NO20130167A NO20130167A1 (no) 2010-07-16 2013-02-01 Flertrinns motor for komprimert gass samt motorkjoretoy

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201010229032 2010-07-16
CN201010229032.0 2010-07-16
CN201010518219.2 2010-10-25
CN201010518219.2A CN102278144B (zh) 2010-06-13 2010-10-25 多级压缩气体发动机及机动车

Publications (1)

Publication Number Publication Date
WO2012006925A1 true WO2012006925A1 (zh) 2012-01-19

Family

ID=45468923

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2011/076345 WO2012006925A1 (zh) 2010-07-16 2011-06-24 多级压缩气体发动机及机动车

Country Status (16)

Country Link
US (1) US20130199169A1 (zh)
EP (1) EP2594747A1 (zh)
JP (1) JP2013536344A (zh)
KR (1) KR20130142995A (zh)
AU (1) AU2011278887A1 (zh)
BR (1) BR112013001182A2 (zh)
CA (1) CA2805143A1 (zh)
CO (1) CO6690747A2 (zh)
EA (1) EA201390129A1 (zh)
MA (1) MA34466B1 (zh)
MX (1) MX2013000546A (zh)
NO (1) NO20130167A1 (zh)
PE (1) PE20131188A1 (zh)
SG (1) SG187135A1 (zh)
WO (1) WO2012006925A1 (zh)
ZA (1) ZA201300331B (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2631428A (en) * 1946-08-28 1953-03-17 Arthur H Nelson Multiple fluid-operated rotary gear motors with treatment between stages
CN2702088Y (zh) * 2004-03-26 2005-05-25 朱妙睿 同轴多节单螺杆式空气压缩机
CN1828046A (zh) 2006-04-12 2006-09-06 丛洋 风气发动机即采用风力气压取代燃料能源的发动机
CN201874623U (zh) * 2010-06-13 2011-06-22 丛洋 压缩空气发动机及机动车

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4043126A (en) * 1976-06-29 1977-08-23 Jaime Rios Santos Turbine engine for automotive vehicles
JPS6050962B2 (ja) * 1978-12-04 1985-11-11 株式会社日立製作所 ラジアルタ−ビン
JPS566901U (zh) * 1980-06-27 1981-01-21
US5271225A (en) * 1990-05-07 1993-12-21 Alexander Adamides Multiple mode operated motor with various sized orifice ports
US6311487B1 (en) * 1999-07-15 2001-11-06 Paul C. Ferch Electromechanical hydraulic drive system for vehicle
JP2001098901A (ja) * 1999-10-01 2001-04-10 Takeshi Hatanaka タービンおよびフライホイールタービン
US6378287B2 (en) * 2000-03-17 2002-04-30 Kenneth F. Griffiths Multi-stage turbomachine and design method
JP2001295601A (ja) * 2000-04-12 2001-10-26 Zenichi Tabuchi 発電用タービン
CN1908422A (zh) * 2006-08-16 2007-02-07 丛洋 风气发动机即采用风力气压取代燃料能源的发动机
JP3958783B1 (ja) * 2006-11-16 2007-08-15 有限会社ディーシークリエイトエンジニアリング 車載型風力発電装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2631428A (en) * 1946-08-28 1953-03-17 Arthur H Nelson Multiple fluid-operated rotary gear motors with treatment between stages
CN2702088Y (zh) * 2004-03-26 2005-05-25 朱妙睿 同轴多节单螺杆式空气压缩机
CN1828046A (zh) 2006-04-12 2006-09-06 丛洋 风气发动机即采用风力气压取代燃料能源的发动机
CN201874623U (zh) * 2010-06-13 2011-06-22 丛洋 压缩空气发动机及机动车
CN201934144U (zh) * 2010-06-13 2011-08-17 丛洋 多级压缩气体发动机及机动车

Also Published As

Publication number Publication date
MX2013000546A (es) 2013-10-28
SG187135A1 (en) 2013-02-28
EP2594747A1 (en) 2013-05-22
EA201390129A1 (ru) 2013-06-28
BR112013001182A2 (pt) 2016-05-31
CA2805143A1 (en) 2012-01-19
KR20130142995A (ko) 2013-12-30
MA34466B1 (fr) 2013-08-01
AU2011278887A1 (en) 2013-02-21
JP2013536344A (ja) 2013-09-19
ZA201300331B (en) 2014-03-26
US20130199169A1 (en) 2013-08-08
PE20131188A1 (es) 2013-10-05
NO20130167A1 (no) 2013-02-28
CO6690747A2 (es) 2013-06-17

Similar Documents

Publication Publication Date Title
CN100443721C (zh) 旋转轴供气转子发动机
JP5079807B2 (ja) 風力ガスエンジン及びこれを備える動力車
CN109139122B (zh) 一种燃气轮机2级透平转子的内部冷却系统
WO2012030052A2 (ko) 반작용식 터빈
WO2022077541A1 (zh) 空气压缩装置、多级空气压缩装置及氢燃料电池
WO2011160601A1 (zh) 改进的叶轮室及压缩气体发动机
CN102135104A (zh) 涡轮压缩机
WO2011160602A1 (zh) 一种气流收集装置、风力发动机及机动车
CN202174565U (zh) 气动工具的进排气导引装置
FI120211B (fi) Turbokompressorin turpiiniyksikkö ja menetelmä turbokompressorin turpiiniyksikön karstoittumisen estämiseksi
WO2012019419A1 (zh) 风动透平冲压发动机
US20210115810A1 (en) Pneumatic device
WO2011069364A1 (zh) 换能机
WO2012006925A1 (zh) 多级压缩气体发动机及机动车
CN103097667A (zh) 用于排气涡轮增压器的涡轮机
WO2016192601A1 (zh) 一种喷射式旋转马达
CN201934144U (zh) 多级压缩气体发动机及机动车
CN102979612A (zh) 风机二冲程发动机
CN214063076U (zh) 一种二缸发动机涡轮增压系统装置
CN202970951U (zh) 一种涡轮喷气发动机
CN201103494Y (zh) 一种喷气转子发动机
CN219795337U (zh) 一种气动马达
CN203022832U (zh) 蒸汽发动机及蒸汽发电机和蒸汽空压机
US6672828B2 (en) Vacuum pump
CN201763441U (zh) 高效节能发动机

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11806267

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2805143

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 224209

Country of ref document: IL

Ref document number: 12013500097

Country of ref document: PH

Ref document number: MX/A/2013/000546

Country of ref document: MX

ENP Entry into the national phase

Ref document number: 2013518939

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 000079-2013

Country of ref document: PE

WWE Wipo information: entry into national phase

Ref document number: 2011806267

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20137003875

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 13031498

Country of ref document: CO

Ref document number: 201390129

Country of ref document: EA

ENP Entry into the national phase

Ref document number: 2011278887

Country of ref document: AU

Date of ref document: 20110624

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 13810646

Country of ref document: US

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112013001182

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112013001182

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20130116